
RTI Connext DDS

Core Libraries
User’s Manual

Version 6.1.2

© 2023 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
September 2023.Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Work-
ing as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All
other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished solely under and subject to
RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance with your
License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to
the extent otherwise accepted in writing by a corporate officer of RTI.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Notice

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding
maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is deprec-
ated in a release, RTI hereby provides customer notice that RTI reserves the right after one year from the
date of such release and, with or without further notice, to immediately terminate maintenance (including
without limitation, providing updates and upgrades) for the item, and no longer support the item, in a
future release.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive, Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://www.rti.com/terms
http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Available Documentation
To get you up and running as quickly as possible, the RTI® Connext® DDS documentation is
divided into several parts.

l RTI Connext DDS Installation Guide — This document describes how to install Connext
DDS, as well as License Management.

l RTI Connext DDS Getting Started Guide — This document describes the core value and
concepts behind the product and takes you step-by-step through the creation of a simple
example application. Addendums cover:

l RTI Connext DDS Core Libraries Getting Started Guide Addendum for Android Sys-
tems

l RTI Connext DDS Core Libraries Getting Started Guide Addendum for Embedded
Systems

l RTI Connext DDS Core Libraries Getting Started Guide Addendum for INtime Sys-
tems

l RTI Connext DDS Core Libraries What's New in 6.1.2— This document describes
changes and enhancements in the most recent major release of Connext. Those upgrading
from a previous version should read this document first.

l RTI Connext DDS Core Libraries Release Notes —This document describes system require-
ments, what's fixed, and known issues.

l RTI Connext DDS Core Libraries Platform Notes — This document provides platform-spe-
cific information, including specific information required to build your applications using
Connext DDS, such as compiler flags and libraries.

l RTI Connext DDS Core Libraries Database Setup — In most cases, Connext DDS does not
require a database. However, if you want to use some of the durability features of Connext
DDS, you will need a relational database.

iii

iv

l Migration Guide on the RTI Community Portal (https://community.rti.com/documentation)—This
document describes how to migrate to the current release from a previous Connext DDS release,
including what compatibility issues you may need to account for during your upgrade. This guide is
updated as needed.

l RTI Connext DDS Core Libraries User's Manual— This document describes the features of the
product and how to use them. It is organized around the structure of the Connext DDS APIs and cer-
tain common high-level tasks.

l RTI Connext DDS Core Libraries Extensible Types Guide — This document describes how to use
Extensible Types, which allow you to define data types in a more flexible way, and to evolve data
types over time without giving up portability, interoperability, or the expressiveness of the DDS type
system.

l API Reference HTML Documentation (README.html) — This extensively cross-referenced
documentation, available for all supported programming languages, is your in-depth reference to
every operation and configuration parameter in the middleware. Even experienced Connext DDS
developers will often consult this information.

l The Programming How To's provide a good place to begin learning the APIs. These are hyper-
linked code snippets to the full API documentation. From the README.html file, select one of the
supported programming languages, then scroll down to the Programming How To’s. Start by
reviewing the Publication Example and Subscription Example, which provide step-by step examples
of how to send and receive data with Connext DDS.

Many readers will also want to look at additional documentation available online. In particular, RTI recom-
mends the following:

l Use the RTI Customer Portal (http://support.rti.com) to download RTI software and contact RTI
Support. The RTI Customer Portal requires a username and password. You will receive this in the
email confirming your purchase. If you do not have this email, please contact license@rti.com.
Resetting your login password can be done directly at the RTI Customer Portal.

l The RTI Community Portal (https://community.rti.com) provides a wealth of knowledge to help you
use Connext DDS, including:

l Documentation, at https://community.rti.com/documentation

l Best Practices

l Example code for specific features, as well as more complete use-case examples,

l Solutions to common questions,

l A glossary,

l Downloads of experimental software,

l And more.

https://community.rti.com/documentation
http://support.rti.com/
https://community.rti.com/
https://community.rti.com/documentation

l Whitepapers and other articles are available from http://www.rti.com/resources.

v

http://www.rti.com/resources

Contents
About this Document

Paths Mentioned in Documentation 1
Programming Language Conventions 2

Traditional vs. Modern C++ 2
Extensions to the DDS Standard 3
Environment Variables 3
Additional Resources 4

Part 1: Welcome to RTI Connext DDS 5
Chapter 1 Overview

1.1 What is Connext DDS? 6
1.2 Network Communications Models 7
1.3 What is Middleware? 10
1.4 Features of Connext DDS 11

Chapter 2 Data-Centric Publish-Subscribe Communications

2.1 What is DCPS? 14
2.1.1 DCPS for Real-Time Requirements 15

2.2 DDS Data Types, Topics, Keys, Instances, and Samples 16
2.3 Data Topics — What is the Data Called? 17
2.4 DDS Samples, Instances, and Keys 18
2.5 DataWriters/Publishers and DataReaders/Subscribers 20
2.6 DDS Domains and DomainParticipants 22
2.7 Quality of Service (QoS) 23

2.7.1 Controlling Behavior with Quality of Service (QoS) Policies 23
2.8 Application Discovery 24

Part 2: Core Concepts 26
Chapter 3 Data Types and DDS Data Samples

vi

vii

3.1 Introduction to the Type System 29
3.1.1 Sequences 30
3.1.2 Strings and Wide Strings 32
3.1.3 Introduction to TypeCode 37

3.2 Built-in Data Types 38
3.2.1 Registering Built-in Types 39
3.2.2 Creating Topics for Built-in Types 39
3.2.3 String Built-in Type 41
3.2.4 KeyedString Built-in Type 46
3.2.5 Octets Built-in Type 54
3.2.6 KeyedOctets Built-in Type 60
3.2.7 Managing Memory for Built-in Types 69
3.2.8 Type Codes for Built-in Types 74

3.3 Creating User Data Types with IDL 75
3.3.1 Variable-Length Types 77
3.3.2 Value Types 78
3.3.3 Type Codes 79
3.3.4 Translations for IDL Types 79
3.3.5 Escaped Identifiers 108
3.3.6 Namespaces In IDL Files 108
3.3.7 Referring to Other IDL Files 111
3.3.8 Preprocessor Directives 112
3.3.9 Using Builtin Annotations 112

3.4 Creating User Data Types with Extensible Markup Language (XML) 121
3.5 Creating User Data Types with XML Schemas (XSD) 131

3.5.1 Primitive Types 151
3.6 Using RTI Code Generator (rtiddsgen) 152
3.7 Using Generated Types without Connext DDS (Standalone) 152

3.7.1 Using Standalone Types in C 152
3.7.2 Using Standalone Types in C++ 153
3.7.3 Standalone Types in Java 154

3.8 Interacting Dynamically with User Data Types 154
3.8.1 Type Schemas and TypeCode Objects 154
3.8.2 Defining New Types 154
3.8.3 Sending Only a Few Fields 156
3.8.4 Sending Type Information on the Network 157

3.9 Working with DDS Data Samples 158
3.9.1 Objects of Concrete Types 158
3.9.2 Objects of Dynamically Defined Types 161
3.9.3 Serializing and Deserializing Data Samples 163
3.9.4 Accessing the Discriminator Value in a Union 163

3.10 Data Sample Serialization Limits 164
Chapter 4 DDS Entities

4.1 Common Operations for All DDS Entities 166
4.1.1 Creating and Deleting DDS Entities 167
4.1.2 Enabling DDS Entities 168
4.1.3 Getting an Entity’s Instance Handle 171
4.1.4 Getting Status and Status Changes 171
4.1.5 Getting and Setting Listeners 171
4.1.6 Getting the StatusCondition 172
4.1.7 Getting, Setting, and Comparing QosPolicies 172

4.2 QosPolicies 176
4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property 180
4.2.2 Special QosPolicy Handling Considerations for C 182

4.3 Statuses 183
4.3.1 Types of Communication Status 183
4.3.2 Special Status-Handling Considerations for C 188

4.4 Listeners 189
4.4.1 Types of Listeners 190
4.4.2 Creating and Deleting Listeners 192
4.4.3 Special Considerations for Listeners in C 193
4.4.4 Special Considerations for Listeners in Modern C++ 193
4.4.5 Hierarchical Processing of Listeners 194
4.4.6 Operations Allowed within Listener Callbacks 196
4.4.7 Best Practices with Listeners 196

4.5 Exclusive Areas (EAs) 197
4.5.1 Restricted Operations in Listener Callbacks 200

4.6 Conditions and WaitSets 202
4.6.1 Creating and Deleting WaitSets 204
4.6.2 WaitSet Operations 205
4.6.3 Waiting for Conditions 206
4.6.4 Processing Triggered Conditions—What to do when Wait() Returns 207

viii

ix

4.6.5 Conditions and WaitSet Example 208
4.6.6 GuardConditions 210
4.6.7 ReadConditions and QueryConditions 210
4.6.8 StatusConditions 213
4.6.9 Using Both Listeners and WaitSets 215

Chapter 5 Working with Topics

5.1 Topics 216
5.1.1 Creating Topics 218
5.1.2 Deleting Topics 220
5.1.3 Setting Topic QosPolicies 220
5.1.4 Copying QoS From a Topic to a DataWriter or DataReader 223
5.1.5 Setting Up TopicListeners 224
5.1.6 Navigating Relationships Among Entities 224

5.2 Topic QosPolicies 225
5.2.1 TOPIC_DATA QosPolicy 225

5.3 Status Indicator for Topics 227
5.3.1 INCONSISTENT_TOPIC Status 227

5.4 ContentFilteredTopics 228
5.4.1 Overview 228
5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side 229
5.4.3 Creating ContentFilteredTopics 230
5.4.4 Deleting ContentFilteredTopics 234
5.4.5 Using a ContentFilteredTopic 234
5.4.6 SQL Filter Expression Notation 237
5.4.7 STRINGMATCH Filter Expression Notation 246
5.4.8 Character Encoding 247
5.4.9 Unicode Normalization 248
5.4.10 Custom Content Filters 249

Chapter 6 Working with Instances

6.1 Instance States 259
6.1.1 ALIVE Details 260
6.1.2 NOT_ALIVE_DISPOSED Details 260
6.1.3 NOT_ALIVE_NO_WRITERS Details 262
6.1.4 Transitions between NOT_ALIVE States 263

6.2 Instance Memory Management 265
6.3 QoS Configuration and Instances 267

6.3.1 QoS Policies that are Applied per Instance 267
6.3.2 QoS Policies that Affect Instance Management 268

Chapter 7 Sending Data

7.1 Preview: Steps to Sending Data 271
7.2 Publishers 272

7.2.1 Creating Publishers Explicitly vs. Implicitly 276
7.2.2 Creating Publishers 277
7.2.3 Deleting Publishers 278
7.2.4 Setting Publisher QosPolicies 279
7.2.5 Setting Up PublisherListeners 285
7.2.6 Finding a Publisher’s Related DDS Entities 287
7.2.7 Waiting for Acknowledgments in a Publisher 287
7.2.8 Statuses for Publishers 288
7.2.9 Suspending and Resuming Publications 288

7.3 DataWriters 288
7.3.1 Creating DataWriters 293
7.3.2 Getting All DataWriters 294
7.3.3 Deleting DataWriters 294
7.3.4 Setting Up DataWriterListeners 295
7.3.5 Checking DataWriter Status 296
7.3.6 Statuses for DataWriters 297
7.3.7 Using a Type-Specific DataWriter (FooDataWriter) 309
7.3.8 Writing Data 310
7.3.9 Flushing Batches of DDS Data Samples 316
7.3.10 Writing Coherent Sets of DDS Data Samples 317
7.3.11 Waiting for Acknowledgments in a DataWriter 318
7.3.12 Application Acknowledgment 318
7.3.13 Required Subscriptions 324
7.3.14 Managing Instances (Working with Keyed Data Types) 326
7.3.15 Setting DataWriter QosPolicies 334
7.3.16 Navigating Relationships Among DDS Entities 343
7.3.17 Asserting Liveliness 345
7.3.18 Turbo Mode and Automatic Throttling for DataWriter Performance—Experimental Features 345

7.4 Publisher/Subscriber QosPolicies 346
7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) 346
7.4.2 ENTITYFACTORY QosPolicy 349

x

xi

7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension) 351
7.4.4 GROUP_DATA QosPolicy 354
7.4.5 PARTITION QosPolicy 357
7.4.6 PRESENTATION QosPolicy 363

7.5 DataWriter QosPolicies 370
7.5.1 AVAILABILITY QosPolicy (DDS Extension) 371
7.5.2 BATCH QosPolicy (DDS Extension) 375
7.5.3 DATA_REPRESENTATION QosPolicy 381
7.5.4 DATATAG QosPolicy 389
7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) 390
7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) 402
7.5.7 DEADLINE QosPolicy 407
7.5.8 DESTINATION_ORDER QosPolicy 409
7.5.9 DURABILITY QosPolicy 412
7.5.10 DURABILITY SERVICE QosPolicy 417
7.5.11 ENTITY_NAME QosPolicy (DDS Extension) 419
7.5.12 HISTORY QosPolicy 421
7.5.13 LATENCYBUDGET QoS Policy 426
7.5.14 LIFESPAN QoS Policy 426
7.5.15 LIVELINESS QosPolicy 428
7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) 433
7.5.17 OWNERSHIP QosPolicy 435
7.5.18 OWNERSHIP_STRENGTH QosPolicy 439
7.5.19 PROPERTY QosPolicy (DDS Extension) 440
7.5.20 PUBLISH_MODE QosPolicy (DDS Extension) 445
7.5.21 RELIABILITY QosPolicy 448
7.5.22 RESOURCE_LIMITS QosPolicy 452
7.5.23 SERVICE QosPolicy (DDS Extension) 455
7.5.24 TOPIC_QUERY_DISPATCH_QosPolicy (DDS Extension) 456
7.5.25 TRANSFER_MODE QosPolicy 458
7.5.26 TRANSPORT_PRIORITY QosPolicy 459
7.5.27 TRANSPORT_SELECTION QosPolicy (DDS Extension) 464
7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension) 465
7.5.29 TYPESUPPORT QosPolicy (DDS Extension) 469
7.5.30 USER_DATA QosPolicy 470
7.5.31 WRITER_DATA_LIFECYCLE QoS Policy 472

7.6 FlowControllers (DDS Extension) 475
7.6.1 Flow Controller Scheduling Policies 477
7.6.2 Managing Fast DataWriters When Using a FlowController 478
7.6.3 Token Bucket Properties 479
7.6.4 Prioritized DDS Samples 481
7.6.5 Creating and Configuring Custom FlowControllers with Property QoS 484
7.6.6 Creating and Deleting FlowControllers 486
7.6.7 Getting/Setting Default FlowController Properties 487
7.6.8 Getting/Setting Properties for a Specific FlowController 487
7.6.9 Adding an External Trigger 488
7.6.10 Other FlowController Operations 488

Chapter 8 Receiving Data

8.1 Preview: Steps to Receiving Data 489
8.2 Subscribers 491

8.2.1 Creating Subscribers Explicitly vs. Implicitly 495
8.2.2 Creating Subscribers 496
8.2.3 Deleting Subscribers 497
8.2.4 Setting Subscriber QosPolicies 498
8.2.5 Beginning and Ending Group-Ordered Access 504
8.2.6 Setting Up SubscriberListeners 505
8.2.7 Getting DataReaders with Specific DDS Samples 507
8.2.8 Finding a Subscriber’s Related Entities 507
8.2.9 Statuses for Subscribers 508

8.3 DataReaders 509
8.3.1 Creating DataReaders 515
8.3.2 Getting All DataReaders 517
8.3.3 Deleting DataReaders 517
8.3.4 Setting Up DataReaderListeners 517
8.3.5 Checking DataReader Status and StatusConditions 519
8.3.6 Waiting for Historical Data 520
8.3.7 Statuses for DataReaders 521
8.3.8 Accessing and Managing Instances (Working with Keyed Data Types) 539
8.3.9 Setting DataReader QosPolicies 548
8.3.10 Navigating Relationships Among Entities 556

8.4 Using DataReaders to Access Data (Read & Take) 558
8.4.1 Using a Type-Specific DataReader (FooDataReader) 558

xii

xiii

8.4.2 Loaning and Returning Data and SampleInfo Sequences 558
8.4.3 Accessing DDS Data Samples with Read or Take 560
8.4.4 Acknowledging DDS Samples 568
8.4.5 The Sequence Data Structure 568
8.4.6 The SampleInfo Structure 570

8.5 Subscriber QosPolicies 575
8.6 DataReader QosPolicies 575

8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) 575
8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) 581
8.6.3 READER_DATA_LIFECYCLE QoS Policy 591
8.6.4 TIME_BASED_FILTER QosPolicy 593
8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) 596
8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy 599

Chapter 9 Working with DDS Domains

9.1 Fundamentals of DDS Domains and DomainParticipants 606
9.2 DomainParticipantFactory 608

9.2.1 Setting DomainParticipantFactory QosPolicies 611
9.2.2 Getting and Setting Default QoS for DomainParticipants 613
9.2.3 Freeing Resources Used by the DomainParticipantFactory 613
9.2.4 Looking Up DomainParticipants 614
9.2.5 Getting QoS Values from a QoS Profile 614

9.3 DomainParticipants 615
9.3.1 Creating a DomainParticipant 621
9.3.2 Deleting DomainParticipants 623
9.3.3 Deleting Contained Entities 623
9.3.4 Choosing a Domain ID and Creating Multiple DDS Domains 624
9.3.5 Choosing a Domain Tag 625
9.3.6 Setting Up DomainParticipantListeners 626
9.3.7 Setting DomainParticipant QosPolicies 628
9.3.8 Looking up Topic Descriptions 634
9.3.9 Finding a Topic 634
9.3.10 Getting the Implicit Publisher or Subscriber 635
9.3.11 Asserting Liveliness 636
9.3.12 Learning about Discovered DomainParticipants 636
9.3.13 Learning about Discovered Topics 636
9.3.14 Getting Participant Protocol Status 637

9.3.15 Other DomainParticipant Operations 637
9.4 DomainParticipantFactory QosPolicies 638

9.4.1 LOGGING QosPolicy (DDS Extension) 638
9.4.2 PROFILE QosPolicy (DDS Extension) 639
9.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension) 641

9.5 DomainParticipant QosPolicies 643
9.5.1 DATABASE QosPolicy (DDS Extension) 643
9.5.2 DISCOVERY QosPolicy (DDS Extension) 646
9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) 650
9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) 660
9.5.5 EVENT QosPolicy (DDS Extension) 668
9.5.6 RECEIVER_POOL QosPolicy (DDS Extension) 670
9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) 671
9.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension) 673
9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension) 676

9.6 Clock Selection 683
9.6.1 Available Clocks 683
9.6.2 Clock Selection Strategy 683

9.7 System Properties 684
Chapter 10 Building Applications

10.1 Running on a Computer Not Connected to a Network 687
10.2 Connext DDS Header Files — All Architectures 687
10.3 Choosing the Right Libraries 688

10.3.1 Required Libraries 688
10.3.2 Mixing Static and Dynamic Libraries not Supported 688

10.4 Linux Platforms 689
10.5 Windows Platforms 690

10.5.1 Using Visual Studio 690
10.6 Java Platforms 691

10.6.1 Java Libraries 691
10.6.2 Native Libraries 692

10.7 Building Applications Using CMake 692
Part 3: Advanced Concepts 693
Chapter 11 Reliable Communications

11.1 Sending Data Reliably 694
11.1.1 Best-effort Delivery Model 694

xiv

xv

11.1.2 Reliable Delivery Model 695
11.2 Overview of the Reliable Protocol 696
11.3 Using QosPolicies to Tune the Reliable Protocol 700

11.3.1 Enabling Reliability 702
11.3.2 Tuning Queue Sizes and Other Resource Limits 702
11.3.3 Controlling Queue Depth with the History QosPolicy 709
11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy 710
11.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy 718
11.3.6 Resending DDS Samples to Late-Joiners with the Durability QosPolicy 718
11.3.7 Use Cases 719

11.4 Auto Throttling for DataWriter Performance—Experimental Feature 731
Chapter 12 Collaborative DataWriters

12.1 Collaborative DataWriters Use Cases 734
12.2 DDS Sample Combination (Synchronization) Process in a DataReader 735
12.3 Configuring Collaborative DataWriters 736

12.3.1 Associating Virtual GUIDs with DDS Data Samples 736
12.3.2 Associating Virtual Sequence Numbers with DDS Data Samples 736
12.3.3 Specifying which DataWriters will Deliver DDS Samples to the DataReader from a Logical Data

Source 736
12.3.4 Specifying How Long to Wait for a Missing DDS Sample 736

12.4 Collaborative DataWriters and Persistence Service 737
Chapter 13 Mechanisms for Achieving Information Durability and Persistence

13.1 Introduction 738
13.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History) 739
13.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader State) 741
13.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data) 742

13.2 Durability and Persistence Based on Virtual GUIDs 743
13.3 Durable Writer History 745

13.3.1 Durable Writer History Use Case 746
13.3.2 How To Configure Durable Writer History 747

13.4 Durable Reader State 750
13.4.1 Durable Reader State With Protocol Acknowledgment 750
13.4.2 Durable Reader State with Application Acknowledgment 752
13.4.3 Durable Reader State Use Case 752
13.4.4 How To Configure a DataReader for Durable Reader State 753

13.5 Data Durability 755

13.5.1 RTI Persistence Service 755
Chapter 14 Guaranteed Delivery of Data

14.1 Introduction 758
14.1.1 Identifying the Required Consumers of Information 759
14.1.2 Ensuring Consumer Applications Process the Data Successfully 761
14.1.3 Ensuring Information is Available to Late-Joining Applications 762

14.2 Scenarios 763
14.2.1 Scenario 1: Guaranteed Delivery to a-priori Known Subscribers 763
14.2.2 Scenario 2: Surviving a Writer Restart when Delivering DDS Samples to a priori Known Sub-

scribers 765
14.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to a priori Known Sub-

scribers 766
Chapter 15 Discovery

15.1 What is Discovery? 771
15.1.1 Simple Participant Discovery 771
15.1.2 Simple Endpoint Discovery 772

15.2 Configuring the Peers List Used in Discovery 773
15.2.1 Peer Descriptor Format 775
15.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format 777
15.2.3 NDDS_DISCOVERY_PEERS File Format 778

15.3 Discovery Implementation 779
15.3.1 Participant Discovery 780
15.3.2 Endpoint Discovery 789
15.3.3 Discovery Traffic Summary 793
15.3.4 Discovery-Related QoS 794

15.4 Debugging Discovery 795
15.5 Ports Used for Discovery 797

15.5.1 Inbound Ports for Meta-Traffic 799
15.5.2 Inbound Ports for User Traffic 799
15.5.3 Automatic Selection of participant_id and Port Reservation 800
15.5.4 Tuning domain_id_gain and participant_id_gain 800

Chapter 16 Transport Plugins

16.1 Builtin Transport Plugins 802
16.2 Extension Transport Plugins 803
16.3 The NDDSTransportSupport Class 804
16.4 Explicitly Creating Builtin Transport Plugin Instances 804
16.5 Setting Builtin Transport Properties of Default Transport Instance—get/set_builtin_transport_properties() 805

xvi

xvii

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy 807
16.6.1 Setting the Maximum Gather-Send Buffer Count for UDP Transports 825
16.6.2 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists 826
16.6.3 RTPS Overhead 826

16.7 Installing Additional Builtin Transport Plugins with register_transport() 827
16.7.1 Transport Lifecycles 828
16.7.2 Transport Aliases 828
16.7.3 Transport Network Addresses 829

16.8 Installing Additional Builtin Transport Plugins with PropertyQosPolicy 829
16.9 Other Transport Support Operations 830

16.9.1 Adding a Send Route 830
16.9.2 Adding a Receive Route 831
16.9.3 Looking Up a Transport Plugin 832

Chapter 17 RTPS Locators and IP Mobility

17.1 Locator Changes at Run Time 833
17.1.1 Locator Changes in IP-Based Transports 833

17.2 Detection of Unreachable Locators 835
17.3 Using DNS Tracker to Keep Peer List Updated 836

Chapter 18 Built-In Topics

18.1 Listeners for Built-in Entities 837
18.2 Built-in DataReaders 838

18.2.1 LOCATOR_FILTER QoS Policy (DDS Extension) 846
18.3 Accessing the Built-in Subscriber 847
18.4 Restricting Communication—Ignoring Entities 847

18.4.1 Ignoring Specific Remote DomainParticipants 848
18.4.2 Ignoring Publications and Subscriptions 849
18.4.3 Ignoring Topics 850
18.4.4 Resource Limits Considerations for Ignored Entities 851
18.4.5 Supervising Endpoint Discovery 851

Chapter 19 Configuring QoS with XML

19.1 Example XML File 854
19.2 QoS Libraries 855
19.3 QoS Profiles 856

19.3.1 Built-in QoS Profiles 857
19.3.2 Overwriting Default QoS Values 859
19.3.3 QoS Profile Inheritance and Composition 860

19.3.4 Topic Filters 876
19.3.5 QoS Profiles with a Single QoS 880

19.4 Tags for Configuring QoS with XML 880
19.4.1 QosPolicies 881
19.4.2 Sequences 881
19.4.3 Arrays 884
19.4.4 Enumeration Values 885
19.4.5 Time Values (Durations) 885
19.4.6 Transport Properties 886
19.4.7 Thread Settings 888
19.4.8 Entity Names 888

19.5 How to Load XML-Specified QoS Settings 888
19.5.1 Loading, Reloading and Unloading Profiles 890

19.6 XML File Syntax 891
19.6.1 Using Environment Variables in XML 892
19.6.2 Using Special Characters in XML 893
19.6.3 Specifying Fully Qualified Names in XML 894

19.7 XML String Syntax 894
19.8 URL Groups (Loading Redundant Locations) 895
19.9 How the XML is Validated 895

19.9.1 Validation at Run-Time 895
19.9.2 XML File Validation During Editing 896

19.10 Using QoS Profiles in Your Connext DDS Application 897
19.10.1 Retrieving a List of Available Libraries 900
19.10.2 Retrieving a List of Available QoS Profiles 901

19.11 Configuring Logging Via XML 901
Chapter 20 Multi-channel DataWriters

20.1 What is a Multi-channel DataWriter? 903
20.2 How to Configure a Multi-channel DataWriter 906

20.2.1 Limitations 907
20.3 Multi-Channel Configuration on the Reader Side 907
20.4 Where Does the Filtering Occur? 909

20.4.1 Filtering at the DataWriter 909
20.4.2 Filtering at the DataReader 909
20.4.3 Filtering on the Network Hardware 910

20.5 Fault Tolerance and Redundancy 910

xviii

xix

20.6 Reliability with Multi-Channel DataWriters 911
20.6.1 Reliable Delivery 911
20.6.2 Reliable Protocol Considerations 911

20.7 Performance Considerations 912
20.7.1 Network-Switch Filtering 912
20.7.2 DataWriter and DataReader Filtering 912

Chapter 21 Connext DDS Threading Model

21.1 Database Thread 915
21.2 Event Thread 916
21.3 Receive Threads 917
21.4 Exclusive Areas, RTI Connext DDS Threads, and User Listeners 919
21.5 Controlling CPU Core Affinity for RTI Threads 919
21.6 Configuring Thread Settings with XML 920
21.7 User-Managed Threads 921
21.8 Unregistering Threads 922
21.9 Identifying Threads Used by Connext DDS 922

21.9.1 Checking Thread Names at the OS Level 923
21.9.2 Checking Thread Names from the Call Stack 929
21.9.3 Checking Thread Names Using the Worker’s Name 930

Chapter 22 DDS Sample and Instance Memory Management

22.1 DDS Sample Memory Management for DataWriters 932
22.1.1 Memory Management without Batching 933
22.1.2 Memory Management with Batching 935
22.1.3 Writer-Side Memory Management when Using Java 937
22.1.4 Writer-Side Memory Management when Working with Large Data 937

22.2 DDS Sample Memory Management for DataReaders 939
22.2.1 Memory Management for DataReaders Using Generated Type-Plugins 940
22.2.2 Reader-Side Memory Management when Using Java 941
22.2.3 Memory Management for DynamicData DataReaders 942
22.2.4 Memory Management for Fragmented DDS Samples 944
22.2.5 Reader-Side Memory Management when Working with Large Data 944

22.3 Instance Memory Management for DataWriters 946
22.4 Instance Memory Management for DataReaders 946

Chapter 23 Sending Large Data

23.1 Reducing Latency 950
23.1.1 Use Cases 951

23.1.2 Copies in the Middleware Memory Space 952
23.1.3 Choosing between FlatData Language Binding and Zero Copy Transfer over Shared Memory 955
23.1.4 FlatData Language Binding 955
23.1.5 Zero Copy Transfer Over Shared Memory 968

23.2 Reducing Bandwidth Usage 975
23.3 Large Data Fragmentation 976

23.3.1 Avoiding IP-Level Fragmentation 979
23.3.2 Reliable Reliability 980
23.3.3 Asynchronous Publishing 980
23.3.4 Flow Controllers 981
23.3.5 Example 981
23.3.6 Fragmentation Statistics 982

Chapter 24 Topic Queries

24.1 Reading TopicQuery Samples 984
24.2 Debugging Topic Queries 984

24.2.1 The Built-in ServiceRequest DataReader 984
24.2.2 The on_service_request_accepted() DataWriter Listener Callback 985

24.3 System Resource Considerations 985
24.3.1 Publishing Application 985
24.3.2 Subscribing Application 985

Chapter 25 Troubleshooting

25.1 What Version am I Running? 987
25.1.1 Finding Version Information in Revision Files 987
25.1.2 Finding Version Information on Windows or Linux Systems 988
25.1.3 Finding Version Information Programmatically 988

25.2 Controlling Messages from Connext DDS 990
25.2.1 Format of Logged Messages 993
25.2.2 Configuring Logging via XML 998
25.2.3 Customizing the Handling of Generated Log Messages 999

25.3 Monitoring Native Heap Memory Usage 1000
25.4 Network Capture 1000

25.4.1 Capturing Shared Memory Traffic 1001
25.5 Logging a Backtrace for Failures 1002
25.6 Setting Warnings for Operation Delays 1003

Part 4: Request-Reply and RPC Communication Patterns 1005
Chapter 26 Introduction to the Request-Reply Communication Pattern

xx

xxi

26.1 The Request-Reply Pattern 1007
26.1.1 Request-Reply Correlation 1008

26.2 Single-Request, Multiple-Replies 1008
26.3 Multiple Repliers 1009
26.4 Combining Request-Reply and Publish-Subscribe 1010

Chapter 27 Using the Request-Reply Communication Pattern

27.1 Requesters 1013
27.1.1 Creating a Requester 1014
27.1.2 Destroying a Requester 1015
27.1.3 Setting Requester Parameters 1015
27.1.4 Summary of Requester Operations 1015
27.1.5 Sending Requests 1017
27.1.6 Processing Incoming Replies with a Requester 1017

27.2 Repliers 1021
27.2.1 Creating a Replier 1021
27.2.2 Destroying a Replier 1022
27.2.3 Setting Replier Parameters 1022
27.2.4 Summary of Replier Operations 1023
27.2.5 Processing Incoming Requests with a Replier 1024
27.2.6 Sending Replies 1026

27.3 SimpleRepliers 1027
27.3.1 Creating a SimpleReplier 1027
27.3.2 Destroying a SimpleReplier 1028
27.3.3 Setting SimpleReplier Parameters 1028
27.3.4 Getting Requests and Sending Replies with a SimpleReplierListener 1028

27.4 Accessing Underlying DataWriters and DataReaders 1029
Chapter 28 Remote Procedure Calls (RPC)—Experimental Feature

28.1 RPC Service 1031
28.1.1 Creating a Service 1032
28.1.2 Setting the Server Parameters 1033
28.1.3 Summary of Server Operations 1033
28.1.4 Run the Server 1034
28.1.5 Setting the Service Parameters 1034

28.2 RPC Client 1035
28.2.1 Creating a Client 1035
28.2.2 Setting the Client Parameters 1035

28.2.3 Summary of Client Operations 1036
28.3 Accessing Underlying DataWriters and DataReaders 1038
28.4 Generating RPC Code from IDL using RTI Code Generator 1038

Part 5: RTI Real-Time WAN Transport 1040
Chapter 29 Introduction to Real-Time WAN Transport

29.1 Key Terms 1042
29.1.1 Basic Terms 1042
29.1.2 IP Address Types 1042
29.1.3 Locators 1042
29.1.4 WAN Ecosystem 1043

Chapter 30 Transport Capabilities

30.1 NAT Traversal 1044
30.1.1 NAT Kinds 1045
30.1.2 Identifying the NAT Type 1047
30.1.3 NAT Bindings 1047
30.1.4 NAT Bindings Expiration 1048
30.1.5 NAT Hairpinning 1049

30.2 IP Mobility 1049
Chapter 31 Communication Scenarios

31.1 Peer-to-Peer Communication with a Participant that has a Public Address 1051
31.1.1 External Participant Configuration: Sub-Scenario 1 1053
31.1.2 External Participant Configuration: Sub-Scenario 2 1053
31.1.3 Internal Participants Configuration 1054

31.2 Peer-to-Peer Communication with Participants behind Cone NATs Using Cloud Discovery Service 1054
31.2.1 Internal Participants Configuration 1056
31.2.2 Cloud Discovery Service Configuration 1056

Chapter 32 Deployment Scenarios

32.1 Edge-to-Data Center Deployment Scenario 1058
32.1.1 Data Center Routing Service Configuration 1060
32.1.2 In-Vehicle Routing Service Configuration 1062

32.2 Relayed Edge-to-Edge Deployment Scenario 1063
32.2.1 Data Center Routing Service Configuration 1066
32.2.2 Webinar Application Configuration 1067

32.3 Peer-to-Peer, Edge-to-Edge Deployment Scenario 1067
32.3.1 Video Connext Application Configuration 1069
32.3.2 Cloud Discovery Service Configuration 1069

xxii

xxiii

Chapter 33 Enabling Real-Time WAN Transport

33.1 Dynamically Loading the Real-Time WAN Transport 1070
33.2 Linking the Real-Time WAN Transport against your Application 1071

Chapter 34 Transport Initial Peers 1072
Chapter 35 Transport Configuration

35.1 Setting Real-Time WAN Transport Properties 1074
35.2 Managing UDP Ports Used for Communication 1084

35.2.1 Receiving Data 1084
35.2.2 Configuring the Transport to Use a Single Port for an Internal Participant behind a NAT 1086
35.2.3 Configuring the Transport to Segregate Traffic for a Topic in its own Port 1088
35.2.4 Sending Data 1089

35.3 Disabling IP Fragmentation for Real-Time WAN Transport 1090
Chapter 36 Security 1092
Chapter 37 Advanced Concepts

37.1 Transport Locators 1093
37.2 Binding Ping Messages 1094
37.3 Communication Establishment Protocol for Peer-to-Peer Communication with Participants behind Cone

NATs 1095
37.4 Communication Establishment Protocol for Peer-to-Peer Communication with a Participant that has a

Public Address 1098
Chapter 38 Transport Debugging

38.1 Debugging Peer-to-Peer Communication with a Participant that has a Public Address 1101
38.2 Peer-to-Peer Communication with Participants behind Cone NATs 1104

Chapter 39 Tools Integration 1108
Chapter 40 Troubleshooting

40.1 Communication Stops Working after Application Transitions to Different Network 1110
40.2 Communication not Established after Changing Cloud Discovery Service <receiver_port> 1110
40.3 Communication not Established even though Transport Settings are Set Correctly 1111
40.4 Slow Discovery using Cloud Discovery Service 1112

Part 6: RTI Secure WAN Transport 1114
Chapter 41 Introduction to Secure WAN Transport

41.1 WAN Traversal via UDP Hole-Punching 1116
41.1.1 Protocol Details 1117

41.2 WAN Locators 1120
41.3 Datagram Transport-Layer Security (DTLS) 1121

41.3.1 Security Model 1122
41.3.2 Liveliness Mechanism 1123

41.4 Certificate Support 1123
41.5 License Issues 1124

Chapter 42 Configuring RTI Secure WAN Transport

42.1 Example Applications 1128
42.2 Setting Up a Transport with the Property QoS 1128
42.3 WAN Transport Properties 1130
42.4 Secure Transport Properties 1138
42.5 Explicitly Instantiating a WAN or Secure Transport Plugin 1145

42.5.1 Additional Header Files and Include Directories 1145
42.5.2 Additional Libraries 1146
42.5.3 Compiler Flags 1146

Part 7: RTI TCP Transport 1147
Chapter 43 TCP Communication Scenarios

43.1 Communication Within a Single LAN 1148
43.2 Symmetric Communication Across NATs 1149
43.3 Asymmetric Communication Across NATs 1150

Chapter 44 Configuring the TCP Transport

44.1 Choosing a Transport Mode 1153
44.2 Explicitly Instantiating the TCP Transport Plugin 1154

44.2.1 Additional Header Files and Include Directories 1155
44.2.2 Additional Libraries and Compiler Flags 1155

44.3 Configuring the TCP Transport with the Property QosPolicy 1156
44.3.1 Configuring the TCP Transport to be Loaded Statically 1158
44.3.2 Loading TLS Support Libraries Statically 1159

44.4 Setting the Initial Peers 1159
44.5 RTPS Locator Format 1160
44.6 Support for External Hardware Load Balancers in TCP Transport Plugin 1161

44.6.1 Session-ID Messages 1163
44.7 TCP/TLS Transport Properties 1163

44.7.1 Connection Liveliness 1182
Part 8: RTI Persistence Service 1184
Chapter 45 Introduction to RTI Persistence Service 1185
Chapter 46 Configuring Persistence Service

46.1 How to Load the Persistence Service XML Configuration 1187
46.2 XML Configuration File 1188

46.2.1 Configuration File Syntax 1189

xxiv

xxv

46.2.2 XML Validation 1190
46.3 QoS Configuration 1191
46.4 Configuring the Persistence Service Application 1192
46.5 Configuring Remote Administration 1193
46.6 Configuring Persistent Storage 1194
46.7 Configuring Participants 1197
46.8 Creating Persistence Groups 1198

46.8.1 QoSs 1202
46.8.2 DurabilityService QoS Policy 1203
46.8.3 Sharing a Publisher/Subscriber 1203
46.8.4 Sharing a Database Connection 1204
46.8.5 Memory Management 1204

46.9 Configuring Durable Subscriptions in Persistence Service 1205
46.9.1 DDS Sample Memory Management With Durable Subscriptions 1206

46.10 Synchronizing of Persistence Service Instances 1206
46.11 Enabling RTI Distributed Logger in Persistence Service 1207
46.12 Enabling RTI Monitoring Library in Persistence Service 1208
46.13 Support for Extensible Types 1209

46.13.1 TypeConsistencyEnforcementQosPolicy Integration 1209
46.13.2 DataRepresentationQosPolicy Integration 1210

46.14 TCP Transport Support in Persistence Service 1210
Chapter 47 Running RTI Persistence Service

47.1 Starting Persistence Service 1211
47.2 Stopping Persistence Service 1214

Chapter 48 Administering Persistence Service from a Remote Location

48.1 Enabling Remote Administration 1215
48.2 Remote Commands 1216

48.2.1 start 1216
48.2.2 stop 1216
48.2.3 shutdown 1216
48.2.4 status 1217

48.3 Accessing Persistence Service from a Connext DDS Application 1217
Chapter 49 Advanced Persistence Service Scenarios

49.1 Scenario: Load-balanced Persistence Services 1221
49.2 Scenario: Delegated Reliability 1223
49.3 Scenario: Slow Consumer 1224

Part 9: RTI Monitoring Library 1227
Chapter 50 Using Monitoring Library in Your Application

50.1 Enabling Monitoring 1228
50.1.1 Method 1—Change the Participant QoS to Automatically Load the Dynamic Monitoring Library 1229
50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring Library Create Function

Pointer and Explicitly Load the Monitoring Library 1230
50.2 How does Monitoring Library Work? 1235
50.3 What Monitoring Topics are Published? 1235
50.4 Enabling Support for Large Type-Code (Optional) 1236
50.5 Troubleshooting Monitoring 1237

50.5.1 Buffer Allocation Error 1237
Chapter 51 Configuring Monitoring Library 1238
Part 10: RTI Distributed Logger 1243
Chapter 52 Using Distributed Logger in a Connext DDS Application

52.1 Distributed Logger Libraries 1244
52.2 Using the API Directly 1245
52.3 Examples 1245
52.4 Data Type Resource 1246
52.5 Distributed Logger Topics 1247
52.6 Distributed Logger IDL 1248
52.7 Viewing Log Messages 1248
52.8 Logging Levels 1249
52.9 Distributed Logger Quality of Service Settings 1250
52.10 Troubleshooting 1252

52.10.1 Message Losses 1252
52.10.2 Logger Device not Working 1253

Chapter 53 Enabling Distributed Logger in RTI Services

53.1 Relationship Between Service Verbosity and Filter Level 1257

xxvi

About this Document
Paths Mentioned in Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext® DDS. The default installation
paths are:

l macOS® systems:
/Applications/rti_connext_dds-6.1.2

l Linux systems, non-root user:
/home/<your user name>/rti_connext_dds-6.1.2

l Linux systems, root user:
/opt/rti_connext_dds-6.1.2

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-6.1.2

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-6.1.2

You may also see $NDDSHOME or%NDDSHOME%, which refers to an environment
variable set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

1

Programming Language Conventions

2

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-6.1.2\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples as
<path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l macOS systems: /Users/<your user name>/rti_workspace/6.1.2/examples

l Linux systems: /home/<your user name>/rti_workspace/6.1.2/examples

l Windows systems: <your Windows documents folder>\rti_workspace\6.1.2\examples

Where 'your Windows documents folder' depends on your version of Windows. For example,
on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. You can also specify that you do not
want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext DDS Installation Guide.

Programming Language Conventions

The terminology and example code in this manual assume you are using Traditional C++ without
namespace support.

C, Modern C++, C++/CLI, C#, and Java APIs are also available; they are fully described in the API Refer-
ence HTML documentation. (Note: the Modern C++ API is not available for all platforms, check the RTI
Connext DDS Core Libraries Platform Notes to see if it is available for your platform.)

Namespace support in Traditional C++, C++/CLI, and C# is also available; see the API Reference HTML
documentation (from theModules page, select Using DDS:: Namespace) for details. In the Modern C++
API all types, constants and functions are always in namespaces.

Traditional vs. Modern C++

Connext DDS provides two different C++ APIs, which we refer to as the "Traditional C++" and "Modern
C++" APIs. They provide substantially different programming paradigms and patterns. The Traditional

Extensions to the DDS Standard

API could be considered as simply "C with classes," while the Modern API incorporates modern C++
techniques, most notably:

l Generic programming

l Integration with the standard library

l Automatic object lifecycle management, providing full value types and reference types

l C++11 support, such as move operations, initializer lists, and support for range for-loops.

These different programming styles make the Modern C++ API differ significantly with respect to the
other language APIs in several aspects; to name a few:

l 3.3 Creating User Data Types with IDL on page 75

l 3.8 Interacting Dynamically with User Data Types on page 154

l 3.9 Working with DDS Data Samples on page 158

l 4.1.1 Creating and Deleting DDS Entities on page 167

l 8.4 Using DataReaders to Access Data (Read & Take) on page 558

l QoS policies and QoS management

l Naming conventions

This manual points out these kinds of differences whenever they are substantial.

Extensions to the DDS Standard

Connext DDS implements the DDS Standard published by the OMG. It also includes features that are
extensions to DDS. These include additional Quality of Service parameters, function calls, structure fields,
etc.

Extensions also include product-specific APIs that complement the DDS API. These include APIs to cre-
ate and use transport plug-ins, and APIs to control the verbosity and logging capabilities. These APIs are
prefixed with NDDS, such as NDDSTransportSupport::register_transport().

Environment Variables

Connext DDS documentation refers to path names that have been customized during installation.
NDDSHOME refers to the installation directory of Connext DDS.

Names of Supported Platforms

Connext DDS runs on several different target platforms. To support this vast array of platforms, Connext
DDS separates the executable, library, and object files for each platform into individual directories.

3

Additional Resources

4

Each platform name has four parts: hardware architecture, operating system, operating system version and
compiler. For example, x64Linux2.6gcc4.4.5 is the directory that contains files specific to Linux® version
2.6 for the x64 Intel processor, compiled with gcc version 4.4.5.

For a full list of supported platforms, see the RTI Connext DDS Core Libraries Platform Notes.

Additional Resources

The details of each API (such as function parameters, return values, etc.) and examples are in the API
Reference HTML documentation. In case of discrepancies between the information in this document and
the API Reference HTML documentation, the latter should be considered more up-to-date.

Part 1: Welcome to RTI Connext DDS

Part 1: Welcome to RTI Connext DDS
RTI® Connext® DDS solutions provide a flexible connectivity software framework for integrating data
sources of all types. At its core is the world's leading ultra-high performance, distributed networking Dat-
abus. It connects data within applications as well as across devices, systems and networks. Connext DDS
also delivers large data sets with microsecond performance and granular quality-of-service control. Con-
next DDS is a standards-based, open architecture that connects devices from deeply embedded real-time
platforms to enterprise servers across a variety of networks.

Part 1 introduces the general concepts behind data-centric publish-subscribe communications and provides
a brief tour of Connext DDS.

l Overview (Chapter 1 on page 6)

l Data-Centric Publish-Subscribe Communications (Chapter 2 on page 14)

5

Chapter 1 Overview
RTI® Connext® DDS is a connectivity framework for distributed real-time applications. Connext
DDS simplifies application development, deployment and maintenance and provides fast, pre-
dictable distribution of time-critical data over a variety of transport networks.

Connext DDS solutions provide a flexible data distribution infrastructure for integrating data
sources of all types. At its core is the world's leading ultra-high performance, distributed net-
working Connext Databus. It connects data within applications as well as across devices, systems
and networks. Connext DDS also delivers large data sets with microsecond performance and gran-
ular quality-of-service control. Connext DDS is a standards-based, open architecture that connects
devices from deeply embedded real-time platforms to enterprise servers across a variety of net-
works.

With Connext DDS, you can:

l Perform complex one-to-many and many-to-many network communications.

l Customize application operation to meet various real-time, reliability, and quality-of-service
goals.

l Provide application-transparent fault tolerance and application robustness.

l Use a variety of transports.

This section introduces basic concepts of middleware and common communication models, and
describes how Connext DDS’s feature-set addresses the needs of real-time systems.

1.1 What is Connext DDS?

Connext DDS is a software connectivity framework for real-time distributed applications. It
provides the communications service programmers need to distribute time-critical data between
embedded and/or enterprise devices or nodes. Connext DDS uses the publish-subscribe com-
munications model to make data distribution efficient and robust.

6

1.2 Network Communications Models

7

Connext DDS implements the Data-Centric Publish-Subscribe (DCPS) API within the OMG’s Data Dis-
tribution Service (DDS) for Real-Time Systems. DDS is the first standard developed for the needs of real-
time systems. DCPS provides an efficient way to transfer data in a distributed system.

With Connext DDS, systems designers and programmers start with a fault-tolerant and flexible com-
munications infrastructure that will work over a wide variety of computer hardware, operating systems, lan-
guages, and networking transport protocols. Connext DDS is highly configurable so programmers can
adapt it to meet the application’s specific communication requirements.

1.2 Network Communications Models

The communications model underlying the network middleware is the most important factor in how applic-
ations communicate. The communications model impacts the performance, the ease to accomplish different
communication transactions, the nature of detecting errors, and the robustness to different error conditions.
Unfortunately, there is no “one size fits all” approach to distributed applications. Different communications
models are better suited to handle different classes of application domains.

This section describes three main types of network communications models:

l Point-to-point

l Client-server

l Publish-subscribe

Point-to-point model:

Point-to-point is the simplest form of communication, as illustrated in Figure 1.1: Point-to-Point on the next
page. The telephone is an example of an everyday point-to-point communications device. To use a tele-
phone, you must know the address (phone number) of the other party. Once a connection is established,
you can have a reasonably high-bandwidth conversation. However, the telephone does not work as well if
you have to talk to many people at the same time. The telephone is essentially one-to-one communication.

TCP is a point-to-point network protocol designed in the 1970s. While it provides reliable, high-bandwidth
communication, TCP is cumbersome for systems with many communicating nodes.

1.2 Network Communications Models

Figure 1.1: Point-to-Point

Point-to-point is one-to-one communication.

Client-server model:

To address the scalability issues of the Point-to-Point model, developers turned to the Client-Server model.
Client-server networks designate one special server node that connects simultaneously to many client
nodes, as illustrated in Figure 1.2: Client-Server below.
Figure 1.2: Client-Server

Client-server is many-to-one communications.

Client-server is a "many-to-one" architecture. Ordering pizza over the phone is an example of client-server
communication. Clients must know the phone number of the pizza parlor to place an order. The parlor can
handle many orders without knowing ahead of time where people (clients) are located. After the order

8

1.2 Network Communications Models

9

(request), the parlor asks the client where the response (pizza) should be sent. In the client-server model,
each response is tied to a prior request. As a result, the response can be tailored to each request. In other
words, each client makes a request (order) and each reply (pizza) is made for one specific client in mind.

The client-server network architecture works best when information is centralized, such as in databases,
transaction processing systems, and file servers. However, if information is being generated at multiple
nodes, a client-server architecture requires that all information are sent to the server for later redistribution
to the clients. This approach is inefficient and precludes deterministic communications, since the client
does not know when new information is available. The time between when the information is available on
the server, and when the client asks and receives it adds a variable latency to the system.

Publish-subscribe model: In the publish-subscribe communications model (Figure 1.3: Publish-Subscribe
on the next page), computer applications (nodes) “subscribe” to data they need and “publish” data they
want to share. Messages pass directly between the publisher and the subscribers, rather than moving into
and out of a centralized server. Most time-sensitive information intended to reach many people is sent by a
publish-subscribe system. Examples of publish-subscribe systems in everyday life include television,
magazines, and newspapers.

Publish-subscribe communication architectures are good for distributing large quantities of time-sensitive
information efficiently, even in the presence of unreliable delivery mechanisms. This direct and sim-
ultaneous communication among a variety of nodes makes publish-subscribe network architecture the best
choice for systems with complex time-critical data flows.

While the publish-subscribe model provides system architects with many advantages, it may not be the
best choice for all types of communications, including:

l File-based transfers (alternate solution: FTP)

l Remote Method Invocation (alternate solutions: CORBA, COM, SOAP)

l Connection-based architectures (alternate solution: TCP/IP)

l Synchronous transfers (alternate solution: CORBA)

1.3 What is Middleware?

Figure 1.3: Publish-Subscribe

Publish-subscribe is many-to-many communications.

1.3 What is Middleware?

Middleware is a software layer between an application and the operating system. Network middleware isol-
ates the application from the details of the underlying computer architecture, operating system and network
stack (see Figure 1.4: Network Middleware on the next page). Network middleware simplifies the devel-
opment of distributed systems by allowing applications to send and receive information without having to
program using lower-level protocols such as sockets and TCP or UDP/IP.

10

1.4 Features of Connext DDS

11

Figure 1.4: Network Middleware

Middleware insulates applications from the raw operating-system network stack.

Publish-subscribe communications model: Connext DDS is based on a publish-subscribe com-
munications model. Publish-subscribe (PS) provides a simple and intuitive way to distribute data. It
decouples the software that creates and sends data—the data publishers—from the software that receives
and uses the data—the data subscribers. Publishers simply declare their intent to send and then publish the
data. Subscribers declare their intent to receive, then the data is automatically delivered by the middleware.

Despite the simplicity of the model, PS middleware can handle complex patterns of information flow. The
use of PS middleware results in simpler, more modular distributed applications. Perhaps most importantly,
PS middleware can automatically handle all network chores, including connections, failures, and network
changes, eliminating the need for user applications to program all those special cases. What experienced
network middleware developers know is that handling special cases accounts for over 80% of the effort
and code.

1.4 Features of Connext DDS

Connext DDS supports mechanisms that go beyond the basic publish-subscribe model. The key benefit is
that applications that use Connext DDS for their communications are entirely decoupled. Very little of their
design time has to be spent on how to handle their mutual interactions. In particular, the applications never
need information about the other participating applications, including their existence or locations. Connext
DDS automatically handles all aspects of message delivery, without requiring any intervention from the
user applications, including:

1.4 Features of Connext DDS

l determining who should receive the messages,

l where recipients are located,

l what happens if messages cannot be delivered.

This is made possible by how Connext DDS allows the user to specify Quality of Service (QoS) para-
meters as a way to configure automatic-discovery mechanisms and specify the behavior used when send-
ing and receiving messages. The mechanisms are configured up-front and require no further effort on the
user's part. By exchanging messages in a completely anonymous manner, Connext DDS greatly simplifies
distributed application design and encourages modular, well-structured programs.

Furthermore, Connext DDS includes the following features, which are designed to meet the needs of dis-
tributed real-time applications:

l Data-centric publish-subscribe communications: Simplifies distributed application programming
and provides time-critical data flow with minimal latency.

l Clear semantics for managing multiple sources of the same data.

l Efficient data transfer, customizable Quality of Service, and error notification.

l Guaranteed periodic samples, with maximum rate set by subscriptions.

l Notification by a callback routine on data arrival to minimize latency.

l Notification when data does not arrive by an expected deadline.

l Ability to send the same message to multiple computers efficiently.

l User-definable data types: Enables you to tailor the format of the information being sent to each
application.

l Reliable messaging: Enables subscribing applications to specify reliable delivery of samples.

l Multiple Communication Networks:Multiple independent communication networks (DDS
domains), each using Connext DDS, can be used over the same physical network. Applications are
only able to participate in the DDS domains to which they belong. Individual applications can be
configured to participate in multiple DDS domains.

l Symmetric architecture:Makes your application robust:
l No central server or privileged nodes, so the system is robust to node failures.

l Subscriptions and publications can be dynamically added and removed from the system at any
time.

l Pluggable Transports Framework: Includes the ability to define new transport plug-ins and run
over them. Connext DDS comes with a standard UDP/IP pluggable transport and a shared memory
transport. It can be configured to operate over a variety of transport mechanisms, including back-
planes, switched fabrics, and new networking technologies.

12

1.4 Features of Connext DDS

13

l Multiple Built-in Transports: Includes UDP/IP and shared memory transports.

l Multi-language support: Includes APIs for the C, C++ (Traditional and Modern APIs), C++/CLI,
C#, and Java™ programming languages.

l Multi-platform support: Includes support for flavors of UNIX®, real-time operating systems, and
Windows®. (Consult the RTI Connext DDS Core Libraries Platform Notes to see which platforms
are supported in this release.)

l Compliance with Standards:
l API complies with the DCPS layer of the OMG’s DDS specification.

l Data types comply with OMG Interface Definition Language™ (IDL).

l Data packet format complies with the International Engineering Consortium’s (IEC’s) pub-
licly available specification for the RTPS wire protocol.

Chapter 2 Data-Centric Publish-Subscribe
Communications

This section describes the formal communications model used by Connext DDS: the Data-Centric
Publish-Subscribe (DCPS) standard. DCPS is a formalization (through a standardized API) and
extension of the publish-subscribe communications model presented in 1.2 Network Com-
munications Models on page 7.

2.1 What is DCPS?

DCPS is the portion of the OMG DDS (Data Distribution Service) Standard that addresses data-
centric publish-subscribe communications. The DDS standard defines a language-independent
model of publish-subscribe communications that has standardized mappings into various imple-
mentation languages. Connext DDS offers C, Traditional C++, Modern C++, C++/CLI, C#, and
Java versions of the DCPS API.

The publish-subscribe approach to distributed communications is a generic mechanism that can be
employed by many different types of applications. The DCPS model described in this chapter
extends the publish-subscribe model to address the specific needs of real-time, data-critical applic-
ations. As you’ll see, it provides several mechanisms that allow application developers to control
how communications works and how the middleware handles resource limitations and error con-
ditions.

The “data-centric” portion of the term DCPS describes the fundamental concept supported by the
design of the API. In data-centric communications, the focus is on the distribution of data between
communicating applications. A data-centric system is comprised of data publishers and data sub-
scribers. The communications are based on passing data of known types in named streams from
publishers to subscribers.

In contrast, in object-centric communications the fundamental concept is the interface between the
applications. An interface is comprised of a set of methods of known types (number and types of
method arguments). An object-centric system is comprised of interface servers and interface clients,

14

2.1.1 DCPS for Real-Time Requirements

15

and communications are based on clients invoking methods on named interfaces that are serviced by the
corresponding server.

Data and object-centric communications are complementary paradigms in a distributed system. Applic-
ations may require both. However, real-time communications often fit a data-centric model more naturally.

2.1.1 DCPS for Real-Time Requirements

DCPS, and specifically the Connext DDS implementation, is well suited for real-time applications. For
instance, real-time applications often require the following features:

l Efficiency

Real-time systems require efficient data collection and delivery. Only minimal delays should be intro-
duced into the critical data-transfer path. Publish-subscribe is more efficient than client-server in both
latency and bandwidth for periodic data exchange.
Publish-subscribe greatly reduces the overhead required to send data over the network compared to
a client-server architecture. Occasional subscription requests, at low bandwidth, replace numerous
high-bandwidth client requests. Latency is also reduced, since the outgoing request message time is
eliminated. As soon as a new DDS sample becomes available, it is sent to the corresponding sub-
scriptions.

l Determinism

Real-time applications often care about the determinism of delivering periodic data as well as the
latency of delivering event data. Once buffers are introduced into a data stream to support reliable
connections, new data may be held undelivered for a unpredictable amount of time while waiting for
confirmation that old data was received.
Since publish-subscribe does not inherently require reliable connections, implementations, like Con-
next DDS, can provide configurable trade-offs between the deterministic delivery of new data and
the reliable delivery of all data.

l Flexible delivery bandwidth

Typical real-time systems include both real-time and non-real-time nodes. The bandwidth require-
ments for these nodes—even for the same data—are quite different. For example, an application
may be sending DDS samples faster than a non-real-time application is capable of handling.
However, a real-time application may want the same data as fast as it is produced.
DCPS allows subscribers to the same data to set individual limits on how fast data should be
delivered to each subscriber. This is similar to how some people get a newspaper every day while
others can subscribe to only the Sunday paper.

l Thread awareness

2.2 DDS Data Types, Topics, Keys, Instances, and Samples

Real-time communications must work without slowing the thread that sends DDS samples. On the
receiving side, some data streams should have higher priority so that new data for those streams are
processed before lower priority streams.

Connext DDS provides user-level configuration of its internal threads that process incoming data.
Users may configure Connext DDS so that different threads are created with different priorities to
process received data of different data streams.

l Fault-tolerant operation

Real-time applications are often in control of systems that are required to run in the presence of com-
ponent failures. Often, those systems are safety critical or carry financial penalties for loss of service.
The applications running those systems are usually designed to be fault-tolerant using redundant
hardware and software. Backup applications are often “hot” and interconnected to primary systems
so that they can take over as soon as a failure is detected.

Publish-subscribe is capable of supporting many-to-many connectivity with redundant DataWriters
and DataReaders. This feature is ideal for constructing fault-tolerant or high-availability applications
with redundant nodes and robust fault detection and handling services.

l DCPS, and thus Connext DDS, was designed and implemented specifically to address the require-
ments above through configuration parameters known as QosPolicies defined by the DCPS standard
(see 4.2 QosPolicies on page 176). 2.2 DDS Data Types, Topics, Keys, Instances, and Samples
below introduces basic DCPS terminology and concepts.

2.2 DDS Data Types, Topics, Keys, Instances, and Samples

In data-centric communications, the applications participating in the communication need to share a com-
mon view of the types of data being passed around.

Within different programming languages there are several ‘primitive’ data types that all users of that lan-
guage naturally share (integers, floating point numbers, characters, booleans, etc.). However, in any non-
trivial software system, specialized data types are constructed out of the language primitives. So the data to
be shared between applications in the communication system could be structurally simple, using the prim-
itive language types mentioned above, or it could be more complicated, using, for example, C and C++
structs, like this:

16

2.3 Data Topics — What is the Data Called?

17

struct Time {
int32 year;
int16 day;
int16 hour;
int16 minute;
int16 second;

};
struct StockPrice {

float price;
Time timeStamp;

};

Within a set of applications using DCPS, the different applications do not automatically know the structure
of the data being sent, nor do they necessarily interpret it in the same way (if, for instance, they use dif-
ferent operating systems, were written with different languages, or were compiled with different com-
pilers). There must be a way to share not only the data, but also information about how the data is
structured.

In DCPS, data definitions are shared among applications using OMG IDL, a language-independent means
of describing data. For more information on data types and IDL, see Data Types and DDS Data Samples
(Chapter 3 on page 27).

2.3 Data Topics — What is the Data Called?

Shared knowledge of the data types is a requirement for different applications to communicate with DCPS.
The applications must also share a way to identify which data is to be shared. Data (of any data type) is
uniquely distinguished by using a name called a Topic. By definition, a Topic corresponds to a single data
type. However, several Topics may refer to the same data type.

Topics interconnect DataWriters and DataReaders. A DataWriter is an object in an application that tells
Connext DDS (and indirectly, other applications) that it has some values of a certain Topic. A cor-
responding DataReader is an object in an application that tells Connext DDS that it wants to receive val-
ues for the same Topic. And the data that is passed from the DataWriter to the DataReader is of the data
type associated with the Topic. DataWriters and DataReaders are described more in 2.5 DataWriter-
s/Publishers and DataReaders/Subscribers on page 20.

For a concrete example, consider a system that distributes stock quotes between applications. The applic-
ations could use a data type called StockPrice. There could be multiple Topics of the StockPrice data type,
one for each company’s stock, such as IBM, MSFT, GE, etc. Each Topic uses the same data type.

Data Type: StockPrice
struct StockPrice {

float price;
Time timeStamp;

};

Topic: “IBM”

Topic: “MSFT”

2.4 DDS Samples, Instances, and Keys

Topic: “GE”

Now, an application that keeps track of the current value of a client’s portfolio would subscribe to all of
the topics of the stocks owned by the client. As the value of each stock changes, the new price for the cor-
responding topic is published and sent to the application.

2.4 DDS Samples, Instances, and Keys

The value of data associated with a Topic can change over time. The different values of the Topic passed
between applications are called DDS samples. In our stock-price example, DDS samples show the price of
a stock at a certain point in time. So each DDS sample may show a different price.

For a data type, you can select one or more fields within the data type to form a key. A key is something
that can be used to uniquely identify one instance of a Topic from another instance of the same Topic.
Think of a key as a way to sub-categorize or group related data values for the same Topic. Note that not all
data types are defined to have keys, and thus, not all topics have keys. For topics without keys, it's as if
there is only a single instance of that topic.

However, for Topics with keys, a unique value for the key identifies a unique instance of the Topic. DDS
samples are then updates to particular instances of a Topic.

For example, let’s change the StockPrice data type to include the symbol of the stock. Then instead of hav-
ing a Topic for every stock, which would result in hundreds or thousands of Topics and related
DataWriters and DataReaders, each application would only have to publish or subscribe to a single Topic,
say “StockPrices.” Successive values of a stock would be presented as successive DDS samples of an
instance of “StockPrices”, with each instance corresponding to a single stock symbol.

Data Type: StockPrice
struct StockPrice {

float price;
Time timeStamp;
@key char *symbol;

};

Instance 1 = (Topic: “StockPrices”) + (Key: “MSFT”)

sample a, price = $28.00

sample b, price = $27.88

Instance 2 = (Topic: “StockPrices”) + (Key: “IBM”)

sample a, price = $74.02

sample b, price = $73.50

Etc.

18

2.4 DDS Samples, Instances, and Keys

19

Applications can subscribe to a Topic and receive DDS samples for many different instances. Applications
can publish DDS samples of one, all, or any number of instances of a Topic. Many quality of service para-
meters actually apply on a per instance basis. Keys are also useful for subscribing to a group of related
data streams (instances) without pre-knowledge of which data streams (instances) exist at runtime.

For example, just by subscribing to “StockPrices,” an application can get values for all of the stocks
through a single topic. In addition, the application does not have to subscribe explicitly to any particular
stock, so that if a new stock is added, the application will immediately start receiving values for that stock
as well.

Many quality of service (QoS) parameters apply on a per-instance basis because each instance is a unique
object and therefore has its own lifecycle, owner, and resource limits.

To summarize, the unique values of data being passed using DCPS are called DDS samples. A DDS
sample is a combination of a Topic, an instance, and the actual user data of a certain data type. As seen in
Figure 2.1: Relationship of Topics, Keys, and Instances below, a Topic identifies data of a single type, ran-
ging from one single instance to a whole collection of instances of that given topic for keyed data types.
For more information, see Data Types and DDS Data Samples (Chapter 3 on page 27) and Working with
Topics (Chapter 5 on page 216).
Figure 2.1: Relationship of Topics, Keys, and Instances

By using keys, a Topic can identify a collection of data-object instances.

See Chapter 6 Working with Instances on page 258.

2.5 DataWriters/Publishers and DataReaders/Subscribers

2.5 DataWriters/Publishers and DataReaders/Subscribers

In DCPS, applications must use APIs to create entities (objects) in order to establish publish-subscribe com-
munications between each other. The entities and terminology associated with the data itself have been dis-
cussed already—Topics, keys, instances, DDS samples. This section will introduce the DCPS entities that
user code must create to send and receive the data. Note that Entity is actually a basic DCPS concept. In
object-oriented terms, Entity is the base class from which other DCPS classes—Topic, DataWriter,
DataReader, Publisher, Subscriber, DomainParticipants—derive. For general information on Entities, see
DDS Entities (Chapter 4 on page 165).

The sending side uses objects called Publishers and DataWriters. The receiving side uses objects called
Subscribers and DataReaders. Figure 2.2: Overview below illustrates the relationship of these objects.
Figure 2.2: Overview

l An application uses DataWriters to send data. A DataWriter is associated with a single Topic. You
can have multiple DataWriters and Topics in a single application. In addition, you can have more
than one DataWriter for a particular Topic in a single application.

l A Publisher is the DCPS object responsible for the actual sending of data. Publishers own and man-
age DataWriters. A DataWriter can only be owned by a single Publisher while a Publisher can
own many DataWriters. Thus the same Publisher may be sending data for many different Topics of

20

2.5 DataWriters/Publishers and DataReaders/Subscribers

21

different data types. When user code calls the write()method on a DataWriter, the DDS data
sample is passed to the Publisher object which does the actual dissemination of data on the network.
For more information, see Sending Data (Chapter 7 on page 271).

l The association between a DataWriter and a Publisher is often referred to as a publication although
you never create a DCPS object known as a publication.

l An application uses DataReaders to access data received over DCPS. A DataReader is associated
with a single Topic. You can have multiple DataReaders and Topics in a single application. In addi-
tion, you can have more than one DataReader for a particular Topic in a single application.

l A Subscriber is the DCPS object responsible for the actual receipt of published data. Subscribers
own and manage DataReaders. A DataReader can only be owned by a single Subscriber while a
Subscriber can own many DataReaders. Thus the same Subscriber may receive data for many dif-
ferent Topics of different data types. When data is sent to an application, it is first processed by a
Subscriber; the DDS data sample is then stored in the appropriate DataReader. User code can either
register a listener to be called when new data arrives or actively poll the DataReader for new data
using its read() and take()methods. For more information, see Receiving Data (Chapter 8 on
page 489).

l The association between a DataReader and a Subscriber is often referred to as a subscription
although you never create a DCPS object known as a subscription.

Example:

The publish-subscribe communications model is analogous to that of magazine publications and sub-
scriptions. Think of a publication as a weekly periodical such as Newsweek®. The Topic is the name of
the periodical (in this case the string "Newsweek"). The type specifies the format of the information, e.g., a
printed magazine. The user data is the contents (text and graphics) of each DDS sample (weekly issue).
The middleware is the distribution service (usually the US Postal service) that delivers the magazine from
where it is created (a printing house) to the individual subscribers (people’s homes). This analogy is illus-
trated in Figure 2.3: An Example of Publish-Subscribe on the next page. Note that by subscribing to a pub-
lication, subscribers are requesting current and future DDS samples of that publication (such as once a
week in the case of Newsweek), so that as new DDS samples are published, they are delivered without hav-
ing to submit another request for data.

2.6 DDS Domains and DomainParticipants

Figure 2.3: An Example of Publish-Subscribe

The publish-subscribe model is analogous to publishing magazines. The Publisher sends DDS samples of a particular
Topic to all Subscribers of that Topic. With Newsweek® magazine, the Topic would be "Newsweek." The DDS sample
consists of the data (articles and pictures) sent to all Subscribers every week. The middleware (Connext DDS) is the

distribution channel: all of the planes, trucks, and people who distribute the weekly issues to the Subscribers.

By default, each DDS sample is propagated individually, independently, and uncorrelated with other DDS
samples. However, an application may request that several DDS samples be sent as a coherent set, so that
they may be interpreted as such on the receiving side.

2.6 DDS Domains and DomainParticipants

You may have several independent DCPS applications all running on the same set of computers. You may
want to isolate one (or more) of those applications so that it isn’t affected by the others. To address this
issue, DCPS has a concept called DDS domains.

DDS domains represent logical, isolated, communication networks. Multiple applications running on the
same set of hosts on different DDS domains are completely isolated from each other (even if they are on
the same machine). DataWriters and DataReaders belonging to different DDS domains will never
exchange data.

Applications that want to exchange data using DCPS must belong to the same DDS domain. To belong to
a DDS domain, DCPS APIs are used to configure and create a DomainParticipant with a specific
Domain Index. DDS domains are differentiated by the domain index (an integer value). Applications that
have created DomainParticipants with the same domain index belong to the same DDS domain.
DomainParticipants own Topics, Publishers, and Subscribers, which in turn owns DataWriters and
DataReaders. Thus all DCPS Entities belong to a specific DDS domain.

An application may belong to multiple DDS domains simultaneously by creating multiple DomainPar-
ticipants with different domain indices. However, Publishers/DataWriters and Subscribers/DataReaders
only belong to the DDS domain in which they were created.

22

2.7 Quality of Service (QoS)

23

As mentioned before, multiple DDS domains may be used for application isolation, which is useful when
you are testing applications using computers on the same network or even the same computers. By assign-
ing each user different domains, one can guarantee that the data produced by one user’s application won’t
accidentally be received by another. In addition, DDS domains may be a way to scale and construct larger
systems that are composed of multi-node subsystems. Each subsystem would use an internal DDS domain
for intra-system communications and an external DDS domain to connect to other subsystems.

For more information, see Working with DDS Domains (Chapter 9 on page 606).

2.7 Quality of Service (QoS)

The publish-subscribe approach to distributed communications is a generic mechanism that can be
employed by many different types of systems. The DCPS model described here extends the publish-sub-
scribe model to address the needs of real-time, data-critical applications. It provides standardized mech-
anisms, known as Quality of Service Policies, that allow application developers to configure how
communications occur, to limit resources used by the middleware, to detect system incompatibilities and
setup error handling routines.

2.7.1 Controlling Behavior with Quality of Service (QoS) Policies

QosPolicies control many aspects of how and when data is distributed between applications. The overall
QoS of the DCPS system is made up of the individual QosPolicies for each DCPS Entity. There are
QosPolicies for Topics, DataWriters, Publishers, DataReaders, Subscribers, and DomainParticipants.

On the publishing side, the QoS of each Topic, the Topic’s DataWriter, and the DataWriter’s Publisher all
play a part in controlling how and when DDS samples are sent to the middleware. Similarly, the QoS of
the Topic, the Topic’s DataReader, and the DataReader’s Subscriber control behavior on the subscribing
side.

Users will employ QosPolicies to control a variety of behaviors. For example, the DEADLINE policy sets
up expectations of how often a DataReader expects to see DDS samples. The OWNERSHIP and
OWNERSHIP_STRENGTH policy are used together to configure and arbitrate whose data is passed to
the DataReader when there are multiple DataWriters for the same instance of a Topic. The HISTORY
policy specifies whether a DataWriter should save old data to send to new subscriptions that join the net-
work later. Many other policies exist and they are presented in 4.2 QosPolicies on page 176.

Some QosPolicies represent “contracts” between publications and subscriptions. For communications to
take place properly, the QosPolicies set on the DataWriter side must be compatible with corresponding
policies set on the DataReader side.

For example, the RELIABILITY policy is set by the DataWriter to state whether it is configured to send
data reliably to DataReaders. Because it takes additional resources to send data reliably, some DataWriters
may only support a best-effort level of reliability. This implies that for those DataWriters, Connext DDS
will not spend additional effort to make sure that the data sent is received by DataReaders or resend any
lost data. However, for certain applications, it could be imperative that their DataReaders receive every

2.8 Application Discovery

piece of data with total reliability. Running a system where the DataWriters have not been configured to
support the DataReaders could lead to erratic failures.

To address this issue, and yet keep the publications and subscriptions as decoupled as possible, DCPS
provides a way to detect and notify when QosPolicies set by DataWriters and DataReaders are incom-
patible. DCPS employs a pattern known as RxO (Requested versus Offered). The DataReader sets a
“requested” value for a particular QosPolicy. The DataWriter sets an “offered” value for that QosPolicy.
When Connext DDS matches a DataReader to a DataWriter, QosPolicies are checked to make sure that
all requested values can be supported by the offered values.

Note that not all QosPolicies are constrained by the RxO pattern. For example, it does not make sense to
compare policies that affect only the DataWriter but not the DataReader or vice versa.

If the DataWriter cannot satisfy the requested QosPolicies of a DataReader, Connext DDS will not con-
nect the two DDS entities and will notify the applications on each side of the incompatibility if so con-
figured.

For example, a DataReader sets its DEADLINE QoS to 4 seconds—that is, the DataReader is requesting
that it receive new data at least every 4 seconds.

In one application, the DataWriter sets its DEADLINE QoS to 2 seconds—that is, the DataWriter is com-
mitting to sending data at least every 2 seconds. This writer can satisfy the request of the reader, and thus,
Connext DDS will pass the data sent from the writer to the reader.

In another application, the DataWriter sets its DEADLINE QoS to 5 seconds. It only commits to sending
data at 5 second intervals. This will not satisfy the request of the DataReader. Connext DDS will flag this
incompatibility by calling user-installed listeners in both DataWriter and DataReader applications and not
pass data from the writer to the reader.

For a summary of the QosPolicies supported by Connext DDS, see 4.2 QosPolicies on page 176.

2.8 Application Discovery

The DCPS model provides anonymous, transparent, many-to-many communications. Each time an applic-
ation sends a DDS sample of a particular Topic, the middleware distributes the DDS sample to all the
applications that want that Topic. The publishing application does not need to specify how many applic-
ations receive the Topic, nor where those applications are located. Similarly, subscribing applications do
not specify the location of the publications. In addition, new publications and subscriptions of the Topic
can appear at any time, and the middleware will automatically interconnect them.

So how is this all done? Ultimately, in each application for each publication, Connext DDS must keep a
list of applications that have subscribed to the same Topic, nodes on which they are located, and some addi-
tional QoS parameters that control how the data is sent. Also, Connext DDS must keep a list of applic-
ations and publications for each of the Topics to which the application has subscribed.

24

2.8 Application Discovery

25

Propagation of this information (the existence of publications and subscriptions and associated QoS)
between applications by Connext DDS is known as the discovery process. While the DDS (DCPS) stand-
ard does not specify how discovery occurs, Connext DDS uses a standard protocol RTPS for both dis-
covery and formatting on-the-wire packets.

When a DomainParticipant is created, Connext DDS sends out packets on the network to announce its
existence. When an application finds out that another application belongs to the same DDS domain, then it
will exchange information about its existing publications and subscriptions and associated QoS with the
other application. As new DataWriters and DataReaders are created, this information is sent to known
applications.

The Discovery process is entirely configurable by the user and is discussed extensively in Discovery
(Chapter 15 on page 770).

Part 2: Core Concepts

Part 2: Core Concepts
This section includes:

l Data Types and DDS Data Samples (Chapter 3 on page 27)

l DDS Entities (Chapter 4 on page 165)

l Working with Topics (Chapter 5 on page 216)

l Working with Instances (Chapter 6 on page 258)

l Sending Data (Chapter 7 on page 271)

l Receiving Data (Chapter 8 on page 489)

l Working with DDS Domains (Chapter 9 on page 606)

l Building Applications (Chapter 10 on page 686)

26

Chapter 3 Data Types and DDS Data
Samples

Note: Information in this chapter is complemented by information in the RTI Connext DDS Core
Libraries Extensible Types Guide.

How data is stored or laid out in memory can vary from language to language, compiler to com-
piler, operating system to operating system, and processor to processor. This combination of lan-
guage/compiler/operating system/processor is called a platform. Any modern middleware must be
able to take data from one specific platform (say C/gcc 7.3/Linux/Arm v8) and transparently
deliver it to another (for example, Java/JDK 11/Windows/Pentium). This process is commonly
called serialization/deserialization, or marshalling/demarshalling.

Messaging products have typically taken one of two approaches to this problem:

1. Do nothing.Messages consist only of opaque streams of bytes. The JMS BytesMessage is
an example of this approach.

2. Send everything, every time. Self-describing messages are at the opposite extreme, embed-
ding full reflective information, including data types and field names, with each message.
The JMS MapMessage and the messages in TIBCO Rendezvous are examples of this
approach.

The “do nothing” approach is lightweight on its surface but forces you, the user of the middleware
API, to consider all data encoding, alignment, and padding issues. The “send everything” altern-
ative results in large amounts of redundant information being sent with every packet, impacting per-
formance.

Connext DDS takes an intermediate approach. Just as objects in your application program belong
to some data type, DDS data samples sent on the same Connext DDS topic share a data type. This
type defines the fields that exist in the DDS data samples and what their constituent types are. The
middleware stores and propagates this meta-information separately from the individual DDS data

27

Chapter 3 Data Types and DDS Data Samples

28

samples, allowing it to propagate DDS samples efficiently while handling byte ordering and alignment
issues for you.

To publish and/or subscribe to data with Connext DDS, you will carry out the following steps:

1. Select a type to describe your data.

You have a number of choices. You can choose one of these options, or you can mix and match
them.

l Use a built-in type provided by the middleware.

This option may be sufficient if your data typing needs are very simple. If your data is highly
structured, or you need to be able to examine fields within that data for filtering or other pur-
poses, this option may not be appropriate. The built-in types are described in 3.2 Built-in Data
Types on page 38.

l Use the RTI Code Generator to define a type at compile-time using a language-independent
description language.

Code generation offers two strong benefits not available with dynamic type definition: (1) it
allows you to share type definitions across programming languages, and (2) because the struc-
ture of the type is known at compile time, it provides rigorous static type safety.

The RTI Code Generator accepts input in the following formats:

l OMG IDL. This format is a standardized component of the DDS specification. It
describes data types with a C++-like syntax. A link to the latest specification can be
found here: https://www.omg.org/spec/IDL. This format is described in 3.3 Creating
User Data Types with IDL on page 75.

l XML in a DDS-specific format. This XML format is terser, and therefore easier to
read and write by hand, than an XSD file. It offers the general benefits of XML-extens-
ibility and ease of integration, while fully supporting DDS-specific data types and con-
cepts. A link to the latest specification, including a description of the XML format, can
be found here: https://www.omg.org/spec/DDS-XTypes/. This format is described in
3.4 Creating User Data Types with Extensible Markup Language (XML) on page 121.

l XSD format. You can describe data types with XML schemas (XSD). A link to the
latest specification, including a description of the XSD format, can be found here:
https://www.omg.org/spec/DDS-XTypes/. This format is described in 3.5 Creating
User Data Types with XML Schemas (XSD) on page 131

l Define a type programmatically at run time.

This method may be appropriate for applications with dynamic data description needs: applic-
ations for which types change frequently or cannot be known ahead of time. It is described in
3.8.2 Defining New Types on page 154.

https://www.omg.org/spec/IDL
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/

3.1 Introduction to the Type System

2. Register your type with a logical name.

If you've chosen to use a built-in type instead of defining your own, you can omit this step; the mid-
dleware pre-registers the built-in types for you.

This step is described in the 3.8.2 Defining New Types on page 154.
3. Create a Topic using the type name you previously registered.

If you've chosen to use a built-in type instead of defining your own, you will use the API constant
corresponding to that type's name.

Creating and working with Topics is discussed in Working with Topics (Chapter 5 on page 216).
4. Create one or more DataWriters to publish your data and one or more DataReaders to subscribe to

it.

The concrete types of these objects depend on the concrete data type you've selected, in order to
provide you with a measure of type safety.

Creating and working with DataWriters and DataReaders are described in Sending Data (Chapter 7
on page 271) and Receiving Data (Chapter 8 on page 489), respectively.

Whether publishing or subscribing to data, you will need to know how to create and delete DDS data
samples and how to get and set their fields. These tasks are described in 3.9 Working with DDS Data
Samples on page 158.

3.1 Introduction to the Type System

A user data type is any custom type that your application defines for use with Connext DDS. It may be a
structure, a union, a value type, an enumeration, or a typedef (or language equivalents).

Your application can have any number of user data types. They can be composed of any of the primitive
data types listed below or of other user data types.

Only structures, unions, and value types may be read and written directly by Connext DDS; enums,
typedefs, and primitive types must be contained within a structure, union, or value type. In order for a
DataReader and DataWriter to communicate with each other, the data types associated with their respect-
ive Topic definitions must be consistent according to the Type-Consistency Enforcement rules configured
using the TypeConsistencyEnforcementQosPolicy on the DataReaderQos (see 8.6.6 TYPE_
CONSISTENCY_ENFORCEMENT QosPolicy on page 599).

l octet, char, wchar

l int16 or short, uint16 or unsigned short

l int32 or long, uint32 or unsigned long

l int64 or long long, uint64 or unsigned long long

29

3.1.1 Sequences

30

l float

l double, long double

l boolean

l enum (with or without explicit values)

l bounded and unbounded string and wstring

The following type-building constructs are also supported:

l module (also called a package or namespace)

l pointer

l array of primitive or user type elements

l bounded/unbounded sequence of elements1—a sequence is a variable-length ordered collection,
such as a vector or list

l typedef

l union

l struct, a complex type that supports inheritance and other object-oriented features

l value type, a deprecated type that is treated identically to a struct for backward compatibility with
existing type definitions

To use a data type with Connext DDS, you must define that type in a way the middleware understands and
then register the type with the middleware. These steps allow Connext DDS to serialize, deserialize, and
otherwise operate on specific types. They will be described in detail in the following sections.

3.1.1 Sequences

A sequence contains an ordered collection of elements that are all of the same type. The operations sup-
ported in the sequence are documented in the API Reference HTML documentation, which is available for
all supported programming languages (selectModules, RTI Connext DDS API Reference, Infra-
structure Module, Sequence Support).

Java sequences implement the java.util.List interface from the standard Collections framework.

In the Modern C++ API, a sequence of type T maps to the type std::vector<T>, or to a type with a similar
interface, depending on the options and whether it is bounded or unbounded. See 3.3.4 Translations for
IDL Types on page 79.

1Sequences of sequences are not supported directly. To work around this constraint, typedef the inner sequence and form a
sequence of that new type.

3.1.1 Sequences

Elements in a sequence are accessed with their index, just like elements in an array. Indices start at zero in
all APIs except Ada. In Ada, indices start at 1. Unlike arrays, however, sequences can grow in size. A
sequence has two sizes associated with it: a physical size (the "maximum") and a logical size (the
"length"). The physical size indicates how many elements are currently allocated by the sequence to hold;
the logical size indicates how many valid elements the sequence actually holds. The length can vary from
zero up to the maximum. Elements cannot be accessed at indices beyond the current length.

A sequence may be declared as bounded or unbounded. A sequence's "bound" is the maximum number of
elements that the sequence can contain at any one time. A finite bound is very important because it allows
Connext DDS to preallocate buffers to hold serialized and deserialized samples of your types; these buffers
are used when communicating with other nodes in your distributed system. If a sequence has no bound,
Connext DDS will not know how large to allocate its buffers and will therefore have to allocate them on
the fly as individual samples are read and written—impacting the latency and determinism of your applic-
ation.

By default, any unbounded sequences found in an IDL file will be given a default bound of 100 elements.
This default value can be overwritten using the RTI Code Generator‘s -sequenceSize command-line argu-
ment (see the RTI Code Generator User's Manual).

When using the C, C++, Java, or .NET APIs, you can change the default behavior and use truly unboun-
ded sequences by using RTI Code Generator‘s -unboundedSupport command-line argument. When
using this option, the generated code will deserialize incoming samples as follows:

l First, it will release previous memory associated with the unbounded sequences. The memory asso-
ciated with an unbounded member is not released until the sample containing the member is reused.

l Second, it will allocate new memory to accommodate the actual size of the unbounded sequences.

To configure unbounded support for code generated with rtiddsgen -unboundedSupport or for
DynamicDataWriters/DynamicDataReaders for Topics of types that contain unbounded sequences:

1. Use these threshold QoS properties:
l dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size on the
DataWriter

l dds.data_reader.history.memory_manager.fast_pool.pool_buffer_max_size on the
DataReader

2. Set the QoS value reader_resource_limits.dynamically_allocate_fragmented_samples on the
DataReader to true.

3. For the Java API, also set these properties accordingly for the Java serialization buffer:
l dds.data_writer.history.memory_manager.java_stream.min_size

l dds.data_writer.history.memory_manager.java_stream.trim_to_size

31

3.1.2 Strings and Wide Strings

32

l dds.data_reader.history.memory_manager.java_stream.min_size

l dds.data_reader.history.memory_manager.java_stream.trim_to_size

See also:

l 3.2.7.2 Unbounded Built-in Types on page 73

l 22.1.3 Writer-Side Memory Management when Using Java on page 937

l 22.2.2 Reader-Side Memory Management when Using Java on page 941

l 3.10 Data Sample Serialization Limits on page 164

3.1.2 Strings and Wide Strings

Connext DDS supports both strings consisting of single-byte characters (the IDL string type) and strings
consisting of wide characters (IDL wstring). The wide characters supported by Connext DDS are large
enough to store two-byte Unicode/UTF16 characters.

Like sequences, strings may be bounded or unbounded. A string's "bound" is its maximum length (not
counting the trailing NULL character in C and C++).

In the Modern C++ API strings map to std::string or to a type with a similar interface, depending on the
options. See Table 3.8 Specifying Data Types in IDL for the Modern C++ API in 3.3.4 Translations for
IDL Types on page 79.

In C and Traditional C++, strings are mapped to char*. Optionally, the mapping in Traditional C++ can be
changed to std::string by generating code with the option -useStdString.

By default, any unbounded string found in an IDL file will be given a default bound of 255 elements. This
default value can be overwritten using the RTI Code Generator‘s -stringSize command-line argument (see
the RTI Code Generator User's Manual).

When using the C, C++, Java, or .NET APIs, you can change the default behavior and use truly unboun-
ded strings by using Code Generator's -unboundedSupport command-line argument. When using this
option, the generated code will deserialize incoming samples as follows:

l First, it will release previous memory associated with the unbounded strings. The memory asso-
ciated with an unbounded member is not released until the sample containing the member is reused.

l Second, it will allocate new memory to accommodate the actual size of the unbounded strings.

3.1.2 Strings and Wide Strings

To configure unbounded support for code generated with rtiddsgen -unboundedSupport or for
DynamicDataWriters/DynamicDataReaders for Topics of types that contain unbounded strings or
wide strings:

1. Use these threshold QoS properties:
l dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size on the
DataWriter

l dds.data_reader.history.memory_manager.fast_pool.pool_buffer_max_size on the
DataReader

2. Set the QoS value reader_resource_limits.dynamically_allocate_fragmented_samples on the
DataReader to true.

3. For the Java API, also set these properties accordingly for the Java serialization buffer:
l dds.data_writer.history.memory_manager.java_stream.min_size

l dds.data_writer.history.memory_manager.java_stream.trim_to_size

l dds.data_reader.history.memory_manager.java_stream.min_size

l dds.data_reader.history.memory_manager.java_stream.trim_to_size

See also:

l 3.2.7.2 Unbounded Built-in Types on page 73

l 22.1.3 Writer-Side Memory Management when Using Java on page 937

l 22.2.2 Reader-Side Memory Management when Using Java on page 941

l 3.10 Data Sample Serialization Limits on page 164

3.1.2.1 IDL String Encoding

The “Extensible and Dynamic Topic Types for DDS specification” (https://www.omg.org/spec/DDS-
XTypes/) standardizes the default encoding for strings to UTF-8. This encoding shall be used as the wire
format. Language bindings may use the representation that is most natural in that particular language. If
this representation is different than UTF-8, the language binding shall manage the transformation to/from
the UTF-8 wire representation.

For example, in Java, IDL strings are mapped to Java String, which represents a string in the UTF-16
format. Connext DDS handles the conversion to/from UTF-8 when serializing/deserializing strings in Java.

As an extension, Connext DDS offers ISO_8859_1 as an alternative string wire encoding.

This section describes the encoding for IDL strings across different languages in Connext DDS and how to
configure that encoding.

33

https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/

3.1.2 Strings and Wide Strings

34

l C, Traditional C++

IDL strings are mapped to a NULL-terminated array of DDS_Char (char*). Users are responsible
for using the right character encoding (UTF-8 or ISO_8859_1) when populating the string values.
This applies to all generated code, DynamicData, and Built-in data types. The middleware does not
transform from the language binding encoding to the wire encoding.

l Modern C++

IDL strings are mapped to std::string. std::string, which contains any sequence of bytes. Users are
responsible for using the right character encoding (UTF-8 or ISO_8859_1) when populating the
string values. The middleware does not transform from the language binding encoding to the wire
encoding. This applies to all generated code, DynamicData, and Built-in types.

l Ada

IDL strings are mapped to DDS.String, which is equivalent to a NULL-terminated array of DDS_
Char (char*). Users are responsible for using the right character encoding (UTF-8 or ISO_8859_1)
when populating the string values. The middleware does not transform from the language binding
encoding to the wire encoding. This applies to all generated code and Built-in types.

l Java

IDL strings are mapped to Java String, which represents a string in the UTF-16 format. Connext
DDS handles the conversion to/from UTF-8/ISO_8859_1 when serializing/deserializing strings. For
generated code and Built-in data types, you can configure the IDL wire string encoding on a per-
endpoint basis using the following properties:

l dds.data_reader.type_support.cdr_string_encoding_kind

l dds.data_writer.type_support.cdr_string_encoding_kind

These properties can be set at the endpoint level or the participant level. The only values currently
supported are UTF-8 and ISO-8859-1. By default, the wire character encoding is assumed to be
UTF-8.

For DynamicData, the user can configure the IDL wire string encoding by setting the value of
string_character_encoding in DynamicDataProperty_t. The following values are supported:

l StandardCharsets.ISO_8859_1

l StandardCharsets.UTF_8 (default)

l .NET

IDL strings are mapped to .NET System::String in C++/CLI and string in C#. The conversion to/-
from UTF-8/ISO_8859_1 when serializing/deserializing strings is automatically handled by Connext

3.1.2 Strings and Wide Strings

DDS. For generated code and built-in data types, you can configure the IDL wire string encoding
on a per-endpoint basis using the following properties:

l dds.data_reader.type_support.cdr_string_encoding_kind

l dds.data_writer.type_support.cdr_string_encoding_kind

These properties can be set at the endpoint level or the participant level. The only values currently
supported are UTF-8 and ISO-8859-1. By default, the wire character encoding is assumed to be
UTF-8.

For DynamicData, you can configure the IDL wire string encoding by setting the value of string_
character_encoding in DynamicDataProperty_t. The following values are supported:

l StringEncodingKind::UTF_8 (default)

l StringEncodingKind::ISO_8859_1

3.1.2.1.1 Unicode Normalization when Using UTF-8 Encoding

Connext DDS does not normalize the content of the IDL string fields when they are serialized and sent on
the wire. It is responsibility of the application to do that when needed.

Because the content of the string fields is not guaranteed to be normalized, by default, Connext DDS nor-
malizes the UTF-8 IDL string values and the literals they are compared with in the filter expression and/or
filter parameters before the filtering evaluation occurs. The normalization affects the following features:

l ContentFilteredTopics (see 5.4 ContentFilteredTopics on page 228)

l Query conditions (see 4.6.7 ReadConditions and QueryConditions on page 210)

l TopicQueries (see Chapter 24 Topic Queries on page 983)

l MultiChannel DataWriters (see Chapter 20 Multi-channel DataWriters on page 902)

You can turn off filtering normalization by using the DomainParticipant's Property Qos property dds.-
domain_participant.filtering_unicode_normalization (see 5.4.9 Unicode Normalization on page 248).

3.1.2.1.2 Filtering Character Encoding

The following filtering features use UTF-8 character encoding by default for IDL strings:

l ContentFilteredTopics (see 5.4 ContentFilteredTopics on page 228)

l Query conditions (see 4.6.7 ReadConditions and QueryConditions on page 210)

l TopicQueries (see Chapter 24 Topic Queries on page 983)

l MultiChannel DataWriters (see Chapter 20 Multi-channel DataWriters on page 902)

35

3.1.2 Strings and Wide Strings

36

If the encoding of the IDL strings is ISO 8859-1, change the default filtering behavior by setting the
DomainParticipant's Property Qos property dds.domain_participant.filtering_character_encoding to
ISO-8859-1. For additional information about this property, see 5.4.8 Character Encoding on page 247.

3.1.2.2 IDL Wide Strings Encoding

The “Extensible and Dynamic Topic Types for DDS specification” (https://www.omg.org/spec/DDS-
XTypes/) standardizes the default encoding for wide strings to UTF-16. This encoding shall be used as the
wire format.

When the data representation is Extended CDR version 1, wide-string characters have a size of 4 bytes on
the wire with UTF-16 encoding. When the data representation is Extended CDR version 2, wide-string
characters have a size of 2 bytes on the wire with UTF-16 encoding.

Language bindings may use the representation that is most natural in that particular language. If this rep-
resentation is different from UTF-16, the language binding shall manage the transformation to/from the
UTF-16 wire representation.

l C, Traditional C++

IDL wide strings are mapped to a NULL-terminated array of DDS_Wchar (DDS_Wchar*). DDS_
WChar is an unsigned 2-byte integer. Users are responsible for using the right character encoding
(UTF-16) when populating the wide-string values. This applies to all generated code, DynamicData,
and Built-in data types. Connext DDS does not transform from the language binding encoding to the
wire encoding.

l Modern C++

IDL wide strings are mapped to std::wstring, which contains a sequence of wchar_t. This applies
to all generated code, DynamicData, and Built-in data types. When serializing/deserializing, Con-
next DDS assumes that a wchar_t contains a code unit in UTF-16 encoding, even if the size of
wchar_t is 4 bytes.

l Ada

IDL wide strings are mapped to Standard.DDS.Wide_String, which is a NULL-terminated array of
Standard.Wide_Character with UTF-16 encoding. This applies to all generated code and Built-in
data types.

l Java

IDL wide strings are mapped to Java String, which represents a string in the UTF-16 format. This
applies to all generated code, DynamicData, and Built-in data types.

l .NET

https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/

3.1.3 Introduction to TypeCode

IDL wide strings are mapped to System::String in C++/CLI and string in C#. These types use the
UTF-16 character encoding form. This applies to all generated code, DynamicData, and Built-in
data types.

3.1.2.2.1 Unicode Normalization when Using UTF-16 Encoding

Connext DDS does not normalize the content of the IDL wstring fields when they are serialized and sent
on the wire. It is responsibility of the application to do that when needed.

Unlike with IDL strings, Connext DDS does not normalize the UTF-16 strings used by the filtering oper-
ations, either.

3.1.3 Introduction to TypeCode

Type schemas—the names and definitions of a type and its fields—are represented by TypeCode objects
(known as DynamicType in the Modern C++ API). A type code value consists of a type code kind (see
the TCKind enumeration below) and a list of members. For compound types like structs and arrays, this
list will recursively include one or more type code values.
enum TCKind {

TK_NULL,
TK_SHORT,
TK_LONG,
TK_USHORT,
TK_ULONG,
TK_FLOAT,
TK_DOUBLE,
TK_BOOLEAN,
TK_CHAR,
TK_OCTET,
TK_STRUCT,
TK_UNION
TK_ENUM,
TK_STRING,
TK_SEQUENCE,
TK_ARRAY,
TK_ALIAS,
TK_LONGLONG,
TK_ULONGLONG,
TK_LONGDOUBLE,
TK_WCHAR,
TK_WSTRING,
TK_VALUE

}

Type codes unambiguously match type representations and provide a more reliable test than comparing the
string type names.

The TypeCode class, modeled after the corresponding CORBA API, provides access to type-code inform-
ation. For details on the available operations for the TypeCode class, see the API Reference HTML doc-
umentation, which is available for all supported programming languages (selectModules, RTI Connext

37

3.2 Built-in Data Types

38

DDS API Reference, Topic Module, Type Code Support or, for the Modern C++ API selectModules,
RTI Connext DDS API Reference, Infrastructure Module, DynamicType and DynamicData).

Note: Type-code support must be enabled if you are going to use 5.4 ContentFilteredTopics on page 228
with the default SQL filter. You may disable type codes and use a custom filter, as described in 5.4.3
Creating ContentFilteredTopics on page 230.

3.1.3.1 Sending Type Information on the Network

In addition to being used locally, the type information of a Topic is published automatically during dis-
covery as part of the built-in topics for publications and subscriptions. See 18.2 Built-in DataReaders on
page 838. This allows applications to publish or subscribe to topics of arbitrary types. This functionality is
useful for generic system monitoring tools like the rtiddsspy debug tool (see the API Reference HTML
documentation).

Earlier versions of Connext DDS (4.5f and lower) used serialized TypeCodes as the wire representation to
communicate types over the network.

The OMG 'Extensible and Dynamic Topic Types for DDS' specification, version 1.3 uses TypeObjects as
the wire representation. Types are propagated by serializing the associated TypeObject representation. Con-
next DDS 5.x and higher supports TypeObjects as the wire representation. To maintain backward com-
patibility with previous releases, Connext DDS still supports propagation of TypeCodes; however, support
for this feature may be discontinued in future releases.

If your data type has an especially complex type code, you may need to increase the value of the type_
code_max_serialized_length, type_object_max_serialized_length, and type_object_max_deseri-
alized_length fields in the DomainParticipant's 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_
LIMITS QosPolicy (DDS Extension) on page 660. Or, to prevent the propagation of type information alto-
gether, you can set these values to zero (0). Be aware that some features of monitoring tools, as well as
some features of the middleware itself (such as ContentFilteredTopics) will not work correctly if you dis-
able type information propagation.

For additional information on TypeCode versus TypeObject as wire representation, as well as resource lim-
its to configure the propagation, see Type Representation, in the RTI Connext DDS Core Libraries Extens-
ible Types Guide.

3.2 Built-in Data Types

Connext DDS provides a set of standard types that are built into the middleware. These types can be used
immediately; they do not require you to write IDL, use RTI Code Generator (rtiddsgen) (see 3.6 Using
RTI Code Generator (rtiddsgen) on page 152), or use the dynamic type API (see 3.2.7 Managing
Memory for Built-in Types on page 69).

The supported built-in types are String, KeyedString, Octets, and KeyedOctets. (The latter two types are
called Bytes and KeyedBytes, respectively, on Java and .NET platforms.)

https://www.omg.org/spec/DDS-XTypes/1.3

3.2.1 Registering Built-in Types

The built-in type API is located under the DDS namespace in Traditional C++ and .NET. For Java, the
API is contained inside the package com.rti.dds.type.builtin. In the Modern C++ API they are located in
the dds::core namespace.

Built-in data types are discussed in the following sections.

3.2.1 Registering Built-in Types

By default, the built-in types are automatically registered when a DomainParticipant is created. You can
change this behavior by setting the DomainParticipant’s dds.builtin_type.auto_register property to 0
(false) using the 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440.

3.2.2 Creating Topics for Built-in Types

To create a topic for a built-in type, just use the standard DomainParticipant operations, create_topic() or
create_topic_with_profile() (see 5.1.1 Creating Topics on page 218); for the type_name parameter, use
the value returned by the get_type_name() operation, listed below for each API.

Note: In the following examples, you will see the sentinel "<BuiltinType>."
For C and Traditional C++: <BuiltinType> = String, KeyedString, Octets or KeyedOctets
For Java and .NET1: <BuiltinType> = String, KeyedString, Bytes or KeyedBytes

C API:
const char* DDS_<BuiltinType>TypeSupport_get_type_name();

Traditional C++ API with namespace:
const char* DDS::<BuiltinType>TypeSupport::get_type_name();

Traditional C++ API without namespace:
const char* DDS<BuiltinType>TypeSupport::get_type_name();

C++/CLI API:
System::String^ DDS:<BuiltinType>TypeSupport::get_type_name();

C# API:
System.String DDS.<BuiltinType>TypeSupport.get_type_name();

Java API:
String
com.rti.dds.type.builtin.<BuiltinType>TypeSupport.get_type_name();

(This step is not required in the Modern C++ API)

1RTI Connext DDS .NET language binding is currently supported for C# and C++/CLI.

39

3.2.2 Creating Topics for Built-in Types

40

3.2.2.1 Topic Creation Examples

For simplicity, error handling is not shown in the following examples.

C Example:
DDS_Topic * topic = NULL;
/* Create a builtin type Topic */
topic = DDS_DomainParticipant_create_topic(

participant, "StringTopic",
DDS_StringTypeSupport_get_type_name(),
&DDS_TOPIC_QOS_DEFAULT, NULL,
DDS_STATUS_MASK_NONE);

Traditional C++ Example with namespaces:1

using namespace DDS;
...
/* Create a String builtin type Topic */
Topic * topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
DDS_TOPIC_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);

Modern C++ Example:
dds::topic::Topic<dds::core::StringTopicType> topic(participant, "StringTopic");

C++/CLI Example:
using namespace DDS;
...
/* Create a builtin type Topic */
Topic^ topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
DomainParticipant::TOPIC_QOS_DEFAULT,
nullptr, StatusMask::STATUS_MASK_NONE);

C# Example:
using namespace DDS;
... /*
Create a builtin type Topic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
DomainParticipant.TOPIC_QOS_DEFAULT,
null, StatusMask.STATUS_MASK_NONE);

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3.2.3 String Built-in Type

Java Example:
import com.rti.dds.type.builtin.*;
...
/* Create a builtin type Topic */
Topic topic = participant.create_topic(
"StringTopic", StringTypeSupport.get_type_name(),

DomainParticipant.TOPIC_QOS_DEFAULT,
null, StatusKind.STATUS_MASK_NONE);

3.2.3 String Built-in Type

The String built-in type is represented by a NULL-terminated character array (char *) in C and C++ and
an immutable String object in Java and .NET1. This type can be used to publish and subscribe to a single
string.

3.2.3.1 Creating and Deleting Strings

In C and C++, Connext DDS provides a set of operations to create (DDS::String_alloc()), destroy
(DDS::String_free()), and clone strings (DDS::String_dup()). SelectModules, RTI Connext DDS
API Reference, Infrastructure Module, String support in the API Reference HTML documentation,
which is available for all supported programming languages.

Memory Considerations in Copy Operations:

When the read/take operations that take a sequence of strings as a parameter are used in copy mode,
Connext DDS allocates the memory for the string elements in the sequence if they are initialized to
NULL.

If the elements are not initialized to NULL, the behavior depends on the language:

l In Java and .NET, the memory associated with the elements is reallocated with every DDS sample,
because strings are immutable objects.

l In C and C++, the memory associated with the elements must be large enough to hold the received
data. Insufficient memory may result in crashes.

When take_next_sample() and read_next_sample() are called in C and C++, you must make sure
that the input string has enough memory to hold the received data. Insufficient memory may result in
crashes.

3.2.3.2 String DataWriter

The string DataWriter API matches the standard DataWriter API (see 7.3.7 Using a Type-Specific
DataWriter (FooDataWriter) on page 309). There are no extensions.

1Connext DDS .NET language binding is currently supported for C# and C++/CLI.

41

3.2.3 String Built-in Type

42

The following examples show how to write simple strings with a string built-in type DataWriter. For sim-
plicity, error handling is not shown.

C Example:
DDS_StringDataWriter * stringWriter = ... ;
DDS_ReturnCode_t retCode; char * str = NULL;
/* Write some data */
retCode = DDS_StringDataWriter_write(

stringWriter, "Hello World!", &DDS_HANDLE_NIL);
str = DDS_String_dup("Hello World!");
retCode = DDS_StringDataWriter_write(

stringWriter, str, &DDS_HANDLE_NIL);
DDS_String_free(str);

Traditional C++ Example with namespaces:1

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
StringDataWriter * stringWriter = ... ;
/* Write some data */
ReturnCode_t retCode = stringWriter->write(

"Hello World!", HANDLE_NIL);
char * str = DDS::String_dup("Hello World!");
retCode = stringWriter->write(str, HANDLE_NIL);
DDS::String_free(str);

Modern C++ Example:
dds::pub::DataWriter<dds::core::StringTopicType> string_writer(

participant, string_topic);
string_writer.write("Hello World!");
dds::core::string str = "Hello World!";
string_writer.write(str);

C++/CLI Example:
using namespace System;
using namespace DDS;
...
StringDataWriter^ stringWriter = ... ;
/* Write some data */
stringWriter->write(

"Hello World!", InstanceHandle_t::HANDLE_NIL);
String^ str = "Hello World!";
stringWriter->write(

str, InstanceHandle_t::HANDLE_NIL);

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3.2.3 String Built-in Type

C# Example:
using System;
using DDS;
...
StringDataWriter stringWriter = ... ;
/* Write some data */
stringWriter.write(

"Hello World!", InstanceHandle_t.HANDLE_NIL);
String str = "Hello World!";
stringWriter.write(

str, InstanceHandle_t.HANDLE_NIL);

Java Example:
import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...
StringDataWriter stringWriter = ... ;
/* Write some data */
stringWriter.write(

"Hello World!", InstanceHandle_t.HANDLE_NIL);
String str = "Hello World!";
stringWriter.write(

str, InstanceHandle_t.HANDLE_NIL);

3.2.3.3 String DataReader

The string DataReader API matches the standard DataReader API (see 8.4.1 Using a Type-Specific
DataReader (FooDataReader) on page 558). There are no extensions.

The following examples show how to read simple strings with a string built-in type DataReader. For sim-
plicity, error handling is not shown.

43

3.2.3 String Built-in Type

44

C Example:
struct DDS_StringSeq dataSeq =

DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq =

DDS_SEQUENCE_INITIALIZER;
DDS_StringDataReader * stringReader = ... ;
DDS_ReturnCode_t retCode;
int i;
/* Take and print the data */
retCode = DDS_StringDataReader_take(

stringReader, &dataSeq,
&infoSeq, DDS_LENGTH_UNLIMITED,
DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_StringSeq_get_length(&data_seq);
++i) {
if (DDS_SampleInfoSeq_get_reference(

&info_seq, i)->valid_data) {
DDS_StringTypeSupport_print_data(
DDS_StringSeq_get(&data_seq, i));

}
}
/* Return loan */
retCode = DDS_StringDataReader_return_loan(

stringReader, &data_seq, &info_seq);

Traditional C++ Example with namespaces:1

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
StringSeq dataSeq;
SampleInfoSeq infoSeq;
StringDataReader * stringReader = ... ;
/* Take a print the data */
ReturnCode_t retCode = stringReader->take(

dataSeq, infoSeq,
LENGTH_UNLIMITED,
ANY_SAMPLE_STATE,
ANY_VIEW_STATE,
ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq[i].valid_data) {

StringTypeSupport::print_data(dataSeq[i]);
}

}
/* Return loan */

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3.2.3 String Built-in Type

retCode = stringReader->return_loan(
dataSeq, infoSeq);

Modern C++ Example:
using namespace dds::core;
using namespace dds::sub;
DataReader<StringTopicType> string_reader(

participant, string_topic);
LoanedSamples<StringTopicType> samples =

string_reader.take();
for (auto sample : samples) {

if (sample.info().valid()) {
std::cout << sample.data() << std::endl;

}
}

C++/CLI Example:
using namespace System;
using namespace DDS;
...
StringSeq^ dataSeq = gcnew StringSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
StringDataReader^ stringReader = ... ;
/* Take and print the data */
stringReader->take(

dataSeq, infoSeq,
ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
SampleStateKind::ANY_SAMPLE_STATE,
ViewStateKind::ANY_VIEW_STATE,
InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq->get_at(i)->valid_data) {

StringTypeSupport::print_data(
dataSeq->get_at(i));

}
}
/* Return loan */
stringReader->return_loan(dataSeq, infoSeq);

45

3.2.4 KeyedString Built-in Type

46

C# Example:
using System;
using DDS;
...
StringSeq dataSeq = new StringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
StringDataReader stringReader = ... ;
/* Take and print the data */
stringReader.take(

dataSeq, infoSeq,
ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq.get_at(i)).valid_data) {

StringTypeSupport.print_data(
dataSeq.get_at(i));

}
}

Java Example:
import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...
StringSeq dataSeq = new StringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
StringDataReader stringReader = ... ;
/* Take and print the data */
stringReader.take(

dataSeq, infoSeq,
ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (((SampleInfo)infoSeq.get(i)).valid_data) {

System.out.println(
(String)dataSeq.get(i));

}
}
/* Return loan */
stringReader.return_loan(dataSeq, infoSeq);

3.2.4 KeyedString Built-in Type

The Keyed String built-in type is represented by a (key, value) pair, where key and value are strings. This
type can be used to publish and subscribe to keyed strings. The language specific representations of the
type are as follows:

3.2.4 KeyedString Built-in Type

C/Traditional C++ Representation (without namespaces):
struct DDS_KeyedString {

char * key;
char * value;

};

Modern C++ Representation:
class dds::core::KeyedStringTopicType {
public:

dds::core::string& key();
dds::core::string& value();
// ... see API documentation for full definition

};

C++/CLI Representation:
namespace DDS {

public ref struct KeyedString: {
public:
System::String^ key;
System::String^ value;
...

};
};

C# Representation:
namespace DDS {

public class KeyedString {
public System.String key;
public System.String value;

};
};

Java Representation:

namespace DDS {
public class KeyedString {

public System.String key;
public System.String value;

};
};

3.2.4.1 Creating and Deleting Keyed Strings

Connext DDS provides a set of constructors/destructors to create/destroy Keyed Strings. For details, see
the API Reference HTML documentation, which is available for all supported programming languages
(selectModules, RTI Connext DDS API Reference, Topic Module, Built-in Types).

If you want to manipulate the memory of the fields 'value' and 'key' in the KeyedString struct in C/C++,
use the operations DDS::String_alloc(), DDS::String_dup(), and DDS::String_free(), as described in

47

3.2.4 KeyedString Built-in Type

48

the API Reference HTML documentation (selectModules, RTI Connext DDS API Reference, Infra-
structure Module, String Support).

3.2.4.2 Keyed String DataWriter

The keyed string DataWriter API is extended with the following methods (in addition to the standard meth-
ods described in 7.3.7 Using a Type-Specific DataWriter (FooDataWriter) on page 309):
DDS::ReturnCode_t
DDS::KeyedStringDataWriter::dispose(

const char* key,
const DDS::InstanceHandle_t* instance_handle);

DDS::ReturnCode_t
DDS::KeyedStringDataWriter::dispose_w_timestamp(

const char* key,
const DDS::InstanceHandle_t* instance_handle,
const struct DDS::Time_t* source_timestamp);

DDS::ReturnCode_t
DDS::KeyedStringDataWriter::get_key_value(

char * key,
const DDS::InstanceHandle_t* handle);

DDS::InstanceHandle_t
DDS::KeyedStringDataWriter::lookup_instance(

const char * key);
DDS::InstanceHandle_t
DDS::KeyedStringDataWriter::register_instance(

const char* key);
DDS::InstanceHandle_t
DDS_KeyedStringDataWriter::register_instance_w_timestamp(

const char * key,
const struct DDS_Time_t* source_timestamp);

DDS::ReturnCode_t
DDS::KeyedStringDataWriter::unregister_instance(

const char * key,
const DDS::InstanceHandle_t* handle);

DDS::ReturnCode_t
DDS::KeyedStringDataWriter::unregister_instance_w_timestamp(

const char* key,
const DDS::InstanceHandle_t* handle,
const struct DDS::Time_t* source_timestamp);

DDS::ReturnCode_t
DDS::KeyedStringDataWriter::write (

const char * key,
const char * str,
const DDS::InstanceHandle_t* handle);

DDS::ReturnCode_t
DDS::KeyedStringDataWriter::write_w_timestamp(

const char * key,
const char * str,
const DDS::InstanceHandle_t* handle,
const struct DDS::Time_t* source_timestamp);

These operations are introduced to provide maximum flexibility in the format of the input parameters for
the write and instance management operations. For additional information and a complete description of

3.2.4 KeyedString Built-in Type

the operations, see the API Reference HTML documentation, which is available for all supported pro-
gramming languages.

The following examples show how to write keyed strings using a keyed string built-in type DataWriter
and some of the extended APIs. For simplicity, error handling is not shown.

C Example:
DDS_KeyedStringDataWriter * stringWriter = ... ;
DDS_ReturnCode_t retCode;
struct DDS_KeyedString * keyedStr = NULL;
char * str = NULL;
/* Write some data using the KeyedString structure */
keyedStr = DDS_KeyedString_new(255, 255);
strcpy(keyedStr->key, "Key 1");
strcpy(keyedStr->value, "Value 1");
retCode = DDS_KeyedStringDataWriter_write(

stringWriter,
keyedStr,
&DDS_HANDLE_NIL);

DDS_KeyedString_delete(keyedStr);
/* Write some data using individual strings */
retCode = DDS_KeyedStringDataWriter_write_string_w_key(

stringWriter, "Key 1",
"Value 1", &DDS_HANDLE_NIL);

str = DDS_String_dup("Value 2");
retCode = DDS_KeyedStringDataWriter_write_string_w_key(

stringWriter, "Key 1",
str, &DDS_HANDLE_NIL);

DDS_String_free(str);

C++ Example with Namespaces:1

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
KeyedStringDataWriter * stringWriter = ... ;
/* Write some data using the KeyedString */
KeyedString * keyedStr = new KeyedString(255, 255);
strcpy(keyedStr->key, "Key 1");
strcpy(keyedStr->value, "Value 1");
ReturnCode_t retCode = stringWriter->write(

keyedStr, HANDLE_NIL);
delete keyedStr;

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

49

3.2.4 KeyedString Built-in Type

50

C++/CLI Example:
using namespace System;
using namespace DDS;
...
KeyedStringDataWriter^ stringWriter = ... ;
/* Write some data using the KeyedString */
KeyedString^ keyedStr = gcnew KeyedString();
keyedStr->key = "Key 1";
keyedStr->value = "Value 1";
stringWriter->write(

keyedStr, InstanceHandle_t::HANDLE_NIL);
/* Write some data using individual strings */
stringWriter->write

"Key 1","Value 1",
InstanceHandle_t::HANDLE_NIL);

String^ str = "Value 2";
stringWriter->write(

"Key 1", str,
InstanceHandle_t::HANDLE_NIL);

C# Example:
using System;
using DDS;
...
KeyedStringDataWriter stringWriter = ... ;
/* Write some data using the KeyedString */
KeyedString keyedStr = new KeyedString();
keyedStr.key = "Key 1";
keyedStr.value = "Value 1";
stringWriter.write(

keyedStr, InstanceHandle_t.HANDLE_NIL);
/* Write some data using individual strings */
stringWriter.write(

"Key 1", "Value 1",
InstanceHandle_t.HANDLE_NIL);

String str = "Value 2";
stringWriter.write(

"Key 1", str,
InstanceHandle_t.HANDLE_NIL);

Java Example:
import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...
KeyedStringDataWriter stringWriter = ... ;
/* Write some data using the KeyedString */
KeyedString keyedStr = new KeyedString();
keyedStr.key = "Key 1";
keyedStr.value = "Value 1";
stringWriter.write(

keyedStr, InstanceHandle_t.HANDLE_NIL);
/* Write some data using individual strings */
stringWriter.write(

3.2.4 KeyedString Built-in Type

"Key 1", "Value 1",
InstanceHandle_t.HANDLE_NIL);

String str = "Value 2";
stringWriter.write(

"Key 1", str,
InstanceHandle_t.HANDLE_NIL);

3.2.4.3 Keyed String DataReader

The KeyedString DataReader API is extended with the following operations (in addition to the standard
methods described in 8.4.1 Using a Type-Specific DataReader (FooDataReader) on page 558):
DDS::ReturnCode_t
DDS::KeyedStringDataReader::get_key_value(

char * key,
const DDS::InstanceHandle_t* handle);

DDS::InstanceHandle_t
DDS::KeyedStringDataReader::lookup_instance(

const char * key);

For additional information and a complete description of these operations in all supported languages, see
the API Reference HTML documentation, which is available for all supported programming languages.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and take_next_sample(),
Connext DDS allocates memory for the fields 'value' and 'key' if they are initialized to NULL.

If the fields are not initialized to NULL, the behavior depends on the language:

l In Java and .NET, the memory associated to the fields 'value' and 'key' will be reallocated with
every DDS sample.

l In C and C++, the memory associated with the fields 'value' and 'key' must be large enough to
hold the received data. Insufficient memory may result in crashes.

The following examples show how to read keyed strings with a keyed string built-in type DataReader.
For simplicity, error handling is not shown.

C Example:
struct DDS_KeyedStringSeq dataSeq =

DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq =

DDS_SEQUENCE_INITIALIZER;
DDS_KeyedKeyedStringDataReader * stringReader = ... ;
DDS_ReturnCode_t retCode;
int i;
/* Take and print the data */
retCode = DDS_KeyedStringDataReader_take(

stringReader, &dataSeq,
&infoSeq,
DDS_LENGTH_UNLIMITED,

51

3.2.4 KeyedString Built-in Type

52

DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

for (i = 0;
i < DDS_KeyedStringSeq_get_length(&data_seq);
++i) {
if (DDS_SampleInfoSeq_get_reference(

&info_seq, i)->valid_data) {
DDS_KeyedStringTypeSupport_print_data(
DDS_KeyedStringSeq_get_reference(&data_seq, i));

}
}
/* Return loan */
retCode = DDS_KeyedStringDataReader_return_loan(

stringReader, &data_seq, &info_seq);

C++ Example with Namespaces:1

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
KeyedStringSeq dataSeq;
SampleInfoSeq infoSeq;
KeyedStringDataReader * stringReader = ... ;
/* Take a print the data */
ReturnCode_t retCode = stringReader->take(

dataSeq, infoSeq,
LENGTH_UNLIMITED,
ANY_SAMPLE_STATE,
ANY_VIEW_STATE,
ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq[i].valid_data) {

KeyedStringTypeSupport::print_data(&dataSeq[i]);
}

}
/* Return loan */
retCode = stringReader->return_loan(dataSeq, infoSeq);

C++/CLI Example:
using namespace System;
using namespace DDS;
...
KeyedStringSeq^ dataSeq = gcnew KeyedStringSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
KeyedStringDataReader^ stringReader = ... ;
/* Take and print the data */
stringReader->take(

dataSeq, infoSeq,
ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
SampleStateKind::ANY_SAMPLE_STATE,
ViewStateKind::ANY_VIEW_STATE,

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3.2.4 KeyedString Built-in Type

InstanceStateKind::ANY_INSTANCE_STATE);
for (int i = 0; i < data_seq.length(); ++i) {

if (infoSeq->get_at(i)->valid_data) {
KeyedStringTypeSupport::print_data(

dataSeq->get_at(i));
}

}
/* Return loan */
stringReader->return_loan(dataSeq, infoSeq);

C# Example:
using System;
using DDS;
...
KeyedStringSeq dataSeq = new KeyedStringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedStringDataReader stringReader = ... ;
/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq.get_at(i)).valid_data) {

KeyedStringTypeSupport.print_data(
dataSeq.get_at(i));

}
}
/* Return loan */
stringReader.return_loan(dataSeq, infoSeq);

Java Example:
import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...
KeyedStringSeq dataSeq = new KeyedStringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedStringDataReader stringReader = ... ;
/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (((SampleInfo)infoSeq.get(i)).valid_data) {

System.out.println((
(KeyedString)dataSeq.get(i)).toString());

}
}
/* Return loan */
stringReader.return_loan(dataSeq, infoSeq);

53

3.2.5 Octets Built-in Type

54

3.2.5 Octets Built-in Type

The octets built-in type is used to send sequences of octets. The language-specific representations are as fol-
lows:

C/Traditional C++ Representation (without Namespaces):
struct DDS_Octets {

int length;
unsigned char * value;

};

Modern C++ Representation:
class dds::core::BytesTopicType {
public:

uint8_t& operator [](uint32_t index);
// ... see API documentation for full definition

};

C++/CLI Representation:
namespace DDS {

public ref struct Bytes: {
public:
System::Int32 length;
System::Int32 offset;
array<System::Byte>^ value;
...

};
};

C# Representation:

namespace DDS {
public class Bytes {

public System.Int32 length;
public System.Int32 offset;
public System.Byte[] value;
...

};
};

Java Representation:
package com.rti.dds.type.builtin;
public class Bytes implements Copyable {

public int length;
public int offset;
public byte[] value;
...

};

3.2.5 Octets Built-in Type

3.2.5.1 Creating and Deleting Octets

Connext DDS provides a set of constructors/destructors to create and destroy Octet objects. For details, see
the API Reference HTML documentation, which is available for all supported programming languages
(selectModules, RTI Connext DDS API Reference, Topic Module, Built-in Types).

If you want to manipulate the memory of the value field inside the Octets struct in C/Traditional C++, use
the operations DDS::OctetBuffer_alloc(), DDS::OctetBuffer_dup(), and DDS::OctetBuffer_free(),
described in the API Reference HTML documentation (selectModules, RTI Connext DDS API Refer-
ence, Infrastructure Module, Octet Buffer Support).

3.2.5.2 Octets DataWriter

(Note: for Modern C++ API, refer to the API documentation)

In addition to the standard methods (see 7.3.7 Using a Type-Specific DataWriter (FooDataWriter) on
page 309), the octets DataWriter API is extended with the following methods:
DDS::ReturnCode_t DDS::OctetsDataWriter::write(

const DDS::OctetSeq & octets,
const DDS::InstanceHandle_t & handle);

DDS::ReturnCode_t DDS::OctetsDataWriter::write(
const unsigned char * octets,
int length,
const DDS::InstanceHandle_t& handle);

DDS::ReturnCode_t DDS::OctetsDataWriter::write_w_timestamp(
const DDS::OctetSeq & octets,
const DDS::InstanceHandle_t & handle,
const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t DDS::OctetsDataWriter::write_w_timestamp(
const unsigned char * octets,
int length,
const DDS::InstanceHandle_t& handle,
const DDS::Time_t& source_timestamp);

These methods are introduced to provide maximum flexibility in the format of the input parameters for the
write operations. For additional information and a complete description of these operations in all supported
languages, see the API Reference HTML documentation.

The following examples show how to write an array of octets using an octets built-in type DataWriter and
some of the extended APIs. For simplicity, error handling is not shown.

55

3.2.5 Octets Built-in Type

56

C Example:
DDS_OctetsDataWriter * octetsWriter = ... ;
DDS_ReturnCode_t retCode;
struct DDS_Octets * octets = NULL;
char * octetArray = NULL;
/* Write some data using the Octets structure */
octets = DDS_Octets_new_w_size(1024);
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;
retCode = DDS_OctetsDataWriter_write(

octetsWriter, octets, &DDS_HANDLE_NIL);
DDS_Octets_delete(octets);
/* Write some data using an octets array */
octetArray = (unsigned char *)malloc(1024);
octetArray[0] = 46;
octetArray[1] = 47;
retCode = DDS_OctetsDataWriter_write_octets (

octetsWriter, octetArray, 2,
&DDS_HANDLE_NIL);

free(octetArray);

C++ Example with Namespaces:1

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
OctetsDataWriter * octetsWriter = ... ;
/* Write some data using the Octets structure */
Octets * octets = new Octets(1024);
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;
ReturnCode_t retCode = octetsWriter->write(octets, HANDLE_NIL);
delete octets;
/* Write some data using an octet array */
unsigned char * octetArray = new unsigned char[1024];
octetArray[0] = 46;
octetArray[1] = 47;
retCode = octetsWriter->write(octetArray, 2, HANDLE_NIL);
delete []octetArray;

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3.2.5 Octets Built-in Type

C++/CLI Example:
using namespace System;
using namespace DDS;
...
BytesDataWriter^ octetsWriter = ...;
/* Write some data using Bytes */
Bytes^ octets = gcnew Bytes(1024);
octets->value[0] =46;
octets->value[1] =47;
octets.length = 2;
octets.offset = 0;
octetWriter->write(octets, InstanceHandle_t::HANDLE_NIL);
/* Write some data using individual strings */
array<Byte>^ octetAray = gcnew array<Byte>(1024);
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter->write(octetArray, 0, 2, InstanceHandle_t::HANDLE_NIL);

C# Example:
using System;
using DDS;
...
BytesDataWriter stringWriter = ...;
/* Write some data using the Bytes */
Bytes octets = new Bytes(1024);
octets.value[0] = 46;
octets.value[1] = 47;
octets.length = 2;
octets.offset = 0;
octetWriter.write(octets, InstanceHandle_t.HANDLE_NIL);
/* Write some data using individual strings */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter.write(octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

Java Example:
import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...
BytesDataWriter octetsWriter = ... ;
/* Write some data using the Bytes class*/
Bytes octets = new Bytes(1024);
octets.length = 2;
octets.offset = 0;
octets.value[0] = 46;
octets.value[1] = 47;
octetsWriter.write(octets, InstanceHandle_t.HANDLE_NIL);
/* Write some data using a byte array */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter.write(octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

57

3.2.5 Octets Built-in Type

58

3.2.5.3 Octets DataReader

(Note: for the Modern C++ API, refer to the API Reference HTML documentation)

The octets DataReader API matches the standard DataReader API (see 8.4.1 Using a Type-Specific
DataReader (FooDataReader) on page 558). There are no extensions.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and take_next_sample(),
Connext DDS allocates memory for the field 'value' if it is initialized to NULL.

If the field 'value' is not initialized to NULL, the behavior depends on the language:

l In Java and .NET, the memory for the field 'value' will be reallocated if the current size is not
large enough to hold the received data.

l In C and C++, the memory associated with the field 'value' must be big enough to hold the
received data. Insufficient memory may result in crashes.

The following examples show how to read octets with an octets built-in type DataReader. For simplicity,
error handling is not shown.

C Example:
struct DDS_OctetsSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE_INITIALIZER;
DDS_OctetsDataReader * octetsReader = ... ;
DDS_ReturnCode_t retCode;
int i;
/* Take and print the data */
retCode = DDS_OctetsDataReader_take(

octetsReader, &dataSeq,
&infoSeq, DDS_LENGTH_UNLIMITED,
DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_OctetsSeq_get_length(&dataSeq); ++i) {
if (DDS_SampleInfoSeq_get_reference(

&infoSeq, i)->valid_data) {
DDS_OctetsTypeSupport_print_data(

DDS_OctetsSeq_get_reference(&dataSeq, i));
}

}
/* Return loan */
retCode = DDS_OctetsDataReader_return_loan(

octetsReader, &dataSeq, &infoSeq);

3.2.5 Octets Built-in Type

C++ Example with Namespaces:1

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
OctetsSeq dataSeq;
SampleInfoSeq infoSeq;
OctetsDataReader * octetsReader = ... ;
/* Take a print the data */
ReturnCode_t retCode = octetsReader->take(

dataSeq, infoSeq,
LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
ANY_VIEW_STATE, ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq[i].valid_data) {

OctetsTypeSupport::print_data(&dataSeq[i]);
}

}
/* Return loan */
retCode = octetsReader->return_loan(dataSeq, infoSeq);

C++/CLI Example:
using namespace System;
using namespace DDS;
...
BytesSeq^ dataSeq = gcnew BytesSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
BytesDataReader^ octetsReader = ... ;
/* Take and print the data */
octetsReader->take(

dataSeq, infoSeq,
ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
SampleStateKind::ANY_SAMPLE_STATE,
ViewStateKind::ANY_VIEW_STATE,
InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq->get_at(i)->valid_data) {

BytesTypeSupport::print_data(dataSeq->get_at(i));
}

}
/* Return loan */
octetsReader->return_loan(dataSeq, infoSeq);

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

59

3.2.6 KeyedOctets Built-in Type

60

C# Example:
using System;
using DDS;
...
BytesSeq dataSeq = new BytesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
BytesDataReader octetsReader = ... ;
/* Take and print the data */
octetsReader.take(

dataSeq, infoSeq,
ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq.get_at(i)).valid_data) {

BytesTypeSupport.print_data(dataSeq.get_at(i));
}

}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

Java Example:
import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...
BytesSeq dataSeq = new BytesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
BytesDataReader octetsReader = ... ;
/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (((SampleInfo)infoSeq.get(i)).valid_data) {

System.out.println(((Bytes)dataSeq.get(i)).toString());
}

}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

3.2.6 KeyedOctets Built-in Type

The keyed octets built-in type is used to send sequences of octets with a key. The language-specific rep-
resentations of the type are as follows:

3.2.6 KeyedOctets Built-in Type

C/Traditional C++ Representation (without Namespaces):
struct DDS_KeyedOctets {

char * key;
int length;
unsigned char * value;

};

Modern C++ Representation:

class dds::core::KeyedStringTopicType {
public:

dds::core::string& key();
uint8_t& operator [](uint32_t index);
// ... see API documentation for full definition

};

C++/CLI Representation:
namespace DDS {

public ref struct KeyedBytes {
public:
System::String^ key;
System::Int32 length;
System::Int32 offset;
array<System::Byte>^ value;
...

};
};

C# Representation:
namespace DDS {

public class KeyedBytes {
public System.String key;
public System.Int32 length;
public System.Int32 offset;
public System.Byte[] value;
...

};
};

Java Representation:
package com.rti.dds.type.builtin;
public class KeyedBytes {

public String key;
public int length;
public int offset;
public byte[] value;
...

};

61

3.2.6 KeyedOctets Built-in Type

62

3.2.6.1 Creating and Deleting KeyedOctets

Connext DDS provides a set of constructors/destructors to create/destroy KeyedOctets objects. For details,
see the API Reference HTML documentation, which is available for all supported programming languages
(selectModules, RTI Connext DDS API Reference, Topic Module, Built-in Types).

To manipulate the memory of the value field in the KeyedOctets struct in C/C++: use DDS::Oc-
tetBuffer_alloc(), DDS::OctetBuffer_dup(), and DDS::OctetBuffer_free(). See the API Reference
HTML documentation (selectModules, RTI Connext DDS API Reference, Infrastructure Module,
Octet Buffer Support).

To manipulate the memory of the key field in the KeyedOctets struct in C/C++: use DDS::String_alloc(),
DDS::String_dup(), and DDS::String_free(). See the API Reference HTML documentation (select
Modules, RTI Connext DDS API Reference, Infrastructure Module, String Support).

3.2.6.2 Keyed Octets DataWriter

In addition to the standard methods (see 7.3.7 Using a Type-Specific DataWriter (FooDataWriter) on
page 309), the keyed octets DataWriter API is extended with the following methods:
DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::dispose(

const char* key,
const DDS::InstanceHandle_t & instance_handle);

DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::dispose_w_timestamp(

const char* key,
const DDS::InstanceHandle_t & instance_handle,
const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::get_key_value(

char * key,
const DDS::InstanceHandle_t& handle);

DDS::InstanceHandle_t
DDS::KeyedOctetsDataWriter::lookup_instance(

const char * key);
DDS::InstanceHandle_t
DDS::KeyedOctetsDataWriter::register_instance(

const char* key);
DDS::InstanceHandle_t
DDS::KeyedOctetsDataWriter::

register_instance_w_timestamp(
const char * key,
const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::unregister_instance(

const char * key,
const DDS::InstanceHandle_t & handle);

DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::
unregister_instance_w_timestamp(

const char* key,
const DDS::InstanceHandle_t & handle,

3.2.6 KeyedOctets Built-in Type

const DDS::Time_t & source_timestamp);
DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::write(

const char * key,
const unsigned char * octets,
int length,
const DDS::InstanceHandle_t& handle);

DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::write(

const char * key,
const DDS::OctetSeq & octets,
const DDS::InstanceHandle_t & handle);

DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::write_w_timestamp(

const char * key,
const unsigned char * octets,
int length,
const DDS::InstanceHandle_t& handle,
const DDS::Time_t& source_timestamp);

DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::write_w_timestamp(

const char * key,
const DDS::OctetSeq & octets,
const DDS::InstanceHandle_t & handle,
const DDS::Time_t & source_timestamp);

These methods are introduced to provide maximum flexibility in the format of the input parameters for the
write and instance management operations. For more information and a complete description of these oper-
ations in all supported languages, see the API Reference HTML documentation.

The following examples show how to write keyed octets using a keyed octets built-in type DataWriter and
some of the extended APIs. For simplicity, error handling is not shown.

C Example:

DDS_KeyedOctetsDataWriter * octetsWriter = ... ;
DDS_ReturnCode_t retCode;
struct DDS_KeyedOctets * octets = NULL;
char * octetArray = NULL;
/* Write some data using KeyedOctets structure */
octets = DDS_KeyedOctets_new_w_size(128,1024);
strcpy(octets->key, "Key 1");
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;
retCode = DDS_KeyedOctetsDataWriter_write(

octetsWriter, octets, &DDS_HANDLE_NIL);
DDS_KeyedOctets_delete(octets);
/* Write some data using an octets array */
octetArray = (unsigned char *)malloc(1024);
octetArray[0] = 46;
octetArray[1] = 47;
retCode =

63

3.2.6 KeyedOctets Built-in Type

64

DDS_KeyedOctetsDataWriter_write_octets_w_key (
octetsWriter, "Key 1",
octetArray, 2, &DDS_HANDLE_NIL);

free(octetArray);

C++ Example with Namespaces:1

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
KeyedOctetsDataWriter * octetsWriter = ...;
/* Write some data using KeyedOctets */
KeyedOctets * octets = new KeyedOctets(128,1024);
strcpy(octets->key, "Key 1");
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;
ReturnCode_t retCode =

octetsWriter->write(octets, HANDLE_NIL);
delete octets;
/* Write some data using an octet array */
unsigned char * octetArray = new unsigned char[1024];
octetArray[0] = 46;
octetArray[1] = 47;
retCode = octetsWriter->write(

"Key 1", octetArray, 2, HANDLE_NIL);
delete []octetArray;

C++/CLI Example:

using namespace System;
using namespace DDS;
...
KeyedOctetsDataWriter^ octetsWriter = ... ;
/* Write some data using KeyedBytes */
KeyedBytes^ octets = gcnew KeyedBytes(1024);
octets->key = "Key 1";
octets->value[0] =46;
octets->value[1] =47;
octets.length = 2;
octets.offset = 0;
octetWriter->write(

octets, InstanceHandle_t::HANDLE_NIL);
/* Write some data using individual strings */

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

3.2.6 KeyedOctets Built-in Type

array<Byte>^ octetAray = gcnew array<Byte>(1024);
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter->write(

"Key 1", octetArray,
0, 2, InstanceHandle_t::HANDLE_NIL);

C# Example:

using System;
using DDS;
...
KeyedBytesDataWriter stringWriter = ... ;
/* Write some data using the KeyedBytes */
KeyedBytes octets = new KeyedBytes(1024);
octets.key = "Key 1";
octets.value[0] = 46;
octets.value[1] = 47;
octets.length = 2;
octets.offset = 0;
octetWriter.write(octets,

InstanceHandle_t.HANDLE_NIL);
/* Write some data using individual strings */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter.write(

"Key 1", octetArray,
0, 2, InstanceHandle_t.HANDLE_NIL);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...
KeyedBytesDataWriter octetsWriter = ... ;
/* Write some data using KeyedBytes class */
KeyedBytes octets = new KeyedBytes(1024);
octets.key = "Key 1";
octets.length = 2;
octets.offset = 0;
octets.value[0] = 46;
octets.value[1] = 47;
octetsWriter.write(octets,

InstanceHandle_t.HANDLE_NIL);
/* Write some data using a byte array */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;

65

3.2.6 KeyedOctets Built-in Type

66

octetArray[1] = 47;
octetsWriter.write(

"Key 1", octetArray,

0, 2, InstanceHandle_t.HANDLE_NIL);

3.2.6.3 Keyed Octets DataReader

The KeyedOctets DataReader API is extended with the following methods (in addition to the standard
methods described in 8.4.1 Using a Type-Specific DataReader (FooDataReader) on page 558):

DDS::ReturnCode_t
DDS::KeyedOctetsDataReader::get_key_value(

char * key,
const DDS::InstanceHandle_t* handle);

DDS::InstanceHandle_t
DDS::KeyedOctetsDataReader::lookup_instance(

const char * key);

For more information and a complete description of these operations in all supported languages, see the
API Reference HTML documentation.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and take_next_sample(),
Connext DDS allocates memory for the fields 'value' and 'key' if they are initialized to NULL.

If the fields are not initialized to NULL, the behavior depends on the language:

l In Java and .NET, the memory of the field 'value' will be reallocated if the current size is not
large enough to hold the received data. The memory associated with the field 'key' will be real-
located with every DDS sample (the key is an immutable object).

l In C and C++, the memory associated with the fields 'value' and 'key' must be large enough to
hold the received data. Insufficient memory may result in crashes.

The following examples show how to read keyed octets with a keyed octets built-in type DataReader. For
simplicity, error handling is not shown.

C Example:
struct DDS_KeyedOctetsSeq dataSeq =

DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq =

DDS_SEQUENCE_INITIALIZER;
DDS_KeyedOctetsDataReader * octetsReader = ... ;
DDS_ReturnCode_t retCode;

3.2.6 KeyedOctets Built-in Type

int i;
/* Take and print the data */
retCode = DDS_KeyedOctetsDataReader_take(

octetsReader,
&dataSeq, &infoSeq, DDS_LENGTH_UNLIMITED,
DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

for (i = 0;
i < DDS_KeyedOctetsSeq_get_length(&data_seq);
++i) {
if (DDS_SampleInfoSeq_get_reference(
&info_seq, i)->valid_data) {

DDS_KeyedOctetsTypeSupport_print_data(
DDS_KeyedOctetsSeq_get_reference(

&data_seq, i));
}

}
/* Return loan */
retCode = DDS_KeyedOctetsDataReader_return_loan(

octetsReader, &data_seq, &info_seq);

C++ Example with Namespaces:1

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
KeyedOctetsSeq dataSeq;
SampleInfoSeq infoSeq;
KeyedOctetsDataReader * octetsReader = ... ;
/* Take and print the data */
ReturnCode_t retCode = octetsReader->take(

dataSeq, infoSeq, LENGTH_UNLIMITED,
ANY_SAMPLE_STATE, ANY_VIEW_STATE,
ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq[i].valid_data) {

KeyedOctetsTypeSupport::print_data(
&dataSeq[i]);

}
}
/* Return loan */
retCode = octetsReader->return_loan(

dataSeq, infoSeq);

C++/CLI Example:
using namespace System;
using namespace DDS;
...
KeyedBytesSeq^ dataSeq = gcnew KeyedBytesSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
KeyedBytesDataReader^ octetsReader = ... ;

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

67

3.2.6 KeyedOctets Built-in Type

68

/* Take and print the data */
octetsReader->take(dataSeq, infoSeq,

ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
SampleStateKind::ANY_SAMPLE_STATE,
ViewStateKind::ANY_VIEW_STATE,
InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i){
if (infoSeq->get_at(i)->valid_data){

KeyedBytesTypeSupport::print_data(
dataSeq->get_at(i));

}
}
/* Return loan */
octetsReader->return_loan(dataSeq, infoSeq);

C# Example:
using System;
using DDS;
...
KeyedBytesSeq dataSeq = new KeyedButesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedBytesDataReader octetsReader = ... ;
/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
if (infoSeq.get_at(i)).valid_data) {

KeyedBytesTypeSupport.print_data(
dataSeq.get_at(i));

}
}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

Java Example:
import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...
KeyedBytesSeq dataSeq = new KeyedBytesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedBytesDataReader octetsReader = ... ;
/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i){
if (((SampleInfo)infoSeq.get(i)).valid_data){

System.out.println(

3.2.7 Managing Memory for Built-in Types

((KeyedBytes)dataSeq.get(i)).toString());
}

}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

3.2.7 Managing Memory for Built-in Types

When a DDS sample is written, the DataWriter serializes it and stores the result in a buffer obtained from a
pool of preallocated buffers. In the same way, when a DDS sample is received, the DataReader deseri-
alizes it and stores the result in a DDS sample coming from a pool of preallocated DDS samples.

By default, the buffers on the DataWriter and the samples on the DataReader are preallocated with their
maximum size. For example:
struct MyString {

string<128> value;
};

This IDL-defined type has a maximum serialized size of 133 bytes (4 bytes for length + 128 characters + 1
NULL terminating character). So the serialization buffers will have a size of 133 bytes. The buffer can
hold samples with 128 characters strings. Consequently, the preallocated samples will be sized to keep this
length.

However, for built-in types, the maximum size of the buffers/DDS samples is unknown and depends on
the nature of the application using the built-in type.

For example, a video surveillance application that is using the keyed octets built-in type to publish a stream
of images will require bigger buffers than a market-data application that uses the same built-in type to pub-
lish market-data values.

To accommodate both kinds of applications and optimize memory usage, you can configure the maximum
size of the built-in types on a per-DataWriter or per-Datareader basis using the 7.5.19 PROPERTY
QosPolicy (DDS Extension) on page 440. Table 3.1 Properties for Allocating Size of Built-in Types, per
DataWriter and DataReader lists the supported built-in type properties. When the properties are defined in
the DomainParticipant, they are applicable to all DataWriters and DataReaders belonging to the
DomainParticipant, unless they are overwritten in the DataWriters and DataReaders.

These properties must be set consistently with respect to the corresponding *.max_size properties
in the DomainParticipant (see Table 3.2 Properties for Allocating Size of Built-in Types, per
DomainParticipant). The value of the alloc_size property must be less than or equal to themax_
size property with the same name prefix in the DomainParticipant.

Unbounded built-in types are only supported in the C, C++, Java, and .NET APIs.

3.2.7.1 Examples—Setting the Maximum Size for a String Programmatically on page 71 includes
examples of how to set the maximum size of a string built-in type for a DataWriter programmatically, for

69

3.2.7 Managing Memory for Built-in Types

70

each API. You can also set the maximum size of the built-in types using XML QoS Profiles. For example,
the following XML shows how to set the maximum size of a string built-in type for a DataWriter.

<dds>
<qos_library name="BuiltinExampleLibrary">

<qos_profile name="BuiltinExampleProfile">
<datawriter_qos>

<property>
<value>

<element>
<name>dds.builtin_type.string.alloc_size</name>
<value>2048</value>
</element>

</value>
</property>

</datawriter_qos>
<datareader_qos>

<property>
<value>

<element>
<name>dds.builtin_type.string.alloc_size</name>
<value>2048</value>
</element>

</value>
</property>

</datareader_qos>
</qos_profile>

</qos_library>
</dds>

Built-in
Type Property Description

string
dds.builtin_
type.string.alloc_size

Maximumsize of the strings published by the DataWriter or received by the DataReader (includes the NULL-ter-
minated character).

Default: dds.builtin_type.string.max_size if defined (see Table 3.2 Properties for Allocating Size of Built-in
Types, per DomainParticipant). Otherwise, 1024.

keyedstring

dds.builtin_
type.keyed_string.
alloc_key_size

Maximumsize of the keys used by the DataWriter orDataReader (includes the NULL-terminated character).

Default: dds.builtin_type.keyed_string.max_key_size if defined (see Table 3.2 Properties for Allocating Size
of Built-in Types, per DomainParticipant). Otherwise, 1024.

dds.builtin_
type.keyed_string.
alloc_size

Maximumsize of the strings published by the DataWriter or received by the DataReader (includes the NULL-ter-
minated character).

Default: dds.builtin_type.keyed_string.max_size if defined (see Table 3.2 Properties for Allocating Size of
Built-in Types, per DomainParticipant). Otherwise, 1024.

Table 3.1 Properties for Allocating Size of Built-in Types, per DataWriter and DataReader

3.2.7 Managing Memory for Built-in Types

Built-in
Type Property Description

octets
dds.builtin_type.oct-
ets.alloc_size

Maximumsize of the octet sequences published by the DataWriter orDataReader.

Default: dds.builtin_type.octets.max_size if defined (see Table 3.2 Properties for Allocating Size of Built-in
Types, per DomainParticipant). Otherwise, 2048.

keyed-oct-
ets

dds.builtin_
type.keyed_octets.
alloc_key_size

Maximumsize of the key published by the DataWriter or received by the DataReader (includes the NULL-ter-
minated character).

Default: dds.builtin_type.keyed_octets.max_key_size if defined (see Table 3.2 Properties for Allocating Size
of Built-in Types, per DomainParticipant). Otherwise, 1024.

dds.builtin_
type.keyed_octets.
alloc_size

Maximumsize of the octet sequences published by the DataWriter orDataReader.

Default: dds.builtin_type.keyed_octets.max_size if defined (see Table 3.2 Properties for Allocating Size of
Built-in Types, per DomainParticipant). Otherwise, 2048.

Table 3.1 Properties for Allocating Size of Built-in Types, per DataWriter and DataReader

3.2.7.1 Examples—Setting the Maximum Size for a String Programmatically

For simplicity, error handling is not shown in the following examples.

C Example:

DDS_DataWriter * writer = NULL;
DDS_StringDataWriter * stringWriter = NULL;
DDS_Publisher * publisher = ... ;
DDS_Topic * stringTopic = ... ;
struct DDS_DataWriterQos writerQos =

DDS_DataWriterQos_INITIALIZER;
DDS_ReturnCode_t retCode;
retCode = DDS_DomainParticipant_get_default_datawriter_qos (

participant, &writerQos);
retCode = DDS_PropertyQosPolicyHelper_add_property (

&writerQos.property,
"dds.builtin_type.string.alloc_size", "1000",
DDS_BOOLEAN_FALSE);

writer = DDS_Publisher_create_datawriter(
publisher, stringTopic, &writerQos,
NULL, DDS_STATUS_MASK_NONE);

stringWriter = DDS_StringDataWriter_narrow(writer);
DDS_DataWriterQos_finalize(&writerQos);

Traditional C++ Example with Namespaces: 1

#include "ndds/ndds_namespace_cpp.h"

1This example uses C++ namespaces. If you're not using namespaces in your own code, prefix the name of each DDS class
with 'DDS.' For example, DDS::StringDataWriter becomes DDSStringDataWriter.

71

3.2.7 Managing Memory for Built-in Types

72

using namespace DDS;
...
Publisher * publisher = ... ;
Topic * stringTopic = ... ;
DataWriterQos writerQos;
ReturnCode_t retCode =

participant->get_default_datawriter_qos(writerQos);
retCode = PropertyQosPolicyHelper::add_property (

&writerQos.property,
"dds.builtin_type.string.alloc_size",
"1000", BOOLEAN_FALSE);

DataWriter * writer = publisher->create_datawriter(
stringTopic, writerQos,
NULL, STATUS_MASK_NONE);

StringDataWriter * stringWriter =
StringDataWriter::narrow(writer);

Modern C++ Example:

dds::pub::qos::DataWriterQos writer_qos =
participant.default_datawriter_qos();

writer_qos.policy<rti::core::policy::Property>().set({
"dds.builtin_type.string.alloc_size", "1000"});

dds::pub::DataWriter<dds::core::StringTopicType> writer(
publisher, string_topic, writer_qos);

C++/CLI Example:

using namespace DDS;
...
Topic^ stringTopic = ... ;
Publisher^ publisher = ... ;
DataWriterQos^ writerQos = gcnew DataWriterQos();
participant->get_default_datawriter_qos(writerQos);
PropertyQosPolicyHelper::add_property(

writerQos->property_qos,
"dds.builtin_type.string.alloc_size",
"1000", false);

DataWriter^ writer = publisher->create_datawriter(
stringTopic, writerQos,
nullptr, StatusMask::STATUS_MASK_NONE);

StringDataWriter^ stringWriter =
safe_cast<StringDataWriter^>(writer);

C# Example:

using DDS;
...

3.2.7 Managing Memory for Built-in Types

Topic stringTopic = ... ;
Publisher publisher = ... ;
DataWriterQos writerQos = new DataWriterQos();
participant.get_default_datawriter_qos(writerQos);
PropertyQosPolicyHelper.add_property (

writerQos.property_qos,
"dds.builtin_type.string.alloc_size",
"1000", false);

StringDataWriter stringWriter =
(StringDataWriter) publisher.create_datawriter(

stringTopic, writerQos, null,
StatusMask.STATUS_MASK_NONE);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...
Topic stringTopic = ... ;
Publisher publisher = ... ;
DataWriterQos writerQos = new DataWriterQos();
participant.get_default_datawriter_qos(writerQos);
PropertyQosPolicyHelper.add_property (

writerQos.property,
"dds.builtin_type.string.alloc_size",
"1000", false);

StringDataWriter stringWriter =
(StringDataWriter) publisher.create_datawriter(

stringTopic, writerQos,
null, StatusKind.STATUS_MASK_NONE);

3.2.7.2 Unbounded Built-in Types

In some scenarios, the maximum size of a built-in type is not known in advance and there is no reasonable
maximum size. For example, this could occur in a file transfer application using the built-in type Octets.
Setting a large value for the dds.builtin_type.*.alloc_size property would involve high memory usage.

Note: Replace * with one of the built-in type names. See Table 3.1 Properties for Allocating Size of
Built-in Types, per DataWriter and DataReader for the full property names.

For the above use case, you can configure the built-in type to be unbounded by setting the property
dds.builtin_type.*.alloc_size to the maximum value of a 32-bit signed integer: 2,147,483,647. Then the
middleware will not preallocate the DataReader queue's samples to their maximum size. Instead, it will
deserialize incoming samples by dynamically allocating and deallocating memory to accommodate the
actual size of the sample value.

73

3.2.8 Type Codes for Built-in Types

74

To configure unbounded support for built-in types:

1. Use these threshold QoS properties:
l dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size on the
DataWriter

l dds.data_reader.history.memory_manager.fast_pool.pool_buffer_max_size on the
DataReader

2. Set the QoS value reader_resource_limits.dynamically_allocate_fragmented_samples on the
DataReader to true.

3. For the Java API, also set these properties accordingly for the Java serialization buffer:
l dds.data_writer.history.memory_manager.java_stream.min_size

l dds.data_writer.history.memory_manager.java_stream.trim_to_size

l dds.data_reader.history.memory_manager.java_stream.min_size

l dds.data_reader.history.memory_manager.java_stream.trim_to_size

See these sections:

l 22.1.3 Writer-Side Memory Management when Using Java on page 937

l 22.2.2 Reader-Side Memory Management when Using Java on page 941

Unbounded built-in types are only supported in the C, C++, .NET, and Java APIs.

3.2.8 Type Codes for Built-in Types

The type codes associated with the built-in types are generated from the following IDL type definitions:
module DDS {

/* String */
struct String {

string<max_size> value;
};
/* KeyedString */
struct KeyedString {

@key string<max_size> key;
string<max_size> value;

};
/* Octets */
struct Octets {

sequence<octet, max_size> value;
};
/* KeyedOctets */
struct KeyedOctets {

@key string<max_size> key;
sequence<octet, max_size> value;

3.3 Creating User Data Types with IDL

};
};

The maximum size (max_size) of the strings and sequences that will be included in the type code defin-
itions can be configured on a per-DomainParticipant-basis by using the properties in Table 3.2 Properties
for Allocating Size of Built-in Types, per DomainParticipant.

Built-in
Type Property Description

String
dds.builtin_
type.string.max_
size

Maximumsize of the strings published by the DataWritersand received by the DataReadersbelonging to a Do-
mainParticipant (includes the NULL-terminated character).

Default: 1024

KeyedString

dds.builtin_
type.keyed_
string.
max_key_size

Maximumsize of the keys used by the DataWritersand DataReadersbelonging to a DomainParticipant (in-
cludes the NULL-terminated character).

Default: 1024

dds.builtin_
type.keyed_
string.
max_size

Maximumsize of the strings published by the DataWritersand received by the DataReadersbelonging to a Do-
mainParticipant using the built-in type (includes the NULL-terminated character).

Default: 1024

Octets
dds.builtin_
type.octets.max_
size

Maximumsize of the octet sequences published by the DataWritersand DataReadersbelonging to a Do-
mainParticipant.

Default: 2048

Keyed-Oc-
tets

dds.builtin_
type.keyed_oct-
ets.
max_key_size

Maximumsize of the key published by the DataWriter and received by the DataReadersbelonging to the
DomainParticipant (includes the NULL-terminated character).

Default:1024.

dds.builtin_
type.keyed_oct-
ets.
max_size

Maximumsize of the octet sequences published by the DataWritersand DataReadersbelonging to a Do-
mainParticipant.

Default: 2048

Table 3.2 Properties for Allocating Size of Built-in Types, per DomainParticipant

3.3 Creating User Data Types with IDL

You can create user data types in a text file using IDL (Interface Description Language). IDL is pro-
gramming-language independent, so the same file can be used to generate code in C, Traditional C++,
Modern C++, C++/CLI, Ada, and Java (the languages supported by RTI Code Generator (rtiddsgen)).
RTI Code Generator parses the IDL file and automatically generates all the necessary routines and wrap-
per functions to bind the types for use by Connext DDS at run time. You will end up with a set of required
routines and structures that your application and Connext DDS will use to manipulate the data.

Connext DDS only uses a subset of the IDL 4.2 (https://www.omg.org/spec/IDL) syntax. IDL was ori-
ginally defined by the OMG for the use of CORBA client/server applications in an enterprise setting. Not
all of the constructs that can be described by the language are as useful in the context of high-performance

75

https://www.omg.org/spec/IDL

3.3 Creating User Data Types with IDL

76

data-centric embedded applications. These include the constructs that define method and function pro-
totypes like “interface.”

RTI Code Generator will parse any file that follows version 4.2 of the IDL specification. It will ignore and
show a warning for all syntax that is not recognized by Connext DDS. There is a limit of 256 characters
for the length of a variable name in an IDL file.

Certain keywords are considered reserved by the IDL specification; see Table 3.3 Reserved IDL Key-
words.

Note: Table 3.3 Reserved IDL Keywords does not include other words that may be used by macros
for different compilers and operating systems. For example, min and max are reserved key words for
Microsoft Visual Studio 2015.

abstract any alias attribute bitfield

bitmask bitset boolean case char

component connector const consumes context

custom default double exception emits

enum eventtype factory FALSE finder

fixed float getraises home import

in inout interface local long

manages map mirrorport module multiple

native Object octet oneway out

primarykey private port porttype provides

public publishes raises readonly setraises

sequence short string struct supports

switch TRUE truncatable typedef typeid

typename typeprefix unsigned union uses

ValueBase valuetype void wchar wstring

int8 uint8 int16 int32 int64

uint16 uint32 uint64

Table 3.3 Reserved IDL Keywords

The IDL constructs supported by RTI Code Generator are described in Table 3.5 Specifying Data Types
in IDL for C through Table 3.9 Specifying Data Types in IDL for Java. Use these tables to map primitive
types to their equivalent IDL syntax, and vice versa.

3.3.1 Variable-Length Types

For C and Traditional C++, RTI Code Generator uses typedefs instead of the language keywords for prim-
itive types. For example, DDS_Long instead of long (or int32) or DDS_Double instead of double. This
ensures that the types are of the same size regardless of the platform.

The number of bytes sent on the wire for each data type is determined by the Common Data Rep-
resentation (CDR) defined in the OMG 'Extensible and Dynamic Topic Types for DDS' specification, ver-
sion 1.3. There are two different CDR representations, encoding version 1 and encoding version 2.
Connext DDS implements both. See the RTI Connext DDS Core Libraries Extensible Types Guide for
more information.

3.3.1 Variable-Length Types

When RTI Code Generator generates code for data structures with variable-length types—strings and
sequences—it includes functions that create, initialize and finalize (destroy) those objects. These support
functions will properly initialize pointers and allocate and deallocate the memory used for variable-length
types. All Connext DDS APIs assume that the data structures passed to them are properly initialized.

For variable-length types, the actual length (instead of the maximum length) of data is transmitted on the
wire when the DDS sample is written (regardless of whether the type has hard-coded bounds).

3.3.1.1 Sequences

In C, Traditional C++, C++/CLI, C#, and Ada, sequences provide the concept of memory "ownership." A
sequence may own the memory allocated to it or be loaned memory from another source. If a sequence
owns its memory, it will manage its underlying memory storage buffer itself. When a sequence's maximum
size is changed, the sequence will free and reallocate its buffer as needed. However, if a sequence was cre-
ated with loaned memory by user code, then its memory is not its own to free or reallocate. Therefore, you
cannot set the maximum size of a sequence whose memory is loaned. See the API Reference HTML doc-
umentation (select Modules, RTI Connext DDS API Reference, Infrastructure Module, Sequence Sup-
port) for more information about how to loan and unloan memory for sequence.

In IDL, as described above, a sequence may be declared as bounded or unbounded. A sequence's "bound"
is the greatest value its maximum may take. If you use the initializer functions RTI Code Generator
provides for your types, all sequences will have their maximums set to their declared bounds. However,
the amount of data transmitted on the wire when the DDS sample is written will vary.

In the the Modern C++ and Java APIs, sequences always own the memory.

3.3.1.2 Strings and Wide Strings

Note: This section doesn't apply to the Modern C++ API, where strings map to std::string or dds::-
core::string, which behaves similarly. It also does not apply to the Traditional C++ API when generating
code with the option -useStdString, which maps strings to std::string.

The initialization functions that RTI Code Generator provides for your types will allocate all of the
memory for strings in a type to their declared bounds. Take care—if you assign a string pointer (char *) in

77

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

3.3.2 Value Types

78

a data structure allocated or initialized by a Connext DDS-generated function, you should release (free) the
memory originally allocated for the string, otherwise the memory will be leaked.

To Java and .NET users, an IDL string is a String object: it is immutable and knows its own length. C and
C++ users must take care, however, as there is no way to determine how much memory is allocated to a
character pointer "string"; all that can be determined is the string's current logical length. In some cases,
Connext DDS may need to copy a string into a structure that user code has provided. Connext DDS does
not free the memory of the string provided to it, as it cannot know from where that memory was allocated.

In the C and C++ APIs, Connext DDS therefore uses the following conventions:

l A string's memory is "owned" by the structure that contains that string. Calling the finalization func-
tion provided for a type will free all recursively contained strings. If you have allocated a contained
string in a special way, you must be careful to clean up your own memory and assign the pointer to
NULL before calling the type’s finalize()method, so that Connext DDS will skip over that string.

l You must provide a non-NULL string pointer for Connext DDS to copy into. Otherwise, Connext
DDS will log an error.

l When you provide a non-NULL string pointer in your data structure, Connext DDS will copy into
the provided memory without performing any additional memory allocations. Be careful—if you
provide Connext DDS with an uninitialized pointer or allocate a string that is too short, you may cor-
rupt the memory or cause a program crash. Connext DDS will never try to copy a string that is
longer than the bound of the destination string. However, your application must insure that any
string that it allocates is long enough.

Connext DDS provides a small set of C functions for dealing with strings. These functions simplify com-
mon tasks, avoid some platform-specific issues (such as the lack of a strdup() function on some plat-
forms), and provide facilities for dealing with wide strings, for which no standard C library exists. Connext
DDS always uses these functions internally for managing string memory; you are recommended—but not
required—to use them as well. See the API Reference HTML documentation, which is available for all
supported programming languages (selectModules, RTI DDS API Reference, Infrastructure Module,
String Support) for more information about strings.

3.3.2 Value Types

With the addition of inheritance to structs in Connext DDS 5.0, value types are considered equivalent to
structs. It is recommended to use structures instead of value types, since the valuetype construct maybe not
be supported in future releases. For additional information, see Structure Inheritance, in the Type System
Enhancements chapter of the RTI Connext DDS Core Libraries Extensible Types Guide.

Readers familiar with value types in the context of CORBA should consult Table 3.4 Value Type Support
to see which value type-related IDL keywords are supported and what their behavior is in the context of
Connext DDS.

3.3.3 Type Codes

Aspect Level of Support in RTI Code Generator

Inheritance Single inheritance fromother value types

Public state members Supported

Private state members Become public when code is generated

Customkeyword Ignored (the value type is parsed without the keyword and code is generated to work with it)

Abstract value types No code generated (the value type is parsed, but no code is generated)

Operations No code generated (the value type is parsed, but no code is generated)

Truncatable keyword Ignored (the value type is parsed without the keyword and code is generated to work with it)

Table 3.4 Value Type Support

3.3.3 Type Codes

Type codes are always enabled when you run RTI Code Generator. Locally, your application can access
the type code for a generated type "Foo" by calling the FooTypeSupport::get_typecode() (Traditional
C++ Notation) operation in the code for the type generated by RTI Code Generator.

3.3.4 Translations for IDL Types

This section describes how to specify your data types in an IDL file. RTI Code Generator supports all the
types listed in the following tables:

l Table 3.5 Specifying Data Types in IDL for C

l Table 3.6 Specifying Data Types in IDL for Traditional C++

l Table 3.7 Specifying Data Types in IDL for C++/CLI

l Table 3.8 Specifying Data Types in IDL for the Modern C++ API

l Table 3.9 Specifying Data Types in IDL for Java

l Table 3.10 Specifying Data Types in IDL for Ada

In each table, the middle column shows the IDL syntax for a data type in an IDL file. The rightmost
column shows the corresponding language mapping created by RTI Code Generator.

79

3.3.4 Translations for IDL Types

80

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

char

(see Note 1 below)

struct PrimitiveStruct {
char char_member;

};

typedef struct PrimitiveStruct
{

DDS_Char char_member;
} PrimitiveStruct;

wchar

struct PrimitiveStruct {
wchar wchar_member;

};

typedef struct PrimitiveStruct
{

DDS_Wchar wchar_member;
} PrimitiveStruct;

octet

struct PrimitiveStruct {
octet octet_member;

};

typedef struct PrimitiveStruct
{

DDS_Octet octect_member;
} PrimitiveStruct;

int8

(see Note 16 below)

struct PrimitiveStruct {
int8 int8_member;

};

typedef struct PrimitiveStruct {
DDS_Int8 int8_member;

} PrimitiveStruct;

uint8

(see Note 16 below)

struct PrimitiveStruct {
uint8 uint8_member;

}

typedef struct PrimitiveStruct {
DDS_UInt8 uint8_member;

} PrimitiveStruct;

int16 or short

struct PrimitiveStruct {
int16 short_member;

};

typedef struct PrimitiveStruct
{

DDS_Short short_member;
} PrimitiveStruct;

uint16 or unsigned
short

struct PrimitiveStruct {
uint16

unsigned_short_member;
};

typedef struct PrimitiveStruct
{

DDS_UnsignedShort
unsigned_short_member;

} PrimitiveStruct;

int32 or long

struct PrimitiveStruct {
int32 long_member;

};

typedef struct PrimitiveStruct
{

DDS_Long long_member;
} PrimitiveStruct;

uint32 or unsigned
long

struct PrimitiveStruct {
uint32

unsigned_long_member;
};

typedef struct PrimitiveStruct
{

DDS_UnsignedLong
unsigned_long_member;

} PrimitiveStruct;

int64 or long long

struct PrimitiveStruct {
int64 long_long_member;

};

typedef struct PrimitiveStruct
{

DDS_LongLong long_long_member;
} PrimitiveStruct;

uint64 or unsigned
long long

struct PrimitiveStruct {
uint64

unsigned_long_long_member;
};

typedef struct PrimitiveStruct
{

DDS_UnsignedLongLong
unsigned_long_long_member;

} PrimitiveStruct;

float

struct PrimitiveStruct {
float float_member;

};

typedef struct PrimitiveStruct
{

DDS_Float float_member;
} PrimitiveStruct;

Table 3.5 Specifying Data Types in IDL for C

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

double

struct PrimitiveStruct {
double double_member;

};

typedef struct PrimitiveStruct
{

DDS_Double double_member;
} PrimitiveStruct;

long double

(see Note 2 below)

struct PrimitiveStruct {
long double

long_double_member;
};

typedef struct PrimitiveStruct
{

DDS_LongDouble
long_double_member;

} PrimitiveStruct;

@external or pointer

(see Note 9 below)

struct MyStruct {
@external long member;

}

or
struct MyStruct {

long * member;
};

typedef struct MyStruct {
DDS_Long * member;

} MyStruct;

boolean

struct PrimitiveStruct {
boolean boolean_member;

};

typedef struct PrimitiveStruct
{

DDS_Boolean boolean_member;
} PrimitiveStruct;

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};
enum PrimitiveEnum {

@value (10) ENUM1,
@value (20) ENUM2,
@value (30) ENUM3

}

typedef enum PrimitiveEnum
{

ENUM1,
ENUM2,
ENUM3

} PrimitiveEnum;

typedef enum PrimitiveEnum
{

ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

} PrimitiveEnum;

constant const short SIZE = 5; #define SIZE 5

struct

(see Note 10 below)

struct PrimitiveStruct {
char char_member;

};

typedef struct PrimitiveStruct
{

char char_member;
} PrimitiveStruct;

struct inheritance

struct MyBaseStruct {
long member_1;

};

struct MyStruct: MyBaseStruct {
long member_2;

};

typedef struct MyBaseStruct {
DDS_Long member_1 ;

} MyBaseStruct;

typedef struct MyStruct {
MyBaseStruct parent;
DDS_Long member_2 ;

} MyStruct;

Table 3.5 Specifying Data Types in IDL for C

81

3.3.4 Translations for IDL Types

82

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

union

(see Note 3 and
Note 10 below)

union PrimitiveUnion
switch (long){

case 1:
short short_member;

default:
long long_member;

};

typedef struct PrimitiveUnion
{

DDS_Long _d;
struct {

DDS_Short short_member;
DDS_Long long_member;

} _u;
} PrimitiveUnion;

typedef typedef short TypedefShort; typedef DDS_Short TypedefShort;

array of above types

struct OneDArrayStruct {
short short_array[2];

};

struct TwoDArrayStruct {
short short_array[1][2];

};

typedef struct OneDArrayStruct
{

DDS_Short short_array[2];
} OneDArrayStruct;

typedef struct TwoDArrayStruct
{

DDS_Short short_array[1][2];
} TwoDArrayStruct;

bounded sequence
of above types

(see Note 11 and
Note 15 below)

struct SequenceStruct {
sequence<short,4>

short_sequence;
};

typedef struct SequenceStruct
{

DDSShortSeq short_sequence;
} SequenceStruct;

Note: Sequences of primitive types have been predefined byConnext
DDS.

unbounded se-
quence of above
types

(see Note 11 and
Note 15 below)

struct SequenceStruct {
sequence<short> short_

sequence;
};

typedef struct SequenceStruct
{

DDSShortSeq short_sequence;
} SequenceStruct;

See Note 12 below.

array of sequences

struct ArraysOfSequences{
sequence<short,4>

sequences_array[2];
};

typedef struct ArraysOfSequences
{

DDS_ShortSeq sequences_array[2];
} ArraysOfSequences;

sequence of arrays

(see Note 11 below)

typedef short ShortArray[2];

struct SequenceofArrays {
sequence<ShortArray,2>

arrays_sequence;
};

typedef DDS_Short ShortArray[2];

DDS_SEQUENCE_NO_GET(ShortArraySeq,ShortArray);

typedef struct SequenceOfArrays
{

ShortArraySeq arrays_sequence;
} SequenceOfArrays;

DDS_SEQUENCE_NO_GET is a Connext DDSmacro that defines a new
sequence type for a user data type. In this case, the user data type is
ShortArray.

Table 3.5 Specifying Data Types in IDL for C

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

sequence of se-
quences

(see Note 4 and
Note 11 below)

typedef sequence<short,4>
ShortSequence;

struct SequencesOfSequences {
sequence<ShortSequence,2>

sequences_sequence;
};

typedef DDS_ShortSeq ShortSequence;

DDS_SEQUENCE(ShortSequenceSeq,
ShortSequence);

typedef struct
SequencesOfSequences {

ShortSequenceSeq sequences_sequence;
} SequencesOfSequences;

bounded string

struct PrimitiveStruct {
string<20> string_member;

};

typedef struct PrimitiveStruct {
DDS_Char* string_member;
/* maximum length = (20) */

} PrimitiveStruct;

unbounded string

struct PrimitiveStruct {
string string_member;

};

typedef struct PrimitiveStruct {
DDS_Char* string_member;
/* maximum length = (255) */

} PrimitiveStruct;

See Note 12 below.

bounded wstring

struct PrimitiveStruct {
wstring<20> wstring_member;

};

typedef struct PrimitiveStruct {
DDS_Wchar * wstring_member;
/* maximum length = (20) */

} PrimitiveStruct;

unbounded wstring

struct PrimitiveStruct {
wstring wstring_member;

};

typedef struct PrimitiveStruct {
DDS_Wchar * wstring_member;

/* maximum length = (255) */
} PrimitiveStruct;

See Note 12 below.

module

module PackageName {
struct Foo {

long field;
};

};

With the -namespace option (only available for C++):
namespace PackageName{

typedef struct Foo {
DDS_Long field;

} Foo;
};

Without the -namespace option:
typedef struct PackageName_Foo {

DDS_Long field;
} PackageName_Foo;

valuetype

(see Note 9 and
Note 10 below)

valuetype MyValueType {
public MyValueType2 * member;

};

valuetype MyValueType {
public MyValueType2 member;

};

valuetype MyValueType:
MyBaseValueType {

public MyValueType2 * member;
};

typedef struct MyValueType {
MyValueType2 * member;

} MyValueType;

typedef struct MyValueType {
MyValueType2 member;

} MyValueType;

typedef struct MyValueType
{

MyBaseValueType parent;
MyValueType2 * member;

} MyValueType;

Table 3.5 Specifying Data Types in IDL for C

83

3.3.4 Translations for IDL Types

84

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

char

(see Note 1 below)

struct PrimitiveStruct {
char char_member;

};

class PrimitiveStruct
{

DDS_Char char_member;
} PrimitiveStruct;

wchar

struct PrimitiveStruct {
wchar wchar_member;

};

class PrimitiveStruct
{

DDS_Wchar wchar_member;
} PrimitiveStruct;

octet

struct PrimitiveStruct {
octet octet_member;

};

class PrimitiveStruct
{

DDS_Octet octect_member;
} PrimitiveStruct;

int8

(see Note 16 below)

struct PrimitiveStruct {
int8 int8_member;

};

class PrimitiveStruct {
DDS_Int8 int8_member;

} PrimitiveStruct;

uint8

(see Note 16 below)

struct PrimitiveStruct {
uint8 uint8_member;

};

class PrimitiveStruct {
DDS_UInt8 uint8_member;

} PrimitiveStruct;

int16 or short

struct PrimitiveStruct {
int16 short_member;

};

class PrimitiveStruct
{

DDS_Short short_member;
} PrimitiveStruct;

uint16 or unsigned
short

struct PrimitiveStruct {
uint16

unsigned_short_member;
};

class PrimitiveStruct
{

DDS_UnsignedShort
unsigned_short_member;

} PrimitiveStruct;

int32 or long

struct PrimitiveStruct {
int32 long_member;

};

class PrimitiveStruct
{

DDS_Long long_member;
} PrimitiveStruct;

uint32 or unsigned
long

struct PrimitiveStruct {
uint32

unsigned_long_member;
};

class PrimitiveStruct
{

DDS_UnsignedLong
unsigned_long_member;

} PrimitiveStruct;

int64 or long long

struct PrimitiveStruct {
int64 long_long_member;

};

class PrimitiveStruct
{

DDS_LongLong
long_long_member;

} PrimitiveStruct;

uint64 or unsigned
long long

struct PrimitiveStruct {
uint64

unsigned_long_long_member;
};

class PrimitiveStruct
{

DDS_UnsignedLongLong
unsigned_long_long_member;

} PrimitiveStruct;

float

struct PrimitiveStruct {
float float_member;

};

typedef struct PrimitiveStruct
{

DDS_Float float_member;
} PrimitiveStruct;

Table 3.6 Specifying Data Types in IDL for Traditional C++

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

double

struct PrimitiveStruct {
double double_member;

};

class PrimitiveStruct
{

DDS_Double double_member;
} PrimitiveStruct;

long double

(see Note 2 below)

struct PrimitiveStruct {
long double

long_double_member;
};

class PrimitiveStruct
{

DDS_LongDouble
long_double_member;

} PrimitiveStruct;

@external or pointer

(see Note 9 below)

struct MyStruct {
@external long member;

}

or
struct MyStruct {

long * member;
};

class MyStruct {
DDS_Long * member;

} MyStruct;

boolean

struct PrimitiveStruct {
boolean boolean_member;

};

class PrimitiveStruct
{

DDS_Boolean boolean_member;
} PrimitiveStruct;

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};
enum PrimitiveEnum {

@value (10) ENUM1,
@value (20) ENUM2,
@value (30) ENUM3

}

typedef enum PrimitiveEnum
{

ENUM1,
ENUM2,
ENUM3

} PrimitiveEnum;

typedef enum PrimitiveEnum
{

ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

} PrimitiveEnum;

constant const short SIZE = 5; static const DDS_Short size = 5;

struct

(see Note 10 below)

struct PrimitiveStruct {
char char_member;

};

class PrimitiveStruct
{
public:

DDS_Char char_member;
};

struct inheritance

struct MyBaseStruct {
long member_1;

};

struct MyStruct: MyBaseStruct {
long member_2;

};

class MyBaseStruct
{
public:

DDS_Long member_1;
};

class MyStruct : public MyBaseStruct {
public:

DDS_Long member_2;
};

Table 3.6 Specifying Data Types in IDL for Traditional C++

85

3.3.4 Translations for IDL Types

86

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

union

(see Note 3 and
Note 10 below)

union PrimitiveUnion switch (long)
{

case 1:
short short_member;

default:
long long_member;

};

class PrimitiveUnion
{

DDS_Long _d;
class{

DDS_Short short_member;
DDS_Long long_member;

} _u;
} PrimitiveUnion;

typedef typedef short TypedefShort; typedef DDS_Short TypedefShort;

array of above types

struct OneDArrayStruct {
short short_array[2];

};

struct TwoDArrayStruct {
short short_array[1][2];

};

class OneDArrayStruct
{

DDS_Short short_array[2];
} OneDArrayStruct;

class TwoDArrayStruct
{

DDS_Short short_array[1][2];
} TwoDArrayStruct;

bounded sequence
of above types

(see Note 11 and
Note 15 below)

struct SequenceStruct {
sequence<short,4>

short_sequence;
};

class SequenceStruct
{

DDSShortSeq short_sequence;
} SequenceStruct;

Note: Sequences of primitive types have been predefined byConnext
DDS.

unbounded se-
quence of above
types

(see Note 11 and
Note 15 below)

struct SequenceStruct {
sequence<short>

short_sequence;
};

typedef struct SequenceStruct
{

DDSShortSeq short_sequence;
} SequenceStruct;

See Note 12 below.

array of sequences

struct ArraysOfSequences{
sequence<short,4>

sequences_array[2];
};

class ArraysOfSequences
{

DDS_ShortSeq sequences_array[2];
} ArraysOfSequences;

sequence of arrays

(see Note 11 below)

typedef short ShortArray[2];

struct SequenceofArrays {
sequence<ShortArray,2>

arrays_sequence;
};

typedef DDS_Short ShortArray[2];

DDS_SEQUENCE_NO_GET(ShortArraySeq,
ShortArray);

class SequenceOfArrays
{

ShortArraySeq arrays_sequence;
} SequenceOfArrays;

DDS_SEQUENCE_NO_GET is a Connext DDSmacro that defines a new
sequence type for a user data type. In this case, the user data type is
ShortArray.

Table 3.6 Specifying Data Types in IDL for Traditional C++

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

sequence of se-
quences

(see Note 4 and
Note 11 below)

typedef sequence<short,4>
ShortSequence;

struct SequencesOfSequences{
sequence<ShortSequence,2>

sequences_sequence;
};

typedef DDS_ShortSeq ShortSequence;

DDS_SEQUENCE(ShortSequenceSeq, ShortSequence);

class SequencesOfSequences{
ShortSequenceSeq sequences_sequence;

} SequencesOfSequences;

bounded string

struct PrimitiveStruct {
string<20> string_member;

};

class PrimitiveStruct {
DDS_Char* string_member;
/* maximum length = (20) */

} PrimitiveStruct;

unbounded string

struct PrimitiveStruct {
string string_member;

};

class PrimitiveStruct {
DDS_Char* string_member;
/* maximum length = (255) */

} PrimitiveStruct;

See Note 12 below.

bounded wstring

struct PrimitiveStruct {
wstring<20> wstring_member;

};

class PrimitiveStruct {
DDS_Wchar * wstring_member;

/* maximum length = (20) */
} PrimitiveStruct;

unbounded wstring

struct PrimitiveStruct {
wstring wstring_member;

};

class PrimitiveStruct {
DDS_Wchar * wstring_member;
/* maximum length = (255) */

} PrimitiveStruct;

See Note 12 below.

module

module PackageName {
struct Foo {

long field;
};

};

With the -namespace option (only available for C++):
namespace PackageName{

typedef struct Foo {
DDS_Long field;

} Foo;
};

Without the -namespace option:
class PackageName_Foo {

DDS_Long field;
} PackageName_Foo;

valuetype

(see Note 9 and
Note 10 below)

valuetype MyValueType {
public MyValueType2 * member;

};

valuetype MyValueType {
public MyValueType2 member;

};

valuetype MyValueType:
MyBaseValueType {

public MyValueType2 * member;
};

class MyValueType {
public:

MyValueType2 * member;
};

class MyValueType {
public:

MyValueType2 member;
};

class MyValueType :
public MyBaseValueType
{
public:

MyValueType2 * member;
};

Table 3.6 Specifying Data Types in IDL for Traditional C++

87

3.3.4 Translations for IDL Types

88

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

char

(see Note 1 below)

struct PrimitiveStruct {
char char_member;

};

public ref class PrimitiveStruct {
System::Char char_member;

};

wchar

struct PrimitiveStruct {
wchar wchar_member;

};

public ref class PrimitiveStruct {
System::Char wchar_member;

};

octet

struct PrimitiveStruct {
octet octet_member;

};

public ref class PrimitiveStruct {
System::Byte octet_member;

};

int16 or short

struct PrimitiveStruct {
int16 short_member;

};

public ref class PrimitiveStruct {
System::Int16 short_member;

};

uint16 or unsigned short

struct PrimitiveStruct {
uint16

unsigned_short_member;
};

public ref class PrimitiveStruct {
System::UInt16

unsigned_short_member;
};

int32 or long

struct PrimitiveStruct {
int32 long_member;

};

public ref class PrimitiveStruct {
System::Int32 long_member;

};

uint32 or unsigned long

struct PrimitiveStruct {
uint32

unsigned_long_member;
};

public ref class PrimitiveStruct {
System::UInt32

unsigned_long_member;
};

int64 or long long

struct PrimitiveStruct {
int64 long_long_member;

};

public ref class PrimitiveStruct {
System::Int64

long_long_member;
};

uint64 or unsigned long long

struct PrimitiveStruct {
uint64

unsigned_long_long_member;
};

public ref class PrimitiveStruct {
System::UInt64

unsigned_long_long_member;
};

float

struct PrimitiveStruct {
float float_member;

};

public ref class PrimitiveStruct {
System::Single

float_member;
};

double

struct PrimitiveStruct {
double double_member;

};

public ref class PrimitiveStruct {
System::Double

double_member;
} PrimitiveStruct;

long double

(see Note 2 below)

struct PrimitiveStruct {
long double

long_double_member;
};

public ref class PrimitiveStruct {
DDS::LongDouble

long_double_member;
} PrimitiveStruct;

boolean

struct PrimitiveStruct {
boolean boolean_member;

};

public ref class PrimitiveStruct {
System::Boolean

boolean_member;
};

Table 3.7 Specifying Data Types in IDL for C++/CLI

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};
enum PrimitiveEnum {

@value (10) ENUM1,
@value (20) ENUM2,
@value (30) ENUM3

}

public enum class
PrimitiveEnum : System::Int32 {

ENUM1,
ENUM2,
ENUM3

};

public enum class
PrimitiveEnum : System::Int32 {

ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};

constant const short SIZE = 5;

public ref class SIZE {
public:

static System::Int16
VALUE = 5;

};

struct

(see Note 10 below)

struct PrimitiveStruct {
char char_member;

};

public ref class PrimitiveStruct {
System::Char char_member;

};

struct inheritance

struct MyBaseStruct {
long member_1;

};

struct MyStruct: MyBaseStruct {
long member_2;

};

public ref struct MyBaseStruct {
public:

System::Int32 member_1;
};

public ref struct MyStruct: public
MyBaseStruct {
public:

System::Int32 member_2;
};

union

(see Note 3 and Note 10 below)

union PrimitiveUnion switch (long){
case 1:

short short_member;
default:

long long_member;
};

public ref class PrimitiveUnion
{

System::Int32 _d;

struct PrimitiveUnion_u {
System::Int16 short_member;
System::Int32 long_member;

} _u;
};

array of above types

struct OneDArrayStruct {
short short_array[2];

};

public ref class OneDArrayStruct {
array<System::Int16>^

short_array; /*length == 2*/
};

bounded sequence of above types

(see Note 11 and Note 15 below)

struct SequenceStruct {
sequence<short,4>

short_sequence;
};

public ref class SequenceStruct {
ShortSeq^ short_sequence;
/*max = 4*/

};

Note: Sequences of primitive types
have been predefined by
Connext DDS

Table 3.7 Specifying Data Types in IDL for C++/CLI

89

3.3.4 Translations for IDL Types

90

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

unbounded sequence of above types

(see Note 11 and Note 15 below)

struct SequenceStruct {
sequence<short>

short_sequence;
};

public ref class SequenceStruct {
ShortSeq^ short_sequence;
/*max = <default bound>*/

};

See Note 12 below.

array of sequences

struct ArraysOfSequences{
sequence<short,4>

sequences_array[2];
};

public ref class ArraysOfSequences
{

array<DDS::ShortSeq^>^
sequences_array;

// maximum length = (2)
};

bounded string

struct PrimitiveStruct {
string<20> string_member;

};

public ref class PrimitiveStruct {
System::String^ string_member;
// maximum length = (20)

};

unbounded string

struct PrimitiveStruct {
string string_member;

};

public ref class PrimitiveStruct {
System::String^ string_member;
// maximum length = (255)

};

See Note 12 below.

bounded wstring

struct PrimitiveStruct {
wstring<20> wstring_member;

};

public ref class PrimitiveStruct {
System::String^ string_member;
// maximum length = (20)

};

unbounded wstring

struct PrimitiveStruct {
wstring wstring_member;

};

public ref class PrimitiveStruct {
System::String^ string_member;
// maximum length = (255)

};

See Note 12 below.

module

module PackageName {
struct Foo {

long field;
};

};

namespace PackageName {
public ref class Foo {

System::Int32 field;
};

};

Table 3.7 Specifying Data Types in IDL for C++/CLI

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

char

struct PrimitiveStruct {
char char_member;

};

class PrimitiveStruct {
public:

char char_member() const OMG_NOEXCEPT;
void char_member(char value);

}

wchar

struct PrimitiveStruct {
wchar wchar_member;

};

class PrimitiveStruct {
public:

wchar_t wchar_member() const OMG_NOEXCEPT;
void wchar_member(wchar_t value);

};

Table 3.8 Specifying Data Types in IDL for the Modern C++ API

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

octet

struct PrimitiveStruct {
octet octet_member;

};

class PrimitiveStruct {
public:

uint8_t octet_member() const OMG_NOEXCEPT;
void octet_member(uint8_t value);

};

int8

(see Note 16 be-
low)

struct PrimitiveStruct {
int8 int8_member;

};

class PrimitiveStruct {
public:

int8_t int8_member() const OMG_NOEXCEPT;
void int8_member(int8_t value);

};

uint8

(see Note 16 be-
low)

struct PrimitiveStruct {
uint8 uint8_member;

};

class PrimitiveStruct {
public:

uint8_t uint8_member() const OMG_NOEXCEPT;
void uint8_member(uint8_t value);

};

int16 or short

struct PrimitiveStruct {
int16 short_member;

};

class PrimitiveStruct {
public:

int16_t short_member() const OMG_NOEXCEPT;
void short_member(int16_t value);

};

uint16 or un-
signed short

struct PrimitiveStruct {
uint16
unsigned_short_member;

};

class PrimitiveStruct {
public:

uint16_t unsigned_short_member()
const OMG_NOEXCEPT;

void unsigned_short_member(uint16_t value);
};

int32 or long

struct PrimitiveStruct {
int32 long_member;

};

class PrimitiveStruct {
public:
int32_t long_member() const OMG_NOEXCEPT;
void long_member(int32_t value);

};

uint32 or
unsigned long

struct PrimitiveStruct {
uint32
unsigned_long_member;

};

class PrimitiveStruct {
public:

uint32_t unsigned_long_member() const OMG_NOEXCEPT;
void unsigned_long_member(uint32_t value);

};

int64 or long long

struct PrimitiveStruct {
int64 long_long_member;

};

class PrimitiveStruct {
public:

rti::core::int64 long_long_member()
const OMG_NOEXCEPT;

void long_long_member(rti::core::int64 value);
};

uint64 or
unsigned long
long

struct PrimitiveStruct {
uint64
unsigned_long_long_member;

};

class PrimitiveStruct {
public:

rti::core::uint64 unsigned_long_long_member);
rti::core::uint64 unsigned_long_long_member()

const OMG_NOEXCEPT;
};

float

struct PrimitiveStruct {
float float_member;

};

class PrimitiveStruct {
public:

float float_member() const OMG_NOEXCEPT;
void float_member(float value);

};

Table 3.8 Specifying Data Types in IDL for the Modern C++ API

91

3.3.4 Translations for IDL Types

92

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

double

struct PrimitiveStruct {
double double_member;

};

class PrimitiveStruct {
public:

double double_member() const OMG_NOEXCEPT;
void double_member(double value);

};

long double

(see Note 2 be-
low)

struct PrimitiveStruct {
long double
long_double_member;

};

class PrimitiveStruct {
public:

rti::core::LongDouble& long_double_member()
const OMG_NOEXCEPT;

const rti::core::LongDouble& long_double_member()
const OMG_NOEXCEPT;

void long_double_member(
const rti::core::LongDouble& value);

}

pointer

(see Note 9 be-
low)

struct MyStruct {
long * member;

}

class PrimitiveStruct {
dds::core::external<int32_t>& member();
const dds::core::external<int32_t>& member() const;
void member(dds::core::external<int32_t> value);

};

boolean

struct PrimitiveStruct {
boolean boolean_member;

};

class PrimitiveStruct {
public:

bool boolean_member() const OMG_NOEXCEPT;
void boolean_member(bool value);

};

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};
enum PrimitiveEnum {

@value (10) ENUM1,
@value (20) ENUM2,
@value (30) ENUM3

}

enum class PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum class PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};

constant const short SIZE = 5; static const int16_t SIZE = 5;

struct

(see Note 10 and
Note 14 below)

struct PrimitiveStruct {
char char_member;

};

class PrimitiveStruct {
public:

....
char char_member() const OMG_NOEXCEPT;
void char_member(char value);

}

Table 3.8 Specifying Data Types in IDL for the Modern C++ API

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

struct inheritance

struct MyBaseStruct {
long member_1;

};

struct MyStruct: MyBaseStruct {
long member_2;

};

class MyBaseStruct {
public:

int32_t& member_1() OMG_NOEXCEPT;
const int32_t& member_1() const OMG_NOEXCEPT;
void member_1(int32_t value);

};

class MyStruct: public MyBaseStruct {
public:

int32_t& member_2() OMG_NOEXCEPT;
const int32_t& member_2() const OMG_NOEXCEPT;
void member_2(int32_t value);

};

union

(see Note 3 and
Note 10 below)

union PrimitiveUnion switch (long){
case 1:

short short_member;
default:

long long_member;
};

class PrimitiveUnion {
public:

int32_t _d() const ;
void _d(int32_t value);
int16_t short_member() const;
void short_member(int16_t value);
int32_t long_member() const ;
void long_member(int32_t value);
static int32_t default_discriminator();

private:
int32_t m_d_;
struct Union_ {
int16_t m_short_member_;
int32_t m_long_member_;
Union_();
Union_(

int16_t short_member,
int32_t long_member);

};
Union_ m_u_;

};

typedef typedef short TypedefShort;
typedef int16_t TypedefShort;
struct TypedefShort_AliasTag_t {};

array of above
types

struct OneDArrayStruct {
short short_array[2];

};

struct TwoDArrayStruct {
short short_array[1][2];

};

class OneDArrayStruct {
public:

dds::core::array<int16_t, 2>& short_array()
OMG_NOEXCEPT;

const dds::core::array<int16_t, 2>& short_array()
const OMG_NOEXCEPT;

void short_array(const dds::core::array
<int16_t, 2>& value);

};

class TwoDArrayStruct {
public:

dds::core::array<dds::core::array<int16_t, 2>, 1>
& short_array() OMG_NOEXCEPT;

const dds::core::array<dds::core::array
<int16_t, 2>, 1> & short_array()
const OMG_NOEXCEPT;

void short_array(
const dds::core::array
<dds::core::array<int16_t, 2>, 1>& value);

};

Table 3.8 Specifying Data Types in IDL for the Modern C++ API

93

3.3.4 Translations for IDL Types

94

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

bounded
sequence of
above types

struct SequenceStruct {
sequence<short,4> short_

sequence;
};

class SequenceStruct {
public:

rti::core::bounded_sequence<int16_t, 4>
& short_sequence() OMG_NOEXCEPT;

const rti::core::bounded_sequence
<int16_t, 4>& short_sequence()
const OMG_ NOEXCEPT;

void short_sequence(const
rti::core::bounded_sequence<int16_t, 4>& value);

};

The type bounded_sequence is similar to std::vector, but enforces the
bound set in the IDL type, and uses the bound to optimize how the memory
is reserved.

With -alwaysUseStdVector, see “unbounded sequence”

unbounded
sequence of
above types

(see Note 15 be-
low)

struct SequenceStruct {
sequence<short> short_sequence;

};

With -unboundedSupport, -alwaysUseStdVector, or the annotation @use_
vector (see 3.3.9.7 The@use_vector annotation on page 119):
class SequenceStruct {
public:

std::vector<int16_t>
& short_sequence() OMG_NOEXCEPT;

const std::vector<int16_t>
& short_sequence() const OMG_NOEXCEPT;

void short_sequence(
const std::vector<int16_t>& value);

};

Without -unboundedSupport, see bounded sequence of above types
above.

See Note 12 below.

array of
sequences

struct ArraysOfSequences{
sequence<short,4>

sequences_array[2];
};

class ArraysOfSequences {
public:

...
dds::core::array

<rti::core::bounded_sequence<int16_t, 4>, 2>
& sequences_array() OMG_NOEXCEPT;

const dds::core::array
<rti::core::bounded_sequence<int16_t, 4>, 2>
& sequences_array() const OMG_NOEXCEPT;

void sequences_array(
const dds::core::array
<rti::core::bounded_sequence<int16_t, 4>, 2>
& value);

};

sequence of
arrays

(see Note 15 be-
low)

typedef short ShortArray[2];

struct SequenceofArrays {
sequence<ShortArray,2>

arrays_sequence;
};

typedef dds::core::array<int16_t, 2> ShortArray;

class SequenceofArrays {
public:

...
rti::core::bounded_sequence<ShortArray, 2>

& arrays_sequence() OMG_NOEXCEPT;
const rti::core::bounded_sequence<ShortArray, 2>

& arrays_sequence() const OMG_NOEXCEPT;
void arrays_sequence(

const rti::core::bounded_sequence<ShortArray, 2>
& value);

};

See 3.3.4 Translations for IDL Typeson page 79.

Table 3.8 Specifying Data Types in IDL for the Modern C++ API

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

sequence of
sequences

(see Note 4 be-
low)

typedef sequence<short,4>
ShortSequence;

struct SequencesOfSequences{
sequence<ShortSequence,2>

sequences_sequence;
};

typedef rti::core::bounded_sequence<int16_t, 4>
ShortSequence;

class SequencesOfSequences {
public:

...
rti::core::bounded_sequence<ShortSequence, 2>

& sequences_sequence() OMG_NOEXCEPT;
const rti::core::bounded_sequence<ShortSequence, 2>

& sequences_sequence() const OMG_NOEXCEPT;
void sequences_sequence(

const
rti::core::bounded_sequence<ShortSequence, 2>
& value);

};

See 3.3.4 Translations for IDL Typeson page 79.

bounded string

struct PrimitiveStruct {
string<20> string_member;

};

class PrimitiveStruct {
public:

std::string& string_member() OMG_NOEXCEPT;
const std::string& string_member() const OMG_

NOEXCEPT;
void string_member(const std::string& value);

};

See 3.3.4 Translations for IDL Typeson page 79.

unbounded
string

struct PrimitiveStruct {
string string_member;

};

See Note 12 below.

See 3.3.4 Translations for IDL Typeson page 79.

bounded wstring

struct PrimitiveStruct {
wstring<20>
wstring_member;

};

class PrimitiveStruct {
public:

std::wstring& string_member() OMG_NOEXCEPT;
const std::wstring& string_member()

const OMG_NOEXCEPT;
void string_member(

const std::wstring& value);
};

See 3.3.4 Translations for IDL Typeson page 79.

unbounded
wstring

struct PrimitiveStruct {
wstring wstring_member;

};

See Note 12 below.

See 3.3.4 Translations for IDL Typeson page 79.

module

module PackageName {
struct Foo {

long field;
};

};

namespace PackageName {
class Foo {
public:

int32_t field() const OMG_NOEXCEPT;
void field(int32_t value);

};
};

Table 3.8 Specifying Data Types in IDL for the Modern C++ API

95

3.3.4 Translations for IDL Types

96

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

valuetype

(see Note 9 and
Note 10 below)

valuetype MyBaseValueType {
public long member;

};

valuetype MyValueType:
MyBaseValueType {

public short * member2;
};

class MyBaseValueType {
public:

int32_t member() const OMG_NOEXCEPT;
void member(int32_t value);

};

class MyValueType : public MyBaseValueType {
public:

int16_t * member2() const OMG_NOEXCEPT;
void member2(int16_t * value);

};

Table 3.8 Specifying Data Types in IDL for the Modern C++ API

IDL Type Example Entry in IDL file Example Java Output Generated by
RTI Code Generator (rtiddsgen)

char

(see Note 5 below)

struct PrimitiveStruct {
char char_member;

};

public class PrimitiveStruct
{

public char char_member;
...

}

wchar

(see Note 5 below)

struct PrimitiveStruct {
wchar wchar_member;

};

public class PrimitiveStruct
{

public char wchar_member;
...

}

octet

struct PrimitiveStruct {
octet octet_member;

};

public class PrimitiveStruct
{

public byte octet_member;
...

}

int8

(see Note 16 below)

struct PrimitiveStruct {
int8 int8_member;

};

public class PrimitiveStruct
{

public byte int8_member;
...

}

uint8

(see Note 16 below)

struct PrimitiveStruct {
uint8 uint8_member;

};

public class PrimitiveStruct
{

public byte uint8_member;
...

}

int16 or short

struct PrimitiveStruct {
int16 short_member;

};

public class PrimitiveStruct
{

public short short_member;
...

}

Table 3.9 Specifying Data Types in IDL for Java

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL file Example Java Output Generated by
RTI Code Generator (rtiddsgen)

uint16 or unsigned short

(see Note 6 below)

struct PrimitiveStruct {
uint16

unsigned_short_member;
};

public class PrimitiveStruct
{

public short unsigned_short_member;
...

}

int32 or long

struct PrimitiveStruct {
int32 long_member;

};

public class PrimitiveStruct
{

public int long_member;
...

}

uint32 or unsigned long

(see Note 6 below)

struct PrimitiveStruct {
uint32

unsigned_long_member;
};

public class PrimitiveStruct
{

public int unsigned_long_member;
...

}

int64 or long long

struct PrimitiveStruct {
int64 long_long_member;

};

public class PrimitiveStruct
{

public long long_long_member;
...

}

uint64 or unsigned long long

(see Note 7 below)

struct PrimitiveStruct {
uint64

unsigned_long_long_member;
};

public class PrimitiveStruct
{

public long unsigned_long_long_member;
...

}

float

struct PrimitiveStruct {
float float_member;

};

public class PrimitiveStruct
{

public float float_member;
...

}

double

struct PrimitiveStruct {
double double_member;

};

public class PrimitiveStruct
{

public double double_member;
...

}

long double

(see Note 7 below)

struct PrimitiveStruct {
long double long_double_

member;

public class PrimitiveStruct
{

public double long_double_member;
...

}

pointer

(see Note 9 below)

struct MyStruct {
long * member;

};

public class MyStruct {
public int member;
...

};

boolean

struct PrimitiveStruct {
boolean boolean_member;

};

public class PrimitiveStruct
{

public boolean boolean_member;
...

}

Table 3.9 Specifying Data Types in IDL for Java

97

3.3.4 Translations for IDL Types

98

IDL Type Example Entry in IDL file Example Java Output Generated by
RTI Code Generator (rtiddsgen)

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

public class PrimitiveEnum extends Enum
{

public static PrimitiveEnum ENUM1 =
new PrimitiveEnum ("ENUM1", 0);

public static PrimitiveEnum ENUM2 =
new PrimitiveEnum ("ENUM2", 1);

public static PrimitiveEnum ENUM3 =
new PrimitiveEnum ("ENUM3", 2);

public static PrimitiveEnum
valueOf(int ordinal);

...
}

enum PrimitiveEnum {
@value (10) ENUM1,
@value (20) ENUM2,
@value (30) ENUM3

}

public class PrimitiveEnum extends Enum
{

public static PrimitiveEnum ENUM1 =
new PrimitiveEnum ("ENUM1", 10);

public static PrimitiveEnum ENUM2 =
new PrimitiveEnum ("ENUM2", 10);

public static PrimitiveEnum ENUM3 =
new PrimitiveEnum ("ENUM3", 20);

public static PrimitiveEnum
valueOf(int ordinal);

...
}

constant const short SIZE = 5;
public class SIZE {

public static final short VALUE = 5;
}

struct

(see Note 10 below)

struct PrimitiveStruct {
char char_member;

};

public class PrimitiveStruct
{

public char char_member;
}

struct inheritance

struct MyBaseStruct {
long member_1;

};

struct MyStruct: MyBaseStruct {
long member_2;

};

public class MyBaseStruct {
public int member_1;

};

public class MyStruct extends MyBaseStruct{
public int member_2;

};

union

(see Note 10 below)

union PrimitiveUnion
switch (long){
case 1:

short short_member;
default:

long long_member;
};

public class PrimitiveUnion {
public int _d;
public short short_member;
public int long_member;
...

}

typedef of primitives, enums,
strings

(see Note 8 below)

typedef short ShortType;

struct PrimitiveStruct {
ShortType short_member;

};

/* typedefs are unwounded to original
type when used */

public class PrimitiveStruct
{

public short short_member;
...

}

Table 3.9 Specifying Data Types in IDL for Java

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL file Example Java Output Generated by
RTI Code Generator (rtiddsgen)

typedef of sequences or arrays

(see Note 8 below)
typedef short ShortArray[2];

/* Wrapper class */
public class ShortArray
{

public short[] userData =
new short[2];

...
}

array

struct OneDArrayStruct {
short short_array[2];

};

public class OneDArrayStruct
{

public short[] short_array =
new short[2];

...
}

struct TwoDArrayStruct {
short short_array[1][2];

};

public class TwoDArrayStruct
{

public short[][] short_array =
new short[1][2];

...
}

bounded sequence

(see Note 11 and Note 15 be-
low)

struct SequenceStruct {
sequence<short,4>

short_sequence;
};

public class SequenceStruct
{

public ShortSeq short_sequence =
new ShortSeq((4));

...
}

Note: Sequences of primitive types have been predefined byCon-
next DDS.

unbounded sequence

(see Note 11 and Note 15 be-
low)

struct SequenceStruct {
sequence<short> short_

sequence;
};

public class SequenceStruct
{

public ShortSeq short_sequence =
new ShortSeq((100));

...
}

See Note 12 below.

array of sequences

struct ArraysOfSequences{
sequence<short,4>

sequences_array[2];
};

public class ArraysOfSequences
{

public ShortSeq[] sequences_array =
new ShortSeq[2];

...
}

Table 3.9 Specifying Data Types in IDL for Java

99

3.3.4 Translations for IDL Types

100

IDL Type Example Entry in IDL file Example Java Output Generated by
RTI Code Generator (rtiddsgen)

sequence of arrays

(see Note 11 below)

typedef short ShortArray[2];

struct SequenceOfArrays{
sequence<ShortArray,2>

arrays_sequence;
};

/* Wrapper class */
public class ShortArray
{

public short[] userData =
new short[2];

...
}

/* Sequence of wrapper class objects */
public final class ShortArraySeq

extends ArraySequence
{

...
}

public class SequenceOfArrays
{

public ShortArraySeq arrays_sequence
= new ShortArraySeq((2));

...
}

sequence of sequences

(see Note 4 and Note 11 be-
low)

typedef sequence<short,4>
ShortSequence;

struct SequencesOfSequences{
sequence<ShortSequence,2>

sequences_sequence;
};

/* Wrapper class */
public class ShortSequence
{

public ShortSeq userData
= new ShortSeq((4));

...
}

/* Sequence of wrapper class objects */
public final class ShortSequenceSeq

extends ArraySequence
{

...
}

public class SequencesOfSequences
{

public ShortSequenceSeq
sequences_sequence
= new ShortSequenceSeq((2));

...
}

bounded string

struct PrimitiveStruct {
string<20> string_member;

};

public class PrimitiveStruct
{

public String string_member
= new String();
/* maximum length = (20) */

...
}

unbounded string

struct PrimitiveStruct {
string string_member;

};

public class PrimitiveStruct
{

public String string_member
= new String();
/* maximum length = (255) */

...
}

See Note 12 below.

Table 3.9 Specifying Data Types in IDL for Java

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL file Example Java Output Generated by
RTI Code Generator (rtiddsgen)

bounded wstring

struct PrimitiveStruct {
wstring<20> wstring_member;

};

public class PrimitiveStruct
{

public String wstring_member
= new String();

/* maximum length = (20) */
...

}

unbounded wstring

struct PrimitiveStruct {
wstring wstring_member;

};

public class PrimitiveStruct
{

public String wstring_member
= new String();
/* maximum length = (255) */

...
}

See Note 12 below.

module

module PackageName {
struct Foo {

long field;
};

};

package PackageName;

public class Foo
{

public int field;
...

}

valuetype

(see Note 9 and Note 10 be-
low)

valuetype MyValueType {
public MyValueType2 * member;

};

valuetype MyValueType {
public MyValueType2 member;

};

valuetype MyValueType:
MyBaseValueType {
public MyValueType2 * member;

};

public class MyValueType {
public MyValueType2 member;
...

};

public class MyValueType {
public MyValueType2 member;
...

};

public class MyValueType
extends MyBaseValueType
{

public MyValueType2 member;
...

}

Table 3.9 Specifying Data Types in IDL for Java

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

char

(see Note 13
below)

struct PrimitiveStruct {
char char_member;

};

type PrimitiveStruct is record
char_member : aliased
Standard.DDS.Char;

end record;

Table 3.10 Specifying Data Types in IDL for Ada

101

3.3.4 Translations for IDL Types

102

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

wchar

struct PrimitiveStruct {
wchar wchar_member;

};

type PrimitiveStruct is record
wchar_member : aliased

Standard.DDS.Wchar;
end record;

octet

struct PrimitiveStruct {
octet octet_member;

};

type PrimitiveStruct is record
octet_member: aliased

Standard.DDS.Octet;
end record;

int16 or short

struct PrimitiveStruct {
int16 short_member;

};

type PrimitiveStruct is record
short_member: aliased

Standard.DDS.Short;
end record;

uint16 or un-
signed short

struct PrimitiveStruct {
uint16

unsigned_short_member;
};

type PrimitiveStruct is record
unsigned_short_member: aliased

Standard.DDS.Unsigned_Short;
end record;

int32 or long

struct PrimitiveStruct {
int32 long_member;

};

type PrimitiveStruct is record
long_member: aliased

Standard.DDS.Long;
end record;

uint32 or un-
signed long

struct PrimitiveStruct {
uint32

unsigned_long_member;
};

type PrimitiveStruct is record
unsigned_long_member: aliased

Standard.DDS.Unsigned_Long;
end record;

int64 or long
long

struct PrimitiveStruct {
int64 long_long_member;

};

type PrimitiveStruct is record
long_long_member: aliased

Standard.DDS.Long_Long;
end record;

uint64 or un-
signed long
long

struct PrimitiveStruct {
uint64
unsigned_long_long_member;

};

type PrimitiveStruct is record
unsigned_long_long_member: aliased

Standard.DDS.Unsigned_Long_Long;
end record;

float

struct PrimitiveStruct {
float float_member;

};

type PrimitiveStruct is record
float_member: aliased

Standard.DDS.Float;
end record;

double

struct PrimitiveStruct {
double double_member;

};

type PrimitiveStruct is record
double_member: aliased

Standard.DDS.Double;
end record;

long double

(see Note 2 be-
low)

struct PrimitiveStruct {
long double

long_double_member;
};

type PrimitiveStruct is record
long_double_member: aliased

Standard.DDS.Long_Double;
end record;

@external or
pointer

(see Note 9 be-
low)

struct MyStruct {
@external long member;

}

or
struct MyStruct {

long * member;
};

type MyStruct is record
member : access

Standard.DDS.Long;
end record;

Table 3.10 Specifying Data Types in IDL for Ada

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

boolean

struct PrimitiveStruct {
boolean boolean_member;

};

type PrimitiveStruct is record
boolean_member: aliased Standard.DDS.Boolean;
end record;

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};
enum PrimitiveEnum {

@value (10) ENUM1,
@value (20) ENUM2,
@value (30) ENUM3

}

type PrimitiveEnum is
(ENUM1, ENUM2, ENUM3);

type PrimitiveEnum is
(ENUM1, ENUM2, ENUM3);

...
for PrimitiveEnum use
(ENUM1 => 10 , ENUM2 => 20,
ENUM3 => 30);

constant const short SIZE = 5;
SIZE : constant
Standard.DDS.Short := 5;

struct

(see Note 10
below)

struct PrimitiveStruct {
char char_member;

};

type PrimitiveStruct is record
char_member : aliased

Standard.DDS.Char;
end record;

struct in-
heritance

struct MyBaseStruct {
long member_1;

};

struct MyStruct: MyBaseStruct {
long member_2;

};

type MyBaseStruct is record
member_1 : aliased Standard.DDS.Long;

end record;

type MyStruct is record
parent : aliased MyType_IDL_File.MyBaseStruct;
member_2 : aliased Standard.DDS.Long;

end record;

union

(see Note 3
and Note 10
below)

union PrimitiveUnion switch (long){
case 1:

short short_member;
default:

long long_member;
};

type U_PrimitiveUnion is record
short_member : aliased

Standard.DDS.Short;
long_member : aliased

Standard.DDS.Long;
end record;

type PrimitiveUnion is record
d : Standard.DDS.Long;
u : U_PrimitiveUnion;
end record;

typedef typedef short TypedefShort;
type TypedefShort is new

Standard.DDS.Short;

Table 3.10 Specifying Data Types in IDL for Ada

103

3.3.4 Translations for IDL Types

104

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

array of above
types

struct OneDArrayStruct {
short short_array[2];

};

struct TwoDArrayStruct {
short short_array[1][2];

};

type OneDArrayStruct is record
short_array : aliased

Standard.DDS.Short_Array(1..2);
end record;

type
TwoDArrayStruct_short_array_Array
is array (1..1, 1..2) of aliased
Standard.DDS.Short;

type TwoDArrayStruct is record
short_array : aliased
TwoDArrayStruct_short_array_Array;

end record;

bounded se-
quence of
above types

(see Note 11
and Note 15
below)

struct SequenceStruct {
sequence<short,4> short_

sequence;
};

type SequenceStruct is record
short_sequence : aliased Standard.DDS.Short_
Seq.Sequence;
end record;

unbounded se-
quence of
above types

(see Note 11
and Note 15
below)

struct SequenceStruct {
sequence<short> short_sequence;

};

type SequenceStruct is record
short_sequence : aliased Standard.DDS.Short_
Seq.Sequence;
end record;

See Note 13 below.

array of se-
quences

struct ArraysOfSequences{
sequence<short,4>

sequences_array[2];
};

type
ArraysOfSequences_sequences_array_Array
is array (1..2) of aliased
Standard.DDS.Short_Seq.Sequence;

type ArraysOfSequences is record
sequences_array : aliased
ArraysOfSequences_sequences_array_Array;

end record;

sequence of ar-
rays

(see Note 11
below)

typedef short ShortArray[2];
struct SequenceofArrays {

sequence<ShortArray,2>
arrays_sequence;

};

type ShortArray is array (1..2)
of Standard.DDS.Short;

...
type SequenceofArrays is record

arrays_sequence : aliased
ADA_IDL_File.ShortArray_Seq.Sequence;

end record;

Note: ADA_IDL_File.ShortArray_Seq.Sequence is an instantiation of Stand-
ard.DDS.Sequences_Generic for the user's data type

sequence of
sequences

(see Note 4
and Note 11
below)

typedef sequence<short,4>
ShortSequence;

struct SequencesOfSequences{
sequence<ShortSequence,2>

sequences_sequence;
};

type ShortSequence is new Standard.DDS.Short_
Seq.Sequence;
...
type SequencesOfSequences is record

sequences_sequence : aliased
ADA_IDL_File.ShortSequence_Seq.Sequence;

end record;

Note: ADA_IDL_File.ShortSequence_Seq.Sequence is an instantiation of
Standard.DDS.Sequences_Generic for the user's data type

Table 3.10 Specifying Data Types in IDL for Ada

3.3.4 Translations for IDL Types

IDL Type Example Entry in IDL File Example Output Generated by
RTI Code Generator (rtiddsgen)

bounded
string

struct PrimitiveStruct {
string<20> string_member;

};

type PrimitiveStruct is record
string_member : aliased

Standard.DDS.String;
-- maximum length = (20)
end record;

unbounded
string

struct PrimitiveStruct {
string string_member;

};

type PrimitiveStruct is record
string_member : aliased

Standard.DDS.String;
-- maximum length = (255)

end record;

bounded
wstring

struct PrimitiveStruct {
wstring<20> wstring_member;

};

type PrimitiveStruct is record
wstring_member : aliased

Standard.DDS.Wide_String;
-- maximum length = (20)

end record;

unbounded
wstring

struct PrimitiveStruct {
wstring wstring_member;

};

type PrimitiveStruct is record
wstring_member : aliased

Standard.DDS.Wide_String;
-- maximum length = (255)

end record;

module

module PackageName {
struct Foo {

long field;
};

};

package PackageName is
type Foo is record
field : aliased Standard.DDS.Long;
end record;
end PackageName;

valuetype

(see Note 9
and Note 10
below)

valuetype MyBaseValueType {
valuetype MyBaseValueType {

public long member;
};

valuetype MyValueType:
MyBaseValueType {

public short * member2;
};

type MyBaseValueType is record
member : aliased Standard.DDS.Long;
end record;

type MyValueType is record
parent : ADA_IDL_File.MyBaseValueType;
member2 : access Standard.DDS.Short;
end record;

Table 3.10 Specifying Data Types in IDL for Ada

Notes for the above tables:

Note 1: In C and C++, primitive types are not represented as native language types (e.g.
long, char, etc.) but as custom types in the DDS namespace (DDS_Long, DDS_
Char, etc.). These typedefs are used to ensure that a field’s size is the same across
platforms.

Note 2: Some platforms do not support long double or have different sizes for that type
than defined by IDL (16 bytes). On such platforms, DDS_LongDouble (as well as
the unsigned version) is mapped to a character array that matches the expected size
of that type by default.

If you are using a platform whose native mapping has exactly the expected size,
you can instruct Connext DDS to use the native type instead. That is, if sizeof(long
double) == 16, you can tell Connext DDS to map DDS_LongDouble to long

105

3.3.4 Translations for IDL Types

106

double by defining the following macro either in code or on the compile line:
-DRTI_CDR_SIZEOF_LONG_DOUBLE=16

Note 3: Unions in IDL are mapped to structs in C, C++ and records in ADA, so that Con-
next DDS will not have to dynamically allocate memory for unions containing vari-
able-length fields such as strings or sequences. To be efficient, the entire struct (or
class in C++/CLI) is not sent when the union is published. Instead, Connext DDS
uses the discriminator field of the struct to decide what field in the struct is actually
sent on the wire.

Note 4: So-called "anonymous sequences" —sequences of sequences in which the
sequence element has no type name of its own—are not supported in IDL. For
example, this is not supported:
sequence<sequence<short,4>,4> MySequence;

Sequences of typedef’ed types, where the typedef is really a sequence, are sup-
ported.

For example, this is supported:
typedef sequence<short,4> MyShortSequence;
sequence<MyShortSequence,4> MySequence;

Note 5: IDL wchar and char are mapped to Java char, 16-bit unsigned quantities rep-
resenting Unicode characters as specified in the standard OMG IDL to Java map-
ping. In C++/CLI, char and wchar are mapped to System::Char.

Note 6: The unsigned version for integer types is mapped to its signed version as specified
in the standard OMG IDL to Java mapping.

Note 7: There is no current support in Java for the IDL long double type. This type is
mapped to double as specified in the standard OMG IDL to Java mapping.

Note 8: Java does not have a typedef construct, nor does C++/CLI. Typedefs for types that
are neither arrays nor sequences (struct, unions, strings, wstrings, primitive types
and enums) are "unwound" to their original type until a simple IDL type or user-
defined IDL type (of the non-typedef variety) is encountered. For typedefs of
sequences or arrays, RTI Code Generator will generate wrapper classes.

Note 9: See 3.3.9.4 The @external Annotation on page 115.

Note 10: In-line nested types are not supported inside structures, unions or valuetypes. For
example, this is not supported:
struct Outer {

3.3.4 Translations for IDL Types

short outer_short;
struct Inner {

char inner_char;
short inner_short;

} outer_nested_inner;
};

Note 11: The sequence <Type>Seq is implicitly declared in the IDL file and therefore it can-
not be declared explicitly by the user. For example, this is not supported:
typedef sequence<Foo> FooSeq; //error

However, if RTI Code Generator's option, -typeSequenceSuffix <Suffix>, is used
and the <Suffix> is not 'Seq', the sequence would be:
typedef sequence<Foo> Foo<Suffix>; //no error

Note 12: RTI Code Generator will supply a default bound for sequences and strings. You
can specify that bound with the -sequenceSize or -stringSize command-line
option, respectively. See the RTI Code Generator User's Manual.

Note 13: In ADA, primitive types are not represented as native language types (e.g. , Char-
acter, etc.) but as custom types in the DDS namespace (Standard.DDS.Long,
Standard.DDS.Char, etc.). These typedefs are used to ensure that a field’s size is
the same across platforms.

Note 14: Every type provides a default constructor, a copy constructor, a move constructor,
a constructor with parameters to set all the type's members, a destructor, a copy-
assignment operator, and a move-assignment operator. Types also include equality
operators, the operator << and a namespace-level swap function.
PrimitiveStruct();
explicit PrimitiveStruct(char char_member);
PrimitiveStruct(PrimitiveStruct&& other_) OMG_NOEXCEPT;
PrimitiveStruct& operator=(PrimitiveStruct&& other_) OMG_NOEXCEPT;
bool operator == (const PrimitiveStruct& other_) const;
bool operator != (const PrimitiveStruct& other_) const;
void swap(PrimitiveStruct& other_) OMG_NOEXCEPT ;
std::ostream& operator << (std::ostream& o,const PrimitiveStruct&
sample);

Note 15: Sequences of pointers are not supported. For example, this is NOT supported:
sequence<long*, 100>;

Sequences of typedef'ed types, where the typedef is really a pointer, are supported.
For example, this is supported:
typedef long* pointerToLong;
sequence<pointerToLong, 100>;

107

3.3.5 Escaped Identifiers

108

Note 16: int8 and uint8 are supported only at the API level. They are still considered octets
for type matching purposes.

3.3.5 Escaped Identifiers

To use an IDL keyword as an identifier, the keyword must be “escaped” by prepending an underscore,
‘_’. In addition, you must run RTI Code Generator with the -enableEscapeChar option. For example:
struct MyStruct {

octet _octet; // octet is a keyword. To use the type
// as a member name we add ‘_’

};

The use of ‘_’ is a purely lexical convention that turns off keyword checking. The generated code will not
contain ‘_’. For example, the mapping to C would be as follows:
struct MyStruct {

unsigned char octet;
};

Note: If you generate code from an IDL file to a language ‘X’ (for example, C++), the keywords of this
language cannot be used as IDL identifiers, even if they are escaped. For example:
struct MyStruct {

int32 int; // error
int32 _int; // error

};

3.3.6 Namespaces In IDL Files

In IDL, themodule keyword is used to create namespaces for the declaration of types defined within the
file.

Here is an example IDL definition:
module PackageName {

struct Foo {
int32 field;

};
};

C Mapping:

The name of the module is concatenated to the name of the structure to create the namespace. The res-
ulting code looks like this:
typedef struct PackageName_Foo {

DDS_Long field;
} PackageName_Foo;

C++ Mapping:

In the Traditional C++ API, when using the -namespace command-line option, RTI Code Generator

3.3.6 Namespaces In IDL Files

generates a namespace, such as the following:
namespace PackageName{

class Foo {
public:

DDS_Long field;
}

}

Without the -namespace option, the mapping adds the module to the name of the class:
class PackageName_Foo {

public:
DDS_Long field;

}

In the Modern C++ API, namespaces are always used.

C++/CLI Mapping:

Independently of the usage of the -namespace command-line option, RTI Code Generator generates a
namespace, such as the following:
namespace PackageName{

public ref struct Foo: public DDS::ICopyable<Foo^> {
public:

System::Int32 field;
};
}

Java Mapping:

A Foo.java file will be created in a directory called PackageName to use the equivalent concept as
defined by Java. The file PackageName/Foo.java will contain a declaration of Foo class:
package PackageName;

public class Foo {
public int field;

};

In a more complex example, consider the following IDL definition:

module PackageName {
struct Bar {

int32 field;
};
struct Foo {

Bar barField;
};

};

When RTI Code Generator generates code for the above definition, it will resolve the Bar type to be
within the scope of the PackageName module and automatically generate fully qualified type names.

109

3.3.6 Namespaces In IDL Files

110

C Mapping:
typedef struct PackageName_Bar {

DDS_Long field;
} PackageName_Bar;
typedef struct PackageName_Foo {

PackageName_Bar barField;
} PackageName_Foo;

C++ Mapping:

With -namespace:
namespace PackageName {

class Bar {
public:

DDS_Long field;
};
class Foo {

public:
PackageName::Bar barField;

};
};

Without -namespace:

class PackageName_Bar {
public:

DDS_Long field;
};
class PackageName_Foo {

public:
PackageName_Bar barField;

};

C++/CLI Mapping:
namespace PackageName{

public ref struct Bar: public DDS::ICopyable<Bar^> {
public:

System::Int32 field;
};
public ref struct Foo: public DDS::ICopyable<Foo^> {

public:
PackageName::Bar^ barField;

};
};

Java Mapping:

PackageName/Bar.java and PackageName/Foo.java would be created with the following code, respect-
ively:

3.3.7 Referring to Other IDL Files

package PackageName;
public class Bar {

public
int field;

};

package PackageName;
public class Foo {

public
PackageName.Bar barField = PackageName.Bar.create();

};

3.3.7 Referring to Other IDL Files

IDL files may refer to other IDL files using a syntax borrowed from C, C++, and C++/CLI preprocessors.
For example:

Bar.idl
struct Bar {
};

Foo.idl
#include "Bar.idl"
struct Foo {

Bar m1;
};

The parsing of Foo in the above scenario will be successful, since Bar can be found in Bar.idl. (If Bar
was not declared in Bar.idl, Code Generator would report an error indicating that the symbol could not be
found.)

When Code Generator uses the default preprocessor, it will look for the included files, in this example,
Bar.idl, in the following directories and in this order:

1. Path designated by the operating system for temporary files (e.g., /tmp/ in Linux).

2. Working directory where Code Generator was executed.

3. Directory or directories specified by the user using the -I command-line option (if any).

4. Directory where the input file is.

5. Default C++ preprocessor's include directories (cpp -v /dev/null -o /dev/null).

Please note that when invoking Code Generator and specifying Foo.idl as a parameter, only the data types
defined in that file will be generated. If Foo.idl includes another file, such as Bar.idl, you would also need
to invoke Code Generator using Bar.idl as a parameter.

If Code Generator encounters an #include statement and you are generating code for C, C+, or C+/CLI,
Code Generator will assume that code has been generated for Bar.idl with corresponding header files,
Bar.h and BarPlugin.h.

111

3.3.8 Preprocessor Directives

112

The generated code will automatically add these files where needed in the Foo generated code, in order to
compile correctly:
#include “Bar.h”
#include “BarPlugin.h”

Because Java types do not refer to one another in the same way, it is not possible for Code Generator to
automatically generate Java import statements based on an IDL #include statement. #include statements
will not generate any specific code when Java code is generated. To add imports to your generated Java
code, you should use the@copy directive (see 3.3.9.5 The @copy and Related Annotations on
page 116).

3.3.8 Preprocessor Directives

RTI Code Generator supports the standard preprocessor directives defined by the IDL specification, such
as #if, #endif, #include, and #define.

To support these directives, RTI Code Generator calls an external C preprocessor before parsing the IDL
file. On Windows systems, the preprocessor is ‘cl.exe.’ On other architectures, the preprocessor is ‘cpp.’
You can change the default preprocessor with the –ppPath option. If you do not want to run the pre-
processor, use the –ppDisable option (see the RTI Code Generator User's Manual).

3.3.9 Using Builtin Annotations

RTI Code Generator supports the following builtin annotations, which can be used in your IDL File:

l Described in this document:
l @key (3.3.9.1 The @key Annotation on the next page)

l @nested (3.3.9.2 The @nested Annotation on page 114)

l @value (3.3.9.3 The @value Annotation on page 115)

l @external (3.3.9.4 The @external Annotation on page 115)

l Described in the RTI Connext DDS Core Libraries Extensible Types Guide:
l @extensibility

l @id

l @hashid

l @autoid

l @optional

l @appendable

l @mutable

3.3.9 Using Builtin Annotations

l @final

l @default

l @default_literal

l @min

l @max

l @range

l @data_representation (or @allowed_data_representation)

These annotations are described in two standard documents: OMG 'Interface Definition Language' spe-
cification, version 4.2 and OMG 'Extensible and Dynamic Topic Types for DDS' specification, version
1.3.

In addition, RTI provides the following RTI-specific annotations:

l @copy (3.3.9.5 The @copy and Related Annotations on page 116)

l @resolve_name (3.3.9.6 The @resolve_name Annotation on page 117)

l @use_vector (3.3.9.7 The @use_vector annotation on page 119)

l @top_level (Replaced by @nested. See 3.3.9.2 The @nested Annotation on the next page.)

l @transfer_mode (3.3.9.8 The @transfer_mode annotation on page 119)

l @language_binding (3.3.9.9 The @language_binding Annotation on page 120)

3.3.9.1 The @key Annotation

To declare a key for your data type, insert the @key annotation in the IDL file before one or more fields of
the data type.

With each key, Connext DDS associates an internal 16-byte representation, called a key-hash.

If the maximum size of the serialized key is greater than 16 bytes, to generate the key-hash, Connext DDS
computes the MD5 key-hash of the serialized key in network-byte order. Otherwise (if the maximum size
of the serialized key is <= 16 bytes), the key-hash is the serialized key in network-byte order.

Only struct and valutype definitions in IDL may have key fields. When RTI Code Generator encounters
@key, it considers the annotated field in the enclosing structure or valuetype to be part of the key. Table
3.11 Example Keys shows some examples of keys.

113

https://www.omg.org/spec/IDL/4.2
https://www.omg.org/spec/IDL/4.2
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

3.3.9 Using Builtin Annotations

114

Type Key Fields
struct NoKey {

int32 member1;
int32 member2;

}

struct SimpleKey {
@key int32 member1;
int32 member2;

}
member1

struct NestedNoKey {
SimpleKey member1;
int32 member2;

}

struct NestedKey {
@key SimpleKey member1;
int32 member2;

}
member1.member1

struct NestedKey2 {
@key NoKey member1;
int32 member2;

}

member1.member1

member1.member2

valuetype BaseValueKey {
@key public int32 member1;

}
member1

valuetype DerivedValueKey :BaseValueKey {
@key public int32 member2;

}

member1

member2

valuetype DerivedValue : BaseValueKey {
public int32 member2;

}
member1

struct ArrayKey {
@key int32 member1[3];

}

member1[0]

member1[1]

member1[2]

Table 3.11 Example Keys

3.3.9.2 The @nested Annotation

By default, RTI Code Generator generates user-level type-specific methods for all structures/unions found
in an IDL file. These methods include the methods used by DataWriters and DataReaders to send and
receive data of a given type. General methods for writing and reading that take a void pointer are not
offered by Connext DDS because they are not type safe. Instead, type-specific methods must be created to
support a particular data type.

We use the term ‘top-level type’ to refer to the data type for which you intend to create a DCPS Topic that
can be published or subscribed to. For top-level types, RTI Code Generator must create all of the type-spe-
cific methods previously described in addition to the code to serialize/deserialize those types. However,
some of structures/unions defined in the IDL file are only embedded within higher-level structures and are
not meant to be published or subscribed to individually. For non-top-level types, the DataWriters and

3.3.9 Using Builtin Annotations

DataReaders methods to send or receive data of those types are superfluous and do not need to be created.
Although the existence of these methods is not a problem in and of itself, code space can be saved if these
methods are not generated in the first place.

You can mark non-top-level types in an IDL file with the annotation @nested to tell RTI Code Generator
not to generate type-specific methods. Code will still be generated to serialize and deserialize those types,
since they may be embedded in top-level types.

The top-level directive can also be used but with the opposite meaning. @top_level or //@top-level (true)
indicates that the type is top level, therefore, @top_level (false) would be equivalent to @nested.

In this example, RTI Code Generator will generate DataWriter/DataReader code for TopLevelStruct
only:
@nested
struct EmbeddedStruct {

int16 member;
};
struct TopLevelStruct{

EmbeddedStruct member;
};

3.3.9.3 The @value Annotation

The @value annotation can be used to set specific values to members of enumerations. For example:
enum MyEnum {

@value (17) e17,
@value (2) e2,
@value (3) e3

}

It is equivalent to:
enum MyEnum {

e17 =17,
e2 = 2,
e3 =3

}

3.3.9.4 The @external Annotation

A member declared as external using the @external annotation (or the * modifier) within an aggregated
type indicates that it is desirable for the implementation to store the member in storage external to the
enclosing aggregated type object.

For example:

115

3.3.9 Using Builtin Annotations

116

struct MyStruct {
@external int32 member;

}

This is equivalent to the following structure, although the usage of the @external annotation is preferred
because it is standard:
struct MyStruct {

int32 *member;
};

The @external annotation only has effect in C, C++, Modern C++, and Ada applications where the mem-
bers will be mapped to references (pointers). In other languages, the annotation is ignored because the
members are always mapped as references.

In Modern C++ the annotation maps to the type dds::core::external<T>, a type similar to shared_ptr.

3.3.9.5 The @copy and Related Annotations

To copy a line of text verbatim into the generated code files, use the@copy annotation in the IDL file.
The @copy annotation can only be applied using the comment syntax (//@). The @copy annotation is par-
ticularly useful when you want your generated code to contain text that is valid in the target programming
language but is not valid IDL. It is often used to add user comments or headers or preprocessor commands
into the generated code.
//@copy (// Modification History)
//@copy (// --------------------
//@copy (// 17Jul05aaa, Created.)
//@copy
//@copy (// #include “MyTypes.h”)

These variations allow you to use the same IDL file for multiple languages:

@copy-c Copies code if the language is C orC++

@copy-cppcli Copies code if the language is C++/CLI

@copy-java Copies code if the language is Java.

@copy-ada Copies code if the language is Ada.

For example, to add import statements to generated Java code:
//@copy-java (import java.util.*;)

The above line would be ignored if the same IDL file was used to generate non-Java code.

In C, C++, and C++/CLI, the lines are copied into all of the foo*.[h, c, cxx, cpp] files generated from
foo.idl. For Java, the lines are copied into all of the *.java files that were generated from the original “.idl”
file. The lines will not be copied into any additional files that are generated using the -example command
line option.

3.3.9 Using Builtin Annotations

@copy-java-begin copies a line of text at the beginning of all the Java files generated for a type. The
annotation only applies to the first type that is immediately below in the IDL file. A similar annotation for
Ada files is also available,@copy-ada-begin.

If you want RTI Code Generator to copy lines only into the files that declare the data types—foo.h for C,
C++, and C++/CLI, foo.java for Java—use the //@copy*declaration forms of this annotation.

Note that the first whitespace character to follow //@copy is considered a delimiter and will not be copied
into generated files. All subsequent text found on the line, including any leading whitespaces will be
copied.

//@copy-declaration
Copies the text into the file where the type is declared (<type>.h forC and C++, or <type>.java for
Java)

//@copy-c-declaration Same as //@copy-declaration, but for C and C++ code

//@copy-cppcli-declaration Same as //@copy-declaration, but for C++/CLI code

//@copy-java-declaration Same as //@copy-declaration, but for Java-only code

//@copy-ada-declaration Same as //@copy-declaration, but for Ada-only code

//@copy-java-declaration-
begin

Same as //@copy-java-declaration, but only copies the text into the file where the type is declared

//@copy-ada-declaration-begin Same as //@copy-java-declaration-begin, but only for Ada-only code

3.3.9.6 The @resolve_name Annotation

By default, RTI Code Generator tries to resolve all the references to types and constants in an IDL file.
For example:
module PackageName {

struct Foo {
Bar barField;

};
};

The compilation of the previous IDL file will report an error like the following:
ERROR com.rti.ndds.nddsgen.Main Foo.idl line x:x member type 'Bar' not found

In most cases, this is the expected behavior. However, in some cases, you may want to skip the resolution
step. For example, assume that the Bar type is defined in a separate IDL file and that you are running RTI
Code Generator without an external preprocessor by using the command-line option -ppDisable (maybe
because the preprocessor is not available in their host platform, see 3.3.8 Preprocessor Directives on
page 112):

Bar.idl

117

3.3.9 Using Builtin Annotations

118

module PackageName {
struct Bar {

int32 field;
};

};

Foo.idl
#include "Bar.idl"
module PackageName {

struct Foo {
Bar barField;

};
};

In this case, compiling Foo.idl would generate the 'not found' error. However, Bar is defined in Bar.idl.
To specify that RTI Code Generator should not resolve a type reference, use the //@resolve_name annota-
tion and set the value to false. For example:
#include "Bar.idl"
module PackageName {

struct Foo {
@resolve_name(false) Bar barField;

};
};

When this annotation is used, then for the field to which it applies, RTI Code Generator will assume that
the type is an unkeyed 'structure' and it will use the type name unmodified in the generated code.

Java mapping:
package PackageName;
public class Foo {

public Bar barField = Bar.create();
};

C++ mapping:
namespace PackageName {
class Foo {

public:
Bar barField;

};
};

It is up to you to include the correct header files (or if using Java, to import the correct packages) so that
the compiler resolves the ‘Bar’ type correctly. If needed, this can be done using the copy directives (see
3.3.9.5 The @copy and Related Annotations on page 116).

When applied to an aggregated type in IDL, the annotation applies to all types within the type, including
the base type if defined. For example:
@resolve_name(false)
struct MyStructure: MyBaseStructure
{

Foo member1;

3.3.9 Using Builtin Annotations

Bar member2;
};

3.3.9.7 The @use_vector annotation

The @use_vector annotation can be used in Modern C++ to indicate that a bounded sequence should be
mapped to std::vector; otherwise it will be mapped to rti:core::bounded_sequence.

For example :
struct MyStruct {

@use_vector sequence<int32, 10> my_bounded_seq;
}

As an alternative, you can use rtiddsgen's -alwaysUseStdVector option to indicate that all bounded
sequences should be mapped to std::vector. Unbounded sequences always map to std::vector.

3.3.9.8 The @transfer_mode annotation

The @transfer_mode annotation can be used to indicate how to send a sample of the annotated type. There
are two possible values for this annotation: SHMEM_REF and INBAND.

The annotation can be used only while generating code for C and C++ (Traditional and Modern) APIs.
For other languages, the annotation is ignored.

@transfer_mode(SHMEM_REF) indicates that a sample can be sent as a shared memory reference instead
of sending the serialized sample, when the DataReader(s) are on the same node as the DataWriter writing
the sample. See 23.1.5 Zero Copy Transfer Over Shared Memory on page 968 for more information.

@transfer_mode(INBAND) indicates that a sample is always serialized and sent inband using the under-
lying transports. This is the default mode when the annotation is not present.

The use of @transfer_mode annotation without a parameter is not allowed and will generate an error dur-
ing code generation.

It is sufficient to mark only the top-level types with the @transfer_mode annotation. In this example, a
sample of type CameraImage can be sent as a shared memory reference, even though the included type
Dimension is not explicitly annotated:
struct Dimension {

int32 height;
int32 width;

};

@transfer_mode(SHMEM_REF)
struct CameraImage {

int64 timestamp;
Dimension dimension;
octet data[8294400][4];

};

119

3.3.9 Using Builtin Annotations

120

RTI Code Generator will return an error while parsing the IDL file if the following requirements are not
met:

l All fixed and appendable types (described in RTI Connext DDS Core Libraries Extensible Types
Guide) annotated with @transfer_mode(SHMEM_REF) should be fixed-size types. A fixed-size
type is a type whose wire representation always has the same size. This includes primitive members,
arrays of fixed-size types, and structs containing only members of fixed-size types. In the above
example, the types CameraImage and Dimension should not contain variable-length members
such as strings, sequences, and optional and external members.

l Mutable types annotated with @transfer_mode(SHMEM_REF) can contain variable-length mem-
bers when the type is also annotated with FLAT_DATA language_binding.

The @transfer_mode annotation can be applied to modules, structs, valuetypes, and unions. When applied
to a module, all the types within the module inherit the language binding value specified in the module.

3.3.9.9 The @language_binding Annotation

The @language_binding annotation allows selecting the language binding for a type, either the plain lan-
guage binding (default option when the annotation is not specified) or the RTI FlatData™ language bind-
ing.

PLAIN is the regular language binding that maps IDL types to their regular C or C++ representation as C
structs or C++ classes.

FLAT_DATA is a special language binding in which the in-memory representation is the same as the wire
representation. See 23.1.4 FlatData Language Binding on page 955 for a detailed description.

For example:
@language_binding(PLAIN) // or no annotation
struct MyNormalType {

...
};

@language_binding(FLAT_DATA)
struct MyFlatType {

...
};

A few notes about the @language_binding annotation:

l The annotation can be applied to modules, structs, valuetypes, and unions. When applied to a mod-
ule, all the types within the module inherit the language binding value specified in the module.

3.4 Creating User Data Types with Extensible Markup Language (XML)

l Every member type needs to have the same language binding as the type that contains it. For
example, see the IDL in 23.1.4.2.1 Selecting FlatData Language Binding on page 956: if Cam-
eraImage is marked with FLAT_DATA language binding, Resolution must be marked, too.

l FLAT_DATA is only supported in the Traditional C++ and Modern C++ language APIs. The
annotation will be ignored for other languages. See 23.1.4.3 Languages Supported by FlatData Lan-
guage Binding on page 967.

3.4 Creating User Data Types with Extensible Markup Language (XML)

You can describe user data types with Extensible Markup Language (XML) notation. Connext DDS
provides DTD and XSD files that describe the XML format; see <NDDSHOME>/resource/app/app_
support/rtiddsgen/schema/rti_dds_topic_types.dtd and <NDDSHOME>/resource/app/app_sup-
port/rtiddsgen/schema/rti_dds_topic_types.xsd, respectively. (<NDDSHOME> is described in Paths
Mentioned in Documentation on page 1.)

The XML validation performed by RTI Code Generator always uses the DTD definition. If the
<!DOCTYPE> tag is not in the XML file, RTI Code Generator will look for the default DTD document
in <NDDSHOME>/resource/schema. Otherwise, it will use the location specified in <!DOCTYPE>.

We recommend including a reference to the XSD/DTD files in the XML documents. This provides help-
ful features in code editors such as Visual Studio® and Eclipse™, including validation and auto-com-
pletion while you are editing the XML. We recommend including the reference to the XSD document in
the XML files because it provides stricter validation and better auto-completion than the DTD document.

To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <types> tag. For example :
<?xml version="1.0" encoding="UTF-8"?>
<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"<NDDSHOME>/resource/app/app_support/rtiddsgen/schema/rti_dds_topic_types.xsd">

...
</types>

To include a reference to the DTD document in your XML file, use the <!DOCTYPE> tag. For example:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE types SYSTEM
"<NDDSHOME>/resource/app/app_support/rtiddsgen/schema/rti_dds_topic_types.dtd">

<types>
...

</types>

Table 3.12 Mapping Type System Constructs to XML shows how to map the type system constructs into
XML. For information on the annotations in the table, see 3.3.9 Using Builtin Annotations on page 112.

121

3.4 Creating User Data Types with Extensible Markup Language (XML)

122

Type/Construct Example

IDL XML IDL XML

char char8 char char_member;
<member name="char_member"

type="char8"/>

wchar char16 wchar wchar_member;
<member name="wchar_member"

type="char16"/>

octet byte octet octet_member;
<member name="octet_member"

type="byte"/>

int81 int8 int8 int8_member; <member name=”int8_member” type=”int8”/>

uint82 uint8 uint8 uint8_member; <member name=”uint8_member” type=”uint8”/>

int16 or
short

int16 int16 short_member;
<member name="short_member"

type="int16"/>

uint16 or
un-
signed
short

uint16
uint16
unsigned_short_member;

<member name="unsigned_short_member"
type="uint16"/>

int32 or
long

int32 int32 long_member; <member name="long_member"type="int32"/>

uint32 or
un-
signed
long

uint32
uint32
unsigned_long_member;

<member name="unsigned_long_member"
type="uint32"/>

int64 or
long
long

int64
int64
long_long_member;

<member name="long_long_member"
type="int64"/>

uint64 or
un-
signed
long
long

uint64

uint64
unsigned_long_long_
member;

<member name="unsigned_long_long_member"
type="uint64"/>

float float32 float float_member;
<member name="float_member"

type="float32"/>

double float64 double double_member;
<member name="double_member"

type="float64"/>

long
double

float128
long double
long_double_member;

<member name= "long_double_member"
type="float128"/>

Table 3.12 Mapping Type System Constructs to XML

1This type is supported only at the API level. It is still considered an octet for type matching purposes.

2This type is supported only at the API level. It is still considered an octet for type matching purposes.

3.4 Creating User Data Types with Extensible Markup Language (XML)

Type/Construct Example

IDL XML IDL XML

boolean boolean

struct PrimitiveStruct
{

boolean boolean_
member;
};

<struct name="PrimitiveStruct">
<member name="boolean_member"

type="boolean"/>
</struct>

un-
bounde-
d string

string
without
stringMaxLe-
ngth at-
tribute or
with
stringMaxLe-
ngth set to -
1

struct PrimitiveStruct
{

string string_
member;
};

<struct name="PrimitiveStruct">
<member name="string_member"

type="string"/>
</struct>

or

<struct name="PrimitiveStruct">
<member name="string_member"

type="string"
stringMaxLength="-1"/>

</struct>

bounde-
d string

string with
stringMaxLe-
ngth at-
tribute

struct PrimitiveStruct
{
string<20> string_
member;
};

<struct name="PrimitiveStruct">
<member name="string_member"

type="string"
stringMaxLength="20"/>

</struct>

un-
bounde-
d wstring

wstring
without
stringMaxLe
ngth
attribute or
with
stringMaxLe
ngth set to -
1

struct PrimitiveStruct
{
wstring wstring_

member;
};

<struct name="PrimitiveStruct">
<member name="wstring_member"

type="wstring"/>
</struct>

or

<struct name="PrimitiveStruct">
<member name="wstring_member"

type="wstring"
stringMaxLength="-1"/>

</struct>

bounde-
d wstring

wstring with
stringMaxLe-
ngth at-
tribute

struct PrimitiveStruct
{
wstring<20> wstring_

member;
};

<struct name="PrimitiveStruct">
<member name="wstring_member"

type="wstring" stringMaxLength="20"/>
</struct>

enum enum tag

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

<enum name="PrimitiveEnum">
<enumerator name="ENUM1"/>
<enumerator name="ENUM2"/>
<enumerator name="ENUM3"/>

</enum>

enum PrimitiveEnum {
ENUM1=10,
ENUM2=20,
ENUM3

}
enum PrimitiveEnum {

@value (10) ENUM1,
@value (20) ENUM2,
@value (30) ENUM3

}

<enum name="PrimitiveEnum">
<enumerator name="ENUM1" value="10"/>
<enumerator name="ENUM2" value="20"/>
<enumerator name="ENUM3" value="30"/>

</enum>

constant const tag
const double PI =
3.1415;

<const name="PI" type="double"
value="3.1415"/>

Table 3.12 Mapping Type System Constructs to XML

123

3.4 Creating User Data Types with Extensible Markup Language (XML)

124

Type/Construct Example

IDL XML IDL XML

struct struct tag

struct PrimitiveStruct
{
short short_member;

};

<struct name="PrimitiveStruct">
<member name="short_member"

type="short"/>
</struct>

union union tag

union PrimitiveUnion
switch
(long) {
case 1:

short short_member;
case 2:
case 3:

float float_member;
default:

long long_member;
};

<union name="PrimitiveUnion">
<discriminator type="long"/>
<case>
<caseDiscriminator value="1"/>

<member name="short_member"
type="short"/>

</case>

<case>
<caseDiscriminator value="2"/>

<caseDiscriminator value="3"/>
<member name="float_member"
type="float"/>

</case>

<case>
<caseDiscriminator value="default"/>

<member name="long_member"
type="long"/>

</case>
</union>

valuetyp-
e

valuetype
tag

valuetype
BaseValueType {

public long long_
member;
};

valuetype
DerivedValueType:
BaseValueType {

public long
long_member_2;

};

<valuetype name="BaseValueType">
<member name="long_member"

type="long" visibility="public"/>
</valuetype>

<valuetype name="DerivedValueType"
baseClass="BaseValueType">
<member name="long_member_2"
type="long" visibility="public"/>

</valuetype>

typedef typedef tag

typedef short
ShortType;

<typedef name="ShortType" type="short"/>

struct PrimitiveStruct
{

short short_member;
};
typedef
PrimitiveStruct

PrimitiveStructType;

<struct name="PrimitiveStruct">
<member name="short_member"

type="short"/>
</struct>

<typedef name="PrimitiveStructType"
type="nonBasic" nonBasicTypeName="PrimitiveStruct"/>

Table 3.12 Mapping Type System Constructs to XML

3.4 Creating User Data Types with Extensible Markup Language (XML)

Type/Construct Example

IDL XML IDL XML

arrays

Attribute
ar-
rayDi-
mensions

struct OneArrayStruct
{

short short_array
[2];
};

<struct name="OneArrayStruct">
<member name="short_array"

type="short" arrayDimensions="2"/>
</struct>

struct TwoArrayStruct
{

short short_array[1]
[2];
};

<struct name="TwoArrayStruct">
<member name="short_array"

type="short" arrayDimensions="1,2"/>
</struct>

bounde-
d se-
quence

Attribute se-
quenceMax-
Length > 0

struct SequenceStruct
{

sequence<short,4>
short_sequence;

};

<struct name="SequenceStruct">
<member name="short_sequence"

type="short"
sequenceMaxLength="4"/>

</struct>

un-
bounde-
d
se-
quence

Attribute se-
quenceMax-
Length set
to -1

struct SequenceStruct
{

sequence<short>
short_sequence;

};

<struct name="SequenceStruct">
<member name="short_sequence"

type="short"
sequenceMaxLength="-1"/>

</struct>

array of
se-
quences

Attributes se-
quenceMax-
Length and
ar-
rayDi-
mensions

struct
ArrayOfSequencesStruct
{

sequence<short,4>
short_sequence_array

[2];
};

<struct name= "ArrayOfSequenceStruct">
<member name=

"short_sequence_array"
type="short" arrayDimensions="2"
sequenceMaxLength="4"/>

</struct>

se-
quence
of arrays

Must be im-
plemented
with a ty-
pedef tag

typedef short
ShortArray[2];

struct
SequenceOfArraysStruct
{

sequence<ShortArray,2>
short_array_

sequence;
};

<typedef name="ShortArray"
type="short" dimensions="2"/>

<struct name=
"SequenceOfArrayStruct">

<member name= "short_array_sequence"
type="nonBasic"

nonBasicTypeName="ShortSequence"
sequenceMaxLength="2"/>

</struct>

se-
quence
of se-
quences

Must be im-
plemented
with a ty-
pedef tag

typedef
sequence<short,4>
ShortSequence;

struct
SequenceOfSequencesStr
uct {

sequence<ShortSequence
,2>

short_sequence_
sequence;
};

<typedef name="ShortSequence"
type="short"sequenceMaxLength="4"/>

<struct name="SequenceofSequencesStruct">
<member name="short_sequence_sequence"

type="nonBasic"
nonBasicTypeName="ShortSequence"

sequenceMax-Length="2"/>
</struct>

Table 3.12 Mapping Type System Constructs to XML

125

3.4 Creating User Data Types with Extensible Markup Language (XML)

126

Type/Construct Example

IDL XML IDL XML

module module tag

module PackageName {
struct PrimitiveStruct
{

long long_member;
};

};

<module name="PackageName">
<struct name="PrimitiveStruct">
<member name="long_member"
type="long"/>
</struct>

</module>

include

include tag
(works only
within the
<types> tag
to include
types from
different
XML files)

#include
"PrimitiveTypes.idl"

<include file="PrimitiveTypes.xml"/>

@key
an-
notation
1

key attribute
with values
true, false,
0, or 1

Default (if
not present):
0

struct
KeyedPrimitiveStruct {

@key short
short_member;

};

<struct name="KeyedPrimitiveStruct">
<member name="short_member"

type="short" key="true"/>
</struct>

@ex-
ternal or
pointer

external at-
tribute with
values true,
false, 0, or 1

Default (if
not present):
0

struct PrimitiveStruct
{

@external long
long_member;

};

<struct name="PointerStruct">
<member name="long_member"

type="long"
external="true"/>

</struct>

@op-
tional an-
notation

optional at-
tribute with
values true,
false, 0 ,or 1

Default (if
not present):
0

struct Point {
long x;
long y;
@optional long z;

};

<struct name= "Point">
<member name="x" type="int32"/>
<member name="y" type="int32"/>
<member name="z" type="int32" optional="true"/>

</struct>

Table 3.12 Mapping Type System Constructs to XML

1For information on this and the other annotations, see 3.3.9 Using Builtin Annotations on page 112.

3.4 Creating User Data Types with Extensible Markup Language (XML)

Type/Construct Example

IDL XML IDL XML

@id an-
notation

id attribute

Default (if
not present):
id calculated
based on
the @autoid
value of the
enclosing
type and
module(s)

@mutable
struct Point {

@id(56) long x;
@id(57) long y;
long z;

};

<struct name="Point" extensibility="mutable">
<member name="x" id="56" type="long"/>
<member name="y" id="57" type="long"/>
<!-- z id is 58 -->
<member name="y" type="long"/>

</struct>

@hashi-
d
annota-
tion

hashid attrib-
ute con-
taining the
string that
must be
hashed to
compute the
id

Default (if
not present).
id calculated
based on
the @autoid
value of the
enclosing
type and
module(s)

@mutable
struct Point {

@hashid long x;
@hashid(“other_y”)
long y;

};

<struct name= "Point" extensibility= "mutable">
<member name="x" hashid="x" type="int32"/>
<member name="y" hashid="other_y" type="int32"/>

</struct>

@value
an-
notation

value at-
tribute

Default (if
not present):
value of the
previous
enumerator
plus 1

enum PrimitiveEnum {
@value (10) ENUM1,
@value (20) ENUM2,

ENUM3
}

<enum name="PrimitiveEnum">
<enumerator name="ENUM1" value="10"/>
<enumerator name="ENUM2" value="20"/>
<!-- ENUM3 id is 21 -->
<enumerator name="ENUM3"/>

</enum>

@de-
fault_lit-
eral
an-
notation

de-
faultLiteral
attribute with
values true,
false, 0, or 1

Default (if
not present):
0

enum MyEnum {
ENUM1,
@default_literal

ENUM2
};

<enum name="MyEnum">
<enumerator name="ENUM1"/>
<enumerator name="ENUM2" defaultLiteral="true"/>

</enum>

Table 3.12 Mapping Type System Constructs to XML

127

3.4 Creating User Data Types with Extensible Markup Language (XML)

128

Type/Construct Example

IDL XML IDL XML

@de-
fault an-
notation

default at-
tribute

Default (if
not present
in this mem-
ber or its
alias types):
0, the empty
string, or
whichever
enumerator
is the de-
faultLiteral

@default(24)
typedef long
MyLongTypedefWithDefau
lt;

struct Point {
@default(42)
long x;

MyLongTypedefWithDefau
lt y;
};

<typedef name="MyLongTypedefWithDefault" type="long"
default="24"/>
<struct name="Point">

<member name="x" type="long" default="42"/>
<member name="y" type="nonBasic"

nonBasicTypeName="MyLongTypedefWithDefault"/> <!-- default is
24 -->
</struct>

@min
an-
notation

min attribute

Default (if
not present
in this mem-
ber or its
alias types):
the minimum
possible
value of the
type

struct Point {
@min(-32)
long x;
long y;

};

<struct name="Point">
<member name="x" type="long" min="-32"/>
<member name="y" type="long"/>

</struct>

@max
an-
notation

max at-
tribute

Default (if
not present
in this mem-
ber or its
alias types):
the max-
imumpos-
sible value
of the type

struct Point {
@max(31)
long x;
long y;

};

<struct name="Point">
<member name="x" type="long" max="31"/>
<member name="y" type="long"/>

</struct>

@range
an-
notation

Not sup-
ported. Use
min and max
attributes in-
stead.

struct Point {
@range(min = -32,

max = 31)
long x;
long y;

};

<struct name="Point">
<member name="x" type="long" min="32" max="31"/>
<member name="y" type="long"/>

</struct>

Table 3.12 Mapping Type System Constructs to XML

3.4 Creating User Data Types with Extensible Markup Language (XML)

Type/Construct Example

IDL XML IDL XML

@autoid
an-
notation

autoid at-
tribute with
"hash" or
"sequential"
values

Default (if
not present):
the @autoid
value in an-
cestormod-
ule(s) or
sequential if
not specified

@mutable
@hashid(HASH)
struct Point {

long x;
long y;

};

<struct name="Point" extensibility="mutable" autoid="hash">
<member name="x" type="long"/>
<member name="y" type="long"/>

</struct>

@n-
ested or
@top-
level an-
notation

nested at-
tribute with
values true,
false, 0 ,or 1

Default (if
not present):
0

@nested
struct
TopLevelPrimitiveStruc
t {

short short_member;
};

or

@top_level(false)
struct
TopLevelPrimitiveStruc
t {

short short_member;
};

<struct name=
"TopLevelPrimitiveStruct"
nested="true">

<member name=
"short_member"
type="short"/>

</struct>

@ex-
tens-
ibility,
@mut-
able,
@ap-
pendabl-
e, or
@final
an-
notation

extensibility
attribute with
values final,
ap-
pendable, or
mutable

Default (if
not present):
appendable

@mutable
struct Point {

long x;
long y;

};

<struct name="Point" extensibility="mutable">
<member name="x" type="long"/>
<member name="y" type="long"/>

</struct>

Table 3.12 Mapping Type System Constructs to XML

129

3.4 Creating User Data Types with Extensible Markup Language (XML)

130

Type/Construct Example

IDL XML IDL XML

@data_
rep-
re-
sen-
tation1

data_rep-
resentation
attribute with
values xcdr,
xcdr2, or xml

Default (if
not present):
xcdr2 for
FlatData lan-
guage bind-
ing; the
@data_rep-
resentation
value in an-
cestormod-
ule(s) or
(xcdr|xcdr2)
for plain lan-
guage bind-
ing

@data_representation
(XCDR2)
@mutable
struct Point {

long x;
long y;

};

<struct name= "Point" extensibility= "mutable" data_
representation="xcdr2">

<member name="x" type="int32"/>
<member name="y" type="int32"/>

</struct>

@use_
vector

useVector
attribute with
values true,
false, 0 ,or 1

Default (if
not present):
false unless
code gen-
erated with -
al-
waysUseSt-
dVector

struct Image {
@use_vector
sequence<octet,

1048576> pixels;
};

<struct name= "Image">
<member name="pixels" sequenceMaxLength="1048576"

useVector="true" type="byte"/>
</struct>

@lan-
guage_
binding
an-
notation

lan-
guageBind-
ing attribute
with values
plain or flat_
data.

Default (if
not present):
the @lan-
guage_bind-
ing value in
ancestor
module(s) or
plain if not
specified

@language_binding
(FLAT_DATA)
@final
struct Point {

long x;
long y;

};

<struct name="Point" extensibility=”final”
languageBinding="flat_data">

<member name="x" type="long"/>
<member name="y" type="long"/>

</struct>

Table 3.12 Mapping Type System Constructs to XML

1You can use either @data_representation or @allowed_data_representation.

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XML IDL XML

@trans-
fer_
mode
an-
notation

trans-
ferMode at-
tribute with
values in-
band or
shmem_ref.

Default (if
not present):
the @trans-
fer_mode
value in an-
cestormod-
ule(s) or
inband if not
specified

@transfer_mode(SHMEM_
REF)
struct Point {

long x;
long y;

};

<struct name="Point" transferMode="shmem_ref">
<member name="x" type="long"/>
<member name="y" type="long"/>

</struct>

@re-
solve-
name
an-
notation

re-
solveName
attribute with
values true,
false, 0, or 1

Default (if
not present):
@resolve_
name of the
parent type
or false if not
specified on
parent

struct
UnresolvedPrimitiveStr
uct {

@resolve_name(false)
PrimitiveStruct

primitive_member;
};

<struct name=
"UnresolvedPrimitiveStruct">

<member name="primitive_member"
type="PrimitiveStruct"
resolveName="false"/>

</struct>

Other
an-
nota-
tions

directive tag

//@copy (This text
will be
copied in the
generated files)

<directive kind="copy">
This text will be copied in the
generated files

</directive>

Table 3.12 Mapping Type System Constructs to XML

3.5 Creating User Data Types with XML Schemas (XSD)

You can describe data types with XML schemas (XSD). The format is based on the standard IDL-to-
WSDL mapping described in the OMG document "CORBA to WSDL/SOAP Interworking Spe-
cification."

Example Header for XSD:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dds="http://www.omg.org/dds"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
targetNamespace="http://www.omg.org/IDL-Mapped/">
<xsd:import namespace="http://www.omg.org/dds"
schemaLocation="rti_dds_topic_types_common.xsd"/>

131

3.5 Creating User Data Types with XML Schemas (XSD)

132

...
</xsd:schema>

Table 3.13 Mapping Type System Constructs to XSD describes how to map IDL types to XSD. The Con-
next DDS code generator, rtiddsgen, will only accept XSD files that follow this mapping.

Type/Construct Example

IDL XSD IDL XSD

char dds:char1

struct
PrimitiveStruct

char char_member;
};

<xsd:complexType name= "PrimitiveStruct">
<xsd:sequence>

<xsd:element name="char_member"
minOccurs="1" maxOccurs="1"
type="dds:char">

</xsd:sequence>
</xsd:complexType>

wchar dds:wchar2

struct
PrimitiveStruct {

wchar wchar_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="wchar_member"
minOccurs="1" maxOccurs="1"
type="dds:wchar">

</xsd:sequence>
</xsd:complexType>

octet
xsd:
unsignedByte

struct
PrimitiveStruct {

octet octet_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="octet_member"
minOccurs="1" maxOccurs="1"
type="xsd:unsignedByte">

</xsd:sequence>
</xsd:complexType>

int83 dds:int84

struct
PrimitiveStruct {

int8 int8_member;
};

<xsd:complexType name= "PrimitiveStruct">
<xsd:sequence>

<xsd:element name="int8_member"
minOccurs="1" maxOccurs="1"
type="dds:int8"/>

</xsd:sequence>
</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

1All files that use the primitive types char, wchar, int8, uint8, long double, and wstring must reference rti_dds_topic_types_
common.xsd. See 3.5.1 Primitive Types on page 151.

2All files that use the primitive types char, wchar, int8, uint8, long double, and wstring must reference rti_dds_topic_types_
common.xsd. See 3.5.1 Primitive Types on page 151

3This type is supported only at the API level. It is still considered an octet for type matching purposes.

4All files that use the primitive types char, wchar, int8, uint8, long double, and wstring must reference rti_dds_topic_types_
common.xsd. See 3.5.1 Primitive Types on page 151.

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XSD IDL XSD

uint81 dds:uint82

struct
PrimitiveStruct {

uint8 uint8_
member;
};

<xsd:complexType name= "PrimitiveStruct">
<xsd:sequence>

<xsd:element name="uint8_member"
minOccurs="1" maxOccurs="1"
type="dds:uint8"/>

</xsd:sequence>
</xsd:complexType>

int16 or
short

xsd:short

struct
PrimitiveStruct {

int16 short_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
minOccurs="1" maxOccurs="1"
type="xsd:short"/>

</xsd:sequence>
</xsd:complexType>

uint16
or un-
signed
short

xsd:
un-
signedShort

struct
PrimitiveStruct {

uint16
unsigned_short_

member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name=

"unsigned_short_member"
minOccurs="1" maxOccurs="1"
type="xsd:unsignedShort"/>

</xsd:sequence>
</xsd:complexType>

int32 or
long

xsd:int

struct
PrimitiveStruct {

int32 long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_member"
minOccurs="1" maxOccurs="1"
type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

uint32
or un-
signed
long

xsd:
unsignedInt

struct
PrimitiveStruct {

uint32
unsigned_long_

member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name=

"unsigned_long_member"
minOccurs="1" maxOccurs="1"
type="xsd:unsignedInt"/>

</xsd:sequence>
</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

1This type is supported only at the API level. It is still considered an octet for type matching purposes.

2All files that use the primitive types char, wchar, int8, uint8, long double, and wstring must reference rti_dds_topic_types_
common.xsd. See 3.5.1 Primitive Types on page 151.

133

3.5 Creating User Data Types with XML Schemas (XSD)

134

Type/Construct Example

IDL XSD IDL XSD

int64 or
long
long

xsd:long

struct
PrimitiveStruct {
int64
long_long_member;

};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:elementname=

"long_long_member"
minOccurs="1" maxOccurs="1"
type="xsd:long"/>

</xsd:sequence>
</xsd:complexType>

uint64
or un-
signed
long
long

xsd:
unsignedLong

struct
PrimitiveStruct {
uint64
unsigned_long_long_

member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name=

"unsigned_long_long_member"
minOccurs="1" maxOccurs="1"
type="xsd:unsignedLong"/>

</xsd:sequence>
</xsd:complexType>

float xsd:float

struct
PrimitiveStruct {

float float_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="float_member"
minOccurs="1" maxOccurs="1"
type="xsd:float"/>

</xsd:sequence>
</xsd:complexType>

double xsd:double

struct
PrimitiveStruct {

double double_
member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="double_member"
minOccurs="1" maxOccurs="1"
type="xsd:double"/>

</xsd:sequence>
</xsd:complexType>

long
double

dds:
longDouble

struct
PrimitiveStruct {
long double
long_double_member;

};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name= "long_double_member"
minOccurs="1" maxOccurs="1"
type="dds:longDouble"/>

</xsd:sequence>
</xsd:complexType>

boolea-
n

xsd:boolean

struct
PrimitiveStruct {

boolean boolean_
member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="boolean_member"
minOccurs="1" maxOccurs="1"
type="xsd:boolean"/>

</xsd:sequence>
</xsd:complexType>

un-
bound-
ed
string

xsd:string

struct
PrimitiveStruct {
string string_

member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="string_member"
minOccurs="1" maxOccurs="1"
type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XSD IDL XSD

bound-
ed
string

xsd:string with
restriction
to specify max-
imum length

struct
PrimitiveStruct {
string<20>
string_member;

};

<xsd:complexType name=
"PrimitiveStruct_string_member_BoundedString">
<xsd:sequence>
<xsd:element name="item"
minOccurs="1" maxOccurs="1">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength
value="20" fixed="true"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name= "PrimitiveStruct">
<xsd:sequence>
<xsd:element name="string_member"
minOccurs="1" maxOccurs="1" type=
"tns:PrimitiveStruct_string_member_BoundedString"/>

</xsd:sequence>
</xsd:complexType>

un-
bound-
ed
wstring

dds:wstring 1

struct
PrimitiveStruct {

wstring
wstring_member;

};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="wstring_member"
minOccurs="1" maxOccurs="1"
type="dds:wstring"/>

</xsd:sequence>
</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

1All files that use the primitive types char, wchar, int8, uint8, long double and wstring must reference rti_dds_topic_types_
common.xsd. See 3.5.1 Primitive Types on page 151

135

3.5 Creating User Data Types with XML Schemas (XSD)

136

Type/Construct Example

IDL XSD IDL XSD

bound-
ed
wstring

xsd:wstring
with restriction
to specify max-
imum
length

struct
PrimitiveStruct {

wstring<20>
wstring_member;

};

<xsd:complexType name=
"PrimitiveStruct_wstring_member_BoundedString"
<xsd:sequence>

<xsd:element name="item"
minOccurs="1" maxOccurs="1">
<xsd:simpleType>

<xsd:restriction base="dds:wstring">
<xsd:maxLength value="20"
fixed="true"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType
name= "PrimitiveStruct">
<xsd:sequence>

<xsd:element
name="wstring_member"
minOccurs="1"
maxOccurs="1"
type=

"tns:PrimitiveStruct_wstring_member_BoundedString"/>
</xsd:sequence>

</xsd:complexType>

enum
xsd:sim-
pleType with
enumeration

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

<xsd:simpleType name="PrimitiveEnum">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="ENUM1"/>
<xsd:enumeration value="ENUM2"/>
<xsd:enumeration value="ENUM3"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="PrimitiveEnum">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="ENUM1">
<xsd:annotation>

<xsd:appinfo>
<ordinal>10</ordinal>

</xsd:appinfo>
</xsd:annotation>

</xsd:enumeration>
<xsd:enumeration value="ENUM2">

<xsd:annotation>
<xsd:appinfo>

<ordinal>20</ordinal>
</xsd:appinfo>

</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="ENUM3">

<xsd:annotation>
<xsd:appinfo>

<ordinal>30</ordinal>
</xsd:appinfo>

</xsd:annotation>
</xsd:enumeration>

</xsd:restriction>
</xsd:simpleType>

Table 3.13 Mapping Type System Constructs to XSD

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XSD IDL XSD

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};

<xsd:simpleType name="PrimitiveEnum">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="ENUM1">
<xsd:annotation>

<xsd:appinfo>
<ordinal>10</ordinal>

</xsd:appinfo>
</xsd:annotation>

</xsd:enumeration>
<xsd:enumeration value="ENUM2">

<xsd:annotation>
<xsd:appinfo>

<ordinal>20</ordinal>
</xsd:appinfo>

</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="ENUM3">

<xsd:annotation>
<xsd:appinfo>

<ordinal>30</ordinal>
</xsd:appinfo>

</xsd:annotation>
</xsd:enumeration>

</xsd:restriction>
</xsd:simpleType>

con-
stant

IDL constants are mapped by substituting their value directly in the generated file

struct

xsd:-
complexType
with
xsd:sequence

struct PrimitiveStruct
{
short short_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
minOccurs="1" maxOccurs="1"
type="xsd:short"/>

</xsd:sequence>
</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

137

3.5 Creating User Data Types with XML Schemas (XSD)

138

Type/Construct Example

IDL XSD IDL XSD

union

xsd:-
complexType
with
xsd:choice

union PrimitiveUnion
switch (long) {

case 1:
short short_

member;
default:

long long_member;
};

<xsd:complexType name="PrimitiveUnion">
<xsd:sequence>

<xsd:element name="discriminator"
type="xsd:int"/>

<xsd:choice>
<!-- case 1 -->1

<xsd:element name="short_member"
minOccurs="0" maxOccurs="1"
type="xsd:short">

<xsd:annotation>
<xsd:appinfo>

<case>1</case>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>
<!-- case default -->
<xsd:element name="long_member"
minOccurs="0" maxOccurs="1"
type="xsd:int">
<xsd:annotation>

<xsd:appinfo>
<case>default</case>

</xsd:appinfo>
</xsd:annotation>

</xsd:element>
</xsd:choice>

</xsd:sequence>
</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

1The discriminant values can be described using comments (as specified by the standard) or xsd:annotation tags. We
recommend using annotations because comments may be removed by XSD/XML parsers.

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XSD IDL XSD

value-
type

xsd:-
complexType
with
@valuetype
annotation

valuetype
BaseValueType {
public long long_

member;
};

valuetype
DerivedValueType:
BaseValueType {
public long long_

member2;
public long long_

member3;
};

<xsd:complexType name="BaseValueType">
<xsd:sequence>

<xsd:element name=”long_member"
maxOccurs="1" minOccurs="1"
type="xs:int"/>

<!-- @visibility public -->
</xsd:sequence>

</xs:complexType>

<!-- @valuetype true -->
<xs:complexType name="DerivedValueType">

<xs:complexContent>
<xs:extension base="BaseValueType">

<xs:sequence>
<xs:element name="long_member2"
maxOccurs="1" minOccurs="1"
type="xs:int"/>

<!-- @visibility public -->
<xs:element name="long_member3"
maxOccurs="1" minOccurs="1"
type="xs:int"/>

<!-- @visibility public -->
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<!-- @valuetype true -->

ty-
pedef

Type defin-
itions are
mapped to
XML schema
type re-
strictions

typedef short
ShortType;
struct
PrimitiveStruct {

short short_member;
};

typedef PrimitiveType
=

PrimitiveStructType;

<xsd:simpleType name="ShortType">
<xsd:restriction base="xsd:short"/>

</xsd:simpleType>

<!—- Struct definition -->
<xsd:complexType name="PrimitiveStruct">

<xsd:sequence>
<xsd:element name="short_member"
minOccurs="1" maxOccurs="1"
type="xsd:short"/>

</xsd:sequence>
</xsd:complexType>

<!—- Typedef definition -->
<xsd:complexType
name="PrimitiveTypeStructType">
<xsd:complexContent>

<xsd:restriction base=”PrimitiveStruct”>
<xsd:sequence>

<xsd:element name="short_member"
minOccurs="1" maxOccurs="1"
type="xsd:short"/>

</xsd:sequence>
</xsd:restriction>

</xsd:complexContent>
</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

139

3.5 Creating User Data Types with XML Schemas (XSD)

140

Type/Construct Example

IDL XSD IDL XSD

arrays

n xsd:-
complexType
with
sequence con-
taining one
element with
min & max oc-
curs

There is one
xsd:-
complexType
per array di-
mension

struct
OneArrayStruct {

short short_array
[2];
};

<!-- Array type -->
<xsd:complexType name=
"OneArrayStruct_short_array_ArrayOfShort">
<xsd:sequence>

<xsd:element name="item" minOccurs="2"
maxOccurs="2" type="xsd:short">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Struct w unidimensional array member -->
<xsd:complexType name="OneArrayStruct">

<xsd:sequence>
<xsd:element name="short_array"
minOccurs="1" maxOccurs="1"
type=

"OneArrayStruct_short_array_ArrayOfShort"/>
</xsd:sequence>

</xsd:complexType>

arrays
(cont’d)

n xsd:-
complexType
with
sequence con-
taining one
element with
min & max
occurs

There is one
xsd:-
complexType
per array di-
mension

struct
TwoArrayStruct {

short short_array
[2][1];
};

<!--Second dimension array type -->
<xsd:complexType name=
"TwoArrayStruct_short_array_ArrayOfShort">
<xsd:sequence>

<xsd:element name="item"
minOccurs="2" maxOccurs="2"
type="xsd:short">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- First dimension array type -->
<xsd:complexType name=
"TwoArrayStruct_short_array_ArrayOfArrayOfShort">

<xsd:sequence>
<xsd:element name="item"
minOccurs="1" maxOccurs="1"
type=

"TwoArrayStruct_short_array_ArrayOfShort">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<!--Struct containing a bidimensional array
member -->

<xsd:complexType name="TwoArrayStruct">
<xsd:sequence>

<xsd:element name="short_array"
minOccurs="1" maxOccurs="1"
type=

"TwoArrayStruct_short_array_ArrayOfArrayOfShort"/>
</xsd:sequence>

</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XSD IDL XSD

bound-
ed se-
quenc-
e

xsd:-
complexType
with
sequence con-
taining one
element
with min & max
occurs

struct
SequenceStruct {

sequence<short,4>
short_sequence;

};

<!-- Sequence type -->
<xsd:complexType name=
"SequenceStruct_short_sequence_SequenceOfShort">

<xsd:sequence>
<xsd:element name="item" minOccurs="0"
maxOccurs="4" type="xsd:short">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Struct containing a bounded sequence
member -->

<xsd:complexType name="SequenceStruct">
<xsd:sequence>

<xsd:element name="short_sequence"
minOccurs="1" maxOccurs="1"
type=

"SequenceStruct_short_sequence_SequenceOfShort"/>
</xsd:sequence>

</xsd:complexType>

un-
bound-
ed
se-
quenc-
e

xsd:-
complexType
with sequence
containing
one element
with
min & max oc-
curs

struct
SequenceStruct {

sequence<short>
short_sequence;

};

<!-- Sequence type -->
<xsd:complexType name=

"SequenceStruct_short_sequence_SequenceOfShort">
<xsd:sequence>

<xsd:element name="item"
minOccurs="0" maxOccurs="unbounded"
type="xsd:short"/>

</xsd:sequence>
</xsd:complexType>

<!-- Struct containing unbounded sequence member -->
<xsd:complexType name="SequenceStruct">

<xsd:sequence>
<xsd:element name="short_sequence"
minOccurs="1" maxOccurs="1"
type=

"SequenceStruct_short_sequence_SequenceOfShort"/>
</xsd:sequence>

</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

141

3.5 Creating User Data Types with XML Schemas (XSD)

142

Type/Construct Example

IDL XSD IDL XSD

array of
se-
quenc-
es

n + 1 xsd:-
complexType
with
sequence con-
taining one
element
with min & max
occurrences.

There is one
xsd:-
complexType
per
array di-
mension and
one
xsd:-
complexType
for the se-
quence.

struct

ArrayOfSequencesStruc
t {

sequence<short,4>
sequence_sequence

[2];
};

<!-- Sequence declaration -->
<xsd:complexType name=
"ArrayOfSequencesStruct_sequence_array_SequenceOfShort">
<xsd:sequence>
<xsd:element name="item"
minOccurs="0" maxOccurs="4"
type="xsd:short">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<!-- Array declaration -->
<xsd:complexType name=
"ArrayOfSequencesStruct_sequence_array_ArrayOf
SequenceOfShort">

<xsd:sequence>
<xsd:element name="item"
minOccurs="2" maxOccurs="2"
type=
"ArrayOfSequencesStruct_sequence_array_SequenceOfShort">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Structure containing a member that is an
array of sequences -->

<xsd:complexType name="ArrayOfSequencesStruct">
<xsd:sequence>

<xsd:element name="sequence_array"
minOccurs="1" maxOccurs="1"
type=
"ArrayOfSequencesStruct_sequence_array_ArrayOf

SequenceOfShort"/>
</xsd:sequence>

</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XSD IDL XSD

se-
quenc-
e of
arrays

Sequences of
arrays must be
implemented
using an ex-
plicit
type definition
(typedef) for
the array

typedef
short ShortArray[2];

struct

SequenceOfArraysStruc
t {

sequence<ShortArray,
2>

arrays_sequence;
};

<!-- Array declaration -->
<xsd:complexType name="ShortArray">

<xsd:sequence>
<xsd:element name="item"
minOccurs="2" maxOccurs="2"
type="xsd:short">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Sequence declaration -->
<xsd:complexType name=
"SequencesOfArraysStruct_array_sequence_SequenceOfShortArray">
<xsd:sequence>

<xsd:element name="item"
minOccurs="0" maxOccurs="2" type="ShortArray">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Struct containing a sequence of arrays -->
<xsd:complexType name="SequenceOfArraysStruct">

<xsd:sequence>
<xsd:element name="arrays_sequence"
minOccurs="1" maxOccurs="1"
type=

"SequencesOfArraysStruct_arrays_sequence_SequenceOfShortArray"/>
</xsd:sequence>

</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

143

3.5 Creating User Data Types with XML Schemas (XSD)

144

Type/Construct Example

IDL XSD IDL XSD

se-
quenc-
e of
se-
quenc-
es

Sequences of
sequences
must
be im-
plemented us-
ing an
explicit type
definition (ty-
pedef)
for the second
sequence

typedef
sequence<short,4>

ShortSequence;

struct
SequenceOfSequences {

sequence<ShortSequenc
e,2>
sequences_sequence;

};

<!-- Internal sequence declaration -->
<xsd:complexType name="ShortSequence">

<xsd:sequence>
<xsd:element name="item"
minOccurs="0" maxOccurs="4"
type="xsd:short">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- External sequence declaration -->
<xsd:complexType name=

"SequencesOfSequences_sequences_sequence_
SequenceOfShortSequence">

<xsd:sequence>
<xsd:element name="item"
minOccurs="0" maxOccurs="2"
type="ShortSequence">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!--Struct containing sequence of sequences -->
<xsd:complexType name="SequenceOfSequences">

<xsd:sequence>
<xsd:element name="sequences_sequence"
minOccurs="1" maxOccurs="1"
type="SequencesOfSequences_

sequences_sequence_SequenceOfShortSequence"/>
</xsd:sequence>

</xsd:complexType>

module

Modules are
mapped
adding the
name of the
module before
the
name of each
type inside the
module

module PackageName {
struct

PrimitiveStruct {
long long_member;

};
};

<xsd:complexType name=
"PackageName.PrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_member"
minOccurs="1" maxOccurs="1"
type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

include xsd:include
#include
"PrimitiveType.idl"

<xsd:include schemaLocation=
"PrimitiveType.xsd"/>

@key
an-
nota-
tion1

<!--
@key <true|-
false|1|0>
-->

Default (if not
specified):
false

struct
KeyedPrimitiveStruct
{

@key short
short_member;

};

<xsd:complexType
name="KeyedPrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_member"
minOccurs="1" maxOccurs="1"
type="xsd:int"/>

<!-- @key true -->
</xsd:sequence>

</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

1For information on this and the other annotations, see 3.3.9 Using Builtin Annotations on page 112.

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XSD IDL XSD

@ex-
ternal
or
pointer

<!--@external
<true|-
false|1|0>
-->

Default if not
specified:
false

struct
PrimitiveStruct {

@external long
long_member;

};

<xsd:complexType
name="PrimitiveStruct">

<xsd:sequence>
<xsd:element
name="long_member"
minOccurs="1"
maxOccurs="1"
type="xsd:int"/>
<!-- @external true -->

</xsd:sequence>
</xsd:complexType>

@op-
tional
an-
nota-
tion

minOccurs at-
tribute set to 0
or 1

Default (if not
present): 1

struct Point {
long x;
long y;
@optional long z;

};

<xsd:complexType name= "Point">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

<xsd:element name="y" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

<xsd:element name="z" minOccurs="0" maxOccurs="1"
type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->

@id an-
nota-
tion

<!--@id
<value> -->

Default (if not
present): id cal-
culated based
on the @aut-
oid value of
the enclosing
type and mod-
ule(s)

@mutable
struct Point {

@id(56) long x;
@id(57) long y;
long z;

};

<xsd:complexType name= "Point">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

<!-- @id 56 -->
<xsd:element name="y" minOccurs="1" maxOccurs="1"

type="xsd:int"/>
<!-- @id 57 -->
<xsd:element name="z" minOccurs="1" maxOccurs="1"

type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
<!-- @struct true -->
<!-- @extensibility mutable-->

@hash-
id an-
nota-
tion

<!--@hashid
[<value>] →

Default (if not
present). id cal-
culated based
on the @aut-
oid value of
the enclosing
type and mod-
ule(s)

@mutable
struct Point {

@hashid long x;
@hashid(“other_y”)
long y;

};

<xsd:complexType name= "Point">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

<!-- @hashid -->
<xsd:element name="y" minOccurs="1" maxOccurs="1"

type="xsd:int"/>
<!-- @hashid other_y-->

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->
<!-- @extensibility mutable-->

Table 3.13 Mapping Type System Constructs to XSD

145

3.5 Creating User Data Types with XML Schemas (XSD)

146

Type/Construct Example

IDL XSD IDL XSD

@valu-
e an-
nota-
tion

<!--@ordinal
<value>-->

Default (if not
present): the
value of the
previous enu-
merator plus 1

enum PrimitiveEnum {
@value (10) ENUM1,
@value (20) ENUM2,
ENUM3

}

<xsd:simpleType name="PrimitiveEnum">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="ENUM1">
<xsd:annotation>

<xsd:appinfo>
<ordinal>10</ordinal>

</xsd:appinfo>
</xsd:annotation>

</xsd:enumeration>
<!-- @ordinal 10-->
<xsd:enumeration value="ENUM2">

<xsd:annotation>
<xsd:appinfo>

<ordinal>20</ordinal>
</xsd:appinfo>

</xsd:annotation>
</xsd:enumeration>
<!-- @ordinal 20-->
<xsd:enumeration value="ENUM3">
</xsd:enumeration>

</xsd:restriction>
</xsd:simpleType>

@de-
fault_lit-
eral
an-
nota-
tion

default_literal
appinfo an-
notation with
values true,
false, 0, or 1

Default (if not
present): 0"

enum MyEnum {
ENUM1,
@default_literal
ENUM2

};

<xsd:simpleType name="MyEnum">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="ENUM1">
</xsd:enumeration>
<xsd:enumeration value="ENUM2">

<xsd:annotation>
<xsd:appinfo>

<default_literal>true</default_literal>
</xsd:appinfo>

</xsd:annotation>
</xsd:enumeration>

</xsd:restriction>
</xsd:simpleType>

@de-
fault
an-
nota-
tion

default at-
tribute for ele-
ments inside a
structure, de-
fault appinfo
annotation for
type defin-
itions

Default (if not
present in this
member or its
alias types): 0,
the empty
string, or
whichever enu-
merator is the
default_literal

@default(24)
typedef long
MyLongTypedefWithDefa
ult;
struct Point {

@default(42)
long x;

MyLongTypedefWithDefa
ult y;
};

<xsd:simpleType name="MyLongTypedefWithDefault">
<xsd:restriction base="xsd:int">

<xsd:annotation>
<xsd:appinfo>

<default>24</default>
</xsd:appinfo>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>
<xsd:complexType name= "Point">

<xsd:sequence>
<xsd:element name="x" minOccurs="1" maxOccurs="1"

type="xsd:int" default="42"/>
<xsd:element name="y" minOccurs="1" maxOccurs="1"

type="tns:MyLongTypedefWithDefault"/>
</xsd:sequence>

</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XSD IDL XSD

@de-
fault
an-
nota-
tion
(string-
s)

default at-
tribute for alias
elements in-
side a struc-
ture, default
appinfo an-
notation for
type defin-
itions and reg-
ular strings
inside a struc-
ture

Default (if not
present in this
member or its
alias types): 0,
the empty
string, or
whichever enu-
merator is the
default_literal

@default("myDefault")
typedef string
MyStringTypedefWithDe
fault;
struct DefaultString
{

@default("string")
string x;

MyStringTypedefWithDe
fault y;

@default
("myDefaultDefault")

MyStringTypedefWithDe
fault z;
};

<xsd:simpleType name="MyStringTypedefWithDefault">
<xsd:restriction base="xsd:string">

<xsd:annotation>
<xsd:appinfo>

<default>"myDefault"</default>
</xsd:appinfo>

</xsd:annotation>
<xsd:maxLength value="255" fixed="true"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="DefaultString_x_BoundedString">
<xsd:sequence>

<xsd:element name="item" minOccurs="1" maxOccurs="1">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="255" fixed="true"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name= "DefaultString">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1"
type=""tns:DefaultString_x_BoundedString"">

<xsd:annotation>
<xsd:appinfo>

<default>"string"</default>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>
<xsd:element name="y" minOccurs="1" maxOccurs="1"

type="tns:MyStringTypedefWithDefault"/>
<xsd:element name="z" minOccurs="1" maxOccurs="1"

type="tns:MyStringTypedefWithDefault"
default="myDefaultDefault"/>

</xsd:sequence>
</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

147

3.5 Creating User Data Types with XML Schemas (XSD)

148

Type/Construct Example

IDL XSD IDL XSD

@min
an-
nota-
tion

minInclusive
attribute for
elements in-
side a struc-
ture, min
appinfo an-
notation for
type defin-
itions

Default (if not
present in this
member or its
alias types):
the minimum
possible value
of the type

@min(-32)
typedef long
myLongDefault;
struct Point {

@min(-32)
long x;
long y;
myLongDefault myX;

};

<xsd:simpleType name="myLongDefault">
<xsd:restriction base="xsd:int">

<xsd:annotation>
<xsd:appinfo>

<min>-32</min>
</xsd:appinfo>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>
<xsd:complexType name= "Point">

<xsd:sequence>
<xsd:element name="x" minOccurs="1" maxOccurs="1">

<xsd:simpleType>
<xsd:restriction base="xsd:int">

<xsd:minInclusive value="-32"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name="y" minOccurs="1" maxOccurs="1"

type="xsd:int"/>
<xsd:element name="myX" minOccurs="1" maxOccurs="1"

type="tns:myLongDefault"/>
</xsd:sequence>

</xsd:complexType>

@max
an-
nota-
tion

maxInclusive
attribute for
elements in-
side an struc-
ture, max
appinfo an-
notation for
types defin-
itions

Default (if not
present in this
member or its
alias types):
the maximum
possible value
of the type

@max(31)
typedef long
myLongDefault;
struct Point {

@max(31)
long x;
long y;
myLongDefault myX;

};

<xsd:simpleType name="myLongDefault">
<xsd:restriction base="xsd:int">

<xsd:annotation>
<xsd:appinfo>

<max>31</max>
</xsd:appinfo>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>
<xsd:complexType name= "Point">

<xsd:sequence>
<xsd:element name="x" minOccurs="1" maxOccurs="1">

<xsd:simpleType>
<xsd:restriction base="xsd:int">

<xsd:maxInclusive value="31"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name="y" minOccurs="1" maxOccurs="1"

type="xsd:int"/>
<xsd:element name="myX" minOccurs="1" maxOccurs="1"

type="tns:myLongDefault"/>
</xsd:sequence>

</xsd:complexType>

Table 3.13 Mapping Type System Constructs to XSD

3.5 Creating User Data Types with XML Schemas (XSD)

Type/Construct Example

IDL XSD IDL XSD

@rang-
e an-
nota-
tion

Not sup-
ported. Use
min and max
attributes in-
stead

@range(min = -32, max
= 31)
typedef long
myLongDefault;
struct Point {

@range(min = -32,
max = 31)

long x;
long y;
myLongDefault myX;

};

<xsd:simpleType name="myLongDefault">
<xsd:restriction base="xsd:int">

<xsd:annotation>
<xsd:appinfo>

<min>-32</min>
<max>31</max>

</xsd:appinfo>
</xsd:annotation>

</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name= "Point">

<xsd:sequence>
<xsd:element name="x" minOccurs="1" maxOccurs="1">

<xsd:simpleType>
<xsd:restriction base="xsd:int">

<xsd:minInclusive value="-32"/>
<xsd:maxInclusive value="31"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="y" minOccurs="1" maxOccurs="1"

type=""xsd:int""/>
<xsd:element name="myX" minOccurs="1" maxOccurs="1"

type="tns:myLongDefault"/>
</xsd:sequence>

</xsd:complexType>

@aut-
oid an-
nota-
tion

<!--@autoid
[<hash|seque-
ntial>] -->

Default (if not
present): the
@autoid value
in ancestor
module(s) or
sequential if
not specified.

@mutable
@autoid(HASH)
struct Point {

long x;
long y;

};

<xsd:complexType name= "Point">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

<xsd:element name="y" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->
<!-- @autoid hash-->
<!-- @extensibility mutable-->

@n-
ested
or
@top-
level
an-
nota-
tion

<!--
@topLevel
<true|-
false|1|0>
-->

Default (if not
specified): true

@nested
struct

TopLevelPrimitiveStru
ct {

short short_
member;
};

or
@top-level(false)
struct

TopLevelPrimitiveStru
ct {

short short_
member;
};

<xsd:complexType
name="TopLevelPrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
minOccurs="1" maxOccurs="1"
type="xsd:short"/>

</xsd:sequence>
</xsd:complexType>
<!-- @nested true-->

Table 3.13 Mapping Type System Constructs to XSD

149

3.5 Creating User Data Types with XML Schemas (XSD)

150

Type/Construct Example

IDL XSD IDL XSD

@ex-
tens-
ibility,
@mut-
able,
@ap-
penda-
ble, or
@final
an-
nota-
tion

<!--@ex-
tensibility <fi-
nal|ap-
pendable|mut-
able>→

Default (if not
present): ap-
pendable

@mutable
struct Point {

long x;
long y;

};

<xsd:complexType name= "Point">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

<xsd:element name="y" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

<!-- @struct true -->
<!-- @extensibility mutable-->

@dat-
a_rep-
re-
sen-
tation1

<!--@data_
representation
<xcdr|x-
cdr2|xml> -->

Default (if not
present):
xcdr2 for flat
data language
binding; the
@data_rep-
resentation
value in an-
cestormodule
(s) or (xcdr|x-
cdr2) for plain
language

@data_representation
(XCDR2)
@mutable
struct Point {

long x;
long y;

};

<xsd:complexType name= "Point">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

<xsd:element name="y" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->
<!-- @data_representation xcdr2-->
<!-- @extensibility mutable-->

@use_
vector
annota
tion

<!--@use_vec-
tor <true|-
false|1|0> -->

Default (if not
present): false
unless code
generated
with -al-
waysUseSt-
dVector

@use_vector

sequence<boolean,5>
myBooleanSeq;

<xsd:element name="myBooleanSeq"
minOccurs="1" maxOccurs="1"
type=

"tns:SequenceType_myBooleanSeq_SequenceOfboolean"/>
<!-- @use_vector true -->

Table 3.13 Mapping Type System Constructs to XSD

1You can use either @data_representation or @allowed_data_representation.

3.5.1 Primitive Types

Type/Construct Example

IDL XSD IDL XSD

@lan-
guag-
e_
binding
an-
nota-
tion

<!--@lan-
guageBinding
<plain|flat_
data> -->

Default (if not
present): the
@language_
binding value
in ancestor
module(s) or
plain if not spe-
cified

@language_binding
(FLAT_DATA)
@final
struct Point {

long x;
long y;

};

<xsd:complexType name= "Point">
<xsd:sequence>

<xsd:element name="x" minOccurs="1"
maxOccurs="1" type="xsd:int"/>

<xsd:element name="y" minOccurs="1"
maxOccurs="1" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->
<!-- @language_binding flat_data-->
<!-- @extensibility final-->

@trans-
fer_
mode
an-
nota-
tion

<!--@trans-
ferMode <in-
band|shmem_
ref> -->

Default (if not
present): the
@transfer_
mode value in
ancestormod-
ule(s) or in-
band if not
specified

@language_binding
(SHMEM_REF)
struct Point {

long x;
long y;

};

<xsd:complexType name= "Point">
<xsd:sequence>

<xsd:element name="x" minOccurs="1"
maxOccurs="1" type="xsd:int"/>

<xsd:element name="y" minOccurs="1"
maxOccurs="1" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->
<!-- @transfer_mode shmem_ref-->

@re-
solve_
name
an-
nota-
tion

<!--
@re-
solveName
<true|-
false|1|0>
-->

Default (if not
specified):
@resolve_
name of the
parent type or
false if not spe-
cified on par-
ent

struct
Unre-
solvedPrim-
itiveStruct {

@resolve_name
(false)

Prim-
itiveStruct
primitive_member;
};

<xsd:complexType
name="UnresolvedPrimitiveStruct">
<xsd:sequence>

<xsd:element
name="primitive_member"
minOccurs="1" maxOccurs="1"
type="PrimitiveStruct"/>

<!-- @resolveName false -->
</xsd:sequence>

</xsd:complexType>

other
an-
nota-
tions

<!--
@<directive
kind>
<value>
-->

//@copy This text
will be

copied in the
generated

files

<!--@copy This text will be copied in the generated files -->

Table 3.13 Mapping Type System Constructs to XSD

3.5.1 Primitive Types

The primitive types char, wchar, long double, and wstring are not supported natively in XSD. Connext
DDS provides definitions for these types in the file <NDDSHOME>/resource/app/app_

151

3.6 Using RTI Code Generator (rtiddsgen)

152

support/rtiddsgen/schema. All files that use the primitive types char, wchar, long double and wstring
must reference rti_dds_topic_types_common.xsd. For example:
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dds="http://www.omg.org/dds">

<xsd:import namespace="http://www.omg.org/dds"
schemaLocation="rti_dds_topic_types_common.xsd"/>

<xsd:complexType name="Foo">
<xsd:sequence>

<xsd:element name="myChar" minOccurs="1"
maxOccurs="1" type="dds:char"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

3.6 Using RTI Code Generator (rtiddsgen)

RTI Code Generator creates the code needed to define and register a user-data type with Connext DDS.
Using this tool is optional if:

l You are using dynamic types (see 3.8 Interacting Dynamically with User Data Types on page 154)

l You are using one of the built-in types (see 3.2 Built-in Data Types on page 38)

See the RTI Code Generator User's Manual for more information.

3.7 Using Generated Types without Connext DDS (Standalone)

You can use the generated type-specific source and header files without linking the Connext DDS libraries
or even including the Connext DDS header files. That is, the files generated by RTI Code Generator for
your data types can be used standalone.

The directory <NDDSHOME>/resource/app/app_support/rtiddsgen/standalone contains the required
helper files:

l include: header and templates files for C and C++.

l src: source files for C and C++.

l class: Java jar file.

3.7.1 Using Standalone Types in C

The generated files that can be used standalone are:

3.7.2 Using Standalone Types in C++

l <idl file name>.c: Types source file

l <idl file name>.h: Types header file

The type plug-in code (<idl file>Plugin.[c,h]) and type-support code (<idl file>Support.[c,h]) cannot be
used standalone.

To use the generated types in a standalone manner:

1. Include the directory <NDDSHOME>/resource/app/app_support/rtiddsgen/standalone/include
in the list of directories to be searched for header files.

2. Add the source files, ndds_standalone_type.c and <idl file name>.c, to your project.

3. Include the file <idl file name>.h in the source files that will use the generated types in a standalone
manner.

4. Compile the project using the following two preprocessor definitions:
l NDDS_STANDALONE_TYPE

l The definition for your platform (RTI_VXWORKS, RTI_QNX, RTI_WIN32, RTI_INTY,
RTI_LYNX or RTI_UNIX)

3.7.2 Using Standalone Types in C++

(This section applies to the Traditional C++ API only)

The generated files that can be used standalone are:

l <idl file name>.cxx: Types source file

l <idl file name>.h: Types header file

The type-plugin code (<idl file>Plugin.[cxx,h]) and type-support code (<idl file>Support.[cxx,h]) cannot
be used standalone.

To use the generated types in a standalone manner:

1. Include the directory <NDDSHOME>/resource/app/app_support/rtiddsgen/standalone/include
in the list of directories to be searched for header files.

2. Add the source files, ndds_standalone_type.cxx and <idl file name>.cxx, to your project.

3. Include the file <idl file name>.h in the source files that will use the RTI Code Generator types in a
standalone manner.

153

3.7.3 Standalone Types in Java

154

4. Compile the project using the following two preprocessor definitions:
l NDDS_STANDALONE_TYPE

l The definition for your platform (such as RTI_VXWORKS, RTI_QNX, RTI_WIN32, RTI_
INTY, RTI_LYNX or RTI_UNIX)

3.7.3 Standalone Types in Java

The generated files that can be used standalone are:

l <idl type>.java

l <idl type>Seq.java

The type code (<idl file>TypeCode.java), type-support code (<idl type>TypeSupport.java),
DataReader code (<idl file>DataReader.java) and DataWriter code (<idl file>DataWriter.java) cannot
be used standalone.

To use the generated types in a standalone manner:

1. Include the file ndds_standalone_type.jar in the classpath of your project.

2. Compile the project using the standalone types files (<idl type>.java and <idl type>Seq.java).

3.8 Interacting Dynamically with User Data Types

3.8.1 Type Schemas and TypeCode Objects

Type schemas—the names and definitions of a type and its fields—are represented by TypeCode objects,
described in 3.1.3 Introduction to TypeCode on page 37.

3.8.2 Defining New Types

This section does not apply when using the separate add-on product, Ada Language Support,
which does not support Dynamic Types.

Locally, your application can access the type code for a generated type "Foo" by calling the FooTypeSup-
port::get_typecode() (Traditional C++ Notation) operation in the code for the type generated by RTI
Code Generator. But you can also create TypeCodes at run time without any code generation.

Creating a TypeCode is parallel to the way you would define the type statically: you define the type itself
with some name, then you add members to it, each with its own name and type.

For example, consider the following statically defined type. It might be in C, C++, or IDL; the syntax is
largely the same.

3.8.2 Defining New Types

struct MyType {
int32 my_integer;
float my_float;
bool my_bool;
@key string<128> my_string;

};

This is how you would define the same type at run time in the Traditional C++ API:
DDS_ExceptionCode_t ex = DDS_NO_EXCEPTION_CODE;
DDS_StructMemberSeq structMembers; // ignore for now
DDS_TypeCodeFactory* factory =

DDS_TypeCodeFactory::get_instance();
DDS_TypeCode* structTc = factory->create_struct_tc(

"MyType", structMembers, ex);
// If structTc is NULL, check 'ex' for more information.
structTc->add_member(

"my_integer", DDS_TYPECODE_MEMBER_ID_INVALID,
factory->get_primitive_tc(DDS_TK_LONG),
DDS_TYPECODE_NONKEY_REQUIRED_MEMBER, ex);

structTc->add_member(
"my_float", DDS_TYPECODE_MEMBER_ID_INVALID,
factory->get_primitive_tc(DDS_TK_FLOAT),
DDS_TYPECODE_NONKEY_REQUIRED_MEMBER, ex);

structTc->add_member(
"my_bool", DDS_TYPECODE_MEMBER_ID_INVALID,
factory->get_primitive_tc(DDS_TK_BOOLEAN),
DDS_TYPECODE_NONKEY_REQUIRED_MEMBER, ex);

structTc->add_member(
"my_string", DDS_TYPECODE_MEMBER_ID_INVALID,
factory->create_string_tc(128),
DDS_TYPECODE_KEY_MEMBER, ex);

More detailed documentation for the methods and constants you see above, including example code, can
be found in the API Reference HTML documentation, which is available for all supported programming
languages.

If, as in the example above, you know all of the fields that will exist in the type at the time of its con-
struction, you can use the StructMemberSeq to simplify the code:

155

3.8.3 Sending Only a Few Fields

156

DDS_StructMemberSeq structMembers;
structMembers.ensure_length(4, 4);
DDS_TypeCodeFactory* factory = DDS_TypeCodeFactory::get_instance();
structMembers[0].name = DDS_String_dup("my_integer");
structMembers[0].type = factory->get_primitive_tc(DDS_TK_LONG);
structMembers[1].name = DDS_String_dup("my_float");
structMembers[1].type = factory->get_primitive_tc(DDS_TK_FLOAT);
structMembers[2].name = DDS_String_dup("my_bool");
structMembers[2].type = factory->get_primitive_tc(DDS_TK_BOOLEAN);
structMembers[3].name = DDS_String_dup("my_string");
structMembers[3].type = factory->create_string_tc(128);
structMembers[3].is_key = DDS_BOOLEAN_TRUE;
DDS_ExceptionCode_t ex = DDS_NO_EXCEPTION_CODE;
DDS_TypeCode* structTc =

factory->create_struct_tc(
"MyType", structMembers, ex);

After you have defined the TypeCode, you will register it with a DomainParticipant using a logical name
(note: this step is not required in the Modern C++ API). You will use this logical name later when you cre-
ate a Topic.
DDSDynamicDataTypeSupport* type_support =

new DDSDynamicDataTypeSupport(structTc,
DDS_DYNAMIC_DATA_TYPE_PROPERTY_DEFAULT);

DDS_ReturnCode_t retcode =
type_support->register_type(participant,

"My Logical Type Name");

For code examples for the Modern C++ API, please refer to the API Reference HTML documentation:
Modules, Programming How-To's, DynamicType and DynamicData Use Cases.

Now that you have created a type, you will need to know how to interact with objects of that type. See
3.8.3 Sending Only a Few Fields below for more information.

3.8.3 Sending Only a Few Fields

In some cases, your data model may contain a large number of potential fields, but it may not be desirable
or appropriate to include a value for every one of them with every DDS data sample.

l It may use too much bandwidth. You may have a very large data structure, parts of which are
updated very frequently. Rather than resending the entire data structure with every change, you may
wish to send only those fields that have changed and rely on the recipients to reassemble the com-
plete state themselves.

l It may not make sense. Some fields may only have meaning in the presence of other fields. For
example, you may have an event stream in which certain fields are only relevant for certain kinds of
events.

To support these and similar cases, Connext DDS supports mutable types and optional members (see the
RTI Connext DDS Core Libraries Extensible Types Guide).

3.8.4 Sending Type Information on the Network

3.8.4 Sending Type Information on the Network

In addition to being used locally, the type information of a Topic is published automatically during dis-
covery as part of the builtin topics for publications and subscriptions. See 3.1.3.1 Sending Type Inform-
ation on the Network on page 38.

3.8.4.1 Type Codes for Built-in Types

The type codes associated with the built-in types are generated from the following IDL type definitions:

module DDS {
/* String */
struct String {

string<max_size> value;
};
/* KeyedString */
struct KeyedString {

string<max_size> key; //@key
string<max_size> value;

};
/* Octets */
struct Octets {

sequence<octet, max_size> value;
};
/* KeyedOctets */
struct KeyedOctets {

string<max_size> key; //@key
sequence<octet, max_size> value;

};
};

The maximum size (max_size) of the strings and sequences that will be included in the type code defin-
itions can be configured on a per-DomainParticipant-basis by using the properties in Table 3.14 Properties
for Allocating Size of Built-in Types, per DomainParticipant.

Built-in
Type Property Description

String
dds.builtin_
type.string.max_
size

Maximumsize of the strings published by the DataWritersand received by the DataReadersbelonging to a Do-
mainParticipant (includes the NULL-terminated character).

Default: 1024

Table 3.14 Properties for Allocating Size of Built-in Types, per DomainParticipant

157

3.9 Working with DDS Data Samples

158

Built-in
Type Property Description

KeyedString

dds.builtin_
type.keyed_
string.
max_key_size

Maximumsize of the keys used by the DataWritersand DataReadersbelonging to a DomainParticipant (in-
cludes the NULL-terminated character).

Default: 1024

dds.builtin_
type.keyed_
string.
max_size

Maximumsize of the strings published by the DataWritersand received by the DataReadersbelonging to a Do-
mainParticipant using the built-in type (includes the NULL-terminated character).

Default: 1024

Octets
dds.builtin_
type.octets.max_
size

Maximumsize of the octet sequences published by the DataWritersand DataReadersbelonging to a Do-
mainParticipant.

Default: 2048

Keyed-Oc-
tets

dds.builtin_
type.keyed_oct-
ets.
max_key_size

Maximumsize of the key published by the DataWriter and received by the DataReadersbelonging to the
DomainParticipant (includes the NULL-terminated character).

Default: 1024.

dds.builtin_
type.keyed_oct-
ets.
max_size

Maximumsize of the octet sequences published by the DataWritersand DataReadersbelonging to a Do-
mainParticipant.

Default: 2048

Table 3.14 Properties for Allocating Size of Built-in Types, per DomainParticipant

3.9 Working with DDS Data Samples

You should now understand how to define and work with data types, whether you're using the simple data
types built into the middleware (see 3.2 Built-in Data Types on page 38), dynamically defined types (see
3.2.7 Managing Memory for Built-in Types on page 69), or code generated from IDL or XML files (see
3.3 Creating User Data Types with IDL on page 75 and 3.4 Creating User Data Types with Extensible
Markup Language (XML) on page 121).

Now that you have chosen one or more data types to work with, this section will help you understand how
to create and manipulate objects of those types.

3.9.1 Objects of Concrete Types

If you use one of the built-in types or decide to generate custom types from an IDL or XML file, your Con-
next DDS data type is like any other data type in your application: a class or structure with fields, methods,
and other members that you interact with directly.

In C

You create and delete your own objects from factories, just as you create Connext DDS objects from factor-
ies. In the case of user data types, the factory is a singleton object called the type support. Objects allocated
from these factories are deeply allocated and fully initialized.

3.9.1 Objects of Concrete Types

/* In the generated header file: */
struct MyData {

char* myString;
};
/* In your code: */
MyData* sample = MyDataTypeSupport_create_data();
char* str = sample->myString; /*empty, non-NULL string*/
/* ... */
MyDataTypeSupport_delete_data(sample);

In Traditional C++:

Without the -constructor option, you create and delete objects using the TypeSupport factories.

MyData* sample = MyDataTypeSupport::create_data();
char* str = sample->myString; // empty, non-NULL string
// ...
MyDataTypeSupport::delete_data(sample);

With the -constructor option, generated types have a default constructor, a copy constructor, and a
destructor. In this case the TypeSupport data creation methods are not available.
// In the header file
class MyType
{

MyType();
MyType(const MyType& that);
~MyType();
MyType& operator=(const MyType& that);

};

In Modern C++:

Generated types have value-type semantics and provide a default constructor, a constructor with para-
meters to initialize all the members, a copy constructor and assignment operator, a move constructor and
move-assignment operator, a destructor, equality operators, a swap function and an overloaded oper-
ator<<. Data members are accessed using getters and setters.

// In the generated header file
class MyData {
public:

MyData();
explicit MyData(const std::string& myString);

// Note: the implicit destructor, copy and
// move constructors, and assignment operators
// are available

std::string& myString() OMG_NOEXCEPT;
const std::string& myString() const OMG_NOEXCEPT;
void myString(const std::string& value);

159

3.9.1 Objects of Concrete Types

160

bool operator == (const MyData& other_) const;
bool operator != (const MyData& other_) const;
private:

// ...
};

void swap(MyData& a, MyData& b) OMG_NOEXCEPT
std::ostream& operator <<
(std::ostream& o,const MyData& sample);

// In your code:
MyData sample("Hello");
sample.myString("Bye");

In C# and C++/CLI:

You can use a no-argument constructor to allocate objects. Those objects will be deallocated by the
garbage collector as appropriate.

// In the generated code (C++/CLI):
public ref struct MyData {

public: System::String^ myString;
};

// In your code, if you are using C#:
MyData sample = new MyData();
System.String str = sample.myString;
// empty, non-null string

// In your code, if you are using C++/CLI:
MyData^ sample = gcnew MyData();
System::String^ str = sample->myString;
// empty, non-nullptr string

In Java:

You can use a no-argument constructor to allocate objects. Those objects will be deallocated by the
garbage collector as appropriate.

// In the generated code:
public class MyData {

public String myString = "";
}
// In your code:
MyData sample = new MyData();

3.9.2 Objects of Dynamically Defined Types

String str = sample->myString;
// empty, non-null string

3.9.2 Objects of Dynamically Defined Types

If you are working with a data type that was discovered or defined at run time, you will use the reflective
API provided by the DynamicData class to get and set the fields of your object.

Consider the following type definition:
struct MyData {

int32 myInteger;
};

As with a statically defined type, you will create objects from a TypeSupport factory. How to create or oth-
erwise obtain a TypeCode, and how to subsequently create from it a DynamicDataTypeSupport, is
described in 3.8.2 Defining New Types on page 154. In the Modern C++ API you will use the Dynam-
icData constructor, which receives a DynamicType.

For more information about the DynamicData and DynamicDataTypeSupport classes, consult the API
Reference HTML documentation, which is available for all supported programming languages (select
Modules, RTI Connext DDS API Reference, Topic Module, Dynamic Data).

In C:
DDS_DynamicDataTypeSupport* support = ...;
DDS_DynamicData* sample = DDS_DynamicDataTypeSupport_create_data(support);
DDS_Long theInteger = 0;
DDS_ReturnCode_t success = DDS_DynamicData_set_long(sample,

"myInteger", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 5);
/* Error handling omitted. */
success = DDS_DynamicData_get_long(sample, &theInteger,

"myInteger", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
/* Error handling omitted. "theInteger" now contains the value 5

if no error occurred.
*/

In Traditional C++:
DDSDynamicDataTypeSupport* support = ...;
DDS_DynamicData* sample = support->create_data();
DDS_ReturnCode_t success = sample->set_long("myInteger",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 5);
// Error handling omitted.
DDS_Long theInteger = 0;
success = sample->get_long(&theInteger, "myInteger",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
// Error handling omitted.
// "theInteger" now contains the value 5 if no error occurred.

In Modern C++:
using namespace dds::core::xtypes;

161

3.9.2 Objects of Dynamically Defined Types

162

StructType type(
"MyData", {

Member("myInteger", primitive_type<int32_t>())
}

);
DynamicData sample(type);
sample.value("myInteger", 5);
int32_t the_int = sample.value<int32_t>("myInteger");
// "the_int" now contains the value 5 if no exception was thrown

In C++/CLI:
using DDS;
DynamicDataTypeSupport^ support = ...;
DynamicData^ sample = support->create_data();
sample->set_long("myInteger",

DynamicData::MEMBER_ID_UNSPECIFIED, 5);
int theInteger = sample->get_long("myInteger",

0 /*redundant w/ field name*/);
/* Exception handling omitted.
* "theInteger" now contains the value 5 if no error occurred.
*/

In C#:
using namespace DDS;
DynamicDataTypeSupport support = ...;
DynamicData sample = support.create_data();
sample.set_long("myInteger", DynamicData.MEMBER_ID_UNSPECIFIED, 5);
int theInteger = sample.get_long("myInteger",

DynamicData.MEMBER_ID_UNSPECIFIED);
/* Exception handling omitted.
* "theInteger" now contains the value 5 if no error occurred.
*/

In Java:
import com.rti.dds.dynamicdata.*;
DynamicDataTypeSupport support = ...;
DynamicData sample = (DynamicData) support.create_data();
sample.set_int("myInteger", DynamicData.MEMBER_ID_UNSPECIFIED, 5);
int theInteger = sample.get_int("myInteger",

DynamicData.MEMBER_ID_UNSPECIFIED);
/* Exception handling omitted.
* "theInteger" now contains the value 5 if no error occurred.
*/

The Modern C++ API provides convenience functions to convert among DynamicData samples and typed
samples (such as MyData, from the previous example). For example:
#include "MyData.hpp"
// ...
MyData typed_sample(44);
DynamicData dynamic_sample = rti::core::xtypes::convert(typed_sample);
assert (dynamic_sample.value<int32_t>("myInteger") == 44);

3.9.3 Serializing and Deserializing Data Samples

dynamic_sample.value("myInteger", 33);
typed_sample = rti::core::xtypes::convert<MyData>(dynamic_sample);
assert (typed_sample.myInteger() == 33);

3.9.3 Serializing and Deserializing Data Samples

There are two TypePlugin operations to serialize a sample into a buffer and deserialize a sample from a buf-
fer. The sample serialization/deserialization uses CDR representation.

The feature is supported in the following languages: C, Modern and Traditional C++, Java, and .NET.

C:
#include "FooSupport.h"
FooTypeSupport_serialize_data_to_cdr_buffer(...)
FooTypeSupport_deserialize_data_from_cdr_buffer(...)

Traditional C++
#include "FooSupport.h"
FooTypeSupport::serialize_data_to_cdr_buffer(...)
FooTypeSupport::deserialize_data_from_cdr_buffer(...)

Modern C++
#include "Foo.hpp"
dds::topic::topic_type_support<Foo>::to_cdr_buffer(...)
dds::topic::topic_type_support<Foo>::from_cdr_buffer(...)

Java:
FooTypeSupport.get_instance().serialize_to_cdr_buffer(...)
FooTypeSupport.get_instance().deserialize_from_cdr_buffer(...)

C++/CLI:
FooTypeSupport::serialize_data_to_cdr_buffer(...)
FooTypeSupport::deserialize_data_from_cdr_buffer(...)

C#:
FooTypeSupport.serialize_data_to_cdr_buffer(...)
FooTypeSupport.deserialize_data_from_cdr_buffer(...)

3.9.4 Accessing the Discriminator Value in a Union

A union type can only hold a single member. Themember_id for this member is equal to the dis-
criminator value. To get the value of the discriminator, use the operation get_member_info_by_index()
on the DynamicData using an index value of 0. This operation fills in a DynamicDataMemberInfo struc-
ture, which includes amember_id field that is the value of the discriminator.

Once you know the discriminator value, you can use the proper version of get_<type>() (such as get_long
()) to access the member value.

For example:

163

3.10 Data Sample Serialization Limits

164

DynamicDataMemberInfo memberInfo = new DynamicDataMemberInfo();
myDynamicData.get_member_info_by_index(memberInfo, 0);
int discriminatorValue = memberInfo.member_id;
int myMemberValue = myDynamicData.get_long(null, discriminatorValue);

The Modern C++ API provides the method discriminator_value() to achieve the same result:

int32_t my_member_value = my_dynamic_data.value<int32_t>(
my_dynamic_data.discriminator_value());

3.10 Data Sample Serialization Limits

Connext DDS does not support sending samples with a serialized size bigger than 2,147,482,623 bytes. If
you try that, you will see serialization and deserialization errors. Even if your type allows for samples big-
ger than 2,147,482,623 bytes (for example, you use the -unboundedSupport command-line option), the
2,147,482,623 limit still applies.

Chapter 4 DDS Entities
The main classes extend an abstract base class called a DDS Entity. Every DDS Entity has a set of
associated events known as statuses and a set of associated Quality of Service Policies
(QosPolicies). In addition, a Listener may be registered with the Entity to be called when status
changes occur. DDS Entities may also have attached DDS Conditions, which provide a way to
wait for status changes. Figure 4.1: Overview of DDS Entities on the next page presents an over-
view in a UML diagram.

This section describes the common operations and general designed patterns shared by all DDS
Entities including DomainParticipants, Topics, Publishers, DataWriters, Subscribers, and
DataReaders. In subsequent chapters, the specific statuses, Listeners, Conditions, and QosPolicies
for each class will be discussed in detail.

165

4.1 Common Operations for All DDS Entities

166

Figure 4.1: Overview of DDS Entities

4.1 Common Operations for All DDS Entities

All DDS Entities (DomainParticipants, Topics, Publishers, DataWriters, Subscribers, and DataReaders)
provide operations for:

4.1.1 Creating and Deleting DDS Entities

4.1.1 Creating and Deleting DDS Entities

l C, Traditional C++, Java, and .NET:

The factory design pattern is used in creating and deleting DDS Entities. Instead of declaring and
constructing or destructing Entities directly, a factory object is used to create an Entity. Almost all
Entity factories are objects that are also Entities. The only exception is the factory for a DomainPar-
ticipant. See Table 4.1 Entity Factories.

Entity Created by

DomainParticipant DomainParticipantFactory (a static singleton object provided byConnext DDS)

Topic

DomainParticipant

Publisher

Subscriber

DataWriter

DataReader

DataWriter Publisher

DataReader Subscriber

Table 4.1 Entity Factories

All Entities that are factories have:
l Operations to create and delete child Entities. For example:

DDSPublisher::create_datawriter()

DDSDomainParticipant::delete_topic()
l Operations to get and set the default QoS values used when creating child Entities. For
example:

DDSSubscriber::get_default_datareader_qos()

DDSDomainParticipantFactory::set_default_participant_qos()
l And 7.4.2 ENTITYFACTORY QosPolicy on page 349 to specify whether or not the newly
created child Entity should be automatically enabled upon creation.

DataWriters may be created by a DomainParticipant or a Publisher. Similarly, DataReaders may
be created by a DomainParticipant or a Subscriber.

An entity that is a factory cannot be deleted until all the child Entities created by it have been
deleted.

167

4.1.2 Enabling DDS Entities

168

Each Entity obtained through create_<entity>()must eventually be deleted by calling delete_
<entity>(), or by calling delete_contained_entities().

l Modern C++:

In the Modern C++ API the factory pattern is not explicit. Entities have constructors and destructors.
The first argument to an Entity's constructor is its "factory" (except for the DomainParticipant). For
example:
// Note: this example shows the simplest version of each Entity's constructor:
dds::domain::DomainParticipant participant(MY_DOMAIN_ID);
dds::topic::Topic<Foo> topic(participant, "Example Foo");
dds::sub::Subscriber subscriber(participant);
dds::sub::DataReader<Foo> reader(subscriber, topic);
dds::pub::Publisher publisher(participant);
dds::pub::DataWriter<Foo> writer(publisher, topic);

Entities are reference types. In a reference type copy operations, such as copy-construction and
copy-assignment are shallow. The reference types are modeled after shared pointers. Similar to point-
ers, it is important to distinguish between an entity and a reference (or handle) to it. A single entity
may have multiple references. Copying a reference does not copy the entity it is referring to—cre-
ating additional references from the existing reference(s) is a relatively inexpensive operation.

The lifecycle of references and the entity they are referring to is not the same. In general, the entity
lives as long as there is at least one reference to it. When the last reference to the entity ceases to
exists, the entity it is referring to is destroyed.

Applications can override the automatic destruction of Entities. An Entity can be explicitly closed
(by calling the method close()) or retained (by calling retain())

Closing an Entity destroys the underlying object and invalidates all references to it.

Retaining an Entity disables the automatic destruction when it loses all its reference. A retained
Entity can be looked up (see 9.2.4 Looking Up DomainParticipants on page 614) and has to be
explicitly destroyed with close().

4.1.2 Enabling DDS Entities

The enable() operation changes an Entity from a non-operational to an operational state. Entity objects can
be created disabled or enabled. This is controlled by the value of the 7.4.2 ENTITYFACTORY
QosPolicy on page 349 on the corresponding factory for the Entity (not on the Entity itself).

By default, all Entities are automatically created in the enabled state. This means that as soon as the Entity
is created, it is ready to be used. In some cases, you may want to create the Entity in a ‘disabled’ state. For
example, by default, as soon as you create a DataReader, the DataReader will start receiving new DDS
samples for its Topic if they are being sent. However, your application may still be initializing other com-
ponents and may not be ready to process the data at that time. In that case, you can tell the Subscriber to

4.1.2 Enabling DDS Entities

create the DataReader in a disabled state. After all of the other parts of the application have been created
and initialized, then the DataReader can be enabled to actually receive messages.

To create a particular entity in a disabled state, modify the EntityFactory QosPolicy of its corresponding
factory entity before calling create_<entity>(). For example, to create a disabled DataReader, modify the
Subscriber’s QoS as follows:
DDS_SubscriberQos subscriber_qos;
subscriber->get_qos(subscriber_qos);
subscriber_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_FALSE;
subscriber->set_qos(subscriber_qos);
DDSDataReader* datareader =

subscriber->create_datareader(topic, DDS_DATAREADER_QOS_DEFAULT, listener);

When the application is ready to process received data, it can enable the DataReader:
datareader->enable();

4.1.2.1 Rules for Calling enable()

In the following, a ‘Factory’ refers to a DomainParticipant, Publisher, or Subscriber; a ‘child’ refers to an
entity created by the factory:

l If the factory is disabled, its children are always created disabled.

l If the factory is enabled, its children will be created according to the setting in the factory's
EntityFactoryQoS value.

l Calling enable() on a child whose factory object is still disabled will fail and return DDS_
RECODE_RECONDITION_NOT_MET.

l Calling enable() on a factory with EntityFactoryQoS set to DDS_BOOLEAN_TRUE will recurs-
ively enable all of the factory’s children. If the factory’s EntityFactoryQoS is set to DDS_
BOOLEAN_FALSE, only the factory itself will be enabled.

l Calling enable() on an entity that is already enabled returns DDS_RETCODE_OK and has no
effect.

l There is no complementary “disable” operation. You cannot disable an entity after it is enabled. Dis-
abled Entities must have been created in that state.

l An entity’s Listener will only be invoked if the entity is enabled.

l The existence of an entity is not propagated to other DomainParticipants until the entity is enabled
(see Discovery (Chapter 15 on page 770)).

l If a DataWriter/DataReader is to be created in an enabled state, then the associated Topic must
already be enabled. The enabled state of the Topic does not matter, if the Publisher/Subscriber has
its EntityFactory QosPolicy to create children in a disabled state.

169

4.1.2 Enabling DDS Entities

170

l When calling enable() for a DataWriter/DataReader, both the Publisher/Subscriber and the Topic
must be enabled, or the operation will fail and return DDS_RETCODE_PRECONDITION_NOT_
MET.

The following operations may be invoked on disabled Entities:

l get_qos() and set_qos()Some DDS-specified QosPolicies are immutable—they cannot be changed
after an Entity is enabled. This means that for those policies, if the entity was created in the disabled
state, get/set_qos() can be used to change the values of those policies until enabled() is called on the
Entity. After the Entity is enabled, changing the values of those policies will not affect the Entity.
However, there are mutable QosPolicies whose values can be changed at anytime–even after the
Entity has been enabled.

Finally, there are extended QosPolicies that are not a part of the DDS specification but offered by
Connext DDS to control extended features for an Entity. Some of those extended QosPolicies can-
not be changed after the Entity has been created—regardless of whether the Entity is enabled or dis-
abled.

Into which exact categories a QosPolicy falls—mutable at any time, immutable after enable, immut-
able after creation—is described in the documentation for the specific policy.

l get_status_changes() and get_*_status()The status of an Entity can be retrieved at any time (but
the status of a disabled Entity never changes). (Note: get_*_status() resets the related status so it no
longer considered “changed.”)

l get_statuscondition()An Entity’s StatusCondition can be checked at any time (although the status
of a disabled Entity never changes).

l get_listener() and set_listener()An Entity’s Listener can be changed at any time.

l create_*() and delete_*()A factory Entity can still be used to create or delete any child Entity that it
can produce. Note: following the rules discussed previously, a disabled Entity will always create its
children in a disabled state, no matter what the value of the EntityFactory QosPolicy is.

l lookup_*()An Entity can always look up children it has previously created.

Most other operations are not allowed on disabled Entities. Executing one of those operations when an
Entity is disabled will result in a return code of DDS_RETCODE_NOT_ENABLED. The documentation
for a particular operation will explicitly state if it is not allowed to be used if the Entity is disabled.

The builtin transports are implicitly registered when (a) the DomainParticipant is enabled, (b) the
first DataWriter/DataReader is created, or (c) you look up a builtin data reader, whichever
happens first. Any changes to the builtin transport properties that are made after the builtin
transports have been registered will have no affect on any DataWriters/DataReaders.

4.1.3 Getting an Entity’s Instance Handle

4.1.3 Getting an Entity’s Instance Handle

The Entity class provides an operation to retrieve an instance handle for the object. The operation is
simply:
InstanceHandle_t get_instance_handle()

An instance handle is a global ID for the entity that can be used in methods that allow user applications to
determine if the entity was locally created, if an entity is owned (created) by another entity, etc.

4.1.4 Getting Status and Status Changes

The get_status_changes() operation retrieves the set of events, also known in DDS terminology as com-
munication statuses, in the Entity that have changed since the last time get_status_changes() was called.
This method actually returns a value that must be bitwise AND’ed with an enumerated bit mask to test
whether or not a specific status has changed. The operation can be used in a polling mechanism to see if
any statuses related to the Entity have changed. If an entity is disabled, all communication statuses are in
the “unchanged” state so the list returned by the get_status_changes() operation will be empty.

A set of statuses is defined for each class of Entities. For each status, there is a corresponding operation,
get_<status-name>_status(), that can be used to get its current value. For example, a DataWriter has a
DDS_OFFERED_DEADLINE_MISSED status; it also has a get_offered_deadline_missed_status()
operation:
DDS_StatusMask statuses;
DDS_OfferedDeadlineMissedStatus deadline_stat;
statuses = datawriter->get_status_changes();
if (statuses & DDS_OFFERED_DEADLINE_MISSED_STATUS) {
datawriter->get_offered_deadline_missed_status(

&deadline_stat);
printf(“Deadline missed %d times.\n”,

deadline_stat.total_count);
}

To reset a status (so that it is no longer considered “changed”), call get_<status-name>_status(). Or, in
the case of the DDS_DATA_AVAILABLE status, call read(), take(), or one of their variants.

If you use a StatusCondition to be notified that a particular status has changed, the
StatusCondition’s trigger_value will remain true unless you call get_*_status() to reset the status.

See also: 4.3 Statuses on page 183 and 4.6.8 StatusConditions on page 213.

4.1.5 Getting and Setting Listeners

Each type of Entity has an associated Listener, see 4.4 Listeners on page 189. A Listener represents a set
of functions that users may install to be called asynchronously when the state of communication statuses
change.

The get_listener() operation returns the current Listener attached to the Entity.

171

4.1.6 Getting the StatusCondition

172

The set_listener() operation installs a Listener on an Entity. The Listener will only be invoked on the
changes of statuses specified by the accompanying mask. Only one listener can be attached to each Entity.
If a Listener was already attached, set_listener() will replace it with the new one.

The get_listener() and set_listener() operations are directly provided by the DomainParticipant, Topic,
Publisher, DataWriter, Subscriber, and DataReader classes so that listeners and masks used in the argu-
ment list are specific to each Entity.

Note: The set_listener() operation is not synchronized with the listener callbacks, so it is possible to set a
new listener on an participant while the old listener is in a callback. Therefore you should be careful not to
delete any listener that has been set on an enabled participant unless some application-specific means are
available of ensuring that the old listener cannot still be in use.

See 4.4 Listeners on page 189 for more information about Listeners.

4.1.6 Getting the StatusCondition

Each type of Entity may have an attached StatusCondition, which can be accessed through the get_
statuscondition() operation. You can attach the StatusCondition to aWaitSet, to cause your application to
wait for specific status changes that affect the Entity.

See 4.6 Conditions and WaitSets on page 202 for more information about StatusConditions and WaitSets.

4.1.7 Getting, Setting, and Comparing QosPolicies

Each type of Entity has an associated set of QosPolicies (see 4.2 QosPolicies on page 176). QosPolicies
allow you to configure and set properties for the Entity.

While most QosPolicies are defined by the DDS specification, some are offered by Connext DDS as exten-
sions to control parameters specific to the implementation.

There are two ways to specify a QoS policy:

l Programmatically, as described in this section.

l QosPolicies can also be configured from XML resources (files, strings)—with this approach, you
can change the QoS without recompiling the application. The QoS settings are automatically loaded
by the DomainParticipantFactory when the first DomainParticipant is created. See Configuring
QoS with XML (Chapter 19 on page 854).

The get_qos() operation retrieves the current values for the set of QosPolicies defined for the Entity.

QosPolicies can be set programmatically when an Entity is created, or modified with the Entity's set_qos()
operation.

The set_qos() operation sets the QosPolicies of the entity. Note: not all QosPolicy changes will take effect
instantaneously; there may be a delay since some QosPolicies set for one entity, for example, a

4.1.7 Getting, Setting, and Comparing QosPolicies

DataReader, may actually affect the operation of a matched entity in another application, for example, a
DataWriter.

The get_qos() and set_qos() operations are passed QoS structures that are specific to each derived entity
class, since the set of QosPolicies that effect each class of Entities is different.

The equals() operation compares two Entity’s QoS structures for equality. It takes two parameters for the
two Entities’ QoS structures to be compared, then returns TRUE is they are equal (all values are the same)
or FALSE if they are not equal.

Each QosPolicy has default values (listed in the API Reference HTML documentation). If you want to use
custom values, there are three ways to change QosPolicy settings:

l Before Entity creation (if custom values should be used for multiple Entities). See 4.1.7.1 Changing
the QoS Defaults Used to Create DDS Entities: set_default_*_qos() below.

l During Entity creation (if custom values are only needed for a particular Entity). See 4.1.7.2 Setting
QoS During Entity Creation on the next page.

l After Entity creation (if the values initially specified for a particular Entity are no longer appro-
priate). See 4.1.7.3 Changing the QoS for an Existing Entity on page 175.

Regardless of when or how you make QoS changes, there are some rules to follow:

l Some QosPolicies interact with each other and thus must be set in a consistent manner. For instance,
the maximum value of the HISTORY QosPolicy’s depth parameter is limited by values set in the
RESOURCE_LIMITS QosPolicy. If the values within a QosPolicy structure are inconsistent, then
set_qos() will return the error INCONSISTENT_POLICY, and the operation will have no effect.

l Some policies can only be set when the Entity is created, or before the Entity is enabled. Others can
be changed at any time. In general, all standard DDS QosPolicies can be changed before the Entity
is enabled. A subset can be changed after the Entity is enabled. Connext DDS-specific QosPolicies
either cannot be changed after creation or can be changed at any time. The changeability of each
QosPolicy is documented in the API Reference HTML documentation as well as in Table 4.2
QosPolicies. If you attempt to change a policy after it cannot be changed, set_qos() will fail with a
return IMMUTABLE_POLICY.

4.1.7.1 Changing the QoS Defaults Used to Create DDS Entities: set_default_*_qos()

Each parent factory has a set of default QoS settings that are used when the child entity is created. The
DomainParticipantFactory has default QoS values for creating DomainParticipants. A DomainPar-
ticipant has a set of default QoS for each type of entity that can be created from the DomainParticipant
(Topic, Publisher, Subscriber, DataWriter, and DataReader). Likewise, a Publisher has a set of default
QoS values used when creating DataWriters, and a Subscriber has a set of default QoS values used when
creating DataReaders.

173

4.1.7 Getting, Setting, and Comparing QosPolicies

174

An entity’s QoS are set when it is created. Once an entity is created, all of its QoS—for itself and its child
Entities—are fixed unless you call set_qos() or set_qos_with_profile() on that entity. Calling set_
default_<entity>_qos() on a parent entity will have no effect on child Entities that have already been cre-
ated.

You can change these default values so that they are automatically applied when new child Entities are cre-
ated. For example, suppose you want all DataWriters for a particular Publisher to have their
RELIABILITY QosPolicy set to RELIABLE. Instead of making this change for each DataWriter when it
is created, you can change the default used when any DataWriter is created from the Publisher by using
the Publisher’s set_default_datawriter_qos() operation.
DDS_DataWriterQos default_datawriter_qos;
// get the current default values
publisher->get_default_datawriter_qos(default_datawriter_qos);
// change to desired default values
default_datawriter_qos.reliability.kind =

DDS_RELIABLE_RELIABILITY_QOS;
// set the new default values
publisher->set_default_datawriter_qos(default_datawriter_qos);
// created datawriters will use new default values
datawriter =

publisher->create_datawriter(topic, NULL, NULL, NULL);

It is not safe to get or set the default QoS values for an entity while another thread may be
simultaneously calling get_default_<entity>_qos(), set_default_<entity>_qos(), or create_
<entity>() with DDS_<ENTITY>_QOS_DEFAULT as the qos parameter (for the same entity).

Another way to make QoS changes is by using XML resources (files, strings). For more information, see
Configuring QoS with XML (Chapter 19 on page 854).

4.1.7.2 Setting QoS During Entity Creation

If you only want to change a QosPolicy for a particular entity, you can pass in the desired QosPolicies for
an entity in its creation routine.

To customize an entity's QoS before creating it:

1. (C API Only) Initialize a QoS object with the appropriate INITIALIZER constructor.

2. Call the relevant get_<entity>_default_qos()method.

3. Modify the QoS values as desired.

4. Create the entity.

4.1.7 Getting, Setting, and Comparing QosPolicies

For example, to change the RELIABLE QosPolicy for a DataWriter before creating it:
// Initialize the QoS object
DDS_DataWriterQos datawriter_qos;
// Get the default values
publisher->get_default_datawriter_qos(datawriter_qos);
// Modify the QoS values as desired
datawriter_qos.reliability.kind = DDS_BEST_EFFORT_RELIABILITY_QOS;
// Create the DataWriter with new values
datawriter = publisher->create_datawriter(

topic, datawriter_qos, NULL, NULL);

Another way to set QoS during entity creation is by using a QoS profile. For more information, see Con-
figuring QoS with XML (Chapter 19 on page 854).

4.1.7.3 Changing the QoS for an Existing Entity

Some policies can also be changed after the entity has been created. To change such a policy after the
entity has been created, use the entity’s set_qos() operation.

For example, suppose you want to tweak the DEADLINE QoS for an existing DataWriter:
DDS_DataWriterQos datawriter_qos;
// get the current values
datawriter->get_qos(datawriter_qos);
// make desired changes
datawriter_qos.deadline.period.sec = 3;
datawriter_qos.deadline.period.nanosec = 0;
// set new values
datawriter->set_qos(datawriter_qos);

Another way to make QoS changes is by using a QoS profile. For more information, see Configuring QoS
with XML (Chapter 19 on page 854).

Note: In the code examples presented in this section, we are not testing for the return code for the set_qos
(), set_default_*_qos() functions. If the values used in the QosPolicy structures are inconsistent then the
functions will fail and return INCONSISTENT_POLICY. In addition, set_qos()may return
IMMUTABLE_POLICY if you try to change a QosPolicy on an Entity after that policy has become
immutable. User code should test for and address those anomalous conditions.

4.1.7.4 Default QoS Values

Connext DDS provides special constants for each Entity type that can be used in set_qos() and set_
default_*_qos() to reset the QosPolicy values to the original DDS default values:

l DDS_PARTICIPANT_QOS_DEFAULT

l DDS_PUBLISHER_QOS_DEFAULT

l DDS_SUBSCRIBER_QOS_DEFAULT

175

4.2 QosPolicies

176

l DDS_DATAWRITER_QOS_DEFAULT

l DDS_DATAREADER_QOS_DEFAULT

l DDS_TOPIC_QOS_DEFAULT

For example, if you want to set a DataWriter’s QoS back to their DDS-specified default values:
datawriter->set_qos(DDS_DATAWRITER_QOS_DEFAULT);

Or if you want to reset the default QosPolicies used by a Publisher to create DataWriters back to their
DDS-specified default values:
publisher->set_default_datawriter_qos(DDS_DATAWRITER_QOS_DEFAULT);

These defaults cannot be used to initialize a QoS structure for an entity. For example, the following is
NOT allowed:
DataWriterQos dataWriterQos = DATAWRITER_QOS_DEFAULT;
// modify QoS...
create_datawriter(dataWriterQos);

4.2 QosPolicies

Connext DDS’s behavior is controlled by the Quality of Service (QoS) policies of the data communication
Entities (DomainParticipant, Topic, Publisher, Subscriber, DataWriter, and DataReader) used in your
applications. This section summarizes each of the QosPolicies that you can set for the various Entities.

The QosPolicy class is the abstract base class for all the QosPolicies. It provides the basic mechanism for
an application to specify quality of service parameters. Table 4.2 QosPolicies lists each supported
QosPolicy (in alphabetical order), provides a summary, and points to a section in the manual that provides
further details.

The detailed description of a QosPolicy that applies to multiple Entities is provided in the first chapter that
discusses an Entity whose behavior the QoS affects. Otherwise, the discussion of a QosPolicy can be
found in the chapter of the particular Entity to which the policy applies. As you will see in the detailed
description sections, all QosPolicies have one or more parameters that are used to configure the policy.
The how’s and why’s of tuning the parameters are also discussed in those sections.

As first discussed in 2.7.1 Controlling Behavior with Quality of Service (QoS) Policies on page 23,
QosPolicies may interact with each other, and certain values of QosPolicies can be incompatible with the
values set for other policies.

The set_qos() operation will fail if you attempt to specify a set of values that would result in an incon-
sistent set of policies. To indicate a failure, set_qos() will return INCONSISTENT_POLICY. 4.2.1 QoS
Requested vs. Offered Compatibility—the RxO Property on page 180 provides further information on
QoS compatibility within an Entity as well as across matching Entities, as does the discussion/reference sec-
tion for each QosPolicy listed in Table 4.2 QosPolicies.

4.2 QosPolicies

The values of some QosPolicies cannot be changed after the Entity is created or after the Entity is enabled.
Others may be changed at any time. The detailed section on each QosPolicy states when each policy can
be changed. If you attempt to change a QosPolicy after it becomes immutable (because the associated
Entity has been created or enabled, depending on the policy), set_qos() will fail with a return code of
IMMUTABLE_POLICY.

QosPolicy Summary

Asynchronous-
Publisher

Configures the mechanism that sends user data in an externalmiddleware thread. See 7.4.1
ASYNCHRONOUS_PUBLISHERQosPolicy (DDSExtension) on page 346.

Availability

This QoS policy is used in the context of two features:

For a Collaborative DataWriter, specifies the group ofDataWritersexpected to collaboratively provide data and
the timeouts that control when to allow data to be available that may skip DDS samples.

For a Durable Subscription, configures a set of Durable Subscriptions on a DataWriter.

See 7.5.1 AVAILABILITYQosPolicy (DDSExtension) on page 371.

Batch
Specifies and configures the mechanism that allowsConnext DDS to collect multiple DDS data samples to be sent
in a single network packet, to take advantage of the efficiency of sending larger packets and thus increase ef-
fective throughput. See 7.5.2 BATCHQosPolicy (DDSExtension) on page 375.

Database
Various settings and resource limits used byConnext DDS to control its internal database. See 9.5.1 DATABASE
QosPolicy (DDSExtension) on page 643.

DataReaderProtocol
This QosPolicy configures the Connext DDS on-the-network protocol, RTPS. See 8.6.1 DATA_READER_
PROTOCOLQosPolicy (DDSExtension) on page 575.

DataReaderResourceLimits
Various settings that configure howDataReadersallocate and use physicalmemory for internal resources. See
8.6.2 DATA_READER_RESOURCE_LIMITSQosPolicy (DDSExtension) on page 581.

DataRepresentation

Specifies which versions of the Extended Common Data Representation (CDR) (version 1 or version 2) and which
data compression setting algorithms are offered and requested for your data.

See 7.5.3 DATA_REPRESENTATIONQosPolicy on page 381.

DataTag
This QosPolicy can be used to associate a set of tags in the formof (name, value) pairs with a DataReader or
DataWriter. The Access Control plugin may use these tags to determine publish and subscribe permissions. See
7.5.4 DATATAGQosPolicy on page 389.

DataWriterProtocol
This QosPolicy configures the Connext DDS on-the-network protocol, RTPS. See 7.5.5 DATA_WRITER_
PROTOCOLQosPolicy (DDSExtension) on page 390.

DataWriterResourceLimits
Controls howmany threads can concurrently block on a write() call of thisDataWriter. Also controls the number of
batchesmanaged by the DataWriter and the instance-replacement kind used by the DataWriter. See 7.5.6
DATA_WRITER_RESOURCE_LIMITSQosPolicy (DDSExtension) on page 402.

Deadline

For a DataReader, specifies the maximumexpected elapsed time between arriving DDS data samples.

For a DataWriter, specifies a commitment to publish DDS samples with no greater elapsed time between them.

See 7.5.7 DEADLINEQosPolicy on page 407.

Table 4.2 QosPolicies

177

4.2 QosPolicies

178

QosPolicy Summary

DestinationOrder
Controls howConnext DDSwill deal with data sent by multiple DataWriters for the same topic. Can be set to "by re-
ception timestamp" or to "by source timestamp." See 7.5.8 DESTINATION_ORDERQosPolicy on page 409.

Discovery
Configures the mechanismused byConnext DDS to automatically discover and connect with new remote ap-
plications. See 9.5.2 DISCOVERYQosPolicy (DDSExtension) on page 646.

DiscoveryConfig
Controls the amount of delay in discovering Entities in the systemand the amount of discovery traffic in the net-
work. See 9.5.3 DISCOVERY_CONFIGQosPolicy (DDSExtension) on page 650.

DomainParticipantResource-
Limits

Various settings that configure howDomainParticipantsallocate and use physicalmemory for internal resources,
including the maximumsizes of various properties. See 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS
QosPolicy (DDSExtension) on page 660.

Durability
Specifies whether or notConnext DDSwill store and deliver data that were previously published to newDataRead-
ers. See 7.5.9 DURABILITYQosPolicy on page 412.

DurabilityService
Various settings to configure the external Persistence Service used byConnext DDS forDataWriterswith a Dur-
ability QoS setting of Persistent Durability. See 7.5.10 DURABILITYSERVICEQosPolicy on page 417.

EntityFactory
Controls whether or not child Entitiesare created in the enabled state. See 7.4.2 ENTITYFACTORYQosPolicy
on page 349.

EntityName
Assigns a name and role_name to an Entity. See 7.5.11 ENTITY_NAMEQosPolicy (DDSExtension) on
page 419.

Event
Configures the DomainParticipant’s internal thread that handles timed events. See 9.5.5 EVENT QosPolicy
(DDSExtension) on page 668.

ExclusiveArea
Configures multi-thread concurrency and deadlock prevention capabilities. See 7.4.3 EXCLUSIVE_AREA
QosPolicy (DDSExtension) on page 351.

GroupData
Along with 5.2.1 TOPIC_DATAQosPolicy on page 225 and 7.5.30 USER_DATAQosPolicy on page 470, this
QosPolicy is used to attach a buffer of bytes to Connext DDS's discovery meta-data. See 7.4.4 GROUP_DATA
QosPolicy on page 354.

History
Specifies howmuch data must be stored byConnext DDS for the DataWriter orDataReader. This QosPolicy af-
fects the 7.5.21 RELIABILITYQosPolicy on page 448 as well as the 7.5.9 DURABILITYQosPolicy on
page 412. See 7.5.12 HISTORYQosPolicy on page 421.

LatencyBudget
Suggestion to Connext DDS on howmuch time is allowed to deliver data. See 7.5.13 LATENCYBUDGET QoS
Policy on page 426.

Lifespan
Specifies how long Connext DDS should consider data sent by an user application to be valid. See 7.5.14
LIFESPANQoSPolicy on page 426.

Liveliness
Specifies and configures the mechanism that allowsDataReaders to detect when DataWriters become dis-
connected or "dead." See 7.5.15 LIVELINESSQosPolicy on page 428.

Logging
Configures the properties associated with Connext DDS logging. See 9.4.1 LOGGINGQosPolicy (DDSEx-
tension) on page 638.

Table 4.2 QosPolicies

4.2 QosPolicies

QosPolicy Summary

MultiChannel
Configures a DataWriter’s ability to send data on different multicast groups (addresses) based on the value of the
data. See 7.5.16 MULTI_CHANNELQosPolicy (DDSExtension) on page 433.

Ownership
Along with Ownership Strength, specifies ifDataReaders for a topic can receive data frommultiple DataWritersat
the same time. See 7.5.17 OWNERSHIPQosPolicy on page 435.

OwnershipStrength
Used to arbitrate among multiple DataWritersof the same instance of a Topic when Ownership QoSPolicy is
EXLUSIVE. See 7.5.18 OWNERSHIP_STRENGTHQosPolicy on page 439.

Partition
Adds string identifiers that are used formatching DataReadersand DataWriters for the same Topic. See 7.4.5
PARTITIONQosPolicy on page 357.

Presentation
Controls howConnext DDS presents data received by an application to the DataReadersof the data. See 7.4.6
PRESENTATIONQosPolicy on page 363.

Profile
Configures the way that XML documents containing QoS profiles are loaded by RTI. See 9.4.2 PROFILE
QosPolicy (DDSExtension) on page 639.

Property

Stores name/value(string) pairs that can be used to configure certain parameters ofConnext DDS that are not ex-
posed through formalQoS policies. It can also be used to store and propagate application-specific name/value
pairs, which can be retrieved by user code during discovery. See 7.5.19 PROPERTYQosPolicy (DDSExtension)
on page 440.

PublishMode
Specifies howConnext DDS sends application data on the network. By default, data is sent in the user thread that
calls the DataWriter’swrite() operation. However, this QosPolicy can be used to tellConnext DDS to use its own
thread to send the data. See 7.5.20 PUBLISH_MODEQosPolicy (DDSExtension) on page 445.

ReaderDataLifeCycle
Controls how a DataReadermanages the lifecycle of the data that it has received. See 8.6.3 READER_DATA_
LIFECYCLEQoSPolicy on page 591.

ReceiverPool
Configures threads used byConnext DDS to receive and process data from transports (for example, UDP sock-
ets). See 9.5.6 RECEIVER_POOLQosPolicy (DDSExtension) on page 670.

Reliability
Specifies whether or notConnext DDSwill deliver data reliably. See 7.5.21 RELIABILITYQosPolicy on
page 448.

ResourceLimits
Controls the amount of physicalmemory allocated forEntities, if dynamic allocations are allowed, and how they oc-
cur. Also controls memory usage among different instance values for keyed topics. See 7.5.22 RESOURCE_
LIMITSQosPolicy on page 452.

Service
Intended for use by RTI infrastructure services. User applications should not modify its value. See 7.5.23
SERVICEQosPolicy (DDSExtension) on page 455.

SystemResourceLimits
ConfiguresDomainParticipant-independent resources used byConnext DDS. Mainly used to change the max-
imumnumber ofDomainParticipants that can be created within a single process (address space). See 9.4.3
SYSTEM_RESOURCE_LIMITSQoSPolicy (DDSExtension) on page 641.

TimeBasedFilter
Set by a DataReader to limit the number of new data values received over a period of time. See 8.6.4 TIME_
BASED_FILTERQosPolicy on page 593.

TopicData
Along with Group Data QosPolicy and UserData QosPolicy, used to attach a buffer of bytes to Connext DDS's dis-
covery meta-data. See 5.2.1 TOPIC_DATAQosPolicy on page 225.

Table 4.2 QosPolicies

179

4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property

180

QosPolicy Summary

TopicQueryDispatch
Configures the ability of a DataWriter to publish historical samples in response to a TopicQuery. See 7.5.24
TOPIC_QUERY_DISPATCH_QosPolicy (DDS Extension) on page 456.

TransferMode Configures the properties of a Zero CopyDataWriter. See 7.5.25 TRANSFER_MODEQosPolicy on page 458.

TransportBuiltin
Specifies which built-in transport plugins are used. See 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDSEx-
tension) on page 671.

TransportMulticast
Specifies the multicast address on which a DataReader wants to receive its data. Can specify a port number as
well as a subset of the available transports with which to receive the multicast data. See 8.6.5 TRANSPORT_
MULTICAST QosPolicy (DDSExtension) on page 596.

TransportMulticastMapping
Specifies the automatic mapping between a list of topic expressions and multicast address that can be used by a
DataReader to receive data for a specific topic. See 9.5.8 TRANSPORT_MULTICAST_MAPPINGQosPolicy
(DDSExtension) on page 673.

TransportPriority
Set by a DataWriter orDataReader to tellConnext DDS that the data being sent is a different "priority" than other
data. See 7.5.26 TRANSPORT_PRIORITYQosPolicy on page 459.

TransportSelection
Allows you to select which physical transports a DataWriter orDataReadermay use to send or receive its data.
See 7.5.27 TRANSPORT_SELECTIONQosPolicy (DDSExtension) on page 464.

TransportUnicast
Specifies a subset of transports and port number that can be used by an Entity to receive data. See 7.5.28
TRANSPORT_UNICAST QosPolicy (DDSExtension) on page 465.

TypeConsistencyEnforcement
Defines rules that determine whether the type used to publish a given data stream is consistent with that used to
subscribe to it. See 8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy on page 599.

TypeSupport
Used to attach application-specific value(s) to a DataWriter orDataReader. These values are passed to the seri-
alization or deserialization routine of the associated data type. Also controls whether padding bytes are set to 0
during serialization. See 7.5.29 TYPESUPPORT QosPolicy (DDSExtension) on page 469.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a buffer of bytes to Connext DDS's
discovery meta-data. See 7.5.30 USER_DATAQosPolicy on page 470.

WireProtocol
Specifies IDs used by the RTPS wire protocol to create globally unique identifiers. See 9.5.9 WIRE_PROTOCOL
QosPolicy (DDSExtension) on page 676.

WriterDataLifeCycle
Controls how a DataWriter handles the lifecycle of the instances (keys) that the DataWriter is registered to man-
age. See 7.5.31 WRITER_DATA_LIFECYCLEQoSPolicy on page 472.

Table 4.2 QosPolicies

4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property

Some QosPolicies that apply to Entities on the sending and receiving sides must have their values set in a
compatible manner. This is known as the policy’s ‘requested vs. offered’ (RxO) property. Entities on the
publishing side ‘offer’ to provide a certain behavior. Entities on the subscribing side ‘request’ certain beha-
vior. For Connext DDS to connect the sending entity to the receiving entity, the offered behavior must sat-
isfy the requested behavior.

4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property

For some QosPolicies, the allowed values may be graduated in a way that the offered value will satisfy the
requested value if the offered value is either greater than or less than the requested value. For example, if a
DataWriter’s DEADLINE QosPolicy specifies a duration less than or equal to a DataReader’s
DEADLINE QosPolicy, then the DataWriter is promising to publish data at least as fast or faster than the
DataReader requires new data to be received. This is a compatible situation (see 7.5.7 DEADLINE
QosPolicy on page 407).

Other QosPolicies require the values on the sending side and the subscribing side to be exactly equal for
compatibility to be met. For example, if a DataWriter’s OWNERSHIP QosPolicy is set to SHARED, and
the matching DataReader’s value is set to EXCLUSIVE, then this is an incompatible situation since the
DataReader and DataWriter have different expectations of what will happen if more than one DataWriter
publishes an instance of the Topic (see 7.5.17 OWNERSHIP QosPolicy on page 435).

Finally there are QosPolicies that do not require compatibility between the sending entity and the receiving
entity, or that only apply to one side or the other. Whether or not related Entities on the publishing and sub-
scribing sides must use compatible settings for a QosPolicy is indicated in the policy’s RxO property,
which is provided in the detailed section on each QosPolicy.

l RxO = YES The policy is set at both the publishing and subscribing ends and the values must be set
in a compatible manner. What it means to be compatible is defined by the QosPolicy.

l RxO = NO The policy is set only on one end or at both the publishing and subscribing ends, but the
two settings are independent. There the requested vs. offered semantics are not used for these
QosPolicies.

For those QosPolicies that follow the RxO semantics, Connext DDS will compare the values of those
policies for compatibility. If they are compatible, then Connext DDS will connect the sending entity to the
receiving entity allowing data to be sent between them. If they are found to be incompatible, then Connext
DDS will not interconnect the Entities preventing data to be sent between them.

In addition, Connext DDS will record this event by changing the associated communication status in both
the sending and receiving applications, see 4.3.1 Types of Communication Status on page 183. Also, if
you have installed Listeners on the associated Entities, then Connext DDS will invoke the associated call-
back functions to notify user code that an incompatible QoS combination has been found, see 4.4.1 Types
of Listeners on page 190.

For Publishers and DataWriters, the status corresponding to this situation is OFFERED_
INCOMPATIBLE_QOS_STATUS. For Subscribers and DataReaders, the corresponding status is
REQUESTED_INCOMPATIBLE_QOS_STATUS. The question of why a DataReader is not receiv-
ing data sent from a matching DataWriter can often be answered if you have instrumented the application
with Listeners for the statuses noted previously.

181

4.2.2 Special QosPolicy Handling Considerations for C

182

4.2.2 Special QosPolicy Handling Considerations for C

Many QosPolicy structures contain variable-length sequences to store their parameters. In the C++,
C++/CLI, C# and Java languages, the memory allocation related to sequences are handled automatically
through constructors/destructors and overloaded operators. However, the C language is limited in what it
provides to automatically handle memory management. Thus, Connext DDS provides functions and mac-
ros in C to initialize, copy, and finalize (free) QosPolicy structures defined for Entities.

In the C language, it is not safe to use an Entity’s QosPolicy structure declared in user code unless it has
been initialized first. In addition, user code should always finalize an Entity’s QosPolicy structure to
release any memory allocated for the sequences–even if the Entity’s QosPolicy structure was declared as a
local, stack variable.

Thus, for a general Entity’s QosPolicy, Connext DDS will provide:

l DDS_<Entity>Qos_INITIALIZER This is a macro that should be used when a DDS_
<Entity>Qos structure is declared in a C application.

struct DDS_<Entity>Qos qos = DDS_<Entity>Qos_INITIALIZER;

l DDS_<Entity>Qos_initialize() This is a function that can be used to initialize a DDS_
<Entity>Qos structure instead of the macro above.

struct DDS_<Entity>Qos qos;
DDS_<Entity>QOS_initialize(&qos);

l DDS_<Entity>Qos_finalize() This is a function that should be used to finalize a DDS_
<Entity>Qos structure when the structure is no longer needed. It will free any memory allocated for
sequences contained in the structure.

struct DDS_<Entity>Qos qos = DDS_<Entity>Qos_INITIALIZER;
...
<use qos>
...
// now done with qos
DDS_<Entity>QoS_finalize(&qos);

l DDS<Entity>Qos_copy() This is a function that can be used to copy one DDS_<Entity>Qos struc-
ture to another. It will copy the sequences contained in the source structure and allocate memory for
sequence elements if needed. In the code below, both dstQos and srcQos must have been initialized
at some point earlier in the code.

DDS_<Entity>QOS_copy(&dstQos, &srcQos);

4.3 Statuses

4.3 Statuses

This section describes the different statuses that exist for an entity. A status represents a state or an event
regarding the entity. For instance, maybe Connext DDS found a matching DataReader for a DataWriter,
or new data has arrived for a DataReader.

Your application can retrieve an Entity’s status by:

l explicitly checking for any status changes with get_status_changes().

l explicitly checking a specific status with get_<status_name>_status().

l using a Listener, which provides asynchronous notification when a status changes.

l using StatusConditions and WaitSets, which provide a way to wait for status changes.

If you want your application to be notified of status changes asynchronously: create and install a Listener
for the Entity. Then internal Connext DDS threads will call the listener methods when the status changes.
See 4.4 Listeners on page 189.

If you want your application to wait for status changes: set up StatusConditions to indicate the statuses of
interest, attach the StatusConditions to aWaitSet, and then call theWaitSet’s wait() operation. The call to
wait() will block until statuses in the attached Conditions changes (or until a timeout period expires). See
4.6 Conditions and WaitSets on page 202.

4.3.1 Types of Communication Status

Each Entity is associated with a set of Status objects representing the “communication status” of that
Entity. The list of statuses actively monitored by Connext DDS is provided in Table 4.3 Communication
Statuses. A status structure contains values that give you more information about the status; for example,
how many times the event has occurred since the last time the user checked the status, or how many time
the event has occurred in total.

Changes to status values cause activation of corresponding StatusCondition objects and trigger invocation
of the corresponding Listener functions to asynchronously inform the application that the status has
changed. For example, a change in a Topic’s INCONSISTENT_TOPIC_STATUS may trigger the Top-
icListener’s on_inconsistent_topic() callback routine (if such a Listener is installed).

Related
Entity

Status (DDS_*_
STATUS) Description Reference

Topic
INCONSISTENT_
TOPIC

AnotherTopicexists with the same name but different characteristics—for ex-
ample, a different type.

5.3.1
INCONSISTENT_
TOPIC Statuson
page 227

Table 4.3 Communication Statuses

183

4.3.1 Types of Communication Status

184

Related
Entity

Status (DDS_*_
STATUS) Description Reference

DataWriter

APPLICATION_
ACKNOWLEDGMENT

This status indicates that a DataWriter has received an application-level ac-
knowledgment for a DDS sample. The listener provides the identities of the DDS
sample and acknowledging DataReader, as well as user-specified response
data sent from the DataReader by the acknowledgment message.

7.3.12 Application Ac-
knowledgment on
page 318

DATA_WRITER_
CACHE

The status of the DataWriter’s cache.

This status does not have a Listener.

7.3.6.2 DATA_
WRITER_CACHE_
STATUSon page 298

DATA_WRITER_
PROTOCOL

The status of a DataWriter’s internal protocol related metrics (such as the num-
ber of DDS samples pushed, pulled, filtered) and the status of wire protocol
traffic.

This status does not have a Listener.

7.3.6.3 DATA_
WRITER_
PROTOCOL_STATUS
on page 299

DataWriter
cont'd

LIVELINESS_LOST
The liveliness that the DataWriter has committed to (through its Liveliness
QosPolicy)was not respected (assert_liveliness() orwrite() not called in time),
thusDataReadersmay consider the DataWriter as no longer active.

7.3.6.4 LIVELINESS_
LOST Statuson
page 303

OFFERED_
DEADLINE_
MISSED

The deadline that the DataWriter has committed through its Deadline QosPolicy
was not respected for a specific instance of the Topic.

7.3.6.5 OFFERED_
DEADLINE_MISSED
Statuson page 304

OFFERED_
INCOMPATIBLE_
QOS

An offered QosPolicy value was incompatible with what was requested by a
DataReader of the same Topic.

7.3.6.6 OFFERED_
INCOMPATIBLE_QOS
Statuson page 304

PUBLICATION_
MATCHED

The DataWriter found a DataReader that matches the Topic, has compatible
QoSs and a common partition, or a previously matched DataReader has been
deleted.

7.3.6.7
PUBLICATION_
MATCHED Statuson
page 305

RELIABLE_WRITER_
CACHE_CHANGED

The number of unacknowledged DDS samples in a reliable DataWriter's cache
has reached one of the predefined trigger points.

7.3.6.8 RELIABLE_
WRITER_CACHE_
CHANGED Status
(DDSExtension) on
page 306

RELIABLE_
READER_
ACTIVITY_
CHANGED

One ormore reliable DataReadershas either been discovered, deleted, or
changed between active and inactive state as specified by the Live-
linessQosPolicy of the DataReader.

7.3.6.9 RELIABLE_
READER_ACTIVITY_
CHANGED Status
(DDSExtension) on
page 308

Subscriber
DATA_ON_
READERS

Newdata is available for any of the readers that were created from the Sub-
scriber.

8.2.9 Statuses for Sub-
scribers on page 508

Table 4.3 Communication Statuses

4.3.1 Types of Communication Status

Related
Entity

Status (DDS_*_
STATUS) Description Reference

DataReader

DATA_AVAILABLE Newdata (one ormore DDS samples) are available for the specificDataReader.
8.3.7.1 DATA_
AVAILABLEStatuson
page 522

DATA_READER_
CACHE

The status of the reader's cache.

This status does not have a Listener.

8.3.7.2 DATA_
READER_CACHE_
STATUSon page 522

DATA_READER_
PROTOCOL

The status of a DataReader’s internal protocol related metrics (such as the num-
ber of DDS samples received, filtered, rejected) and the status of wire protocol
traffic.

This status does not have a Listener.

8.3.7.3 DATA_
READER_
PROTOCOL_STATUS
on page 525

LIVELINESS_
CHANGED

The liveliness of one ormore DataWriters that were writing instances read by the
DataReader has either been discovered, deleted, or changed between active
and inactive state as specified by the LivelinessQosPolicy of the DataWriter.

8.3.7.4 LIVELINESS_
CHANGED Statuson
page 529

DataReader
cont'd

REQUESTED_
DEADLINE_
MISSED

Newdata was not received for an instance of the Topicwithin the time period set
by the DataReader’sDeadline QosPolicy.

8.3.7.5 REQUESTED_
DEADLINE_MISSED
Statuson page 531

REQUESTED_
INCOMPATIBLE_
QOS

A requested QosPolicy value was incompatible with what was offered by a
DataWriter of the same Topic.

8.3.7.6 REQUESTED_
INCOMPATIBLE_QOS
Statuson page 531

SAMPLE_LOST A DDS sample sent byConnext DDS has been lost (never received).
8.3.7.7 SAMPLE_
LOST Statuson
page 532

SAMPLE_REJECTED A received DDS sample has been rejected due to a resource limit (buffers filled).
8.3.7.8 SAMPLE_
REJECTED Statuson
page 536

SUBSCRIPTION_
MATCHED

The DataReader has found a DataWriter that matches the Topic, has com-
patible QoSs and a common partition, or an existing matched DataWriter has
been deleted.

8.3.7.9
SUBSCRIPTION_
MATCHED Statuson
page 538

Table 4.3 Communication Statuses

Statuses can be grouped into two categories:

l Plain communication status:

In addition to a flag that indicates whether or not a status has changed, a plain communication status
also contains state and thus has a corresponding structure to hold its current value.

185

4.3.1 Types of Communication Status

186

l Read communication status:

A read communication status is more like an event and has no state other than whether or not it has
occurred. Only two statuses listed in Table 4.3 Communication Statuses are read communications
statuses: DATA_AVAILABLE and DATA_ON_READERS.

As mentioned in 4.1.4 Getting Status and Status Changes on page 171, all Entities have a get_status_
changes() operation that can be used to explicitly poll for changes in any status related to the entity. For
plain statuses, each entry has operations to get the current value of the status; for example, the Topic class
has a get_inconsistent_topic_status() operation. For read statuses, your application should use the take()
operation on the DataReader to retrieve the newly arrived data that is indicated by DATA_
AVAILABLE and DATA_ON_READER.

Note that the two read communication statuses do not change independently. If data arrives for a DataReader,
then its DATA_AVAILABLE status changes. At the same time, the DATA_ON_READERS status
changes for the DataReader’s Subscriber.

Both types of status have a StatusChangedFlag. This flag indicates whether that particular com-
munication status has changed since the last time the status was read by the application. The way the
StatusChangedFlag is maintained is slightly different for the plain communication status and the read
communication status, as described in the following sections:

l 4.3.1.1 Changes in Plain Communication Status below

l 4.3.1.2 Changes in Read Communication Status on the next page

4.3.1.1 Changes in Plain Communication Status

As seen in Figure 4.2: Status Changes for Plain Communication Status below, for the plain com-
munication status, the StatusChangedFlag flag is initially set to FALSE. It becomes TRUE whenever the
plain communication status changes and is reset to FALSE each time the application accesses the plain
communication status via the proper get_*_status() operation.
Figure 4.2: Status Changes for Plain Communication Status

The communication status is also reset to FALSE whenever the associated listener operation is called, as
the listener implicitly accesses the status which is passed as a parameter to the operation.

4.3.1 Types of Communication Status

The fact that the status is reset prior to calling the listener means that if the application calls the get_*_
status() operation from inside the listener, it will see the status already reset.

An exception to this rule is when the associated listener is the 'nil' listener. The 'nil' listener is treated as a
NO-OP and the act of calling the 'nil' listener does not reset the communication status. (See 4.4.1 Types of
Listeners on page 190.)

For example, the value of the StatusChangedFlag associated with the REQUESTED_DEADLINE_
MISSED status will become TRUE each time new deadline occurs (which increases the Reques-
tedDeadlineMissed status’ total_count field). The value changes to FALSE when the application accesses
the status via the corresponding get_requested_deadline_missed_status() operation on the proper Entity.

4.3.1.2 Changes in Read Communication Status

As seen in Figure 4.3: Status Changes for Read Communication Status on the next page, for the read com-
munication status, the StatusChangedFlag flag is initially set to FALSE. The StatusChangedFlag becomes
TRUE when either a DDS data sample arrives or the ViewStateKind, SampleStateKind, or
InstanceStateKind of any existing DDS sample changes for any reason other than a call to one of the read/-
take operations. Specifically, any of the following events will cause the StatusChangedFlag to become
TRUE:

l The arrival of new data.

l A change in the InstanceStateKind of a contained instance. This can be caused by either:
l Notification that an instance has been disposed by:

l the DataWriter that owns it, if OWNERSHIP = EXCLUSIVE

l or by any DataWriter, if OWNERSHIP = SHARED

l The loss of liveliness of the DataWriter of an instance for which there is no other DataWriter.

l The arrival of the notification that an instance has been unregistered by the only DataWriter
that is known to be writing the instance.

Depending on the kind of StatusChangedFlag, the flag transitions to FALSE (that is, the status is reset)
as follows:

l The DATA_AVAILABLE StatusChangedFlag becomes FALSE when either on_data_available
() is called or the read/take operation (or their variants) is called on the associated DataReader.

l The DATA_ON_READERS StatusChangedFlag becomes FALSE when any of the following
occurs:

l on_data_on_readers() is called.

l on_data_available() is called on any DataReader belonging to the Subscriber.

187

4.3.2 Special Status-Handling Considerations for C

188

l read(), take(), or one of their variants is called on any DataReader belonging to the Sub-
scriber.

Figure 4.3: Status Changes for Read Communication Status

4.3.2 Special Status-Handling Considerations for C

Some status structures contain variable-length sequences to store their values. In the C++, C++/CLI, C#
and Java languages, the memory allocation related to sequences are handled automatically through con-
structors/destructors and overloaded operators. However, the C language is limited in what it provides to

4.4 Listeners

automatically handle memory management. Thus, Connext DDS provides functions and macros in C to ini-
tialize, copy, and finalize (free) status structures.

In the C language, it is not safe to use a status structure that has internal sequences declared in user code
unless it has been initialized first. In addition, user code should always finalize a status structure to release
any memory allocated for the sequences–even if the status structure was declared as a local, stack variable.

Thus, for a general status structure, Connext DDS will provide:

l DDS_<STATUS>STATUS_INITIALIZER This is a macro that should be used when a DDS_
<Status>Status structure is declared in a C application.

struct DDS_<Status>Status status = DDS_<Status>Status_INITIALIZER;

l DDS_<Status>Status_initialize() This is a function that can be used to initialize a DDS_
<Status>Status structure instead of the macro above.

struct DDS_<Status>Status status;
DDS_<Status>Status_initialize(&Status);

l DDS_<Status>Status_finalize() This is a function that should be used to finalize a DDS_
<Status>Status structure when the structure is no longer needed. It will free any memory allocated
for sequences contained in the structure.

struct DDS_<Status>Status status = DDS_<Status>Status_INITIALIZER;
...
<use status>
...
// now done with Status
DDS_<Status>Status_finalize(&status);

l DDS<Status>Status_copy() This is a function that can be used to copy one DDS_<Status>Status
structure to another. It will copy the sequences contained in the source structure and allocate
memory for sequence elements if needed. In the code below, both dstStatus and srcStatus must
have been initialized at some point earlier in the code.

DDS_<Status>Status_copy(&dstStatus, &srcStatus);

Note that many status structures do not have sequences internally. For those structures, you do not need to
use the macro and methods provided above. However, they have still been created for your convenience.

4.4 Listeners

Listeners are triggered by changes in an entity’s status. For instance, maybe Connext DDS found a match-
ing DataReader for a DataWriter, or new data has arrived for a DataReader.

You can use either Listeners orWaitSets to be notified of events. WaitSets block a thread until data is avail-
able. This is the safest way to get data, because it does not affect any middleware threads. In contrast,
Listeners allow an application to be called back from a Connext DDS thread. This provides better latency

189

4.4.1 Types of Listeners

190

than WaitSets, because the application can handle the event in the same thread that is generating the noti-
fication (so there is no time spent context-switching between threads).

There is also the possibility that notifications can be lost when using WaitSets, because most notifications
contain a status update for only the most recent event. For example, imagine a system where a DataReader
is trying to detect that DataWriters have lost liveliness. If two DataWriters lose liveliness at about the
same, a listener that handles the on_liveliness_changed status will be called back once for each
DataWriter that lost liveliness. When on_liveliness_changed is called back the first time, the Live-
linessChangedStatus will contain the handle for one of the DataWriters, and the second time the callback
is called it will contain the handle for the other DataWriter. However, ifWaitSets are used and the
DataWriters become not alive at about the same time, it's possible that by the time theWaitSet is notified
that the first DataWriter has lost liveliness, the second one also loses liveliness, and the Live-
linessChangedStatus contains only the most recent DataWriter to lose liveliness.

The danger of using Listeners is that they are called back from a Connext DDS thread, so performing any
slow processing in a Listener callback can degrade the performance of Connext DDS (by causing lost data,
lost liveliness, etc.).

This section describes Listeners and how to use them.

4.4.1 Types of Listeners

The Listener class is the abstract base class for all listeners. Each entity class (DomainParticipant, Topic,
Publisher, DataWriter, Subscriber, and DataReader) has its own derived Listener class that add methods
for handling entity-specific statuses. The hierarchy of Listener classes is presented in Figure 4.4: Listener
Class Hierarchy on the next page. The methods are called by an internal Connext DDS thread when the
corresponding status for the Entity changes value.

4.4.1 Types of Listeners

Figure 4.4: Listener Class Hierarchy

You can choose which changes in status will trigger a callback by installing a listener with a bit-mask. Bits
in the mask correspond to different statuses. The bits that are true indicate that the listener will be called
back when there are changes in the corresponding status.

You can specify a listener and set its bit-mask before or after you create an Entity:

During Entity creation:
DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |

DDS_DATA_AVAILABLE_STATUS;
datareader = subscriber->create_datareader(topic,

DDS_DATAREADER_QOS_DEFAULT,
listener, mask);

191

4.4.2 Creating and Deleting Listeners

192

or afterwards:
DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |

DDS_DATA_AVAILABLE_STATUS;
datareader->set_listener(listener, mask);

As you can see in the above examples, there are two components involved when setting up listeners: the
listener itself and the mask. Both of these can be null. Table 4.4 Effect of Different Combinations of Listen-
ers and Status Bit Masks describes what happens when a status change occurs. See 4.4.5 Hierarchical Pro-
cessing of Listeners on page 194 for more information.

No Bits Set in Mask Some/All Bits Set in Mask

Listener is
Specified

Connext DDS finds the next most relevant listener for the
changed status.

For the statuses that are enabled in the mask, the most relevant
listenerwill be called.

The 'statusChangedFlag' for the relevant status is reset.

Listener is
NULL

Connext DDS behaves as if the listener is not installed and
finds the next most relevant listener for that status.

Connext DDS behaves as if the listener callback is installed, but the
callback is doing nothing. This is called a ‘nil’ listener.

Table 4.4 Effect of Different Combinations of Listeners and Status Bit Masks

4.4.2 Creating and Deleting Listeners

There is no factory for creating or deleting a Listener; use the natural means in each language binding (for
example, “new” or “delete” in C++ or Java). For example:
class HelloWorldListener : public DDSDataReaderListener {

virtual void on_data_available(DDSDataReader* reader);
};
void HelloWorldListener::on_data_available(DDSDataReader* reader)
{

printf("received data\n");
}
// Create a Listener
HelloWorldListener *reader_listener = NULL;
reader_listener = new HelloWorldListener();
// Delete a Listener
delete reader_listener;

A listener cannot be deleted until the entity it is attached to has been deleted. For example, you must delete
the DataReader before deleting the DataReader’s listener.

Note: Due to a thread-safety issue, the destruction of a DomainParticipantListener from an enabled
DomainParticipant should be avoided—even if the DomainParticipantListener has been removed from
the DomainParticipant. (This limitation does not affect the Java API.)

4.4.3 Special Considerations for Listeners in C

4.4.3 Special Considerations for Listeners in C

In C, a Listener is a structure with function pointers to the user callback routines. Often, you may only be
interested in a subset of the statuses that can be monitored with the Listener. In those cases, you may not
set all of the functions pointers in a listener structure to a valid function. In that situation, we recommend
that the unused, callback-function pointers are set to NULL. While setting the DDS_StatusMask to
enable only the callbacks for the statuses in which you are interested (and thus only enabling callbacks on
the functions that actually exist) is safe, we still recommend that you clear all of the unused callback point-
ers in the Listener structure.

To help, in the C language, we provide a macro that can be used to initialize a Listener structure so that all
of its callback pointers are set to NULL. For example
DDS_<Entity>Listener listener = DDS_<Entity>Listener_INITIALIZER;
// now only need to set the listener callback pointers for statuses // to be monitored

There is no need to do this in languages other than C.

4.4.4 Special Considerations for Listeners in Modern C++

In the Modern C++ API, the Entity constructors and set_listener functions expect a std::shared_ptr. The
Entity keeps a reference to that shared_ptr preventing its deletion at least until the Entity has been des-
troyed or the Listener reset.

In addition to each Listener base class (such as dds::sub::DataReaderListener), which contains a set of
pure virtual functions, a class with a default implementation for each callback that does nothing is provided
(such as dds::sub::NoOpDataReaderListener).

The following example shows how to create a DataReaderListener:
class HelloWorldListener : public dds::sub::NoOpDataReaderListener<HelloWorld> {

void on_data_available(dds::sub::DataReader<HelloWorld> reader) override
{

auto samples = reader.take();
std::cout << "Received " << samples.length() << " samples\n";

}
};

void create_reader_with_listener()
{

// ...
auto reader_listener = std::make_shared<HelloWorldListener>();
dds::sub::DataReader<HelloWorld> reader(subscriber, topic, qos, reader_listener);
// ...

}

It is not recommended to keep a reference to the Entity as a member of a Listener class. Doing so creates a
cycle between these two references preventing each other's destruction. If you do need to keep a reference,
you must later reset the Listener or explicitly close the Entity.

193

4.4.5 Hierarchical Processing of Listeners

194

4.4.5 Hierarchical Processing of Listeners

As seen in Figure 4.4: Listener Class Hierarchy on page 191, Listeners for some Entities derive from the
Connext DDS Listeners for related Entities. This means that the derived Listener has all of the methods of
its parent class. You can install Listeners at all levels of the object hierarchy. At the top is the DomainPar-
ticipantListener; only one can be installed in a DomainParticipant. Then every Subscriber and Publisher
can have their own Listener. Finally, each Topic, DataReader and DataWriter can have their own listen-
ers. All are optional.

Suppose, however, that an Entity does not install a Listener, or installs a Listener that does not have par-
ticular communication status selected in the bitmask. In this case, if/when that particular status changes for
that Entity, the corresponding Listener for that Entity’s parent is called. Status changes are “propagated”
from child Entity to parent Entity until a Listener is found that is registered for that status. Connext DDS
will give up and drop the status-change event only if no Listeners have been installed in the object hier-
archy to be called back for the specific status. This is true for plain communication statuses. Read com-
munication statuses are handle somewhat differently, see 4.4.5.1 Processing Read Communication
Statuses on the next page.

For example, suppose that Connext DDS finds a matching DataWriter for a local DataReader. This event
will change the SUBSCRIPTION_MATCHED status. So the local DataReader object is checked to see
if the application has installed a listener that handles the SUBSCRIPTION_MATCH status. If not, the
Subscriber that created the DataReader is checked to see if it has a listener installed that handles the same
event. If not, the DomainParticipant is checked. The DomainParticipantListener methods are called only
if none of the descendent Entities of the DomainParticipant have listeners that handle the particular status
that has changed. Again, all listeners are optional. Your application does not have to handle any com-
munication statuses.

Table 4.5 Listener Callback Functions lists the callback functions that are available for each Entity’s status
listener.

4.4.5 Hierarchical Processing of Listeners

Entity Listener for: Callback Functions

DomainParticipants

Topics on_inconsistent_topic()

Publishers and DataWriters

on_liveliness_lost()

on_offered_deadline_missed()

on_offered_incompatible_qos()

on_publication_matched()

on_reliable_reader_activity_changed()

on_reliable_writer_cache_changed()

Subscribers on_data_on_readers()

Subscribers and DataReaders

on_data_available

on_liveliness_changed()

on_requested_deadline_missed()

on_requested_incompatible_qos()

on_sample_lost()

on_sample_rejected()

on_subscription_matched()

Table 4.5 Listener Callback Functions

4.4.5.1 Processing Read Communication Statuses

The processing of the DATA_ON_READERS and DATA_AVAILABLE read communication
statuses are handled slightly differently since, when new data arrives for a DataReader, both statuses
change simultaneously. However, only one, if any, Listener will be called to handle the event.

If there is a Listener installed to handle the DATA_ON_READERS status in the DataReader’s Sub-
scriber or in the DomainParticipant, then that Listener’s on_data_on_readers() function will be called
back. The DataReaderListener’s on_data_available() function is called only if the DATA_ON_
READERS status is not handle by any relevant listeners.

This can be useful if you have generic processing to do whenever new data arrives for any DataReader.
You can execute the generic code in the on_data_on_readers()method, and then dispatch the processing
of the actual data to the specific DataReaderListener’s on_data_available() function by calling the
notify_datareaders()method on the Subscriber.

For example:

195

4.4.6 Operations Allowed within Listener Callbacks

196

void on_data_on_readers (DDSSubscriber *subscriber)
{

// Do some general processing that needs to be done
// whenever new data arrives, but is independent of
// any particular DataReader
< generic processing code here >

// Now dispatch the actual processing of the data
// to the specific DataReader for which the data
// was received
subscriber->notify_datareaders();

}

4.4.6 Operations Allowed within Listener Callbacks

Due to the potential for deadlock, some Connext DDS APIs should not be invoked within the functions of
listener callbacks. Exactly which Connext DDS APIs are restricted depends on the Entity upon which the
Listener is installed, as well as the configuration of ‘Exclusive Areas,’ as discussed in 4.5 Exclusive Areas
(EAs) on the next page.

Please read and understand 4.5 Exclusive Areas (EAs) on the next page and 4.5.1 Restricted Operations
in Listener Callbacks on page 200 to ensure that the calls made from your Listeners are allowed and will
not cause potential deadlock situations.

4.4.7 Best Practices with Listeners

Note: All the issues described below can be avoided by using aWaitset.

l Avoid blocking or performing a lot of processing in Listener callbacks

Listeners are invoked by internal threads that perform critical functions within the middleware and
need to run in a timely manner (see Connext DDS Threading Model (Chapter 21 on page 914)). By
default, Connext DDS creates a few threads to use to receive data and only a single thread to handle
periodic events.

Because of this, user applications installing Listeners should never block in a Listener callback.
There are several negative consequences of blocking in a listener callback:

l The application may lose data for the DataReader the listener is installed on, because the
receive thread is not removing it from the socket buffer and it gets overwritten (see 21.3
Receive Threads on page 917).

l The application may receive strictly reliable data with a delay, because the receive thread is
not removing it from the socket buffer and if it gets overwritten it must be re-sent.

l The application may lose or delay data for other DataReaders, because by default all
DataReaders created with the same DomainParticipant share the same threads.

4.5 Exclusive Areas (EAs)

l The application may not be notified of periodic events on time (see 21.2 Event Thread on
page 916).

If the application needs to make a blocking call when data is available, or when another event
occurs, the application should use aWaitSet. (see 4.6 Conditions and WaitSets on page 202).

l Avoid taking application mutexes/semaphores in Listener callbacks

Taking application mutexes/sempahores within a Listener callback may lead to unexpected deadlock
scenarios. When a Listener callback is invoked, the EA (Exclusive Area) of the Entity 'E' to which
the callback applies is taken by the middleware. If the application takes an application mutex 'M'
within a critical section in which the application makes DDS calls affecting 'E', this may lead to fol-
lowing deadlock:

The middleware thread is within the entity EA trying to acquire the mutex 'M'. At the same time, the
application thread has acquired 'M' and is blocked trying to acquire the entity EA.

l Do not write data with a DataWriter within the on_data_available() callback

Avoid writing data with a DataWriter within the DataReaderListener's on_data_available() call-
back. If the write operation blocks because e.g. the send window is full, this will lead to a deadlock.

l Do not call wait_for_acknowledgements() within the on_data_available() callback

Do not call the DataWriter's wait_for_acknowledgments() within the DataReaderListener's on_
data_available() callback. This will lead to deadlock.

4.5 Exclusive Areas (EAs)

Listener callbacks are invoked by internal Connext DDS threads. To prevent undesirable, multi-threaded
interaction, the internal threads may take and hold semaphores (mutexes) used for mutual exclusion. In
your listener callbacks, you may want to invoke functions provided by the Connext DDS API. Internally,
those Connext DDS functions also may take mutexes to prevent errors due to multi-threaded access to crit-
ical data or operations.

Once there are multiple mutexes to protect different critical regions, the possibility for deadlock exists. Con-
sider Figure 4.5: Multiple Mutexes Leading to a Deadlock Condition on the next page’s scenario, in which
there are two threads and two mutexes.

197

4.5 Exclusive Areas (EAs)

198

Figure 4.5: Multiple Mutexes Leading to a Deadlock Condition

Thread1 takes MutexA while simultaneously Thread2 takes MutexB. Then, Thread1 takes MutexB and simultaneously
Thread2 takes MutexA. Now both threads are blocked since they hold a mutex that the other thread is trying to take.

This is a deadlock condition.

While the probability of entering the deadlock situation in Figure 4.5: Multiple Mutexes Leading to a Dead-
lock Condition above depends on execution timing, when there are multiple threads and multiple mutexes,
care must be taken in writing code to prevent those situations from existing in the first place. Connext DDS
has been carefully created and analyzed so that we know our threads internally are safe from deadlock
interactions.

However, when Connext DDS threads that are holding mutexes call user code in listeners, it is possible for
user code to inadvertently cause the threads to deadlock if Connext DDS APIs that try to take other
mutexes are invoked. To help you avoid this situation, RTI has defined a concept known as Exclusive
Areas, some restrictions regarding the use of Connext DDS APIs within user callback code, and a QoS
policy that allows you to configure Exclusive Areas.

Connext DDS uses Exclusive Areas (EAs) to encapsulate mutexes and critical regions. Only one thread at
a time can be executing code within an EA. The formal definition of EAs and their implementation
ensures safety from deadlock and efficient entering and exiting of EAs. While every Entity created by Con-
next DDS has an associated EA, EAs may be shared among several Entities. A thread is automatically in
the entity's EA when it is calling the entity’s listener.

Connext DDS allows you to configure all the Entities within an application in a single DDS domain to
share a single Exclusive Area. This would greatly restrict the concurrency of thread execution within Con-
next DDS’s multi-threaded core. However, doing so would release all restrictions on using Connext DDS
APIs within your callback code.

4.5 Exclusive Areas (EAs)

You may also have the best of both worlds by configuring a set of Entities to share a global EA and others
to have their own. For the Entities that have their own EAs, the types of Connext DDS operations that you
can call from the Entity’s callback are restricted.

To understand why the general EA framework limits the operations that can be called in an EA, consider a
modification to the example previously presented in Figure 4.5: Multiple Mutexes Leading to a Deadlock
Condition on the previous page. Suppose we create a rule that is followed when we write our code. “For
all situations in which a thread has to take multiple mutexes, we write our code so that the mutexes are
always taken in the same order.” Following the rule will ensure us that the code we write cannot enter a
deadlock situation due to the taking of the mutexes, see Figure 4.6: Taking Multiple Mutexes in a Specific
Order to Eliminate Deadlock below.
Figure 4.6: Taking Multiple Mutexes in a Specific Order to Eliminate Deadlock

By creating an order in which multiple mutexes are taken, you can guarantee that no deadlock situation will arise. In
this case, if a thread must take both MutexA and MutexB, we write our code so that in those cases MutexA is always

taken before MutexB.

Connext DDS defines an ordering of the mutexes it creates. Generally speaking, there are three ordered
levels of Exclusive Areas:

l ParticipantEA

There is only one ParticipantEA per participant. The creation and deletion of all Entities (create_
xxx(), delete_xxx()) take the ParticipantEA. In addition, the enable()method for an Entity and the
setting of the Entity’s QoS, set_qos(), also take the ParticipantEA. There are other functions that
take the ParticipantEA: get_discovered_participants(), get_publishers(), get_subscribers(), get_
discovered_topics(), ignore_participant(), ignore_topic(), ignore_publication(), ignore_sub-
scription(), remove_peer(), and register_type().

199

4.5.1 Restricted Operations in Listener Callbacks

200

l SubscriberEA

This EA is created on a per-Subscriber basis by default. You can assume that the methods of a Sub-
scriber will take the SubscriberEA. In addition, the DataReaders created by a Subscriber share the
EA of its parent. This means that the methods of a DataReader (including take() and read()) will
take the EA of its Subscriber. Therefore, operations on DataReaders of the same Subscriber, will
be serialized, even when invoked from multiple concurrent application threads. As mentioned, the
enable() and set_qos()methods of both Subscribers and DataReaders will take the ParticipantEA.
The same is true for the create_datareader() and delete_datareader()methods of the Subscriber.

l PublisherEA

This EA is created on a per-Publisher basis by default. You can assume that the methods of a Pub-
lisher will take the PublisherEA. In addition, the DataWriters created by a Publisher share the EA
of its parent. This means that the methods of a DataWriter including write() will take the EA of its
Publisher. Therefore, operations on DataWriters of the same Publisher will be serialized, even
when invoked from multiple concurrent application threads. As mentioned, the enable() and set_
qos()methods of both Publishers and DataWriters will take the ParticipantEA, as well as the cre-
ate_datawriter() and delete_datawriter()methods of the Publisher.

In addition, you should also be aware that:

l The three EA levels are ordered in the following manner:
ParticipantEA < SubscriberEA < PublisherEA

l When executing user code in a listener callback of an Entity, the internal Connext DDS thread is
already in the EA of that Entity or used by that Entity.

l If a thread is in an EA, it can call methods associated with either a higher EA level or that share the
same EA. It cannot call methods associated with a lower EA level nor ones that use a different EA
at the same level.

4.5.1 Restricted Operations in Listener Callbacks

Based on the background and rules provided in 4.5 Exclusive Areas (EAs) on page 197, this section
describes how EAs restrict you from using various Connext DDS APIs from within the Listener callbacks
of different Entities. Reader callbacks take the SubscriberEA. Writer callbacks take the PublisherEA.
DomainParticipant callbacks take the ParticipantEA.

These restrictions do not apply to builtin topic listener callbacks.

By default, each Publisher and Subscriber creates and uses its own EA, and shares it with its children
DataWriters and DataReaders, respectively. In that case:

Within a DataWriter/DataReader’s Listener callback, do not:

4.5.1 Restricted Operations in Listener Callbacks

l Create any Entities

l Delete any Entities

l Enable any Entities

l Set QoS on any Entities

Within a Subscriber/DataReader’s Listener callback, do not call any operations on:

l Other Subscribers

l DataReaders that belong to other Subscribers

l Publishers/DataWriters that have been configured to use the ParticipantEA (see below)

Within a Publisher/DataWriter Listener callback, do not call any operations on:

l Other Publishers

l DataWriters that belong to other Publishers

l Any Subscribers

l Any DataReaders

Connext DDS will enforce the rules to avoid deadlock, and any attempt to call an illegal method from
within a Listener callback will return DDS_RETCODE_ILLEGAL_OPERATION.

However, as previously mentioned, if you are willing to trade-off concurrency for flexibility, you may con-
figure individual Publishers and Subscribers (and thus their DataWriters and DataReaders) to share the
EA of their participant. In the limit, only a single ParticipantEA is shared among all Entities. When doing
so, the restrictions above are lifted at a cost of greatly reduced concurrency. You may cre-
ate/delete/enable/set_qos’s and generally call all of the methods of any other entity in the Listener callbacks
of Entities that share the ParticipantEA.

Use the 7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension) on page 351 of the Publisher or Sub-
scriber to set whether or not to use a shared exclusive area. By default, Publishers and Subscribers will cre-
ate and use their own individual EAs. You can configure a subset of the Publishers and Subscribers to
share the ParticipantEA if you need the Listeners associated with those Entities or child Entities to be able
to call any of the restricted methods listed above.

Regardless of how the EXCLUSIVE_AREA QosPolicy is set, the following operations are never allowed
in any Listener callback:

l Destruction of the entity to which the Listener is attached. For instance, a DataWriter/DataReader
Listener callback must not destroy its DataWriter/DataReader.

201

4.6 Conditions and WaitSets

202

l Within the TopicListener callback, you cannot call any operations on DataReaders, DataWriters,
Publishers, Subscribers or DomainParticipants.

l The DataWriterListener callback on_instance_replaced has further restrictions on the APIs that are
allowed to be called because it can be called within the context of an in-progress write, dispose, or
unregister call. Most APIs on the DataWriter must not be used in the on_instance_replaced call-
back. The only DataWriter APIs that are safe to call within this callback are:

l FooDataWriter_get_key_value

l FooDataWriter_narrow

l FooDataWriter_as_datawriter

l FooDataWriter_create_data

l FooDataWriter_create_data_w_params

l FooDataWriter_delete_data

l FooDataWriter_delete_data_w_params

l DataWriter_as_entity

l DataWriter_get_matched_subscriptions

l DataWriter_is_matched_subscription_active

l DataWriter_get_matched_subscription_participant_data

l DataWriter_get_topic

l DataWriter_get_publisher

l DataWriter_is_sample_app_acknowledged

4.6 Conditions and WaitSets

Conditions and WaitSets provide another way for Connext DDS to communicate status changes (including
the arrival of data) to your application. While a Listener is used to provide a callback for asynchronous
access, Conditions and WaitSets provide synchronous data access. In other words, Listeners are noti-
fication-based and Conditions are wait-based.

A WaitSet allows an application to wait until one or more attached Conditions becomes true (or until a
timeout expires).

Briefly, your application can create aWaitSet, attach one or more Conditions to it, then call theWaitSet’s
wait() operation. The wait() blocks until one or more of theWaitSet’s attached Conditions becomes
TRUE.

A Condition has a trigger_value that can be TRUE or FALSE. You can retrieve the current value by call-
ing the Condition’s only operation, get_trigger_value().

4.6 Conditions and WaitSets

There are three kinds of Conditions. A Condition is a root class for all the conditions that may be attached
to aWaitSet. This basic class is specialized in three classes:

l 4.6.6 GuardConditions on page 210 are created by your application. Each GuardCondition has a
single, user-settable, boolean trigger_value. Your application can manually trigger the GuardCondi-
tion by calling set_trigger_value(). Connext DDS does not trigger or clear this type of condition—it
is completely controlled by your application.

l 4.6.7 ReadConditions and QueryConditions on page 210 are created by your application, but
triggered by Connext DDS. ReadConditions provide a way for you to specify the DDS data samples
that you want to wait for, by indicating the desired sample-states, view-states, and instance-states1.

l 4.6.8 StatusConditions on page 213 are created automatically by Connext DDS, one for each
Entity. A StatusCondition is triggered by Connext DDS when there is a change to any of that
Entity’s enabled statuses.

Figure 4.7: Conditions and WaitSets on the next page shows the relationship between these objects and
other Entities in the system.

1These states are described in 8.4.6 The SampleInfo Structure on page 570.

203

4.6.1 Creating and Deleting WaitSets

204

Figure 4.7: Conditions and WaitSets

A WaitSet can be associated with more than one Entity (including multiple DomainParticipants). It can be
used to wait on Conditions associated with different DomainParticipants. A WaitSet can only be in use by
one application thread at a time.

4.6.1 Creating and Deleting WaitSets

There is no factory for creating or deleting aWaitSet; use the natural means in each language binding (for
example, “new” or “delete” in C++ or Java).

There are two ways to create aWaitSet—with or without specifying WaitSet properties (DDS_
WaitSetProperty_t, described in Table 4.6 WaitSet Properties (DDS_WaitSet_Property_t)). 4.6.3 Wait-
ing for Conditions on page 206 describes how the properties are used.

4.6.2 WaitSet Operations

Type Field
Name Description

long
max_
event_
count

Maximumnumber of trigger events to cause aWaitSet to wake up.

DDS_Dur-
ation_t

max_
event_
delay

Maximumdelay fromoccurrence of first trigger event to cause aWaitSet to wake up.

This value should reflect the maximumacceptable latency increase (time delay fromoccurrence of the event to waking up
theWaitSet) incurred as a result of waiting for additional events before waking up theWaitSet.

Table 4.6 WaitSet Properties (DDS_WaitSet_Property_t)

To create aWaitSet with default behavior:
WaitSet* waitset = new WaitSet();

To create aWaitSet with properties:
DDS_WaitSetProperty_t prop;
Prop.max_event_count = 5;
DDSWaitSet* waitset = new DDSWaitSet(prop);

To delete aWaitSet:
delete waitset;

4.6.2 WaitSet Operations

WaitSets have only a few operations, as listed in Table 4.7 WaitSet Operations. For details, see the API
Reference HTML documentation.

Operation Description

attach_con-
dition

Attaches a Condition to thisWaitSet.

You may attach a Condition to aWaitSet that is currently being waited upon (via the wait() operation). In this case, if the Condition
has a trigger_value of TRUE, then attaching the Conditionwill unblock theWaitSet.

Adding a Condition that is already attached to theWaitSet has no effect. If the Condition cannot be attached,Connext DDSwill re-
turn an OUT_OF_RESOURCES error code.

detach_con-
dition

Detaches a Condition from theWaitSet. Attempting to detach a Condition that is not to attached theWaitSetwill result in a
PRECONDITION_NOT_MET error code.

wait Blocks execution of the thread until one ormore attachedConditions becomes true, or until a user-specified timeout expires. See
4.6.3 Waiting for Conditionson the next page.

dispatch
(Modern C++ API only) Blocks execution of the thread until one ormore attachedConditions becomes true, or until a user-spe-
cified timeout expires. Then it calls the handlers attached to the active conditions and returns. Formore information see the
API Reference HTML documentation for the DDS Modern C++ API (Modules, Infrastructure Module, Conditions and WaitSets).

Table 4.7 WaitSet Operations

205

4.6.3 Waiting for Conditions

206

Operation Description

get_con-
ditions Retrieves a list of attachedConditions.

get_prop-
erty

Retrieves the DDS_WaitSetProperty_t structure of the associatedWaitSet.

set_prop-
erty

Sets the DDS_WaitSetProperty_t structure, to configure the associatedWaitSet to return after one ormore trigger events have oc-
curred.

Table 4.7 WaitSet Operations

4.6.3 Waiting for Conditions

TheWaitSet’s wait() operation allows an application thread to wait for any of the attached Conditions to
trigger (become TRUE).

If any of the attached Conditions are already TRUE when wait() is called, it returns immediately.

If none of the attached Conditions are already TRUE, wait() blocks—suspending the calling thread. The
waiting behavior depends on whether or not properties were set when the WaitSet was created:

l If properties are not specified when theWaitSet is created:

TheWaitSet will wake up as soon as a trigger event occurs (that is, when an attached Condition
becomes true). This is the default behavior if properties are not specified.

This ‘immediate wake-up’ behavior is optimal if you want to minimize latency (to wake up and pro-
cess the data or event as soon as possible). However, "waking up" involves a context switch—the
operating system must signal and schedule the thread that is waiting on theWaitSet. A context
switch consumes significant CPU and therefore waking up on each data update is not optimal in situ-
ations where the application needs to maximize throughput (the number of messages processed per
second). This is especially true if the receiver is CPU limited.

l If properties are specified when theWaitSet is created:

The properties configure the waiting behavior of aWaitSet. If no conditions are true at the time of
the call to wait, theWaitSet will wait for (a)max_event_count trigger events to occur, (b) up to
max_event_delay time from the occurrence of the first trigger event, or (c) up to the timeout max-
imum wait duration specified in the call to wait(). (Note: The resolution of the timeout period is con-
strained by the resolution of the system clock.)

If wait() does not timeout, it returns a list of the attached Conditions that became TRUE and therefore
unblocked the wait.

If wait() does timeout, it returns TIMEOUT and an empty list of Conditions.

4.6.4 Processing Triggered Conditions—What to do when Wait() Returns

Only one application thread can be waiting on the sameWaitSet. If wait() is called on aWaitSet that
already has a thread blocking on it, the operation will immediately return PRECONDITION_NOT_MET.

If you detach a Condition from aWaitset that is currently in a wait state (that is, you are waiting on
it), wait()may return OK and an empty sequence of conditions.

4.6.3.1 How WaitSets Block

The blocking behavior of theWaitSet is illustrated in Figure 4.8: WaitSet Blocking Behavior below. The
result of a wait() operation depends on the state of theWaitSet, which in turn depends on whether at least
one attached Condition has a trigger_value of TRUE.

If the wait() operation is called on aWaitSet with state BLOCKED, it will block the calling thread. If wait
() is called on aWaitSet with state UNBLOCKED, it will return immediately.

When theWaitSet transitions from BLOCKED to UNBLOCKED, it wakes up the thread (if there is one)
that had called wait() on it. There is no implied “event queuing” in the awakening of aWaitSet. That is, if
several Conditions attached to theWaitSet have their trigger_value transition to true in sequence, Connext
DDS will only unblock theWaitSet once.
Figure 4.8: WaitSet Blocking Behavior

4.6.4 Processing Triggered Conditions—What to do when Wait() Returns

When wait() returns, it provides a list of the attached Condition objects that have a trigger_value of true.
Your application can use this list to do the following for each Condition in the returned list:

207

4.6.5 Conditions and WaitSet Example

208

l If it is a StatusCondition:
l First, call get_status_changes() to see what status changed.

l If the status changes refer to plain communication status: call get_<communication_status>()
on the relevant Entity.

l If the status changes refer to DATA_ON_READERS1: call get_datareaders() on the rel-
evant Subscriber.

l If the status changes refer to DATA_AVAILABLE: call read() or take() on the relevant
DataReader.

l If it is a ReadCondition or a QueryCondition: You may want to call read_w_condition() or take_
w_condition() on the DataReader, with the ReadCondition as a parameter (see 8.4.3.6 read_w_
condition and take_w_condition on page 566).

Note that this is just a suggestion, you do not have to use the “w_condition” operations (or any read/-
take operations, for that matter) simply because you used aWaitSet. The “w_condition” operations
are just a convenient way to use the same status masks that were set on the ReadCondition or
QueryCondition.

l If it is a GuardCondition: check to see which GuardCondition changed, then react accordingly.
Recall that GuardConditions are completely controlled by your application.

See 4.6.5 Conditions and WaitSet Example below to see how to determine which of the attached Condi-
tions is in the returned list.

4.6.5 Conditions and WaitSet Example

This example creates aWaitSet and then waits for one or more attached Conditions to become true.
// Create a WaitSet
WaitSet* waitset = new WaitSet();
// Attach Conditions
DDSCondition* cond1 = ...;
DDSCondition* cond2 = entity->get_statuscondition();
DDSCondition* cond3 = reader->create_readcondition(

DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

DDSCondition* cond4 = new DDSGuardCondition();
DDSCondition* cond5 = ...;
DDS_ReturnCode_t retcode;

retcode = waitset->attach_condition(cond1);
if (retcode != DDS_RETCODE_OK) {

// ... error
}

1And then read/take on the returned DataReader objects.

4.6.5 Conditions and WaitSet Example

retcode = waitset->attach_condition(cond2);
if (retcode != DDS_RETCODE_OK) {

// ... error
}
retcode = waitset->attach_condition(cond3);
if (retcode != DDS_RETCODE_OK) {

// ... error
}
retcode = waitset->attach_condition(cond4);
if (retcode != DDS_RETCODE_OK) {

// ... error
}
retcode = waitset->attach_condition(cond5);
if (retcode != DDS_RETCODE_OK) {

// ... error
}
// Wait for a condition to trigger or timeout
DDS_Duration_t timeout = { 0, 1000000 }; // 1ms
DDSConditionSeq active_conditions; // holder for active conditions
bool is_cond1_triggered = false;
bool is_cond2_triggered = false;
DDS_ReturnCode_t retcode;

retcode = waitset->wait(active_conditions, timeout);
if (retcode == DDS_RETCODE_TIMEOUT) {

// handle timeout
printf("Wait timed out. No conditions were triggered.\n");

}
else if (retcode != DDS_RETCODE_OK) {

// ... check for cause of failure
} else {
// success

if (active_conditions.length() == 0) {
printf("Wait timed out!! No conditions triggered.\n");

} else
// check if "cond1" or "cond2" are triggered:
for(i = 0; i < active_conditions.length(); ++i) {

if (active_conditions[i] == cond1) {
printf("Cond1 was triggered!");
is_cond1_triggered = true;

}
if (active_conditions[i] == cond2) {

printf("Cond2 was triggered!");
is_cond2_triggered = true;

}
if (is_cond1_triggered && is_cond2_triggered) {

break;
}

}
}

}
if (is_cond1_triggered) {

// ... do something because "cond1" was triggered ...
}
if (is_cond2_triggered) {

// ... do something because "cond2" was triggered ...
}

209

4.6.6 GuardConditions

210

// Delete the waitset
delete waitset;
waitset = NULL;

4.6.6 GuardConditions

GuardConditions are created by your application. GuardConditions provide a way for your application to
manually awaken aWaitSet. Like all Conditions, it has a single boolean trigger_value. Your application
can manually trigger the GuardCondition by calling set_trigger_value().

Connext DDS does not trigger or clear this type of condition—it is completely controlled by your applic-
ation.

A GuardCondition has no factory. It is created as an object directly by the natural means in each language
binding (e.g., using “new” in C++ or Java). For example:
// Create a Guard Condition
Condition* my_guard_condition = new GuardCondition();
// Delete a Guard Condition
delete my_guard_condition;

When first created, the trigger_value is FALSE.

A GuardCondition has only two operations, get_trigger_value() and set_trigger_value().

When your application calls set_trigger_value(DDS_BOOLEAN_TRUE), Connext DDS will awaken
any WaitSet to which the GuardCondition is attached.

4.6.7 ReadConditions and QueryConditions

ReadConditions are created by your application, but triggered by Connext DDS. ReadConditions provide
a way for you to specify the DDS data samples that you want to wait for, by indicating the desired sample-
states, view-states, and instance-states (see 6.1 Instance States on page 259). Then Connext DDS will trig-
ger the ReadCondition when suitable DDS samples are available.

A QueryCondition is a special ReadCondition that allows you to specify a query expression and para-
meters, so you can filter on the locally available (already received) data. QueryConditions use the same
SQL-based filtering syntax as ContentFilteredTopics for query expressions, parameters, etc. Unlike Con-
tentFilteredTopics, QueryConditions are applied to data already received, so they do not affect the recep-
tion of data.

Multiple mask combinations can be associated with a single content filter. This is important because the
maximum number of content filters that may be created per DataReader is 32, but more than 32
QueryConditions may be created per DataReader, if they are different mask-combinations of the same con-
tent filter.

ReadConditions and QueryConditions are created by using the DataReader’s create_readcondition() and
create_querycondition() operations. For example:

4.6.7 ReadConditions and QueryConditions

DDSReadCondition* my_read_condition =
reader->create_readcondition(

DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

DDSQueryCondition* my_query_condition =
reader->create_querycondition(

DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE
query_expression,
query_parameters);

You can also use the alternative DataReader operations, create_readcondition_w_params() and create_
querycondition_w_params(), which perform the same action as create_readcondition() and create_
querycondition(), but allow the application to explicitly set the masks in the DDS_ReadConditionParams
and DDS_QueryConditionParams structures (see Table 4.9 DDS_ReadConditionParams and Table 4.10
DDS_QueryConditionParams).

In addition, create_readcondition_w_params() and create_querycondition_w_params() allow select-
ing between TopicQuery samples and LIVE samples (see Topic Queries (Chapter 24 on page 983)).

A DataReader can have multiple attached ReadConditions and QueryConditions. A ReadCondition or
QueryCondition may only be attached to one DataReader.

To delete a ReadCondition or QueryCondition, use the DataReader’s delete_readcondition() operation:
DDS_ReturnCode_t delete_readcondition (DDSReadCondition *condition)

After a ReadCondition is triggered, use the FooDataReader’s read/take “with condition” operations (see
8.4.3.6 read_w_condition and take_w_condition on page 566) to access the DDS samples.

Table 4.8 ReadCondition and QueryCondition Operations lists the operations available on ReadCondi-
tions.

Operation Description

get_
datareader

Returns the DataReader to which the ReadCondition orQueryCondition is attached.

get_in-
stance_
state_mask

Returns the instance states that were specified when the ReadCondition orQueryConditionwas created. These are the DDS
sample’s instance states thatConnext DDS checks to determine whether or not to trigger the ReadCondition orQueryCondition .

get_
sample_
state_mask

Returns the sample-states that were specified when the ReadCondition orQueryConditionwas created. These are the sample
states thatConnext DDS checks to determine whether or not to trigger the ReadCondition orQueryCondition.

get_view_
state_mask

Returns the view-states that were specified when the ReadCondition orQueryConditionwas created. These are the view states
thatConnext DDS checks to determine whether or not to trigger the ReadCondition orQueryCondition.

Table 4.8 ReadCondition and QueryCondition Operations

211

4.6.7 ReadConditions and QueryConditions

212

Operation Description

get_stream_
kind_mask

Retrieves the streamkind mask for the condition.

Table 4.8 ReadCondition and QueryCondition Operations

Type Field Name Description

DDS_SampleStateMask sample_states Sample state of the data samples that are of interest.

DDS_ViewStateMask view_states View state of the data samples that are of interest.

DDS_InstanceStateMask instance_states Instance state of the data samples that are of interest.

DDS_StreamKindMask stream_kinds Streamkind of the data samples that are of interest.

Table 4.9 DDS_ReadConditionParams

Type Field Name Description

struct DDS_ReadConditionParams as_readconditionparam Read condition parameters

char * query_expression Expression for the query.

struct DDS_StringSeq query_parameters Parameters for the query expression.

Table 4.10 DDS_QueryConditionParams

4.6.7.1 How ReadConditions are Triggered

A ReadCondition has a trigger_value that determines whether the attached WaitSet is BLOCKED or
UNBLOCKED. Unlike the StatusCondition, the trigger_value of the ReadCondition is tied to the pres-
ence of at least one DDS sample with a sample-state, view-state, and instance-state that matches those set
in the ReadCondition. Furthermore, for the QueryCondition to have a trigger_value==TRUE, the data
associated with the DDS sample must be such that the query_expression evaluates to TRUE.

The trigger_value of a ReadCondition depends on the presence of DDS samples on the associated
DataReader. This implies that a single ‘take’ operation can potentially change the trigger_value of several
ReadConditions or QueryConditions. For example, if all DDS samples are taken, any ReadConditions and
QueryConditions associated with the DataReader that had trigger_value==TRUE before will see the trig-
ger_value change to FALSE. Note that this does not guarantee thatWaitSet objects that were separately
attached to those conditions will not be awakened. Once we have trigger_value==TRUE on a condition,
it may wake up the attached WaitSet, the condition transitioning to trigger_value==FALSE does not
necessarily 'unwakeup' theWaitSet, since 'unwakening' may not be possible. The consequence is that an

4.6.8 StatusConditions

application blocked on aWaitSetmay return from wait() with a list of conditions, some of which are no
longer “active.” This is unavoidable if multiple threads are concurrently waiting on separateWaitSet
objects and taking data associated with the same DataReader.

Consider the following example: A ReadCondition that has a sample_state_mask = {NOT_READ} will
have a trigger_value of TRUE whenever a new DDS sample arrives and will transition to FALSE as
soon as all the newly arrived DDS samples are either read (so their status changes to READ) or taken (so
they are no longer managed by Connext DDS). However, if the same ReadCondition had a sample_
state_mask = {READ, NOT_READ}, then the trigger_value would only become FALSE once all the
newly arrived DDS samples are taken (it is not sufficient to just read them, since that would only change
the SampleState to READ), which overlaps the mask on the ReadCondition.

4.6.7.2 QueryConditions

A QueryCondition is a special ReadCondition that allows your application to also specify a filter on the
locally available data.

The query expression is similar to a SQL WHERE clause and can be parameterized by arguments that are
dynamically changeable by the set_query_parameters() operation.

QueryConditions are triggered in the same manner as ReadConditions, with the additional requirement that
the DDS sample must also satisfy the conditions of the content filter associated with the QueryCondition.

Operation Description

get_query_
expression

Returns the query expression specified when theQueryConditionwas created.

get_query_
parameters

Returns the query parameters associated with theQueryCondition. That is, the parameters specified on the last successful call to
set_query_parameters(), or if set_query_parameters() was never called, the arguments specified when theQueryConditionwas
created.

set_query_
parameters

Changes the query parameters associated with theQueryCondition.

Table 4.11 QueryCondition Operations

4.6.8 StatusConditions

StatusConditions are created automatically by Connext DDS, one for each Entity. Connext DDS will trig-
ger the StatusCondition when there is a change to any of that Entity’s enabled statuses.

By default, when Connext DDS creates a StatusCondition, all status bits are turned on, which means it will
check for all statuses to determine when to trigger the StatusCondition. If you only want Connext DDS to
check for specific statuses, you can use the StatusCondition’s set_enabled_statuses() operation and set
just the desired status bits.

213

4.6.8 StatusConditions

214

The trigger_value of the StatusCondition depends on the communication status of the Entity (e.g., arrival
of data, loss of information, etc.), ‘filtered’ by the set of enabled statuses on the StatusCondition.

The set of enabled statuses and its relation to Listeners andWaitSets is detailed in 4.6.8.1 How
StatusConditions are Triggered below.

Table 4.12 StatusCondition Operations lists the operations available on StatusConditions.

Operation Description

set_en-
abled_
statuses

Defines the list of communication statuses that are taken into account to determine the trigger_value of the StatusCondition. This
operation may change the trigger_value of the StatusCondition.

WaitSetsbehavior depend on the changes of the trigger_value of their attached conditions. Therefore, anyWaitSet to which the
StatusCondition is attached is potentially affected by this operation.

If this function is not invoked, the default list of enabled statuses includes all the statuses.

get_en-
abled_
statuses

Retrieves the list of communication statuses that are taken into account to determine the trigger_value of the StatusCondition. This
operation returns the statuses that were explicitly set on the last call to set_enabled_statuses() or, if set_enabled_statuses() was
never called, the default list

get_entity Returns the Entityassociated with the StatusCondition. Note that there is exactly one Entityassociated with each StatusCondition.

Table 4.12 StatusCondition Operations

Unlike other types of Conditions, StatusConditions are created by Connext DDS, not by your application.
To access an Entity’s StatusCondition, use the Entity’s get_statuscondition() operation. For example:
Condition* my_status_condition = entity->get_statuscondition();

In the Modern C++ API, use the StatusCondition constructor to obtain a reference to the Entity’s con-
dition. For example:
dds::core::cond::StatusCondition my_status_condition(entity)

After a StatusCondition is triggered, call the Entity’s get_status_changes() operation to see which status
(es) changed.

Note: Not all statuses will activate the StatusCondition. Refer to the API Reference HTML documentation
of the individual statuses for that information.

4.6.8.1 How StatusConditions are Triggered

The trigger_value of a StatusCondition is the boolean OR of the ChangedStatusFlag of all the com-
munication statuses to which it is sensitive. That is, trigger_value is FALSE only if all the values of the
ChangedStatusFlags are FALSE.

The sensitivity of the StatusCondition to a particular communication status is controlled by the list of
enabled_statuses set on the Condition by means of the set_enabled_statuses() operation.

4.6.9 Using Both Listeners and WaitSets

Once a StatusCondition’s trigger_value becomes true, it remains true until the status that changed is reset.
To reset a status, call the related get_*_status() operation. Or, in the case of the data available status, call
read(), take(), or one of their variants.

Therefore, if you are using a StatusCondition on aWaitSet to be notified of events, your thread will wake
up when one of the statuses associated with the StatusCondition becomes true. If you do not reset the
status, the StatusCondition’s trigger_value remains true and yourWaitSet will not block again—it will
immediately wake up when you call wait().

4.6.9 Using Both Listeners and WaitSets

You can use Listeners and WaitSets in the same application. For example, you may want to useWaitSets
and Conditions to access the data, and Listeners to be warned asynchronously of erroneous com-
munication statuses.

We recommend that you choose one or the other mechanism for each particular communication status (not
both). However, if both are enabled, the Listener mechanism is used first, then theWaitSet objects are
signaled.

215

Chapter 5 Working with Topics
For a DataWriter and DataReader to communicate, they need to use the same Topic. A Topic
includes a name and an association with a user data type that has been registered with Connext
DDS. Topic names are how different parts of the communication system find each other. Topics
are named streams of data of the same data type. DataWriters publish DDS samples into the
stream; DataReaders subscribe to data from the stream. More than one Topic can use the same
user data type, but each Topic needs a unique name.

Topics, DataWriters, and DataReaders relate to each other as follows:

l Multiple Topics (each with a unique name) can use the same user data type.

l Applications may have multiple DataWriters for each Topic.

l Applications may have multiple DataReaders for each Topic.

l DataWriters and DataReaders must be associated with the same Topic in order for them to
be connected.

l Topics are created and deleted by a DomainParticipant, and as such, are owned by that
DomainParticipant. When two applications (DomainParticipants) want to use the same
Topic, they must both create the Topic (even if the applications are on the same node).

Connext DDS uses ‘Builtin Topics’ to discover and keep track of remote entities, such as new par-
ticipants in the DDS domain. Builtin Topics are discussed in Built-In Topics (Chapter 18 on
page 837).

5.1 Topics

Before you can create a Topic, you need a user data type (see Data Types and DDS Data Samples
(Chapter 3 on page 27)) and a DomainParticipant (DomainParticipants (9.3 on page 615)). The
user data type must be registered with the DomainParticipant (see 3.2.8 Type Codes for Built-in
Types on page 74).

216

5.1 Topics

217

Once you have created a Topic, what do you do with it? Topics are primarily used as parameters in other
Entities’ operations. For instance, a Topic is required when a Publisher or Subscriber creates a DataWriter
or DataReader, respectively. Topics do have a few operations of their own, as listed in Table 5.1 Topic
Operations. For details on using these operations, see the reference section or the API Reference HTML
documentation.
Figure 5.1: Topic Module

5.1.1 Creating Topics

Purpose Operation Description Reference

Configuring
the Topic

enable Enables the Topic.
4.1.2 Enabling DDSEntities
on page 168

get_qos
Gets the Topic’s current QosPolicy settings. This is most often used in preparation
for calling set_qos().

5.1.3 Setting Topic
QosPolicies on page 220

set_qos
Sets the Topic’sQoS. You can use this operation to change the values for the
Topic’sQosPolicies. Note, however, that not all QosPolicies can be changed after
the Topichas been created.

equals Compares two Topic’sQoS structures for equality.
5.1.3.2 Comparing QoSVal-
ueson page 222

set_qos_
with_
profile

Sets the Topic’sQoS based on a specified QoS profile.

get_listener Gets the currently installed Listener.

5.1.5 Setting Up Top-
icListeners on page 224

set_listener
Sets the Topic’s Listener. If you create the Topicwithout a Listener, you can use
this operation to add one later. Setting the listener to NULL will remove the listener
from the Topic.

narrow
A type-safe way to cast a pointer. This takes a DDSTopicDescription pointer and
‘narrows’ it to a DDSTopic pointer.

7.3.7 Using a Type-Specific
DataWriter (FooDataWriter)
on page 309

Checking
Status

get_in-
consistent_
topic_status

Allows an application to retrieve a Topic’s INCONSISTENT_TOPIC_STATUS
status.

5.3.1 INCONSISTENT_
TOPIC Statuson page 227

get_status_
changes

Gets a list of statuses that have changed since the last time the application read
the status or the listeners were called.

4.1.4 Getting Statusand
StatusChangeson page 171

Navigating
Relationships

get_name Gets the topic_name string used to create the Topic.

5.1.1 Creating Topics below
get_type_
name

Gets the type_name used to create the Topic.

get_par-
ticipant

Gets the DomainParticipant to which this Topicbelongs.
5.1.6.1 Finding a Topic’sDo-
mainParticipant on page 224

Table 5.1 Topic Operations

5.1.1 Creating Topics

Topics are created using the DomainParticipant’s create_topic() or create_topic_with_profile() oper-
ation.

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can change
QoS settings without recompiling the application. For details, see Configuring QoS with XML (Chapter
19 on page 854).

218

5.1.1 Creating Topics

219

DDSTopic * create_topic (
const char *topic_name,
const char *type_name,
const DDS_TopicQos &qos,
DDSTopicListener *listener,
DDS_StatusMask mask)

DDSTopic * create_topic_with_profile (
const char *topic_name,
const char *type_name,
const char *library_name,
const char *profile_name,
DDSTopicListener *listener,
DDS_StatusMask mask)

Where:

topic_name Name for the new Topic, must not exceed 255 characters.

type_name Name for the user data type, must not exceed 255 characters. It must be the same name that was used
to register the DDS type, and the DDS type must be registered with the same DomainParticipant used
to create this Topic. See 3.6 Using RTI Code Generator (rtiddsgen) on page 152.

qos If you want to use the default QoS settings (described in the API Reference HTML documentation), use
DDS_TOPIC_QOS_DEFAULT for this parameter (see Figure 5.2: Creating a Topic with Default
QosPolicies on the next page). If you want to customize any of the QosPolicies, supply a QoS structure
(see 5.1.3 Setting Topic QosPolicies on the next page).

If you use DDS_TOPIC_QOS_DEFAULT, it is not safe to create the topic while another thread may be
simultaneously calling the DomainParticipant’s set_default_topic_qos() operation.

listener Listeners are callback routines. Connext DDS uses them to notify your application of specific events
(status changes) that may occur with respect to the Topic. The listener parameter may be set to NULL if
you do not want to install a Listener. If you use NULL, the Listener of the DomainParticipant to which
the Topic belongs will be used instead (if it is set). For more information on TopicListeners, see 5.1.5
Setting Up TopicListeners on page 224.

mask This bit-mask indicates which status changes will cause the Listener to be invoked. The bits in the
mask that are set must have corresponding callbacks implemented in the Listener. If you use NULL for
the Listener, use DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all call-
backs, use DDS_STATUS_MASK_ALL. For information on statuses, see 4.4 Listeners on page 189.

library_name A QoS Library is a named set of QoS profiles. See 19.3 QoS Profiles on page 856. If NULL is used for
library_name, the DomainParticipant’s default library is assumed.

profile_name A QoS profile groups a set of related QoS, usually one per entity. See 19.3 QoS Profiles on page 856. If
NULL is used for profile_name, the DomainParticipant’s default profile is assumed and library_name is
ignored.

It is not safe to create a topic while another thread is calling lookup_topicdescription() for that
same topic (see 9.3.8 Looking up Topic Descriptions on page 634).

5.1.2 Deleting Topics

Figure 5.2: Creating a Topic with Default QosPolicies

const char *type_name = NULL;
// register the DDS type
type_name = FooTypeSupport::get_type_name();
retcode = FooTypeSupport::register_type(

participant, type_name);
if (retcode != DDS_RETCODE_OK) {

// handle error
}
// create the topic
DDSTopic* topic = participant->create_topic(

"Example Foo", type_name,
DDS_TOPIC_QOS_DEFAULT,
NULL, DDS_STATUS_MASK_NONE);

if (topic == NULL) {
// process error here

};

For more examples, see 5.1.3.1 Configuring QoS Settings when the Topic is Created on page 222.

5.1.2 Deleting Topics

To delete a Topic, use the DomainParticipant’s delete_topic() operation:
DDS_ReturnCode_t delete_topic (DDSTopic * topic)

Note, however, that you cannot delete a Topic if there are any existing DataReaders or DataWriters
(belonging to the same DomainParticipant) that are still using it. All DataReaders and DataWriters asso-
ciated with the Topic must be deleted first.

Note: In the Modern C++ API, Entities are automatically destroyed.

5.1.3 Setting Topic QosPolicies

A Topic’s QosPolicies control its behavior, or more specifically, the behavior of the DataWriters and
DataReaders of the Topic. You can think of the policies as the ‘properties’ for the Topic. The DDS_Top-
icQos structure has the following format:
DDS_TopicQos struct {

DDS_TopicDataQosPolicy topic_data;
DDS_DurabilityQosPolicy durability;
DDS_DurabilityServiceQosPolicy durability_service;
DDS_DeadlineQosPolicy deadline;
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_TransportPriorityQosPolicy transport_priority;
DDS_LifespanQosPolicy lifespan;
DDS_OwnershipQosPolicy ownership;

220

5.1.3 Setting Topic QosPolicies

221

DDS_DataRepresentationQosPolicy representation
} DDS_TopicQos;

Table 5.2 Topic QosPolicies summarizes the meaning of each policy (arranged alphabetically). For inform-
ation on why you would want to change a particular QosPolicy, see the section noted in the Reference
column. For defaults and valid ranges, please refer to the API Reference HTML documentation for each
policy.

QosPolicy Description

DataRepresentation

Specifies which versions of the Extended Common Data Representation (CDR) are offered and requested. See 7.5.3
DATA_REPRESENTATIONQosPolicy on page 381. During Publisher_copy_from_topic_qos, only the first DataRe-
presentationId_t element is copied to the DataWriterQos. The whole sequence is copied to the DataReaderQos during Sub-
scriber_copy_from_topic_qos.

Deadline

For a DataReader, specifies the maximumexpected elapsed time between arriving DDS data samples.

For a DataWriter, specifies a commitment to publish DDS samples with no greater elapsed time between them.

See 7.5.7 DEADLINEQosPolicy on page 407.

DestinationOrder
Controls howConnext DDSwill deal with data sent by multiple DataWriters for the same topic. Can be set to "by reception
timestamp" or to "by source timestamp". See 7.5.8 DESTINATION_ORDERQosPolicy on page 409.

Durability
Specifies whether or notConnext DDSwill store and deliver data that were previously published to newDataReaders. See
7.5.9 DURABILITYQosPolicy on page 412.

DurabilityService
Various settings to configure the external Persistence Service used byConnext DDSforDataWriterswith a Durability QoS
setting of Persistent Durability. See 7.5.10 DURABILITYSERVICEQosPolicy on page 417.

History
Specifies howmuch data must to stored byConnext DDS for the DataWriter orDataReader. This QosPolicy affects the
7.5.21 RELIABILITYQosPolicy on page 448 as well as the 7.5.9 DURABILITYQosPolicy on page 412. See 7.5.12
HISTORYQosPolicy on page 421.

LatencyBudget
Suggestion to Connext DDS on howmuch time is allowed to deliver data. See 7.5.13 LATENCYBUDGET QoSPolicy on
page 426.

Lifespan
Specifies how long Connext DDS should consider data sent by an user application to be valid. See 7.5.14 LIFESPANQoS
Policy on page 426.

Liveliness
Specifies and configures the mechanism that allowsDataReaders to detect when DataWriters become disconnected or
"dead." See 7.5.15 LIVELINESSQosPolicy on page 428.

Ownership
Along with Ownership Strength, specifies ifDataReaders for a topic can receive data frommultiple DataWritersat the same
time. See 7.5.17 OWNERSHIPQosPolicy on page 435.

Reliability Specifies whether or notConnext DDSwill deliver data reliably. See 7.5.21 RELIABILITYQosPolicy on page 448.

ResourceLimits
Controls the amount of physicalmemory allocated for entities, if dynamic allocations are allowed, and how they occur. Also
controls memory usage among different instance values for keyed topics. See 7.5.22 RESOURCE_LIMITSQosPolicy on
page 452.

TopicData
Along with Group Data QosPolicy and UserData QosPolicy, used to attach a buffer of bytes to Connext DDS's discovery
meta-data. See 5.2.1 TOPIC_DATAQosPolicy on page 225.

Table 5.2 Topic QosPolicies

5.1.3 Setting Topic QosPolicies

QosPolicy Description

TransportPriority
Set by a DataWriter to tellConnext DDS that the data being sent is a different "priority" than other data. See 7.5.26
TRANSPORT_PRIORITYQosPolicy on page 459.

Table 5.2 Topic QosPolicies

5.1.3.1 Configuring QoS Settings when the Topic is Created

As described in 5.1.1 Creating Topics on page 218, there are different ways to create a Topic, depending
on how you want to specify its QoS (with or without a QoS profile).

In Figure 5.2: Creating a Topic with Default QosPolicies on page 220, we saw an example of how to cre-
ate a Topic with default QosPolicies by using the special constant, DDS_TOPIC_QOS_DEFAULT,
which indicates that the default QoS values for a Topic should be used. The default Topic QoS values are
configured in the DomainParticipant; you can change them with the DomainParticipant’s set_default_
topic_qos() or set_default_topic_qos_with_profile() operations (see 9.3.7.5 Getting and Setting Default
QoS for Child Entities on page 633).

To create a Topic with non-default QoS values, without using a QoS profile, use the DomainParticipant’s
get_default_topic_qos() operation to initialize a DDS_TopicQos structure. Then change the policies from
their default values before passing the QoS structure to create_topic().

You can also create a Topic and specify its QoS settings via a QoS profile. To do so, call create_topic_
with_profile().

If you want to use a QoS profile, but then make some changes to the QoS before creating the Topic, call
get_topic_qos_from_profile(), modify the QoS and use the modified QoS when calling create_topic().

5.1.3.2 Comparing QoS Values

The equals() operation compares two Topic’s DDS_TopicQoS structures for equality. It takes two para-
meters for the two Topics’ QoS structures to be compared, then returns TRUE is they are equal (all values
are the same) or FALSE if they are not equal.

5.1.3.3 Changing QoS Settings After the Topic Has Been Created

There are two ways to change an existing Topic’s QoS after it is has been created—again depending on
whether or not you are using a QoS Profile.

To change QoS programmatically (that is, without using a QoS Profile), see the example code in Figure
5.3: Changing the QoS of an Existing Topic (without a QoS Profile) on the next page. It retrieves the cur-
rent values by calling the Topic’s get_qos() operation. Then it modifies the value and calls set_qos() to
apply the new value. Note, however, that some QosPolicies cannot be changed after the Topic has been
enabled—this restriction is noted in the descriptions of the individual QosPolicies.

222

5.1.4 Copying QoS From a Topic to a DataWriter or DataReader

223

You can also change a Topic’s (and all other Entities’) QoS by using a QoS Profile. For an example, see
Figure 5.4: Changing the QoS of an Existing Topic with a QoS Profile below. For more information, see
Configuring QoS with XML (Chapter 19 on page 854).

For the C API, use DDS_TopicQos_INITIALIZER or DDS_TopicQos_initialize(). See 4.2.2 Special
QosPolicy Handling Considerations for C on page 182.
Figure 5.3: Changing the QoS of an Existing Topic (without a QoS Profile)

DDS_TopicQos topic_qos;
// Get current QoS. topic points to an existing DDSTopic.
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {

// handle error
}
// Next, make changes.
// New ownership kind will be Exclusive
topic_qos.ownership.kind = DDS_EXCLUSIVE_OWNERSHIP_QOS;
// Set the new QoS
if (topic->set_qos(topic_qos) != DDS_RETCODE_OK) {

// handle error
}

Figure 5.4: Changing the QoS of an Existing Topic with a QoS Profile

retcode = topic->set_qos_with_profile(
“FooProfileLibrary”,”FooProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error
}

5.1.4 Copying QoS From a Topic to a DataWriter or DataReader

Only the TOPIC_DATA QosPolicy strictly applies to Topics—it is described in this section, while the oth-
ers are described in the sections noted Table 5.2 Topic QosPolicies. The rest of the QosPolicies for a Topic
can also be set on the corresponding DataWriters and/or DataReaders. Actually, the values that Connext
DDS uses for those policies are taken directly from those set on the DataWriters and DataReaders. The
values for those policies are stored only for reference in the DDS_TopicQos structure.

Because many QosPolicies affect the behavior of matching DataWriters and DataReaders, the DDS_Top-
icQos structure is provided as a convenient way to set the values for those policies in a single place in the
application. Otherwise, you would have to modify the individual QosPolicies within separate DataWriter
and DataReader QoS structures. And because some QosPolicies are compared between DataReaders and
DataWriters, you will need to make certain that the individual values that you set are compatible (see 4.2.1
QoS Requested vs. Offered Compatibility—the RxO Property on page 180).

The use of the DDS_TopicQos structure to set the values of any QosPolicy except TOPIC_DATA—
which only applies to Topics—is really a way to share a single set of values with the associated
DataWriters and DataReaders, as well as to avoid creating those entities with inconsistent QosPolicies.

To cause a DataWriter to use its Topic’s QoS settings, either:

5.1.5 Setting Up TopicListeners

l Pass DDS_DATAWRITER_QOS_USE_TOPIC_QOS to create_datawriter(), or

l Call the Publisher’s copy_from_topic_qos() operation

To cause a DataReader to use its Topic’s QoS settings, either:

l Pass DDS_DATAREADER_QOS_USE_TOPIC_QOS to create_datareader(), or

l Call the Subscriber’s copy_from_topic_qos() operation

Please refer to the API Reference HTML documentation for the Publisher’s create_datawriter() and Sub-
scriber’s create_datareader()methods for more information about using values from the Topic
QosPolicies when creating DataWriters and DataReaders.

5.1.5 Setting Up TopicListeners

When you create a Topic, you have the option of giving it a Listener. A TopicListener includes just one
callback routine, on_inconsistent_topic(). If you create a TopicListener (either as part of the Topic cre-
ation call, or later with the set_listener() operation), Connext DDS will invoke the TopicListener’s on_
inconsistent_topic()method whenever it detects that another application has created a Topic with same
name but associated with a different user data type. For more information, see 5.3.1 INCONSISTENT_
TOPIC Status on page 227.

Note: Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

If a Topic’s Listener has not been set and Connext DDS detects an inconsistent Topic, the DomainPar-
ticipantListener (if it exists) will be notified instead (see 9.3.6 Setting Up DomainParticipantListeners on
page 626). So you only need to set up a TopicListener if you need to perform specific actions when there
is an error on that particular Topic. In most cases, you can set the TopicListener to NULL and process
inconsistent-topic errors in the DomainParticipantListener instead.

5.1.6 Navigating Relationships Among Entities

5.1.6.1 Finding a Topic’s DomainParticipant

To retrieve a handle to the Topic’s DomainParticipant, use the get_participant() operation:
DDSDomainParticipant* DDSTopicDescription::get_participant()

Notice that this method belongs to the DDSTopicDescription class, which is the base class for
DDSTopic.

5.1.6.2 Retrieving a Topic’s Name or DDS Type Name

If you want to retrieve the topic_name or type_name used in the create_topic() operation, use these meth-
ods:

224

5.2 Topic QosPolicies

225

const char* DDSTopicDescription::get_type_name();
const char* DDSTopicDescription::get_name();

Notice that these methods belong to the DDSTopicDescription class, which is the base class for
DDSTopic.

5.2 Topic QosPolicies

This section describes the only QosPolicy that strictly applies to Topics (and no other types of Entities)—
the TOPIC_DATA QosPolicy. For a complete list of the QosPolicies that can be set for Topics, see Table
5.2 Topic QosPolicies.

Most of the QosPolicies that can be set on a Topic can also be set on the corresponding DataWriter and/or
DataReader. The Topic’s QosPolicy is essentially just a place to store QoS settings that you plan to share
with multiple entities that use that Topic (see how in 5.1.3 Setting Topic QosPolicies on page 220); they
are not used otherwise and are not propagated on the wire.

5.2.1 TOPIC_DATA QosPolicy

This QosPolicy provides an area where your application can store additional information related to the
Topic. This information is passed between applications during discovery (see Discovery (Chapter 15 on
page 770)) using builtin-topics (see Built-In Topics (Chapter 18 on page 837)). How this information is
used will be up to user code. Connext DDS does not do anything with the information stored as TOPIC_
DATA except to pass it to other applications. Use cases are usually application-to-application iden-
tification, authentication, authorization, and encryption purposes.

The value of the TOPIC_DATA QosPolicy is sent to remote applications when they are first discovered,
as well as when the Topic’s set_qos()method is called after changing the value of the TOPIC_DATA.
User code can set listeners on the builtin DataReaders of the builtin Topics used by Connext DDS to
propagate discovery information. Methods in the builtin topic listeners will be called whenever new applic-
ations, DataReaders, and DataWriters are found. Within the user callback, you will have access to the
TOPIC_DATA that was set for the associated Topic.

Currently, TOPIC_DATA of the associated Topic is only propagated with the information that declares a
DataWriter or DataReader. Thus, you will need to access the value of TOPIC_DATA through DDS_
PublicationBuiltinTopicData or DDS_SubscriptionBuiltinTopicData (see Built-In Topics (Chapter 18 on
page 837)).

The structure for the TOPIC_DATA QosPolicy includes just one field, as seen in Table 5.3 DDS_Top-
icDataQosPolicy. The field is a sequence of octets that translates to a contiguous buffer of bytes whose
contents and length is set by the user. The maximum size for the data are set in the 9.5.4 DOMAIN_
PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660.

5.2.1 TOPIC_DATA QosPolicy

Type Field Name Description

DDS_OctetSeq value default: empty

Table 5.3 DDS_TopicDataQosPolicy

This policy is similar to the GROUP_DATA (7.4.4 GROUP_DATA QosPolicy on page 354) and
USER_DATA (7.5.30 USER_DATA QosPolicy on page 470) policies that apply to other types of Entit-
ies.

5.2.1.1 Example

One possible use of TOPIC_DATA is to send an associated XML schema that can be used to process the
data stored in the associated user data structure of the Topic. The schema, which can be passed as a long
sequence of characters, could be used by an XML parser to take DDS samples of the data received for a
Topic and convert them for updating some graphical user interface, web application or database.

5.2.1.2 Properties

This QosPolicy can be modified at any time. A change in the QosPolicy will cause Connext DDS to send
packets containing the new TOPIC_DATA to all of the other applications in the DDS domain.

Because Topics are created independently by the applications that use the Topic, there may be different
instances of the same Topic (same topic name and DDS data type) in different applications. The TOPIC_
DATA for different instances of the same Topic may be set differently by different applications.

5.2.1.3 Related QosPolicies

l 7.4.4 GROUP_DATA QosPolicy on page 354

l 7.5.30 USER_DATA QosPolicy on page 470

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660

5.2.1.4 Applicable DDS Entities

l 5.1 Topics on page 216

5.2.1.5 System Resource Considerations

As mentioned earlier, the maximum size of the TOPIC_DATA is set in the topic_data_max_length field
of the 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660. Because Connext DDS will allocate memory based on this value, you should only increase this
value if you need to. If your system does not use TOPIC_DATA, then you can set this value to 0 to save

226

5.3 Status Indicator for Topics

227

memory. Setting the value of the TOPIC_DATA QosPolicy to hold data longer than the value set in the
topic_data_max_length field will result in failure and an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of TOPIC_DATA, you mustmake certain that
all applications in the DDS domain have changed the value of topic_data_max_length to be the same. If
two applications have different limits on the size of TOPIC_DATA, and one application sets the TOPIC_
DATA QosPolicy to hold data that is greater than the maximum size set by another application, then the
DataWriters and DataReaders of that Topic between the two applications will not connect. This is also
true for the GROUP_DATA (7.4.4 GROUP_DATA QosPolicy on page 354) and USER_DATA
(7.5.30 USER_DATA QosPolicy on page 470) QosPolicies.

5.3 Status Indicator for Topics

There is only one communication status defined for a Topic, ON_INCONSISTENT_TOPIC. You can
use the get_inconsistent_topic_status() operation to access the current value of the status or use a Top-
icListener to catch the change in the status as it occurs. See 4.4 Listeners on page 189 for a general dis-
cussion on Listeners and Statuses.

5.3.1 INCONSISTENT_TOPIC Status

In order for a DataReader and a DataWriter with the same Topic to communicate,their DDS types must
be consistent according to the DataReader’s type-consistency enforcement policy value, defined in its
8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy on page 599). This status indicates that
another DomainParticipant has created a Topic using the same name as the local Topic, but with an incon-
sistent DDS type.

The status is a structure of type DDS_InconsistentTopicStatus, see Table 5.4 DDS_Incon-
sistentTopicStatus Structure. The total_count keeps track of the total number of (DataReader,
DataWriter) pairs with topic names that match the Topic to which this status is attached, but whose DDS
types are inconsistent. The TopicListener’s on_inconsistent_topic() operation is invoked when this status
changes (an inconsistent topic is found). You can also retrieve the current value by calling the Topic’s get_
inconsistent_topic_status() operation.

The value of total_count_change reflects the number of inconsistent topics that were found since the last
time get_inconsistent_topic_status() was called by user code or on_inconsistent_topic() was invoked by
Connext DDS.

Type Field Name Description

DDS_
Long

total_count
Total cumulative count of (DataReader, DataWriter) pairs whose topic namesmatch the Topic to which this status is at-
tached, but whose DDS types are inconsistent.

Table 5.4 DDS_InconsistentTopicStatus Structure

5.4 ContentFilteredTopics

Type Field Name Description

DDS_
Long

total_count_
change

The change in total_count since the last time this status was read.

Table 5.4 DDS_InconsistentTopicStatus Structure

5.4 ContentFilteredTopics

A ContentFilteredTopic is a Topic with filtering properties. It makes it possible to subscribe to topics and
at the same time specify that you are only interested in a subset of the Topic’s data.

For example, suppose you have a Topic that contains a temperature reading for a boiler, but you are only
interested in temperatures outside the normal operating range. A ContentFilteredTopic can be used to limit
the number of DDS data samples a DataReader has to process and may also reduce the amount of data
sent over the network.

5.4.1 Overview

A ContentFilteredTopic creates a relationship between a Topic, also called the related topic, and user-spe-
cified filtering properties. The filtering properties consist of an expression and a set of parameters.

l The filter expression evaluates a logical expression on the Topic content. The filter expression is sim-
ilar to the WHERE clause in a SQL expression.

l The parameters are strings that give values to the 'parameters' in the filter expression. There must be
one parameter string for each parameter in the filter expression.

A ContentFilteredTopic is a type of topic description, and can be used to create DataReaders. However, a
ContentFilteredTopic is not an entity—it does not have QosPolicies or Listeners.

A ContentFilteredTopic relates to other entities in Connext DDS as follows:

l ContentFilteredTopics are used when creating DataReaders, not DataWriters.

l Multiple DataReaders can be created with the same ContentFilteredTopic.

l A ContentFilteredTopic belongs to (is created/deleted by) a DomainParticipant.

l A ContentFilteredTopic and Topic must be in the same DomainParticipant.

l A ContentFilteredTopic can only be related to a single Topic.

l A Topic can be related to multiple ContentFilteredTopics.

l A ContentFilteredTopic can have the same name as a Topic, but ContentFilteredTopics must have
unique names within the same DomainParticipant.

l A DataReader created with a ContentFilteredTopic will use the related Topic's QoS and Listeners.

228

5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side

229

l Changing filter parameters on a ContentFilteredTopic causes all DataReaders using the same Con-
tentFilteredTopic to see the change.

l A Topic cannot be deleted as long as at least one ContentFilteredTopic that has been created with it
exists.

l A ContentFilteredTopic cannot be deleted as long as at least one DataReader that has been created
with the ContentFilteredTopic exists.

5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side

Filtering may be performed on either side of the distributed application. (The DataWriter obtains the filter
expression and parameters from the DataReader during discovery.)

When batching is enabled, content filtering is always done on the reader side.

Connext DDS also supports network-switch filtering for multi-channel DataWriters (see Multi-channel
DataWriters (Chapter 20 on page 902)).

A DataWriter will automatically filter DDS data samples for a DataReader if all of the following are true;
otherwise filtering is performed by the DataReader.

1. The DataWriter is filtering for no more than writer_resource_limits.max_remote_reader_filters
DataReaders at the same time.

l There is a resource-limit on the DataWriter called writer_resource_limits.max_remote_
reader_filters (see 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Exten-
sion) on page 402). This value can be from [0, (2^31)-2] or DDS_LENGTH_UNLIMITED
(default). 0 means do not filter any DataReader; 1 to (2^31)-2 means that the DataWriter will
filter for up to the specified number of DataReaders, and the Datawriter will store the result
of the filtering per sample per DataReader; DDS_LENGTH_UNLIMITED means that the
DataWriter will filter for up to (2^31)-2 DataReaders, but in this case the DataWriter will not
store the filtering result per sample per DataReader: if a sample is resent (such as due to a loss
of reliable communication), the sample will be filtered again.

l If a DataWriter is filtering max_remote_reader_filters DataReaders at the same time and a
new filtered DataReader is created, then the newly created DataReader (max_remote_
reader_filters + 1) is not filtered. Even if one of the first (max_remote_reader_filters)
DataReaders is deleted, that already created DataReader (max_remote_reader_filters + 1)
will still not be filtered. However, any subsequently created DataReaders will be filtered as
long as the number of DataReaders currently being filtered is not more than writer_
resource_limits.max_remote_reader_filters.

2. The DataReader is not subscribing to data using multicast.

3. There are no more than four matching DataReaders in the same locator (transport destination, for
example IP address + port).

5.4.3 Creating ContentFilteredTopics

Note: Connext DDS supports limited writer-side filtering if there are more than four matching
DataReaders in the same locator. The middleware will not send any sample to a locator if the
sample is filtered out by all the DataReaders receiving samples on that locator. However, if there is
one DataReader to which the sample has to be sent, all the DataReaders on the locator will perform
reader-side filtering for the incoming sample.

4. The DataWriter has infinite liveliness. (See 7.5.15 LIVELINESS QosPolicy on page 428.)

5. The DataWriter is not using an Asynchronous Publisher. (That is, the DataWriter’s 7.5.20
PUBLISH_MODE QosPolicy (DDS Extension) on page 445 kind is set to DDS_
SYNCHRONOUS_PUBLISHER_MODE_QOS.)

Note: Connext DDS supports limited writer-side filtering if asynchronous publishing is enabled. The
middleware will not send any sample to a locator if the sample is filtered out by all the DataReaders
receiving samples on that locator. However, if there is one DataReader to which the sample has to
be sent, all the DataReaders on the locator will perform reader-side filtering for the incoming
sample.

6. If you are using a custom filter (not the default one), it must be registered in the DomainParticipant
of the DataWriter and the DataReader.

7. The DataWriter is not configured to use batching.

When batching is enabled, content filtering is always done on the reader side. See 7.5.2 BATCH
QosPolicy (DDS Extension) on page 375.

5.4.3 Creating ContentFilteredTopics

To create a ContentFilteredTopic that uses the default SQL filter, use the DomainParticipant’s create_con-
tentfilteredtopic() operation:
DDS_ContentFilteredTopic *create_contentfilteredtopic(

const char * name,
const DDS_Topic * related_topic,
const char * filter_expression,
const DDS_StringSeq & expression_parameters)

Or, to use a custom filter or the builtin STRINGMATCH filter (see 5.4.7 STRINGMATCH Filter Expres-
sion Notation on page 246), use the create_contentfilteredtopic_with_filter() variation:
DDS_ContentFilteredTopic *create_contentfilteredtopic_with_filter(

const char * name,
DDSTopic * related_topic,
const char * filter_expression,
const DDS_StringSeq & expression_parameters,
const char * filter_name = DDS_SQLFILTER_NAME)

Where:

230

5.4.3 Creating ContentFilteredTopics

231

name Name of the ContentFilteredTopic. Note that it is legal for a ContentFilteredTopic to have the
same name as a Topic in the same DomainParticipant, but a ContentFilteredTopic cannot have
the same name as another ContentFilteredTopic in the same DomainParticipant. This para-
meter cannot be NULL.

related_topic The related Topic to be filtered. The related topic must be in the same DomainParticipant as the
ContentFilteredTopic. This parameter cannot be NULL. The same related topic can be used in
many different ContentFilteredTopics.

filter_expression A logical expression on the contents on the Topic. If the expression evaluates to TRUE, a DDS
sample is received; otherwise it is discarded. This parameter cannot be NULL. The notation for
this expression depends on the filter that you are using (specified by the filter_name para-
meter). See 5.4.6 SQL Filter Expression Notation on page 237 and 5.4.7 STRINGMATCH Fil-
ter Expression Notation on page 246. The filter_expression can be changed with set_
expression() (5.4.5.2 Setting an Expression’s Filter and Parameters on page 235).

expression_parameters A string sequence of filter expression parameters. Each parameter corresponds to a positional
argument in the filter expression: element 0 corresponds to positional argument 0, element 1 to
positional argument 1, and so forth.

The expression_parameters can be changed with set_expression_parameters() or set_ex-
pression() (5.4.5.2 Setting an Expression’s Filter and Parameters on page 235), append_to_
expression_parameter() (5.4.5.3 Appending a String to an Expression Parameter on
page 235) and remove_from_expression_parameter() (5.4.5.4 Removing a String from an Ex-
pression Parameter on page 236).

filter_name Name of the content filter to use for filtering. The filter must have been previously registered
with the DomainParticipant (see 5.4.10.2 Registering a Custom Filter on page 250). There are
two builtin filters, DDS_SQLFILTER_NAME1 (the default filter) and DDS_
STRINGMATCHFILTER_NAME—these are automatically registered.

To use the STRINGMATCH filter, call create_contentfilteredtopic_with_filter() with "DDS_
STRINGMATCHFILTER_NAME" as the filter_name. STRINGMATCH filter expressions have
the syntax:
<field name> MATCH <string pattern> (see 5.4.7 STRINGMATCH Filter Expression Notation
on page 246).
2

To summarize:

l To use the builtin default SQL filter:
l Call create_contentfilteredtopic()

l See 5.4.6 SQL Filter Expression Notation on page 237

1 In the Java and C# APIs, you can access the names of the builtin filters by using
DomainParticipant.SQLFILTER_NAME and DomainParticipant.STRINGMATCHFILTER_NAME.

2 In the Java and C# APIs, you can access the names of the builtin filters by using
DomainParticipant.SQLFILTER_NAME and DomainParticipant.STRINGMATCHFILTER_NAME.

5.4.3 Creating ContentFilteredTopics

l To use the builtin STRINGMATCH filter:
l Call create_contentfilteredtopic_with_filter(), setting the filter_name to DDS_
STRINGMATCHFILTER_NAME

l See 5.4.7 STRINGMATCH Filter Expression Notation on page 246

l To use a custom filter:
l Call create_contentfilteredtopic_with_filter(), setting the filter_name to a registered custom
filter

Be careful with memory management of the string sequence in some of the ContentFilteredTopic
APIs. See the String Support section in the API Reference HTML documentation (within the
Infrastructure module) for details on sequences.

5.4.3.1 Creating ContentFilteredTopics for Built-in DDS Types

To create a ContentFilteredTopic for a built-in DDS type (see 3.2 Built-in Data Types on page 38), use the
standard DomainParticipant operations, create_contentfilteredtopic() or create_contentfilteredtopic_
with_filter.

The field names used in the filter expressions for the built-in SQL (see 5.4.6 SQL Filter Expression Nota-
tion on page 237) and StringMatch filters (see 5.4.7 STRINGMATCH Filter Expression Notation on
page 246) must correspond to the names provided in the IDL description of the built-in DDS types.

ContentFilteredTopic Creation Examples:

For simplicity, error handling is not shown in the following examples.

C Example:
DDS_Topic * topic = NULL;
DDS_ContentFilteredTopic * contentFilteredTopic = NULL;
struct DDS_StringSeq parameters = DDS_SEQUENCE_INITIALIZER;
/* Create a string ContentFilteredTopic */
topic = DDS_DomainParticipant_create_topic(

participant, "StringTopic",
DDS_StringTypeSupport_get_type_name(),
&DDS_TOPIC_QOS_DEFAULT,NULL,
DDS_STATUS_MASK_NONE);

contentFilteredTopic =
DDS_DomainParticipant_create_contentfilteredtopic(

participant,
"StringContentFilteredTopic",
topic,
"value = 'Hello World!'", ¶meters);

232

5.4.3 Creating ContentFilteredTopics

233

Traditional C++ Example with Namespaces:
using namespace DDS;
...
/* Create a String ContentFilteredTopic */
Topic * topic = participant->create_topic(

"StringTopic",
StringTypeSupport::get_type_name(),
TOPIC_QOS_DEFAULT,
NULL, STATUS_MASK_NONE);

StringSeq parameters;
ContentFilteredTopic * contentFilteredTopic =

participant->create_contentfilteredtopic(
"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

Modern C++ Example:
using dds::core::StringTopicType;

dds::topic::Topic<StringTopicType> topic(participant, "StringTopic");
dds::topic::ContentFilteredTopic<StringTopicType> content_filtered_topic(

topic,
"StringContentFilteredTopic",
dds::topic::Filter("value = 'Hello World!'"));

C++/CLI Example:
using namespace DDS;
...
/* Create a String ContentFilteredTopic */
Topic^ topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
DomainParticipant::TOPIC_QOS_DEFAULT,
nullptr, StatusMask::STATUS_MASK_NONE);

StringSeq^ parameters = gcnew StringSeq();
ContentFilteredTopic^ contentFilteredTopic =

participant->create_contentfilteredtopic(
"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

C# Example:
using namespace DDS;
...
/* Create a String ContentFilteredTopic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
DomainParticipant.TOPIC_QOS_DEFAULT,
null, StatusMask.STATUS_MASK_NONE);

StringSeq parameters = new StringSeq();
ContentFilteredTopic contentFilteredTopic =

participant.create_contentfilteredtopic(
"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

Java Example:
import com.rti.dds.type.builtin.*;
...

5.4.4 Deleting ContentFilteredTopics

/* Create a String ContentFilteredTopic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
DomainParticipant.TOPIC_QOS_DEFAULT,
null, StatusKind.STATUS_MASK_NONE);

StringSeq parameters = new StringSeq();
ContentFilteredTopic contentFilteredTopic =

participant.create_contentfilteredtopic(
"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

5.4.4 Deleting ContentFilteredTopics

To delete a ContentFilteredTopic, use the DomainParticipant’s delete_contentfilteredtopic() operation:

Make sure no DataReaders are using the ContentFilteredTopic. (If this is not true, the operation returns
PRECONDITION_NOT_MET.)

Delete the ContentFilteredTopic by using the DomainParticipant’s delete_contentfilteredtopic() oper-
ation.
DDS_ReturnCode_t delete_contentfilteredtopic

(DDSContentFilteredTopic * a_contentfilteredtopic)

5.4.5 Using a ContentFilteredTopic

Once you’ve created a ContentFilteredTopic, you can use the operations listed in Table 5.5 Con-
tentFilteredTopic Operations.

Operation Description Reference

append_to_expression_
parameter

Concatenates a string value to the input expression
parameter

5.4.5.3 Appending a String to an Expression Parameter
on the next page

get_expression_para-
meters

Gets the expression parameters.
5.4.5.1 Getting the Current Expression Parameters on the
next page

get_filter_expression Gets the expression. 5.4.5.5 Getting the Filter Expression on page 236

get_related_topic Gets the related Topic. 5.4.5.6 Getting the Related Topic on page 236

narrow
Casts a DDS_TopicDescription pointer to a Con-
tentFilteredTopic pointer.

5.4.5.7 ‘Narrowing’ a ContentFilteredTopic to a Top-
icDescription on page 236

remove_from_expression_
parameter

Removes a string value from the input expression para-
meter

5.4.5.4 Removing a String from an Expression Parameter
on page 236

set_expression Changes the filter expression and parameters.
5.4.5.2 Setting an Expression’sFilter and Parameters on
the next pageset_expression_para-

meters
Changes the expression parameters.

Table 5.5 ContentFilteredTopic Operations

234

5.4.5 Using a ContentFilteredTopic

235

5.4.5.1 Getting the Current Expression Parameters

To get the expression parameters, use the ContentFilteredTopic’s get_expression_parameters() oper-
ation:
DDS_ReturnCode_t get_expression_parameters(struct DDS_StringSeq & parameters)

Where:

parameters The filter expression parameters.

The memory for the strings in this sequence is managed as described in the String Support section of
the API Reference HTML documentation (within the Infrastructure module). In particular, be careful to
avoid a situation in which Connext DDS allocates a string on your behalf and you then reuse that string
in such a way that Connext DDS believes it to have more memory allocated to it than it actually does.
This parameter cannot be NULL.

This operation gives you the expression parameters that were specified on the last successful call to set_
expression_parameters() or set_expression(), or if they were never called, the parameters specified when
the ContentFilteredTopic was created.

5.4.5.2 Setting an Expression’s Filter and Parameters

To change the filter expression and expression parameters associated with a ContentFilteredTopic:
DDS_ReturnCode set_expression(

const char * expression,
const struct DDS_StringSeq & parameters)

To change just the expression parameters (not the filter expression):
DDS_ReturnCode_t set_expression_parameters(const struct DDS_StringSeq & parameters)

Where:

expression The new expression to be set in the ContentFilteredTopic.

parameters The filter expression parameters. Each element in the parameter sequence corresponds to a positional
parameter in the filter expression. When using the default DDS_SQLFILTER_NAME, parameter strings
are automatically converted to the member type. For example, "4" is converted to the integer 4. This
parameter cannot be NULL.

The ContentFilteredTopic’s operations do not manage the sequences; you must ensure that the
parameter sequences are valid. Please refer to the String Support section in the API Reference
HTML documentation (within the Infrastructure module) for details on sequences.

5.4.5.3 Appending a String to an Expression Parameter

To concatenate a string to an expression parameter, use the ContentFilteredTopic's append_to_expres-
sion_parameter() operation:

5.4.5 Using a ContentFilteredTopic

DDS_ReturnCode_t append_to_expression_parameter(const DDS_Long index, const char* value);

When using the STRINGMATCH filter, index must be 0.

This function is only intended to be used with the builtin SQL and STRINGMATCH filters. This function
can be used in expression parameters associated with MATCH operators (see 5.4.6.5 SQL Extension:
Regular Expression Matching on page 242) to add a pattern to the match pattern list. For example, if fil-
ter_expression is:
symbol MATCH 'IBM'

Then append_to_expression_parameter(0, "MSFT") would generate the expression:
symbol MATCH 'IBM,MSFT'

5.4.5.4 Removing a String from an Expression Parameter

To remove a string from an expression parameter use the ContentFilteredTopic's remove_from_expres-
sion_parameter() operation:
DDS_ReturnCode_t remove_from_expression_parameter(const DDS_Long index, const char* value)

When using the STRINGMATCH filter, index must be 0.

This function is only intended to be used with the builtin SQL and STRINGMATCH filters. It can be
used in expression parameters associated with MATCH operators (see 5.4.6.5 SQL Extension: Regular
Expression Matching on page 242) to remove a pattern from the match pattern list. For example, if filter_
expression is:
symbol MATCH 'IBM,MSFT'

Then remove_from_expression_parameter(0, "IBM") would generate the expression:
symbol MATCH 'MSFT'

5.4.5.5 Getting the Filter Expression

To get the filter expression that was specified when the ContentFilteredTopic was created or when set_
expression() was used:
const char* get_filter_expression ()

5.4.5.6 Getting the Related Topic

To get the related Topic that was specified when the ContentFilteredTopic was created:
DDS_Topic * get_related_topic ()

5.4.5.7 ‘Narrowing’ a ContentFilteredTopic to a TopicDescription

To safely cast a DDS_TopicDescription pointer to a ContentFilteredTopic pointer, use the Con-
tentFilteredTopic’s narrow() operation:

236

5.4.6 SQL Filter Expression Notation

237

DDS_TopicDescription* narrow ()

5.4.6 SQL Filter Expression Notation

A SQL filter expression is similar to theWHERE clause in SQL. The SQL expression format provided
by Connext DDS also supports theMATCH operator as an extended operator (see 5.4.6.5 SQL Exten-
sion: Regular Expression Matching on page 242).

The following sections provide more information:

l 5.4.6.1 Example SQL Filter Expressions below

l 5.4.6.2 SQL Grammar on page 239

l 5.4.6.3 Token Expressions on page 240

l 5.4.6.4 Type Compatibility in the Predicate on page 241

l 5.4.6.5 SQL Extension: Regular Expression Matching on page 242

l 5.4.6.6 Composite Members on page 243

l 5.4.6.7 Strings on page 244

l 5.4.6.8 Enumerations on page 244

l 5.4.6.9 Pointers on page 244

l 5.4.6.10 Arrays on page 244

l 5.4.6.12 Sequences on page 246

5.4.6.1 Example SQL Filter Expressions

Assume that you have a Topic with two floats, X and Y, which are the coordinates of an object moving
inside a rectangle measuring 200 x 200 units. This object moves quite a bit, generating lots of DDS
samples that you are not interested in. Instead you only want to receive DDS samples outside the middle of
the rectangle, as seen in Figure 5.5: Filtering Example on the next page. That is, you want to filter out data
points in the gray box.

5.4.6 SQL Filter Expression Notation

Figure 5.5: Filtering Example

The filter expression would look like this (remember the expression is written so that DDS samples that we
do want will pass):
"(X < 50 or X > 150) and (Y < 50 or Y > 150)"

Suppose you would like the ability to adjust the coordinates that are considered outside the acceptable
range (changing the size of the gray box). You can achieve this by changing the whole filter expression,
using set_expression(), or by using filter parameters. The expression can be written using filter parameters
as follows:
"(X < %0 or X > %1) and (Y < %2 or Y > %3)"

Recall that when you create a ContentFilteredTopic (see 5.4.3 Creating ContentFilteredTopics on
page 230), you pass a expression_parameters string sequence as one of the parameters. Each element in
the string sequence corresponds to one argument.

See the String and Sequence Support sections of the API Reference HTML documentation (from the
Modules page, select RTI Connext DDS API Reference, Infrastructure Module).

In C++, the filter parameters could be assigned like this:
FilterParameter[0] = "50";
FilterParameter[1] = "150";
FilterParameter[2] = "50";
FilterParameter[3] = "150";

238

5.4.6 SQL Filter Expression Notation

239

With these parameters, the filter expression is identical to the first approach. However, it is now possible to
change the parameters by calling set_expression_parameters(). For example, perhaps you decide that
you only want to see data points where X < 10 or X > 190. To make this change:
FilterParameter[0] = 10
FilterParameter[1] = 190
set_expression_parameters(....)

The new filter parameters will affect all DataReaders that have been created with this
ContentFilteredTopic.

5.4.6.2 SQL Grammar

This section describes the subset of SQL syntax, in Backus–Naur Form (BNF), that you can use to form
filter expressions.

The following notational conventions are used:

NonTerminals are typeset in italics.

'Terminals' are quoted and typeset in a fixed-width font. They are written in upper case in most cases in the
BNF-grammar below, but should be case insensitive.

TOKENS are typeset in bold.

The notation (element // ',') represents a non-empty, comma-separated list of elements.
FilterExpression ::= Condition
Condition ::= Predicate

| Condition 'AND' Condition
| Condition 'OR' Condition
| 'NOT' Condition
| '(' Condition ')'

Predicate ::= ComparisonPredicate
| BetweenPredicate

ComparisonPredicate ::= ComparisonTerm RelOp ComparisonTerm
ComparisonTerm ::= FieldIdentifier

| Parameter
BetweenPredicate ::= FieldIdentifier 'BETWEEN' Range

| FieldIdentifier 'NOT BETWEEN' Range
FieldIdentifier ::= FIELDNAME

| IDENTIFIER
RelOp ::= '=' | '>' | '>=' | '<' | '<=' | '<>' | 'LIKE' | 'MATCH'
Range ::= Parameter 'AND' Parameter
Parameter ::= INTEGERVALUE

| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| BOOLEANVALUE
| NULLVALUE

5.4.6 SQL Filter Expression Notation

| PARAMETER

5.4.6.3 Token Expressions

The syntax and meaning of the tokens used in SQL grammar is described as follows:

IDENTIFIER—An identifier for a FIELDNAME, defined as any series of characters 'a', ..., 'z', 'A', ..., 'Z',
'0', ..., '9', '_' but may not start with a digit.
IDENTIFIER: LETTER (PART_LETTER)*

where LETTER: ["A"-"Z","_","a"-"z"] PART_LETTER: ["A"-"Z","_","a"-"z","0"-"9"]

FIELDNAME—A reference to a field in the data structure. A dot '.' is used to navigate through nested
structures. The number of dots that may be used in a FIELDNAME is unlimited. The FIELDNAME can
refer to fields at any depth in the data structure. The names of the field are those specified in the IDL defin-
ition of the corresponding structure, which may or may not match the fieldnames that appear on the lan-
guage-specific (e.g., C/C++, Java) mapping of the structure. To reference the n+1 element in an array or
sequence, use the notation '[n]', where n is a natural number (zero included). FIELDNAME must
resolve to a primitive IDL type; that is boolean, octet, uint16, uint32, uint64, float double, char, wchar,
string, wstring, or enum.
FIELDNAME: FieldNamePart ("." FieldNamePart)*

where FieldNamePart : IDENTIFIER ("[" Index "]")* Index> : (["0"-"9"])+ | ["0x","0X"](["0"-"9",
"A"-"F", "a"-"f"])+

Primitive IDL types referenced by FIELDNAME are treated as different types in Predicate according to
the following table:

Predicate Data Type IDL Type

BOOLEANVALUE boolean

INTEGERVALUE octet, uint16, uint32, uint64

FLOATVALUE float, double

CHARVALUE char, wchar

STRING string, wstring

ENUMERATEDVALUE enum

TOPICNAME—An identifier for a topic, and is defined as any series of characters 'a', ..., 'z', 'A', ..., 'Z',
'0', ..., '9', '_' but may not start with a digit.
TOPICNAME : IDENTIFIER

INTEGERVALUE—Any series of digits, optionally preceded by a plus or minus sign, representing a
decimal integer value within the range of the system. 'L' or 'l' must be used for int64 (long long), otherwise

240

5.4.6 SQL Filter Expression Notation

241

int32 (long) is assumed. A hexadecimal number is preceded by 0x and must be a valid hexadecimal expres-
sion.
INTEGERVALUE : (["+","-"])? (["0"-"9"])+ [("L","l")]?

| (["+","-"])? ["0x","0X"](["0"-"9",
"A"-"F", "a"-"f"])+ [("L","l")]?

CHARVALUE—A single character enclosed between single quotes.
CHARVALUE : "'" (~["'"])? "'"

FLOATVALUE—Any series of digits, optionally preceded by a plus or minus sign and optionally includ-
ing a floating point ('.'). 'F' or 'f' must be used for float, otherwise double is assumed. A power-of-ten
expression may be postfixed, which has the syntax en or En, where n is a number, optionally preceded by
a plus or minus sign.
FLOATVALUE : (["+","-"])? (["0"-"9"])* (".")? (["0"-"9"])+

(EXPONENT)?[("F",’f’)]?

where EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+

STRING—Any series of characters encapsulated in single quotes, except the single quote itself.
STRING : "'" (~["'"])* "'"

ENUMERATEDVALUE—A reference to a value declared within an enumeration. Enumerated values
consist of the name of the enumeration label enclosed in single quotes. The name used for the enumeration
label must correspond to the label names specified in the IDL definition of the enumeration.
ENUMERATEDVALUE : "'" ["A" - "Z", "a" - "z"]
["A" - "Z", "a" - "z", "_", "0" - "9"]* "'"

BOOLEANVALUE—Can either be TRUE or FALSE, and is case insensitive.
BOOLEANVALUE : ["TRUE","FALSE"]

NULLVALUE—Can be null, and is case insensitive.
NULLVALUE : "null"

PARAMETER—Takes the form%n, where n represents a natural number (zero included) smaller than
100. It refers to the (n + 1)th argument in the given context. This argument can only be in primitive type
value format. It cannot be a FIELDNAME.
PARAMETER : "%" (["0"-"9"])+

5.4.6.4 Type Compatibility in the Predicate

As seen in Table 5.6 Valid Type Comparisons, only certain combinations of type comparisons are valid in
the Predicate.

5.4.6 SQL Filter Expression Notation

BOOLEAN
VALUE

INTEGER
VALUE

FLOAT
VALUE

CHAR
VALUE STRING ENUMERATED

VALUE

BOOLEAN YES

INTEGERVALUE YES YES

FLOATVALUE YES YES

CHARVALUE YES YES YES

STRING YES YES 1 YES

ENUMERATED
VALUE

YES YES2 YES 3 YES 4

Table 5.6 Valid Type Comparisons

5.4.6.5 SQL Extension: Regular Expression Matching

The relational operatorMATCHmay only be used with string fields. The right-hand operator is a string
pattern. A string pattern specifies a template that the left-hand field must match.

MATCH is case-sensitive. The following characters have special meaning, unless escaped by the escape
character: ,\/?*[]-^!\%.

The pattern allows limited "wild card" matching under the rules in Table 5.7 Wild Card Matching.

The syntax is similar to the POSIX® fnmatch syntax. (See http://www.open-
group.org/onlinepubs/000095399/functions/fnmatch.html.) Some example expressions include:

This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/MSFT:
symbol MATCH 'NASDAQ/MSFT'

This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/IBM or
NASDAQ/MSFT:

aSee 5.4.6.5 SQL Extension: Regular Expression Matching below.

2Because of the formal notation of the Enumeration values, they are compatible with string and char literals, but they are
not compatible with string or char variables, i.e., "MyEnum='EnumValue'" is correct, but "MyEnum=MyString" is not al-
lowed.

3Because of the formal notation of the Enumeration values, they are compatible with string and char literals, but they are
not compatible with string or char variables, i.e., "MyEnum='EnumValue'" is correct, but "MyEnum=MyString" is not al-
lowed.

4Only for same-type Enums.

242

http://www.opengroup.org/onlinepubs/000095399/functions/fnmatch.html
http://www.opengroup.org/onlinepubs/000095399/functions/fnmatch.html

5.4.6 SQL Filter Expression Notation

243

symbol MATCH 'NASDAQ/IBM,NASDAQ/MSFT'

This expression evaluates to TRUE if the value of symbol is equal to NASDAQ and starts with a letter
between M and Y:
symbol MATCH 'NASDAQ/[M-Y]*'

Character Meaning

, A , separates a list of alternate patterns. The field string is matched if it matches one ormore of the patterns.

/ A / in the pattern string matches a / in the field string. It separates a sequence of mandatory substrings.

? A ? in the pattern string matches any single non-special characters in the field string.

* A * in the pattern string matches 0 ormore non-special characters in field string.

% This special character is used to designate filter expression parameters.

\ Escape character for special characters.

[charlist] Matches any one of the characters in charlist.

[!charlist] or [^charlist] (Not supported)Matches any one of the characters not in charlist.

[s-e] Matches any character from s to e, inclusive.

[!s-e] or [^s-e] (Not supported)Matches any characternot in the interval s to e.

Table 5.7 Wild Card Matching

Note: To use special characters as regular characters in regular expressions, you must escape them using
the character '\'. For example, 'A[' is considered a malformed expression and the result is undefined.

5.4.6.6 Composite Members

Any member can be used in the filter expression, with the following exceptions:

l 128-bit floating point numbers (long doubles) are not supported

l bitfields are not supported

l LIKE is not supported

Composite members are accessed using the familiar dot notation, such as "x.y.z > 5". For unions, the nota-
tion is special due to the nature of the IDL union type.

On the publishing side, you can access the union discriminator with myunion._d and the actual member
with myunion._u.mymember. If you want to use a ContentFilteredTopic on the subscriber side and filter
a DDS sample with a top-level union, you can access the union discriminator directly with _d and the
actual member with mymember in the filter expression.

5.4.6 SQL Filter Expression Notation

5.4.6.7 Strings

The filter expression and parameters can use IDL strings. String constants must appear between single quo-
tation marks (').

For example:
" fish = 'salmon' "

Strings used as parameter values must contain the enclosing quotation marks (') within the parameter value;
do not place the quotation marks within the expression statement. For example, the expression " symbol
MATCH %0 " with parameter 0 set to " 'IBM' " is legal, whereas the expression " symbol MATCH '%0' "
with parameter 0 set to " IBM " will not compile.

5.4.6.8 Enumerations

A filter expression can use enumeration values, such as GREEN, instead of the numerical value. For
example, if x is an enumeration of GREEN, YELLOW and RED, the following expressions are valid:
"x = 'GREEN'"
"X < 'RED'"

5.4.6.9 Pointers

Pointers can be used in filter expressions and are automatically dereferenced to the correct value.

For example:
struct Point {

int32 x;
int32 y;

};
struct Rectangle {

Point *u_l;
Point *l_r;

};

The following expression is valid on a Topic of type Rectangle:
"u_l.x > l_r.x"

5.4.6.10 Arrays

Arrays are accessed with the familiar [] notation.

For example:
struct ArrayType {

int32 value[255][5];
};

The following expression is valid on a Topic of type ArrayType:

244

5.4.6 SQL Filter Expression Notation

245

"value[244][2] = 5"

In order to compare an array of bytes(octets in idl), instead of comparing each individual element of the
array using [] notation, Connext DDS provides a helper function, hex(). The hex() function can be used to
represent an array of bytes (octets in IDL). To use the hex() function, use the notation &hex() and pass the
byte array as a sequence of hexadecimal values.

For example:
&hex (07 08 09 0A 0B 0c 0D 0E 0F 10 11 12 13 14 15 16)

Here the leftmost-pair represents the byte at index 0.

Note: If the length of the octet array represented by the hex() function does not match the length of the
field being compared, it will result in a compilation error.

For example:
struct ArrayType {

octet value[2];
};

The following expression is valid:
"value = &hex(12 0A)"

5.4.6.11 Optional Members

SQL filter expressions can refer to optional members. The syntax is the same as for any other member.

For example, given the type MyType:
struct Foo {

string text;
};
struct MyType {

@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

These are valid expressions:
"optional_member1 = 1 AND optional_member2.text = 'hello' AND non_optional_member = 2"
"optional_member1 = null AND optional_member2.text <> null"

Any comparison involving an optional member (=, <>, <, or >) evaluates to false if the member is unset.

For example, both “optional_member1 <> 1” and “optional_member1 = 1” will evaluate to false if
optional_member1 is unset; however “optional_member1 = 1 OR non_optional_member = 1” will be
true if non_optional_member is equal to 1 (even if optional_member1 is unset). The expression
“optional_member2.text = ‘hello’” will also be false if optional_member2 is unset.

5.4.7 STRINGMATCH Filter Expression Notation

To check if an optional member is set or unset, you can compare with the null keyword. The following
expressions are supported:
"optional_member1 = null" *, *"optional_member1 <> null".

5.4.6.12 Sequences

Sequence elements can be accessed using the () or [] notation.

For example:
struct SequenceType {

sequence<int32> s;
};

The following expressions are valid on a Topic of type SequenceType:
"s(1) = 5"
"s[1] = 5"

5.4.7 STRINGMATCH Filter Expression Notation

The STRINGMATCH Filter is a subset of the SQL filter; it only supports the MATCH relational operator
on a single string field. It is introduced mainly for the use case of partitioning data according to channels in
the DataWriter's 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on page 433 in Market Data
applications.

A STRINGMATCH filter expression has the following syntax:
<field name> MATCH <string pattern>

The STRINGMATCH filter is provided to support the narrow use case of filtering a single string field of
the DDS sample against a comma-separated list of matching string values. It is intended to be used in con-
junction with ContentFilteredTopic helper routines append_to_expression_parameter() (5.4.5.3
Appending a String to an Expression Parameter on page 235) and remove_from_expression_parameter
() (5.4.5.4 Removing a String from an Expression Parameter on page 236), which allow you to easily
append and remove individual string values from the comma-separated list of string values.

The STRINGMATCH filter must contain only one <field name>, and a single occurrence of the MATCH
operator. The <string pattern> must be either the single parameter %0, or a single, comma-separated list of
strings without intervening spaces.

During creation of a STRINGMATCH filter, the <string pattern> is automatically parameterized. That is,
during creation, if the <string pattern> specified in the filter expression is not the parameter %0, then the
comma-separated list of strings is copied to the initial contents of parameter 0 and the <string pattern> in
the filter expression is replaced with the parameter %0.

246

5.4.8 Character Encoding

247

The initial matching string list is converted to an explicit parameter value so that subsequent additions and
deletions of string values to and from the list of matching strings may be performed with the append_to_
expression_parameter() and remove_from_expression_parameter() operations mentioned above.

5.4.7.1 Example STRINGMATCH Filter Expressions

This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/MSFT:
symbol MATCH 'NASDAQ/MSFT'

This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/IBM or
NASDAQ/MSFT:
symbol MATCH 'NASDAQ/IBM,NASDAQ/MSFT'

This expression evaluates to TRUE if the value of symbol is equal to NASDAQ and starts with a letter
between M and Y:
symbol MATCH 'NASDAQ/[M-Y]*'

symbol MATCH 'NASDAQ/MSFT'

5.4.7.2 STRINGMATCH Filter Expression Parameters

In the builtin STRINGMATCH filter, there is one, and only one, parameter: parameter 0. (If you want to
add more parameters, see 5.4.5.3 Appending a String to an Expression Parameter on page 235.) The para-
meter can be specified explicitly using the same syntax as the SQL filter or implicitly by using a constant
string pattern. For example:
symbol MATCH %0 (Explicit parameter)
symbol MATCH ‘IBM’ (Implicit parameter initialized to IBM)

Strings used as parameter values must contain the enclosing quotation marks (') within the parameter value;
do not place the quotation marks within the expression statement. For example, the expression " symbol
MATCH %0 " with parameter 0 set to " 'IBM' " is legal, whereas the expression " symbol MATCH '%0' "
with parameter 0 set to " IBM " will not compile.

5.4.8 Character Encoding

Connext DDS offers ISO 8859-1 as an alternative encoding for IDL strings. The default is UTF-8. To con-
figure ISO 8859-1 for filtering of IDL strings, set the value of the DomainParticipant's Property Qos prop-
erty dds.domain_participant.filtering_character_encoding to ISO-8859-1.

The possible values for dds.domain_participant.filtering_character_encoding are:

l UTF-8 (default value)

l ISO-8859-1

5.4.9 Unicode Normalization

This property is applicable to the following filtering features:

l ContentFilteredTopics (see 5.4 ContentFilteredTopics on page 228)

l Query conditions (see 4.6.7 ReadConditions and QueryConditions on page 210)

l TopicQueries (see Chapter 24 Topic Queries on page 983)

l MultiChannel DataWriters (see Chapter 20 Multi-channel DataWriters on page 902)

5.4.9 Unicode Normalization

Unicode supports multiple ways to encode some characters, most notably accented characters. A com-
posed character in Unicode can often have a number of different ways of representing the character. For
example:

Precomposed Ḽ is represented by \u1e3c

Composed Ḽ = L + ^ is represented by \u004c + \u032d

The lexical comparison of the two characters above will return false. To do the correct comparison, the
characters need to be normalized—that is, reduced to the same character composition.

When the character encoding for filtering of IDL strings is UTF-8, the Unicode normalization behavior
can be controlled using a DomainParticipant Property Qos property called dds.domain_par-
ticipant.filtering_unicode_normalization.

The possible values of the normalization property are:

l OFF: Disables normalization

l NFD: Canonical Decomposition

l NFC (default value): Canonical Decomposition, followed by Canonical Composition

l NFKC: Compatibility Decomposition, followed by Canonical Composition

l NFKC_Casefold: Casefold followed by NFKC normalization

This property is applicable to the following filtering features:

l ContentFilteredTopics (see 5.4 ContentFilteredTopics on page 228)

l Query conditions (see 4.6.7 ReadConditions and QueryConditions on page 210)

l TopicQueries (see Chapter 24 Topic Queries on page 983)

l MultiChannel DataWriters (see Chapter 20 Multi-channel DataWriters on page 902)

248

5.4.10 Custom Content Filters

249

Because normalization may affect performance, and it is enabled by default, the property allows disabling
the normalization process per DomainParticipant using the value OFF. However, be aware that doing this
may lead to unexpected behavior.

5.4.10 Custom Content Filters

By default, a ContentFilteredTopic will use a SQL-like content filter, DDS_SQLFILTER_NAME (see
5.4.6 SQL Filter Expression Notation on page 237), which implements a superset of the content filter.
There is another builtin filter, DDS_STRINGMATCHFILTER_NAME (see 5.4.7 STRINGMATCH
Filter Expression Notation on page 246). Both of these are automatically registered.

If you want to use a different filter, you must register it first, then create the ContentFilteredTopic using
create_contentfilteredtopic_with_filter() (see 5.4.3 Creating ContentFilteredTopics on page 230).

One reason to use a custom filter is that the default filter can only filter based on relational operations
between topic members, not on a computation involving topic members. For example, if you want to filter
based on the sum of the members, you must create your own filter.

Note:

l The API for using a custom content filter is subject to change in a future release.

5.4.10.1 Filtering on the Writer Side with Custom Filters

There are two approaches for performing writer-side filtering. The first approach is to evaluate each writ-
ten DDS sample against filters of all the readers that have content filter specified and identify the readers
whose filter passes the DDS sample.

The second approach is to evaluate the written DDS sample once for the writer and then rely on the filter
implementation to provide a set of readers whose filter passes the DDS sample. This approach allows the
filter implementation to cache the result of filtering, if possible. For example, consider a scenario where the
data is described by the struct shown below, where 10<x<20:
struct MyData {

int x;
int y;

};

If the filter expression is based only on the x field, the filter implementation can maintain a hash map for all
the different values of x and cache the filtering results in the hash map. Then any future evaluations will
only be O(1), because it only requires a lookup in the hash map.

But if in the same example, a reader has a content filter that is based on both x and y, or just y, the filter
implementation cannot cache the result—because the filter was only maintaining a hash map for x. In this
case, the filter implementation can inform Connext DDS that it will not be caching the result for those
DataReaders. The filter can use DDS_ExpressionProperty to indicate to the middleware whether or not it

5.4.10 Custom Content Filters

will cache the results for DataReader. Table 5.8 DDS_ExpressionProperty describes DDS_Expres-
sionProperty.

Type Field
Name Description

DDS_
Boolean

key_only_fil-
ter

Indicates if the filter expression is based only on key fields. In this case,Connext DDS itself can cache the filtering results.

DDS_
Boolean

writer_side_
filter_op-
timization

Indicates if the filter implementation can cache the filtering result for the expression provided. If this is true then Connext
DDSwill do no caching or explicit filter evaluation for the associated DataReader. It will instead rely on the filter im-
plementation to provide appropriate results.

Table 5.8 DDS_ExpressionProperty

5.4.10.2 Registering a Custom Filter

To use a custom filter, it must be registered in the following places:

l Register the custom filter in any subscribing application in which the filter is used to create a Con-
tentFilteredTopic and corresponding DataReader.

l In each publishing application, you only need to register the custom filter if you want to perform
writer-side filtering. A DataWriter created with an associated filter will use that filter if it discovers a
matched DataReader that uses the same filter.

For example, suppose Application A on the subscription side creates a Topic named X and a Con-
tentFilteredTopic named filteredX (and a corresponding DataReader), using a previously registered con-
tent filter, myFilter. With only that, you will have filtering on the subscription side. If you also want to
perform filtering in any application that publishes Topic X, then you also need to register the same defin-
ition of the ContentFiltermyFilter in that application.

To register a new filter, use the DomainParticipant’s register_contentfilter() operation1:
DDS_ReturnCode_t register_contentfilter(

const char * filter_name,
const DDSContentFilter * contentfilter)

l filter_name

The name of the filter. The name must be unique within the DomainParticipant. The filter_name
cannot have a length of 0. The same filtering functions and handle can be registered under different
names.

1This operation is an extension to the DDS standard.

250

5.4.10 Custom Content Filters

251

l content_filter

This class specifies the functions that will be used to process the filter.

You must derive from the DDSContentFilter base class and implement the virtual compile below, eval-
uate below, and finalize below functions described below.

Optionally, you can derive from the DDSWriterContentFilter base class instead, to implement additional fil-
tering operations that will be used by the DataWriter. When performing writer-side filtering, these oper-
ations allow a DDS sample to be evaluated once for the DataWriter, instead of evaluating the DDS sample
for every DataReader that is matched with the DataWriter. An instance of the derived class is then used as
an argument when calling register_contentfilter().

l compile

The function that will be used to compile a filter expression and parameters. Connext DDS will call
this function when a ContentFilteredTopic is created and when the filter parameters are changed.
This parameter cannot be NULL. See 5.4.10.5 Compile Function on page 253. This is a member of
DDSContentFilter and DDSWriterContentFilter.

l evaluate

The function that will be called by Connext DDS each time a DDS sample is received. Its purpose is
to evaluate the DDS sample based on the filter. This parameter cannot be NULL. See 5.4.10.6
Evaluate Function on page 254. This is a member of DDSContentFilter and DDSWriter-
ContentFilter.

l finalize

The function that will be called by Connext DDS when an instance of the custom content filter is no
longer needed. This parameter may be NULL. See 5.4.10.7 Finalize Function on page 254. This is
a member of DDSContentFilter and DDSWriterContentFilter.

l writer_attach

The function that will be used to create some state required to perform filtering on the writer side
using the operations provided in DDSWriterContentFilter. Connext DDS will call this function for
every DataWriter; it will be called only the first time the DataWriter matches a DataReader using
the specified filter. This function will not be called for any subsequent DataReaders that match the
DataWriter and are using the same filter. See 5.4.10.8 Writer Attach Function on page 255. This is
a member of DDSWriterContentFilter.

l writer_detach

The function that will be used to delete any state created using the writer_attach function. Connext
DDS will call this function when the DataWriter is deleted. See 5.4.10.9 Writer Detach Function
on page 255. This is a member of DDSWriterContentFilter.

5.4.10 Custom Content Filters

l writer_compile

The function that will be used by the DataWriter to compile filter expression and parameters
provided by the reader. Connext DDS will call this function when the DataWriter discovers a
DataReader with a ContentFilteredTopic or when a DataWriter is notified of a change in
DataReader’s filter parameter. This function will receive as an input a DDS_Cookie_t which
uniquely identifies the DataReader for which the function was invoked. See 5.4.10.10 Writer Com-
pile Function on page 255. This is a member of DDSWriterContentFilter.

l writer_evaluate

The function that will be called by Connext DDS every time a DataWriter writes a new DDS
sample. Its purpose is to evaluate the DDS sample for all the readers for which the DataWriter is per-
forming writer-side filtering and return the list of DDS_Cookie_t associated with the DataReaders
whose filter pass the DDS sample. See 5.4.10.11 Writer Evaluate Function on page 256.

l writer_return_loan

The function that will be called by Connext DDS to return the loan on a sequence of DDS_Cookie_
t provided by the writer_evaluate function. See 5.4.10.12 Writer Return Loan Function on
page 256. This is a member of DDSWriterContentFilter.

l writer_finalize

The function that will be called by Connext DDS to notify the filter implementation that the
DataWriter is no longer matching with a DataReader for which it was previously performing
writer-side filtering. This will allow the filter to purge any state it was maintaining for the
DataReader. See 5.4.10.13 Writer Finalize Function on page 257. This is a member of DDSWriter-
ContentFilter.

5.4.10.3 Unregistering a Custom Filter

To unregister a filter, use the DomainParticipant’s unregister_contentfilter() operation1, which is useful
if you want to reuse a particular filter name. (Note: You do not have to unregister the filter before deleting
the parent DomainParticipant. If you do not need to reuse the filter name to register another filter, there is
no reason to unregister the filter.)
DDS_ReturnCode_t unregister_contentfilter(const char * filter_name)

filter_name The name of the previously registered filter. The name must be unique within the DomainParticipant.
The filter_name cannot have a length of 0.

If you attempt to unregister a filter that is still being used by a ContentFilteredTopic, unregister_con-
tentfilter() will return PRECONDITION_NOT_MET.

1This operation is an extension to the DDS standard.

252

5.4.10 Custom Content Filters

253

If there are still existing discovered DataReaders with the same filter_name and the filter's compile func-
tion has previously been called on the discovered DataReaders, the filter’s finalize function will be called
on those discovered DataReaders before the content filter is unregistered. This means filtering will be per-
formed on the application that is creating the DataReader.

5.4.10.4 Retrieving a ContentFilter

If you know the name of a ContentFilter, you can get a pointer to its structure. If the ContentFilter has not
already been registered, this operation will return NULL.
DDS_ContentFilter *lookup_contentfilter (const char * filter_name)

5.4.10.5 Compile Function

The compile function specified in the ContentFilter will be used to compile a filter expression and para-
meters. Please note that the term ‘compile’ is intentionally defined very broadly. It is entirely up to you, as
the user, to decide what this function should do. The only requirement is that the error_code parameter
passed to the compile function must return OK on successful execution. For example:
DDS_ReturnCode_t sample_compile_function(

void ** new_compile_data, const char * expression,
const DDS_StringSeq & parameters,
const DDS_TypeCode * type_code,
const char * type_class_name,
void * old_compile_data)

{
new_compile_data = (void)DDS_String_dup(parameters[0]);
return DDS_RETCODE_OK;

}

Where:

new_compile_data A user-specified opaque pointer of this instance of the content filter. This value is passed to
the evaluate and finalize functions

expression An ASCIIZ string with the filter expression the ContentFilteredTopic was created with. Note
that the memory used by the parameter pointer is owned by Connext DDS. If you want to ma-
nipulate this string, you must make a copy of it first. Do not free the memory for this string.

parameters A string sequence of expression parameters used to create the ContentFilteredTopic. The
string sequence is equal (but not identical) to the string sequence passed to create_con-
tentfilteredtopic() (see expression_parameters in 5.4.3 Creating ContentFilteredTopics on
page 230).

The sequence passed to the compile function is owned by Connext DDS and must not be re-
ferred to outside the compile function.

type_code A pointer to the type code of the related Topic. A type code is a description of the topic mem-
bers, such as their type (long, octet, etc.), but does not contain any information with respect to
the memory layout of the structures. The type code can be used to write filters that can be
used with any type. See 3.7 Using Generated Types without Connext DDS (Standalone) on
page 152. [Note: If you are using the Java API, this parameter will always be NULL.]

5.4.10 Custom Content Filters

type_class_name Fully qualified class name of the related Topic.

old_compile_data The new_compile_data value from a previous call to this instance of a content filter. If com-
pile is called more than once for an instance of a ContentFilteredTopic (such as if the ex-
pression parameters are changed), then the new_compile_data value returned by the
previous invocation is passed in the old_compile_data parameter (which can be NULL). If
this is a new instance of the filter, NULL is passed. This parameter is useful for freeing or re-
using previously allocated resources.

5.4.10.6 Evaluate Function

The evaluate function specified in the ContentFilter will be called each time a DDS sample is received.
This function’s purpose is to determine if a DDS sample should be filtered out (not put in the receive
queue).

For example:
DDS_Boolean sample_evaluate_function(

void* compile_data,
const void* sample,
struct DDS_FilterSampleInfo * meta_data) {

char *parameter = (char*)compile_data;
DDS_Long x;
Foo *foo_sample = (Foo*)sample;
sscanf(parameter,"%d",&x);
return (foo_sample->x > x ? DDS_BOOLEAN_FALSE : DDS_BOOLEAN_TRUE);

}

The function may use the following parameters:

compile_data The last return value from the compile function for this instance of the content filter. Can be NULL.

sample A pointer to a C structure with the data to filter. Note that the evaluate function always receives deseri-
alized data.

meta_data A pointer to the meta data associated with the DDS sample.

Note: Currently themeta_data field only supports related_sample_identity (described in Table 7.17
DDS_WriteParams_t).

5.4.10.7 Finalize Function

The finalize function specified in the ContentFilter will be called when an instance of the custom content
filter is no longer needed. When this function is called, it is safe to free all resources used by this particular
instance of the custom content filter.

254

5.4.10 Custom Content Filters

255

For example:
void sample_finalize_function (void* compile_data) {

/* free parameter string from compile function */
DDS_String_free((char *)compile_data);

}

The finalize function may use the following optional parameters:

system_key See 5.4.10.5 Compile Function on page 253.

handle This is the opaque returned by the last call to the compile function.

5.4.10.8 Writer Attach Function

The writer_attach function specified in the WriterContentFilter will be used to create some state that can
be used by the filter to perform writer-side filtering more efficiently. It is entirely up to you, as the imple-
menter of the filter, to decide if the filter requires this state.

The function has the following parameter:

writer_filter_data A user-specified opaque pointer to some state created on the writer side that will help per-
form writer-side filtering efficiently.

5.4.10.9 Writer Detach Function

The writer_detach function specified in the WriterContentFilter will be used to free up any state that was
created using the writer_attach function.

The function has the following parameter:
writer_filter_
data

A pointer to the state created using the writer_attach function.

5.4.10.10 Writer Compile Function

The writer_compile function specified in the WriterContentFilter will be used by a DataWriter to compile
a filter expression and parameters associated with a DataReader for which the DataWriter is performing fil-
tering. The function will receive as input a DDS_Cookie_t that uniquely identifies the DataReader for
which the function was invoked.

The function has the following parameters:

writer_filter_data A pointer to the state created using the writer_attach function.

prop A pointer to DDS_ExpressionProperty. This is an output parameter. It allows you to indicate
to Connext DDS if a filter expression can be optimized (as described in 5.4.10.1 Filtering on
the Writer Side with Custom Filters on page 249).

5.4.10 Custom Content Filters

expression An ASCIIZ string with the filter expression the ContentFilteredTopic was created with. Note
that the memory used by the parameter pointer is owned by Connext DDS. If you want to ma-
nipulate this string, you must make a copy of it first. Do not free the memory for this string.

parameters A string sequence of expression parameters used to create the ContentFilteredTopic. The
string sequence is equal (but not identical) to the string sequence passed to create_con-
tentfilteredtopic() (see expression_parameters in 5.4.3 Creating ContentFilteredTopics on
page 230).

The sequence passed to the compile function is owned by Connext DDS and must not be re-
ferred to outside the writer_compile function.

type_code A pointer to the type code of the related Topic. A type code is a description of the topic mem-
bers, such as their type (long, octet, etc.), but does not contain any information with respect to
the memory layout of the structures. The type code can be used to write filters that can be
used with any type. See 3.7 Using Generated Types without Connext DDS (Standalone) on
page 152. [Note: If you are using the Java API, this parameter will always be NULL.]

type_class_name The fully qualified class name of the related Topic.

cookie A DDS_Cookie_t to uniquely identify the DataReader for which the writer_compile function
was called.

5.4.10.11 Writer Evaluate Function

The writer_evaluate function specified in the WriterContentFilter will be used by a DataWriter to retrieve
the list of DataReaders whose filter passed the DDS sample. The writer_evaluate function returns a
sequence of cookies which identifies the set of DataReaders whose filter passes the DDS sample.

The function has the following parameters:

writer_filter_data A pointer to the state created using the writer_attach function.

sample A pointer to the data to be filtered. Note that the writer_evaluate function always receives
deserialized data.

meta_data A pointer to the meta-data associated with the DDS sample.

Note: Currently themeta_data field only supports related_sample_identity (described in Table 7.17
DDS_WriteParams_t).

5.4.10.12 Writer Return Loan Function

Connext DDS uses the writer_return_loan function specified in the WriterContentFilter to indicate to the
filter implementation that it has finished using the sequence of cookies returned by the filter’s writer_eval-
uate function. Your filter implementation should not free the memory associated with the cookie sequence
before the writer_return_loan function is called.

The function has the following parameters:

writer_filter_data A pointer to the state created using the writer_attach function.
cookies The sequence of cookies for which the writer_return_loan function

256

5.4.10 Custom Content Filters

257

was called.

5.4.10.13 Writer Finalize Function

The writer_finalize function specified in the WriterContentFilter will be called when the DataWriter no
longer matches with a DataReader that was created with ContentFilteredTopic. This will allow the filter
implementation to delete any state it was maintaining for the DataReader.

The function has the following parameters:

writer_filter_data A pointer to the state created using the writer_attach function.

cookie A DDS_Cookie_t to uniquely identify the DataReader for which the writer_finalize was
called.

Chapter 6 Working with Instances
Instances are a way for an application to represent unique objects within a Topic, by specifying one
or more key fields that form a unique identifier for the instance. Examples include identifying
unique commercial flights within a “Flight Status” Topic or a unique sensor measuring the tem-
perature in a “Temperature” Topic.

Modeling data using instances can provide several benefits to a system, including:

l An application can represent dynamic behavior of objects that come and go in a system,
such as aircraft that may fly within range of a radar system and then fly out of range. See 6.1
Instance States on the next page for more details.

l Many QoS policies are applied per instance. For example, the 7.5.12 HISTORY QosPolicy
on page 421 depth is applied per instance. This allows an application to specify: “Keep the
last N samples for every instance this DataReader receives.” See 6.3.1 QoS Policies that are
Applied per Instance on page 267 for more examples.

l An application can use DataReader methods such as read_instance() and take_instance()
to process all the samples for an instance at once.

l ContentFilteredTopics are more efficient when filtering instances. Using Con-
tentFilteredTopics in combination with instances is a great way to allow applications to take
advantage of writer-side filtering to only subscribe to logical subsets of a Topic by specifying
the instances that they are interested in.

Instances are defined by key fields that make up a unique identifier of the object being represented.
Key fields are similar to primary keys in a database—each unique combination of key field values
represents a unique instance. Key fields are specified using the @key directive, as shown in 2.4
DDS Samples, Instances, and Keys on page 18.

258

6.1 Instance States

259

Table 6.1 Example Keys and Instances

Instance
(object represented in data)

Key
(field/s uniquely
identifying object)

Data type Sample
(update to object)

Commercial flight being tracked

Airline name and flight number,
such as:

Airline: "United Airlines"

Flight number: 901

@key string airline
@key int16 flight_
num
float lat
float long

UA, 901, 37.7749, 122.4194

UA, 901, 37.7748, 122.4195

Sensor that is sending data, such as an in-
dividual temperature sensor

Unique identifier of that sensor,
such as:

"Floor-08-South"

@key string sensor_
id
int32 temperature

Floor-08-South, 78

Floor-08-South, 79

Car being monitored
Vehicle identification number
(VIN) of the car

@key string VIN
float lat
float long

JH4DA9370MS016526,
37.7749, 122.4194

JH4DA9370MS016526,
37.7748, 122.4195

See the following sections:

l 6.1 Instance States below

l 6.2 Instance Memory Management on page 265

l 6.3 QoS Configuration and Instances on page 267

See also more details on instances from the DataWriter and DataReader perspectives:

l For the DataWriter: 7.3.14 Managing Instances (Working with Keyed Data Types) on page 326

l For the DataReader: 8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)
on page 539

6.1 Instance States

Instances can be in one of three states:

l ALIVE: An existing DataWriter has written a sample of the instance.

l NOT_ALIVE_DISPOSED: A DataWriter that has written the instance has called dispose() on the
instance. (See 7.3.14.3 Disposing Instances on page 329 for further clarification when using
EXCLUSIVE Ownership.)

l NOT_ALIVE_NO_WRITERS: All DataWriters that have written the instances have gone away
(more on that later), or called unregister_instance() to unregister themselves from the instance.

6.1.1 ALIVE Details

Figure 6.1: Overview of Instance States and Transitions

6.1.1 ALIVE Details

The ALIVE instance state indicates that there is a DataWriter actively updating that instance, and no
DataWriter has declared the instance to be “disposed” (see below).

An instance becomes ALIVE when a DataWriter writes a sample of that instance. This is true regardless
of the previous state of the instance. For example, if an instance is NOT_ALIVE_DISPOSED, it
becomes alive again when a DataWriter writes the instance. The only way for the instance to transition to
becoming ALIVE is for a DataWriter to write a sample of that instance.

Instances and OWNERSHIP QoS: If the DataWriters’ QoS is set to OWNERSHIP = EXCLUSIVE,
the DataWriter with the highest OWNERSHIP_STRENGTH that has written the instance is the owner of
the instance, unless it unregisters the instance, loses liveliness, or is deleted. If the instance has been dis-
posed, only the DataWriter that owns that instance can make it transition to the ALIVE state by writing
that instance. See 7.5.17 OWNERSHIP QosPolicy on page 435.

6.1.2 NOT_ALIVE_DISPOSED Details

The NOT_ALIVE_DISPOSED instance state indicates that a DataWriter has explicitly changed the state
of an instance to NOT_ALIVE_DISPOSED by calling the dispose()method on the instance. The mean-
ing of an instance becoming NOT_ALIVE_DISPOSED is part of the design of a system.

260

6.1.2 NOT_ALIVE_DISPOSED Details

261

When a DataWriter calls dispose() on an instance, a dispose message is propagated from the DataWriter
to its matching DataReaders to tell those DataReaders that the instance’s state is changed to NOT_
ALIVE_DISPOSED.

Many systems use the NOT_ALIVE_DISPOSED instance state to indicate that the object that the
instance represents has gone away. For example, in a “FlightData” topic, a system may use the NOT_
ALIVE_DISPOSED instance state to indicate that the aircraft tracked by a radar system has flown out of
range or has landed.

One common misconception is that the memory belonging to a disposed instance is immediately freed
when the DataWriter calls dispose(). This is not true, because the dispose message needs to be propagated
to DataReaders. This means that information about the instance—and the fact that it was disposed—is
kept in the DataWriter's queue based on QoS policies such as 7.5.21 RELIABILITY QosPolicy on
page 448, 7.5.9 DURABILITY QosPolicy on page 412, and 7.5.12 HISTORY QosPolicy on page 421.
See 6.3.2 QoS Policies that Affect Instance Management on page 268 for more information on managing
resources for instances.

An instance can transition from NOT_ALIVE_DISPOSED to ALIVE if a DataWriter writes a new
sample of that instance. An example of a system that transitions an instance to NOT_ALIVE_
DISPOSED and then back to ALIVE is a radar system at an airport. It could be tracking a flight with the
following key fields:

airline = UA

flight_num = 901

In this example, when the flight arrives on radar, the instance becomes ALIVE. When the flight lands, it
becomes NOT_ALIVE_DISPOSED. The same flight flies every day, so it transitions from NOT_
ALIVE_DISPOSED to ALIVE when the flight arrives again the next day. This maps to the state dia-
gram shown in Figure 6.2: Instance State Diagram: Example for Flight Data on the next page.

6.1.3 NOT_ALIVE_NO_WRITERS Details

Figure 6.2: Instance State Diagram: Example for Flight Data

Instances and OWNERSHIP QoS: If the DataWriters’ QoS policy is set to OWNERSHIP =
EXCLUSIVE, the DataWriter with the highest OWNERSHIP_STRENGTH that has written the instance
is the owner of the instance. It is also the only DataWriter that can dispose the instance. It does not lose
ownership by disposing. Other DataWriters can call dispose(), but their dispose will have no effect on the
instance state. OWNERSHIP is generally used for redundancy purposes, so it makes sense for only one
owning DataWriter at a time to affect the instance state. See 7.5.17 OWNERSHIP QosPolicy on
page 435 for further details.

6.1.3 NOT_ALIVE_NO_WRITERS Details

The NOT_ALIVE_NO_WRITERS instance state indicates that there are no active DataWriters that are
currently updating the instance.

262

6.1.4 Transitions between NOT_ALIVE States

263

An instance becomes NOT_ALIVE_NO_WRITERS if all DataWriters that have written that instance
have unregistered themselves from the instance or become not alive themselves (through losing liveliness,
losing discovery liveliness, or being deleted). This means that if all DataWriters that have written samples
for an instance are deleted, the instance changes state to NOT_ALIVE_NO_WRITERS.

Currently the state transition from NOT_ALIVE_NO_WRITERS to ALIVE happens only if new data
is received, not if a previously-known writer is determined to be alive. Take for example a system where
there is only a single DataWriter of an instance. If that DataWriter loses liveliness due to a temporary net-
work disconnection, the DataReaders will detect that the instance is NOT_ALIVE_NO_WRITERS.
When the network disconnection is resolved, the DataReaders will detect that the DataWriter has regained
liveliness, but will not change the instance state to ALIVE until the DataWriter sends a new sample of that
instance.

6.1.4 Transitions between NOT_ALIVE States

By default, there is no state transition between the NOT_ALIVE_NO_WRITERS and NOT_ALIVE_
DISPOSED states, but this can be overridden by using the QoS settings propagate_dispose_of_unre-
gistered_instances and propagate_unregister_of_disposed_instances on a DataReader via the 8.6.1
DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575.

Setting propagate_dispose_of_unregistered_instances to true means that if all DataWriters lose live-
liness (so the instance becomes NOT_ALIVE_NO_WRITERS), and then a DataWriter calls dispose()
on the instance, the DataReader will recognize that instance as NOT_ALIVE_DISPOSED once the
DataWriter regains liveliness.

Setting propagate_dispose_of_unregistered_instances to true could also mean that the first message a
DataReader receives about an instance is NOT_ALIVE_DISPOSED. In Figure 6.3: Instance State
Transitions: propagate_dispose_of_unregistered_instances = true on the next page, there is a new initial
state transition from a DataReader never having seen an instance to seeing it as NOT_ALIVE_
DISPOSED. In this case, the DataReader recognizes that the instance went from never existing (as far as
the DataReader is concerned) to NOT_ALIVE_DISPOSED.

It is recommended that if you set propagate_dispose_of_unregistered_instances to true, you also set seri-
alize_key_with_dispose to true (see 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)
on page 390). This QoS will allow the subscribing application to retrieve the key value of the instance
through the FooDataReader_get_key_value API, even though a valid sample for that instance has not
been received.

6.1.4 Transitions between NOT_ALIVE States

Figure 6.3: Instance State Transitions: propagate_dispose_of_unregistered_instances = true

Transitions shown with dashed lines are only available when propagate_dispose_of_unregistered_instances = true.

The propagate_unregister_of_disposed_instances QoS setting in the 8.6.1 DATA_READER_
PROTOCOL QosPolicy (DDS Extension) on page 575 allows instances to transition directly from the
instance being disposed to NOT_ALIVE_NO_WRITERS. See Figure 6.4: Instance State Transitions:
propagate_unregister_of_disposed_instances = true on the next page. By default, only the resources for
instances in the NOT_ALIVE_NO_WRITERS instance state are reclaimable in the DataReader queue.
In a system with finite instance resource limits, the propagate_unregister_of_disposed_instances setting
allows an application to dispose instances to signal that the instance has gone away and then unregister
those instances to make sure that the instances’ resources are reclaimable for use by new instances.
Depending on your system requirements, another approach to reclaiming instance resources in the
DataReader queue is to set autopurge_disposed_instances_delay to zero. See 8.3.8.6 Instance
Resource Limits and Memory Management on page 545 for more details.

264

6.2 Instance Memory Management

265

Figure 6.4: Instance State Transitions: propagate_unregister_of_disposed_instances = true

Transitions shown with dashed lines are only available when propagate_unregister_of_disposed_instances = true.

6.2 Instance Memory Management

When an application creates keyed DataWriters and DataReaders (these are DataWriters and DataRead-
ers whose Topics are keyed), Connext DDS needs to allocate memory for instance metadata. (Such
metadata is not required for non-keyed data.) This includes memory for instance-specific metadata such as
maintaining the current state of each instance and memory for instance keyhashes. Keyhashes are 16-byte
representations of unique instances that are sent along with a sample. They allow DataWriters and
DataReaders to quickly identify each unique instance without comparing all individual key fields.

The memory used for instances is separate from sample memory. A DataWriter or DataReader may have
metadata stored for an instance even if there are currently no samples in the DataWriter's or DataReader's
queue. Furthermore, memory related to instances and instance metadata is not deleted, but reclaimed. How
memory is reclaimed for instances depends on how your QoS is set, and those QoS settings differ between
DataWriters and DataReaders. For example, disposing an instance does not necessarily free up memory,
depending on how your QoS is configured. (By default, the QoS settings do not free instance memory
when instances are disposed.)

6.2 Instance Memory Management

Figure 6.5: Comparing Sample Memory and Instance Memory

Consider a reliable, volatile DataWriter that writes a sample of an instance for the first time. The
DataWriter stores the sample in its queue. At the same time, the DataWriter stores the keyhash for that
instance, the state of the instance (ALIVE), and additional metadata about the instance. All matching
DataReaders acknowledge the sample, so the DataWriter removes the sample from its queue, allowing
that memory to be reused by another sample; however, the instance metadata is still valid, and continues to
be stored.

Similarly, when each DataReader receives the first update about an instance, it stores the sample in its
queue; it also stores the instance’s keyhash and state (ALIVE), and additional metadata about the instance.
When the DataReader takes the sample from the queue, the sample is removed from the queue, allowing
that memory to be reused by another sample; however, the instance metadata is still valid and continues to
be stored.

Details on how DataWriters and DataReaders allocate and reclaim memory for instances can be found in
the following sections:

l Details on the QoS policies that configure memory management on DataWriters are covered in
7.3.14.7 Instance Memory Management on page 331.

266

6.3 QoS Configuration and Instances

267

l Details on the QoS that configure memory management on DataReaders are covered in 8.3.8.6
Instance Resource Limits and Memory Management on page 545.

6.3 QoS Configuration and Instances

Some QoS policies are applied per instance, and other QoS policies configure instance management:

6.3.1 QoS Policies that are Applied per Instance

Several QoS policies (listed below) are applied per instance. This means that the QoS policy that’s spe-
cified on the DataWriter or DataReader is applied separately for each instance created. QoS policies can-
not be specified uniquely per instance, however. For example, if you are representing airline flights as
different instances, you can't have a DEADLINE period of 1 second applied to one flight and a
DEADLINE period of 2 seconds applied to another flight. The DEADLINE period (of, say, 1 second) is
applied to each flight. In other words, you want to be notified if the flight position DataReader does not
get an update about each individual flight within 1 second: the DEADLINE period is applied per
instance, for all instances.

6.3.1.1 DEADLINE QosPolicy

The 7.5.7 DEADLINE QosPolicy on page 407 is checked separately for every instance. When notified of
a missed deadline, a DataWriter or DataReader can check the last instance that missed the deadline using
the instance handle in the status.

This allows a DataWriter to detect that it has not written a particular instance as frequently as it has offered
in its deadline period, even if it has updated other instances.

This allows a DataReader to detect that it has not seen an update of an individual instance within the dead-
line period, even if it has seen updates from other instances during that time. This can be used to detect
errors due to the DataWriter failing to write a particular instance. It can also detect network errors, where
updates for a particular instance have been dropped or delayed.

6.3.1.2 DESTINATION_ORDER QosPolicy

The 7.5.8 DESTINATION_ORDER QosPolicy on page 409 contains a configuration option that allows
a DataWriter or DataReader to order data across the whole Topic for each instance.

6.3.1.3 HISTORY QosPolicy

The 7.5.12 HISTORY QosPolicy on page 421 depth is applied for each instance created. For example, if
depth = 1, the DataWriter or DataReader will keep one sample for each instance.

This allows an application to specify how much history it wants to keep per instance for reliability pur-
poses. For example, if data is modeled as state data—meaning that only the most recent sample of the data

6.3.2 QoS Policies that Affect Instance Management

is important—the DataWriter and DataReader can set the history depth to 1. This allows them to send
and receive only the most recent state for each instance.

6.3.1.4 DURABILITY QosPolicy

The 7.5.9 DURABILITY QosPolicy on page 412 writer_depth is applied for each instance created. For
example, if writer_depth = 1, the DataWriter will keep one sample for each instance, for late-joining
DataReaders.

This allows an application to specify how many samples it wants to keep per instance for later joiners. For
example, if data is modeled as state data—meaning that only the most recent sample of the data is import-
ant—the DataWriter can set the writer_depth to 1. This allows it to send only the most recent state for
each instance to late-joining DataReaders.

6.3.1.5 PRESENTATION QosPolicy

The 7.4.6 PRESENTATION QosPolicy on page 363 contains a configuration option to determine the
scope of coherency and ordering of data in the DataReader’s queue. If coherency is enabled, this allows a
Publisher or Subscriber to specify whether each coherent set is per instance. If ordered access is enabled,
this allows a Publisher or Subscriber to specify whether data should be ordered per Topic or per instance.

6.3.1.6 TIME_BASED_FILTER QosPolicy

The 8.6.4 TIME_BASED_FILTER QosPolicy on page 593 filters out samples of each instance that
arrive within the specified minimum_separation. For example, if theminimum_separation is 1 second,
the DataReader will receive samples of instance A at most once a second, and samples of instance B at
most once a second. A sample of instance A may arrive immediately after a sample of instance B, and will
not be filtered out.

6.3.2 QoS Policies that Affect Instance Management

There are additional QoS policies that affect instances, primarily by controlling the limits or memory
growth of instances, or by controlling which instance information is sent over the network.

6.3.2.1 DataWriter and DataReader

The following policies affect both the DataWriter and DataReader.

6.3.2.1.1 OWNERSHIP QosPolicy

If DataWriters have 7.5.17 OWNERSHIP QosPolicy on page 435 set to EXCLUSIVE, a DataWriter
with higher OWNERSHIP_STRENGTH is the owner of any instances it writes. If a DataWriter calls
unregister_instance(), it gives up ownership of the instance. If it calls dispose(), it does not give up own-
ership of the instance, so no other DataWriter can update that instance or its state.

268

6.3.2 QoS Policies that Affect Instance Management

269

6.3.2.1.2 RESOURCE_LIMITS QosPolicy

The 7.5.22 RESOURCE_LIMITS QosPolicy on page 452 contains a field named max_instances that
controls the maximum number of instances that may be stored for the DataWriter or DataReader.

6.3.2.2 DataWriter

The following policies apply to the DataWriter.

6.3.2.2.1 OWNERSHIP_STRENGTH QosPolicy

The DataWriter with highest 7.5.18 OWNERSHIP_STRENGTH QosPolicy on page 439 will own the
instances that it writes. This means that if a lower-strength DataWriter attempts to update any of those
instances by writing or calling dispose on the instance, it does not affect the instance or its state.

6.3.2.2.2 DATA_WRITER_RESOURCE_LIMITS QosPolicy

The instance_replacement and replace_empty_instances fields in the 7.5.6 DATA_WRITER_
RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402 control how instances can be replaced
and the memory reclaimed ifmax_instances is reached. See 7.5.6.1 Configuring DataWriter Instance
Replacement on page 405 for more information.

The autoregister_instances field controls whether to automatically register instances when a non-NIL
handle is passed to the write() call.

6.3.2.2.3 WRITER_DATA_LIFECYCLE QosPolicy

The autodispose_unregistered_instances field in the 7.5.31 WRITER_DATA_LIFECYCLE QoS
Policy on page 472 controls whether a DataWriter automatically disposes instances when they are unre-
gistered. (By default, it doesn't.)

The autopurge_unregistered_instances_delay and autopurge_disposed_instances_delay fields control
whether/when a DataWriter purges instances if they are NOT_ALIVE_NO_WRITERS or NOT_
ALIVE_DISPOSED. Once all samples for an instance have been fully acknowledged by existing
DataReaders, both the instance and the samples for that instance will be purged (see 7.3.8.2 write() beha-
vior with KEEP_LAST and KEEP_ALL on page 313 for a definition of "fully ACK'ed").

See 7.3.14.7 Instance Memory Management on page 331 for more information on how this affects
DataWriter memory usage.

6.3.2.2.4 DATA_WRITER_PROTOCOL QosPolicy

The disable_inline_keyhash field in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Exten-
sion) on page 390 controls whether or not a keyhash is propagated on the wire with each sample. This
field allows the user to control whether bandwidth is used to send the keyhash with every sample, or CPU
is used by the subscribing application to calculate the keyhash for every sample.

6.3.2 QoS Policies that Affect Instance Management

The serialize_key_with_dispose field controls whether or not the serialized key is propagated on the wire
with dispose samples. This field is useful when propagate_dispose_of_unregistered_instances in the
8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575 is also true.

6.3.2.3 DataReader

The following policies apply to the DataReader.

6.3.2.3.1 DATA_READER_PROTOCOL QosPolicy

The propagate_unregister_of_disposed_instances and propagate_dispose_of_unregistered_instances
fields in the 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575 control
whether a DataReader can see state transitions between NOT_ALIVE instance states. See 6.1 Instance
States on page 259 for more information.

6.3.2.3.2 DATA_READER_RESOURCE_LIMITS QosPolicy

The initial_remote_writers_per_instance and max_remote_writers_per_instance fields in the 8.6.2
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581 control the number
of DataWriters from which a DataReader may receive samples for a single instance.

Themax_total_instances field controls the maximum number of instances that a DataReader will main-
tain state for. See 8.3.8.6 Instance Resource Limits and Memory Management on page 545 for more
information.

Themax_remote_virtual_writers_per_instance field controls the maximum number of virtual remote
writers that can be associated with an instance.

The instance_replacement field controls how instances can be replaced and the memory reclaimed if
max_instances is reached. See 8.6.2.3 Configuring DataReader Instance Replacement on page 588 for
more information.

6.3.2.3.3 READER_DATA_LIFECYCLE QosPolicy

The autopurge_nowriter_samples_delay and autopurge_disposed_samples_delay fields in the 8.6.3
READER_DATA_LIFECYCLE QoS Policy on page 591 control whether/when to purge samples that
are associated with instances in the NOT_ALIVE_NO_WRITERS or NOT_ALIVE_DISPOSED
states, freeing up queue space and allowing instance information to be purged.

The autopurge_disposed_instances_delay field controls whether to purge instance memory when an
instance becomes NOT_ALIVE_DISPOSED. The autopurge_nowriter_instances_delay field controls
whether to purge instance memory when an instance becomes NOT_ALIVE_NOWRITERS.

270

Chapter 7 Sending Data
This section discusses how to create, configure, and use Publishers and DataWriters to send data.
It describes how these Entities interact, as well as the types of operations that are available for
them.

The goal of this section is to help you become familiar with the Entities you need for sending data.
For up-to-date details such as formal parameters and return codes on any mentioned operations,
please see the API Reference HTML documentation.

7.1 Preview: Steps to Sending Data

To send DDS samples of a data instance:

1. Create and configure the required Entities:
a. Create a DomainParticipant (see 9.3.1 Creating a DomainParticipant on page 621).

b. Register user data types1 with the DomainParticipant. For example, the
‘FooDataType’. (This step is not necessary in the Modern C++ API--the Topic instan-
tiation automatically registers the type)

c. Use the DomainParticipant to create a Topic with the registered data type.

d. Optionally2, use the DomainParticipant to create a Publisher.

e. Use the Publisher or DomainParticipant to create a DataWriter for the Topic.

1Type registration is not required for built-in types (see 3.2.1 Registering Built-in Types on page 39).

2You are not required to explicitly create a Publisher; instead, you can use the 'implicit Publisher' created from
the DomainParticipant. See 7.2.1 Creating Publishers Explicitly vs. Implicitly on page 276.

271

7.2 Publishers

272

f. Use a type-safe method to cast the generic DataWriter created by the Publisher to a type-spe-
cific DataWriter. For example, ‘FooDataWriter’. (This step doesn't apply to the Modern
C++ API where you directly instantiate a type-safe ‘DataWriter<Foo>.')

g. Optionally, register data instances with the DataWriter. If the Topic’s user data type contain
key fields, then registering a data instance (data with a specific key value) will improve per-
formance when repeatedly sending data with the same key. You may register many different
data instances; each registration will return an instance handle corresponding to the specific
key value. For non-keyed data types, instance registration has no effect. See 2.4 DDS
Samples, Instances, and Keys on page 18 for more information on keyed data types and
instances.

2. Every time there is changed data to be published:
a. Store the data in a variable of the correct data type (for instance, variable ‘Foo’ of the type

‘FooDataType’).

b. Call the FooDataWriter’s write() operation, passing it a reference to the variable ‘Foo’.
l For non-keyed data types or for non-registered instances, also pass in DDS_
HANDLE_NIL.

l For keyed data types, pass in the instance handle corresponding to the instance stored in
‘Foo’, if you have registered the instance previously. This means that the data stored in
‘Foo’ has the same key value that was used to create instance handle.

c. The write() function will take a snapshot of the contents of ‘Foo’ and store it in Connext
DDS internal buffers from where the DDS data sample is sent under the criteria set by the
Publisher’s and DataWriter’s QosPolicies. If there are matched DataReaders, then the DDS
data sample will have been passed to the physical transport plug-in/device driver by the time
that write() returns.

7.2 Publishers

An application that intends to publish information needs the following Entities: DomainParticipant, Topic,
Publisher, and DataWriter. All Entities have a corresponding specialized Listener and a set of
QosPolicies. A Listener is how Connext DDS notifies your application of status changes relevant to the
Entity. The QosPolicies allow your application to configure the behavior and resources of the Entity.

l A DomainParticipant defines the DDS domain in which the information will be made available.

l A Topic defines the name under which the data will be published, as well as the type (format) of the
data itself.

l An application writes data using a DataWriter. The DataWriter is bound at creation time to a Topic,
thus specifying the name under which the DataWriter will publish the data and the type associated

7.2 Publishers

with the data. The application uses the DataWriter’s write() operation to indicate that a new value
of the data is available for dissemination.

l A Publisher manages the activities of several DataWriters. The Publisher determines when the data
is actually sent to other applications. Depending on the settings of various QosPolicies of the Pub-
lisher and DataWriter, data may be buffered to be sent with the data of other DataWriters or not
sent at all. By default, the data is sent as soon as the DataWriter’s write() function is called.

You may have multiple Publishers, each managing a different set of DataWriters, or you may
choose to use one Publisher for all your DataWriters.

For more information, see 7.2.1 Creating Publishers Explicitly vs. Implicitly on page 276.

Figure 7.1: Publication Module below shows how these Entities are related, as well as the methods defined
for each Entity.
Figure 7.1: Publication Module

Publishers are used to perform the operations listed in Table 7.1 Publisher Operations on the next page.
You can find more information about the operations by looking in the section listed under the Reference
column. For details such as formal parameters and return codes, please see the API Reference HTML doc-
umentation.

273

7.2 Publishers

274

Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

Working
with ... Operation Description Reference

DataWriters

begin_coherent_
changes

Indicates that the application will begin a coherent set of modifications.
7.3.10 Writing Coherent
Sets of DDSData
Sampleson page 317

create_datawriter Creates a DataWriter that will belong to the Publisher.

7.3.1 Creating
DataWriters on page 293create_

datawriter_
with_profile

Sets the DataWriter’sQoS based on a specified QoS profile.

copy_from_topic_
qos

Copies relevant QosPolicies froma Topic into a DataWriterQoS structure.
7.2.4.6 Other Publisher
QoS-RelatedOperations
on page 284

DataWriters
cont'd

delete_con-
tained_
entities

Deletes all of the DataWriters that were created by the Publisher.
7.2.3.1 Deleting Con-
tained DataWriters on
page 279

delete_datawriter Deletesa DataWriter that belongs to the Publisher.
7.3.3 Deleting
DataWriters on page 294

end_coherent_
changes

Ends the coherent set initiated by begin_coherent_changes().
7.3.10 Writing Coherent
Sets of DDSData
Sampleson page 317

DataWriters
cont'd

get_all_
datawriters

Retrieves all the DataWriters created from thisPublisher.
7.3.2 Getting All
DataWriters on page 294

get_default_
datawriter_qos

Copies the Publisher’sdefault DataWriterQoS values into a DataWriterQos struc-
ture.

7.3.15 Setting
DataWriter QosPolicies
on page 334

get_status_
changes

Will always return 0 since there are no Statuses currently defined forPublishers.
4.1.4 Getting Statusand
StatusChangeson
page 171

lookup_datawriter Retrieves a DataWriter previously created for a specific Topic.
7.2.6 Finding a Pub-
lisher’sRelated DDSEntit-
ies on page 287

Table 7.1 Publisher Operations

7.2 Publishers

Working
with ... Operation Description Reference

DataWriters
cont'd

set_default_
datawriter_qos

Sets or changes the default DataWriterQos values.
7.2.4.5 Getting and Set-
ting Default QoS for
DataWriters on page 283set_default_

datawriter_
qos_with_profile

Sets or changes the default DataWriterQos values based on a QoS profile.

wait_for_
acknowledgments

Blocks until all data written by the Publisher’s reliable DataWritersare ac-
knowledged by all matched reliable DataReaders, or until the a specified timeout
duration, max_wait, elapses.

7.2.7 Waiting for Ac-
knowledgments in a Pub-
lisher on page 287

is_sample_app_
acknowledged

Indicates if a sample has been application-acknowledged by all the matching
DataReaders that were alive when the sample was written.

If a DataReader does not enable application acknowledgment (by setting the Reli-
abilityQosPolicy's acknowledgment_kind to a value other than DDS_PROTOCOL_
ACKNOWLEDGMENT_MODE), the sample is considered application-ac-
knowledged for thatDataReader.

7.3.12 Application Ac-
knowledgment on
page 318

Libraries
and Profiles

get_default_lib-
rary

Gets the Publisher’sdefault QoS profile library.

7.2.4.4 Getting and Set-
ting the Publisher’sDe-
fault QoSProfile and
Library on page 283

get_default_pro-
file

Gets the Publisher’sdefault QoS profile.

get_default_pro-
file_
library

Gets the library that contains the Publisher’sdefault QoS profile.

set_default_lib-
rary

Sets the default library for a Publisher.

set_default_pro-
file

Sets the default profile for a Publisher.

Participants get_participant Gets the DomainParticipant that was used to create the Publisher.
7.2.6 Finding a Pub-
lisher’sRelated DDSEntit-
ies on page 287

Table 7.1 Publisher Operations

275

7.2.1 Creating Publishers Explicitly vs. Implicitly

276

Working
with ... Operation Description Reference

Publishers

enable Enables the Publisher.
4.1.2 Enabling DDSEntit-
ies on page 168

equals Compares two Publisher’sQoS structures for equality.
7.2.4.2 Comparing QoS
Valueson page 282

get_qos
Gets the Publisher’s current QosPolicy settings. This is most often used in pre-
paration for calling set_qos().

7.2.4 Setting Publisher
QosPolicies on page 279set_qos

Sets the Publisher’sQoS. You can use this operation to change the values for the
Publisher’sQosPolicies. Note, however, that not all QosPolicies can be changed
after the Publisher has been created.

set_qos_with_pro-
file

Sets the Publisher’sQoS based on a specified QoS profile.

Publishers
cont'd

get_listener Gets the currently installed Listener.
7.2.5 Setting Up Pub-
lisherListeners on
page 285set_listener

Sets the Publisher’sListener. If you created the Publisher without a Listener, you
can use this operation to add one later.

suspend_pub-
lications

Provides a hint that multiple data-objects within the Publisher are about to be writ-
ten.Connext DDS does not currently use this hint. 7.2.9 Suspending and Re-

suming Publicationson
page 288resume_pub-

lications
Reverses the action of suspend_publications().

Table 7.1 Publisher Operations

7.2.1 Creating Publishers Explicitly vs. Implicitly

To send data, your application must have a Publisher. However, you are not required to explicitly
create one. If you do not create one, the middleware will implicitly create a Publisher the first time you
create a DataWriter using the DomainParticipant’s operations. It will be created with default QoS (DDS_
PUBLISHER_QOS_DEFAULT) and no Listener.

A Publisher (implicit or explicit) gets its own default QoS and the default QoS for its child DataWriters
from the DomainParticipant. These default QoS are set when the Publisher is created. (This is true for
Subscribers and DataReaders, too.)

The 'implicit Publisher' can be accessed using the DomainParticipant’s get_implicit_publisher() oper-
ation (see 9.3.10 Getting the Implicit Publisher or Subscriber on page 635). You can use this ‘implicit Pub-
lisher’ just like any other Publisher (it has the same operations, QosPolicies, etc.). So you can change the
mutable QoS and set a Listener if desired.

DataWriters are created by calling create_datawriter() or create_datawriter_with_profile()—these
operations exist for DomainParticipants and Publishers. If you use the DomainParticipant to create a

7.2.2 Creating Publishers

DataWriter, it will belong to the implicit Publisher. If you use a Publisher to create a DataWriter, it will
belong to that Publisher.

The middleware will use the same implicit Publisher for all DataWriters that are created using the
DomainParticipant’s operations.

Having the middleware implicitly create a Publisher allows you to skip the step of creating a Publisher.
However, having all your DataWriters belong to the same Publisher can reduce the concurrency of the sys-
tem because all the write operations will be serialized.

7.2.2 Creating Publishers

Before you can explicitly create a Publisher, you need a DomainParticipant (see 9.3 DomainParticipants
on page 615). To create a Publisher, use the DomainParticipant’s create_publisher() or create_pub-
lisher_with_profile() operations.

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can change
QoS settings without recompiling the application. For details, see Configuring QoS with XML (Chapter
19 on page 854).

Note: The Modern C++ API Publishers provide constructors whose first and only required argument is the
DomainParticipant.
DDSPublisher * create_publisher (

const DDS_PublisherQos &qos,
DDSPublisherListener *listener,
DDS_StatusMask mask)

DDSPublisher * create_publisher_with_profile (
const char *library_name,
const char *profile_name,
DDSPublisherListener *listener,
DDS_StatusMask mask)

Where:

qos If you want the default QoS settings (described in the API Reference HTML documentation), use DDS_
PUBLISHER_QOS_DEFAULT for this parameter (see Figure 7.2: Creating a Publisher with Default
QosPolicies on the next page).

If you want to customize any of the QosPolicies, supply a QoS structure (see Figure 7.3: Creating a Pub-
lisher with Non-Default QosPolicies (not from a profile) on page 281). The QoS structure for a Publisher
is described in 7.4 Publisher/Subscriber QosPolicies on page 346.

Note: If you use DDS_PUBLISHER_QOS_DEFAULT, it is not safe to create the Publisher while an-
other thread may be simultaneously calling set_default_publisher_qos().

listener Listeners are callback routines. Connext DDS uses them to notify your application when specific events
(status changes) occur with respect to the Publisher or the DataWriters created by the Publisher.

The listener parameter may be set to NULL if you do not want to install a Listener. If you use NULL, the
Listener of the DomainParticipant to which the Publisher belongs will be used instead (if it is set). For
more information on PublisherListeners, see 7.2.5 Setting Up PublisherListeners on page 285.

277

7.2.3 Deleting Publishers

278

mask This bit-mask indicates which status changes will cause the Publisher’s Listener to be invoked. The bits
set in the mask must have corresponding callbacks implemented in the Listener.

If you use NULL for the Listener, use DDS_STATUS_MASK_NONE for this parameter. If the Listener
implements all callbacks, use DDS_STATUS_MASK_ALL. For information on statuses, see 4.4 Listen-
ers on page 189.

library_name A QoS Library is a named set of QoS profiles. See 19.3 QoS Profiles on page 856. If NULL is used for
library_name, the DomainParticipant’s default library is assumed (see 7.2.4.4 Getting and Setting the
Publisher’s Default QoS Profile and Library on page 283).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See 19.3 QoS Profiles on page 856. If
NULL is used for profile_name, the DomainParticipant’s default profile is assumed and library_name is
ignored

Figure 7.2: Creating a Publisher with Default QosPolicies

// create the publisher
DDSPublisher* publisher =

participant->create_publisher(
DDS_PUBLISHER_QOS_DEFAULT,
NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
// handle error

};

For more examples, see 7.2.4.1 Configuring QoS Settings when the Publisher is Created on page 280.

After you create a Publisher, the next step is to use the Publisher to create a DataWriter for each Topic,
see 7.3.1 Creating DataWriters on page 293. For a list of operations you can perform with a Publisher,
see Table 7.1 Publisher Operations.

7.2.3 Deleting Publishers

(Note: in the Modern C++ API, Entities are automatically destroyed, see 4.1.1 Creating and Deleting
DDS Entities on page 167)

This section applies to both implicitly and explicitly created Publishers.

To delete a Publisher:

1. You must first delete all DataWriters that were created with the Publisher. Use the Publisher’s
delete_datawriter() operation to delete them one at a time, or use the delete_contained_entities()
operation (7.2.3.1 Deleting Contained DataWriters on the next page) to delete them all at the same
time.

DDS_ReturnCode_t delete_datawriter (DDSDataWriter *a_datawriter)

2. Delete the Publisher by using the DomainParticipant’s delete_publisher() operation.

DDS_ReturnCode_t delete_publisher (DDSPublisher *p)

7.2.4 Setting Publisher QosPolicies

Note: A Publisher cannot be deleted within a Listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

7.2.3.1 Deleting Contained DataWriters

The Publisher’s delete_contained_entities() operation deletes all the DataWriters that were created by the
Publisher.
DDS_ReturnCode_t delete_contained_entities ()

After this operation returns successfully, the application may delete the Publisher (see 7.2.3 Deleting Pub-
lishers on the previous page).

7.2.4 Setting Publisher QosPolicies

A Publisher’s QosPolicies control its behavior. Think of the policies as the configuration and behavior
‘properties’ of the Publisher. The DDS_PublisherQos structure has the following format:
DDS_PublisherQos struct {

DDS_PresentationQosPolicy presentation;
DDS_PartitionQosPolicy partition;
DDS_GroupDataQosPolicy group_data;
DDS_EntityFactoryQosPolicy entity_factory;
DDS_AsynchronousPublisherQosPolicy asynchronous_publisher;
DDS_ExclusiveAreaQosPolicy exclusive_area;
DDS_EntityNameQosPolicy publisher_name;

} DDS_PublisherQos;

Note: set_qos() cannot always be used in a listener callback; see 4.5.1 Restricted Operations in Listener
Callbacks on page 200.

Table 7.2 Publisher QosPolicies summarizes the meaning of each policy. (They appear alphabetically in
the table.) For information on why you would want to change a particular QosPolicy, see the referenced
section. For defaults and valid ranges, please refer to the API Reference HTML documentation for each
policy.

QosPolicy Description

7.4.1 ASYNCHRONOUS_PUBLISHER
QosPolicy (DDSExtension) on page 346

Configures the mechanism that sends user data in an externalmiddleware thread.

7.4.2 ENTITYFACTORYQosPolicy on
page 349

Controls whether or not child Entitiesare created in the enabled state.

7.5.11 ENTITY_NAMEQosPolicy (DDS
Extension) on page 419

Assigns a name and role_name to a Publisher.

Table 7.2 Publisher QosPolicies

279

7.2.4 Setting Publisher QosPolicies

280

QosPolicy Description

7.4.3 EXCLUSIVE_AREAQosPolicy
(DDSExtension) on page 351

Configures multi-thread concurrency and deadlock prevention capabilities.

7.4.4 GROUP_DATAQosPolicy on
page 354

Along with 5.2.1 TOPIC_DATAQosPolicy on page 225 and 7.5.30 USER_DATAQosPolicy on
page 470, this QosPolicy is used to attach a buffer of bytes to Connext DDS's discovery meta-data.

7.4.5 PARTITIONQosPolicy on
page 357

Adds string identifiers that are used formatching DataReadersand DataWriters for the same Topic.

7.4.6 PRESENTATIONQosPolicy on
page 363

Controls howConnext DDS presents data received by an application to the DataReadersof the data.

Table 7.2 Publisher QosPolicies

7.2.4.1 Configuring QoS Settings when the Publisher is Created

As described in 7.2.2 Creating Publishers on page 277, there are different ways to create a Publisher,
depending on how you want to specify its QoS (with or without a QoS Profile).

l In Figure 7.2: Creating a Publisher with Default QosPolicies on page 278 we saw an example of
how to explicitly create a Publisher with default QosPolicies. It used the special constant, DDS_
PUBLISHER_QOS_DEFAULT, which indicates that the default QoS values for a Publisher
should be used. Default Publisher QosPolicies are configured in the DomainParticipant; you can
change them with the DomainParticipant’s set_default_publisher_qos() or set_default_pub-
lisher_qos_with_profile() operation (see 9.3.7.5 Getting and Setting Default QoS for Child Entit-
ies on page 633).

l To create a Publisher with non-default QoS settings, without using a QoS profile, see Figure 7.3:
Creating a Publisher with Non-Default QosPolicies (not from a profile) on the next page. It uses the
DomainParticipant’s get_default_publisher_qos()method to initialize a DDS_PublisherQos struc-
ture. Then the policies are modified from their default values before the QoS structure is passed to
create_publisher().

l You can also create a Publisher and specify its QoS settings via a QoS Profile. To do so, call cre-
ate_publisher_with_profile(), as seen in Figure 7.4: Creating a Publisher with a QoS Profile on the
next page.

l If you want to use a QoS profile, but then make some changes to the QoS before creating the Pub-
lisher, call the DomainParticipantFactory’s get_publisher_qos_from_profile(), modify the QoS
and use the modified QoS structure when calling create_publisher(), as seen in Figure 7.5: Getting
QoS Values from a Profile, Changing QoS Values, Creating a Publisher with Modified QoS Values
on the next page.

For more information, see 7.2.2 Creating Publishers on page 277 and Configuring QoS with XML
(Chapter 19 on page 854).

7.2.4 Setting Publisher QosPolicies

Figure 7.3: Creating a Publisher with Non-Default QosPolicies (not from a profile)

DDS_PublisherQos publisher_qos;1

// get defaults
if (participant->get_default_publisher_qos(publisher_qos) != DDS_RETCODE_OK){

// handle error
}
// make QoS changes here
// for example, this changes the ENTITY_FACTORY QoS
publisher_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_FALSE;

// create the publisher
DDSPublisher* publisher = participant->create_publisher(publisher_qos,

NULL, DDS_STATUS_MASK_NONE);
if (publisher == NULL) {

// handle error
}

Figure 7.4: Creating a Publisher with a QoS Profile

// create the publisher with QoS profile
DDSPublisher* publisher = participant->create_publisher_with_profile(

“MyPublisherLibary”, “MyPublisherProfile”,
NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
// handle error

}

Figure 7.5: Getting QoS Values from a Profile, Changing QoS Values, Creating a Publisher
with Modified QoS Values

DDS_PublisherQos publisher_qos;2

// Get publisher QoS from profile
retcode = factory->get_publisher_qos_from_profile(publisher_qos,

“PublisherLibrary”, “PublisherProfile”);
if (retcode != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes here
// New entity_factory autoenable_created_entities will be true
publisher_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_TRUE;
// create the publisher with modified QoS
DDSPublisher* publisher = participant->create_publisher(

“Example Foo”, type_name, publisher_qos,
NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
// handle error

}

1For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_initialize(). See
4.2.2 Special QosPolicy Handling Considerations for C on page 182
2For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_initialize(). See
4.2.2 Special QosPolicy Handling Considerations for C on page 182

281

7.2.4 Setting Publisher QosPolicies

282

7.2.4.2 Comparing QoS Values

The equals() operation compares two Publisher’s DDS_PublisherQoS structures for equality. It takes two
parameters for the two Publisher’s QoS structures to be compared, then returns TRUE is they are equal
(all values are the same) or FALSE if they are not equal.

7.2.4.3 Changing QoS Settings After the Publisher Has Been Created

There are 2 ways to change an existing Publisher’s QoS after it is has been created—again depending on
whether or not you are using a QoS Profile.

l To change an existing Publisher’s QoS programmatically (that is, without using a QoS profile): get_
qos() and set_qos(). See the example code in Figure 7.6: Changing the QoS of an Existing Pub-
lisher below. It retrieves the current values by calling the Publisher’s get_qos() operation. Then it
modify the value and call set_qos() to apply the new value. Note, however, that some QosPolicies
cannot be changed after the Publisher has been enabled—this restriction is noted in the descriptions
of the individual QosPolicies.

l You can also change a Publisher’s (and all other Entities’) QoS by using a QoS Profile and calling
set_qos_with_profile(). For an example, see Figure 7.7: Changing the QoS of an Existing Pub-
lisher with a QoS Profile below. For more information, see Configuring QoS with XML (Chapter
19 on page 854).

Figure 7.6: Changing the QoS of an Existing Publisher

DDS_PublisherQos publisher_qos;1

// Get current QoS. publisher points to an existing DDSPublisher.
if (publisher->get_qos(publisher_qos) != DDS_RETCODE_OK) {

// handle error
}
// make changes
// New entity_factory autoenable_created_entities will be true
publisher_qos.entity_factory.autoenable_created_entities =DDS_BOOLEAN_TRUE;
// Set the new QoS
if (publisher->set_qos(publisher_qos) != DDS_RETCODE_OK) {

// handle error
}

Figure 7.7: Changing the QoS of an Existing Publisher with a QoS Profile

retcode = publisher->set_qos_with_profile(
“PublisherProfileLibrary”,”PublisherProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

1For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_initialize(). See
4.2.2 Special QosPolicy Handling Considerations for C on page 182

7.2.4 Setting Publisher QosPolicies

7.2.4.4 Getting and Setting the Publisher’s Default QoS Profile and Library

You can retrieve the default QoS profile used to create Publishers with the get_default_profile() oper-
ation.

You can also get the default library for Publishers, as well as the library that contains the Publisher’s
default profile (these are not necessarily the same library); these operations are called get_default_library
() and get_default_library_profile(), respectively. These operations are for informational purposes only
(that is, you do not need to use them as a precursor to setting a library or profile.) For more information,
see Configuring QoS with XML (Chapter 19 on page 854).
virtual const char * get_default_library ()
const char * get_default_profile ()
const char * get_default_profile_library ()

There are also operations for setting the Publisher’s default library and profile:
DDS_ReturnCode_t set_default_library (const char * library_name)
DDS_ReturnCode_t set_default_profile (const char * library_name,

const char * profile_name)

These operations only affect which library/profile will be used as the default the next time a default Pub-
lisher library/profile is needed during a call to one of this Publisher’s operations.

When calling a Publisher operation that requires a profile_name parameter, you can use NULL to refer to
the default profile. (This same information applies to setting a default library.) If the default library/profile
is not set, the Publisher inherits the default from the DomainParticipant.

set_default_profile() does not set the default QoS for DataWriters created by the Publisher; for this func-
tionality, use the Publisher’s set_default_datawriter_qos_with_profile(), see 7.2.4.5 Getting and Set-
ting Default QoS for DataWriters below (you may pass in NULL aftercalling the Publisher’s set_default_
profile()).

set_default_profile() does not set the default QoS for newly created Publishers; for this functionality, use
the DomainParticipant’s set_default_publisher_qos_with_profile() operation, see 9.3.7.5 Getting and
Setting Default QoS for Child Entities on page 633.

7.2.4.5 Getting and Setting Default QoS for DataWriters

These operations set the default QoS that will be used for new DataWriters if create_datawriter() is
called with DDS_DATAWRITER_QOS_DEFAULT as the qos parameter:
DDS_ReturnCode_t set_default_datawriter_qos (const DDS_DataWriterQos &qos)
DDS_ReturnCode_t set_default_datawriter_qos_with_profile (

const char *library_name,
const char *profile_name)

The above operations may potentially allocate memory, depending on the sequences contained in some
QoS policies.

283

7.2.4 Setting Publisher QosPolicies

284

To get the default QoS that will be used for creating DataWriters if create_datawriter() is called with
DDS_PARTICIPANT_QOS_DEFAULT as the qos parameter:
DDS_ReturnCode_t get_default_datawriter_qos (DDS_DataWriterQos & qos)

This operation gets the QoS settings that were specified on the last successful call to set_default_
datawriter_qos() or set_default_datawriter_qos_with_profile(), or if the call was never made, the
default values listed in DDS_DataWriterQos.

Note: It is not safe to set the default DataWriter QoS values while another thread may be simultaneously
calling get_default_datawriter_qos(), set_default_datawriter_qos(), or create_datawriter() with
DDS_DATAWRITER_QOS_DEFAULT as the qos parameter. It is also not safe to get the default
DataWriter QoS values while another thread may be simultaneously calling set_default_datawriter_qos
().

7.2.4.6 Other Publisher QoS-Related Operations

l Copying a Topic’s QoS into a DataWriter’s QoS

This method is provided as a convenience for setting the values in a DataWriterQos structure before
using that structure to create a DataWriter. As explained in 5.1.3 Setting Topic QosPolicies on
page 220, most of the policies in a TopicQos structure do not apply directly to the Topic itself, but to
the associated DataWriters and DataReaders of that Topic. The TopicQos serves as a single con-
tainer where the values of QosPolicies that must be set compatibly across matching DataWriters and
DataReaders can be stored.

Thus instead of setting the values of the individual QosPolicies that make up a DataWriterQos struc-
ture every time you need to create a DataWriter for a Topic, you can use the Publisher’s copy_
from_topic_qos() operation to “import” the Topic’s QosPolicies into a DataWriterQos structure.
This operation copies the relevant policies in the TopicQos to the corresponding policies in the
DataWriterQos.

This copy operation will often be used in combination with the Publisher’s get_default_
datawriter_qos() and the Topic’s get_qos() operations. The Topic’s QoS values are merged on top
of the Publisher’s default DataWriter QosPolicies with the result used to create a new DataWriter,
or to set the QoS of an existing one (see 7.3.15 Setting DataWriter QosPolicies on page 334).

l Copying a Publisher’s QoS

C API users should use the DDS_PublisherQos_copy() operation rather than using structure assign-
ment when copying between two QoS structures. The copy() operation will perform a deep copy so
that policies that allocate heap memory such as sequences are copied correctly. In C++, C++/CLI,
C# and Java, a copy constructor is provided to take care of sequences automatically.

7.2.5 Setting Up PublisherListeners

l Clearing QoS-Related Memory

Some QosPolicies contain sequences that allocate memory dynamically as they grow or shrink. The
C API’s DDS_PublisherQos_finalize() operation frees the memory used by sequences but otherwise
leaves the QoS unchanged. C API users should call finalize() on all DDS_PublisherQos objects
before they are freed, or for QoS structures allocated on the stack, before they go out of scope. In
C++, C++/CLI, C# and Java, the memory used by sequences is freed in the destructor.

7.2.5 Setting Up PublisherListeners

Like all Entities, Publishers may optionally have Listeners. Listeners are user-defined objects that imple-
ment a DDS-defined interface (i.e. a pre-defined set of callback functions). Listeners provide the means for
Connext DDS to notify applications of any changes in Statuses (events) that may be relevant to it. By writ-
ing the callback functions in the Listener and installing the Listener into the Publisher, applications can be
notified to handle the events of interest. For more general information on Listeners and Statuses, see 4.4
Listeners on page 189.

Note: Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

As illustrated in Figure 7.1: Publication Module on page 273, the PublisherListener interface extends the
DataWriterListener interface. In other words, the PublisherListener interface contains all the functions in
the DataWriterListener interface. There are no Publisher-specific statuses, and thus there are no Publisher-
specific functions.

Instead, the methods of a PublisherListener will be called back for changes in the Statuses of any of the
DataWriters that the Publisher has created. This is only true if the DataWriter itself does not have a
DataWriterListener installed, see 7.3.4 Setting Up DataWriterListeners on page 295. If a DataWriter-
Listener has been installed and has been enabled to handle a Status change for the DataWriter, then Con-
next DDS will call the method of the DataWriterListener instead.

If you want a Publisher to handle status events for its DataWriters, you can set up a PublisherListener dur-
ing the Publisher’s creation or use the set_listener()method after the Publisher is created. The last para-
meter is a bit-mask with which you should set which Status events that the PublisherListener will handle.
For example,
DDS_StatusMask mask = DDS_OFFERED_DEADLINE_MISSED_STATUS |

DDS_OFFERED_INCOMPATIBLE_QOS_STATUS;
publisher = participant->create_publisher(

DDS_PUBLISHER_QOS_DEFAULT, listener, mask);

or

285

7.2.5 Setting Up PublisherListeners

286

DDS_StatusMask mask = DDS_OFFERED_DEADLINE_MISSED_STATUS |
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS;

publisher->set_listener(listener, mask);

As previously mentioned, the callbacks in the PublisherListener act as ‘default’ callbacks for all the
DataWriters contained within. When Connext DDS wants to notify a DataWriter of a relevant Status
change (for example, PUBLICATION_MATCHED), it first checks to see if the DataWriter has the cor-
responding DataWriterListener callback enabled (such as the on_publication_matched() operation). If
so, Connext DDS dispatches the event to the DataWriterListener callback. Otherwise, Connext DDS dis-
patches the event to the corresponding PublisherListener callback.

A particular callback in a DataWriter is not enabled if either:

l The application installed a NULL DataWriterListener (meaning there are no callbacks for the
DataWriter at all).

l The application has disabled the callback for a DataWriterListener. This is done by turning off the
associated status bit in the mask parameter passed to the set_listener() or create_datawriter() call
when installing the DataWriterListener on the DataWriter. For more information on DataWriter-
Listeners, see 7.3.4 Setting Up DataWriterListeners on page 295.

Similarly, the callbacks in the DomainParticipantListener act as ‘default’ callbacks for all the Publishers
that belong to it. For more information on DomainParticipantListeners, see 9.3.6 Setting Up DomainPar-
ticipantListeners on page 626.

For example, Figure 7.8: Example Code to Create a Publisher with a Simple Listener below shows how to
create a Publisher with a Listener that simply prints the events it receives.

Figure 7.8: Example Code to Create a Publisher with a Simple Listener

class MyPublisherListener : public DDSPublisherListener {
public:
virtual void on_offered_deadline_missed(

DDSDataWriter* writer,
const DDS_OfferedDeadlineMissedStatus& status);

virtual void on_liveliness_lost(
DDSDataWriter* writer,
const DDS_LivelinessLostStatus& status);

virtual void on_offered_incompatible_qos(
DDSDataWriter* writer,
const DDS_OfferedIncompatibleQosStatus& status);

virtual void on_publication_matched(
DDSDataWriter* writer,
const DDS_PublicationMatchedStatus& status);

virtual void on_reliable_writer_cache_changed(
DDSDataWriter* writer,
const DDS_ReliableWriterCacheChangedStatus& status);

virtual void on_reliable_reader_activity_changed (
DDSDataWriter* writer,
const DDS_ReliableReaderActivityChangedStatus& status);

};

7.2.6 Finding a Publisher’s Related DDS Entities

void MyPublisherListener::on_offered_deadline_missed(
DDSDataWriter* writer,
const DDS_OfferedDeadlineMissedStatus& status)

{
printf(“on_offered_deadline_missed\n”);

}
// ...Implement all remaining listeners in a similar manner...
DDSPublisherListener *myPubListener = new MyPublisherListener();
DDSPublisher* publisher =

participant->create_publisher(DDS_PUBLISHER_QOS_DEFAULT,
myPubListener, DDS_STATUS_MASK_ALL);

7.2.6 Finding a Publisher’s Related DDS Entities

These Publisher operations are useful for obtaining a handle to related Entities:

l get_participant(): Gets the DomainParticipant with which a Publisher was created.

l lookup_datawriter(): Finds a DataWriter created by the Publisher with a Topic of a particular
name. Note that in the event that multiple DataWriters were created by the same Publisher with the
same Topic, any one of them may be returned by this method. (In the Modern C++ API this method
is a freestanding function, dds::pub::find())

l DDS_Publisher_as_Entity(): This method is provided for C applications and is necessary when
invoking the parent class Entity methods on Publishers. For example, to call the Entity method get_
status_changes() on a Publisher, my_pub, do the following:

DDS_Entity_get_status_changes(DDS_Publisher_as_Entity(my_pub))

DDS_Publisher_as_Entity() is not provided in the C++, C++/CLI, C# and Java APIs because the object-
oriented features of those languages make it unnecessary.

7.2.7 Waiting for Acknowledgments in a Publisher

The Publisher’s wait_for_acknowledgments() operation blocks the calling thread until either all data writ-
ten by the Publisher’s reliable DataWriters is acknowledged or the duration specified by themax_wait
parameter elapses, whichever happens first.

Note that if a thread is blocked in the call to wait_for_acknowledgments() on a Publisher and a different
thread writes new DDS samples on any of the Publisher’s reliable DataWriters, the new DDS samples
must be acknowledged before unblocking the thread that is waiting on wait_for_acknowledgments().
DDS_ReturnCode_t wait_for_acknowledgments (const DDS_Duration_t & max_wait)

This operation returns DDS_RETCODE_OK if all the DDS samples were acknowledged, or DDS_
RETCODE_TIMEOUT if themax_wait duration expired first.

There is a similar operation available for individual DataWriters, see 7.3.11 Waiting for Acknow-
ledgments in a DataWriter on page 318.

287

7.2.8 Statuses for Publishers

288

The reliability protocol used by Connext DDS is discussed in Reliable Communications (Chapter 11 on
page 694).

7.2.8 Statuses for Publishers

There are no statuses specific to the Publisher itself. The following statuses can be monitored by the Pub-
lisherListener for the Publisher’s DataWriters.

l 7.3.6.5 OFFERED_DEADLINE_MISSED Status on page 304

l 7.3.6.4 LIVELINESS_LOST Status on page 303

l 7.3.6.6 OFFERED_INCOMPATIBLE_QOS Status on page 304

l 7.3.6.7 PUBLICATION_MATCHED Status on page 305

l 7.3.6.8 RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) on page 306

l 7.3.6.9 RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) on page 308

7.2.9 Suspending and Resuming Publications

The operations suspend_publications() and resume_publications() provide a hint to Connext DDS that
multiple data-objects within the Publisher are about to be written. Connext DDS does not currently use this
hint.

7.3 DataWriters

To create a DataWriter, you need a DomainParticipant and a Topic.

You need a DataWriter for each Topic that you want to publish. Once you have a DataWriter, you can
use it to perform the operations listed in Table 7.3 DataWriter Operations. The most important operation is
write(), described in 7.3.8 Writing Data on page 310. For more details on all operations, see the API
Reference HTML documentation.

DataWriters are created by using operations on a DomainParticipant or a Publisher, as described in 7.3.1
Creating DataWriters on page 293. If you use the DomainParticipant’s operations, the DataWriter will
belong to an implicit Publisher that is automatically created by the middleware. If you use a Publisher’s
operations, the DataWriter will belong to that Publisher. So either way, the DataWriter belongs to a Pub-
lisher.

Note: Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

7.3 DataWriters

Working with
... Operation Description Reference

DataWriters

assert_liveliness Manually asserts the liveliness of the DataWriter.
7.3.17 Asserting Liveliness
on page 345

enable Enables the DataWriter.
4.1.2 Enabling DDSEntit-
ies on page 168

equals Compares two DataWriter’sQoS structures for equality.
7.3.15.2 Comparing QoS
Valueson page 339

get_qos Gets the QoS.
7.3.15 Setting DataWriter
QosPolicies on page 334

lookup_instance Gets a handle, given an instance. (Useful for keyed data types only.)
7.3.14.5 Looking up an In-
stance Handle on page 331

set_qos Modifies the QoS.
7.3.15 Setting DataWriter
QosPolicies on page 334

set_qos_with_pro-
file

Modifies the QoS based on a QoS profile.
7.3.15 Setting DataWriter
QosPolicies on page 334

get_listener Gets the currently installed Listener. 7.3.4 Setting Up
DataWriterListeners on
page 295set_listener Replaces the Listener.

Table 7.3 DataWriter Operations

289

7.3 DataWriters

290

Working with
... Operation Description Reference

FooDataWriter

(See 7.3.7 Using
a Type-Specific
DataWriter
(FooDataWriter)
on page 309)

dispose
States that the instance no longer exists. (Useful for keyed data types
only.)

7.3.14.3 Disposing In-
stanceson page 329

dispose_w_
timestamp

Same as dispose, but allows the application to override the automatic
source_timestamp. (Useful for keyed data types only.)

flush Makes the batch available to be sent on the network.
7.3.9 Flushing Batchesof
DDSData Sampleson
page 316

get_key_value Maps an instance_handle to the corresponding key.
7.3.14.6 Getting the Key
Value for an Instance on
page 331

narrow
A type-safe way to cast a pointer. This takes a DDSDataWriter pointer and
‘narrows’ it to a ‘FooDataWriter’ where ‘Foo’ is the related data type.

7.3.7 Using a Type-Spe-
cificDataWriter
(FooDataWriter) on
page 309

register_instance
States the intent of the DataWriter to write values of the data-instance
that matches a specified key. Improves the performance of subsequent
writes to the instance. (Useful for keyed data types only.)

7.3.14.2 Registering In-
stanceson page 327 and
7.3.14.4 Unregistering In-
stanceson page 329

register_instance_
w_
timestamp

Like register_instance, but allows the application to override the automatic
source_timestamp. (Useful for keyed data types only.)

unregister_in-
stance

Reverses register_instance. Relinquishes the ownership of the instance.
(Useful for keyed data types only.)

unregister_in-
stance_w_
timestamp

Like unregister_instance, but allows the application to override the auto-
matic source_timestamp. (Useful for keyed data types only.)

write Writes a new value for a data-instance.
7.3.8 Writing Data on
page 310

write_w_timestamp
Same as write, but allows the application to override the automatic
source_timestamp.

FooDataWriter

(See 7.3.7 Using
a Type-Specific
DataWriter
(FooDataWriter)
on page 309)

write_w_params
Same as write, but allows the application to specify parameters such as
source timestamp and instance handle.

7.3.8 Writing Data on
page 310

dispose_w_params
Same as dispose, but allows the application to specify parameters such as
source timestamp and instance handle..

7.3.14.3 Disposing In-
stanceson page 329

register_w_params
Same as register, but allows the application to specify parameters such as
source timestamp, instance handle.

7.3.14.2 Registering
Instanceson page 327 and
7.3.14.4 Unregistering
Instanceson page 329

unregister_w_
params

Same as unregister, but allows the application to specify parameters such
as source timestamp, and instance handle.

Table 7.3 DataWriter Operations

7.3 DataWriters

Working with
... Operation Description Reference

Matched Sub-
scriptions

get_matched_
subscriptions

Gets a list of subscriptions that have a matching Topicand compatible
QoS. These are the subscriptions currently associated with the
DataWriter.

7.3.16.1 FindingMatching
Subscriptionson page 343

get_matched_
subscription_data

Gets information on a subscription with a matching Topicand compatible
QoS.

get_matched_
subscription_loc-
ators

Gets a list of locators for subscriptions that have a matching Topic and com-
patible QoS. These are the subscriptions currently associated with the
DataWriter.

get_matched_
subscription_
participant_data

Gets information about the DomainParticipant of a matching subscription.

7.3.16.2 Finding theMatch-
ing Subscription’sPar-
ticipantBuiltinTopicData on
page 344

is_matched_sub-
scription_active

Enables you to query whether the matched DataReader (identified using
the instance handle returned by get_matched_subscriptions) is active.
get_matched_subscriptions returns all matching DataReaders, in-
cluding those that are not active. This operation enables you to see which
matching DataReadersare active.

7.3.16.1 FindingMatching
Subscriptionson page 343

Status
get_status_
changes

Gets a list of statuses that have changed since the last time the ap-
plication read the status or the listeners were called.

4.1.4 Getting Statusand
StatusChangeson
page 171

Table 7.3 DataWriter Operations

291

7.3 DataWriters

292

Working with
... Operation Description Reference

get_liveliness_
lost_status

Gets LIVELINESS_LOST status.

7.3.6 Statuses for
DataWriters on page 297

get_offered_dead-
line_
missed_status

Gets OFFERED_DEADLINE_MISSED status.

get_offered_
incompatible_qos_
status

Gets OFFERED_INCOMPATIBLE_QOS status.

get_publication_
match_
status

Gets PUBLICATION_MATCHED_QOS status.

Status
cont'd

get_reliable_
writer_
cache_changed_
status

Gets RELIABLE_WRITER_CACHE_CHANGED
status

get_reliable_
reader_
activity_changed_
status

Gets RELIABLE_READER_ACTIVITY_CHANGEDstatus

get_datawriter_
cache_
status

Gets DATA_WRITER_CACHE_status

get_datawriter_pro-
tocol_status

Gets DATA_WRITER_PROTOCOL status

get_matched_
subscription_
datawriter_pro-
tocol_status

Gets DATA_WRITER_PROTOCOL status for thisDataWriter, per
matched subscription identified by the subscription_handle.

7.3.6 Statuses for
DataWriters on page 297get_matched_

subscription_
datawriter_pro-
tocol_status_
by_locator

Gets DATA_WRITER_PROTOCOL status for thisDataWriter, per
matched subscription as identified by a locator.

Other

get_publisher Gets the Publisher to which the DataWriter belongs.
7.3.16.3 Finding Related
DDSEntities on page 345

get_topic Get the Topic associated with the DataWriter.

wait_for_
acknowledgements

Blocks the calling thread until either all data written by the DataWriter is ac-
knowledged by all matched Reliable DataReaders, or until the a specified
timeout duration, max_wait, elapses.

7.3.11 Waiting for Ac-
knowledgments in a
DataWriter on page 318

Table 7.3 DataWriter Operations

7.3.1 Creating DataWriters

7.3.1 Creating DataWriters

Before you can create a DataWriter, you need a DomainParticipant, a Topic, and optionally, a Publisher.

DataWriters are created by calling create_datawriter() or create_datawriter_with_profile()—these
operations exist for DomainParticipants and Publishers. If you use the DomainParticipant to create a
DataWriter, it will belong to the implicit Publisher described in 7.2.1 Creating Publishers Explicitly vs.
Implicitly on page 276. If you use a Publisher’s operations to create a DataWriter, it will belong to that
Publisher.

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can change
QoS settings without recompiling the application. For details, see Configuring QoS with XML (Chapter
19 on page 854).

Note: In the Modern C++ API DataWriters provide constructors whose first argument is a Publisher. The
only required arguments are the publisher and the topic.
DDSDataWriter* create_datawriter (

DDSTopic *topic,
const DDS_DataWriterQos &qos,
DDSDataWriterListener *listener,
DDS_StatusMask mask)

DDSDataWriter * create_datawriter_with_profile(
DDSTopic * topic,
const char * library_name,
const char * profile_name,
DDSDataWriterListener * listener,
DDS_StatusMask mask)

Where:

topic The Topic that the DataWriter will publish. This must have been previously created by the same Do-
mainParticipant.

qos If you want the default QoS settings (described in the API Reference HTML documentation), use the
constant DDS_DATAWRITER_QOS_DEFAULT for this parameter (see Figure 7.9: Creating a
DataWriter with Default QosPolicies and a Listener on the next page). If you want to customize any of
the QosPolicies, supply a QoS structure (see 7.3.15 Setting DataWriter QosPolicies on page 334).

Note: If you use DDS_DATAWRITER_QOS_DEFAULT for the qos parameter, it is not safe to create the
DataWriter while another thread may be simultaneously calling the Publisher’sset_default_datawriter_
qos() operation.

listener Listeners are callback routines. Connext DDS uses them to notify your application of specific events
(status changes) that may occur with respect to the DataWriter. The listener parameter may be set to
NULL; in this case, the PublisherListener (or if that is NULL, the DomainParticipantListener) will be
used instead. For more information, see 7.3.4 Setting Up DataWriterListeners on page 295

mask This bit-mask indicates which status changes will cause the Listener to be invoked. The bits set in the
mask must have corresponding callbacks implemented in the Listener. If you use NULL for the Listener,
use DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all callbacks, use
DDS_STATUS_MASK_ALL. For information on statuses, see 4.4 Listeners on page 189.

library_name A QoS Library is a named set of QoS profiles. See 19.3 QoS Profiles on page 856.

293

7.3.2 Getting All DataWriters

294

profile_name A QoS profile groups a set of related QoS, usually one per entity. See 19.3 QoS Profiles on page 856.

For more examples on how to create a DataWriter, see 7.3.15.1 Configuring QoS Settings when the
DataWriter is Created on page 338

After you create a DataWriter, you can use it to write data. See 7.3.8 Writing Data on page 310.

Note:When a DataWriter is created, only those transports already registered are available to the
DataWriter. The built-in transports are implicitly registered when (a) the DomainParticipant is enabled,
(b) the first DataWriter is created, or (c) you look up a built-in data reader, whichever happens first.

Figure 7.9: Creating a DataWriter with Default QosPolicies and a Listener

// MyWriterListener is user defined, extends DDSDataWriterListener
DDSDataWriterListener* writer_listener = new MyWriterListener();
DDSDataWriter* writer = publisher->create_datawriter(

topic,
DDS_DATAWRITER_QOS_DEFAULT,
writer_listener,
DDS_STATUS_MASK_ALL);

if (writer == NULL) {
// ... error

};
// narrow it for your specific data type
FooDataWriter* foo_writer = FooDataWriter::narrow(writer);

7.3.2 Getting All DataWriters

To retrieve all the DataWriters created by the Publisher, use the Publisher’s get_all_datawriters() oper-
ation:
DDS_ReturnCode_t get_all_datawriters(DDS_Publisher* self,

struct DDS_DataWriterSeq* writers);

In the Modern C++ API, use the freestanding function rti::pub::find_datawriters().

7.3.3 Deleting DataWriters

(Note: in the Modern C++ API, Entities are automatically destroyed, see 4.1.1 Creating and Deleting
DDS Entities on page 167)

To delete a single DataWriter, use the Publisher’s delete_datawriter() operation:
DDS_ReturnCode_t delete_datawriter (

DDSDataWriter *a_datawriter)

Note: A DataWriter cannot be deleted within its own writer listener callback, see 4.5.1 Restricted Oper-
ations in Listener Callbacks on page 200

To delete all of a Publisher's DataWriters, use the Publisher's delete_contained_entities() operation (see
7.2.3.1 Deleting Contained DataWriters on page 279).

7.3.4 Setting Up DataWriterListeners

7.3.4 Setting Up DataWriterListeners

DataWriters may optionally have Listeners. Listeners are essentially callback routines and provide the
means for Connext DDS to notify your application of the occurrence of events (status changes) relevant to
the DataWriter. For more general information on Listeners, see 4.4 Listeners on page 189.

Note: Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

If you do not implement a DataWriterListener, the associated PublisherListener is used instead. If that Pub-
lisher also does not have a Listener, then the DomainParticipant’s Listener is used if one exists (see 7.2.5
Setting Up PublisherListeners on page 285 and 9.3.6 Setting Up DomainParticipantListeners on
page 626).

Listeners are typically set up when the DataWriter is created (see 7.2 Publishers on page 272). You can
also set one up after creation by using the set_listener() operation. Connext DDS will invoke a
DataWriter’s Listener to report the status changes listed in Table 7.4 DataWriterListener Callbacks (if the
Listener is set up to handle the particular status, see 7.3.4 Setting Up DataWriterListeners above).

This
DataWriterListener

callback...
... is triggered by ...

on_instance_replaced()
A replacement of an existing instance by a new instance; see 7.5.6.1 Configuring DataWriter Instance Replacement
on page 405

on_liveliness_lost A change to 7.3.6.4 LIVELINESS_LOST Statuson page 303

on_offered_deadline_
missed

A change to 7.3.6.5 OFFERED_DEADLINE_MISSED Statuson page 304

on_offered_in-
compatible_qos

A change to 7.3.6.6 OFFERED_INCOMPATIBLE_QOSStatuson page 304

on_publication_
matched

A change to 7.3.6.7 PUBLICATION_MATCHED Statuson page 305

on_reliable_writer_
cache_changed

A change to 7.3.6.8 RELIABLE_WRITER_CACHE_CHANGED Status (DDSExtension) on page 306

on_reliable_reader_
activity_changed

A change to 7.3.6.9 RELIABLE_READER_ACTIVITY_CHANGED Status (DDSExtension) on page 308

on_sample_removed
Removal of a sample from the DataWriter queue, when the sample was written with a cookie using the write_w_params
API or if the DataWriter supports loaned samples, which are used by Zero Copy over shared memory and FlatData lan-
guage binding (see Chapter 23 Sending Large Data on page 949)

on_application_ac-
knowledgment

Application acknowledgment (see 7.3.6.1 APPLICATION_ACKNOWLEDGMENT_STATUSon page 297)

Table 7.4 DataWriterListener Callbacks

295

7.3.5 Checking DataWriter Status

296

This
DataWriterListener

callback...
... is triggered by ...

on_service_request_ac-
cepted

A change to 7.3.6.10 SERVICE_REQUEST_ACCEPTED Status (DDSExtension) on page 309.

Table 7.4 DataWriterListener Callbacks

7.3.5 Checking DataWriter Status

You can access an individual communication status for a DataWriter with the operations shown in Table
7.5 DataWriter Status Operations.

Use this operation... ...to retrieve this status:

get_datawriter_cache_status 7.3.6.2 DATA_WRITER_CACHE_STATUSon page 298

get_datawriter_protocol_status

7.3.6.3 DATA_WRITER_PROTOCOL_STATUSon page 299get_matched_subscription_datawriter_protocol_status

get_matched_subscription_datawriter_protocol_status_
by_locator

get_liveliness_lost_status 7.3.6.4 LIVELINESS_LOST Statuson page 303

get_offered_deadline_missed_status 7.3.6.5 OFFERED_DEADLINE_MISSED Statuson page 304

get_offered_incompatible_qos_status 7.3.6.6 OFFERED_INCOMPATIBLE_QOSStatuson page 304

get_publication_match_status 7.3.6.7 PUBLICATION_MATCHED Statuson page 305

get_reliable_writer_cache_changed_status
7.3.6.8 RELIABLE_WRITER_CACHE_CHANGED Status (DDSExtension) on
page 306

get_reliable_reader_activity_changed_status
7.3.6.9 RELIABLE_READER_ACTIVITY_CHANGED Status (DDSExtension)
on page 308

get_service_request_accepted_status
7.3.6.10 SERVICE_REQUEST_ACCEPTED Status (DDSExtension) on
page 309

get_status_changes A list of what changed in all of the above.

Table 7.5 DataWriter Status Operations

These methods are useful in the event that no Listener callback is set to receive notifications of status
changes. If a Listener is used, the callback will contain the new status information, in which case calling
these methods is unlikely to be necessary.

7.3.6 Statuses for DataWriters

The get_status_changes() operation provides a list of statuses that have changed since the last time the
status changes were ‘reset.’ A status change is reset each time the application calls the corresponding get_
*_status(), as well as each time Connext DDS returns from calling the Listener callback associated with
that status.

For more on status, see 7.3.4 Setting Up DataWriterListeners on page 295, 7.3.6 Statuses for DataWriters
below, and 4.4 Listeners on page 189.

7.3.6 Statuses for DataWriters

There are several types of statuses available for a DataWriter. You can use the get_*_status() operations
(7.3.15 Setting DataWriter QosPolicies on page 334) to access them, or use a DataWriterListener (7.3.4
Setting Up DataWriterListeners on page 295) to listen for changes in their values. Each status has an asso-
ciated data structure and is described in more detail in the following sections.

l 7.3.6.1 APPLICATION_ACKNOWLEDGMENT_STATUS below

l 7.3.6.2 DATA_WRITER_CACHE_STATUS on the next page

l 7.3.6.3 DATA_WRITER_PROTOCOL_STATUS on page 299

l 7.3.6.4 LIVELINESS_LOST Status on page 303

l 7.3.6.5 OFFERED_DEADLINE_MISSED Status on page 304

l 7.3.6.6 OFFERED_INCOMPATIBLE_QOS Status on page 304

l 7.3.6.7 PUBLICATION_MATCHED Status on page 305

l 7.3.6.8 RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) on page 306

l 7.3.6.9 RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) on page 308

l 7.3.6.10 SERVICE_REQUEST_ACCEPTED Status (DDS Extension) on page 309

7.3.6.1 APPLICATION_ACKNOWLEDGMENT_STATUS

This status indicates that a DataWriter has received an application-level acknowledgment for a DDS
sample, and triggers a DataWriter callback:
void DDSDataWriterListener::on_application_acknowledgment(

DDSDataWriter * writer,
const DDS_AcknowledgmentInfo & info)

on_application_acknowledgment() is called when a DDS sample is application-level acknowledged. It
provides identities of the DDS sample and the acknowledging DataReader, as well as user-specified
response data sent from the DataReader by the acknowledgment message—see Table 7.6 DDS_Acknow-
ledgmentInfo.

297

7.3.6 Statuses for DataWriters

298

Type Field Name Description

DDS_InstanceHandle_t subscription_handle Subscription handle of the acknowledging DataReader.

struct DDS_SampleIdentity_t sample_identity Identity of the DDS sample being acknowledged.

DDS_Boolean valid_response_data Flag indicating validity of the user response data in the acknowledgment.

struct DDS_AckResponseData_t response_data User data payload of application-level acknowledgment message.

Table 7.6 DDS_AcknowledgmentInfo

This status is only applicable when the DataWriter’s Reliability QosPolicy’s acknowledgment_kind is
DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_
EXPLICIT_ACKNOWLEDGMENT_MODE.

7.3.6.2 DATA_WRITER_CACHE_STATUS

This status keeps track of the number of DDS samples and instances in the DataWriter’s queue. For
information on instance states, see 6.1 Instance States on page 259.

This status does not have an associated Listener. You can access this status by calling the DataWriter’s
get_datawriter_cache_status() operation, which will return the status structure described in Table 7.7
DDS_DataWriterCacheStatus.

Type Field Name Description

DDS_
Long

sample_count_peak Highest number of DDS samples in the DataWriter’squeue over the lifetime of the DataWriter.

DDS_
Long

sample_count Current number of DDS samples in the DataWriter’s queue. This number includesmeta-samples, which rep-
resent the unregistration or disposal of an instance.

DDS_
LongLong

alive_instance_count Number of instances currently in the DataWriter'squeue that have an instance_state of ALIVE.

DDS_
LongLong

alive_instance_count_
peak

Highest number of ALIVE instances in the DataWriter'squeue over the lifetime of the DataWriter.

DDS_
LongLong

disposed_instance_
count

Number of instances currently in the DataWriter'squeue that have an instance_state of NOT_ALIVE_
DISPOSED.

DDS_
LongLong

disposed_instance_
count_peak

Highest number of NOT_ALIVE_DISPOSED instances in the DataWriter'squeue over the lifetime of the
DataWriter.

DDS_
LongLong

unregistered_instance_
count

Number of instances currently in the DataWriter'squeue that the DataWriter has unregistered fromvia the
unregister_instance operation.

DDS_
LongLong

unregistered_instance_
count_peak

Highest number of instances that the DataWriter has unregistered from, over the lifetime of the DataWriter.

Table 7.7 DDS_DataWriterCacheStatus

7.3.6 Statuses for DataWriters

7.3.6.3 DATA_WRITER_PROTOCOL_STATUS

This status includes internal protocol related metrics (such as the number of DDS samples pushed, pulled,
filtered) and the status of wire-protocol traffic.

l Pulled DDS samples are DDS samples sent for repairs (that is, DDS samples that had to be resent),
for late joiners, and all DDS samples sent by the local DataWriter when push_on_write (in 7.5.5
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390) is DDS_BOOLEAN_
FALSE.

l Pushed DDS samples are DDS samples sent on write() when push_on_write is DDS_
BOOLEAN_TRUE.

l Filtered DDS samples are DDS samples that are not sent due to DataWriter filtering (time-based fil-
tering and ContentFilteredTopics), but this field is not currently supported.

l DATA_FRAGmessages are fragments of samples if you are using DDS-level fragmentation. See
23.3 Large Data Fragmentation on page 976 for more information.

This status does not have an associated Listener. You can access this status by calling the following oper-
ations on the DataWriter (all of which return the status structure described in Table 7.8 DDS_DataWriter-
ProtocolStatus):

l get_datawriter_protocol_status() returns the sum of the protocol status for all the matched sub-
scriptions for the DataWriter.

l get_matched_subscription_datawriter_protocol_status() returns the protocol status of a par-
ticular matched subscription, identified by a subscription_handle.

l get_matched_subscription_datawriter_protocol_status_by_locator() returns the protocol status
of a particular matched subscription, identified by a locator. (See 15.2.1.1 Locator Format on
page 776.)

Note: Status/data for a matched subscription is kept even if the DataReader is not active (has not respon-
ded to a heartbeat message with an ACK/NACK message aftermax_heartbeat_retries has been
reached). The status/data will be removed only if the DataReader is gone: that is, the DataReader is des-
troyed and this change is propagated through a discovery update, or the DataReader's DomainParticipant
is gone (either gracefully or its liveliness expired and Connext DDS is configured to purge not-alive par-
ticipants). Once a matched DataReader is gone, its status is deleted. If you try to get the status/data for a
matched DataReader that is gone, the 'get status' or 'get data' call will return an error.

299

7.3.6 Statuses for DataWriters

300

Type Field Name Description

DDS_LongLong

pushed_sample_
count

The number of userDDS samples pushed on write from thisDataWriter to a matching DataReader.

This field counts protocol (RTPS)messages pushed by a DataWriter when writing, unregistering, and
disposing. The count is the number of sends done internally, and it may be greater than the number of
userwrites.

This field counts whole samples, not fragments (in the case of large data). The fragment count is tracked
in the pushed_fragment_count.

pushed_sample_
count_change

Change in the pushed_sample_count since the last time the status was read.

pushed_sample_
bytes

The number of bytes of userDDS samples pushed on write from thisDataWriter to a matching
DataReader.

This field counts bytes of protocol (RTPS)messages pushed by a DataWriter when writing, un-
registering, and disposing. The count of bytes corresponds to the number of sends done internally, and
it may be greater than the number of userwrites.

When data fragmentation is used (for large data), this statistic is incremented as fragments are written.

pushed_sample_
bytes_change

Change in pushed_sample_bytes since the last time the status was read.

DDS_LongLong

Not supported

filtered_sample_
count

The number of user samples preemptively filtered by thisDataWriter due to ContentFilteredTopics.

Not supported

filtered_sample_
count_change

Change in the filtered_sample_count since the last time the status was read.

Not supported

filtered_sample_
bytes

The number of bytes of user samples preemptively filtered by thisDataWriter due to Con-
tentFilteredTopics.

Not supported

filtered_sample_
bytes_change

Change in the filtered_sample_bytes since the last time the status was read.

DDS_LongLong

sent_heartbeat_
count

The number of Heartbeats sent between thisDataWriter and matching DataReaders.

sent_heartbeat_
count_change

Change in the sent_heartbeat_count since the last time the status was read.

sent_heartbeat_
bytes

The number of bytes of Heartbeats sent between thisDataWriter and matching DataReaders.

sent_heartbeat_
bytes_change

The incremental change in the number of bytes of Heartbeats sent between thisDataWriter and match-
ing DataReaders since the last time the status was read.

Table 7.8 DDS_DataWriterProtocolStatus

7.3.6 Statuses for DataWriters

Type Field Name Description

DDS_LongLong

pulled_sample_
count

The number of userDDS samples pulled from thisDataWriter bymatching DataReaders.

When data fragmentation is used, this statistic is incremented as fragments are written.

pulled_sample_
count_change

Change in the pulled_sample_count since the last time the status was read.

pulled_sample_
bytes

The number of bytes of userDDS samples pulled from thisDataWriter bymatching DataReaders.

When data fragmentation is used, this statistic is incremented as fragments are written.

pulled_sample_
bytes_change

Change in pulled_sample_bytes since the last time the status was read.

DDS_LongLong

received_ack_
count

The number of ACKs froma DataReader received by thisDataWriter.

received_ack_
count_change

Change in the received_ack_count since the last time the status was read.

received_ack_
bytes

The number of bytes of ACKs froma DataReader received by thisDataWriter.

received_ack_
bytes_change

Change in received_ack_bytes since the last time the status was read.

DDS_LongLong

received_nack_
count

The number of NACKs froma DataReader received by thisDataWriter.

received_nack_
count_change

Change in the received_nack_count since the last time the status was read.

received_nack_
bytes

The number of bytes of NACKs froma DataReader received by thisDataWriter.

received_nack_
bytes_change

Change in the received_nack_bytes since the last time the status was read.

DDS_LongLong

sent_gap_count The number of GAPs sent from thisDataWriter to matching DataReaders.

sent_gap_count_
change

Change in the sent_gap_count since the last time the status was read.

sent_gap_bytes The number of bytes of GAPs sent from thisDataWriter to matching DataReaders.

sent_gap_bytes_
change

Change in the sent_gap_bytes since the last time the status was read.

Table 7.8 DDS_DataWriterProtocolStatus

301

7.3.6 Statuses for DataWriters

302

Type Field Name Description

DDS_LongLong

Not supported

rejected_sample_
count

These fields are not supported.
Not supported

rejected_sample_
count_change

DDS_Long
send_window_
size

Current size of the send window (maximumnumber of outstanding DDS samples allowed in the
DataWriter'squeue), as determined by themin/max_send_window_size fields in Table 7.45 DDS_
RtpsReliableWriterProtocol_t. (See 7.5.5.4 Configuring the SendWindow Size on page 398 for in-
formation on how the send window size might change.)

DDS_LongLong

pushed_frag-
ment_count

The number of fragments (DATA_FRAGmessages) that have been pushed from thisDataWriter to a
DataReader. This count is incremented as each DATA_FRAGmessage is sent, not when the entire
sample has been sent. Applicable only when data is fragmented.

pushed_frag-
ment_bytes

The number of bytes of DATA_FRAGmessages that have been pushed by thisDataWriter. This stat-
istic is incremented as each DATA_FRAGmessage is sent, not when the entire sample has been sent.
Applicable only when data is fragmented.

pulled_fragment_
count

The number of fragments (DATA_FRAGmessages) that have been pulled from thisDataWriter by a
DataReader. This count is incremented as each DATA_FRAGmessage is sent, not when the entire
sample has been sent. Applicable only when data is fragmented.

pulled_fragment_
bytes

The number of bytes of DATA_FRAGmessages that have been pulled from thisDataWriter by a
DataReader. This statistic is incremented as each DATA_FRAGmessage is sent, not when the entire
sample has been sent. Applicable only when data is fragmented.

DDS_LongLong

received_nack_
fragment_count

The number of NACK_FRAGmessages that have been received by thisDataWriter. NACK FRAG
RTPS messages are sent when large data is used in conjunction with reliable communication. They
have the same properties as NACK messages, but instead of applying to samples, they apply to frag-
ments. Applicable only when data is fragmented.

received_nack_
fragment_bytes

The number of bytes of NACK_FRAGmessages that have been received by thisDataWriter. NACK
FRAG RTPS messages are sent when large data is used in conjunction with reliable communication.
They have the same properties as NACK messages, but instead of applying to samples, they apply to
fragments. Applicable only when data is fragmented.

Table 7.8 DDS_DataWriterProtocolStatus

7.3.6 Statuses for DataWriters

Type Field Name Description

DDS_
SequenceNumber_
t

first_available_
sample_
sequence_num-
ber

Sequence number of the first available DDS sample in the DataWriter's reliability queue.

last_available_
sample_
sequence_num-
ber

Sequence number of the last available DDS sample in the DataWriter's reliability queue.

first_un-
acknowledged_
sample_
sequence_num-
ber

Sequence number of the first unacknowledged DDS sample in the DataWriter's reliability queue.

first_available_
sample_virtual_
sequence_num-
ber

Virtual sequence number of the first available DDS sample in the DataWriter's reliability queue.

last_available_
sample_virtual_
sequence_num-
ber

Virtual sequence number of the last available DDS sample in the DataWriter's reliability queue.

first_un-
acknowledged_
sample_
virtual_sequence_
number

Virtual sequence number of the first unacknowledged DDS sample in the DataWriter's reliability queue.

DDS_
SequenceNumber_
t

first_un-
acknowledged_
sample_
subscription_
handle

Instance Handle of the matching remote DataReader for which the DataWriter has kept the first avail-
able DDS sample in the reliability queue.

first_unelapsed_
keep_duration_
sample_se-
quence_number

Sequence number of the first DDS sample kept in the DataWriter'squeue whose keep_duration (ap-
plied when disable_positive_acks is set) has not yet elapsed.

Table 7.8 DDS_DataWriterProtocolStatus

7.3.6.4 LIVELINESS_LOST Status

A change to this status indicates that the DataWriter failed to signal its liveliness within the time specified
by the 7.5.15 LIVELINESS QosPolicy on page 428.

It is different than the 7.3.6.9 RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Exten-
sion) on page 308 status that provides information about the liveliness of a DataWriter’s matched
DataReaders; this status reflects the DataWriter’s own liveliness.

The structure for this status appears in Table 7.9 DDS_LivelinessLostStatus.

303

7.3.6 Statuses for DataWriters

304

Type Field Name Description

DDS_Long total_count Cumulative number of times the DataWriter failed to explicitly signal its liveliness within the liveliness period.

DDS_Long total_count_change The change in total_count since the last time the Listenerwas called or the status was read.

Table 7.9 DDS_LivelinessLostStatus

The DataWriterListener’s on_liveliness_lost() callback is invoked when this status changes. You can also
retrieve the value by calling the DataWriter’s get_liveliness_lost_status() operation.

7.3.6.5 OFFERED_DEADLINE_MISSED Status

A change to this status indicates that the DataWriter failed to write data within the time period set in its
7.5.7 DEADLINE QosPolicy on page 407.

The structure for this status appears in Table 7.10 DDS_OfferedDeadlineMissedStatus.

Type Field Name Description

DDS_Long total_count Cumulative number of times the DataWriter failed to write within its offered deadline.

DDS_Long total_count_change The change in total_count since the last time the Listener was called or the status was read.

DDS_InstanceHandle_t last_instance_handle Handle to the last data-instance in the DataWriter for which an offered deadline wasmissed.

Table 7.10 DDS_OfferedDeadlineMissedStatus

The DataWriterListener’s on_offered_deadline_missed() operation is invoked when this status changes.
You can also retrieve the value by calling the DataWriter’s get_deadline_missed_status() operation.

7.3.6.6 OFFERED_INCOMPATIBLE_QOS Status

A change to this status indicates that the DataWriter discovered a DataReader for the same Topic, but that
DataReader had requested QoS settings incompatible with this DataWriter’s offered QoS.

The structure for this status appears in Table 7.11 DDS_OfferedIncompatibleQoSStatus.

Type Field
Name Description

DDS_Long
total_
count

Cumulative number of times the DataWriter discovered a DataReader for the same Topicwith a requested QoS
that is incompatible with that offered by the DataWriter.

Table 7.11 DDS_OfferedIncompatibleQoSStatus

7.3.6 Statuses for DataWriters

Type Field
Name Description

DDS_Long
total_
count_
change

The change in total_count since the last time the Listener was called or the status was read.

DDS_QosPolicyId_t
last_
policy_id

The ID of the QosPolicy that was found to be incompatible the last time an incompatibility was detected. (Note: if
there are multiple incompatible policies, only one of them is reported here.)

DDS_
QosPolicyCountSeq

policies
A list containing—for each policy—the total number of times that the DataWriter discovered a DataReader for
the same Topicwith a requested QoS that is incompatible with that offered by the DataWriter.

Table 7.11 DDS_OfferedIncompatibleQoSStatus

The DataWriterListener’s on_offered_incompatible_qos() callback is invoked when this status changes.
You can also retrieve the value by calling the DataWriter’s get_offered_incompatible_qos_status() oper-
ation.

7.3.6.7 PUBLICATION_MATCHED Status

A change to this status indicates that the DataWriter discovered a matching DataReader.

A ‘match’ occurs only if the DataReader and DataWriter have the same Topic, same or compatible data
type, and compatible QosPolicies. (For more information on compatible data types, see the RTI Connext
DDS Core Libraries Extensible Types Guide.) In addition, if user code has directed Connext DDS to
ignore certain DataReaders, then those DataReaders will never be matched. See 18.4.2 Ignoring Public-
ations and Subscriptions on page 849 for more on setting up a DomainParticipant to ignore specific
DataReaders.

This status is also changed (and the listener, if any, called) when a match is ended. A local DataWriter will
become "unmatched" from a remote DataReader when that DataReader goes away for any of the fol-
lowing reasons:

l The matched DataReader's DomainParticipant has lost liveliness.

l This DataWriter or the matched DataReader has changed QoS such that the entities are now incom-
patible.

l The matched DataReader has been deleted.

This status may reflect changes from multiple match or unmatch events, and the current_count_change
can be used to determine the number of changes since the listener was called back or the status was
checked.

The structure for this status appears in Table 7.12 DDS_PublicationMatchedStatus.

305

7.3.6 Statuses for DataWriters

306

Type Field
Name Description

DDS_Long

total_count

Cumulative number of times that thisDataWriter discovered a "match" with a DataReader.

This number increases whenever a newmatch is discovered. It does not decrease when an existing match goes
away for any of the reasons listed above.

total_count_
change

The changes in total_count since the last time the listenerwas called or the status was read.

Note that this numberwill never be negative (because it's the total number of times the DataWriter ever
matched with a DataReader).

current_
count

The number ofDataReaders currently matched to the DataWriter.

This number increases when a newmatch is discovered and decreases when an existing match goes away for
any of the reasons listed above.

current_
count_peak

Greatest number ofDataReaders that matched thisDataWriter simultaneously. That is, there was no moment
in time when more than this manyDataReadersmatched thisDataWriter. (As a result, total_count can be
higher than current_count_peak.)

current_
count_
change

The change in current_count since the last time the listenerwas called or the status was read.

Note that a negative current_count_changemeans that one ormore DataReadershave become unmatched
for one ormore of the reasons listed above.

DDS_In-
stanceHandle_t

last_sub-
scription_
handle

This InstanceHandle can be used to look up which remote DataReader was the last to cause thisDataWriter's
status to change, using the DataWriter's get_matched_subscription_data()method.

If the DataReader no longermatches thisDataWriter due to any of the reasons listed above except in-
compatible QoS, then the DataReader has been purged from thisDataWriter'sDomainParticipant discovery
database. (See 15.1What isDiscovery? on page 771.) In that case, the DataWriter's get_matched_sub-
scription_data()method will not be able to return information about the DataReader. The only way to get in-
formation about the lostDataReader is if you cached the information previously.

Table 7.12 DDS_PublicationMatchedStatus

The DataWriterListener’s on_publication_matched() callback is invoked when this status changes. You
can also retrieve the value by calling the DataWriter’s get_publication_match_status() operation.

7.3.6.8 RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension)

A change to this status indicates that the number of unacknowledged DDS samples1 in a reliable
DataWriter's cache has reached one of these trigger points:

l The cache is empty (contains no unacknowledged DDS samples)

l The cache is full (the number of unacknowledged DDS samples has reached the value specified in
DDS_ResourceLimitsQosPolicy::max_samples)

1If batching is enabled, this still refers to a number of DDS samples, not batches.

7.3.6 Statuses for DataWriters

l The number of unacknowledged DDS samples has reached a high or low watermark. See the high_
watermark and low_watermark fields in Table 7.45 DDS_RtpsReliableWriterProtocol_t of the
7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390.

For more about the reliable protocol used by Connext DDS and specifically, what it means for a DDS
sample to be ‘unacknowledged,’ see Reliable Communications (Chapter 11 on page 694).

The structure for this status appears in Table 7.13 DDS_ReliableWriterCacheChangedStatus.The sup-
porting structure, DDS_ReliableWriterCacheEventCount, is described in Table 7.14 DDS_Reli-
ableWriterCacheEventCount.

Type Field Name Description

DDS_Reli-
ableWriterCacheEventCount

empty_reliable_
writer_
cache

Howmany times the reliable DataWriter's cache of unacknowledged DDS samples has
become empty.

full_reliable_writer_
cache

Howmany times the reliable DataWriter's cache of unacknowledged DDS samples has
become full.

low_watermark_
reliable_writer_
cache

Howmany times the reliable DataWriter's cache of unacknowledged DDS samples has
fallen to the lowwatermark.

high_watermark_
reliable_writer_
cache

Howmany times the reliable DataWriter's cache of unacknowledged DDS samples has
risen to the high watermark.

DDS_Long

unacknowledged_
sample_count

The current number of unacknowledged DDS samples in the DataWriter's cache.

unacknowledged_
sample_count_peak

The highest value that unacknowledged_sample_count has reached until now.

DDS_LongLong
replaced_un-
acknowledged_
sample_count

Total number of unacknowledged samples that have been replaced by a DataWriter
after applying the KEEP_LAST setting in the 7.5.12 HISTORYQosPolicy on page 421
policy.

Table 7.13 DDS_ReliableWriterCacheChangedStatus

Type Field Name Description

DDS_Long total_count The total number of times the event has occurred.

DDS_Long total_count_change The number of times the event has occurred since the Listener was last invoked or the status read.

Table 7.14 DDS_ReliableWriterCacheEventCount

307

7.3.6 Statuses for DataWriters

308

The DataWriterListener’s on_reliable_writer_cache_changed() callback is invoked when this status
changes. You can also retrieve the value by calling the DataWriter’s get_reliable_writer_cache_
changed_status() operation.

If a reliable DataWriter's send window is finite, with both RtpsReliableWriterProtocol_t.min_send_win-
dow_size and RtpsReliableWriterProtocol_t.max_send_window_size set to positive values, then full_
reliable_writer_cache_status counts the number of times the unacknowledged DDS sample count
reaches the send window size.

7.3.6.9 RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension)

This status indicates that one or more reliable DataReaders has become active or inactive.

This status is the reciprocal status to the 8.3.7.4 LIVELINESS_CHANGED Status on page 529 on the
DataReader. It is different than 7.3.6.4 LIVELINESS_LOST Status on page 303 status on the
DataWriter, in that the latter informs the DataWriter about its own liveliness; this status informs the
DataWriter about the liveliness of its matched DataReaders.

A reliable DataReader is considered active by a reliable DataWriter with which it is matched if that
DataReader acknowledges the DDS samples that it has been sent in a timely fashion. For the definition of
"timely" in this context, see 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on
page 390.

This status is only used for DataWriters whose 7.5.21 RELIABILITY QosPolicy on page 448 is set to
RELIABLE. For best-effort DataWriters, all counts in this status will remain at zero.

The structure for this status appears in Table 7.15 DDS_ReliableReaderActivityChangedStatus.

Type Field Name Description

DDS_Long

active_count The current number of reliable readers currently matched with this reliable DataWriter.

inactive_count
The number of reliable readers that have been dropped by this reliable DataWriter because they failed to
send acknowledgments in a timely fashion.

active_count_
change

The change in the number of active reliable DataReaders since the Listener was last invoked or the status
read.

inactive_count_
change

The change in the number of inactive reliable DataReaders since the Listener was last invoked or the status
read.

DDS_In-
stanceHandle_t

last_instance_
handle

The instance handle of the last reliable DataReader to be determined to be inactive.

Table 7.15 DDS_ReliableReaderActivityChangedStatus

The DataWriterListener’s on_reliable_reader_activity_changed() callback is invoked when this status
changes. You can also retrieve the value by calling the DataWriter’s get_reliable_reader_activity_
changed_status() operation.

7.3.7 Using a Type-Specific DataWriter (FooDataWriter)

7.3.6.10 SERVICE_REQUEST_ACCEPTED Status (DDS Extension)

A change to this status indicates that ServiceRequest for the TopicQuery service is dispatched to this
DataWriter for processing. For more information, see Topic Queries (Chapter 24 on page 983).

The structure for this status appears in Table 7.16 DDS_ServiceRequestAcceptedStatus.

The DataWriterListener’s on_service_request_accepted() callback is invoked when this status changes.

You can also retrieve the value by calling the DataWriter’s get_service_request_accepted_status() oper-
ation.

Type Field Name Description

DDS_Long

total_count The total cumulative number of ServiceRequests that have been accepted by a DataWriter.

total_count_change
The incremental changes in total_count since the last time the listenerwas called or the status
was read.

current_count The current number of ServiceRequests that have been accepted by thisDataWriter.

current_count_
change

The change in current_count since the last time the listenerwas called or the status was read.

DDS_In-
stanceHandle_t

last_request_handle A handle to the last DDS_ServiceRequest that caused the DataWriter's status to change.

DDS_Long service_id ID of the service to which the accepted Request belongs

Table 7.16 DDS_ServiceRequestAcceptedStatus

7.3.7 Using a Type-Specific DataWriter (FooDataWriter)

(Note: This section does not apply to the Modern C++ API, where a DataWriter's data type is part of its
template definition: DataWriter<Foo>)

Recall that a Topic is bound to a data type that specifies the format of the data associated with the Topic.
Data types are either defined dynamically or in code generated from definitions in IDL or XML; see Data
Types and DDS Data Samples (Chapter 3 on page 27). For each of your application's generated data
types, such as 'Foo', there will be a FooDataWriter class (or a set of functions in C). This class allows the
application to use a type-safe interface to interact with DDS samples of type 'Foo'. You will use the
FooDataWriter's write() operation used to send data. For dynamically defined data-types, you will use the
DynamicDataWriter class.

In fact, you will use the FooDataWriter any time you need to perform type-specific operations, such as
registering or writing instances. Table 7.3 DataWriter Operations indicates which operations must be
called using FooDataWriter. For operations that are not type-specific, you can call the operation using
either a FooDataWriter or a DDSDataWriter object1.

1In the C API, the non type-specific operations must be called using a DDS_DataWriter pointer.

309

7.3.8 Writing Data

310

You may notice that the Publisher’s create_datawriter() operation returns a pointer to an object of type
DDSDataWriter; this is because the create_datawriter()method is used to create DataWriters of any
data type. However, when executed, the function actually returns a specialization (an object of a derived
class) of the DataWriter that is specific for the data type of the associated Topic. For a Topic of type ‘Foo’,
the object actually returned by create_datawriter() is a FooDataWriter.

To safely cast a generic DDSDataWriter pointer to a FooDataWriter pointer, you should use the static
narrow()method of the FooDataWriter class. The narrow()method will return NULL if the generic
DDSDataWriter pointer is not pointing at an object that is really a FooDataWriter.

For instance, if you create a Topic bound to the type ‘Alarm’, all DataWriters created for that Topic will
be of type ‘AlarmDataWriter.’ To access the type-specific methods of AlarmDataWriter, you must cast
the generic DDSDataWriter pointer returned by create_datawriter(). For example:
DDSDataWriter* writer = publisher->create_datawriter(

topic,writer_qos, NULL, NULL);
AlarmDataWriter *alarm_writer = AlarmDataWriter::narrow(writer);
if (alarm_writer == NULL) {

// ... error
};

In the C API, there is also a way to do the opposite of narrow(). FooDataWriter_as_datawriter() casts
a FooDataWriter as a DDSDataWriter, and FooDataReader_as_datareader() casts a FooDataReader as
a DDSDataReader.

7.3.8 Writing Data

The write() operation informs Connext DDS that there is a new value for a data-instance to be published
for the corresponding Topic. By default, calling write() will send the data immediately over the network
(assuming that there are matched DataReaders). However, you can configure and execute operations on
the DataWriter’s Publisher to buffer the data so that it is sent in a batch with data from other DataWriters
or even to prevent the data from being sent. Those sending “modes” are configured using the 7.4.6
PRESENTATION QosPolicy on page 363 as well as the Publisher’s suspend/resume_publications()
operations. The actual transport-level communications may be done by a separate, lower-priority thread
when the Publisher is configured to send the data for its DataWriters. For more information on threads,
see Connext DDS Threading Model (Chapter 21 on page 914).

When you call write(), Connext DDS automatically attaches a stamp of the current time that is sent with
the DDS data sample to the DataReader(s). The timestamp appears in the source_timestamp field of the
DDS_SampleInfo structure that is provided along with your data using DataReaders (see 8.4.6 The
SampleInfo Structure on page 570).
DDS_ReturnCode_t write (const Foo &instance_data,

const DDS_InstanceHandle_t &handle)

You can use an alternate DataWriter operation called write_w_timestamp(). This performs the same
action as write(), but allows the application to explicitly set the source_timestamp. This is useful when

7.3.8 Writing Data

you want the user application to set the value of the timestamp instead of the default clock used by Con-
next DDS.

DDS_ReturnCode_t write_w_timestamp (
const Foo &instance_data,
const DDS_InstanceHandle_t &handle,
const DDS_Time_t &source_timestamp)

Note that, in general, the application should not mix these two ways of specifying timestamps. That is, for
each DataWriter, the application should either always use the automatic timestamping mechanism (by call-
ing the normal operations) or always specify a timestamp (by calling the “w_timestamp” variants of the
operations). Mixing the two methods may result in not receiving sent data.

You can also use an alternate DataWriter operation, write_w_params(), which performs the same action
as write(), but allows the application to explicitly set the fields contained in the DDS_WriteParams struc-
ture, see Table 7.17 DDS_WriteParams_t.

Type Field
Name Description

DDS_Boolean
replace_
auto

Allows retrieving the actual value of those fields that were automatic.

When this field is set to true, the fields that were configured with an automatic value (for example, DDS_AUTO_
SAMPLE_IDENTITY in identity) receive their actual value after write_w_params is called.

DDS_
SampleIdentity_t

identity

Identity of the DDS sample being written. The identity consists of a pair (VirtualWriterGUID, Virtual Sequence Num-
ber).

When the value DDS_AUTO_SAMPLE_IDENTITY is used, the write_w_params() operation will determine the
DDS sample identity as follows:

l The VirtualWriterGUID (writer_guid) is the virtual GUID associated with the DataWriter writing the DDS
sample. This virtual GUID is configured using the member virtual_guid in 7.3.6.3 DATA_WRITER_
PROTOCOL_STATUSon page 299.

l The Virtual Sequence Number (sequence_number) is increased by one with respect to the previous
value.

The virtual sequence numbers for a given virtual GUIDmust be strictly monotonically increasing. If you try to write a
DDS sample with a sequence number smaller or equal to the last sequence number, the write operation will fail.

A DataReader can inspect the identity of a received DDS sample by accessing the fields original_publication_vir-
tual_guid and original_publication_virtual_sequence_number in 8.4.6 The SampleInfo Structure on
page 570.

Table 7.17 DDS_WriteParams_t

311

7.3.8 Writing Data

312

Type Field
Name Description

DDS_
SampleIdentity_t

related_
sample_
identity

The identity of anotherDDS sample related to this one.

The value of this field identifies anotherDDS sample that is logically related to the one that is written.

For example, the DataWriter created by a Replier (sets Introduction to the Request-ReplyCommunication Pat-
tern (Chapter 26 on page 1006)) uses this field to associate the identity of the DDS request sample to reponse
sample.

To specify that there is no related DDS sample identity use the value DDS_UNKNOWN_SAMPLE_IDENTITY,

A DataReader can inspect the related DDS sample identity of a received DDS sample by accessing the fields re-
lated_original_publication_virtual_guid and related_original_publication_virtual_sequence_number in
8.4.6 The SampleInfo Structure on page 570.

DDS_Time
source_
timestamp

Source timestamp that will be associated to the DDS sample that is written.

If source_timestamp is set to DDS_TIMER_INVALID, the middleware will assign the value.

A DataReader can inspect the source_timestamp value of a received DDS sample by accessing the field source_
timestamp 8.4.6 The SampleInfo Structure on page 570.

DDS_
InstanceHandle_
t

handle

The instance handle.

This value can be either the handle returned by a previous call to register_instance() or the special value DDS_
HANDLE_NIL.

DDS_Long priority

Positive integer designating the relative priority of the DDS sample, used to determine the transmission order of
pending transmissions.

To use publication priorities, the DataWriter’s7.5.20 PUBLISH_MODE QosPolicy (DDS Ex-
tension) on page 445 must be set for asynchronous publishing and the DataWritermust use a FlowController
with a highest-priority first scheduling_policy.

ForMulti-channelDataWriters, the publication priority of a DDS sample may be used as a filter criteria for de-
termining channelmembership.

Formore information, see 7.6.4 Prioritized DDS Samples on page 481.

DDS_Long flag

Flags for the DDS sample, represented as a 32-bit integer, of which only the 16 least-significant bits are used.

RTI reserves least-significant bits [0-7] formiddleware-specific usage. The application can use least significant bits
[8-15].

An application can inspect the flags associated with a received DDS sample by checking the flag field in 8.4.6 The
SampleInfo Structure on page 570.

For details about the reserved bits see 8.4.6 The SampleInfo Structure on page 570.

Default 0 (no flags are set).

struct DDS_
GUID_t

source_
guid

Identifies the application logical data source associated with the sample being written.

struct DDS_
GUID_t

related_
source_
guid

Identifies the application logical data source that is related to the sample being written.

struct DDS_
GUID_t

related_
reader_
guid

Identifies a DataReader that is logically related to the sample that is being written.

Table 7.17 DDS_WriteParams_t

7.3.8 Writing Data

When using the C API, a newly created variable of type DDS_WriteParams_t should be initialized by set-
ting it to DDS_WRITEPARAMS_DEFAULT.

The write() operation also asserts liveliness on the DataWriter, the associated Publisher, and the asso-
ciated DomainParticipant. It has the same effect with regards to liveliness as an explicit call to assert_live-
liness(), see 7.3.17 Asserting Liveliness on page 345 and the 7.5.15 LIVELINESS QosPolicy on
page 428. Maintaining liveliness is important for DataReaders to know that the DataWriter still exists and
for the proper behavior of the 7.5.17 OWNERSHIP QosPolicy on page 435.

See also: 9.6 Clock Selection on page 683.

7.3.8.1 Blocking During a write()

The write() operation may block if the 7.5.21 RELIABILITY QosPolicy on page 448 kind is set to Reli-
able, the send window is full, or the modification would cause data to be lost. Specifically, write()may
block in the following situations (note that the list may not be exhaustive):

l If the send window is specified (max/min_send_window_size fields in the DDS_RtpsReli-
ableWriterProtocol_t structure in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) on page 390 are not LENGTH_UNLIMITED) and the send window is full. Blocking in
this case occurs with both KEEP_LAST and KEEP_ALL history kinds.

l Ifmax_samples ormax_samples_per_instance in the 7.5.22 RESOURCE_LIMITS QosPolicy
on page 452 (ormax_batches in 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy
(DDS Extension) on page 402) are exceeded and none of the samples can be replaced because they
are not fully ACKed. Blocking in this case only applies to the KEEP_ALL history kind.

This operation may also block when using BEST_EFFORT Reliability 7.5.21 RELIABILITY QosPolicy
on page 448) and ASYNCHRONOUS Publish Mode (7.5.20 PUBLISH_MODE QosPolicy (DDS
Extension) on page 445) QoS settings. In this case, the DataWriter will queue DDS samples until they are
sent by the asynchronous publishing thread. The number of DDS samples that can be stored is determined
by the 7.5.12 HISTORY QosPolicy on page 421. If the asynchronous thread does not send DDS samples
fast enough (such as when using a slow FlowController (7.6 FlowControllers (DDS Extension) on
page 475)), the queue may fill up. In that case, subsequent write calls will block.

If this operation does block for any of the above reasons, the 7.5.21 RELIABILITY QosPolicy on
page 448'smax_blocking_time configures the maximum time the write operation may block (waiting for
space to become available). Ifmax_ blocking_time elapses before the DataWriter can store the modi-
fication without exceeding the limits, the operation will fail and return RETCODE_TIMEOUT for
KEEP_ALL configurations.

7.3.8.2 write() behavior with KEEP_LAST and KEEP_ALL

Following is how the write operation behaves when KEEP_LAST (in the 7.5.12 HISTORY QosPolicy
on page 421) and RELIABLE (in the 7.5.21 RELIABILITY QosPolicy on page 448) are used:

313

7.3.8 Writing Data

314

l The send window size is determined by themax/min_send_window_size fields in the DDS_
RtpsReliableWriterProtocol_t structure in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy
(DDS Extension) on page 390. If a send window is specified (max_send_window_size is not
UNLIMITED) and the window is full, the write operation will block until one of the samples in the
send window is protocol-acknowledged (ACKed) (Note 1) or until themax_blocking_time in the
7.5.21 RELIABILITY QosPolicy on page 448 (writer_qos.reliability.max_blocking_time)
expires.

l Then, the DataWriter will try to add the new sample to the writer history.

l If the instance associated with the sample is present in the writer history and there are depth (in the
7.5.12 HISTORY QosPolicy on page 421) samples in the instance, the DataWriter will replace the
oldest sample of that instance independently of that sample’s acknowledged status, and the write
operation will return DDS_RETCODE_OK. Otherwise, no sample will be replaced and the write
operation will continue.

l If the instance associated with the sample is not present in the writer history and max_instances (in
the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452) is exceeded, the DataWriter will try to
replace an existing instance (and its samples) according to the value of the instance_replacement
field in the 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 402 (see 7.5.6.1 Configuring DataWriter Instance Replacement on page 405).

l If no instance can be replaced, the write operation returns a DDS_RETCODE_OUT_OF_
RESOURCES error.

l Ifmax_samples (in the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452) is exceeded, the
DataWriter will try to drop a sample from a different instance as follows:

l The DataWriter will try first to remove a fully ACKed (Note 2) sample from a different
instance 'I' as long as that sample is not the last remaining sample for the instance 'I'. To find
this sample, the DataWriter starts iterating from the oldest sample in the writer history to the
newest sample.

l If no such sample is found, the DataWriter will replace the oldest sample in the writer history.

l The sample is added to the writer history, and the write operation returns DDS_RETCODE_OK.

Following is how the write operation behaves when KEEP_ALL (in the 7.5.12 HISTORY QosPolicy on
page 421) and RELIABLE (in the 7.5.21 RELIABILITY QosPolicy on page 448) are used:

l The send window size is determined by themax/min_send_window_size fields in the DDS_
RtpsReliableWriterProtocol_t structure in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy
(DDS Extension) on page 390. If a send window is specified (max_send_window_size is not
UNLIMITED) and the window is full, the write operation will block until one of the samples in the
send window is protocol-ACKed (Note 1) or until themax_blocking_time in the 7.5.21
RELIABILITY QosPolicy on page 448 (writer_qos.reliability.max_blocking_time) expires.

7.3.8 Writing Data

l If writer_qos.reliability.max_blocking_time expires, the write operation returns DDS_
RETCODE_TIMEOUT.

l When a sample is protocol-ACKed (Note 1) beforemax_blocking_time expires, the DataWriter
will try to add the sample to the writer history as follows:

l If the instance associated with the sample is not present in the writer history and max_
instances is exceeded, the DataWriter will try to replace an existing instance (and its samples)
according to the value of the instance_replacement field in the 7.5.6 DATA_WRITER_
RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402 (see 7.5.6.1 Configuring
DataWriter Instance Replacement on page 405).

l If no instance can be replaced, the write operation returns a DDS_RETCODE_OUT_
OF_RESOURCES error.

l Ifmax_samples is exceeded, the DataWriter will go through the samples in the order in
which they were added, and it will replace the first sample that is fully ACKed (Note 2).

l If no fully ACKed sample is found, the DataWriter will block (Note 3) until a sample is
fully ACKed and can be replaced or writer_qos.reliability.max_blocking_time
expires. If writer_qos.reliability.max_blocking_time expires, the write operation will
return DDS_RETCODE_TIMEOUT.

l Ifmax_samples_per_instance is exceeded, the DataWriter will go through the samples of
the instance in the order in which they were added, and it will replace the first sample that is
fully ACKed.

l If no fully ACKed sample is found, the DataWriter will block (Note 3) until a sample is
fully ACKed and can be replaced or writer_qos.reliability.max_blocking_time
expires. If writer_qos.reliability.max_blocking_time expires, the write operation will
return DDS_RETCODE_TIMEOUT.

l The sample is added to the writer history, and the write operation returns DDS_RETCODE_
OK.

See 7.3.12.1 Application Acknowledgment Kinds on page 319 for more information on the following
notes:

Note 1: A sample in the writer history is considered “protocol ACKed” when the sample has been
individually ACKed at the RTPS protocol level by each one of the DataReaders that
matched the DataWriter at the moment the sample was added to the DataWriter queue.

l Late joiners do not change the protocol ACK state of a sample. If a sample is marked
as protocol ACKed because it has been acknowledged by all the matching DataRead-
ers and a DataReader joins later on, the historical sample is still considered protocol
ACKed even if it has not been received by the late joiner.

315

7.3.9 Flushing Batches of DDS Data Samples

316

l If a sample 'S1' is protocol ACKed and a TopicQuery is received, triggering the pub-
lication of 'S1', the sample is still considered protocol ACKed. If a sample 'S1' is not
ACKed and a TopicQuery is received triggering the publication of 'S1', the
DataWriter will require that both the matching DataReaders on the live RTPS chan-
nel and the DataReader on the TopicQuery channel individually protocol ACK the
sample in order to consider the sample protocol ACKed.

Note 2: A sample in the writer history is considered “fully ACKed” when all of the following con-
ditions are met:

l The sample is protocol-ACKed.

l The sample has been “application-level ACKed” by all the DataReaders matching
the DataWriter that have their reader_qos.reliability.acknowledgment_kind set to
AUTO_ACKNOWLEDGMENT_MODE or EXPLICIT_
ACKNOWLEDGMENT_MODE. Once the sample is application-level ACKed, it
cannot change its status to not ACked after new DataReaders are matched. (Applic-
ation-level ACK occurs when the application acknowledges receipt of a sample.)

l If required subscriptions are enabled (see 7.5.1 AVAILABILITY QosPolicy (DDS
Extension) on page 371), the sample must also be ACKed by all the required sub-
scriptions configured on the DataWriter.

Note 3: It is possible within a single call to the write operation for a DataWriter to block both when
the send window is full and then again when max_samples ormax_samples_per_instance
is exceeded. This can happen because blocking on the send window only considers pro-
tocol-ACKed samples, while blocking based on resource limits considers fully-ACKed
samples. In any case, the total max blocking time of a single call to the write operation will
not exceed writer_qos.reliability.max_blocking_time.

The write operation on a DataWriter configured to use batching may also block if the sample being written
cannot be added to the existing outstanding batch and the batch has to be synchronously flushed within the
context of the write thread (see 7.5.2.1 Synchronous and Asynchronous Flushing on page 377). The flush-
ing operation may block under the same scenarios described above for individual samples, taking into
account that the send window is applied per batch and not per sample.

The unregister_instance() and dispose() operations, with regards to KEEP_LAST and KEEP_ALL,
behave the same as for the write() operation. See 7.3.14.2 Registering Instances on page 327, 7.3.14.4
Unregistering Instances on page 329, and 7.3.14.3 Disposing Instances on page 329.

7.3.9 Flushing Batches of DDS Data Samples

The flush() operation makes a batch of DDS data samples available to be sent on the network.

7.3.10 Writing Coherent Sets of DDS Data Samples

DDS_ReturnCode_t flush ()

If the DataWriter’s 7.5.20 PUBLISH_MODE QosPolicy (DDS Extension) on page 445 kind is not
ASYNCHRONOUS, the batch will be sent on the network immediately in the context of the calling
thread.

If the DataWriter’s PublishModeQosPolicy kind is ASYNCHRONOUS, the batch will be sent in the con-
text of the asynchronous publishing thread.

The flush() operation may block based on the conditions described in 7.3.8.1 Blocking During a write()
on page 313.

If this operation does block, themax_blocking_time in the 7.5.21 RELIABILITY QosPolicy on
page 448 configures the maximum time the write operation may block (waiting for space to become avail-
able). Ifmax_blocking_time elapses before the DataWriter is able to store the modification without
exceeding the limits, the operation will fail and return TIMEOUT.

For more information on batching, see the 7.5.2 BATCH QosPolicy (DDS Extension) on page 375.

7.3.10 Writing Coherent Sets of DDS Data Samples

A publishing application can request that a set of DDS data-sample changes be propagated in such a way
that they are interpreted at the receivers' side as a cohesive set of modifications. In this case, the receiver
will only be able to access the data after all the modifications in the set are available at the subscribing end.

This is useful in cases where the values are inter-related. For example, suppose you have two data-
instances representing the ‘altitude’ and ‘velocity vector’ of the same aircraft. If both are changed, it may
be important to ensure that reader see both together (otherwise, it may erroneously interpret that the aircraft
is on a collision course).

To use this mechanism in C, Traditional C++, Java and .NET:

1. Call the Publisher’s begin_coherent_changes() operation to indicate the start a coherent set.

2. For each DDS sample in the coherent set: call the FooDataWriter’s write() operation.

3. Call the Publisher’s end_coherent_changes() operation to terminate the set.

In the Modern C++ API:

1. Instantiate a dds::pub::CoherentSet passing a publisher to the constructor

2. For each DDS sample in the coherent set call dds::pub::DataWriter<Foo>::write().

3. Let the dds::pub::CoherentSet destructor terminate the set or explicitly call dds::pub-
::CoherentSet::end()

317

7.3.11 Waiting for Acknowledgments in a DataWriter

318

Calls to begin_coherent_changes() and end_coherent_changes() can be nested. Publisher’s samples
(samples published by any of the DataWriters within the Publisher) that are not published within a begin_
coherent_changes/end_coherent_changes block will not be provided to the DataReaders as a set.

See also: the coherent_access field in the 7.4.6 PRESENTATION QosPolicy on page 363 and the coher-
ent_set_info field in 8.4.6 The SampleInfo Structure on page 570.

7.3.11 Waiting for Acknowledgments in a DataWriter

The DataWriter’s wait_for_acknowledgments() operation blocks the calling thread until either all data
written by the reliable DataWriter is acknowledged by (a) all reliable DataReaders that are matched and
alive and (b) by all required subscriptions (see 7.3.13 Required Subscriptions on page 324), or until the
duration specified by themax_wait parameter elapses, whichever happens first.

Note that if a thread is blocked in the call to wait_for_acknowledgments() on a DataWriter and a dif-
ferent thread writes new DDS samples on the same DataWriter, the new DDS samples must be acknow-
ledged before unblocking the thread waiting on wait_for_acknowledgments().
DDS_ReturnCode_t wait_for_acknowledgments (

const DDS_Duration_t & max_wait)

This operation returns DDS_RETCODE_OK if all the DDS samples were acknowledged, or DDS_
RETCODE_TIMEOUT if themax_wait duration expired first.

If the DataWriter does not have its 7.5.21 RELIABILITY QosPolicy on page 448 kind set to
RELIABLE, the operation will immediately return DDS_RETCODE_OK.

There is a similar operation available at the Publisher level, see 7.2.7 Waiting for Acknowledgments in a
Publisher on page 287.

The reliability protocol used by Connext DDS is discussed in Reliable Communications (Chapter 11 on
page 694). The application acknowledgment mechanism is discussed in 7.3.12 Application Acknow-
ledgment below and Guaranteed Delivery of Data (Chapter 14 on page 758).

7.3.12 Application Acknowledgment

The 7.5.21 RELIABILITY QosPolicy on page 448 determines whether or not data published by a
DataWriter will be reliably delivered by Connext DDS to matching DataReaders. The reliability protocol
used by Connext DDS is discussed in Reliable Communications (Chapter 11 on page 694).

With protocol-level reliability alone, the producing application knows that the information is received by
the protocol layer on the consuming side. However, the producing application cannot be certain that the
consuming application read that information or was able to successfully understand and process it. The
information could arrive in the consumer’s protocol stack and be placed in the DataReader cache but the
consuming application could either crash before it reads it from the cache, not read its cache, or read the
cache using queries or conditions that prevent that particular DDS data sample from being accessed. Fur-

7.3.12 Application Acknowledgment

thermore, the consuming application could access the DDS sample, but not be able to interpret its meaning
or process it in the intended way.

The mechanism to let a DataWriter know to keep the DDS sample around, not just until it has been
acknowledged by the reliability protocol, but until the application has been able to process the DDS
sample is aptly called Application Acknowledgment. A reliable DataWriter will keep the DDS samples
until the application acknowledges the DDS samples. When the subscriber application is restarted, the mid-
dleware will know that the application did not acknowledge successfully processing the DDS samples and
will resend them.

7.3.12.1 Application Acknowledgment Kinds

Connext DDS supports three kinds of application acknowledgment, which is configured in the 7.5.21
RELIABILITY QosPolicy on page 448):

1. DDS_PROTOCOL_ACKNOWLEDGMENT_MODE (Default): In essence, this mode is identical
to using no application-level acknowledgment. DDS samples are acknowledged according to the
Real-Time Publish-Subscribe (RTPS) reliability protocol. RTPS AckNack messages will acknow-
ledge that the middleware received the DDS sample.

2. DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE: DDS samples are auto-
matically acknowledged by the middleware after the subscribing application accesses them, either
through calling take() or read() on the DDS sample. If the read() or take() operation loans the
samples, the acknowledgment is done after the return_loan() operation is called. Otherwise, for
read() or take() operations that make a copy, acknowledgment is done after the read() or take()
operations are executed.

3. DDS_APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE: DDS samples are acknow-
ledged after the subscribing application explicitly calls acknowledge on the DDS sample. This can
be done by either calling the DataReader’s acknowledge_sample() or acknowledge_all() oper-
ations. When using acknowledge_sample(), the application will provide the DDS_SampleInfo to
identify the DDS sample being acknowledge. When using acknowledge_all, all the DDS samples
that have been read or taken by the reader will be acknowledged.

Note: Even in DDS_APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE, some DDS
samples may be automatically acknowledged. This is the case when DDS samples are filtered out
by the reader using time-based filter, or using content filters. Additionally, when the reader is expli-
citly configured to use KEEP_LAST history kind, DDS samples may be replaced in the reader
queue due to resource constraints. In that case, the DDS sample will be automatically acknowledged
by the middleware if it has not been read by the application before it was replaced. To truly guar-
antee successful processing of DDS samples, it is recommended to use KEEP_ALL history kind.

319

7.3.12 Application Acknowledgment

320

7.3.12.2 Explicitly Acknowledging a Single DDS Sample (C++)

void MyReaderListener::on_data_available(DDSDataReader *reader)
{

Foo sample;
DDS_SampleInfo info;
FooDataReader* fooReader = FooDataReader::narrow(reader);
DDS_ReturnCode_t retcode = fooReader->take_next_sample(

sample, info);
if (retcode == DDS_RETCODE_OK) {

if (info.valid_data) {
// Process sample
...
retcode = reader->acknowledge_sample(info);
if (retcode != DDS_RETCODE_OK) {

// Error
}

}
} else {

// Not OK or NO DATA
}

}

7.3.12.3 Explicitly Acknowledging All DDS samples (C++)

void MyReaderListener::on_data_available(DDSDataReader *reader)
{

...
// Loop while samples available
for(;;) {

retcode = string_reader->take_next_sample(
sample, info);

if (retcode == DDS_RETCODE_NO_DATA) {
// No more samples
break;

}
// Process sample
...

}
retcode = reader->acknowledge_all();
if (retcode != DDS_RETCODE_OK) {

// Error
}

}

7.3.12.4 Notification of Delivery with Application Acknowledgment

A DataWriter can get notification of delivery with Application Acknowledgment using two different mech-
anisms:

l DataWriter's wait_for_acknowledgments() operation

7.3.12 Application Acknowledgment

A DataWriter can use the wait_for_acknowledgments() operation to be notified when all the DDS
samples in the DataWriter’s queue have been acknowledged. See 7.3.11 Waiting for Acknow-
ledgments in a DataWriter on page 318.

retCode = fooWriter->write(sample, DDS_HANDLE_NIL);
if (retCode != DDS_RETCODE_OK) {

// Error
}
retcode = writer->wait_for_acknowledgments(timeout);
if (retCode != DDS_RETCODE_OK) {

if (retCode == DDS_RETCODE_TIMEOUT) {
// Timeout: Sample not acknowledged yet

} else {
// Error

}
}

Using wait_for_acknowledgments() does not provide a way to get delivery notifications on a per
DataReader and DDS sample basis. If your application requires acknowledgment of message
receipt, use the the second mechanism described below.

l DataWriter's listener callback on_application_acknowledgment()

An application can install a DataWriter listener callback on_application_acknowledgment() to
receive a notification when a DDS sample is acknowledged by a DataReader. As part of this noti-
fication, you can access:

l The subscription handle of the acknowledging DataReader.

l The Identity of the DDS sample being acknowledged.

l The response data associated with the DDS sample being acknowledged.

For more information, see 7.3.6.1 APPLICATION_ACKNOWLEDGMENT_STATUS on
page 297.

7.3.12.5 Application-Level Acknowledgment Protocol

When the subscribing application confirms it has successfully processed a DDS sample, an AppAck
RTPS message is sent to the publishing application. This message will be resent until the publishing applic-
ation confirms receipt of the AppAck message by sending an AppAckConf RTPS message. See Figure
7.10: AppAck RTPS Messages Sent when Application Acknowledges a DDS Sample on the next page
through Figure 7.12: AppAck RTPS Messages Sent as a Sequence of Intervals, Combined to Optimize for
Bandwidth on page 323.

321

7.3.12 Application Acknowledgment

322

Figure 7.10: AppAck RTPS Messages Sent when Application Acknowledges a DDS Sample

Figure 7.11: AppAck RTPS Messages Resent Until Acknowledged Through AppAckConf
RTPS Message

7.3.12 Application Acknowledgment

Figure 7.12: AppAck RTPS Messages Sent as a Sequence of Intervals, Combined to
Optimize for Bandwidth

7.3.12.6 Periodic and Non-Periodic AppAck Messages

You can configure whether AppAck RTPS messages are sent immediately or periodically through the
8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575. The samples_per_
app_ack on page 579 (in Table 8.19 DDS_RtpsReliableReaderProtocol_t) determines the minimum num-
ber of DDS samples acknowledged by one application-level Acknowledgment message. The middleware
will not send an AppAck message until it has at least this many DDS samples pending acknowledgment.
By default, samples_per_app_ack is 1 and the AppAck RTPS message is sent immediately. Independ-
ently, the app_ack_period on page 578 (in Table 8.19 DDS_RtpsReliableReaderProtocol_t) determines
the rate at which a DataReader will send AppAck messages.

7.3.12.7 Application Acknowledgment and Persistence Service

Application Acknowledgment is fully supported by RTI Persistence Service. The combination of Applic-
ation Acknowledgment and Persistence Service is actually a common configuration. In addition to keeping
DDS samples available until fully acknowledged, Persistence Service, when used in peer-to-peer mode,
can take advantage of AppAck messages to avoid sending duplicate messages to the subscribing applic-
ation. Because AppAck messages are sent to all matching writers, when the subscriber acknowledges the
original publisher, Persistence Service will also be notified of this event and will not send out duplicate
messages. This is illustrated in Figure 7.13: Application Acknowledgment and Persistence Service on the
next page.

323

7.3.13 Required Subscriptions

324

Figure 7.13: Application Acknowledgment and Persistence Service

7.3.12.8 Application Acknowledgment and Routing Service

Application Acknowledgment is supported by RTI Routing Service: That is, Routing Service will acknow-
ledge the DDS sample it has processed. Routing Service is an active participant in the Connext DDS sys-
tem and not transparent to the publisher or subscriber. As such, Routing Service will acknowledge to the
publisher, and the subscriber will acknowledge to Routing Service. However, the publisher will not get a
notification from the subscriber directly.

7.3.13 Required Subscriptions

The 7.5.9 DURABILITY QosPolicy on page 412 specifies whether acknowledged DDS samples need to
be kept in the DataWriter’s queue and made available to late-joining applications. When a late joining
application is discovered, available DDS samples will be sent to the late joiner. With the Durability QoS
alone, there is no way to specify or characterize the intended consumers of the information and you do not
have control over which DDS samples will be kept for late-joining applications. If while waiting for late-
joining applications, the middleware needs to free up DDS samples, it will reclaim DDS samples if they
have been previously acknowledged by active/matching readers.

7.3.13 Required Subscriptions

There are scenarios where you know a priori that a particular set of applications will join the system: e.g., a
logging service or a known processing application. The Required Subscription feature is designed to keep
data until these known late joining applications acknowledge the data.

Another use case is when DataReaders become temporarily inactive due to not responding to heartbeats,
or when the subscriber temporarily became disconnected and purged from the discovery database. In both
cases, the DataWriter will no longer keep the DDS sample for this DataReader. The Required Sub-
scription feature will keep the data until these known DataReaders have acknowledged the data.

To use Required Subscriptions, the DataReaders and DataWriters must have their 7.5.21 RELIABILITY
QosPolicy on page 448 kind set to RELIABLE.

7.3.13.1 Named, Required and Durable Subscriptions

Before describing the Required Subscriptions, it is important to understand a few concepts:

l Named Subscription: Through the 7.5.11 ENTITY_NAME QosPolicy (DDS Extension) on
page 419, each DataReader can be given a specific name. This name can be used by tools to
identify a specific DataReader. Additionally, the DataReader can be given a role_name. For
example: LOG_APP_1 DataReader belongs to the logger applications (role_name =
“LOGGER”).

l Required Subscription is a named subscription to which a DataWriter is configured to deliver data
to. This is true even if the DataReaders serving those subscriptions are not available yet. The
DataWriter must store the DDS sample until it has been acknowledged by all active reliable
DataReaders and acknowledged by all required subscriptions. The DataWriter is not waiting for a
specific DataReader, rather it is waiting for DataReaders belonging to the required subscription by
setting their role_name to the subscription name.

l Durable Subscription is a required subscription where DDS samples are stored and forwarded by
an external service. In this case, the required subscription is served by RTI Persistence Service. See
46.9 Configuring Durable Subscriptions in Persistence Service on page 1205.

7.3.13.2 Durability QoS and Required Subscriptions

The 7.5.9 DURABILITY QosPolicy on page 412 and the Required Subscriptions feature complement
each other.

The DurabilityQosPolicy determines whether or not Connext DDS will store and deliver previously
acknowledged DDS samples to new DataReaders that join the network later. You can specify to either
notmake the DDS samples available (DDS_VOLATILE_DURABILITY_QOS kind), or to make them
available and declare you are storing the DDS samples in memory (DDS_TRANSIENT_LOCAL_
DURABILITY_QOS or DDS_TRANSIENT_DURABILITY_QOS kind) or in permanent storage
(DDS_PERSISTENT_DURABILITY_QOS).

325

7.3.14 Managing Instances (Working with Keyed Data Types)

326

Required subscriptions help answer the question of when a DDS sample is considered acknowledged
before the DurabilityQosPolicy determines whether to keep it. When required subscriptions are used, a
DDS sample is considered acknowledged by a DataWriter when both the active DataReaders and a
quorum of required subscriptions have acknowledged the DDS sample. (Acknowledging a DDS sample
can be done either at the protocol or application level—see 7.3.12 Application Acknowledgment on
page 318).

7.3.13.3 Required Subscriptions Configuration

Each DataReader can be configured to be part of a named subscription, by giving it a role_name using
the 7.5.11 ENTITY_NAME QosPolicy (DDS Extension) on page 419. A DataWriter can then be con-
figured using the 7.5.1 AVAILABILITY QosPolicy (DDS Extension) on page 371 (required_
matched_endpoint_groups) with a list of required named subscriptions identified by the role_name.
Additionally, the DataWriter can be configured with a quorum or minimum number of DataReaders from
a given named subscription that must receive a DDS sample.

When configured with a list of required subscriptions, a DataWriter will store a DDS sample until the
DDS sample is acknowledged by all active reliable DataReaders, as well as all required subscriptions.
When a quorum is specified, a minimum number of DataReaders of the required subscription must
acknowledge a DDS sample in order for the DDS sample to be considered acknowledged. Specifying a
quorum provides a level of redundancy in the system as multiple applications or services acknowledge
they have received the DDS sample. Each individual DataReader is identified using its own virtual GUID
(see 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575).

7.3.14 Managing Instances (Working with Keyed Data Types)

This section applies only to data types that use keys; see 2.4 DDS Samples, Instances, and Keys on
page 18. Using the following operations for non-keyed types has no effect. This section describes how
instances work on DataWriters. See also Chapter 6 Working with Instances on page 258.

Topics come in two flavors: those whose associated data type has specified some fields as defining the
‘key,’ and those whose associated data type has not. An example of a data-type that specifies key fields is
shown in Figure 7.14: Data Type with a Key below.

Figure 7.14: Data Type with a Key

typedef struct Flight {
@key int32 flightId;
string departureAirport;
string arrivalAirport;
Time_t departureTime;
Time_t estimatedArrivalTime;
Location_t currentPosition;

};

7.3.14 Managing Instances (Working with Keyed Data Types)

7.3.14.1 Writing Instances

If the data type has some fields that act as a ‘key,’ the Topic contains one or more instances whose values
can be independently maintained. In Figure 7.14: Data Type with a Key on the previous page, the flightId
is the ‘key’. Different flights will have different values for the key. Each flight is an instance of the Topic.
Each write() (or write() variation such as write_w_timestamp()) will update the information about a
single flight—meaning that when a DataWriter calls write(), the DataWriter is updating the instance rep-
resented by the flightId.

When a DataWriter updates an instance by calling write(), a sample of that instance is sent to matching
DataReaders, and the DataReaders consider the instance to be ALIVE.

If the DataWriter’s 7.5.22 RESOURCE_LIMITS QosPolicy on page 452 specifies amax_instances
limit that is not infinite, the limit will apply when writing. If a DataWriter writes an instance that it has not
written before, and it has already reached themax_instances limit, it will try to reclaim the memory used
by an existing instance. The rules for which instances it can replace are described in 7.3.14.7 Instance
Memory Management on page 331.

If the DataWriter cannot reclaim the memory used by an existing instance, the write() call will fail. For
more information on the behavior of the write() call when themax_instances limit is hit, see 7.3.8.2 write
() behavior with KEEP_LAST and KEEP_ALL on page 313.

7.3.14.2 Registering Instances

If your data type has a key, you may improve performance of any operation that modifies the instance,
such as any variation of write() or dispose(), by providing a non-NIL instance handle. An instance handle
contains the pre-calculated instance keyhash so that it does not need to be calculated again. The instance
handle for an instance can be retrieved once the instance is registered.

A DataWriter can register and retrieve an instance handle for an instance in two ways:

l Explicitly, with the register_instance() operation. The register_instance() operation provides a
handle to the instance (of type DDS_InstanceHandle_t) that can be used later to refer to the
instance.

l Implicitly by providing a NIL instance handle to one of the variations of the write() or dispose()
calls. After one of these calls has been made, the instance handle for the now-registered instance can
be retrieved using the DataWriter lookup_instance() call.

Once you have an instance handle, you can use it while writing to avoid calculating the instance keyhash
in every write call. This performance improvement may be significant if your data is relatively small or
your key fields are relatively complex. (If your data itself is large or complex, the time to calculate the key-
hash may be insignificant relative to the time to serialize your data.)

You can register any number of instances up to the maximum number of instances configured in the
DataWriter’s 7.5.22 RESOURCE_LIMITS QosPolicy on page 452. Explicit instance registration is

327

7.3.14 Managing Instances (Working with Keyed Data Types)

328

completely optional. Note that registration through the register_instance() call only affects the
DataWriter: matching DataReaders are not notified that the instance is ALIVE when the DataWriter
registers the instance. An instance is only recognized as ALIVE when a DataWriter writes the instance.
When an application registers instances and uses the instance handles for increased performance, it must
keep a mapping between instance handles and instances. See theWarning below.

Figure 7.15: Explicitly Registering an Instance

Flight myFlight;
// writer is a previously-created FlightDataWriter
myFlight.flightId = 265;
DDS_InstanceHandle_t fl265Handle =
writer->register_instance(myFlight);
...
// Each time we update the flight, we can pass the handle
myFlight.departureAirport = “SJC”;
myFlight.arrivalAirport = “LAX”;
myFlight.departureTime = {120000, 0};
myFlight.estimatedArrivalTime = {130200, 0};
myFlight.currentPosition = { {37, 20}, {121, 53} };
if (writer->write(myFlight, fl265Handle) != DDS_RETCODE_OK) {
// ... handle error
}
// The writer can declare that it will no longer update information about
// this flight by unregistering itself from the instance

if (writer->unregister_instance(myFlight, fl265Handle) !=
DDS_RETCODE_OK) {
// ... handle error
}

Warning: If you decide to manage instance handles using your own application logic, make
sure you keep a correct mapping between the instance and instance handle. If you pass the
wrong instance handle when writing data, Connext DDS will assume that you are writing the
instance associated with the handle. It does not check that the key fields match that handle,
because that would negate the performance improvement from passing the handle. Passing the
wrong instance handle can lead to strange behavior, because Connext DDS will treat your data
sample as though it belongs to the wrong instance.

For example, if you have the History QosPolicy kind set to KEEP_LAST and depth set to 1
on the DataReader, Connext DDS should keep the last sample for each instance. But if you
pass the wrong instance handle when writing, the DataReader will overwrite the wrong
sample (in the wrong instance). As a result, a DataReader will not get updates for the instance
it expects. An incorrect instance handle will affect all QoS policies that are applied per
instance; see 6.3.1 QoS Policies that are Applied per Instance on page 267.

When you are done using an instance, you can unregister it. See 7.3.14.4 Unregistering Instances below.

7.3.14 Managing Instances (Working with Keyed Data Types)

7.3.14.3 Disposing Instances

The dispose() operation informs DataReaders that, as far as the DataWriter knows, the instance no longer
exists and can be considered “not alive.” When the dispose() operation is called, the instance state stored
in the DDS_SampleInfo structure, accessed through DataReaders, will change to NOT_ALIVE_
DISPOSED for that particular instance.

Often, systems use the NOT_ALIVE_DISPOSED state to indicate that some object is completely gone
from the system. For example, in a flight tracking system, when a flight lands, a DataWriter may dispose
of the instance corresponding to the flight. In that case, all DataReaders who are monitoring the flight will
see the instance state change to NOT_ALIVE_DISPOSED, indicating that the flight has landed.

Note: If a DataWriter calls dispose(), it does not give up ownership of the instance (unlike when it calls
unregister_instance(), in which case it is declaring that it will no longer have any updates for the instance
and therefore does give up ownership of the instance to other DataWriters that may still be actively updat-
ing the instance).

Attention: Disposing does not free up memory by default. For instance, when the DataWriter calls
dispose() to indicate that a flight has landed, it must keep the dispose message in its queue so all
matching DataReaders get notified that the flight has landed (i.e., has been disposed). Also, in
terms of memory management, Connext DDS may reclaim unregistered instances before disposed
ones, or not reclaim disposed instances at all, depending on your QoS settings. See 7.3.14.7
Instance Memory Management on page 331.

See also:

l 7.5.31.1 Unregistering vs. Disposing on page 474

l 7.5.5.5 Propagating Serialized Keys with Disposed-Instance Notifications on page 399

l 7.5.31.2 Autodisposing Unregistered Instances on page 474

7.3.14.4 Unregistering Instances

The unregister_instance() operation informs DataReaders that the DataWriter is no longer updating the
instance. When a DataWriter will no longer update an instance, you can unregister it. To unregister a
DataWriter from an instance, use the DataWriter’s unregister_instance() operation. Unregistering tells
Connext DDS that the DataWriter has no more information on this instance; thus, it does not intend to
modify that instance anymore, allowing Connext DDS to recover any resources it allocated for the
instance.

unregister_instance() should only be used on instances that have been previously registered. Instances
can be registered explicitly with the register_instance() operation, or implicitly with any variation of the
write() or dispose() operations. See Figure 7.15: Explicitly Registering an Instance on page 328.

Once all DataWriters have unregistered from an instance, the matched DataReaders will eventually get an
indication that the instance no longer has any DataWriters. This is communicated to the subscribing

329

7.3.14 Managing Instances (Working with Keyed Data Types)

330

application by means of the DDS_SampleInfo that accompanies each DDS sample (see 8.4.6 The
SampleInfo Structure on page 570). Once there are no DataWriters for the instance, the DataReader will
see the value of DDS_InstanceStateKind for that instance to be NOT_ALIVE_NO_WRITERS.

Note that DataReaders can’t distinguish between a scenario where all DataWriters explicitly unregister
from an instance and a scenario where all DataWriters have lost liveliness. For more information on
DataWriter liveliness, see the 7.5.15 LIVELINESS QosPolicy on page 428.

The unregister_instance() operation may affect the ownership of the instance (see the 7.5.17
OWNERSHIP QosPolicy on page 435). If the DataWriter was the exclusive owner of the instance, then
calling unregister_instance() relinquishes that ownership, and another DataWriter can become the exclus-
ive owner of the instance. (In contrast, if a DataWriter calls dispose(), it does not give up ownership of the
instance.)

The unregister_instance() operation indicates only that a particular DataWriter no longer has any inform-
ation/data on an instance and thus no longer has anything to say about the instance. It does not indicate that
anything about the instance itself has changed, such as its existence or the associated data. For example, a
DataWriter that is tracking a flight may unregister from an instance when the flight goes out of range—this
does not mean that the position of the flight has changed or that the flight has landed, just that the
DataWriter no longer has any knowledge of the flight; other DataWriters may still update the flight’s pos-
ition.

The autodispose_unregistered_instances field in the 7.5.31 WRITER_DATA_LIFECYCLE QoS
Policy on page 472 controls whether instances are automatically disposed of when they are unregistered.
(By default, they are not. See 7.5.31.2 Autodisposing Unregistered Instances on page 474.) When this
QoS is true and the DataWriter unregisters from an instance, two samples are sent to the DataReader to
notify it that the instance is both unregistered and disposed. The rules about which instance memory can be
reclaimed are documented in 7.3.14.7 Instance Memory Management on the next page.

The unregister_instance() operation adds one sample (or two) to the DataWriter queue, so the behavior
of unregister_instance() with regards to KEEP_LAST and KEEP_ALL is the same as for the write()
operation. See 7.3.8.2 write() behavior with KEEP_LAST and KEEP_ALL on page 313. (Two samples
are added if autodispose_unregistered_instances is set to TRUE; Connext DDS makes a dispose and an
unregister sample. See autodispose_unregistered_instances on page 473 in the 7.5.31 WRITER_DATA_
LIFECYCLE QoS Policy on page 472.)

See also:

l 7.5.31.1 Unregistering vs. Disposing on page 474

l 7.5.31.2 Autodisposing Unregistered Instances on page 474

7.3.14.5 Looking up an Instance Handle

Some operations, such as write(), accept an instance_handle parameter. If you need to get such a handle,
you can call the FooDataWriter’s lookup_instance() operation, which takes an instance as a parameter

7.3.14 Managing Instances (Working with Keyed Data Types)

and returns a handle to that instance. This is useful only for keyed data types.
DDS_InstanceHandle_t lookup_instance (const Foo & key_holder)

The instance must have already been registered, written, or disposed. If the instance is not known to the
DataWriter, this operation returns DDS_HANDLE_NIL.

7.3.14.6 Getting the Key Value for an Instance

Once you have an instance handle (using register_instance() or lookup_instance()), you can use the
DataWriter’s get_key_value() operation to retrieve the value of the key of the corresponding instance.
The key fields of the data structure passed into get_key_value() will be filled out with the original values
used to generate the instance handle. The key fields are defined when the data type is defined (see 2.4
DDS Samples, Instances, and Keys on page 18).

Following our example in Figure 7.15: Explicitly Registering an Instance on page 328, register_instance
() returns a DDS_InstanceHandle_t that can be used in the call to the FlightDataWriter’s get_key_
value() operation. The value of the key is returned in a structure of type Flight with the flightId field filled
in with the integer 265.

See also: 7.5.5.5 Propagating Serialized Keys with Disposed-Instance Notifications on page 399.

7.3.14.7 Instance Memory Management

In Connext DDS, memory is primarily pre-allocated when creating entities. When data is keyed, the
memory associated with each instance used for storing instance-specific metadata is allocated when the
DataWriter is created. Memory is not freed at runtime, unless you delete an entity. Instead, memory is
made available to be reused by the DataWriter, or 'reclaimed'.

Instance memory in the DataWriter is reclaimed two ways:

l Lazily (Default): when a resource limit such asmax_instances is hit. Only once this limit is hit will
Connext DDS reclaim memory as described in the following sections.

l Proactively (Non-Default): after a time delay, configured by autopurge_unregistered_instance_
delay or autopurge_disposed_instances_delay, as long as all samples of that instance are fully-
acknowledged (see 7.3.8.2 write() behavior with KEEP_LAST and KEEP_ALL on page 313). In
this case, the instance data is purged, freeing up memory for future use (i.e., for "reclaiming").

In the default case, Connext DDS has to decide which instances to replace first. This is controlled by the
following QoS policies and settings.

7.3.14.7.1 WriterDataLifecycle: autopurge_unregistered_instances_delay

When autopurge_unregistered_instances_delay in the 7.5.31 WRITER_DATA_LIFECYCLE QoS
Policy on page 472 is 0, Connext DDS will clean up all the resources associated with an unregistered
instance (most notably, the DDS sample history of non-volatile DataWriters) when all the instance’s

331

7.3.14 Managing Instances (Working with Keyed Data Types)

332

samples have been acknowledged by all its live DataReaders, including the sample that indicates the unre-
gistration. By default, autopurge_unregistered_instances_delay is disabled (the delay is INFINITE). If
the delay is set to zero, the DataWriter will clean up as soon as all the samples are acknowledged after the
call to unregister_instance(). A non-zero value for the delay can be useful in two ways:

l To keep the historical DDS samples for late-joiners for a period of time.

l In the context of the builtin discovery DataWriters, if the applications temporarily lose the con-
nection before the unregistration (which represents the remote entity destruction), to provide the
DDS samples that indicate the dispose and unregister actions once the connection is reestablished.

This delay can also be set for discovery data through these fields in the 9.5.3 DISCOVERY_CONFIG
QosPolicy (DDS Extension) on page 650:

l publication_writer_data_lifecycle.autopurge_unregistered_instances_delay

l subscription_writer_data_lifecycle.autopurge_unregistered_instances_delay

l publication_writer_data_lifecycle.autopurge_disposed_instances_delay

l subscription_writer_data_lifecycle.autopurge_disposed_instances_delay

7.3.14.7.2 DataWriterResourceLimits: replace_empty_instances

The replace_empty_instances field in the 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy
(DDS Extension) on page 402 defines whether instances with no samples in the DataWriter queue be
replaced first, regardless of their instance state. If there are multiple empty instances, replace_empty_
instances will replace unregistered instances, then disposed instances, then alive instances. If replace_
empty_instances is true, empty instances will always be replaced first before any instance that may qual-
ify for replacement based on the instance_replacement field in the 7.5.6 DATA_WRITER_
RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402.

Values: true/false

7.3.14.7.3 DataWriterResourceLimits: instance_replacement

This instance_replacement field in the 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy
(DDS Extension) on page 402 defines which instance states can be replaced, and the order in which they
are allowed to be replaced. This setting takes effect if all samples for an instance are fully acknowledged.

Values:

l DDS_UNREGISTERED_INSTANCE_REPLACEMENT

l DDS_ALIVE_INSTANCE_REPLACEMENT

l DDS_DISPOSED_INSTANCE_REPLACEMENT

7.3.14 Managing Instances (Working with Keyed Data Types)

l DDS_ALIVE_THEN_DISPOSED_INSTANCE_REPLACEMENT

l DDS_DISPOSED_THEN_ALIVE_INSTANCE_REPLACEMENT

l DDS_ALIVE_OR_DISPOSED_INSTANCE_REPLACEMENT

Warning: Unregistered instances are always replaced first even if you don't choose DDS_
UNREGISTERED_INSTANCE_REPLACEMENT. Because unregistering an instance indicates that the
DataWriter will no longer update the instance, it is assumed that reclaiming these resources first will avoid
information loss in your system.

When a DataWriter disposes an instance, it cannot replace the memory related to that instance unless
autopurge_disposed_instances_delay is finite, the instance_replacement field in the 7.5.6 DATA_
WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402 indicates that disposed
instances can be replaced when instance resource limits are reached, or the instance is empty and replace_
empty_instances is true.

See also:

l 7.5.31.1 Unregistering vs. Disposing on page 474

l 7.5.31.2 Autodisposing Unregistered Instances on page 474

7.3.14.8 Consequences of Unpurged Dispose Messages

There are consequences of having many unpurged dispose messages in the DataWriter’s queue. If the
DataWriter’s 7.5.9 DURABILITY QosPolicy on page 412 kind is not VOLATILE, those dispose mes-
sages will be delivered to late-joining DataReaders, which may cause an unexpected spike in network
traffic. In addition, the DataReaders will not notify the application about those previously-disposed
instances, because by default DataReaders will not propagate dispose messages for instances that were pre-
viously unknown. (This behavior can be changed by using the propagate_dispose_of_unregistered_
instances QoS setting on the DataReader.)

Failing to purge disposed instances will cause similar behavior when using TopicQueries. When the
DataWriter sends the response to the TopicQuery, it will include the unpurged dispose messages, causing
high network traffic. In general, all dispose and unregister messages always pass filters (associated with
ContentFilteredTopics, TopicQueries, or QueryConditions). This means that even if a TopicQuery’s filter
expression only specifies a specific key value or set of key values, all dispose messages for all instances in
the DataWriter queue will be sent in response to the TopicQuery. To avoid this when using TopicQueries,
use the special statement at the beginning of the query: “@instance_state = ALIVE AND” followed by the
rest of the expression. This prevents the DataWriter from sending not-alive samples.

See also:

333

7.3.15 Setting DataWriter QosPolicies

334

l 7.5.5.5 Propagating Serialized Keys with Disposed-Instance Notifications on page 399

l 7.5.31.2 Autodisposing Unregistered Instances on page 474

7.3.14.9 Consequences of DataWriters Reclaiming Disposed Instances

If your network is subject to disconnections, and disposed instances are purged, it’s possible that a dispose
message is not received by every DataReader, leading to DataReaders recognizing different instance
states. This happens if your network disconnection is long enough for a reliable DataReader to be marked
as inactive and the disposed instance is purged during the disconnection. If the disposed message is not
purged during the disconnection, it is still possible for the dispose message to be delivered after recon-
nection if the 7.5.9 DURABILITY QosPolicy on page 412 is not VOLATILE.

If you have one or more RTI Routing Service applications in your network, leading to multiple places
where instance state gets cached and might be reclaimed, it is even more likely that a dispose message
might not be received by every DataReader.

7.3.15 Setting DataWriter QosPolicies

The DataWriter’s QosPolicies control its resources and behavior.

The DDS_DataWriterQos structure has the following format:
DDS_DataWriterQos struct {

DDS_DurabilityQosPolicy durability;
DDS_DurabilityServiceQosPolicy durability_service;
DDS_DeadlineQosPolicy deadline;
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_TransportPriorityQosPolicy transport_priority;
DDS_LifespanQosPolicy lifespan;
DDS_UserDataQosPolicy user_data;
DDS_OwnershipQosPolicy ownership;
DDS_OwnershipStrengthQosPolicy ownership_strength;
DDS_WriterDataLifecycleQosPolicy writer_data_lifecycle;
DDS_DataRepresentationQosPolicy representation;
DDS_DataTagQosPolicy data_tags;
// extensions to the DDS standard:

DDS_DataWriterResourceLimitsQosPolicy writer_resource_limits;
DDS_DataWriterProtocolQosPolicy protocol;
DDS_TransportSelectionQosPolicy transport_selection;
DDS_TransportUnicastQosPolicy unicast;
DDS_PublishModeQosPolicy publish_mode;
DDS_PropertyQosPolicy property;
DDS_ServiceQosPolicy service;

7.3.15 Setting DataWriter QosPolicies

DDS_BatchQosPolicy batch;
DDS_MultiChannelQosPolicy multi_channel;
DDS_AvailabilityQosPolicy availability;
DDS_EntityNameQosPolicy publication_name;
DDS_TopicQueryDispatchQosPolicy topic_query_dispatch;
DDS_DataWriterTransferModeQosPolicy transfer_mode;
DDS_TypeSupportQosPolicy type_support;

} DDS_DataWriterQos;

Note: set_qos() cannot always be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

Table 7.18 DataWriter QosPolicies summarizes the meaning of each policy. (They appear alphabetically
in the table.) For information on why you would want to change a particular QosPolicy, see the referenced
section. For defaults and valid ranges, please refer to the API Reference HTML documentation.

QosPolicy Description

Availability

This QoS policy is used in the context of two features:

7.5.1.1 AvailabilityQoSPolicy and Collaborative DataWriters on page 372

7.5.1 AVAILABILITYQosPolicy (DDSExtension) on page 371

ForCollaborative DataWriters, Availability specifies the group ofDataWritersexpected to collaboratively provide data
and the timeouts that control when to allow data to be available that may skip DDS samples.

ForRequired Subscriptions, Availability configures a set of Required Subscriptions on a DataWriter.

See 7.5.1 AVAILABILITYQosPolicy (DDSExtension) on page 371

Batch
Specifies and configures the mechanism that allowsConnext DDS to collect multiple DDS user data samples to be
sent in a single network packet, to take advantage of the efficiency of sending larger packets and thus increase ef-
fective throughput. See 7.5.2 BATCHQosPolicy (DDSExtension) on page 375.

DataRepresentation
Specifies which version of the Extended Common Data Representation (CDR) is offered. See 7.5.3 DATA_
REPRESENTATIONQosPolicy on page 381.

DataTag
A sequence of (name, value) string pairs that may be used by the Access Control plugin. See 7.5.4 DATATAG
QosPolicy on page 389.

DataWriterProtocol
This QosPolicy configures the Connext DDS on-the-network protocol, RTPS. See 7.5.5 DATA_WRITER_
PROTOCOLQosPolicy (DDSExtension) on page 390.

DataWriterResourceLimits
Controls howmany threads can concurrently block on a write() call of thisDataWriter. See 7.5.6 DATA_WRITER_
RESOURCE_LIMITSQosPolicy (DDSExtension) on page 402.

Deadline

For a DataReader, it specifies the maximumexpected elapsed time between arriving DDS data samples.

For a DataWriter, it specifies a commitment to publish DDS samples with no greater elapsed time between them.

See 7.5.7 DEADLINEQosPolicy on page 407.

DestinationOrder
Controls howConnext DDSwill deal with data sent by multiple DataWriters for the same topic. Can be set to "by re-
ception timestamp" or to "by source timestamp". See 7.5.8 DESTINATION_ORDERQosPolicy on page 409.

Table 7.18 DataWriter QosPolicies

335

7.3.15 Setting DataWriter QosPolicies

336

QosPolicy Description

Durability
Specifies whether or notConnext DDSwill store and deliver data that were previously published to newDataReaders.
See 7.5.9 DURABILITYQosPolicy on page 412.

DurabilityService
Various settings to configure the external Persistence Service used by Connext DDS for
DataWriters with a Durability QoS setting of Persistent Durability. See 7.5.10 DURABILITY
SERVICE QosPolicy on page 417.

EntityName Assigns a name to a DataWriter. See 7.5.11 ENTITY_NAMEQosPolicy (DDSExtension) on page 419.

History
Specifies howmuch data must to stored byConnext DDS for the DataWriter orDataReader. This QosPolicy affects
the 7.5.21 RELIABILITYQosPolicy on page 448 as well as the 7.5.9 DURABILITYQosPolicy on page 412. See
7.5.12 HISTORYQosPolicy on page 421.

LatencyBudget
Suggestion to Connext DDS on howmuch time is allowed to deliver data. See 7.5.13 LATENCYBUDGET QoSPolicy
on page 426.

Lifespan
Specifies how long Connext DDS should consider data sent by an user application to be valid. See 7.5.14 LIFESPAN
QoSPolicy on page 426.

Liveliness
Specifies and configures the mechanism that allowsDataReaders to detect when DataWritersbecome disconnected
or "dead." See 7.5.15 LIVELINESSQosPolicy on page 428.

MultiChannel
Configures a DataWriter’sability to send data on different multicast groups (addresses) based on the value of the
data. See 7.5.16 MULTI_CHANNELQosPolicy (DDSExtension) on page 433.

Ownership
Along with OwnershipStrength, specifies ifDataReaders for a topic can receive data frommultiple DataWritersat the
same time. See 7.5.17 OWNERSHIPQosPolicy on page 435.

OwnershipStrength
Used to arbitrate among multiple DataWritersof the same instance of a Topic when Ownership QosPolicy is
EXCLUSIVE. See 7.5.18 OWNERSHIP_STRENGTHQosPolicy on page 439.

Partition
Adds string identifiers that are used formatching DataReadersand DataWriters for the same Topic. See 7.4.5
PARTITIONQosPolicy on page 357.

Property

Stores name/value (string) pairs that can be used to configure certain parameters ofConnext DDS that are not ex-
posed through formalQoS policies. It can also be used to store and propagate application-specific name/value pairs,
which can be retrieved by user code during discovery. See 7.5.19 PROPERTYQosPolicy (DDSExtension) on
page 440.

PublishMode
Specifies howConnext DDS sends application data on the network. By default, data is sent in the user thread that

calls the DataWriter’s write() operation. However, this QosPolicy can be used to tellConnext DDS to use its own
thread to send the data. See 7.5.20 PUBLISH_MODEQosPolicy (DDSExtension) on page 445.

Reliability Specifies whether or notConnext DDSwill deliver data reliably. See 7.5.21 RELIABILITYQosPolicy on page 448.

ResourceLimits
Controls the amount of physicalmemory allocated forEntities, if dynamic allocations are allowed, and how they occur.
Also controls memory usage among different instance values for keyed topics. See 7.5.22 RESOURCE_LIMITS
QosPolicy on page 452.

Service
Intended for use by RTI infrastructure services. User applications should not modify its value. See 7.5.23 SERVICE
QosPolicy (DDSExtension) on page 455.

Table 7.18 DataWriter QosPolicies

7.3.15 Setting DataWriter QosPolicies

QosPolicy Description

TopicQueryDispatch
Configures the ability of a DataWriter to publish samples in response to a TopicQuery. See 7.5.24 TOPIC_QUERY_
DISPATCH_QosPolicy (DDS Extension) on page 456.

TransferMode Configures the properties of a Zero CopyDataWriter. See 7.5.25 TRANSFER_MODEQosPolicy on page 458.

TransportPriority
Set by a DataWriter to tellConnext DDS that the data being sent is a different "priority" than other data. See 7.5.26
TRANSPORT_PRIORITYQosPolicy on page 459.

TransportSelection
Allows you to select which physical transports a DataWriter orDataReadermay use to send or receive its data. See
7.5.27 TRANSPORT_SELECTIONQosPolicy (DDSExtension) on page 464.

TransportUnicast
Specifies a subset of transports and port number that can be used by an Entity to receive data. See 7.5.28
TRANSPORT_UNICAST QosPolicy (DDSExtension) on page 465.

TypeSupport
Used to attach application-specific value(s) to a DataWriter orDataReader. These values are passed to the seri-
alization or deserialization routine of the associated data type. Also controls whether padding bytes are set to 0 during
serialization. See 7.5.29 TYPESUPPORT QosPolicy (DDSExtension) on page 469.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a buffer of bytes to Connext DDS's dis-
covery meta-data. See 7.5.30 USER_DATAQosPolicy on page 470.

WriterDataLifeCycle
Controls how a DataWriter handles the lifecycle of the instances (keys) that the DataWriter is registered to manage.
See 7.5.31 WRITER_DATA_LIFECYCLEQoSPolicy on page 472.

Table 7.18 DataWriter QosPolicies

Many of the DataWriter QosPolicies also apply to DataReaders (see 8.3 DataReaders on page 509). For a
DataWriter to communicate with a DataReader, their QosPolicies must be compatible. Generally, for the
QosPolicies that apply both to the DataWriter and the DataReader, the setting in the DataWriter is con-
sidered an “offer” and the setting in the DataReader is a “request.” Compatibility means that what is
offered by the DataWriter equals or surpasses what is requested by the DataReader. Each policy’s descrip-
tion includes compatibility restrictions. For more information on compatibility, see 4.2.1 QoS Requested
vs. Offered Compatibility—the RxO Property on page 180.

Some of the policies may be changed after the DataWriter has been created. This allows the application to
modify the behavior of the DataWriter while it is in use. To modify the QoS of an already-created
DataWriter, use the get_qos() and set_qos() operations on the DataWriter. This is a general pattern for all
Entities, described in 4.1.7.3 Changing the QoS for an Existing Entity on page 175.

7.3.15.1 Configuring QoS Settings when the DataWriter is Created

As described in 7.3.1 Creating DataWriters on page 293, there are different ways to create a DataWriter,
depending on how you want to specify its QoS (with or without a QoS Profile).

l In Figure 7.9: Creating a DataWriter with Default QosPolicies and a Listener on page 294, there is
an example of how to create a DataWriter with default QosPolicies by using the special constant,
DDS_DATAWRITER_QOS_DEFAULT, which indicates that the default QoS values for a

337

7.3.15 Setting DataWriter QosPolicies

338

DataWriter should be used. The default DataWriter QoS values are configured in the Publisher or
DomainParticipant; you can change them with set_default_datawriter_qos() or set_default_
datawriter_qos_with_profile(). Then any DataWriters created with the Publisher will use the new
default values. As described in 4.1.7 Getting, Setting, and Comparing QosPolicies on page 172,
this is a general pattern that applies to the construction of all Entities.

l To create a DataWriter with non-default QoS without using a QoS Profile, see the example code in
Figure 7.16: Creating a DataWriter with Modified QosPolicies (not from a profile) below. It uses the
Publisher’s get_default_writer_qos()method to initialize a DDS_DataWriterQos structure. Then
the policies are modified from their default values before the structure is used in the create_
datawriter()method.

l You can also create a DataWriter and specify its QoS settings via a QoS Profile. To do so, you will
call create_datawriter_with_profile(), as seen in Figure 7.17: Creating a DataWriter with a QoS
Profile on the next page.

l If you want to use a QoS profile, but then make some changes to the QoS before creating the
DataWriter, call get_datawriter_qos_from_profile() and create_datawriter() as seen in Figure
7.18: Getting QoS Values from a Profile, Changing QoS Values, Creating a DataWriter with Modi-
fied QoS Values on the next page.

For more information, see 7.3.1 Creating DataWriters on page 293 and Configuring QoS with XML
(Chapter 19 on page 854).

Notes:

l The examples in this section use the Traditional C++ API; for examples in the Modern C++ API,
see the sections "DataWriter Use Cases," "Qos Use Cases," and "Qos Provider Use Cases" in the
API Reference HTML documentation, under "Programming How-To's."

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 7.16: Creating a DataWriter with Modified QosPolicies (not from a profile)

DDS_DataWriterQos writer_qos;
// initialize writer_qos with default values
publisher->get_default_datawriter_qos(writer_qos);
// make QoS changes
writer_qos.history.depth = 5;
// Create the writer with modified qos
DDSDataWriter * writer = publisher->create_datawriter(

topic, writer_qos, NULL, DDS_STATUS_MASK_NONE);
if (writer == NULL) {

// ... error
}
// narrow it for your specific data type
FooDataWriter* foo_writer = FooDataWriter::narrow(writer);

7.3.15 Setting DataWriter QosPolicies

Figure 7.17: Creating a DataWriter with a QoS Profile

// Create the datawriter
DDSDataWriter * writer =

publisher->create_datawriter_with_profile(
topic, “MyWriterLibrary”, “MyWriterProfile”,
NULL, DDS_STATUS_MASK_NONE);

if (writer == NULL) {
// ... error

};
// narrow it for your specific data type
FooDataWriter* foo_writer = FooDataWriter::narrow(writer);

Figure 7.18: Getting QoS Values from a Profile, Changing QoS Values, Creating a
DataWriter with Modified QoS Values

DDS_DataWriterQos writer_qos;
// Get writer QoS from profile
retcode = factory->get_datawriter_qos_from_profile(

writer_qos, “WriterProfileLibrary”, “WriterProfile”);
if (retcode != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes
writer_qos.history.depth = 5;
DDSDataWriter * writer = publisher->create_datawriter(

topic, writer_qos, NULL, DDS_STATUS_MASK_NONE);
if (participant == NULL) {

// handle error
}

7.3.15.2 Comparing QoS Values

The equals() operation compares two DataWriter’s DDS_DataWriterQoS structures for equality. It takes
two parameters for the two DataWriter’s QoS structures to be compared, then returns TRUE is they are
equal (all values are the same) or FALSE if they are not equal.

7.3.15.3 Changing QoS Settings After the DataWriter Has Been Created

There are two ways to change an existing DataWriter’s QoS after it is has been created—again depending
on whether or not you are using a QoS Profile.

l To change QoS programmatically (that is, without using a QoS Profile), use get_qos() and set_qos
(). See the example code in Figure 7.19: Changing the QoS of an Existing DataWriter (without a
QoS Profile) below. It retrieves the current values by calling the DataWriter’s get_qos() operation.
Then it modifies the value and calls set_qos() to apply the new value. Note, however, that some
QosPolicies cannot be changed after the DataWriter has been enabled—this restriction is noted in
the descriptions of the individual QosPolicies.

339

7.3.15 Setting DataWriter QosPolicies

340

l You can also change a DataWriter’s (and all other Entities’) QoS by using a QoS Profile and calling
set_qos_with_profile(). For an example, see Figure 7.20: Changing the QoS of an Existing
DataWriter with a QoS Profile below. For more information, see Configuring QoS with XML
(Chapter 19 on page 854).

Figure 7.19: Changing the QoS of an Existing DataWriter (without a QoS Profile)

DDS_DataWriterQos writer_qos;
// Get current QoS.
if (datawriter->get_qos(writer_qos) != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes here
writer_qos.history.depth = 5;
// Set the new QoS
if (datawriter->set_qos(writer_qos) != DDS_RETCODE_OK) {

// handle error
}

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 7.20: Changing the QoS of an Existing DataWriter with a QoS Profile

retcode = writer->set_qos_with_profile(
“WriterProfileLibrary”,”WriterProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

7.3.15.4 Using a Topic’s QoS to Initialize a DataWriter’s QoS

Several DataWriter QosPolicies can also be found in the QosPolicies for Topics (see 5.1.3 Setting Topic
QosPolicies on page 220). The QosPolicies set in the Topic do not directly affect the DataWriters (or
DataReaders) that use that Topic. In many ways, some QosPolicies are a Topic-level concept, even
though the DDS standard allows you to set different values for those policies for different DataWriters and
DataReaders of the same Topic. Thus, the policies in the DDS_TopicQos structure exist as a way to help
centralize and annotate the intended or suggested values of those QosPolicies. Connext DDS does not
check to see if the actual policies set for a DataWriter is aligned with those set in the Topic to which it is
bound.

There are many ways to use the QosPolicies’ values set in the Topic when setting the QosPolicies’ values
in a DataWriter. The most straightforward way is to get the values of policies directly from the Topic and
use them in the policies for the DataWriter, as shown in Figure 7.21: Copying Selected QoS from a Topic
when Creating a DataWriter below.

7.3.15 Setting DataWriter QosPolicies

Figure 7.21: Copying Selected QoS from a Topic when Creating a DataWriter

DDS_DataWriterQos writer_qos;
DDS_TopicQos topic_qos;
// topic and publisher already created
// get current QoS for the topic, default QoS for the writer
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {

// handle error
}
if (publisher->get_default_datawriter_qos(writer_qos)

!= DDS_RETCODE_OK) {
// handle error

}
// Copy specific policies from topic QoS to writer QoS
writer_qos.deadline = topic_qos.deadline;
writer_qos.reliability = topic_qos.reliability;
// Create the DataWriter with the modified QoS
DDSDataWriter* writer = publisher->create_datawriter(topic,

writer_qos,NULL, DDS_STATUS_MASK_NONE);

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

You can use the Publisher’s copy_from_topic_qos() operation to copy all of the common policies from
the Topic QoS to a DataWriter QoS. This is illustrated in Figure 7.22: Copying all QoS from a Topic
when Creating a DataWriter below.
Figure 7.22: Copying all QoS from a Topic when Creating a DataWriter

DDS_DataWriterQos writer_qos;
DDS_TopicQos topic_qos;
// topic, publisher, writer_listener already created
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {
// handle error
}
if (publisher->get_default_datawriter_qos(writer_qos)

!= DDS_RETCODE_OK)
{

// handle error
}
// copy relevant QoS from topic into writer’s qos
publisher->copy_from_topic_qos(writer_qos, topic_qos);
// Optionally, modify policies as desired
writer_qos.deadline.duration.sec = 1;
writer_qos.deadline.duration.nanosec = 0;
// Create the DataWriter with the modified QoS
DDSDataWriter* writer = publisher->create_datawriter(topic,

writer_qos, writer_listener, DDS_STATUS_MASK_ALL);

341

7.3.15 Setting DataWriter QosPolicies

342

In another design pattern, you may want to start with the default QoS values for a DataWriter and override
them with the QoS values of the Topic. Figure 7.23: Combining Default Topic and DataWriter QoS
(Option 1) below gives an example of how to do this.

Because this is a common pattern, Connext DDS provides a special macro, DDS_DATAWRITER_
QOS_USE_TOPIC_QOS, that can be used to indicate that the DataWriter should be created with the set
of QoS values that results from modifying the default DataWriter QosPolicies with the QoS values spe-
cified by the Topic. Figure 7.24: Combining Default Topic and DataWriter QoS (Option 2) on the next
page shows how the macro is used.

The code fragments shown in Figure 7.23: Combining Default Topic and DataWriter QoS (Option 1)
below and Figure 7.24: Combining Default Topic and DataWriter QoS (Option 2) on the next page result
in identical QoS settings for the created DataWriter.

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 7.23: Combining Default Topic and DataWriter QoS (Option 1)

DDS_DataWriterQos writer_qos;
DDS_TopicQos topic_qos;
// topic, publisher, writer_listener already created
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {
// handle error
}
if (publisher->get_default_datawriter_qos(writer_qos)

!= DDS_RETCODE_OK) {
// handle error
}
if (publisher->copy_from_topic_qos(writer_qos, topic_qos)

!= DDS_RETCODE_OK) {
// handle error
}
// Create the DataWriter with the combined QoS
DDSDataWriter* writer =

publisher->create_datawriter(topic, writer_qos,
writer_listener,DDS_STATUS_MASK_ALL);

Figure 7.24: Combining Default Topic and DataWriter QoS (Option 2)

// topic, publisher, writer_listener already created
DDSDataWriter* writer = publisher->create_datawriter (topic,
DDS_DATAWRITER_QOS_USE_TOPIC_QOS,
writer_listener, DDS_STATUS_MASK_ALL);

For more information on the general use and manipulation of QosPolicies, see 4.1.7 Getting, Setting, and
Comparing QosPolicies on page 172.

7.3.16 Navigating Relationships Among DDS Entities

7.3.16 Navigating Relationships Among DDS Entities

7.3.16.1 Finding Matching Subscriptions

The following DataWriter operations can be used to get information on the DataReaders that are currently
associated with the DataWriter (that is, the DataReaders to which Connext DDS will send the data written
by the DataWriter). A subscription consists of information about the DataReader and its associated Sub-
scriber and Topic.

l get_matched_subscriptions()

l get_matched_subscription_data()

l get_matched_subscription_locators()

get_matched_subscriptions() will return a sequence of handles to matched DataReaders. You can use
these handles in the get_matched_subscription_data()method to get information about the DataReader
such as the values of its QosPolicies, as well as information about its Subscriber and Topic.

get_matched_subscription_locators() retrieves a list of locators for subscriptions currently "associated"
with the DataWriter.Matched subscription locators include locators for all those subscriptions in the same
DDS domain that have a matching Topic, compatible QoS, and a common partition that the DomainPar-
ticipant has not indicated should be "ignored." These are the locators that Connext DDS uses to com-
municate with matching DataReaders. (See 15.2.1.1 Locator Format on page 776.)

Note: In the Modern C++ API, these operations are freestanding functions in the dds::pub or rti::pub
namespaces.

You can also get the DATA_WRITER_PROTOCOL_STATUS for matching subscriptions with these
operations (see 7.3.6.3 DATA_WRITER_PROTOCOL_STATUS on page 299):

l get_matched_subscription_datawriter_protocol_status()

l get_matched_subscription_datawriter_protocol_status_by_locator()

Notes:

l The get_matched_subscriptions() function includes the return of handles of matched DataReaders
that are no longer active. All of the handles returned by this function are valid inputs to the get_
matched_subscription_data() function.

l Status/data for a matched subscription is kept even if the matched DataReader is not active.
Status/data for a matched subscription will be removed only if the DataReader is gone: that is, the
DataReader is destroyed and this change is propagated through a discovery update, or the
DataReader's DomainParticipant is gone (either gracefully or its liveliness expired and Connext
DDS is configured to purge not-alive participants). Once a matched DataReader is gone, its status is

343

7.3.16 Navigating Relationships Among DDS Entities

344

deleted. If you try to get the status/data for a matched DataReader that is gone, the 'get status' or '
get data' call will return an error.

l If you want to know which matched DataReaders are not active, use is_matched_subscription_
active(). See Table 7.3 DataWriter Operations on page 289.

l DataReaders that have been ignored using the DomainParticipant’s ignore_subscription() oper-
ation are not considered to be matched even if the DataReader has the same Topic and compatible
QosPolicies. Thus, they will not be included in the list of DataReaders returned by get_matched_
subscriptions() or get_matched_subscription_locators(). See 18.4.2 Ignoring Publications and
Subscriptions on page 849 for more on ignore_subscription().

l The get_matched_subscription_data() operation does not retrieve the type_code information from
built-in-topic data structures. This information is available through the on_data_available() callback
(if a DataReaderListener is installed on the SubscriptionBuiltinTopicDataDataReader).

See also: 7.3.16.2 Finding the Matching Subscription’s ParticipantBuiltinTopicData below

7.3.16.2 Finding the Matching Subscription’s ParticipantBuiltinTopicData

get_matched_subscription_participant_data() allows you to get the DDS_ParticipantBuiltinTopicData
(see Table 18.1 Participant Built-in Topic’s Data Type (DDS_ParticipantBuiltinTopicData)) of a matched
subscription using a subscription handle.

This operation retrieves the information on a discovered DomainParticipant associated with the sub-
scription that is currently matching with the DataWriter.The subscription handle passed into this operation
must correspond to a subscription currently associated with the DataWriter. Otherwise, the operation will
fail with RETCODE_BAD_PARAMETER. The operation may also fail with RETCODE_
PRECONDITION_NOT_MET if the subscription corresponds to the same DomainParticipant to which
the DataWriter belongs.

Use get_matched_subscriptions() (see 7.3.16.1 Finding Matching Subscriptions on the previous page)
to find the subscriptions that are currently matched with the DataWriter.

7.3.16.3 Finding Related DDS Entities

These operations are useful for obtaining a handle to various related Entities:

l get_publisher()

l get_topic()

get_publisher() returns the Publisher that created the DataWriter. get_topic() returns the Topic with
which the DataWriter is associated.

7.3.17 Asserting Liveliness

7.3.17 Asserting Liveliness

The assert_liveliness() operation can be used to manually assert the liveliness of the DataWriter without
writing data. This operation is only useful if the kind of 7.5.15 LIVELINESS QosPolicy on page 428 is
MANUAL_BY_PARTICIPANT orMANUAL_BY_TOPIC.

How DataReaders determine if DataWriters are alive is configured using the 7.5.15 LIVELINESS
QosPolicy on page 428. The lease_duration parameter of the LIVELINESS QosPolicy is a contract by
the DataWriter to all of its matched DataReaders that it will send a packet within the time value of the
lease_duration to state that it is still alive.

There are three ways to assert liveliness. One is to have Connext DDS itself send liveliness packets peri-
odically when the kind of LIVELINESS QosPolicy is set to AUTOMATIC. The other two ways to
assert liveliness, used when liveliness is set toMANUAL, are to call write() to send data or to call the
assert_liveliness() operation without sending data.

7.3.18 Turbo Mode and Automatic Throttling for DataWriter Performance—
Experimental Features

This section describes two experimental features. The DataWriter has many QoS settings that can affect
the latency and throughput of outgoing data. There are QoS settings to control send window size (see
11.3.2.1 Understanding the Send Queue and Setting its Size on page 703) and settings that allow to
aggregate multiple DDS samples together to reduce CPU and bandwidth utilization (see 7.5.2 BATCH
QosPolicy (DDS Extension) on page 375 and 7.6 FlowControllers (DDS Extension) on page 475). The
choice of settings that provide the best performance depends on several factors, such as the frequency of
writing data, the size of the data, or the condition of the network. If these factors do not change over time,
you can choose values for those QoS settings that best suit your system. If these factors do change over
time in your system, you can use the following properties to let Connext DDS automatically adjust the
QoS settings as system conditions change:

l dds.domain_participant.auto_throttle.enable: Configures the DomainParticipant to gather
internal measurements (during DomainParticipant creation) that are required for the Auto Throttle
feature. This allows DataWriters belonging to this DomainParticipant to use the Auto Throttle fea-
ture. Default: false.

l dds.data_writer.auto_throttle.enable: Enables automatic throttling in the DataWriter so it can
automatically adjust the writing rate and the send window size; this minimizes the need for repair
DDS samples and improves latency. Default: false. For additional information on automatic throt-
tling, see 7.5.2.4 Turbo Mode: Automatically Adjusting the Number of Bytes in a Batch—Exper-
imental Feature on page 378.

Note: This property takes effect only in DataWriters that belong to a DomainParticipant that has set
the property dds.domain_participant.auto_throttle.enable (described above) to true.

345

7.4 Publisher/Subscriber QosPolicies

346

l dds.data_writer.enable_turbo_mode: Enables Turbo Mode and adjusts the batch max_data_
bytes on page 375 (see 7.5.2 BATCH QosPolicy (DDS Extension) on page 375) based on how fre-
quently the DataWriter writes data. Default: false. For additional information, see 7.5.2.4 Turbo
Mode: Automatically Adjusting the Number of Bytes in a Batch—Experimental Feature on
page 378.

The Built-in QoS profile BuiltinQosLibExp::Generic.AutoTuning enables both Turbo Mode and Auto
Throttling.

7.4 Publisher/Subscriber QosPolicies

This section provides detailed information on the QosPolicies associated with a Publisher. Note that Sub-
scribers have the exact same set of policies. Table 7.2 Publisher QosPolicies provides a quick reference.
They are presented here in alphabetical order.

l 7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) below

l 7.4.2 ENTITYFACTORY QosPolicy on page 349

l 7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension) on page 351

l 7.4.4 GROUP_DATA QosPolicy on page 354

l 7.4.5 PARTITION QosPolicy on page 357

l 7.4.6 PRESENTATION QosPolicy on page 363

7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)

This QosPolicy is used to enable or disable asynchronous publishing, asynchronous batch flushing, and
TopicQuery publishing for the Publisher.

For each of these features enabled, the Publisher will spawn a thread. There is a thread for asynchronous
publishing, a thread for asynchronous batch flushing, and a thread for TopicQuery publication.

The asynchronous publisher thread will be shared by all DataWriters (belonging to this Publisher) that
have their 7.5.20 PUBLISH_MODE QosPolicy (DDS Extension) on page 445 kind set to
ASYNCHRONOUS. The asynchronous publishing thread will then handle the data transmission chores
for those DataWriters. This thread will only be spawned when the first of these DataWriters is enabled.

The asynchronous publisher thread can be used to reduce the amount of time spent in the user thread to
send data. You must use it when sending large data reliably. Large in this context means that the data size
is larger than the transport’smessage_size_max. See also 23.3 Large Data Fragmentation on page 976.

The asynchronous batch flushing thread will be shared by all DataWriters (belonging to this Publisher)
that have batching enabled and max_flush_delay different than DURATION_INFINITE in 7.5.2
BATCH QosPolicy (DDS Extension) on page 375. This thread will only be spawned when the first of
these DataWriters is enabled.

7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)

The TopicQuery publication thread will be shared by all DataWriters (belonging to this Publisher) that
have topic query dispatch enabled in 7.5.24 TOPIC_QUERY_DISPATCH_QosPolicy (DDS Extension)
on page 456. This thread will only be spawned when the first of these DataWriters is enabled.

This QosPolicy allows you to adjust the asynchronous publishing, the asynchronous batch flushing
threads, and the TopicQuery publication threads independently.

Batching and asynchronous publication are independent of one another. Flushing a batch on an asyn-
chronous DataWriter makes it available for sending to the DataWriter's 7.6 FlowControllers (DDS Exten-
sion) on page 475. From the point of view of the FlowController, a batch is treated like one large DDS
sample.

Connext DDS will sometimes coalesce multiple DDS samples into a single network datagram. For
example, DDS samples buffered by a FlowController or sent in response to a negative acknowledgement
(NACK) may be coalesced. This behavior is distinct from DDS sample batching. DDS data samples sent
by different asynchronous DataWriters belonging to the same Publisher to the same destination will not be
coalesced into a single network packet. Instead, two separate network packets will be sent. Only DDS
samples written by the same DataWriter and intended for the same destination will be coalesced.

This QosPolicy includes the members in Table 7.19 DDS_AsynchronousPublisherQosPolicy.

Type Field Name Description

DDS_Boolean
disable_asyn-
chronous_write

Disables asynchronous publishing. To write asynchronously, this field must be FALSE (the default).

DDS_ThreadSet-
tings_t

thread
Settings for the publishing thread. These settings are OS-dependent (see the RTI Connext DDSCore
LibrariesPlatformNotes).

DDS_Boolean
disable_asyn-
chronous_batch

Disables asynchronous batch flushing. To flush asynchronously, this field must be FALSE (the default).

DDS_ThreadSet-
tings_t

asynchronous_
batch_thread

Settings for the asynchronous batch flushing thread. These settings are OS-dependent (see the RTI
Connext DDSCore LibrariesPlatformNotes).

DDS_Boolean
disable_topic_query_
publication

Disables TopicQuery publication. To allow publishing TopicQueries responses, this field must be
FALSE (the default).

DDS_ThreadSet-
tings_t

topic_query_pub-
lication_thread

Settings for the TopicQuery publication thread. These settings are OS-dependent (see the RTI Con-
next DDSCore LibrariesPlatformNotes).

Table 7.19 DDS_AsynchronousPublisherQosPolicy

7.4.1.1 Properties

This QosPolicy cannot be modified after the Publisher is created.

Since it is only for Publishers, there are no compatibility restrictions for how it is set on the publishing and
subscribing sides.

347

7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)

348

7.4.1.2 Related PropertyQos Policies

l dds.domain_participant.asynchronous_publisher_thread_destruction_timeout:Maximum
time in seconds the DomainParticipant will wait for the destruction of an asynchronous publisher
thread. If this timeout expires before the asynchronous publisher thread is destroyed, the DomainPar-
ticipant cannot safely release the thread's resources, and it will skip their release. Default: 10
(seconds). Valid values: 1-60 (seconds).

7.4.1.3 Related QosPolicies

l If disable_asynchronous_write is TRUE (not the default), then any DataWriters created from this
Publisher must have their 7.5.20 PUBLISH_MODE QosPolicy (DDS Extension) on page 445
kind set to SYNCHRONOUS. (Otherwise create_datawriter() will return INCONSISTENT_
QOS.)

l If disable_asynchronous_batch is TRUE (not the default), then any DataWriters created from this
Publisher must havemax_flush_delay in 7.5.2 BATCH QosPolicy (DDS Extension) on page 375
set to DURATION_INFINITE. (Otherwise create_datawriter() will return INCONSISTENT_
QOS.)

l DataWriters configured to use the 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on
page 433 do not support asynchronous publishing; an error is returned if a multi-channel DataWriter
is configured for asynchronous publishing.

l If disable_topic_query_publication is TRUE (not the default), then any DataWriters created from
this Publisher must have enable in 7.5.24 TOPIC_QUERY_DISPATCH_QosPolicy
(DDS Extension) on page 456) to TRUE. (Otherwise create_datawriter() will return
INCONSISTENT_QOS.)

7.4.1.4 Applicable DDS Entities

7.2 Publishers on page 272

7.4.1.5 System Resource Considerations

Three threads can potentially be created:

l For asynchronous publishing, system resource usage depends on the activity of the asynchronous
thread controlled by the FlowController (see 7.6 FlowControllers (DDS Extension) on page 475).

l For asynchronous batch flushing, system resource usage depends on the activity of the asyn-
chronous thread controlled by max_flush_delay in 7.5.2 BATCH QosPolicy (DDS Extension) on
page 375.

7.4.2 ENTITYFACTORY QosPolicy

l For TopicQuery publication, system resource usage depends on the activity of the TopicQuery pub-
lication thread controlled by 7.5.24 TOPIC_QUERY_DISPATCH_QosPolicy (DDS Extension)
on page 456.

7.4.2 ENTITYFACTORY QosPolicy

This QosPolicy controls whether or not child Entities are created in the enabled state.

This QosPolicy applies to the DomainParticipantFactory, DomainParticipants, Publishers, and Sub-
scribers, which act as ‘factories’ for the creation of subordinate Entities. A DomainParticipantFactory is
used to create DomainParticipants. A DomainParticipant is used to create both Publishers and Sub-
scribers. A Publisher is used to create DataWriters, similarly a Subscriber is used to create DataReaders.

Entities can be created either in an ‘enabled’ or ‘disabled’ state. An enabled entity can actively participate
in communication. A disabled entity cannot be discovered or take part in communication until it is expli-
citly enabled. For example, Connext DDS will not send data if the write() operation is called on a disabled
DataWriter, nor will Connext DDS deliver data to a disabled DataReader. You can only enable a disabled
entity. Once an entity is enabled, you cannot disable it, see 4.1.2 Enabling DDS Entities on page 168
about the enable()method.

The ENTITYFACTORY contains only one member, as illustrated in Table 7.20 DDS_EntityFact-
oryQosPolicy.

Type Field Name Description

DDS_Boolean autoenable_created_entities
DDS_BOOLEAN_TRUE: enable Entitieswhen they are created

DDS_BOOLEAN_FALSE: do not enable Entitieswhen they are created

Table 7.20 DDS_EntityFactoryQosPolicy

The ENTITYFACTORY QosPolicy controls whether the Entities created from the factory are auto-
matically enabled upon creation or are left disabled. For example, if a Publisher is configured to auto-
enable created Entities, then all DataWriters created from that Publisher will be automatically enabled.

Note: if an entity is disabled, then all of the child Entities it creates are also created in a disabled state,
regardless of the setting of this QosPolicy. However, enabling a disabled entity will enable all of its chil-
dren if this QosPolicy is set to autoenable child Entities.

Note: an entity can only be enabled; it cannot be disabled after its been enabled.

See 7.4.2.1 Example below for an example of how to set this policy.

There are various reasons why you may want to create Entities in the disabled state:

349

7.4.2 ENTITYFACTORY QosPolicy

350

l To get around a “chicken and egg”-type issue. Where you need to have an entity in order to modify
it, but you don’t want the entity to be used by Connext DDS until it has been modified.

For example, if you create a DomainParticipant in the enabled state, it will immediately start send-
ing packets to other nodes trying to discover if other Connext DDS applications exist. However, you
may want to configure the built-in topic reader listener before discovery occurs. To do this, you
need to create a DomainParticipant in the disabled state because once enabled, discovery will
occur. If you set up the built-in topic reader listener after the DomainParticipant is enabled, you
may miss some discovery traffic.

l You may want to create Entities without having them automatically start to work. This especially
pertains to DataReaders. If you create a DataReader in an enabled state and you are using
DataReaderListeners, Connext DDS will immediately search for matching DataWriters and call-
back the listener as soon as data is published. This may not be what you want to happen if your
application is still in the middle of initialization when data arrives.

So typically, you would create all Entities in a disabled state, and then when all parts of the applic-
ation have been initialized, one would enable all Entities at the same time using the enable() oper-
ation on the DomainParticipant, see 4.1.2 Enabling DDS Entities on page 168.

l An entity’s existence is not advertised to other participants in the network until the entity is enabled.
Instead of sending an individual declaration packet to other applications announcing the existence of
the entity, Connext DDS can be more efficient in bundling multiple declarations into a single packet
when you enable all Entities at the same time.

See 4.1.2 Enabling DDS Entities on page 168 for more information about enabled/disabled Entities.

7.4.2.1 Example

The code in Figure 7.25: Configuring a Publisher so that New DataWriters are Disabled on the next page
illustrates how to use the ENTITYFACTORY QoS.

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension)

Figure 7.25: Configuring a Publisher so that New DataWriters are Disabled

DDS_PublisherQos publisher_qos;
// topic, publisher, writer_listener already created
if (publisher->get_qos(publisher_qos) != DDS_RETCODE_OK) {

// handle error
}
publisher_qos.entity_factory.autoenable_created_entities

= DDS_BOOLEAN_FALSE;
if (publisher->set_qos(publisher_qos) != DDS_RETCODE_OK) {

// handle error
}
// Subsequently created DataWriters are created disabled and
// must be explicitly enabled by the user-code
DDSDataWriter* writer = publisher->create_datawriter(topic,

DDS_DATAWRITER_QOS_DEFAULT, writer_listener, DDS_STATUS_MASK_ALL);
// now do other initialization
// Now explicitly enable the DataWriter, this will allow other
// applications to discover the DataWriter and for this application
// to send data when the DataWriter’s write() method is called
writer->enable();

7.4.2.2 Properties

This QosPolicy can be modified at any time.

It can be set differently on the publishing and subscribing sides.

7.4.2.3 Related QosPolicies

This QosPolicy does not interact with any other policies.

7.4.2.4 Applicable DDS Entities

l 9.2 DomainParticipantFactory on page 608

l 9.3 DomainParticipants on page 615

l 7.2 Publishers on page 272

l 8.2 Subscribers on page 491

7.4.2.5 System Resource Considerations

This QosPolicy does not significantly impact the use of system resources.

7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension)

This QoSPolicy is deprecated as of release 6.1.1 and will be removed in a future release.

This QosPolicy controls the creation and use of Exclusive Areas. An exclusive area (EA) is a mutex with
built-in deadlock protection when multiple EAs are in use. It is used to provide mutual exclusion among

351

7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension)

352

different threads of execution. Multiple EAs allow greater concurrency among the internal and user threads
when executing Connext DDS code.

EAs allow Connext DDS to be multi-threaded while preventing threads from a classical deadlock scenario
for multi-threaded applications. EAs prevent a DomainParticipant's internal threads from deadlocking
with each other when executing internal code as well as when executing the code of user-registered
listener callbacks.

Within an EA, all calls to the code protected by the EA are single threaded. Each DomainParticipant, Pub-
lisher and Subscriber represents a separate EA. All DataWriters of the same Publisher and all DataRead-
ers of the same Subscriber share the EA of its parent. This means that the DataWriters of the same
Publisher and the DataReaders of the same Subscriber are inherently single threaded.

Within an EA, there are limitations on how code protected by a different EA can be accessed. For
example, when data is being processed by user code received in the DataReaderListener of a Subscriber
EA, the user code may call the write() function of a DataWriter that is protected by the EA of its
Publisher. So you can send data in the function called to process received data. However, you cannot cre-
ate Entities or call functions that are protected by the EA of the DomainParticipant. See 4.5 Exclusive
Areas (EAs) on page 197 for the complete documentation on Exclusive Areas.

With this QoS, you can force a Publisher or Subscriber to share the same EA as its DomainParticipant.
Using this capability, the restriction of not being to create Entities in a DataReaderListener's on_data_
available() callback is lifted. However, the trade-off is that the application has reduced concurrency
through the Entities that share an EA.

Note that the restrictions on calling methods in a different EA only exists for user code that is called in
registered Listeners by internal DomainParticipant threads. User code may call all Connext DDS functions
for any Entities from their own threads at any time.

The EXCLUSIVE_AREA includes a single member, as listed in Table 7.21 DDS_Exclus-
iveAreaQosPolicy. For the default value, please see the API Reference HTML documentation.

Type Field Name Description

DDS_Boolean use_shared_exclusive_area

DDS_BOOLEAN_FALSE:
subordinates will not use the same EA

DDS_BOOLEAN_TRUE:
subordinates will use the same EA

Table 7.21 DDS_ExclusiveAreaQosPolicy

The implications and restrictions of using a private or shared EA are discussed in 4.5 Exclusive Areas
(EAs) on page 197. The basic trade-off is concurrency versus restrictions on which methods can be called
in user, listener, callback functions. To summarize:

7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension)

Behavior when the Publisher or Subscriber’s use_shared_exclusive_area is set to FALSE:

l The creation of the Publisher/Subscriber will create an EA that will be used only by the Pub-
lisher/Subscriber and the DataWriters/DataReaders that belong to them.

l Consequences: This setting maximizes concurrency at the expense of creating a mutex for the Pub-
lisher or Subscriber. In addition, using a separate EA may restrict certain Connext DDS operations
(see 4.4.6 Operations Allowed within Listener Callbacks on page 196) from being called from the
callbacks of Listeners attached to those Entities and the Entities that they create. This limitation res-
ults from a built-in deadlock protection mechanism.

Behavior when the Publisher or Subscriber’s use_shared_exclusive_area is set to TRUE:

l The creation of the Publisher/Subscriber does not create a new EA. Instead, the Pub-
lisher/Subscriber, along with the DataWriters/DataReaders that they create, will use a common EA
shared with the DomainParticipant.

l Consequences: By sharing the same EA among multiple Entities, you may decrease the amount of
concurrency in the application, which can adversely impact performance. However, this setting does
use less resources and allows you to call almost any operation on any Entity within a listener call-
back (see 4.5 Exclusive Areas (EAs) on page 197 for full details).

7.4.3.1 Example

The code in Figure 7.26: Creating a Publisher with a Shared Exclusive Area below illustrates how to
change the EXCLUSIVE_AREA policy.

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 7.26: Creating a Publisher with a Shared Exclusive Area

DDS_PublisherQos publisher_qos;
// domain, publisher_listener have been previously created
if (participant->get_default_publisher_qos(publisher_qos) !=

DDS_RETCODE_OK) {
// handle error

}
publisher_qos.exclusive_area.use_shared_exclusive_area = DDS_BOOLEAN_TRUE;
DDSPublisher* publisher = participant->create_publisher(publisher_qos,

publisher_listener, DDS_STATUS_MASK_ALL);

7.4.3.2 Properties

This QosPolicy cannot be modified after the Entity has been created.

353

7.4.4 GROUP_DATA QosPolicy

354

It can be set differently on the publishing and subscribing sides.

7.4.3.3 Related QosPolicies

This QosPolicy does not interact with any other policies.

7.4.3.4 Applicable DDS Entities

l 7.2 Publishers on page 272

l 8.2 Subscribers on page 491

7.4.3.5 System Resource Considerations

This QosPolicy affects the use of operating-system mutexes. When use_shared_exclusive_area is
FALSE, the creation of a Publisher or Subscriber will create an operating-system mutex.

7.4.4 GROUP_DATA QosPolicy

This QosPolicy provides an area where your application can store additional information related to the Pub-
lisher and Subscriber. This information is passed between applications during discovery (see Discovery
(Chapter 15 on page 770)) using built-in-topics (see Built-In Topics (Chapter 18 on page 837)). How this
information is used will be up to user code. Connext DDS does not do anything with the information
stored as GROUP_DATA except to pass it to other applications.

Use cases are often application-to-application identification, authentication, authorization, and encryption
purposes. For example, applications can use this QosPolicy to send security certificates to each other for
RSA-type security.

The value of the GROUP_DATA QosPolicy is sent to remote applications when they are first discovered,
as well as when the Publisher or Subscriber’s set_qos()method is called after changing the value of the
GROUP_DATA. User code can set listeners on the built-in DataReaders of the built-in Topics used by
Connext DDS to propagate discovery information. Methods in the built-in topic listeners will be called
whenever new DomainParticipants, DataReaders, and DataWriters are found. Within the user callback,
you will have access to the GROUP_DATA that was set for the associated Publisher or Subscriber.

Currently, GROUP_DATA of the associated Publisher or Subscriber is only propagated with the inform-
ation that declares a DataWriter or DataReader. Thus, you will need to access the value of GROUP_
DATA through DDS_PublicationBuiltinTopicData or DDS_SubscriptionBuiltinTopicData (see Built-In
Topics (Chapter 18 on page 837)).

The structure for the GROUP_DATA QosPolicy includes just one field, as seen in Table 7.22 DDS_
GroupDataQosPolicy. The field is a sequence of octets that translates to a contiguous buffer of bytes
whose contents and length is set by the user. The maximum size for the data are set in the 9.5.4
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660.

7.4.4 GROUP_DATA QosPolicy

Type Field Name Description

DDS_OctetSeq value Empty by default

Table 7.22 DDS_GroupDataQosPolicy

This policy is similar to the 7.5.30 USER_DATA QosPolicy on page 470 and 5.2.1 TOPIC_DATA
QosPolicy on page 225 that apply to other types of Entities.

7.4.4.1 Example

One possible use of GROUP_DATA is to pass some credential or certificate that your subscriber applic-
ation can use to accept or reject communication with the DataWriters that belong to the Publisher (or vice
versa, where the publisher application can validate the permission of DataReaders of a Subscriber to
receive its data). The value of the GROUP_DATA of the Publisher is propagated in the ‘group_data’ field
of the DDS_PublicationBuiltinTopicData that is sent with the declaration of each DataWriter. Similarly,
the value of the GROUP_DATA of the Subscriber is propagated in the ‘group_data’ field of the DDS_
SubscriptionBuiltinTopicData that is sent with the declaration of each DataReader.

When Connext DDS discovers a DataWriter/DataReader, the application can be notified of the discovery
of the new entity and retrieve information about the DataWriter/DataReader QoS by reading the
DCPSPublication or DCPSSubscription built-in topics (see Built-In Topics (Chapter 18 on page 837)).
Your application can then examine the GROUP_DATA field in the built-in Topic and decide whether or
not the DataWriter/DataReader should be allowed to communicate with local DataReaders/DataWriters.
If communication is not allowed, the application can use the DomainParticipant’s ignore_publication()
or ignore_subscription() operation to reject the newly discovered remote entity as one with which the
application allows Connext DDS to communicate. See Figure 18.2: Ignoring Publications on page 850 for
an example of how to do this.

The code in Figure 7.27: Creating a Publisher with GROUP_DATA below illustrates how to change the
GROUP_DATA policy.

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 7.27: Creating a Publisher with GROUP_DATA

DDS_PublisherQos publisher_qos;
int i = 0;
// Bytes that will be used for the group data. In this case, 8 bytes
// of some information that is meaningful to the user application
char myGroupData[GROUP_DATA_SIZE] =

{ 0x34, 0xaa, 0xfe, 0x31, 0x7a, 0xf2, 0x34, 0xaa};
// assume domainparticipant and publisher_listener already created

355

7.4.4 GROUP_DATA QosPolicy

356

if (participant->get_default_publisher_qos(publisher_qos) !=
DDS_RETCODE_OK) {
// handle error

}
// Must set the size of the sequence first
publisher_qos.group_data.value.maximum(GROUP_DATA_SIZE);
publisher_qos.group_data.value.length(GROUP_DATA_SIZE);
for (i = 0; i < GROUP_DATA_SIZE; i++) {

publisher_qos.group_data.value[i] = myGroupData[i]
}
DDSPublisher* publisher = participant->create_publisher(publisher_qos,

publisher_listener, DDS_STATUS_MASK_ALL);

7.4.4.2 Properties

This QosPolicy can be modified at any time.

It can be set differently on the publishing and subscribing sides.

7.4.4.3 Related QosPolicies

l 5.2.1 TOPIC_DATA QosPolicy on page 225

l 7.5.30 USER_DATA QosPolicy on page 470

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660

7.4.4.4 Applicable DDS Entities

l 7.2 Publishers on page 272

l 8.2 Subscribers on page 491

7.4.4.5 System Resource Considerations

The maximum size of the GROUP_DATA is set in the publisher_group_data_max_length and sub-
scriber_group_data_max_length fields of the 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_
LIMITS QosPolicy (DDS Extension) on page 660. Because Connext DDS will allocate memory based on
this value, you should only increase this value if you need to. If your system does not use GROUP_
DATA, then you can set this value to zero to save memory. Setting the value of the GROUP_DATA
QosPolicy to hold data longer than the value set in the [publisher/subscriber]_group_data_max_length
fields will result in failure and an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of GROUP_DATA, you mustmake certain
that all applications in the DDS domain have changed the value of [publisher/subscriber]_group_data_
max_length to be the same. If two applications have different limits on the size of GROUP DATA, and
one application sets the GROUP_DATA QosPolicy to hold data that is greater than the maximum size set
by another application, then the matching DataWriters and DataReaders of the Publisher and Subscriber
between the two applications will not connect. This is also true for the TOPIC_DATA (5.2.1 TOPIC_

7.4.5 PARTITION QosPolicy

DATA QosPolicy on page 225) and USER_DATA (7.5.30 USER_DATA QosPolicy on page 470)
QosPolicies.

7.4.5 PARTITION QosPolicy

The PARTITION QoS provides another way to control which DataWriters will match—and thus com-
municate with—which DataReaders. It can be used to prevent DataWriters and DataReaders that would
have otherwise matched with the same Topic and compatible QosPolicies from talking to each other.
Much in the same way that only applications within the same DDS domain will communicate with each
other, only DataWriters and DataReaders that belong to the same partition can talk to each other.

The PARTITION QoS applies to Publishers and Subscribers, therefore the DataWriters and DataReaders
belong to the partitions as set on the Publishers and Subscribers that created them. The mechanism imple-
menting the PARTITION QoS is relatively lightweight, and membership in a partition can be dynamically
changed. Unlike the creation and destruction of DomainParticipants, there is no spawning and killing of
threads or allocation and deallocation of memory when Publishers and Subscribers add or remove them-
selves from partitions.

The PARTITION QoS consists of a set of partition names that identify the partitions of which the Entity is
a member. These names are simply strings, and DataWriters and DataReaders are considered to be in the
same partition if they have at least one partition name in common in the PARTITION QoS set on their
Publishers or Subscribers. By default, Publishers and Subscribers belong to a single partition whose name
is the empty string, ““.

Conceptually each partition name can be thought of as defining a “visibility plane” within the DDS
domain. DataWriters will make their data available on all the visibility planes that correspond to its Pub-
lisher’s partition names, and the DataReaders will see the data that is placed on any of the visibility planes
that correspond to its Subscriber’s partition names.

Figure 7.28: Controlling Visibility of Data with the PARTITION QoS on the next page illustrates the
concept of PARTITION QoS. In this figure, all DataWriters and DataReaders belong to the same DDS
domain and refer to the same Topic. DataWriter1 is configured to belong to three partitions: partition_A,
partition_B, and partition_C. DataWriter2 belongs to partition_C and partition_D.

357

7.4.5 PARTITION QosPolicy

358

Figure 7.28: Controlling Visibility of Data with the PARTITION QoS

Similarly, DataReader1 is configured to belong to partition_A and partition_B, and DataReader2 belongs
only to partition_C. Given this topology, the data written by DataWriter1 is visible in partitions A, B, and
C. The oval tagged with the number “1” represents one DDS data sample written by DataWriter1.

Similarly, the data written by DataWriter2 is visible in partitions C and D. The oval tagged with the num-
ber “2” represents one DDS data sample written by DataWriter2.

The result is that the data written by DataWriter1 will be received by both DataReader1 and
DataReader2, but the data written by DataWriter2 will only be visible by DataReader2.

Publishers and Subscribers always belong to a partition. By default, Publishers and Subscribers belong to
a single partition whose name is the empty string, ““. If you set the PARTITION QoS to be an empty set,
Connext DDS will assign the Publisher or Subscriber to the default partition, ““. Thus, for the example
above, without using the PARTITION QoS, DataReaders 1 and 2 would have received all DDS data
DDS samples written by DataWriters 1 and 2.

7.4.5.1 Rules for PARTITION Matching

On the Publisher side, the PARTITION QosPolicy associates a set of strings (partition names) with the
Publisher. On the Subscriber side, the application also uses the PARTITION QoS to associate partition
names with the Subscriber.

Taking into account the PARTITION QoS, a DataWriter will communicate with a DataReader if and
only if the following conditions apply:

1. The DataWriter and DataReader belong to the same DDS domain. That is, their respective
DomainParticipants are bound to the same DDS domain ID (see 9.3.1 Creating a DomainPar-
ticipant on page 621).

7.4.5 PARTITION QosPolicy

2. The DataWriter and DataReader have matching Topics. That is, each is associated with a Topic
with the same topic_name and data type.

3. The QoS offered by the DataWriter is compatible with the QoS requested by the DataReader.

4. The application has not used the ignore_participant(), ignore_datareader(), or ignore_
datawriter() APIs to prevent the association (see 18.4 Restricting Communication—Ignoring Entit-
ies on page 847).

5. The Publisher to which the DataWriter belongs and the Subscriber to which the DataReader
belongs must have at least one matching partition name.

The last condition reflects the visibility of the data introduced by the PARTITION QoS. Matching par-
tition names is done by string comparison, thus partition names are case sensitive.

Note: Failure to match partitions is not considered an incompatible QoS and does not trigger any listeners
or change any status conditions.

7.4.5.2 Pattern Matching for PARTITION Names

You may also add strings that are regular expressions (as defined in the POSIX fnmatch API (1003.2-
1992 Section B.6)) to the PARTITION QosPolicy. A regular expression does not define a set of partitions
to which the Publisher or Subscriber belongs, as much as it is used in the partition matching process to see
if a remote entity has a partition name that would be matched with the regular expression. That is, the reg-
ular expressions in the PARTITION QoS of a Publisher are never matched against those found in the
PARTITION QoS of a Subscriber. Regular expressions are always matched against “concrete” partition
names. Thus, a concrete partition name may not contain any reserved characters that are used to define reg-
ular expressions, for example ‘*’, ‘.’, ‘+’, etc.

For more on regular expressions, see 5.4.6.5 SQL Extension: Regular Expression Matching on page 242.

If a PARTITION QoS only contains regular expressions, then the Publisher or Subscriber will be
assigned automatically to the default partition with the empty string name (““). Thus, do not be fooled into
thinking that a PARTITION QoS that only contains the string “*” matches another PARTITION QoS that
only contains the string “*”. Yes, the Publisher will match the Subscriber, but it is because they both
belong to the default ““ partition.

DataWriters and DataReaders are considered to have a partition in common if the sets of partitions that
their associated Publishers and Subscribers have defined have:

At least one concrete partition name in common

A regular expression in one Entity that matches a concrete partition name in another Entity

The programmatic representation of the PARTITION QoS is shown in Table 7.23 DDS_Par-
titionQosPolicy. The QosPolicy contains the single string sequence, name. Each element in the sequence
can be a concrete name or a regular expression. The Entity will be assigned to the default ““ partition if the
sequence is empty.

359

7.4.5 PARTITION QosPolicy

360

Type Field Name Description

DDS_StringSeq name
Empty by default.

There can be up to 64 names, with a maximumof 256 characters summed across all names.

Table 7.23 DDS_PartitionQosPolicy

You can have one long partition string of 256 chars, or multiple shorter strings that add up to 256 or less
characters. For example, you can have one string of 4 chars and one string of 252 chars.

7.4.5.3 Example

Since the set of partitions for a Publisher or Subscriber can be dynamically changed, the Partition
QosPolicy is useful to control which DataWriters can send data to which DataReaders and vice versa—
even if all of the DataWriters and DataReaders are for the same topic. This facility is useful for creating
temporary separation groups among Entities that would otherwise be connected to and exchange data each
other.

Note when using Partitions and Durability: If a Publisher changes partitions after startup, it is possible for a
reliable, late-joining DataReader to receive data that was written for both the original and the new par-
tition. For example, suppose a DataWriter with TRANSIENT_LOCAL Durability initially writes DDS
samples with Partition A, but later changes to Partition B. In this case, a reliable, late-joining DataReader
configured for Partition B will receive whatever DDS samples have been saved for the DataWriter. These
may include DDS samples which were written when the DataWriter was using Partition A.

The code in Figure 7.29: Setting Partition Names on a Publisher on the next page illustrates how to change
the PARTITION policy.

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

7.4.5 PARTITION QosPolicy

Figure 7.29: Setting Partition Names on a Publisher

DDS_PublisherQos publisher_qos;
// domain, publisher_listener have been previously created
if (participant->get_default_publisher_qos(publisher_qos) !=

DDS_RETCODE_OK) {
// handle error

}
// Set the partition QoS
publisher_qos.partition.name.maximum(3);
publisher_qos.partition.name.length(3);
publisher_qos.partition.name[0] = DDS_String_dup(“partition_A”);
publisher_qos.partition.name[1] = DDS_String_dup(“partition_B”);
publisher_qos.partition.name[2] = DDS_String_dup(“partition_C”);
DDSPublisher* publisher = participant->create_publisher(

publisher_qos, publisher_listener, DDS_STATUS_MASK_ALL);

The ability to dynamically control which DataWriters are matched to which DataReaders (of the same
Topic) offered by the PARTITION QoS can be used in many different ways. Using partitions, con-
nectivity can be controlled based on location-based partitioning, access-control groups, purpose, or a com-
bination of these and other application-defined criteria. We will examine some of these options via
concrete examples.

Example of location-based partitions. Assume you have a set of Topics in a traffic management system
such as “TrafficAlert,” “AccidentReport,” and “CongestionStatus.” You may want to control the visibility
of these Topics based on the actual location to which the information applies. You can do this by placing
the Publisher in a partition that represents the area to which the information applies. This can be done
using a string that includes the city, state, and country, such as “USA/California/Santa Clara.” A Sub-
scriber can then choose whether it wants to see the alerts in a single city, the accidents in a set of states, or
the congestion status across the US. Some concrete examples are shown in Table 7.24 Example of Using
Location-Based Partitions.

Publisher Partitions Subscriber Partitions Result

Specify a single partition name us-
ing the pattern:

“<country>/<state>/<city>”

Specify multiple partition names, one per
region of interest

Limits the visibility of the data to Subscribers that express interest
in the geographical region.

“USA/California/Santa Clara” (Subscriber participant is irrelevant here.) Send only information for Santa Clara, California.

Table 7.24 Example of Using Location-Based Partitions

361

7.4.5 PARTITION QosPolicy

362

Publisher Partitions Subscriber Partitions Result

(Publisher partition is irrelevant
here.)

“USA/California/Santa Clara” Receive only information for Santa Clara, California.

“USA/California/Santa Clara”

“USA/California/Sunnyvale”
Receive information for Santa Clara or Sunnyvale, California.

“USA/California/*”

“USA/Nevada/*”
Receive information forCalifornia orNevada.

“USA/California/*”

“USA/Nevada/Reno”

“USA/Nevada/Las Vegas”

Receive information forCalifornia and two cities in Nevada.

Table 7.24 Example of Using Location-Based Partitions

Example of access-control group partitions. Suppose you have an application where access to the inform-
ation must be restricted based on reader membership to access-control groups. You can map this group-
controlled visibility to partitions by naming all the groups (e.g. executives, payroll, financial, general-staff,
consultants, external-people) and assigning the Publisher to the set of partitions that represents which
groups should have access to the information. The Subscribers specify the groups to which they belong,
and the partition-matching behavior will ensure that the information is only distributed to Subscribers
belonging to the appropriate groups. Some concrete examples are shown in Table 7.25 Example of
Access-Control Group Partitions.

Publisher Partitions Subscriber Partitions Result

Specify several partition names, one
per group that is allowed access:

Specify multiple partition names, one per
group to which the Subscriber belongs.

Limits the visibility of the data to Subscribers that belong to
the access-groups specified by the Publisher.

“payroll”

“financial”
(Subscriber participant is irrelevant here.)

Makes information available only to Subscribers that have
access to either financial or payroll information.

(Publisher participant is irrelevant
here.)

“executives”

“financial”

Gain access to information that is intended for executives
or people with access to the finances.

Table 7.25 Example of Access-Control Group Partitions

A slight variation of this pattern could be used to confine the information based on security levels.

Example of purpose-based partitions: Assume an application containing subsystems that can be used for
multiple purposes, such as training, simulation, and real use. In some occasions it is convenient to be able
to dynamically switch the subsystem from operating in the “simulation world” to the “training world” or to
the “real world.” For supervision purposes, it may be convenient to observe multiple worlds, so that you
can compare the each one’s results. This can be accomplished by setting a partition name in the Publisher
that represents the “world” to which it belongs and a set of partition names in the Subscriber that model the
worlds that it can observe.

7.4.6 PRESENTATION QosPolicy

7.4.5.4 Properties

This QosPolicy can be modified at any time.

Strictly speaking, this QosPolicy does not have request-offered semantics, although it is matched between
DataWriters and DataReaders, and communication is established only if there is a match between partition
names.

7.4.5.5 Related QosPolicies

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660.

7.4.5.6 Applicable DDS Entities

l 7.2 Publishers on page 272

l 8.2 Subscribers on page 491

7.4.5.7 System Resource Considerations

Partition names are propagated along with the declarations of the DataReaders and the DataWriters and
can be examined by user code through built-in topics (see Built-In Topics (Chapter 18 on page 837)).
Thus the sum-total length of the partition names will impact the bandwidth needed to transmit those declar-
ations, as well as the memory used to store them.

The maximum number of partitions and the maximum number of characters that can be used for the sum-
total length of all partition names are configured using the max_partitions and max_partition_cumulative_
characters fields of the 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS
Extension) on page 660. Setting more partitions or using longer names than allowed by those limits will
result in failure and an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum number of partitions or maximum cumulative length
of partition names, then you mustmake certain that all applications in the DDS domain have changed the
values of max_partitions and max_partition_cumulative_characters to be the same. If two applications
have different values for those settings, and one application sets the PARTITION QosPolicy to hold more
partitions or longer names than set by another application, then the matching DataWriters and DataRead-
ers of the Publisher and Subscriber between the two applications will not connect. This similar to the
restrictions for the GROUP_DATA (7.4.4 GROUP_DATA QosPolicy on page 354), USER_DATA
(7.5.30 USER_DATA QosPolicy on page 470), and TOPIC_DATA (5.2.1 TOPIC_DATA QosPolicy
on page 225) QosPolicies.

7.4.6 PRESENTATION QosPolicy

Usually DataReaders will receive data in the order that it was sent by a DataWriter. In addition, data is
presented to the DataReader as soon as the application receives the next value expected.

363

7.4.6 PRESENTATION QosPolicy

364

Sometimes, you may want a set of data for the same DataWriter or different DataWriters to be presented
to the receiving DataReader(s) only after ALL the elements of the set have been received, but not before.
You may also want the data to be presented in a different order than it was received. Specifically, for
keyed data, you may want Connext DDS to present the data in keyed or instance order.

The Presentation QosPolicy allows you to specify different scopes of presentation: within a DataWriter,
across instances of a DataWriter, and even across different DataWriters of a Publisher. It also controls
whether or not a set of changes within the scope must be delivered at the same time or delivered as soon as
each element is received. The structure used is shown in Table 7.26 DDS_PresentationQosPolicy.

Type Field
Name Description

DDS_Presentation_
QosPolicyAccessScopeKind

access_
scope

Determines the largest scope spanning the entities forwhich the ordered_access and coherent_ac-
cess of samples can be preserved (if coherent_access and/orordered_access are TRUE).

If both coherent_access and ordered_access are FALSE, access_scope’s setting has no effect.

l DDS_INSTANCE_PRESENTATION_QOS (default):
Scope spans only a single instance. Changes to one instance need not be coherent nor
ordered with respect to changes to any other instance. Order and coherent changes apply to
each instance separately.

l DDS_TOPIC_PRESENTATION_QOS:
Scope spans all instances within the same DataWriter, but not across instances in different
DataWriters.

l DDS_GROUP_PRESENTATION_QOS:
Scope spans all instances belonging to DataWriterswithin the same Publisher.

l DDS_HIGHEST_OFFERED_PRESENTATION_QOS: Only applies to Subscribers. With this
setting, the Subscriber will use the access scope specified by each remote Publisher.

DDS_Boolean
coherent_
access

Controls whetherConnext DDSwill preserve the groupings of changesmade by the publishing ap-
plication bymeans of begin_coherent_changes() and end_coherent_changes().

l DDS_BOOLEAN_FALSE (default): Coherency is not preserved. The value of access_
scope is ignored.

l DDS_BOOLEAN_TRUE: Changesmade to instances within each DataWriter will be avail-
able to the DataReader as a coherent set, based on the value of access_scope.

DDS_Boolean
ordered_ac-
cess

Controls whetherConnext DDSwill preserve the order of changes.

l DDS_BOOLEAN_FALSE (default): The order of DDS samples is only preserved for each
instance, not across instances. The value of access_scope is ignored.

l DDS_BOOLEAN_TRUE: The order of DDS samples froma DataWriter is preserved, based
on the value set in access_scope.

Table 7.26 DDS_PresentationQosPolicy

7.4.6 PRESENTATION QosPolicy

Type Field
Name Description

DDS_Boolean

drop_in-
complete_
coherent_
set

Indicates whether a DataReader should drop (and report as lost) samples froman incomplete co-
herent set (one forwhich not all the samples were received):

l DDS_BOOLEAN_FALSE: The DataReader will not drop samples that are part of an incom-
plete coherent set.

l DDS_BOOLEAN_TRUE (default): The DataReader will drop samples that are part of an
incomplete coherent set. Such samples are reported as lost, with the reason LOST_BY_
INCOMPLETE_COHERENT_SET, in the 8.3.7.7 SAMPLE_LOST Statuson page 532.

Note that a coherent set is also considered incomplete if some of its samples are filtered by content or
time on the DataWriter side.

Samples froman incomplete coherent set have incomplete_coherent_set in the coherent_set_info
field in the 8.4.6 The SampleInfo Structure on page 570 set to TRUE.

Table 7.26 DDS_PresentationQosPolicy

7.4.6.1 Coherent Access

A 'coherent set' is a set of DDS data-sample modifications that must be propagated in such a way that they
are interpreted at the receiver's side as a consistent set; that is, the receiver will only be able to access the
data after all the modifications in the set are available at the subscribing end.

Coherency enables a publishing application to change the value of several data-instances and have those
changes be seen atomically (as a cohesive set) by the readers.

Setting coherent_access to TRUE only behaves as described in the DDS specification when the
DataWriter and DataReader are configured for reliable delivery. Non-reliable DataReaders will never
receive DDS samples that belong to a coherent set.

To send a coherent set of DDS data samples, the publishing application uses the Publisher’s begin_coher-
ent_changes() and end_coherent_changes() operations (see 7.3.10 Writing Coherent Sets of DDS Data
Samples on page 317).

If coherent_access is TRUE, then the access_scope controls the maximum extent of the coherent changes,
as follows:

l If access_scope is INSTANCE, the behavior is the same as TOPIC.

l If access_scope is TOPIC, then coherent changes done by a DataWriter (indicated by their enclos-
ure within calls to begin_coherent_changes() and end_coherent_changes()) will be made avail-
able as a unit to each remote DataReader independently. That is, changes made to instances within
each individual DataWriter will be presented as a unit. They will not be grouped with changes made
to instances belonging to a different DataWriter.

365

7.4.6 PRESENTATION QosPolicy

366

l If access_scope is GROUP, coherent changes made to instances through a set of DataWriters
attached to a common Publisher are presented as a unit to the DataReaders within a Subscriber.

7.4.6.2 Ordered Access

If ordered_access is TRUE, then access_scope controls the scope of the order in which DDS samples are
presented to the subscribing application, as follows:

l If access_scope is INSTANCE, the relative order of DDS samples sent by a DataWriter is only pre-
served on a per-instance basis. If two DDS samples refer to the same instance (identified by Topic
and a particular value for the key) then the order in which they are stored in the DataReader’s queue
is consistent with the order in which the changes occurred. However, if the two DDS samples
belong to different instances, the order in which they are presented may or may not match the order
in which the changes occurred.

l If access_scope is TOPIC, the relative order of DDS samples sent by a DataWriter is preserved for
all DDS samples of all instances. The coherent grouping and/or order in which DDS samples appear
in the DataReader’s queue is consistent with the grouping/order in which the changes occurred in
that DataWriter—even if the DDS samples affect different instances.

l If access_scope is GROUP, the scope spans all instances belonging to DataWriters within the same
Publisher—even if they are instances of different topics. Changes made to instances via DataWriters
attached to the same Publisher are presented to the DataReaders within a Subscriber in the same
order in which they occurred.

l If access_scope is HIGHEST_OFFERED, the Subscriber will use the access scope specified by
each remote Publisher.

If the Subscriber's access_scope is GROUP or HIGHEST_OFFERED and ordered_access is TRUE, the
application is required to use the Subscriber's begin_access() and end_access() operations to access the
DDS samples in order across DataWriters of the same group (a Publisher with access_scope of GROUP).
If you do not use these operations, the data may not be ordered across DataWriters. See 8.2.5 Beginning
and Ending Group-Ordered Access on page 504 for additional details.

Ultimately, the data stored in the DataReader queue is accessed by the DataReader’s read()/take() APIs.
The application does not have to access the DDS data samples in the order indicated by the combination of
access_scope and ordered_access. How the application actually gets the data from the DataReader is ulti-
mately under the control of the user code. See 8.4 Using DataReaders to Access Data (Read & Take) on
page 558 for additional details.

7.4.6.3 Example

Coherency is useful in cases where the grouping matters across multiple Topics of a single Publisher. For
example, consider an "Aircraft State" Publisher with two DataWriters, one for a Topic representing the
altitude and the other for a Topic representing the velocity vector. If both altitude and velocity are changed

7.4.6 PRESENTATION QosPolicy

for a given aircraft in the producer application, it may be significant to communicate those values in a way
the reader can see both together as a group; otherwise, a consumer application may, for example, erro-
neously interpret that an aircraft is on a collision course.

Ordered access is useful when you need to ensure that DDS samples appear on the DataReader’s queue in
the order sent by one or multiple DataWriters within the same Publisher.

To illustrate the effect of the PRESENTATION QosPolicy with TOPIC and INSTANCE access scope,
assume the following sequence of DDS samples was written by the DataWriter: {A1, B1, C1, A2, B2,
C2}. In this example, A, B, and C represent different instances (i.e., different keys). Assume all of these
DDS samples have been propagated to the DataReader’s history queue before your application invokes
the read() operation. The DDS data-sample sequence returned depends on how the PRESENTATION
QoS is set, as shown in Table 7.27 Effect of ordered_access for access_scope INSTANCE and TOPIC.

PRESENTATION
QoS

Sequence retrieved via “read()”.

Order sent was {A1, B1, C1, A2, B2, C2}

ordered_access=
FALSE

access_scope = <any>

Anyorder is possible.

For example, {A1,A2,B1,B2,C1,C2}, {A1, B1, C1, A2, B2, C2}, and {C1,B2,A1,A2,B1,C2}

ordered_access=
TRUE

access_scope =
INSTANCE

Order is preserved per instance. Multiple orders are possible.

For example, {A1,A2,B1,B2,C1,C2}

or

{A1, B1, C1, A2, B2, C2}

or

{B1,B2,A1,A2,C1,C2}

Recall that coherent_accessby INSTANCEdoesnot apply, but ordered_accessby INSTANCEdoes. So for anygiven
instance, the samplesare ordered (B1must come before B2, for example), butConnext DDS doesnot need to deliver
all changes to the instance atomically.

ordered_access=
TRUE

access_scope = TOPIC

{A1, B1, C1, A2, B2, C2}

Table 7.27 Effect of ordered_access for access_scope INSTANCE and TOPIC

To illustrate the effect of a PRESENTATION QosPolicy with GROUP access_scope, assume the fol-
lowing sequence of DDS samples was written by two DataWriters,W1 and W2, within the same Pub-
lisher: {(W1,A1), (W2,B1), (W1,C1), (W2,A2), (W1,B2), (W2,C2)}. As in the previous example, A, B,
and C represent different instances (i.e., different keys). With access_scope set to INSTANCE or TOPIC,
the middleware cannot guarantee that the application will receive the DDS samples in the same order they
were published by W1 and W2. With access_scope set to GROUP, the middleware is able to provide the
DDS samples in order to the application as long as the read()/take() operations are invoked within a

367

7.4.6 PRESENTATION QosPolicy

368

begin_access()/end_access() block (see 8.2.5 Beginning and Ending Group-Ordered Access on
page 504).

PRESENTATION QoS
Sequence retrieved via “read()”.

Order sent was {(W1,A1), (W2,B1), (W1,C1), (W2,A2), (W1,B2), (W2,C2)}

ordered_access = FALSE

or

access_scope = TOPIC or
INSTANCE

The order acrossDataWriterswill not be preserved. DDS samples may be delivered in multiple orders. For ex-
ample:

{(W1,A1), (W1,C1), (W1,B2), (W2,B1), (W2,A2), (W2,C2)}

{(W1,A1), (W2,B1), (W1,B2), (W1,C1), (W2,A2), (W2,C2)}

ordered_access = TRUE

access_scope = GROUP

DDS samples are delivered in the same order they were published:

{(W1,A1), (W2,B1), (W1,C1), (W2,A2), (W1,B2), (W2,C2)}

Table 7.28 Effect of ordered_access for access_scope GROUP

7.4.6.4 Properties

This QosPolicy cannot be modified after the Publisher or Subscriber is enabled.

This QoS must be set compatibly between the DataWriter’s Publisher and the DataReader’s Subscriber.
The compatible combinations are shown in Table 7.29 Valid Combinations of ordered_access and access_
scope, with Subscriber’s ordered_access = False and Table 7.30 Valid Combinations of ordered_access
and access_scope, with Subscriber’s ordered_access = True for ordered_access and Table 7.31 Valid
Combinations of Presentation Coherent Access and Access Scope for coherent_access.

{ordered_access/access_scope}
Subscriber Requests:

False/Instance False/Topic False/Group False/Highest

Publisher offers:

False/Instance compatible incompatible incompatible compatible

False/Topic compatible compatible incompatible compatible

False/Group compatible compatible compatible compatible

True/Instance compatible incompatible incompatible compatible

True/Topic compatible compatible incompatible compatible

True/Group compatible compatible compatible compatible

Table 7.29 Valid Combinations of ordered_access and access_scope, with Subscriber’s
ordered_access = False

7.4.6 PRESENTATION QosPolicy

{ordered_access/access_scope}
Subscriber Requests:

True/Instance True/Topic True/Group True/Highest

Publisher offers:

False/Instance incompatible incompatible incompatible incompatible

False/Topic incompatible incompatible incompatible incompatible

False/Group incompatible incompatible incompatible incompatible

True/Instance compatible incompatible incompatible compatible

True/Topic compatible compatible incompatible compatible

True/Group compatible compatible compatible compatible

Table 7.30 Valid Combinations of ordered_access and access_scope, with Subscriber’s
ordered_access = True

{coherent_access/access_scope}
Subscriber requests:

False/Instance False/Topic True/Instance True/Topic

Publisher offers:

False/Instance compatible incompatible incompatible incompatible

False/Topic compatible compatible incompatible incompatible

True/Instance compatible incompatible compatible incompatible

True/Topic compatible compatible compatible compatible

Table 7.31 Valid Combinations of Presentation Coherent Access and Access Scope

7.4.6.5 Related QosPolicies

l The 7.5.8 DESTINATION_ORDER QosPolicy on page 409 is closely related and also affects the
ordering of DDS data samples on a per-instance basis when there are multiple DataWriters.

l The 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575 may be
used to configure the DDS sample ordering process in the Subscribers configured with GROUP or
HIGHEST_OFFERED access_scope.

7.4.6.6 Applicable DDS Entities

l 7.2 Publishers on page 272

l 8.2 Subscribers on page 491

369

7.5 DataWriter QosPolicies

370

7.4.6.7 System Resource Considerations

The use of this policy does not significantly impact the usage of resources.

7.5 DataWriter QosPolicies

This section provides detailed information about the QosPolicies associated with a DataWriter. Table 7.18
DataWriter QosPolicies provides a quick reference. They are presented here in alphabetical order.

l 7.5.1 AVAILABILITY QosPolicy (DDS Extension) on the next page

l 7.5.2 BATCH QosPolicy (DDS Extension) on page 375

l 7.5.3 DATA_REPRESENTATION QosPolicy on page 381

l 7.5.4 DATATAG QosPolicy on page 389

l 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390

l 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402

l 7.5.7 DEADLINE QosPolicy on page 407

l 7.5.8 DESTINATION_ORDER QosPolicy on page 409

l 7.5.9 DURABILITY QosPolicy on page 412

l 7.5.10 DURABILITY SERVICE QosPolicy on page 417

l 7.5.11 ENTITY_NAME QosPolicy (DDS Extension) on page 419

l 7.5.12 HISTORY QosPolicy on page 421

l 7.5.13 LATENCYBUDGET QoS Policy on page 426

l 7.5.14 LIFESPAN QoS Policy on page 426

l 7.5.15 LIVELINESS QosPolicy on page 428

l 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on page 433

l 7.5.17 OWNERSHIP QosPolicy on page 435

l 7.5.18 OWNERSHIP_STRENGTH QosPolicy on page 439

l 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440

l 7.5.20 PUBLISH_MODE QosPolicy (DDS Extension) on page 445

l 7.5.21 RELIABILITY QosPolicy on page 448

l 7.5.22 RESOURCE_LIMITS QosPolicy on page 452

l 7.5.23 SERVICE QosPolicy (DDS Extension) on page 455

l 7.5.24 TOPIC_QUERY_DISPATCH_QosPolicy (DDS Extension) on page 456

l 7.5.26 TRANSPORT_PRIORITY QosPolicy on page 459

7.5.1 AVAILABILITY QosPolicy (DDS Extension)

l 7.5.27 TRANSPORT_SELECTION QosPolicy (DDS Extension) on page 464

l 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension) on page 465

l 7.5.29 TYPESUPPORT QosPolicy (DDS Extension) on page 469

l 7.5.30 USER_DATA QosPolicy on page 470

l 7.5.31 WRITER_DATA_LIFECYCLE QoS Policy on page 472

7.5.1 AVAILABILITY QosPolicy (DDS Extension)

This QoS policy configures the availability of data and it is used in the context of two features:

l Collaborative DataWriters (7.5.1.1 Availability QoS Policy and Collaborative DataWriters on the
next page)

l Required Subscriptions (7.5.1.2 Availability QoS Policy and Required Subscriptions on page 373)

It contains the members listed in Table 7.32 DDS_AvailabilityQosPolicy.

Type Field Name Description

DDS_Boolean
enable_required_
subscriptions

Enables support for required subscriptions in a DataWriter. If set to TRUE, history kindmust be KEEP_
ALL and durabilitywriter_depthmust be left set to AUTO.

ForCollaborative DataWriters: Not applicable.

ForRequired Subscriptions: See Table 7.35 Configuring Required Subscriptionswith DDS_Avail-
abilityQosPolicy.

struct
DDS_Duration_t

max_data_avail-
ability_
waiting_time

Defines howmuch time to wait before delivering a DDS sample to the application without having received
some of the previous DDS samples.

ForCollaborative DataWriters: See Table 7.34 Configuring Collaborative DataWriterswith DDS_Avail-
abilityQosPolicy.

ForRequired Subscriptions: Not applicable.

struct
DDS_Duration_t

max_endpoint_
availability_
waiting_time

Defines howmuch time to wait to discoverDataWritersproviding DDS samples for the same data source.

ForCollaborative DataWriters: See Table 7.34 Configuring Collaborative DataWriterswith DDS_Avail-
abilityQosPolicy.

ForRequired Subscriptions: Not applicable.

struct
DDS_Endpoint-
GroupSeq

required_matched_
endpoint_groups

A sequence of endpoint groups, described in Table 7.33 struct DDS_EndpointGroup_t.

ForCollaborative DataWriters: See Table 7.34 Configuring Collaborative DataWriterswith DDS_Avail-
abilityQosPolicy.

ForRequired Subscriptions: See Table 7.35 Configuring Required Subscriptionswith DDS_Avail-
abilityQosPolicy

Table 7.32 DDS_AvailabilityQosPolicy

371

7.5.1 AVAILABILITY QosPolicy (DDS Extension)

372

Type Field
Name Description

char *
role_
name

Defines the role name of the endpoint group.

If used in the AvailabilityQosPolicy on a DataWriter, it specifies the name that identifies a Required Subscription.

int
quorum_
count

Defines the minimumnumber of members that satisfies the endpoint group.

If used in the AvailabilityQosPolicy on a DataWriter, it specifies the number ofDataReaderswith a specific role name that must
acknowledge a DDS sample before the DDS sample is considered to be acknowledged by the Required Subscription.

Table 7.33 struct DDS_EndpointGroup_t

7.5.1.1 Availability QoS Policy and Collaborative DataWriters

The Collaborative DataWriters feature allows you to have multiple DataWriters publishing DDS samples
from a common logical data source. The DataReaders will combine the DDS samples coming from the
DataWriters in order to reconstruct the correct order at the source. The Availability QosPolicy allows you
to configure the DDS sample combination (synchronization) process in the DataReader.

Each DDS sample published in a DDS domain for a given logical data source is uniquely identified by a
pair (virtual GUID, virtual sequence number). DDS samples from the same data source (same virtual
GUID) can be published by different DataWriters.

A DataReader will deliver a DDS sample (VGUIDn, VSNm) to the application if one of the following
conditions is satisfied:

l (GUIDn, SNm-1) has already been delivered to the application.

l All the known DataWriters publishing VGUIDn have announced that they do not have (VGUIDn,
VSNm-1).

l None of the known DataWriters publishing VGUIDn have announced potential availability of
(VGUIDn, VSNm-1) and both timeouts in this QoS policy have expired.

A DataWriter announces potential availability of DDS samples by using virtual heartbeats. The frequency
at which virtual heartbeats are sent is controlled by the protocol parameters virtual_heartbeat_period on
page 393 and samples_per_virtual_heartbeat on page 393 (see Table 7.45 DDS_RtpsReli-
ableWriterProtocol_t).

Table 7.34 Configuring Collaborative DataWriters with DDS_AvailabilityQosPolicy describes the fields
of this policy when used for a Collaborative DataWriter.

For further information, see Collaborative DataWriters (Chapter 12 on page 733).

7.5.1 AVAILABILITY QosPolicy (DDS Extension)

Field
Name Description for Collaborative DataWriters

max_data_
availability_
waiting_time

Defines howmuch time to wait before delivering a DDS sample to the application without having received some of the previous DDS
samples.

A DDS sample identified by (VGUIDn, VSNm)will be delivered to the application if this timeout expires for the DDS sample and the
following two conditions are satisfied:

None of the known DataWriterspublishing VGUIDn have announced potential availability of (VGUIDn, VSNm-1).

The DataWriters for all the endpoint groups specified in required_matched_endpoint_groupson page 371 have been dis-
covered or max_endpoint_availability_waiting_time on the next page has expired.

max_en-
dpoint_avail-
ability_
waiting_time

Defines howmuch time to wait to discoverDataWritersproviding DDS samples for the same data source.

The set of endpoint groups that are required to provide DDS samples for a data source can be configured using required_
matched_endpoint_groupson page 371.

A non-consecutive DDS sample identified by (GUIDn, SNm) cannot be delivered to the application unless the DataWriters for all
the endpoint groups in required_matched_endpoint_groupson page 371 are discovered or this timeout expires.

required_
matched_
endpoint_
groups

Specifies the set of endpoint groups that are expected to provide DDS samples for the same data source.

The quorumcount in a group represents the number ofDataWriters that must be discovered for that group before the
DataReader is allowed to provide non consecutive DDS samples to the application.

A DataWriter becomes a member of an endpoint group by configuring the role_name in the DataWriter’s 7.5.11 ENTITY_
NAMEQosPolicy (DDSExtension) on page 419.

The DataWriters created byRTI Persistence Service have a predefined role_name of ‘PERSISTENCE_SERVICE’. For other
DataWriters, the role_name is not set by default.

Table 7.34 Configuring Collaborative DataWriters with DDS_AvailabilityQosPolicy

7.5.1.2 Availability QoS Policy and Required Subscriptions

In the context of Required Subscriptions, the Availability QosPolicy can be used to configure a set of
required subscriptions on a DataWriter.

Required Subscriptions are preconfigured, named subscriptions that may leave and subsequently rejoin the
network from time to time, at the same or different physical locations. Any time a required subscription is
disconnected, any DDS samples that would have been delivered to it are stored for delivery if and when
the subscription rejoins the network.

Table 7.35 Configuring Required Subscriptions with DDS_AvailabilityQosPolicy describes the fields of
this policy when used for a Required Subscription.

For further information, see 7.3.13 Required Subscriptions on page 324.

373

7.5.1 AVAILABILITY QosPolicy (DDS Extension)

374

Field
Name Description for Required Subscriptions

enable_
required_
subscriptions

Enables support for Required Subscriptions in a DataWriter.

If set to TRUE, the 7.5.12 HISTORYQosPolicy on page 421 kindmust be KEEP_ALL, because not all samples can be guar-
anteed to be delivered to the required DataReaders if history kind is KEEP_LAST. Likewise, the 7.5.9 DURABILITYQosPolicy on
page 412 writer_depthmust be left set to AUTO, because not all samples can be guaranteed to be delivered to the required
DataReaderswhen writer_depth is limited.

max_data_
availability_
waiting_time

Not applicable to Required Subscriptions.
max_end-
point_avail-
ability_
waiting_time

required_
matched_
endpoint_
groups

A sequence of endpoint groups that specify the Required Subscriptions on a DataWriter.

Each Required Subscription is specified by a name and a quorumcount.

The quorumcount represents the number ofDataReaders that have to acknowledge the DDS sample before it can be considered
fully acknowledged for that Required Subscription.

A DataReader is associated with a Required Subscription by configuring the role_name in the DataReader’s 7.5.11 ENTITY_
NAMEQosPolicy (DDSExtension) on page 419.

Table 7.35 Configuring Required Subscriptions with DDS_AvailabilityQosPolicy

7.5.1.3 Properties

For DataWriters, all the members in this QosPolicy can be changed after the DataWriter is created except
for the member enable_required_subscriptions.

For DataReaders, this QosPolicy cannot be changed after the DataReader is created.

There are no compatibility restrictions for how it is set on the publishing and subscribing sides.

7.5.1.4 Related QosPolicies

l 7.5.11 ENTITY_NAME QosPolicy (DDS Extension) on page 419

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660

l 7.5.9 DURABILITY QosPolicy on page 412

7.5.1.5 Applicable DDS Entities

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.2 BATCH QosPolicy (DDS Extension)

7.5.1.6 System Resource Considerations

The resource limits for the endpoint groups in required_matched_endpoint_groups are determined by
two values in the 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
on page 660:

l max_endpoint_groups

l max_endpoint_group_cumulative_characters

The maximum number of virtual writers (identified by a virtual GUID) that can be managed by a
DataReader is determined by themax_remote_virtual_writers in 8.6.2 DATA_READER_
RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581. When the Subscriber’s access_scope is
GROUP, max_remote_virtual_writers determines the maximum number of DataWriter groups sup-
ported by the Subscriber. Since the Subscriber may contain more than one DataReader, only the setting of
the first applies.

7.5.2 BATCH QosPolicy (DDS Extension)

This QosPolicy can be used to decrease the amount of communication overhead associated with the trans-
mission and (in the case of reliable communication) acknowledgment of small DDS samples, in order to
increase throughput.

It specifies and configures the mechanism that allows Connext DDS to collect multiple user data DDS
samples to be sent in a single network packet, to take advantage of the efficiency of sending larger packets
and thus increase effective throughput.

This QosPolicy can be used to increase effective throughput dramatically for small data DDS samples.
Throughput for small DDS samples (size < 2048 bytes) is typically limited by CPU capacity and not by
network bandwidth. Batching many smaller DDS samples to be sent in a single large packet will increase
network utilization and thus throughput in terms of DDS samples per second.

It contains the members listed in Table 7.36 DDS_BatchQosPolicy.

Type Field
Name Description

DDS_
Boolean enable Enables/disables batching.

DDS_Long
max_data_
bytes

Sets the maximumcumulative length of all serialized DDS samples in a batch.

Before orwhen this limit is reached, the batch is automatically flushed.

The size does not include the meta-data associated with the batch DDS samples.

Table 7.36 DDS_BatchQosPolicy

375

7.5.2 BATCH QosPolicy (DDS Extension)

376

Type Field
Name Description

DDS_Long
max_
samples

Sets the maximumnumber of DDS samples in a batch.

When this limit is reached, the batch is automatically flushed.

struct DDS_
Duration_t

max_flush_
delay

Sets the maximum flush delay.

When this duration is reached, the batch is automatically flushed.

The delay is measured from the time the first DDS sample in the batch is written by the application.

struct DDS_
Duration_t

source_
timestamp_
resolution

Sets the batch source timestamp resolution.

The value of this field determines how the source timestamp is associated with the DDS samples in a batch.

A DDS sample written with timestamp 't' inherits the source timestamp 't2' associated with the previous DDS sample,
unless ('t' - 't2') is greater than source_timestamp_resolution.

If source_timestamp_resolution is DURATION_INFINITE, every DDS sample in the batch will share the source
timestamp associated with the first DDS sample.

If source_timestamp_resolution is zero, every DDS sample in the batch will contain its own source timestamp cor-
responding to the moment when the DDS sample was written.

The performance of the batching process is better when source_timestamp_resolution is set to DURATION_
INFINITE.

DDS_
Boolean

thread_
safe_write

Determines whether or not the write operation is thread-safe.

If TRUE, multiple threads can call write on the DataWriter concurrently.

A setting of FALSE can be used to increase batching throughput for batches with many small DDS samples.

Table 7.36 DDS_BatchQosPolicy

If batching is enabled (not the default), DDS samples are not immediately sent when they are written.
Instead, they get collected into a "batch." A batch always contains whole number of DDS samples—a
DDS sample will never be fragmented into multiple batches.

A batch is sent on the network ("flushed") when one of the following things happens:

l User-configurable flushing conditions
l A batch size limit (max_data_bytes) is reached.

l A number of DDS samples are in the batch (max_samples).

l A time-limit (max_flush_delay) is reached, as measured from the time the first DDS sample
in the batch is written by the application.

l The application explicitly calls a DataWriter's flush() operation.

l Non-user configurable flushing conditions:
l A coherent set starts or ends.

7.5.2 BATCH QosPolicy (DDS Extension)

l The number of DDS samples in the batch is equal to max_samples in RESOURCE_LIMITS
for unkeyed topics ormax_samples_per_instance in RESOURCE_LIMITS for keyed top-
ics.

Additional batching configuration takes place in the Publisher’s 7.4.1 ASYNCHRONOUS_
PUBLISHER QosPolicy (DDS Extension) on page 346.

The flush() operation is described in 7.3.9 Flushing Batches of DDS Data Samples on page 316.

7.5.2.1 Synchronous and Asynchronous Flushing

Usually, a batch is flushed synchronously:

l When a batch reaches its application-defined size limit (max_data_bytes ormax_samples) because
the application called write(), the batch is flushed immediately in the context of the writing thread.

l When an application manually flushes a batch, the batch is flushed immediately in the context of the
calling thread.

l When the first DDS sample in a coherent set is written, the batch in progress (without including the
DDS sample in the coherent set) is immediately flushed in the context of the writing thread.

l When a coherent set ends, the batch in progress is immediately flushed in the context of the calling
thread.

l When the number of DDS samples in a batch is equal to max_samples in RESOURCE_LIMITS
for unkeyed topics ormax_samples_per_instance in RESOURCE_LIMITS for keyed topics, the
batch is flushed immediately in the context of the writing thread.

However, some behavior is asynchronous:

l To flush batches based on a time limit (max_flush_delay), enable asynchronous batch flushing in
the 7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) on page 346 of the
DataWriter's Publisher. This will cause the Publisher to create an additional thread that will be used
to flush batches of that Publisher's DataWriters. This behavior is analogous to the way asyn-
chronous publishing works.

l You may also use batching alongside asynchronous publication with 7.6 FlowControllers (DDS
Extension) on page 475. These features are independent of one another. Flushing a batch on an asyn-
chronous DataWriter makes it available for sending to the DataWriter's FlowController. From the
point of view of the FlowController, a batch is treated like one large DDS sample.

7.5.2.2 Batching vs. Coalescing

Even when batching is disabled, Connext DDS will sometimes coalesce multiple DDS samples into a
single network datagram. For example, DDS samples buffered by a FlowController or sent in response to

377

7.5.2 BATCH QosPolicy (DDS Extension)

378

a negative acknowledgement (NACK) may be coalesced. This behavior is distinct from DDS sample
batching.

DDS samples that are sent individually (not part of a batch) are always treated as separate DDS samples
by Connext DDS. Each DDS sample is accompanied by a complete RTPS header on the network
(although DDS samples may share UDP and IP headers) and (in the case of reliable communication) a
unique physical sequence number that must be positively or negatively acknowledged.

In contrast, batched DDS samples share an RTPS header and an entire batch is acknowledged —pos-
itively or negatively—as a unit, potentially reducing the amount of meta-traffic on the network and the
amount of processing per individual DDS sample.

Batching can also improve latency relative to simply coalescing. Consider two use cases:

1. A DataWriter is configured to write asynchronously with a FlowController. Even if the FlowCon-
troller's rules would allow it to publish a new DDS sample immediately, the send will always hap-
pen in the context of the asynchronous publishing thread. This context switch can add latency to the
send path.

2. A DataWriter is configured to write synchronously but with batching turned on. When the batch is
full, it will be sent on the wire immediately, eliminating a thread context switch from the send path.

7.5.2.3 Batching and ContentFilteredTopics

When batching is enabled, content filtering is always done on the reader side.

7.5.2.4 Turbo Mode: Automatically Adjusting the Number of Bytes in a Batch—Experimental
Feature

Turbo Mode is an experimental feature that uses an intelligent algorithm that automatically adjusts the num-
ber of bytes in a batch at run time according to current system conditions, such as write speed (or write fre-
quency) and DDS sample size. This intelligence is what gives it the ability to increase throughput at high
message rates and avoid negatively impacting message latency at low message rates.

To enable Turbo mode, set the DataWriter's property dds.data_writer.enable_turbo_mode to true.
Turbo mode is not enabled by default.

Note: If you explicitly enable batching by setting enable to TRUE in BatchQosPolicy, the value of the
turbo mode property is ignored and turbo mode is not used.

7.5.2.5 Performance Considerations

The purpose of batching is to increase throughput when writing small DDS samples at a high rate. In such
cases, throughput can be increased several-fold, approaching much more closely the physical limitations of
the underlying network transport.

7.5.2 BATCH QosPolicy (DDS Extension)

However, collecting DDS samples into a batch implies that they are not sent on the network immediately
when the application writes them; this can potentially increase latency. However, if the application sends
data faster than the network can support, an increased proportion of the network's available bandwidth will
be spent on acknowledgements and DDS sample resends. In this case, reducing that overhead by turning
on batching could decrease latency while increasing throughput.

As a general rule, to improve batching throughput:

l Set thread_safe_write to FALSE when the batch contains a big number of small DDS samples. If
you do not use a thread-safe write configuration, asynchronous batch flushing must be disabled.

l Set source_timestamp_resolution to DURATION_INFINITE. Note that you set this value, every
DDS sample in the batch will share the same source timestamp.

Batching affects how often piggyback heartbeats are sent; see heartbeats_per_max_samples in Table
7.45 DDS_RtpsReliableWriterProtocol_t.

7.5.2.6 Maximum Transport Datagram Size

Batches cannot be fragmented. As a result, the maximum batch size (max_data_bytes) must be set no lar-
ger than the maximum transport datagram size. For example, a UDP datagram is limited to 64 KB, so any
batches sent over UDP must be less than or equal to that size.

7.5.2.7 Bandwidth Considerations

A minimum overhead of 8-bytes is added to each sample in a batch; however, the overhead may be bigger
in some cases. For example:

l When you add a source timestamp per sample instead of per batch, there will be 8 more bytes for the
source timestamp. You can control this behavior with writer_qos.batch.source_timestamp_res-
olution.

l By default, for keyed topics, Connext DDS adds the key hash for the instance, adding an extra over-
head of 20 bytes. If you don’t want to add the key hash and instead get it from the serialized data on
the DataReader side, set writer_qos.protocol.disable_inline_keyhash to true.

l Disposed/unregistered samples also need an additional 8-byte overhead to mark the status as dis-
posed or unregistered.

l There are other scenarios in which overhead may increase—for example, when using collaborative
DataWriters or group order access.

To summarize:

379

7.5.2 BATCH QosPolicy (DDS Extension)

380

l For a data sample for a keyed topic, by default, the overhead will be 32-bytes (8 (minimum) + 20
(for the key hash) + 4 (for the sentinel)). You can reduce this to 8 bytes by not sending the key hash
(in which case, the sentinel goes away, too).

l For disposed/unregistered samples for a keyed topic, by default, the overhead will be 40-bytes (8
(minimum) + 20 (for the key hash) + 8 (for the status information) + 4 (for the sentinel)). You can
reduce this to 20 bytes by not sending the key hash (the sentinel remains for the status information).

l For an unkeyed topic, the overhead is typically 8 bytes.

7.5.2.8 Properties

This QosPolicy cannot be modified after the DataWriter is enabled.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the publishing
and subscribing sides.

All batching configuration occurs on the publishing side. A subscribing application does not configure any-
thing specific to receive batched DDS samples, and in many cases, it will be oblivious to whether the DDS
samples it processes were received individually or as part of a batch.

Consistency rules:

l max_samples must be consistent with max_data_bytes: they cannot both be set to LENGTH_
UNLIMITED.

l Ifmax_flush_delay is not DURATION_INFINITE, disable_asynchronous_batch in the 7.4.1
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) on page 346 must be FALSE.

l If thread_safe_write is FALSE, source_timestamp_resolution must be DURATION_INFINITE.

7.5.2.9 Related QosPolicies

To flush batches based on a time limit, enable batching in the 7.4.1 ASYNCHRONOUS_PUBLISHER
QosPolicy (DDS Extension) on page 346 of the DataWriter's Publisher.

Be careful when configuring a DataWriter's 7.5.14 LIFESPAN QoS Policy on page 426 with a duration
shorter than the batch flush period (max_flush_delay). If the batch does not fill up before the flush period
elapses, by default the short duration will cause the DDS samples to be dropped without being sent. (You
can, however, change this default behavior. See the last paragraph in this section.)

Do not configure the DataReader’s or DataWriter’s 7.5.12 HISTORY QosPolicy on page 421 to be shal-
lower than the DataWriter's maximum batch size (max_samples). When the HISTORY QosPolicy is shal-
lower on the DataWriter, by default some DDS samples may not be sent. (You can, however, change this
default behavior. See the last paragraph in this section.) When the HISTORY QosPolicy is shallower on
the DataReader, DDS samples may be lost before being provided to the application.

7.5.3 DATA_REPRESENTATION QosPolicy

The initial and maximum numbers of batches that a DataWriter will manage is set in the 7.5.6 DATA_
WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402.

The maximum number of DDS samples that a DataWriter can store is determined by the valuemax_
samples in the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452 and max_batches in the 7.5.6
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402. The limit that is
reached first is applied.

The amount of resources required for batching depends on the configuration of the 7.5.22 RESOURCE_
LIMITS QosPolicy on page 452 and the 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy
(DDS Extension) on page 402. See 7.5.2.11 System Resource Considerations below.

By default, samples marked as removed in a batch are dropped. Examples of removed samples in a batch
are samples that were replaced due to KEEP_LAST_HISTORY_QOS on the DataWriter (see 7.5.12
HISTORY QosPolicy on page 421) or samples that outlived the DataWriter's 7.5.14 LIFESPAN QoS
Policy on page 426 duration. You can keep track of the number of these dropped samples via writer_
removed_batch_sample_dropped_sample_count in the 8.3.7.2 DATA_READER_CACHE_
STATUS on page 522. You can also choose not to drop these samples at all by setting the property
dds.data_reader.accept_writer_removed_batch_samples to TRUE (by default it is set to FALSE); you
can set this property via the 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440.

Note:When the DataWriter history depth is shallower than the DataWriter's maximum batch size
(max_samples), the excess samples are marked as removed, but you can choose not to drop these
removed samples using the accept_writer_removed_batch_samples property. But when the
DataReader history depth is shallower than the DataWriter's maximum batch size (max_samples), the
excess samples are lost. (These are not affected by the property or included in the dropped sample
count.)

7.5.2.10 Applicable DDS Entities

l 7.3 DataWriters on page 288

7.5.2.11 System Resource Considerations

l Batching requires additional resources to store the meta-data associated with the DDS samples in the
batch.

l For unkeyed topics, the meta-data will be at least 8 bytes, with a maximum of 20 bytes.

l For keyed topics, the meta-data will be at least 8 bytes, with a maximum of 52 bytes.

l Other resource considerations are described in 7.5.2.9 Related QosPolicies on the previous page.

7.5.3 DATA_REPRESENTATION QosPolicy

The DATA_REPRESENTATION QosPolicy is used to configure what form data is represented or expec-
ted in on the wire. It indicates which versions (version 1 and version 2) of the Extended Common Data

381

7.5.3 DATA_REPRESENTATION QosPolicy

382

Representation (CDR) are offered and requested as well as if and how the data may be compressed, includ-
ing which compression algorithm is offered and requested.

A DataWriter might also offer a single representation, which indicates the CDR version the DataWriter
uses to serialize its data. A DataReader requests one or more representations, which indicate the CDR ver-
sions the DataReader accepts. If a DataWriter's offered representation is contained within a reader’s
sequence of requested representations, then the offer satisfies the request, and the policies are compatible.
Otherwise, they are incompatible. See Table 7.37 DDS_DataRepresentationQosPolicy and 7.5.3.1 Data
Representation on the next page for more information.

A DataWriter also offers a single compression_ids value, which is the compression algorithm the
DataWriter uses to compress data it sends to matching DataReaders. A DataReader requests zero or more
compression algorithms. If a DataWriter offers a compression algorithm that is contained within the
algorithms requested by the DataReader, the offer satisfies the request and the policies are compatible.
Otherwise, they are incompatible. See Table 7.37 DDS_DataRepresentationQosPolicy and 7.5.3.2 Data
Compression on page 384 for more information.

The DATA_REPRESENTATION QosPolicy includes the members in Table 7.37 DDS_DataRe-
presentationQosPolicy. For defaults and valid ranges, please refer to the API Reference HTML doc-
umentation.

Type Field
Name Description

DDS_DataRe-
presentationIdSeq

value

A sequence of two-byte signed integers corresponding to representation identifiers. The supported
identifiers are DDS_XCDR_DATA_REPRESENTATION (Extensible CDRversion 1), DDS_XCDR2_
DATA_REPRESENTATION (Extensible CDRversion 2), and DDS_AUTO_DATA_
REPRESENTATION. An empty sequence is equivalent to a sequence with one DDS_XCDR_DATA_
REPRESENTATIONelement. The default value, however, is a sequence with one DDS_AUTO_
DATA_REPRESENTATIONelement.

For plain language binding, the value DDS_AUTO_DATA_REPRESENTATION translates to DDS_
XCDR_DATA_REPRESENTATION if the @data_representation annotation (or@allowed_data_rep-
resentation) either is not specified or contains the value XCDR. Otherwise, it translates to DDS_
XCDR2_DATA_REPRESENTATION. For FlatData language binding, DDS_AUTO_DATA_
REPRESENTATION translates to XCDR2_DATA_REPRESENTATION. (See 7.5.3.1 Data Re-
presentation on the next page for further explanation.)

For additional information on the @data_representation annotation, see Data Representation, in the
RTI Connext DDSCore LibrariesExtensible TypesGuide.

Table 7.37 DDS_DataRepresentationQosPolicy

7.5.3 DATA_REPRESENTATION QosPolicy

Type Field
Name Description

DDS_Com-
pressionSettings_t

compression_
settings

Settings related to compressing user data:

l compression_ids: A bitmap that represents the compression algorithm IDs supported by the
DataWriter orDataReader. The possible values are: ZLIB, BZIP2, LZ4, MASK_NONE, and
MASK_ALL.

Only ZLIB is supported if the DataWriter is using both compression and batching. Com-
pression is not supported if also using batching and data protection (via RTI Security
Plugins). See 7.5.3.2 Data Compression on the next page.

DataWriter creation will fail if more than one algorithm is provided on the DataWriter side
(meaning that MASK_ALL is only supported forDataReaderQosand TopicQos).

Default: MASK_NONE (forDataWriterQoS and TopicQoS), MASK_ALL (forDataRead-
erQoS)

l writer_compression_level: The level of compression to use when compressing data. The
value is a range between 0 and 10. It can be set only for the DataWriterQoS orTopicQoS. A
lower compression level results in a faster compression speed, but lower compression ratio. A
higher compression level results in a better compression ratio, but slower compression
speed.

Default: BEST_COMPRESSION (10)

l writer_compression_threshold: The threshold, in bytes, above which a serialized sample is eli-
gible to be compressed. The value is a range between 0 and LENGTH_UNLIMITED. It can
be set only for the DataWriterQoS orTopicQoS.

Any sample with a serialized size equal to or greater than the threshold will be eligible to be
compressed. Only if the compressed size is smaller than the serialized size will the sample be
stored and sent compressed on the wire.

Setting the threshold to LENGTH_UNLIMITEDdisables compression.

Default: COMPRESSION_THRESHOLD_DEFAULT (8192 bytes). Note: COMPRESSION_
THRESHOLD_DEFAULT is not a valid value in XML, it can be set only in code.

See 7.5.3.2 Data Compression on the next page formore details.

Table 7.37 DDS_DataRepresentationQosPolicy

7.5.3.1 Data Representation

You can view data representation as a two-step process:

1. As described above, DDS_AUTO_DATA_REPRESENTATION translates to the value DDS_
XCDR_DATA_REPRESENTATION or DDS_XCDR2_DATA_REPRESENTATION depend-
ing on a few factors. Or you can explicitly set the value to DDS_XCDR_DATA_
REPRESENTATION or DDS_XCDR2_DATA_REPRESENTATION. If you let DDS_AUTO_
DATA_REPRESENTATION set the value, the following table shows how it will be set, depend-
ing on your IDL:

383

7.5.3 DATA_REPRESENTATION QosPolicy

384

IDL looks like ... AUTO value translates to ...
Struct Point {
}

which is equivalent to:

@data_representation(XCDR | XCDR2)
Struct Point {
}

XCDR

@data_representation(XCDR2)
Struct Point {
}

XCDR2

@language_binding(FLAT_DATA)
Struct Point {
}

XCDR2

Table 7.38 How DDS_AUTO_DATA_REPRESENTATION Sets the Value

2. Once the value is set (either by DDS_AUTO_DATA_REPRESENTATION or explicitly by you),
that value determines what the DataWriter writes or the DataReader reads. (Recall that the
DataWriter offers one representation; the DataReader requests one or more representations.) The
next step is how the DataWriter and DataReader match based on the QoS value. The QoS must be
compatible between the DataWriter and the DataReader. The compatible combinations are shown
in Table 7.37 DDS_DataRepresentationQosPolicy.

DataWriter-offered DataRepresentation value DataReader-requested DataRepresentation values

XCDR XCDR

XCDR XCDRand XCDR2

XCDR2 XCDR2

XCDR2 XCDRand XCDR2

Table 7.39 Valid Reader/Writer Combinations of DataRepresentation

If this QosPolicy is set incompatibly, the ON_OFFERED_INCOMPATIBLE_QOS and ON_
REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding Listeners called
for the DataWriter and DataReader respectively.

7.5.3.2 Data Compression

A DataReader with compression enabled can receive samples from DataWriters with or without com-
pression as well as from multiple DataWriters with different compression algorithms. DataWriters cannot
optionally send compressed samples to some DataReaders and the same samples, but uncompressed, to
other DataReaders that do not support compression.

Table 7.40 Valid Reader/Writer Combinations of Compression IDs shows which DataWriter-
s/DataReaders will match depending on their compression IDs:

7.5.3 DATA_REPRESENTATION QosPolicy

Table 7.40 Valid Reader/Writer Combinations of Compression IDs

DataWriter-
offered

compression_
ids

DataReader-requested compression_ids

NONE ZLIB LZ4 BZIP2 MASK_ALL or any combination that
includes offered compression_ids

NONE compatible compatible compatible compatible compatible

ZLIB incompatible compatible incompatible incompatible compatible

LZ4 incompatible incompatible compatible incompatible compatible

BZIP2 incompatible incompatible incompatible compatible compatible

MASK_ALL is not a valid value for the DataWriter, which supports only one compression_ids value

7.5.3.2.1 compression_ids

You can compare the compression algorithms (LZ4, zlib, and bzip2) by checking their compression ratios
against their compression speeds. The compression ratio defines how much the data size is reduced. For
example, a ratio of 2 means that the size of the data is reduced by half. The compression speed has a direct
impact on the latency of the compressed data; the slower the speed, the higher the latency. Generally, the
higher the compression ratio, the lower the speed; the higher the speed, the lower the compression ratio.

Table 7.41 Compression Algorithm References

compression_ids Information

MASK_NONE Default forDataWriterQoS and TopicQoS

LZ4 See https://github.com/lz4/lz4

ZLIB See https://zlib.net/

BZIP2
See
https://www.sourceware.org/bzip2/

MASK_ALL Default forDataReaderQoS

There are many benchmarking resources comparing various compression algorithms. One such resource is
https://github.com/inikep/lzbench. LZ4 is considered the fastest of the three builtin algorithms, while zlib
and bzip2 give the best compression ratios. Use LZ4 if you want to keep latency as low as possible while
maintaining a decent compression ratio. Use zlib or bzip2 if latency is less important in your system than a
high compression ratio to reduce bandwidth usage. The choice of which of the three builtin compression
algorithms to use depends on the type of data, the rate at which the data is being sent, and latency and
bandwidth considerations. It is a good idea for you to understand the strengths and weaknesses of each of

385

https://github.com/lz4/lz4
https://zlib.net/
https://www.sourceware.org/bzip2/
https://github.com/inikep/lzbench

7.5.3 DATA_REPRESENTATION QosPolicy

386

the builtin algorithms, and perform benchmarking in your own system so that you can choose the
algorithm that is best suited to your system.

When you specify compression settings for a Topic, all DataWriters and DataReaders for that Topic
inherit the Topic's compression settings. If you specify multiple compression algorithms for a Topic, the
DataReader will use all of them, but since the DataWriter can have only one algorithm enabled, it will
choose one of them, in the following order: ZLIB, BZIP2, and LZ4.

Notes:

l When the serialize_key_with_dispose field in the 7.5.5 DATA_WRITER_PROTOCOL
QosPolicy (DDS Extension) on page 390 is enabled and a dispose message is sent, the serialized
key is not compressed.

l The only algorithm supported when compression and batching are enabled on the same DataWriter
is ZLIB, because zlib is the only builtin algorithm that supports stream-based compression with
acceptable performance. Stream-based compression allows Connext DDS to compress and build the
batch as samples are written into the batch. (LZ4 also supports stream-based compression, but with a
high performance penalty, so RTI has decided not to support this mode in Connext DDS.)

l If you are using Security Plugins and batching: The combination of compression, batching, and
data protection (via Security Plugins) is not supported and will result in a DataWriter creation error.
Consider using RTPS protection instead of data protection if compression and batching are also
required. The reason for this restriction is that when using batching, compression is applied to the
entire batch, while data protection is applied to each of the batch samples individually. Compressing
already encrypted data results in an expansion of the data instead of a reduction of it because encryp-
ted data does not lend itself to compression.

7.5.3.2.2 writer_compression_level

Each level between 0 and 10 has trade-offs between compression ratio and compression speed, with 1 rep-
resenting the fastest speed and lowest compression ratio and 10 representing the slowest speed and highest
compression ratio. (0 disables compression.)

Connext DDS also provides the following writer_compression_level values:

l BEST_COMPRESSION. This value is the same as 10. With this value, Connext DDS chooses the
best compression level for the given algorithm.

l BEST_SPEED. This value is the same as 1. With this value, Connext DDS chooses the fastest com-
pression speed for whatever algorithm is chosen.

BEST_COMPRESSION and BEST_SPEED do not vary dynamically depending on the algorithm and
the size of the data. They have a strict one-to-one mapping to the algorithms' compression ratios/speeds as
follows:

7.5.3 DATA_REPRESENTATION QosPolicy

l zlib

writer_compression_level zlib mapped value

BEST_COMPRESSION= 10 level = 9

BEST_SPEED= 1 level = 1

For the rest of the values, a linear normalization is applied, so any writer_compression_level value
you enter in the range of 1 to 10 is translated to the range used by ZLIB between 1 and 9. See the
zlib documentation for the compress2 function for more details on how the level parameter is used.

l LZ4

writer_compression_level LZ4 mapped value

BEST_COMPRESSION= 10 acceleration = 0

BEST_SPEED= 1 acceleration = 30

For the rest of the values, a linear normalization is applied, so any writer_compression_level value
you enter in the range of 1 to 10 is translated to the range used by LZ4 between 30 and 0. Although
technically the acceleration value is unbounded, Connext DDS sets the limit at 30; beyond that, no
compression occurs in most cases. See the LZ4 documentation for the LZ4_compress_fast function
for more details on how the acceleration parameter is used.

l bzip2

writer_compression_level bzip2 mapped value

BEST_COMPRESSION= 10 blockSize100k = 9

BEST_SPEED= 1 blockSize100k = 1

For the rest of the values, a linear normalization is applied, so any writer_compression_level value
you enter in the range of 1 to 10 is translated to the range used by bzip2 between 1 and 9. See the
bzip2 documentation for the BZ2_bzBuffToBuffCompress function for more details on how the
blockSize100k parameter is used.

7.5.3.2.3 writer_compression_threshold

Any sample with a serialized size equal to or greater than this threshold (see Table 7.37 DDS_DataRe-
presentationQosPolicy) is eligible to be compressed.

387

7.5.3 DATA_REPRESENTATION QosPolicy

388

There are two scenarios where a sample, even with compression enabled on the DataWriter, is not com-
pressed:

l Any sample with a serialized size lower than the writer_compression_threshold will not be com-
pressed.

If batching is enabled: a batch will not be compressed if the maximum serialized size of the batch
((max_sample_serialized_size as returned by the type-plugin get_serialized_sample_max_size())
* max_samples in the batch) is smaller than the writer_compression_threshold. See information
aboutmax_samples in 7.5.2 BATCH QosPolicy (DDS Extension) on page 375.

l If the compressed size is bigger than the sample's serialized size, the compressed sample will be dis-
carded and the original sample will be sent instead.

7.5.3.2.4 Connext DDS Micro

Connext DDS Micro does not interoperate with DataWriters that send compressed data.

7.5.3.2.5 Performance Considerations when Using Content Filtering and Compression

Samples are stored compressed in the DataWriter’s queue. When a sample is being written and there are
matching DataReaders using ContentFilteredTopics, the DataWriter will apply the filter and then com-
press the sample. In some cases, a sample needs to be filtered again after it has already been compressed.
This can happen, for example, when a non-VOLATILE, late-joining DataReader with a Con-
tentFilteredTopic is discovered by the DataWriter or a TopicQuery is issued by an existing DataReader. If
a filtering operation occurs on the DataWriter side after the sample is already compressed, the sample must
be decompressed to apply the filter, increasing the latency for these requested samples. Note that in these
scenarios the original compressed sample is kept around, so a sample is never compressed twice. In other
words, Connext DDS decompresses the sample into a separate buffer, performs the filtering, and then
either sends or doesn't send the compressed sample.

7.5.3.2.6 Using Compression with FlatData language binding and Zero Copy Transfer over Shared
Memory

See FlatData's section 23.1.4.3.1 Interactions with RTI Security Plugins and Compression on page 967 for
notes about interactions with the FlatData language binding.

See Zero Copy's section 23.1.5.1.5 Interactions with RTI Security Plugins and Compression on page 974
for information about interactions with Zero Copy transfer over shared memory.

7.5.3.3 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

7.5.4 DATATAG QosPolicy

7.5.3.4 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.4 DATATAG QosPolicy

The DATATAG QosPolicy can be used to associate a set of tags in the form of (name, value) pairs with a
DataReader or DataWriter. The Access Control plugin may use the tags to determine publish and sub-
scribe permissions.

The DATATAG QosPolicy is similar to the PropertyQosPolicy, except you cannot select whether or not a
particular pair should be propagated (included in the built-in topic); data tags are always propagated. For
example, with the Property QoS, it would be possible for a DomainParticipant to allow its own endpoint
(DataReader or DataWriter) based on some required properties, and for a remote DomainParticipant to
deny that same endpoint because the endpoint chose not to propagate the required properties to the remote
DomainParticipant. To avoid such inconsistencies—and because other participants must know about a
DomainParticipant’s security credentials—data tags in the DATATAG QosPolicy are always propagated.

This policy includes the member listed in Table 7.42 DDS_DataTagQosPolicy.

Type Field Name Description

DDS_TagSeq tags A sequence of (name, value) string pairs.

Table 7.42 DDS_DataTagQosPolicy

You can manipulate the sequence of tags (name, value pairs) with the standard methods available for
sequences. You can also use the helper class, DataTagQosPolicyHelper, which provides another way to
work with a DataTagQosPolicy object. The DataTagQosPolicyHelper operations are described in the fol-
lowing table. For more information, see the API Reference HTML documentation.

Operation Description

get_number_of_tags Gets the number of data tags in the input policy.

assert_tag Asserts the data tag identified by name in the input policy. (Either adds it, or replaces an existing one.)

add_tag Adds a newdata tag to the input policy.

lookup_tag Searches for a data tag in the input policy given its name.

remove_tag Removes a data tag from the input policy.

Table 7.43 DDS_DataTagQosPolicyHelper Operations

389

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

390

7.5.4.1 Properties

This QosPolicy cannot be modified after the Entity has been created. There is no requirement that the pub-
lishing and subscribing sides use compatible values.

7.5.4.2 Related QosPolicies

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660

7.5.4.3 Applicable Entities

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.4.4 System Resource Considerations

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660
contains several fields for configuring the resources associated with the data tags stored in this QosPolicy.

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

Connext DDS uses a standard protocol for packet (user and meta data) exchange between applications.
The DataWriterProtocol QosPolicy gives you control over configurable portions of the protocol, including
the configuration of the reliable data delivery mechanism of the protocol on a per DataWriter basis.

These configuration parameters control timing and timeouts, and give you the ability to trade off between
speed of data loss detection and repair, versus network and CPU bandwidth used to maintain reliability.

It is important to tune the reliability protocol on a per DataWriter basis to meet the requirements of the end-
user application so that data can be sent between DataWriters and DataReaders in an efficient and optimal
manner in the presence of data loss. You can also use this QosPolicy to control how Connext DDS
responds to "slow" reliable DataReaders or ones that disconnect or are otherwise lost.

This policy includes the members presented in Table 7.44 DDS_DataWriterProtocolQosPolicy and Table
7.45 DDS_RtpsReliableWriterProtocol_t. For defaults and valid ranges, please refer to the API Reference
HTML documentation.

For details on the reliability protocol used by Connext DDS, see Reliable Communications (Chapter 11 on
page 694). See the 7.5.21 RELIABILITY QosPolicy on page 448 for more information on per-DataRead-
er/DataWriter reliability configuration. The 7.5.12 HISTORY QosPolicy on page 421 and 7.5.22
RESOURCE_LIMITS QosPolicy on page 452 also play important roles in the DDS reliability protocol.

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

Type Field
Name Description

DDS_GUID_t virtual_guid

The virtual GUID (Global Unique Identifier) is used to uniquely identify the same DataWriter across multiple in-
carnations. In otherwords, this value allowsConnext DDS to remember information about a DataWriter that may
be deleted and then recreated.

Connext DDS uses the virtual GUID to associate a durable writer history to a DataWriter.

Persistence Service uses the virtual GUID to send DDS samples on behalf of the originalDataWriter.

A DataReader persists its state based on the virtual GUIDs of matching remote DataWriters.

Formore information, see 13.2 Durability and Persistence Based on VirtualGUIDson page 743.

By default,Connext DDSwill assign a virtual GUID automatically. If you want to restore the state of the durable
writer history after a restart, you can retrieve the value of the writer's virtual GUID using the DataWriter’s get_qos()
operation, and set the virtual GUID of the restarted DataWriter to the same value.

DDS_
Unsigned-
Long

rtps_ob-
ject_id

Determines the DataWriter’sRTPS object ID, according to the DDS-RTPS Interoperability Wire Protocol.

Only the last 3 bytes are used; the most significant byte is ignored.

The rtps_host_id, rtps_app_id, and rtps_instance_id in the 9.5.9 WIRE_PROTOCOLQosPolicy (DDSEx-
tension) on page 676, togetherwith the 3 least significant bytes in rtps_object_id, and another byte assigned by
Connext DDS to identify the entity type, forms the BuiltinTopicKey in PublicationBuiltinTopicData.

DDS_Boolean
push_on_
write

Controls when a DDS sample is sent afterwrite() is called on a DataWriter. If TRUE, the DDS sample is sent im-
mediately; if FALSE, the DDS sample is put in a queue until an ACK/NACK is received froma reliable DataReader.

DDS_Boolean
disable_
positive_
acks

Determines whethermatching DataReaders send positive acknowledgements (ACKs) to the DataWriter.

When TRUE, the DataWriter will keep DDS samples in its queue for ACK-disabled readers for a minimumkeep dur-
ation (see 7.5.5.3 Disabling Positive Acknowledgements on page 397).

When strict reliability is not required, setting this to TRUE reduces overhead network traffic.

DDS_Boolean
disable_in-
line_
keyhash

Controls whether or not the key-hash is propagated on the wire with DDS samples.

This field only applies to keyed writers.

Connext DDS associates a key-hash (an internal 16-byte representation)with each key.

When FALSE, the key-hash is sent on the wire with every data instance.

When TRUE, the key-hash is not sent on the wire (so the readers must compute the value using the received data).

If the reader is CPUbound, sending the key-hash on the wire may increase performance, because the reader does
not have to get the key-hash from the data.

If thewriter is CPU bound, sending the key-hash on thewiremay decrease performance, because it requires more
bandwidth (16more bytes per DDSsample).

Settingdisable_inline_keyhash to TRUE is not compatiblewith usingRTI Database IntegrationService or RTI
RecordingService.

Table 7.44 DDS_DataWriterProtocolQosPolicy

391

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

392

Type Field
Name Description

DDS_Boolean

serialize_
key_
with_dis-
pose

Controls whether or not the serialized key is propagated on the wire with dispose notifications.

This field only applies to keyed writers.

By default, this field is set to FALSE.

RTI recommends setting this field to TRUE if there are DataReaderswith propagate_dispose_of_unregistered_
instances (in the 8.6.1 DATA_READER_PROTOCOLQosPolicy (DDSExtension) on page 575) also set to
TRUE (which is done because you anticipate receiving a dispose meta-sample without previously having received a
data sample for an instance).

When setting serialize_key_with_dispose to FALSE, only a key hash is included in the dispose meta-sample
sent by a DataWriter for a dispose action. If a dispose meta-sample only includes the key hash, then DataReaders
must have previously received an actual data sample for the instance being disposed, in order for a DataReader to
map a key hash/instance handle to actual key values.

If an actual data sample was never received for an instance and serialize_key_with_dispose is set to FALSE,
then the DataReader application will not be able to determine the value of the key that was disposed, since
FooDataReader::get_key_value() will not be able to map an instance handle to actual key values.

By setting serialize_key_with_dispose to TRUE, the values of the keymembers of a data type will be sent in the
dispose meta-sample for a dispose action by the DataWriter. This allows the DataReader to map an instance
handle to the values of the keymembers even when receiving a dispose meta-sample without previously having re-
ceived a data sample for the instance.

Important: When this field TRUE, batching will not be compatible with RTI Data Distribution Service 4.3e, 4.4b, or
4.4c—the DataReaderswill receive incorrect data and/or encounter deserialization errors.

DDS_Boolean

propagate_
app_
ack_with_
no_
response

Controls whether or not a DataWriter receives on_application_acknowledgment() notifications with an empty or
invalid response.

When FALSE, on_application_acknowledgment() will not be invoked if the DDS sample being acknowledged
has an empty or invalid response.

DDS_Rt-
psReliable
WriterProtocol_
t

rtps_re-
liable_
writer

This structure includes the fields in Table 7.45 DDS_RtpsReliableWriterProtocol_t.

DDS_
Sequence_t

initial_vir-
tual_se-
quence_
number

Determines the initial virtual sequence number for thisDataWriter.

By default, the virtual sequence number of the first sample published by a DataWriter is 1 forDataWriters that do
not use durable writer history. For durable writers, the default virtual sequence number is the last sequence number
they published in a previous execution, plus one. So, when a non-durable DataWriter is restarted and must con-
tinue communicating with the same DataReaders, its samples start overwith sequence number 1. Durable
DataWriters start overwhere the last sequence number left off, plus one.

This QoS setting allows overwriting the default initial virtual sequence number.

Normally, this parameter is not expected to be modified; however, in some scenarios when continuing com-
munication after restarting, applications may require the DataWriter's virtual sequence number to start at some-
thing other than the value described above. An example would be to enable non-durable DataWriters to start at
the last sequence number published, plus one, similar to the durable DataWriter. This property enables you to
make such a configuration, if desired.

The virtual sequence number can be overwritten as well on a per sample basis by updating DDS_WriteParams_
t::identity in FooDataWriter_write_w_params.

Table 7.44 DDS_DataWriterProtocolQosPolicy

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

Type Field Name Description

DDS_
Long

low_watermark
Queue levels that control when to switch between the regular and fast heartbeat rates (heartbeat_period below
and fast_heartbeat_period below). See 7.5.5.1 High and LowWatermarkson page 396.

high_watermark

DDS_Dur-
ation_t

heartbeat_
period

Rates at which to send heartbeats to DataReaderswith unacknowledged DDS samples. See 7.5.5.2 Normal,
Fast, and Late-Joiner Heartbeat Periodson page 396 and 11.3.4.1 How Often Heartbeats are Resent (heart-
beat_period) on page 710.

fast_heartbeat_
period

late_joiner_heart-
beat_
period

DDS_Dur-
ation_t

virtual_heart-
beat_period

The rate at which a reliable DataWriter will send virtual heartbeats. Virtual heartbeat informs the reliable
DataReader about the range of DDS samples currently present for each virtual GUID in the reliable writer's queue.
See 7.5.5.6 VirtualHeartbeats on page 400.

DDS_
Long

samples_per_vir-
tual_
heartbeat

The number of DDS samples that a reliableDataWritermust publish before sending a virtual heartbeat. See
7.5.5.6 VirtualHeartbeats on page 400.

DDS_
Long

max_heartbeat_
retries

Maximumnumber of periodicheartbeats sent without receiving an ACK/NACK packet before marking a
DataReader ‘inactive.’

When a DataReader has not acknowledged all the DDS samples the reliable DataWriter has sent to it, andmax_
heartbeat_retries number of periodic heartbeats have been sent without receiving any ACK/NACK packets in
return, the DataReader will be marked as inactive (not alive) and be ignored until it resumes sending ACK/NACKs.

Note that piggyback heartbeats do not count towards this value.
See 11.3.4.4 Controlling HowManyTimesHeartbeats are Resent (max_heartbeat_retries) on page 715.

DDS_
Boolean

inactivate_non-
progressing_
readers

Allows the DataWriter to treatDataReaders that send successive non-progressing NACK packets as inactive.

See 11.3.4.5 Treating Non-Progressing Readers as Inactive Readers (inactivate_nonprogressing_readers) on
page 715.

Table 7.45 DDS_RtpsReliableWriterProtocol_t

393

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

394

Type Field Name Description

DDS_
Long

heartbeats_per_
max_samples

When a DataWriter is configured with a fixed send window size (min_send_window_size is equal to effective
max_send_window_size), a piggyback heartbeat is sent every [(effectivemax_send_window_size/heart-
beats_per_max_samples)] number of samples written. (See 7.5.5.4 Configuring the SendWindow Size on
page 398.)

Otherwise, the number of piggyback heartbeats sent is scaled according to the current size of the send window. For
example, consider a heartbeats_per_max_samples of 50. If the current send window size is 100, a piggyback
heartbeat will be sent every two samples. If the send window size grows to 150, a piggyback heartbeat will be sent
every three samples, and so on. Additionally, when the send window size grows, a piggyback heartbeat is sent with
the next sample. (If it weren't, the sending of that heartbeat could be delayed, since the heartbeat rate scales with
the increasing window size.)

The effective max send window is calculated as follows:

Without batching, it is the minimumofmax_samples in the 7.5.22 RESOURCE_LIMITSQosPolicy on
page 452 ormax_send_window_size.

With batching, it is the minimumofmax_batches in the 7.5.6 DATA_WRITER_RESOURCE_LIMITS
QosPolicy (DDSExtension) on page 402 ormax_send_window_size.

If heartbeats_per_max_samples is set to zero, no piggyback heartbeat will be sent.

If the current send window size is LENGTH_UNLIMITED, 100 million is assumed as the effective max send window.

DDS_
Boolean

disable_repair_
piggyback_heart-
beat

When samples are repaired, the DataWriter resends the number of bytes indicated inmax_bytes_per_nack_re-
sponse and a piggyback heartbeat with each message. You can configure the DataWriter to not send the piggy-
back heartbeat, by setting this field to TRUE, and instead rely on the late_joiner_heartbeat_period to control the
throughput used to repair samples. This field is only mutable for the DataWriter QoS and not for the Discovery Con-
fig QoS of the DomainParticipant.

DDS_Dur-
ation_t

min_nack_re-
sponse_delay

Minimumdelay to respond to an ACK/NACK.

When a reliable DataWriter receives an ACK/NACK froma DataReader, the DataWriter can choose to delay a
while before it sends repair DDS samples or a heartbeat. This set the value of the minimumdelay.

See 11.3.4.6 Coping with Redundant Requests for Missing DDSSamples (max_nack_response_delay) on
page 715.

DDS_Dur-
ation_t

max_nack_re-
sponse_delay

Maximumdelay to respond to a ACK/NACK.

This sets the value of maximumdelay between receiving an ACK/NACK and sending repair DDS samples or a heart-
beat.

A longerwait can help prevent storms of repair packets if manyDataReaders send NACKs at the same time.
However, it delays the repair, and hence increases the latency of the communication.

See 11.3.4.6 Coping with Redundant Requests for Missing DDSSamples (max_nack_response_delay) on
page 715.

DDS_Dur-
ation_t

nack_sup-
pression_dur-
ation

How long consecutive NACKs are suppressed.

When a reliable DataWriter receives consecutive NACKs within a short duration, this may trigger the DataWriter to
send redundant repairmessages. This value sets the duration during which consecutive NACKs are ignored, thus
preventing redundant repairs frombeing sent.

DDS_
Long

max_bytes_per_
nack_
response

Maximumbytes in a repair package.

When a reliable DataWriter resends DDS samples, the total package size is limited to this value. Note: The reliable
DataWriter will always send at least one sample.

See 11.3.4.3 Controlling Packet Size for Resent DDSSamples (max_bytes_per_nack_response) on page 714.

Table 7.45 DDS_RtpsReliableWriterProtocol_t

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

Type Field Name Description

DDS_Dur-
ation_t

disable_pos-
itive_acks_
min_sample_
keep_
duration

Minimumduration that a DDS sample will be kept in the DataWriter’squeue for ACK-disabled DataReaders.

See 7.5.5.3 Disabling Positive Acknowledgements on page 397 and 11.3.4.7 Disabling Positive Ac-
knowledgements (disable_positive_acks_min_sample_keep_duration) on page 717.

disable_pos-
itive_acks_
max_sample_
keep_
duration

Maximumduration that a DDS sample will be kept in the DataWriter’squeue for ACK-disabled readers.

DDS_
Boolean

disable_pos-
itive_acks_
enable_ad-
aptive_
sample_keep_
duration

Enables automatic dynamic adjustment of the ‘keep duration’ in response to network congestion.

DDS_
Long

disable_pos-
itive_acks_
increase_
sample_
keep_duration_
factor

When the ‘keep duration’ is dynamically controlled, the lengthening of the ‘keep duration’ is controlled by this factor,
which is expressed as a percentage.

When the adaptive algorithmdetermines that the keep duration should be increased, this factor is multiplied with the
current keep duration to get the new longer keep duration. For example, if the current keep duration is 20 mil-
liseconds, using the default factor of 150%would result in a new keep duration of 30 milliseconds.

disable_pos-
itive_acks_
decrease_
sample_
keep_duration_
factor

When the ‘keep duration’ is dynamically controlled, the shortening of the ‘keep duration’ is controlled by this factor,
which is expressed as a percentage.

When the adaptive algorithmdetermines that the keep duration should be decreased, this factor is multiplied with
the current keep duration to get the new shorter keep duration. For example, if the current keep duration is 20 mil-
liseconds, using the default factor of 95%would result in a new keep duration of 19 milliseconds.

DDS_
Long

min_send_win-
dow_size Minimumand maximumsize for the window of outstanding DDS samples.

See 7.5.5.4 Configuring the SendWindow Size on page 398.max_send_win-
dow_size

DDS_
Long

send_window_
decrease_
factor

Scales the current send-window size down by this percentage to decrease the effective send-rate in response to re-
ceived negative acknowledgement.

See 7.5.5.4 Configuring the SendWindow Size on page 398.

DDS_
Boolean

enable_mul-
ticast_periodic_
heartbeat

Controls whether or not periodic heartbeat messages are sent overmulticast.

When enabled, if a reader has a multicast destination, the writer will send its periodic HEARTBEATmessages to that
destination.

Otherwise, if not enabled or the reader does not have a multicast destination, the writer will send its periodic
HEARTBEATs over unicast.

DDS_
Long

multicast_re-
send_threshold

Sets the minimumnumber of requesting readers needed to trigger a multicast resend.

See 7.5.5.7 ResendingOver Multicast on page 401.

Table 7.45 DDS_RtpsReliableWriterProtocol_t

395

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

396

Type Field Name Description

DDS_
Long

send_window_in-
crease_
factor

Scales the current send-window size up by this percentage to increase the effective send-rate when a duration has
passed without any received negative acknowledgements.

See 7.5.5.4 Configuring the SendWindow Size on page 398

DDS_Dur-
ation

send_window_
update_
period

Period in which DataWriter checks for received negative acknowledgements and conditionally increases the send-
window size when none are received.

See 7.5.5.4 Configuring the SendWindow Size on page 398

Table 7.45 DDS_RtpsReliableWriterProtocol_t

7.5.5.1 High and Low Watermarks

When the number of unacknowledged DDS samples in the current send-window of a reliable DataWriter
meets or exceeds high_watermark on page 393, the 7.3.6.8 RELIABLE_WRITER_CACHE_
CHANGED Status (DDS Extension) on page 306 will be changed appropriately, a listener callback will
be triggered, and the DataWriter will start heartbeating its matched DataReaders at fast_heartbeat_period
on page 393

When the number of DDS samples meets or falls below low_watermark on page 393, the 7.3.6.8
RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) on page 306 will be changed
appropriately, a listener callback will be triggered, and the heartbeat rate will return to the "normal" rate (
heartbeat_period on page 393).

Having both high and low watermarks (instead of one) helps prevent rapid flickering between the rates,
which could happen if the number of DDS samples hovers near the cut-off point.

Increasing the high and low watermarks will make the DataWriters less aggressive about seeking acknow-
ledgments for sent data, decreasing the size of traffic spikes but slowing performance.

Decreasing the watermarks will make the DataWriters more aggressive, increasing both network util-
ization and performance.

If batching is used, high_watermark on page 393 and low_watermark on page 393 refer to batches, not
DDS samples.

When min_send_window_size on the previous page and max_send_window_size on the previous page
are not equal, the low and high watermarks are scaled down linearly to stay within the current send-win-
dow size. The value provided by configuration corresponds to the high and low watermarks for the max_
send_window_size on the previous page.

7.5.5.2 Normal, Fast, and Late-Joiner Heartbeat Periods

The normal heartbeat_period on page 393 is used until the number of DDS samples in the reliable
DataWriter’s queue meets or exceeds high_watermark on page 393; then fast_heartbeat_period on

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

page 393 is used. Once the number of DDS samples meets or drops below low_watermark on page 393,
the normal rate (heartbeat_period on page 393) is used again.

l fast_heartbeat_period on page 393 must be <= heartbeat_period on page 393

Increasing fast_heartbeat_period on page 393 increases the speed of discovery, but results in a larger
surge of traffic when the DataWriter is waiting for acknowledgments.

Decreasing heartbeat_period on page 393 decreases the steady state traffic on the wire, but may increase
latency by decreasing the speed of repairs for lost packets when the writer does not have very many out-
standing unacknowledged DDS samples.

Having two periodic heartbeat rates, and switching between them based on watermarks:

l Ensures that all DataReaders receive all their data as quickly as possible (the sooner they receive a
heartbeat, the sooner they can send a NACK, and the sooner the DataWriter can send repair DDS
samples);

l Helps prevent the DataWriter from overflowing its resource limits (as its queue starts the fill, the
DataWriter sends heartbeats faster, prompting the DataReaders to acknowledge sooner, allowing
the DataWriter to purge these acknowledged DDS samples from its queue);

l Tunes the amount of network traffic. (Heartbeats and NACKs use up network bandwidth like any
other traffic; decreasing the heartbeat rates, or increasing the threshold before the fast rate starts, can
smooth network traffic—at the expense of discovery performance).

The late_joiner_heartbeat_period on page 393 is used when a reliable DataReader joins after a reliable
DataWriter (with non-volatile Durability) has begun publishing DDS samples. Once the late-joining
DataReader has received all cached DDS samples, it will be serviced at the same rate as other reliable
DataReaders.

l late_joiner_heartbeat_period on page 393 must be <= heartbeat_period on page 393

7.5.5.3 Disabling Positive Acknowledgements

When strict reliable communication is not required, you can configure Connext DDS so that it does not
send positive acknowledgements (ACKs). In this case, reliability is maintained solely based on negative
acknowledgements (NACKs). The removal of ACK traffic may improve middleware performance. For
example, when sending DDS samples over multicast, ACK-storms that previously may have hindered
DataWriters and consumed overhead network bandwidth are now precluded.

By default, DataWriters and DataReaders are configured with positive ACKS enabled. To disable ACKs,
either:

397

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

398

l Configure the DataWriter to disable positive ACKs for all matching DataReaders (by setting dis-
able_positive_acks to TRUE in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) on page 390).

l Disable ACKs for individual DataReaders (by setting disable_positive_acks to TRUE in the 8.6.1
DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575).

If ACKs are disabled, instead of the DataWriter holding a DDS sample in its send queue until all of its
DataReaders have ACKed it, the DataWriter will hold a DDS sample for a configurable duration. This
“keep-duration" starts when a DDS sample is written. When this time elapses, the DDS sample is logically
considered as acknowledged by its ACK-disabled readers.

The length of the "keep-duration" can be static or dynamic, depending on how rtps_reliable_writer-
.disable_positive_acks_enable_adaptive_sample_keep_duration is set.

l When the length is static, the "keep-duration" is set to the minimum (rtps_reliable_writer.disable_
positive_acks_min_sample_keep_duration).

l When the length is dynamic, the "keep-duration" is dynamically adjusted between the minimum and
maximum durations (rtps_reliable_writer.disable_positive_acks_min_sample_keep_duration
and rtps_reliable_writer.disable_positive_acks_max_sample_keep_duration).

Dynamic adjustment maximizes throughput and reliability in response to current network conditions: when
the network is congested, durations are increased to decrease the effective send rate and relieve the con-
gestion; when the network is not congested, durations are decreased to increase the send rate and max-
imize throughput.

You should configure the minimum "keep-duration" to allow at least enough time for a possible NACK to
be received and processed. When a DataWriter has both matching ACK-disabled and ACK-enabled
DataReaders, it holds a DDS sample in its queue until all ACK-enabled DataReaders have ACKed it and
the "keep-duration" has elapsed.

See also: 11.3.4.7 Disabling Positive Acknowledgements (disable_positive_acks_min_sample_keep_dur-
ation) on page 717.

7.5.5.4 Configuring the Send Window Size

When a reliable DataWriter writes a DDS sample, it keeps the DDS sample in its queue until it has
received acknowledgements from all of its subscribing DataReaders. The number of these outstanding
DDS samples is referred to as the DataWriter's "send window." Once the number of outstanding DDS
samples has reached the send window size, subsequent writes will block until an outstanding DDS sample
is acknowledged.

Configuration of the send window sets a minimum and maximum size, which may be unlimited. The send
window size is initialized to the minimum size. The min and max send windows can be the same. When

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

set differently, the send window will dynamically change in response to detected network congestion, as
signaled by received negative acknowledgements. When NACKs are received, the DataWriter responds to
the slowed reader by decreasing the send window by the send_window_decrease_factor to throttle down
its effective send rate. The send window will not be decreased to less than themin_send_window_size.
After a period (send_window_update_period) during which no NACKs are received, indicating that the
reader is catching up, the DataWriter will increase the send window size to increase the effective send rate
by the percentage specified by send_window_increase_factor. The send window will increase to no
greater than themax_send_window_size.

When both min_send_window_size and max_send_window_size are unlimited, either the resource lim-
itsmax_samples in 7.5.22 RESOURCE_LIMITS QosPolicy on page 452 (for non-batching) ormax_
batches in 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402
(for batching) serves as the effectivemax_send_window_size.

When eithermax_samples (for non-batching) ormax_batches (for batching) is less than max_send_win-
dow_size, it serves as the effectivemax_send_window_size. If it is also less than min_send_window_
size, then effectively both min and max send-window sizes are equal to max_samples ormax_batches.

7.5.5.5 Propagating Serialized Keys with Disposed-Instance Notifications

This section describes the interaction between these two fields:

l serialize_key_with_dispose in 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Exten-
sion) on page 390

l propagate_dispose_of_unregistered_instances in 8.6.1 DATA_READER_PROTOCOL
QosPolicy (DDS Extension) on page 575

RTI recommends setting serialize_key_with_dispose to TRUE if there are DataReaders with propag-
ate_dispose_of_unregistered_instances also set to TRUE. The following examples will help you under-
stand how these fields work.

See also: 7.3.14.3 Disposing Instances on page 329.

Example 1

As mentioned above, this combination of settings is not recommended:

1. DataWriter’s serialize_key_with_dispose = FALSE

2. DataReader’s propagate_dispose_of_unregistered_instances = TRUE

3. DataWriter calls dispose() for an instance before writing any DDS samples

4. DataReader calls take() and receives a disposed-instance notification (without a key)

399

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

400

5. DataReader calls get_key_value(), which returns an error because there is no key associated with
the disposed-instance notification

Example 2

1. DataWriter’s serialize_key_with_dispose = TRUE

2. DataReader’s propagate_dispose_of_unregistered_instances = FALSE

3. DataWriter calls dispose() for an instance before writing any DDS samples

4. DataReader calls take(), which does not return any DDS samples because none were written, and it
does not receive any disposed-instance notifications because propagate_dispose_of_unregistered_
instances = FALSE

Example 3

1. DataWriter’s serialize_key_with_dispose = TRUE

2. DataReader’s propagate_dispose_of_unregistered_instances = TRUE

3. DataWriter calls dispose() for an instance before writing any DDS samples

4. DataReader calls take() and receives the disposed-instance notification

5. DataReader calls get_key_value() and receives the key for the disposed-instance notification

Note: Persistence Service DataReaders ignore the serialized key propagated with dispose updates. Per-
sistence Service DataWriters cannot propagate the serialized key with dispose, and therefore ignore the
serialize_key_with_dispose setting on the DataWriter QoS.

7.5.5.6 Virtual Heartbeats

Virtual heartbeats announce the availability of DDS samples with the Collaborative DataWriters feature
described in 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575, where
multiple DataWriters publish DDS samples from a common logical data-source (identified by a virtual
GUID).

When 7.4.6 PRESENTATION QosPolicy on page 363 access_scope is set to TOPIC or INSTANCE on
the Publisher, the virtual heartbeat contains information about the DDS samples contained in the
DataWriter queue.

When presentation access_scope is set to GROUP on the Publisher, the virtual heartbeat contains inform-
ation about the DDS samples in the queues of all DataWriters that belong to the Publisher.

7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

7.5.5.7 Resending Over Multicast

Given DataReaders with multicast destinations, when a DataReader sends a NACK to request for DDS
samples to be resent, the DataWriter can either resend them over unicast or multicast. Though resending
over multicast would save bandwidth and processing for the DataWriter, the potential problem is that there
could be DataReaders of the multicast group that did not request for any resends, yet they would have to
process, and drop, the resent DDS samples.

Thus, to make each multicast resend more efficient, themulticast_resend_threshold is set as the min-
imum number of DataReaders of the same multicast group that the DataWriter must receive NACKs from
within a single response-delay duration. This allows the DataWriter to coalesce near-simultaneous unicast
resends into a multicast resend, and it allows a "vote" from DataReaders of a multicast group to exceed a
threshold before resending over multicast.

Themulticast_resend_threshold must be set to a positive value. Note that a threshold of 1 means that all
resends will be sent over multicast. Also, note that a DataWriter with a zero NACK response-delay (i.e.,
both min_nack_response_delay and max_nack_response_delay are zero) will resend over multicast
only if the threshold is 1.

7.5.5.8 Example

For information on how to use the fields in Table 7.45 DDS_RtpsReliableWriterProtocol_t, see 11.3.4
Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy on page 710.

The following describes a use case for when to change push_on_write to DDS_BOOLEAN_FALSE.
Suppose you have a system in which the data packets being sent is very small. However, you want the
data to be sent reliably, and the latency between the time that data is sent to the time that data is received is
not an issue. However, the total network bandwidth between the DataWriter and DataReader applications
is limited.

If the DataWriter sends a burst of data a a high rate, it is possible that it will overwhelm the limited band-
width of the network. If you allocate enough space for the DataWriter to store the data burst being sent
(see 7.5.22 RESOURCE_LIMITS QosPolicy on page 452), then you can use the push_on_write para-
meter of the DATA_WRITER_PROTOCOL QosPolicy to delay sending the data until the reliable
DataReader asks for it.

By setting push_on_write to DDS_BOOLEAN_FALSE, when write() is called on the DataWriter, no
data is actually sent. Instead data is stored in the DataWriter’s send queue. Periodically, Connext DDS will
be sending heartbeats informing the DataReader about the data that is available. So every heartbeat period,
the DataReader will realize that the DataWriter has new data, and it will send an ACK/NACK, asking for
them.

When DataWriter receives the ACK/NACK packet, it will put together a package of data, up to the size
set by the parametermax_bytes_per_nack_response, to be sent to the DataReader. This method not
only self-throttles the send rate, but also uses network bandwidth more efficiently by eliminating redundant

401

7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)

402

packet headers when combining several small packets into one larger one. Please note that the DataWriter
will always send at least one sample.

7.5.5.9 Properties

This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the publishing
and subscribing sides.

When setting the fields in this policy, the following rules apply. If any of these are false, Connext DDS
returns DDS_RETCODE_INCONSISTENT_POLICY:

l min_nack_response_delay <= max_nack_response_delay

l fast_heartbeat_period <= heartbeat_period

l late_joiner_heartbeat_period <= heartbeat_period

l low_watermark < high_watermark

l If batching is disabled:
l heartbeats_per_max_samples <= writer_qos.resource_limits.max_samples

l If batching is enabled:
l heartbeats_per_max_samples <= writer_qos.resource_limits.max_batches

7.5.5.10 Related QosPolicies

l 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575

l 7.5.12 HISTORY QosPolicy on page 421

l 7.5.21 RELIABILITY QosPolicy on page 448

7.5.5.11 Applicable DDS Entities

l 7.3 DataWriters on page 288

7.5.5.12 System Resource Considerations

A high max_bytes_per_nack_response may increase the instantaneous network bandwidth required to
send a single burst of traffic for resending dropped packets.

7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)

This QosPolicy defines various settings that configure how DataWriters allocate and use physical memory
for internal resources.

7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)

It includes the members in Table 7.46 DDS_DataWriterResourceLimitsQosPolicy. For defaults and valid
ranges, please refer to the API Reference HTML documentation.

Type Field
Name Description

DDS_Long

initial_con-
current_
blocking_
threads

Initial number of threads that are allowed to concurrently block on the write()call on the same
DataWriter.

DDS_Long

max_con-
current_
blocking_
threads

Maximumnumber of threads that are allowed to concurrently block on write() call on the same
DataWriter.

DDS_Long

max_re-
mote_
reader_
filters

Maximumnumber of remote DataReaders for which thisDataWriter will perform content-based fil-
tering.

DDS_Long
initial_
batches

Initial number of batches that a DataWriter will manage if batching is enabled.

DDS_Long
max_
batches

Maximumnumber of batches that a DataWriter will manage if batching is enabled.

When batching is enabled, the maximumnumber of DDS samples that a DataWriter can store is lim-
ited by this value andmax_samples in 7.5.22 RESOURCE_LIMITSQosPolicy on page 452.

DDS_DataWriter
ResourceLimits
InstanceReplacementKind

instance_re-
placement

Sets the kinds of instances allowed to be replaced when a DataWriter reachesmax_instances in the
7.5.22 RESOURCE_LIMITSQosPolicy on page 452. (See 7.5.6.1 Configuring DataWriter In-
stance Replacement on page 405.)

DDS_Boolean
replace_
empty_
instances

Whether to replace empty instances during instance replacement. (See 7.5.6.1 Configuring
DataWriter Instance Replacement on page 405.)

DDS_Boolean
autoregister_
instances

Whether to register automatically instances written with non-NIL handle that are not yet registered,
which will otherwise return an error. This can be especially useful if the instance has been replaced.

DDS_Long
initial_vir-
tual_writers

Initial number of virtual writers supported by a DataWriter.

DDS_Long
max_virtual_
writers

Maximumnumber of virtual writers supported by a DataWriter.

Sets the maximumnumber of unique virtual writers supported by a DataWriter, where virtual writers are
added when DDS samples are written with the virtual writerGUID.

This field is especially relevant in the configuration of Persistence Service DataWriters, since they
publish information on behalf of multiple virtual writers.

DDS_Long
max_re-
mote_read-
ers

The maximumnumber of remote readers supported by a DataWriter.

Table 7.46 DDS_DataWriterResourceLimitsQosPolicy

403

7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)

404

Type Field
Name Description

DDS_Long
max_app_
ack_remote_
readers

The maximumnumber of application-level acknowledging remote readers supported by a DataWriter.

DDS_Long
initial_act-
ive_topic_
queries

Initial number of active topic queries a DataWriter will manage.

DDS_Long
max_active_
topic_quer-
ies

Maximumnumber of active topic queries a DataWriter will manage. When topic queries are enabled,
the maximumnumber of topic queries that a DataWriter can process at the same time is limited by this
value.

DDS_AllocationSettings_t

writer_
loaned_
sample_al-
location

Sets the allocation settings of the DataWriter-managed sample pool, when using Zero Copy transfer
over shared memory or FlatData language binding. The number of samples loaned by a DataWriter
via FooDataWriter’s get_loan() operation is limited by the max_count in writer_loaned_sample_al-
location. See Chapter 23 Sending Large Data on page 949.

DDS_Boolean

initialize_
writer_
loaned_
sample

Determines whether or not to initialize members to default values in loaned samples returned by
FooDataWriter's get_loan() operation, when using Zero Copy transfer over shared memory or
FlatData language binding. See Chapter 23 Sending Large Data on page 949.

Table 7.46 DDS_DataWriterResourceLimitsQosPolicy

DataWriters must allocate internal structures to handle the simultaneous blocking of threads trying to call
write() on the same DataWriter, for the storage used to batch small DDS samples, and for content-based
filters specified by DataReaders.

Most of these internal structures start at an initial size and by default, will grow as needed by dynamically
allocating additional memory. You may set fixed, maximum sizes for these internal structures if you want
to bound the amount of memory that a DataWriter can use. By setting the initial size to the maximum size,
you will prevent Connext DDS from dynamically allocating any memory after the creation of the
DataWriter.

When setting the fields in this policy, the following rule applies. If this is false, Connext DDS returns
DDS_RETCODE_INCONSISTENT_POLICY:

l max_concurrent_blocking_threads >= initial_concurrent_blocking_threads

The initial_concurrent_blocking_threads is used to allocate necessary initial system resources. If neces-
sary, it will be increased automatically up to themax_concurrent_blocking_threads limit.

Every user thread calling write() on a DataWriter may use a semaphore that will block the thread when
the DataWriter’s send queue is full. Because user code may set a timeout, each thread must use a different
semaphore. See themax_blocking_time parameter of the 7.5.21 RELIABILITY QosPolicy on
page 448. This QoS is offered so that the user application can control the dynamic allocation of system
resources by Connext DDS.

7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)

If you do not mind if Connext DDS dynamically allocates semaphores when needed, then you can set the
max_concurrent_blocking_threads parameter to some large value likeMAX_INT. However, if you
know exactly how many threads will be calling write() on the same DataWriter, and you do not want Con-
next DDS to allocate any system resources or memory after initialization, then you should set:

max_concurrent_blocking_threads = initial_concurrent_blocking_threads = NUM

(where NUM is the number of threads that could possibly block concurrently).

Each DataWriter can perform content-based data filtering for up to max_remote_reader_filters number
of DataReaders.

Values formax_remote_reader_filters may be.

l 0: The DataWriter will not perform filtering for any DataReader, which means the DataReader will
have to filter the data itself.

l 1 to (231-2): The DataWriter will filter for up to the specified number of DataReaders. In addition,
the Datawriter will store the result of the filtering per DDS sample per DataReader.

l DDS_LENGTH_UNLIMITED (default): The DataWriter will filter for up to (231)-2 DataRead-
ers. However, in this case, the DataWriter will not store the filtering result per DDS sample per
DataReader. Thus, if a DDS sample is resent (such as due to a loss of reliable communication), the
DDS sample will be filtered again.

For more information, see 5.4 ContentFilteredTopics on page 228.

7.5.6.1 Configuring DataWriter Instance Replacement

When themax_instances limit (in the 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS
Extension) on page 402) is reached, a DataWriter will try to make space for a new instance by replacing
an existing instance according to the instance replacement kind set in instance_replacement in the 7.5.6
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402. For the sake of
instance replacement, an instance is considered to be unregistered, disposed, or alive. The oldest instance
of the specified kind, if such an instance exists, would be replaced with the new instance. Also, all DDS
samples of a replaced instance must already have been acknowledged, such that removing the instance
would not deprive any existing reader from receiving them.

Since an unregistered instance is one that a DataWriter will not update any further, unregistered instances
are replaced before any other instance kinds. This applies for all instance_replacement kinds; for
example, the ALIVE_THEN_DISPOSED kind would first replace unregistered, then alive, and then dis-
posed instances. The rest of the kinds specify one or two kinds (e.g DISPOSED and ALIVE_OR_
DISPOSED). For the single kind, if no unregistered instances are replaceable, and no instances of the spe-
cified kind are replaceable, then the instance replacement will fail. For the others specifying multiple kinds,
it either specifies to look for one kind first and then another kind (e.g. ALIVE_THEN_DISPOSED),
meaning if the first kind is found then that instance will be replaced, or it will replace either of the kinds

405

7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)

406

specified (e.g. ALIVE_OR_DISPOSED), whichever is older as determined by the time of instance regis-
tering, writing, or disposing.

If an acknowledged instance of the specified kind is found, the DataWriter will reclaim its resources for
the new instance. It will also invoke the DataWriterListener’s on_instance_replaced() callback (if
installed) and notify the user with the handle of the replaced instance, which can then be used to retrieve
the instance key from within the callback. If no replaceable instances are found, the new instance will fail
to be registered; the DataWriter may block, if the instance registration was done in the context of a write,
or it may return with an out-of-resources return code.

In addition, replace_empty_instances (in the 7.5.6 DATA_WRITER_RESOURCE_LIMITS
QosPolicy (DDS Extension) on page 402) configures whether instances with no DDS samples are eligible
to be replaced. If this is set, then a DataWriter will first try to replace empty instances, even before repla-
cing unregistered instances.

7.5.6.2 Example

If there are multiple threads that can write on the same DataWriter, and the write() operation may block
(based on reliability_qos.max_blocking_time and HISTORY settings), you may want to set initial_con-
current_blocking_threads to the most likely number of threads that will block on the same DataWriter at
the same time, and setmax_concurrent_blocking_threads to the maximum number of threads that could
potentially block in the worst case.

7.5.6.3 Properties

This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the publishing
and subscribing sides.

7.5.6.4 Related QosPolicies

l 7.5.2 BATCH QosPolicy (DDS Extension) on page 375

l 7.5.21 RELIABILITY QosPolicy on page 448

l 7.5.12 HISTORY QosPolicy on page 421

7.5.6.5 Applicable DDS Entities

l 7.3 DataWriters on page 288

7.5.6.6 System Resource Considerations

Increasing the values in this QosPolicy will cause more memory usage and more system resource usage.

7.5.7 DEADLINE QosPolicy

7.5.7 DEADLINE QosPolicy

On a DataWriter, this QosPolicy states the maximum period in which the application expects to call write
() on the DataWriter, thus publishing a new DDS sample. The application may call write() faster than the
rate set by this QosPolicy.

On a DataReader, this QosPolicy states the maximum period in which the application expects to receive
new values for the Topic. The application may receive data faster than the rate set by this QosPolicy.

The DEADLINE QosPolicy has a single member, shown in Table 7.47 DDS_DeadlineQosPolicy. For
the default and valid range, please refer to the API Reference HTML documentation.

Type Field Name Description

DDS_Duration_t period
ForDataWriters: maximum time between writing a new value of an instance.

ForDataReaders: maximum time between receiving new values for an instance.

Table 7.47 DDS_DeadlineQosPolicy

You can use this QosPolicy during system integration to ensure that applications have been coded to meet
design specifications. You can also use it during run time to detect when systems are performing outside of
design specifications. Receiving applications can take appropriate actions to prevent total system failure
when data is not received in time. For topics on which data is not expected to be periodic, the deadline
period should be set to an infinite value.

For keyed topics, the DEADLINE QoS applies on a per-instance basis. An application must call write()
for each known instance of the Topic within the period specified by the DEADLINE on the DataWriter
or receive a new value for each known instance within the period specified by the DEADLINE on the
DataReader. For a DataWriter, the deadline period begins when the instance is first written or registered.
For a DataReader, the deadline period begins when the first DDS sample is received.

Connext DDS will modify the OFFERED_DEADLINE_MISSED_STATUS and call the associated
method in the DataWriterListener (see 7.3.6.5 OFFERED_DEADLINE_MISSED Status on page 304)
if the application fails to write() a value for an instance within the period set by the DEADLINE
QosPolicy of the DataWriter.

Similarly, Connext DDS will modify the REQUESTED_DEADLINE_MISSED_STATUS and call the
associated method in the DataReaderListener (see 8.3.7.5 REQUESTED_DEADLINE_MISSED Status
on page 531) if the application fails to receive a value for an instance within the period set by the
DEADLINE QosPolicy of the DataReader.

For DataReaders, the DEADLINE QosPolicy and the 8.6.4 TIME_BASED_FILTER QosPolicy on
page 593 may interact such that even though the DataWriter writes DDS samples fast enough to fulfill its
commitment to its own DEADLINE QosPolicy, the DataReader may see violations of its DEADLINE
QosPolicy. This happens because Connext DDS will drop any packets received within theminimum_sep-
aration set by the TIME_BASED_FILTER—packets that could satisfy the DataReader’s deadline.

407

7.5.7 DEADLINE QosPolicy

408

To avoid triggering the DataReader’s deadline even though the matched DataWriter is meeting its own
deadline, set your QoS parameters to meet the following relationship:
reader deadline period >= reader minimum_separation + writer deadline period

Although you can set the DEADLINE QosPolicy on Topics, its value can only be used to initialize the
DEADLINE QosPolicies of either a DataWriter or DataReader. It does not directly affect the operation of
Connext DDS, see 5.1.3 Setting Topic QosPolicies on page 220.

7.5.7.1 Example

Suppose you have a time-critical piece of data that should be updated at least once every second. You can
set the DEADLINE period to 1 second on both the DataWriter and DataReader. If there is no update
within that time, the DataWriter will get an on_offered_deadline_missed Listener callback, and the
DataReader will get on_requested_deadline_missed, so that both sides can handle the error situation
properly.

Note that in practice, there will be latency and jitter in the time between when data is send and when data
is received. Thus even if the DataWriter is sending data at exactly 1 second intervals, the DataReader may
not receive the data at exactly 1 second intervals. More likely, it will DataReader will receive the data at 1
second plus a small variable quantity of time. Thus you should accommodate this practical reality in choos-
ing the DEADLINE period as well as the actual update period of the DataWriter or your application may
receive false indications of failure.

The DEADLINE QosPolicy also interacts with the OWNERSHIP QosPolicy when OWNERSHIP is set
to EXCLUSIVE. If a DataReader fails to receive data from the highest strength DataWriter within its
requested DEADLINE, then the DataReaders can fail-over to lower strength DataWriters, see the 7.5.17
OWNERSHIP QosPolicy on page 435.

7.5.7.2 Properties

This QosPolicy can be changed at any time.

The deadlines on the two sides must be compatible.

DataWriter’s DEADLINE period <= the DataReader’s DEADLINE period.

That is, the DataReader cannot expect to receive DDS samples more often than the DataWriter commits
to sending them.

If the DataReader and DataWriter have compatible deadlines, Connext DDS monitors this “contract” and
informs the application of any violations. If the deadlines are incompatible, both sides are informed and
communication does not occur. The ON_OFFERED_INCOMPATIBLE_QOS and the ON_
REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding Listeners
called for the DataWriter and DataReader respectively.

7.5.8 DESTINATION_ORDER QosPolicy

7.5.7.3 Related QosPolicies

l 7.5.15 LIVELINESS QosPolicy on page 428

l 7.5.17 OWNERSHIP QosPolicy on page 435

l 8.6.4 TIME_BASED_FILTER QosPolicy on page 593

7.5.7.4 Applicable DDS Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.7.5 System Resource Considerations

A Connext DDS-internal thread will wake up at least by the DEADLINE period to check to see if the
deadline was missed. It may wake up faster if the last DDS sample that was published or sent was close to
the last time that the deadline was checked. Therefore a short period will use more CPU to wake and
execute the thread checking the deadline.

7.5.8 DESTINATION_ORDER QosPolicy

When multiple DataWriters send data for the same topic, the order in which data from different
DataWriters are received by the applications of different DataReaders may be different. Thus different
DataReaders may not receive the same "last" value when DataWriters stop sending data.

This policy controls how each subscriber resolves the final value of a data instance that is written by mul-
tiple DataWriters (which may be associated with different Publishers) running on different nodes.

This QosPolicy can be used to create systems that have the property of "eventual consistency." Thus inter-
mediate states across multiple applications may be inconsistent, but when DataWriters stop sending
changes to the same topic, all applications will end up having the same state.

Each DDS sample includes two timestamps: a source timestamp and a reception timestamp. The source
timestamp is recorded by the DataWriter application when the data was written. The reception timestamp
is recorded by the DataReader application when the data was received.

This QoS includes the members in Table 7.48 DDS_DestinationOrderQosPolicy.

409

7.5.8 DESTINATION_ORDER QosPolicy

410

Type Field
Name Description

DDS_DestinationOrderQosPolicyKind kind

Can be either:

DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

DDS_Destin-
ationOrderQosPolicyScopeKind

scope

Can be either:

DDS_INSTANCE_SCOPE_DESTINATIONORDER_QOS - Indicates that data is ordered on
a per instance basis if used along with DDS_BY_SOURCE_TIMESTAMP_
DESTINATIONORDER_QOS. The source timestamp of the current sample is compared to
the source timestamp of the previously received sample for the same instance. The tol-
erance check is also applied per instance.

DDS_TOPIC_SCOPE_DESTINATIONORDER_QOS - Indicates that data is ordered on a
per topic basis if used along with DDS_BY_SOURCE_TIMESTAMP_
DESTINATIONORDER_QOS. The source timestamp of the current sample is compared to
the source timestamp of the previously received sample for the same topic. The tolerance
check is also applied per topic.

DDS_Duration_t
source_
timestamp_
tolerance

Allowed tolerance between source timestamps of consecutive DDS samples. Only applies
when kind (above) is DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS.

l For a DataWriter: The write operation will fail if the source timestamp of the sample
is older than the timestamp of the previously written DDS sample bymore than the
source_timestamp_tolerance.

l For a DataReader: A DataReaderwill accept a sample only if the source timestamp
is no farther in the future from the reception timestamp than the source_
timestamp_tolerance.

Table 7.48 DDS_DestinationOrderQosPolicy

This QoS policy can be set for both DataWriters and DataReaders. See 7.5.8.1 Properties on the next
page for compatibility rules.

For a DataReader:

l DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

Assuming the OWNERSHIP_STRENGTH allows it, the latest received value for the instance
should be the one whose value is kept. Data will be delivered by a DataReader in the order in
which it was received (which may lead to inconsistent final values).

l DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

If scope is set to DDS_INSTANCE_SCOPE_DESTINATIONORDER_QOS (default), within
each instance, the sample's source timestamp shall be used to determine the most recent information.
This is the only setting that, in the case of concurrent same-strength DataWriters updating the same
instance, ensures that all DataReaders end up with the same final value for the instance. If a
DataReader receives a sample for an instance with a source timestamp that is older than the last
source timestamp received for the instance, the sample is dropped. You can keep track of the total

7.5.8 DESTINATION_ORDER QosPolicy

number of dropped samples for this reason with the old_source_timestamp_dropped_sample_
count field in the 8.3.7.2 DATA_READER_CACHE_STATUS on page 522. The SAMPLE_
REJECTED status or the SAMPLE_LOST status will not be updated.

If scope is set to DDS_TOPIC_SCOPE_DESTINATIONORDER_QOS, the ordering is enforced
per topic across all instances.

In addition, a DataReader will accept a sample only if the source timestamp is no farther in the
future from the reception timestamp than the source_timestamp_tolerance. Otherwise, the DDS
sample is dropped. You can keep track of the total number of dropped samples for this reason with
the tolerance_source_timestamp_dropped_sample_count field in the 8.3.7.2 DATA_
READER_CACHE_STATUS on page 522. The SAMPLE_REJECTED status or the SAMPLE_
LOST status will not be updated.

For the DataWriter:

l DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

The DataWriter will not enforce source timestamp ordering when writing samples using the
DataWriter::write_w_timestamp or DataWriter::write_w_params API. The source timestamp
of a new sample can be older than the source timestamp of the previous samples.

l DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

If scope is set to DDS_INSTANCE_SCOPE_DESTINATIONORDER_QOS (default), when writ-
ing a sample, the sample’s timestamp must not be older than the timestamp of the previously written
DDS sample for the same instance. If, however, the timestamp is older than the timestamp of the pre-
viously written DDS sample—but the difference is less than the source_timestamp_tolerance—the
DDS sample will use the previously written DDS sample's timestamp as its timestamp. Otherwise, if
the difference is greater than the tolerance, the write will fail with retcode DDS_RETCODE_BAD_
PARAMETER.

If scope is set to DDS_TOPIC_SCOPE_DESTINATIONORDER_QOS, a new sample timestamp
must not be older than the timestamp of the previously written DDS sample, across all instances.
(The ordering is enforced across all instances.)

Although you can set the DESTINATION_ORDER QosPolicy on Topics, its value can only be used to
initialize the DESTINATION_ORDER QosPolicies of either a DataWriter or DataReader. It does not dir-
ectly affect the operation of Connext DDS, see 5.1.3 Setting Topic QosPolicies on page 220.

7.5.8.1 Properties

This QosPolicy cannot be modified after the Entity is enabled.

411

7.5.9 DURABILITY QosPolicy

412

This QoS must be set compatibly between the DataWriter and the DataReader. The compatible com-
binations are shown in Table 7.49 Valid Reader/Writer Combinations of DestinationOrder.

Destination Order
DataReader requests:

BY_SOURCE BY_RECEPTION

DataWriter offers:
BY_SOURCE compatible compatible

BY_RECEPTION incompatible compatible

Table 7.49 Valid Reader/Writer Combinations of DestinationOrder

If this QosPolicy is set incompatibly, the ON_OFFERED_INCOMPATIBLE_QOS and ON_
REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding Listeners
called for the DataWriter and DataReader respectively.

7.5.8.2 Related QosPolicies

l 7.5.17 OWNERSHIP QosPolicy on page 435

l 7.5.12 HISTORY QosPolicy on page 421

7.5.8.3 Applicable DDS Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.8.4 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

7.5.9 DURABILITY QosPolicy

Because the publish-subscribe paradigm is connectionless, applications can create publications and sub-
scriptions in any way they choose. As soon as a matching pair of DataWriters and DataReaders exist, the
data published by the DataWriter will be delivered to the DataReader. However, a DataWriter may pub-
lish data before a DataReader has been created. For example, before you subscribe to a magazine, there
have been past issues that were published.

The DURABILITY QosPolicy controls whether or not, and how, published DDS samples are stored by
the DataWriter application for DataReaders that are found after the DDS samples were initially written.
DataReaders use this QoS to request DDS samples that were published before they were created. The ana-
logy is for a new subscriber to a magazine to ask for issues that were published in the past. These are

7.5.9 DURABILITY QosPolicy

known as ‘historical’ DDS data samples. (Reliable DataReaders may wait for these historical DDS
samples, see 8.3.5 Checking DataReader Status and StatusConditions on page 519.)

This QosPolicy can be used to help ensure that DataReaders get all data that was sent by DataWriters,
regardless of when it was sent. This QosPolicy can increase system tolerance to failure conditions.

The 7.5.12 HISTORY QosPolicy on page 421 controls how many samples the DataWriter stores for
repair to currently matched DataReaders. The DURABILITY QosPolicy controls how many samples the
DataWriter stores for sending to late-joining DataReaders (DataReaders that are found after the samples
were initially written). See Figure 7.30: History Depth and Durability Depth on page 425.

See also Mechanisms for Achieving Information Durability and Persistence (Chapter 13 on page 738).

The possible settings for this QoS are:

l DDS_VOLATILE_DURABILITY_QOS

Connext DDS is not required to send and will not deliver any DDS data samples to DataReaders
that are discovered after the DDS samples were initially published.

l DDS_TRANSIENT_LOCAL_DURABILITY_QOS

Connext DDS will store and send previously published DDS samples for delivery to newly dis-
covered DataReaders as long as the DataWriter still exists. For this setting to be effective, you must
also set the 7.5.21 RELIABILITY QosPolicy on page 448 kind to Reliable (not Best Effort).
Which particular DDS samples are kept depends on other QoS settings such as 7.5.12 HISTORY
QosPolicy on page 421 and 7.5.22 RESOURCE_LIMITS QosPolicy on page 452.

l DDS_TRANSIENT_DURABILITY_QOS

Connext DDS will store previously published DDS samples in memory using Persistence Service,
which will send the stored data to newly discovered DataReaders. Which particular DDS samples
are kept and sent by Persistence Service depends on the 7.5.12 HISTORY QosPolicy on page 421
and 7.5.22 RESOURCE_LIMITS QosPolicy on page 452 of the Persistence Service DataWriters.
These QosPolicies can be configured in the Persistence Service configuration file or through the
7.5.10 DURABILITY SERVICE QosPolicy on page 417 of the DataWriters configured with
DDS_TRANSIENT_DURABILITY_QOS.

l DDS_PERSISTENT_DURABILITY_QOS

Connext DDS will store previously published DDS samples in permanent storage, like a disk, using
Persistence Service, which will send the stored data to newly discovered DataReaders. Which par-
ticular DDS samples are kept and sent by Persistence Service depends on the 7.5.12 HISTORY
QosPolicy on page 421 and 7.5.22 RESOURCE_LIMITS QosPolicy on page 452 in the Per-
sistence Service DataWriters. These QosPolicies can be configured in the Persistence Service

413

7.5.9 DURABILITY QosPolicy

414

configuration file or through the 7.5.10 DURABILITY SERVICE QosPolicy on page 417 of the
DataWriters configured with DDS_PERSISTENT_DURABILITY_QOS.

This QosPolicy includes the members in Table 7.50 DDS_DurabilityQosPolicy. For default settings,
please refer to the API Reference HTML documentation.

Type Field Name Description

DDS_Dur-
abilityQosPolicyKind

kind

DDS_VOLATILE_DURABILITY_QOS:
Do not save or deliver historical DDS samples.

DDS_TRANSIENT_LOCAL_DURABILITY_QOS:
Save and deliver historical DDS samples if the DataWriter still exists.

DDS_TRANSIENT_DURABILITY_QOS:
Save and deliver historical DDS samples using Persistence Service to store samples in volatile memory.

DDS_PERSISTENCE_DURABILITY_QOS:
Save and deliver historical DDS samples using Persistence Service to store samples in non-volatile
memory.

DDS_Long writer_depth

Howmany DDS samples are stored per instance by the DataWriter application for sending to late-join-
ing DataReaders (DataReaders that are found after the DDS samples were initially written).

The default value, AUTO, makes this parameter equal to the following:

l History depth in the 7.5.12 HISTORYQosPolicy on page 421 if the History kind is KEEP_
LAST.

l max_samples_per_instance in the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452 if
the History kind is KEEP_ALL.

The writer_depthmust be <= to the History depth in the HISTORY QosPolicy if the History kind is
KEEP_LAST.

writer_depth applies only to non-volatile DataWriters (those forwhich the kind is DDS_TRANSIENT_
LOCAL_DURABILITY_QOS, DDS_TRANSIENT_DURABILITY_QOS, orDDS_PERSISTENCE_
DURABILITY_QOS).

writer_depth set on the DataReader side will be ignored.

DDS_Boolean
direct_
communication

Whether or not a TRANSIENT orPERSISTENTDataReader should receive DDS samples directly from
a TRANSIENT orPERSISTENTDataWriter.

When TRUE, a TRANSIENT orPERSISTENTDataReader will receive DDS samples directly from the ori-

ginalDataWriter. The DataReader may also receive DDS samples fromPersistence Service, but the
duplicates will be filtered by the middleware.

When FALSE, a TRANSIENT orPERSISTENTDataReader will receive DDS samplesonly from the
DataWriter created byPersistence Service. This ‘relay communication’ pattern provides a way to guar-
antee eventual consistency.

See 13.5.1 RTI Persistence Service on page 755.

This field only applies to DataReaders.

Table 7.50 DDS_DurabilityQosPolicy

7.5.9 DURABILITY QosPolicy

With this QoS policy alone, there is no way to specify or characterize the intended consumers of the
information. With TRANSIENT_LOCAL, TRANSIENT, or PERSISTENT durability a DataWriter can
be configured to keep DDS samples around for late-joiners. However, there is no way to know when the
information has been consumed by all the intended recipients.

Information durability can be combined with required subscriptions in order to guarantee that DDS
samples are delivered to a set of required subscriptions. For additional details on required subscriptions see
7.3.13 Required Subscriptions on page 324 and 7.5.1 AVAILABILITY QosPolicy (DDS Extension) on
page 371.

A DataWriter will keep at mostHistory.depth samples per instance until they are fully acknowledged.
Samples outside of the Durability.writer_depth for an instance will be removed once they are fully
acknowledged. Only the most recent Durability.writer_depth samples per instance will be kept by the
DataWriter for delivery to late-joining non-volatile DataReaders.

When writer_depth is used in combination with batching, it acts as a minimum number of samples that
will be kept per instance, rather than a maximum. Any batch that contains a sample that falls within the
writer_depth of the instance to which it belongs will be sent to late-joining DataReaders. This means that
batches may be sent that contain samples from other instances, or the same instance, that fall outside of the
writer_depth for the instance to which they belong. For example, if the writer_depth is set to 1 and a
batch with two samples for the same instance is written, then when a late-joining DataReader is dis-
covered, the DataWriter will send the batch containing two samples for the same instance to the
DataReader.

7.5.9.1 Example

Suppose you have a DataWriter that sends data sporadically and its DURABILITY kind is set to
VOLATILE. If a new DataReader joins the system, it won’t see any data until the next time that write()
is called on the DataWriter. If you want the DataReader to receive any data that is valid, old or new, both
sides should set their DURABILITY kind to TRANSIENT_LOCAL. This will ensure that the
DataReader gets some of the previous DDS samples immediately after it is enabled.

7.5.9.2 Properties

This QosPolicy cannot be modified after the Entity has been created.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be compatible, the
DataWriter and DataReader must use one of the valid combinations shown in Table 7.51 Valid Com-
binations of Durability ‘kind’.

If this QosPolicy is found to be incompatible, the ON_OFFERED_INCOMPATIBLE_QOS and ON_
REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding Listeners
called for the DataWriter and DataReader respectively.

415

7.5.9 DURABILITY QosPolicy

416

DataReader requests:

VOLATILE TRANSIENT_LOCAL TRANSIENT PERSISTENT

DataWriter offers:

VOLATILE compatible incompatible incompatible incompatible

TRANSIENT_
LOCAL

compatible compatible incompatible incompatible

TRANSIENT compatible compatible compatible incompatible

PERSISTENT compatible compatible compatible compatible

Table 7.51 Valid Combinations of Durability ‘kind’

7.5.9.3 Related QosPolicies

l 7.5.12 HISTORY QosPolicy on page 421

l 7.5.21 RELIABILITY QosPolicy on page 448

l 7.5.10 DURABILITY SERVICE QosPolicy on the next page

l 7.5.1 AVAILABILITY QosPolicy (DDS Extension) on page 371

7.5.9.4 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.9.5 System Resource Considerations

Using this policy with a setting other than VOLATILE will cause Connext DDS to use CPU and network
bandwidth to send old DDS samples to matching, newly discovered DataReaders. The actual amount of
resources depends on the total size of data that needs to be sent.

The maximum number of DDS samples that will be kept on the DataWriter’s queue for late-joiners and/or
required subscriptions is determined by max_samples in RESOURCE_LIMITS Qos Policy.

System Resource Considerations With Required Subscriptions

By default, when TRANSIENT_LOCAL durability is used in combination with required subscriptions, a
DataWriter configured with KEEP_ALL in the 7.5.12 HISTORY QosPolicy on page 421 will keep the
DDS samples in its cache until they are acknowledged by all the required subscriptions. (For additional
details, see 7.3.13 Required Subscriptions on page 324.) After the DDS samples are acknowledged by the
required subscriptions they will be marked as reclaimable, but they will not be purged from the

7.5.10 DURABILITY SERVICE QosPolicy

DataWriter’s queue until the DataWriter needs these resources for new DDS samples. This may lead to a
non efficient resource utilization, specially when max_samples is high or even UNLIMITED.

The DataWriter’s behavior can be changed to purge DDS samples after they have been acknowledged by
all the active/matching DataReaders and all the required subscriptions configured on the DataWriter. To
do so, set the dds.data_writer.history.purge_samples_after_acknowledgment property to 1 (see 7.5.19
PROPERTY QosPolicy (DDS Extension) on page 440).

See 7.3.13 Required Subscriptions on page 324.

7.5.10 DURABILITY SERVICE QosPolicy

This QosPolicy is only used if the 7.5.9 DURABILITY QosPolicy on page 412 is PERSISTENT or
TRANSIENT and you are using Persistence Service. It is used to store and possibly forward the data sent
by the DataWriter to DataReaders that are created after the data was initially sent.

This QosPolicy configures certain parameters of Persistence Service when it operates on the behalf of the
DataWriter, such as how much data to store. Specifically, this QosPolicy configures the HISTORY and
RESOURCE_LIMITS used by the fictitious DataReader and DataWriter used by Persistence Service.

Note however, that by default, Persistence Service will ignore the values in the 7.5.10 DURABILITY
SERVICE QosPolicy above and must be configured to use those values.

For more information, please see:

l Mechanisms for Achieving Information Durability and Persistence (Chapter 13 on page 738)

l Introduction to RTI Persistence Service (Chapter 45 on page 1185)

l Configuring Persistence Service (Chapter 46 on page 1186)

This QosPolicy includes the members in Table 7.52 DDS_DurabilityServiceQosPolicy. For default val-
ues, please refer to the API Reference HTML documentation.

Type Field
Name Description

DDS_Duration_t
service_
cleanup_
delay

How long to keep all information regarding an instance.

Can be:

Zero (default): Purge disposed instances fromPersistence Service immediately. However, this will only happen
if use_durability_service = 1.

INFINITE: Do not purge disposed instances.

DDS_His-
toryQosPolicyKind

history_
kind

Setting to use for the 7.5.12 HISTORYQosPolicy on page 421 kindwhen recouping durable data.

Table 7.52 DDS_DurabilityServiceQosPolicy

417

7.5.10 DURABILITY SERVICE QosPolicy

418

Type Field
Name Description

DDS_Long
history_
depth

Setting to use for the 7.5.9 DURABILITYQosPolicy on page 412 writer_depthwhen recouping durable
data. If the 7.5.12 HISTORYQosPolicy on page 421 depth is set to a value lower than this value, then the
HISTORY depthwill be set equal to the value of this field.

DDS_Long

max_
samples

Settings to use for the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452when feeding data to a late
joiner.

max_in-
stances

max_
samples_
per_in-
stance

Table 7.52 DDS_DurabilityServiceQosPolicy

The service_cleanup_delay in this QosPolicy controls when Persistence Service may remove all inform-
ation regarding a data-instances. Information on a data-instance is maintained until all of the following con-
ditions are met:

1. The instance has been explicitly disposed
(instance_state = NOT_ALIVE_DISPOSED).

2.
All samples for the disposed instance have been acknowledged, including the dispose sample itself.

3. A time interval longer that DurabilityService QosPolicy’s service_cleanup_delay has elapsed since
the time that Connext DDS detected that the previous two conditions were met. (Note: Only values
of zero or INFINITE are currently supported for service_cleanup_delay.)

The service_cleanup_delay field is useful in the situation where your application disposes an instance and
it crashes before it has a chance to complete additional tasks related to the disposition. Upon restart, your
application may ask for initial data to regain its state and the delay introduced by service_cleanup_delay
will allow your restarted application to receive the information about the disposed instance and complete
any interrupted tasks.

Although you can set the DURABILITY_SERVICE QosPolicy on a Topic, this is only useful as a means
to initialize the DURABILITY_SERVICE QosPolicy of a DataWriter. A Topic’s DURABILITY_
SERVICE setting does not directly affect the operation of Connext DDS, see 5.1.3 Setting Topic
QosPolicies on page 220.

7.5.10.1 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

7.5.11 ENTITY_NAME QosPolicy (DDS Extension)

It does not apply to DataReaders, so there is no requirement for setting it compatibly on the sending and
receiving sides.

7.5.10.2 Related QosPolicies

l 7.5.9 DURABILITY QosPolicy on page 412

l 7.5.12 HISTORY QosPolicy on page 421

l 7.5.22 RESOURCE_LIMITS QosPolicy on page 452

7.5.10.3 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

7.5.10.4 System Resource Considerations

Since this QosPolicy configures the HISTORY and RESOURCE_LIMITS used by the fictitious
DataReader and DataWriter used by Persistence Service, it does have some impact on resource usage.

7.5.11 ENTITY_NAME QosPolicy (DDS Extension)

The ENTITY_NAME QosPolicy assigns a name and role name to a DomainParticipant, Publisher, Sub-
scriber, DataReader, or DataWriter.

How the name is used is strictly application-dependent.

It is useful to attach names that are meaningful to the user. These names (except for Publishers and Sub-
scribers) are propagated during discovery so that applications can use these names to identify, in a user-
context, the entities that it discovers. Also, RTI Connext tools will print the names of discovered entities
(except for Publishers and Subscribers).

The role_name identifies the role of the entity. It is used by the Collaborative DataWriter feature (see
7.5.1.1 Availability QoS Policy and Collaborative DataWriters on page 372). With Durable Sub-
scriptions, role_name is used to specify to which Durable Subscription the DataReader belongs. (see
7.5.1.2 Availability QoS Policy and Required Subscriptions on page 373.

This QosPolicy contains the members listed in Table 7.53 DDS_EntityNameQoSPolicy.

419

7.5.11 ENTITY_NAME QosPolicy (DDS Extension)

420

Type Field
Name Description

char * name
A null-terminated string up to 255 characters in length.

To set this in XML, see 19.4.8 EntityNameson page 888.

char *
role_
name

A null-terminated string up to 255 characters in length.

To set this in XML, see 19.4.8 EntityNameson page 888.

ForCollaborative DataWriters, this name is used to specify to which endpoint group the DataWriter belongs. See. 7.5.1.1 Avail-
abilityQoSPolicy and Collaborative DataWriters on page 372.

ForRequired and Durable Subscriptions this name is used to specify to which Subscription the DataReader belongs. See
7.3.13 Required Subscriptionson page 324.

Table 7.53 DDS_EntityNameQoSPolicy

These names will appear in the built-in topic for the entity (see the tables in 18.2 Built-in DataReaders on
page 838).

Prior to get_qos(), if the name and/or role_name field in this QosPolicy is not null, Connext DDS
assumes the memory to be valid and big enough and may write to it. If that is not desired, set name and/or
role_name to NULL before calling get_qos() and Connext DDS will allocate adequate memory for name.

When you call the destructor of entity’s QoS structure (DomainParticipantQos, DataReaderQos, or
DataWriterQos) (in C++, C++/CLI, and C#) or <entity>Qos_finalize() (in C), Connext DDS will attempt
to free the memory used for name and role_name if it is not NULL. If this behavior is not desired, set
name and/or role_name to NULL before you call the destructor of entity’s QoS structure or DomainPar-
ticipantQos_finalize().

7.5.11.1 Properties

This QosPolicy cannot be modified after the entity is enabled.

7.5.11.2 Related QosPolicies

l None

7.5.11.3 Applicable Entities

l 9.3 DomainParticipants on page 615

l 7.2 Publishers on page 272

l 8.2 Subscribers on page 491

l 8.3 DataReaders on page 509

l 7.3 DataWriters on page 288

7.5.12 HISTORY QosPolicy

7.5.11.4 System Resource Considerations

If the value of name in this QosPolicy is not NULL, some memory will be consumed in storing the inform-
ation in the database, but should not significantly impact the use of resource.

7.5.12 HISTORY QosPolicy

This QosPolicy configures the number of DDS samples that Connext DDS will store locally for
DataWriters and DataReaders. For reliable DataWriters, the HISTORY QosPolicy configures the reli-
ability window, or the number of samples that are kept until all matching DataReaders have fully-acknow-
ledged the samples. For keyed Topics, this QosPolicy applies on a per instance basis, so that Connext DDS
will attempt to store the configured value of DDS samples for every instance (see 2.4 DDS Samples,
Instances, and Keys on page 18 for a discussion of keys and instances).

This QoS policy includes the members seen in Table 7.54 DDS_HistoryQosPolicy. For defaults and valid
ranges, please refer to the API Reference HTML documentation.

Type Field
Name Description

DDS_His-
toryQos-
PolicyKind

kind

DDS_KEEP_LAST_HISTORY_QOS: keep the last depthnumber of DDS samples per instance.

DDS_KEEP_ALL_HISTORY_QOS: keep all DDS samples.Connext DDSwill store up to the value of themax_samples_
per_instance parameter in the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452.

ForDataWriters, the samples are kept only until either they are fully acknowledged by all matching DataReadersor they are
replaced. See 7.3.8.2 write() behavior with KEEP_LAST and KEEP_ALL on page 313 formore information about when a
sample may be replaced in the DataWriter queue.

DDS_Long depth

If kind= DDS_KEEP_LAST_HISTORY_QOS, this is howmany DDS samples to keep per instance. depthmust be <=
max_samples_per_instance in the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452.

if kind= DDS_KEEP_ALL_HISTORY_QOS, this value is ignored.

Table 7.54 DDS_HistoryQosPolicy

The kind determines whether or not to save a configured number of DDS samples or all DDS samples. In
either case, when using a Reliable 7.5.21 RELIABILITY QosPolicy on page 448, the samples are kept
until they are fully acknowledged by all matching DataReaders. Once a sample is fully acknowledged, it
is removed from the DataWriter's queue, unless it needs to be kept for durability purposes. (See 7.5.9
DURABILITY QosPolicy on page 412). The HISTORY QoS Policy kind can be set to either of the fol-
lowing:

l DDS_KEEP_LAST_HISTORY_QOS. Connext DDS attempts to keep the latest values of the
data-instance and discard the oldest ones when the limit as set by the depth parameter is reached;
new data will overwrite the oldest data in the queue. Thus the queue acts like a circular buffer of
length depth. Invalid samples are samples representing the disposal or unregistration of an instance.
There is only ever one invalid sample per-instance and that one sample can be in different states

421

7.5.12 HISTORY QosPolicy

422

depending on whether the instance has been disposed, unregistered, or both. How invalid samples
affect the history depth differs for DataReaders and DataWriters:

l For a DataWriter: Connext DDS attempts to keep the most recent depth DDS samples of
each instance (identified by a unique key) managed by the DataWriter. Invalid samples count
towards the depth and may replace other DDS samples currently in the DataWriter queue.

l For a DataReader: Connext DDS attempts to keep the most recent depth DDS samples
received for each instance (identified by a unique key) until the application takes them via the
DataReader's take() operation. See 8.4.3 Accessing DDS Data Samples with Read or Take
on page 560 for a discussion of the difference between read() and take(). Invalid samples do
not count towards the depth and will not replace other DDS samples currently in the
DataReader queue.

l DDS_KEEP_ALL_HISTORY_QOS. Connext DDS attempts to keep all of the DDS samples of a
Topic.

l For a DataWriter: Connext DDS attempts to keep all DDS samples published by the
DataWriter.

l For a DataReader: Connext DDS attempts to keep all DDS samples received by the
DataReader for a Topic (both keyed and non-keyed) until the application takes them via the
DataReader's take() operation. See 8.4.3 Accessing DDS Data Samples with Read or Take
on page 560 for a discussion of the difference between read() and take().

l The value of the depth parameter is ignored.

The above descriptions say “attempts to keep” because the actual number of DDS samples kept is subject
to the limitations imposed by the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452. All of the DDS
samples of all instances of a Topic share a single physical queue that is allocated for a DataWriter or
DataReader. The size of this queue is configured by the RESOURCE_LIMITS QosPolicy. If there are
many different instances for a Topic, it is possible that the physical queue may run out of space before the
number of DDS samples reaches the depth for all instances.

In the KEEP_ALL case, Connext DDS can only keep as many DDS samples for a Topic (independent of
instances) as the size of the allocated queue. Connext DDS may or may not allocate more memory when
the queue is filled, depending on the settings in the RESOURCE_LIMITS QoSPolicy of the DataWriter
or DataReader.

This QosPolicy interacts with the 7.5.21 RELIABILITY QosPolicy on page 448 by controlling whether
or not Connext DDS guarantees that ALL of the data sent is received or if only the last N data values sent
are guaranteed to be received (a reduced level of reliability using the KEEP_LAST setting). However, the
physical sizes of the send and receive queues are not controlled by the History QosPolicy. The memory
allocation for the queues is controlled by the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452.

What happens when the physical queue is filled depends both on the setting for the HISTORY QosPolicy
as well as the RELIABILITY QosPolicy.

7.5.12 HISTORY QosPolicy

l DDS_KEEP_LAST_HISTORY_QOS
l If RELIABILITY is BEST_EFFORT:When the number of DDS samples for an instance in
the queue reaches the value of depth, a new DDS sample for the instance will replace the old-
est DDS sample for the instance in the queue.

l If RELIABILITY is RELIABLE: When the number of DDS samples for an instance in the
queue reaches the value of depth, a new DDS sample for the instance will replace the oldest
DDS sample for the instance in the queue—even if the DDS sample being overwritten has
not been fully acknowledged as being received by all reliable DataReaders. This implies that
the discarded DDS sample may be lost (with the reason LOST_BY_WRITER) by some reli-
able DataReaders. Thus, when using the KEEP_LAST setting, strict reliability is not guar-
anteed. See Reliable Communications (Chapter 11 on page 694) for a complete discussion on
Connext DDS’s reliable protocol.

l DDS_KEEP_ALL_HISTORY_QOS
l If RELIABILITY is BEST_EFFORT: For a DataWriter, if the number of DDS samples for
an instance in the queue reaches the value of the 7.5.22 RESOURCE_LIMITS QosPolicy on
page 452’smax_samples_per_instance field, a new DDS sample for the instance will
replace the oldest DDS sample for the instance in the queue (regardless of instance). For a
DataReader, a new DDS sample received by the DataReader when this resource limit is
exceeded will be lost with the reason DDS_LOST_BY_SAMPLES_PER_INSTANCE_
LIMIT.

l If RELIABILITY is RELIABLE: When the number of DDS samples for an instance in the
queue reaches the value of the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452’s
max_samples_per_instance field, then:

l For a DataWriter: A new DDS sample for the instance will replace the oldest DDS
sample for the instance in the sending queue—only if the DDS sample being over-
written has been fully acknowledged as being received by all reliable DataReaders. If
the oldest DDS sample for the instance has not been fully acknowledged, the write()
operation trying to enter a new DDS sample for the instance into the sending queue will
block (for themax_blocking_time specified in the RELIABLE QosPolicy).

l For a DataReader:max_samples_per_instance represents the maximum number of
DDS samples of any one instance that are stored in the DataReader output queue—that
is, the queue from which the application takes/reads samples. Therefore, when max_
samples_per_instance is hit, the DataWriter samples will be rejected. They will not be
moved to the DataReader output queue. They will stay in the DataWriter's remote
writer queue until there is space for them in the DataReader output queue (until the
samples in the DataReader output queue are taken). On a reliable DataReader, there is
one remote writer queue for each DataWriter that matches the DataReader. The remote
writer queue size is configurable with the resource limit reader_qos.reader_resource_

423

7.5.12 HISTORY QosPolicy

424

limit.max_samples_per_remote_writer (see 8.6.2 DATA_READER_
RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581).

Although you can set the HISTORY QosPolicy on Topics, its value can only be used to initialize the
HISTORY QosPolicies of either a DataWriter or DataReader. It does not directly affect the operation of
Connext DDS, see 5.1.3 Setting Topic QosPolicies on page 220.

7.5.12.1 Example

To achieve strict reliability, you must (1) set the DataWriter’s and DataReader’s HISTORY QosPolicy to
KEEP_ALL, and (2) set the DataWriter’s and DataReader’s RELIABILITY QosPolicy to
RELIABLE.

See Reliable Communications (Chapter 11 on page 694) for a complete discussion on Connext DDS’s reli-
able protocol.

See 11.3.3 Controlling Queue Depth with the History QosPolicy on page 709.

It is possible to configure the reliability window (the number of samples kept in the queue for reliability
purposes) separately from the durability window (the number of samples kept in the DataWriter queue for
late-joining DataReaders). This allows an application to achieve the level of reliability that is required and
still only deliver a subset of data to late-joining DataReaders when using a non-VOLATILE 7.5.9
DURABILITY QosPolicy on page 412. Figure 7.30: History Depth and Durability Depth on the next
page shows the relationship between History depth and Durability writer_depth.

7.5.12 HISTORY QosPolicy

Figure 7.30: History Depth and Durability Depth

The History depth determines how many samples to keep for reliability purposes (for example, for redelivering to
DataReaders that haven’t acknowledged them yet). The 7.5.9 DURABILITY QosPolicy on page 412 writer_depth

determines what subset of those samples to deliver to late-joining DataReaders.

7.5.12.2 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

There is no requirement that the publishing and subscribing sides use compatible values.

7.5.12.3 Related QosPolicies

l 7.5.2 BATCH QosPolicy (DDS Extension) on page 375 Do not configure the DataReader’s
depth to be shallower than the DataWriter's maximum batch size (batch_max_data_size). Because
batches are acknowledged as a group, a DataReader that cannot process an entire batch will lose the
remaining DDS samples in it.

l 7.5.21 RELIABILITY QosPolicy on page 448

l 7.5.22 RESOURCE_LIMITS QosPolicy on page 452

425

7.5.13 LATENCYBUDGET QoS Policy

426

7.5.12.4 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.12.5 System Resource Considerations

While this QosPolicy does not directly affect the system resources used by Connext DDS, the 7.5.22
RESOURCE_LIMITS QosPolicy on page 452 that must be used in conjunction with the 7.5.12
HISTORY QosPolicy on page 421 will affect the amount of memory that Connext DDS will allocate for a
DataWriter or DataReader.

7.5.13 LATENCYBUDGET QoS Policy

This QosPolicy can be used by a DDS implementation to change how it processes and sends data that has
low latency requirements. The DDS specification does not mandate whether or how this parameter is used.
Connext DDS uses it to prioritize the sending of asynchronously published data; see 7.4.1
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) on page 346.

This QosPolicy also applies to Topics. The Topic’s setting for the policy is ignored unless you explicitly
make the DataWriter use it.

It contains the single member listed in Table 7.55 DDS_LatencyBudgetQosPolicy.

Type Field
Name Description

DDS_Dur-
ation_t

duration
Provides a hint as to the maximumacceptable delay from the time the data is written to the time it is received by the
subscribing applications.

Table 7.55 DDS_LatencyBudgetQosPolicy

7.5.13.1 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.14 LIFESPAN QoS Policy

The purpose of this QoS is to avoid delivering stale data to the application by specifying how long the data
written by a DataWriter is considered valid.

7.5.14 LIFESPAN QoS Policy

Each data sample written by a DataWriter has an associated expiration time beyond which the data should
not be delivered to any application. Once the sample expires, the data will be removed from the
DataWriter and DataReader caches.

The expiration time of each sample from the DataWriter's cache is computed by adding the duration spe-
cified by this QoS policy to the time when the sample is added to the DataWriter's cache. This timestamp
is not necessarily equal to the sample's source timestamp that can be provided by the user using the
DataWriter's write_w_timestamp() or write_w_params() APIs.

The expiration time of each sample from the DataReader's cache is computed by adding the duration to
the reception timestamp.

The Lifespan QosPolicy can be used to control how much data is stored by Connext DDS. Even if it is
configured to store "all" of the data sent or received for a topic (see the 7.5.12 HISTORY QosPolicy on
page 421), the total amount of data it stores may be limited by the Lifespan QosPolicy.

You may also use the Lifespan QosPolicy to ensure that applications do not receive or act on data, com-
mands or messages that are too old and have "expired.”

It includes the single member listed in Table 7.56 DDS_LifespanQosPolicy. For the default and valid
range, please refer to the API Reference HTML documentation.

Type Field Name Description

DDS_Duration_t duration Maximumduration for the data's validity.

Table 7.56 DDS_LifespanQosPolicy

Although you can set the LIFESPAN QosPolicy on Topics, its value can only be used to initialize the
LIFESPAN QosPolicies of DataWriters. The Topic’s setting for this QosPolicy does not directly affect the
operation of Connext DDS, see 5.1.3 Setting Topic QosPolicies on page 220.

7.5.14.1 Properties

This QoS policy can be modified after the entity is enabled.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing sides use
compatible values.

7.5.14.2 Related QoS Policies

l 7.5.2 BATCH QosPolicy (DDS Extension) on page 375 Be careful when configuring a
DataWriter with a Lifespan duration shorter than the batch flush period (batch_flush_delay). If
the batch does not fill up before the flush period elapses, the short duration by default will cause the
DDS samples to be dropped without being sent. (You can, however, keep track of the number of
these dropped samples via writer_removed_batch_sample_dropped_sample_count in the

427

7.5.15 LIVELINESS QosPolicy

428

8.3.7.2 DATA_READER_CACHE_STATUS on page 522. You can also choose not to drop
these samples at all by setting the property dds.data_reader.accept_writer_removed_batch_
samples to TRUE (by default it is set to FALSE); you can set this property via the 7.5.19
PROPERTY QosPolicy (DDS Extension) on page 440.)

l 7.5.9 DURABILITY QosPolicy on page 412

7.5.14.3 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

7.5.14.4 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

7.5.15 LIVELINESS QosPolicy

The LIVELINESS QosPolicy specifies how Connext DDS determines whether a DataWriter is “alive.” A
DataWriter’s liveliness is used in combination with the 7.5.17 OWNERSHIP QosPolicy on page 435 to
maintain ownership of an instance (note that the 7.5.7 DEADLINE QosPolicy on page 407 is also used to
change ownership when a DataWriter is still alive). That is, for a DataWriter to own an instance, the
DataWriter must still be alive as well as honoring its DEADLINE contract.

It includes the members in Table 7.57 DDS_LivelinessQosPolicy. For defaults and valid ranges, please
refer to the API Reference HTML documentation.

Type Field Name Description

DDS_Live-
linessQosPolicyKind

kind

DDS_AUTOMATIC_LIVELINESS_QOS:
Connext DDSwill automatically assert liveliness for the DataWriter at least as often as the lease_dur-
ation.

DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS:
The DataWriter is assumed to be alive if any Entity within the same DomainParticipant has asserted its
liveliness.

DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS:
Your application must explicitly assert the liveliness of the DataWriter within the lease_duration.

Table 7.57 DDS_LivelinessQosPolicy

7.5.15 LIVELINESS QosPolicy

Type Field Name Description

DDS_Duration_t
lease_dur-
ation

The timeout by which liveliness must be asserted for the DataWriter or the DataWriter will be con-
sidered inactive or not alive.

Additionally, forDataReaders, the lease_duration also specifies the maximumperiod at which Con-
next DDSwill check to see if the matching DataWriter is still alive.

A DataReader will consider a DataWriter not alive if the DataWriter does not
assert its liveliness within the DataWriter's lease_duration, not the DataReader's
lease_duration.

DDS_Long
assertions_
per_lease_dur-
ation

The number of assertions a DataWriter will send during a lease_duration period.

This field only applies to DataWritersusing DDS_AUTOMATIC_LIVELINESS_QOS kind and it is not
considered during QoS compatibility checks.

The default value is 3. A higher value will make the liveliness mechanismmore robust against packet
losses, but it will also increase the network traffic.

Table 7.57 DDS_LivelinessQosPolicy

Setting a DataWriter’s kind of LIVELINESS specifies the mechanism that will be used to assert liveliness
for the DataWriter. The DataWriter’s lease_duration then specifies the maximum period at which packets
that indicate that the DataWriter is still alive are sent to matching DataReaders.

The various mechanisms are:

l DDS_AUTOMATIC_LIVELINESS_QOS:

The DomainParticipant is responsible for automatically sending packets to indicate that the
DataWriter is alive; this will be done at the rate determined by the assertions_per_lease_duration
and lease_duration values. This setting is appropriate when the primary failure mode is that the pub-
lishing application itself dies. It does not cover the case in which the application is still alive but in
an erroneous state–allowing the DomainParticipant to continue to assert liveliness for the
DataWriter but preventing threads from calling write() on the DataWriter.

As long as the internal threads spawned by Connext DDS for a DomainParticipant are running,
then the liveliness of the DataWriter will be asserted regardless of the state of the rest of the applic-
ation.

This setting is certainly the most convenient, if the least accurate, method of asserting liveliness for a
DataWriter.

l DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS:

Connext DDS will assume that as long as the user application has asserted the liveliness of at least
one DataWriter belonging to the same DomainParticipant or the liveliness of the DomainPar-
ticipant itself, then this DataWriter is also alive.

429

7.5.15 LIVELINESS QosPolicy

430

This setting allows the user code to control the assertion of liveliness for an entire group of
DataWriters with a single operation on any of the DataWriters or their DomainParticipant. It's a
good balance between control and convenience.

l DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS:

The DataWriter is considered alive only if the user application has explicitly called operations that
assert the liveliness for that particular DataWriter.

This setting forces the user application to assert the liveliness for a DataWriter which gives the user
application great control over when other applications can consider the DataWriter to be inactive,
but at the cost of convenience.

With theMANUAL_BY_[TOPIC,PARTICIPANT] settings, user application code can assert the liveliness
of DataWriters either explicitly by calling the assert_liveliness() operation on the DataWriter (as well as
the DomainParticipant for theMANUAL_BY_PARTICIPANT setting) or implicitly by calling write() on
the DataWriter. If the application does not use either of the methods mentioned at least once every lease_
duration, then the subscribing application may assume that the DataWriter is no longer alive. Sending
data MANUAL_BY_TOPIC will cause an assert message to be sent between the DataWriter and its
matched DataReaders.

Publishing applications will monitor their DataWriters to make sure that they are honoring their
LIVELINESS QosPolicy by asserting their liveliness at least at the period set by the lease_duration. If
Connext DDS finds that a DataWriter has failed to have its liveliness asserted by its lease_duration, an
internal thread will modify the DataWriter’s LIVELINESS_LOST_STATUS and trigger its on_liveliness_
lost() DataWriterListener callback if a listener exists, see 4.4 Listeners on page 189.

Setting the DataReader’s kind of LIVELINESS requests a specific mechanism for the publishing applic-
ation to maintain the liveliness of DataWriters. The subscribing application may want to know that the pub-
lishing application is explicitly asserting the liveliness of the matching DataWriter rather than inferring its
liveliness through the liveliness of its DomainParticipant or its sibling DataWriters.

The DataReader’s lease_duration specifies the maximum period at which matching DataWriters must
have their liveliness asserted. In addition, in the subscribing application Connext DDS uses an internal
thread that wakes up at the period set by the DataReader’s lease_duration to see if the DataWriter’s
lease_duration has been violated.

When a matching DataWriter is determined to be dead (inactive), Connext DDS will modify the
LIVELINESS_CHANGED_STATUS of each matching DataReader and trigger that DataReader’s on_
liveliness_changed() DataReaderListener callback (if a listener exists).

Although you can set the LIVELINESS QosPolicy on Topics, its value can only be used to initialize the
LIVELINESS QosPolicies of either a DataWriter or DataReader. It does not directly affect the operation
of Connext DDS, see 5.1.3 Setting Topic QosPolicies on page 220.

7.5.15 LIVELINESS QosPolicy

For more information on Liveliness, see 15.3.1.2 Maintaining DataWriter Liveliness for kinds
AUTOMATIC and MANUAL_BY_PARTICIPANT on page 785.

7.5.15.1 Timing Considerations for MANUAL_BY_PARTICIPANT

As mentioned in 7.5.15.6 System Resource Considerations on page 433, a per-DomainParticipant
internal Connext DDS thread will wake up periodically to check the liveliness of the DataWriters. This
same thread also checks if any of the MANUAL_BY_PARTICIPANT DataWriters within the
DomainParticipant have asserted liveliness (by calling either the DomainParticipant's or the DataWriter's
assert_liveliness() API): if that is the case, that thread is responsible for sending a liveliness assertion mes-
sage to any matched remote DomainParticipants.

The period of this thread is half of the time given by the minimum lease_duration across all of the
MANUAL_BY_PARTICIPANT DataWriters within the DomainParticipant. As a result, an application
asserting MANUAL_BY_PARTICIPANT DataWriters' liveliness at a period equal to or higher than half
of the minimum configured lease_duration may run into local and/or remote DataWriter lost events.

For example, for a minimum lease_duration across all DataWriters of 2 seconds and an application asser-
tion period (the time between calls to assert_liveliness()) of 1 second, the maximum time between two live-
liness assertions will be given by:
"maximum time between two liveliness assertions" ~= ("minimum lease_duration across manual_by_
participant datawriters" / 2) + "application assertion period"

which results in:
"maximum time between two liveliness assertions" ~= (2 / 2) second + 1 second = 2 seconds

This configuration results in potential (local and remote) liveliness losses since the lease_duration is close
to the maximum time between two liveliness assertions (in fact, the situation will be a bit worse since this
configuration has not accounted for network delay/jittering delivering liveliness assertion messages).

Therefore, to avoid unexpected liveliness losses, the user application should make sure that DataWriters'
liveliness is asserted at a period that is shorter than half of the minimum lease duration. For additional
information and diagrams, see 15.3.1.2 Maintaining DataWriter Liveliness for kinds AUTOMATIC and
MANUAL_BY_PARTICIPANT on page 785.

7.5.15.2 Example

You can use LIVELINESS QosPolicy during system integration to ensure that applications have been
coded to meet design specifications. You can also use it during run time to detect when systems are per-
forming outside of design specifications. Receiving applications can take appropriate actions in response to
disconnected DataWriters.

The LIVELINESS QosPolicy can be used to manage fail-over when the 7.5.17 OWNERSHIP
QosPolicy on page 435 is set to EXCLUSIVE. This implies that the DataReader will only receive data

431

7.5.15 LIVELINESS QosPolicy

432

from the highest strength DataWriter that is alive (active). When that DataWriter’s liveliness expires, then
Connext DDS will start delivering data from the next highest strength DataWriter that is still alive.

7.5.15.3 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be compatible, both
of the following conditions must be true:

The DataWriter and DataReader must use one of the valid combinations shown in Table 7.58 Valid Com-
binations of Liveliness ‘kind’.

DataWriter’s lease_duration <= DataReader’s lease_duration.

If this QosPolicy is found to be incompatible, the ON_OFFERED_INCOMPATIBLE_QOS and ON_
REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corresponding Listeners
called for the DataWriter and DataReader respectively.

DataReader requests:

MANUAL_BY_
TOPIC

MANUAL_BY_
PARTICIPANT AUTOMATIC

DataWriter of-
fers:

MANUAL_BY_TOPIC compatible compatible compatible

MANUAL_BY_
PARTICIPANT

incompatible compatible compatible

AUTOMATIC incompatible incompatible compatible

Table 7.58 Valid Combinations of Liveliness ‘kind’

7.5.15.4 Related QosPolicies

l 7.5.7 DEADLINE QosPolicy on page 407

l 7.5.17 OWNERSHIP QosPolicy on page 435

l 7.5.18 OWNERSHIP_STRENGTH QosPolicy on page 439

7.5.15.5 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension)

7.5.15.6 System Resource Considerations

An internal thread in Connext DDS will wake up periodically to check the liveliness of all the
DataWriters. This happens both in the application that contains the DataWriters at the lease_duration set
on the DataWriters as well as the applications that contain the DataReaders at the lease_duration set on
the DataReaders. Therefore, as lease_duration becomes smaller, more CPU will be used to wake up
threads and perform checks. A short lease_duration (or a high assertions_per_lease_duration) set on
DataWriters may also use more network bandwidth because liveliness packets are being sent at a higher
rate—this is especially true when LIVELINESS kind is set to AUTOMATIC.

7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension)

This QosPolicy is used to partition the data published by a DataWriter across multiple channels. A chan-
nel is defined by a filter expression and a sequence of multicast locators.

By using this QosPolicy, a DataWriter can be configured to send data to different multicast groups based
on the content of the data. Using syntax similar to those used in Content-Based Filters, you can associate
different multicast addresses with filter expressions that operate on the values of the fields within the data.
When your application’s code calls write(), data is sent to any multicast address for which the data passes
the filter.

See Multi-channel DataWriters (Chapter 20 on page 902) for complete documentation on multi-channel
DataWriters.

Note: Durable writer history is not supported for multi-channel DataWriters; an error is reported if a multi-
channel DataWriter tries to configure Durable Writer History.

This QosPolicy includes the members presented in Table 7.59 DDS_MultiChannelQosPolicy, Table 7.60
DDS_ChannelSettings_t, and Table 7.61 DDS_TransportMulticastSettings_t. For defaults and valid
ranges, please refer to the API Reference HTML documentation.

Type Field
Name Description

DDS_Chan-
nelSettingsSeq

channels
A sequence of channel settings used to configure the channels’ properties. If the length of the sequence is zero,
the QosPolicy will be ignored. See Table 7.60 DDS_ChannelSettings_t.

char *
filter_
name

Name of the filter class used to describe the filter expressions1. The following values are supported:

DDS_SQLFILTER_NAME (see 5.4.6 SQL Filter Expression Notation on page 237)

DDS_STRINGMATCHFILTER_NAME (see 5.4.7 STRINGMATCH Filter Expression Notation on page 246)

More details are described in the API Reference HTML documentation.

Table 7.59 DDS_MultiChannelQosPolicy

1 In Java and C#, you can access the names of the built-in filters by using
DomainParticipant.SQLFILTER_NAME and DomainParticipant.STRINGMATCHFILTER_NAME.

433

7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension)

434

Type Field
Name Description

DDS_Trans-
portMulticastSettingsSeq

multicast_
settings

A sequence of multicast settings used to configure the multicast addresses associated with a chan-
nel. The sequence cannot be empty.

The maximumnumber of multicast locators in a channel is limited by default to 16. This is a hard limit
that cannot be increased. However, this limit can be decreased by configuring the Do-
mainParticipant property dds.domain_participant.max_announced_locator_list_size.

See Table 7.61 DDS_TransportMulticastSettings_t.

char *
filter_ex-
pression

A logical expression used to determine the data that will be published in the channel.

This string cannot be NULL. An empty string always evaluates to TRUE.

See 5.4.6 SQL Filter Expression Notation on page 237 and 5.4.7 STRINGMATCH Filter Ex-
pression Notation on page 246 for expression syntax.

DDS_Long priority

A positive integer designating the relative priority of the channel, used to determine the transmission
order of pending transmissions. Larger numbers have higher priority.

To use publication priorities, the DataWriter’s 7.5.20 PUBLISH_MODEQosPolicy (DDSEx-
tension) on page 445must be set for asynchronous publishing and the DataWritermust use a
FlowController that is configured for highest-priority-first (HPF) scheduling.

See 7.6.4 Prioritized DDSSampleson page 481.

Table 7.60 DDS_ChannelSettings_t

Type Field Name Description

DDS_
StringSeq

transports
A sequence of transport aliases that specifies which transport should be used to publish multicast messages for
this channel.

char *
receive_ad-
dress

A multicast group address on which DataReaders subscribing to this channel will receive data.

DDS_Long receive_port The multicast port on which DataReaders subscribing to this channel will receive data.

Table 7.61 DDS_TransportMulticastSettings_t

The format of the filter_expression should correspond to one of the following filter classes:

l DDS_SQLFILTER_NAME (see 5.4.6 SQL Filter Expression Notation on page 237)

l DDS_STRINGMATCHFILTER_NAME (see 5.4.7 STRINGMATCH Filter Expression Notation
on page 246

A DataReader can use the ContentFilteredTopic API (see 5.4.5 Using a ContentFilteredTopic on
page 234) to subscribe to a subset of the channels used by a DataWriter.

7.5.17 OWNERSHIP QosPolicy

7.5.16.1 Example

See Multi-channel DataWriters (Chapter 20 on page 902).

7.5.16.2 Properties

This QosPolicy cannot be modified after the DataWriter is created.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing sides use
compatible values.

7.5.16.3 Related Qos Policies

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660

7.5.16.4 Applicable Entities

l 7.3 DataWriters on page 288

7.5.16.5 System Resource Considerations

The following fields in the 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS
Extension) on page 660 configure the resources associated with the channels stored in the MULTI_
CHANNEL QosPolicy:

l channel_seq_max_length

l channel_filter_expression_max_length

For information about partitioning topic data across multiple channels, please refer to Multi-channel
DataWriters (Chapter 20 on page 902).

7.5.17 OWNERSHIP QosPolicy

The OWNERSHIP QosPolicy specifies whether a DataReader receives data for an instance of a Topic
sent by multiple DataWriters.

For non-keyed Topics, there is only one instance of the Topic.

This policy includes the single member shown in Table 7.62 DDS_OwnershipQosPolicy.

435

7.5.17 OWNERSHIP QosPolicy

436

Type Field Name Description

DDS_OwnershipQosPolicyKind kind
(default) DDS_SHARED_OWNERSHIP_QOS or

DDS_EXCLUSIVE_OWNERSHIP_QOS

Table 7.62 DDS_OwnershipQosPolicy

The kind of OWNERSHIP can be set to one of two values:

l SHARED Ownership

When OWNERSHIP is SHARED, and multiple DataWriters for the Topic publishes the value of
the same instance, all the updates are delivered to subscribing DataReaders. So in effect, there is no
“owner;” no single DataWriter is responsible for updating the value of an instance. The subscribing
application will receive modifications from all DataWriters.

l EXCLUSIVE Ownership

When OWNERSHIP is EXCLUSIVE, each instance can only be owned by one DataWriter at a
time. This means that a single DataWriter is identified as the exclusive owner whose updates are
allowed to modify the value of the instance for matching DataReaders. Other DataWriters may sub-
mit modifications for the instance, but only those made by the current owner are passed on to the
DataReaders. If a non-owner DataWriter modifies an instance, no error or notification is made; the
modification is simply ignored. The owner of the instance can change dynamically.

Note for non-keyed Topics, EXCLUSIVE ownership implies that DataReaders will pay attention
to only one DataWriter at a time because there is only a single instance. For keyed Topics,
DataReaders may actually receive data from multiple DataWriters when different DataWriters own
different instances of the Topic.

This QosPolicy is often used to help users build systems that have redundant elements to safeguard against
component or application failures. When systems have active and hot standby components, the Ownership
QosPolicy can be used to ensure that data from standby applications are only delivered in the case of the
failure of the primary.

The Ownership QosPolicy can also be used to create data channels or topics that are designed to be taken
over by external applications for testing or maintenance purposes.

Although you can set the OWNERSHIP QosPolicy on Topics, its value can only be used to initialize the
OWNERSHIP QosPolicies of either a DataWriter or DataReader. It does not directly affect the operation
of Connext DDS, see 5.1.3 Setting Topic QosPolicies on page 220.

7.5.17 OWNERSHIP QosPolicy

7.5.17.1 How Connext DDS Selects which DataWriter is the Exclusive Owner

When OWNERSHIP is EXCLUSIVE, the owner of an instance at any given time is the DataWriter with
the highest 7.5.18 OWNERSHIP_STRENGTH QosPolicy on page 439 that is “alive” as defined by the
7.5.15 LIVELINESS QosPolicy on page 428) and has not violated the 7.5.7 DEADLINE QosPolicy on
page 407 of the DataReader. OWNERSHIP_STRENGTH is simply an integer set by the DataWriter.

If the Topic’s data type is keyed (see 2.4 DDS Samples, Instances, and Keys on page 18), EXCLUSIVE
ownership is determined on a per-instance basis. That is, the DataWriter owner of each instance is con-
sidered separately. A DataReader can receive values written by a lower strength DataWriter as long as
those values are for instances that are not being written by a higher-strength DataWriter.

If there are multiple DataWriters with the same OWNERSHIP_STRENGTH writing to the same instance,
Connext DDS resolves the tie by choosing the DataWriter with the smallest GUID (Globally Unique Iden-
tifier, see 15.1.1 Simple Participant Discovery on page 771.). This means that different DataReaders (in
different applications) of the same Topic will all choose the same DataWriter as the owner when there are
multiple DataWriters with the same strength.

The owner of an instance can change when:

l A DataWriter with a higher OWNERSHIP_STRENGTH publishes a value for the instance.

l The OWNERSHIP_STRENGTH of the owning DataWriter is dynamically changed to be less than
the strength of an existing DataWriter of the instance.

l The owning DataWriter stops asserting its LIVELINESS (the DataWriter dies).

l The owning DataWriter violates the DEADLINE QosPolicy by not updating the value of the
instance within the period set by the DEADLINE.

Note however, the change of ownership is not synchronous across different DataReaders in different par-
ticipants. That is, DataReaders in different applications may not determine that the ownership of an
instance has changed at exactly the same time.

7.5.17.2 Example

OWNERSHIP is really a property that is shared between DataReaders and DataWriters of a Topic.
However, in a system, some Topics will be exclusively owned and others will be shared. System require-
ments will determine which are which.

An example of a Topic that may be shared is one that is used by applications to publish alarm messages. If
the application detects an anomalous condition, it will use a DataWriter to write a Topic “Alarm.” Another
application that records alarms into a system log file will have a DataReader that subscribes to “Alarm.” In
this example, any number of applications can publish the “Alarm” message. There is no concept that only
one application at a time is allowed to publish the “Alarm” message, so in this case, the OWNERSHIP of
the DataWriters and DataReaders should be set to SHARED.

437

7.5.17 OWNERSHIP QosPolicy

438

In a different part of the system, EXCLUSIVE OWNERSHIP may be used to implement redundancy in
support of fault tolerance. Say, the distributed system controls a traffic system. It monitors traffic and
changes the information posted on signs, the operation of metering lights, and the timing of traffic lights.
This system must be tolerant to failure of any part of the system including the application that actually
issues commands to change the lights at a particular intersection.

One way to implement fault tolerance is to create the system redundantly both in hardware and software.
So if a piece of the running system fails, a backup can take over. In systems where failover from the
primary to backup system must be seamless and transparent, the actual mechanics of failover must be fast,
and the redundant component must immediately pickup where the failed component left off. For the net-
work connections of the component, Connext DDS can provided redundant DataWriter and
DataReaders.

In this case, you would not want the DataReaders to receive redundant messages from the redundant
DataWriters. Instead you will want the DataReaders to only receive messages from the primary applic-
ation and only from a backup application when a failure occurs. To continue our example, if we have
redundant applications that all try to control the lights at an intersection, we would want the DataReaders
on the light to receive messages only from the primary application. To do so, we should configure the
DataWriters and DataReaders to have EXCLUSIVE OWNERSHIP and set the OWNERSHIP_
STRENGTH differently on different redundant applications to distinguish between primary and backup
systems.

7.5.17.3 Properties

This QosPolicy cannot be modified after the Entity is enabled.

It must be set to the same kind on both the publishing and subscribing sides. If a DataWriter and
DataReader of the same topic are found to have different kinds set for the OWNERSHIP QoS, the ON_
OFFERED_INCOMPATIBLE_QOS and ON_REQUESTED_INCOMPATIBLE_QOS statuses
will be modified and the corresponding Listeners called for the DataWriter and DataReader respectively.

7.5.17.4 Related QosPolicies

l 7.5.7 DEADLINE QosPolicy on page 407

l 7.5.15 LIVELINESS QosPolicy on page 428

l 7.5.18 OWNERSHIP_STRENGTH QosPolicy on the next page

7.5.17.5 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.18 OWNERSHIP_STRENGTH QosPolicy

7.5.17.6 System Resource Considerations

This QosPolicy does not significantly impact the use of system resources.

7.5.18 OWNERSHIP_STRENGTH QosPolicy

The OWNERSHIP_STRENGTH QosPolicy is used to rank DataWriters of the same instance of a Topic,
so that Connext DDS can decide which DataWriter will have ownership of the instance when the 7.5.17
OWNERSHIP QosPolicy on page 435 is set to EXCLUSIVE.

It includes the member in Table 7.63 DDS_OwnershipStrengthQosPolicy. For the default and valid range,
please refer to the API Reference HTML documentation.

Type Field Name Description

DDS_Long value The strength value used to arbitrate among multiple DataWriters.

Table 7.63 DDS_OwnershipStrengthQosPolicy

This QosPolicy only applies to DataWriters when EXCLUSIVE OWNERSHIP is used. The strength is
simply an integer value, and the DataWriter with the largest value is the owner. A deterministic method is
used to decide which DataWriter is the owner when there are multiple DataWriters that have equal
strengths. See 7.5.17.1 How Connext DDS Selects which DataWriter is the Exclusive Owner on
page 437 for more details.

7.5.18.1 Example

Suppose there are two DataWriters sending DDS samples of the same Topic instance, one as the main
DataWriter, and the other as a backup. If you want to make sure the DataReader always receive from the
main one whenever possible, then set the main DataWriter to use a higher ownership_strength value
than the one used by the backup DataWriter.

7.5.18.2 Properties

This QosPolicy can be changed at any time.

It does not apply to DataReaders, so there is no requirement that the publishing and subscribing sides use
compatible values.

7.5.18.3 Related QosPolicies

l 7.5.17 OWNERSHIP QosPolicy on page 435

439

7.5.19 PROPERTY QosPolicy (DDS Extension)

440

7.5.18.4 Applicable Entities

l 7.3 DataWriters on page 288

7.5.18.5 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

7.5.19 PROPERTY QosPolicy (DDS Extension)

The PROPERTY QosPolicy stores name/value (string) pairs that can be used to configure certain para-
meters of Connext DDS that are not exposed through formal QoS policies.

It can also be used to store and propagate application-specific name/value pairs that can be retrieved by
user code during discovery. This is similar to the USER_DATA QosPolicy, except this policy uses (name,
value) pairs, and you can select whether or not a particular pair should be propagated (included in the
built-in topic). By default, properties are not propagated during discovery.

It includes the member in Table 7.64 DDS_PropertyQosPolicy.

Type Field
Name Description

DDS_Prop-
ertySeq

value
A sequence of: (name, value) pairs and booleans that indicate whether the pair should be propagated (included in the
entity’s built-in topic upon discovery).

Table 7.64 DDS_PropertyQosPolicy

The Property QoS stores name/value pairs for an Entity. Both the name and value are strings. Certain con-
figurable parameters for Entities that do not have a formal DDS QoS definition may be configured via this
QoS by using a predefined name and the desired setting in string form.

You can find a complete list of predefined properties in the Property Reference Guide.

You can manipulate the sequence of properties (name, value pairs) with the standard methods available for
sequences. You can also use the helper class, DDSPropertyQosPolicyHelper, which provides another way
to work with a PropertyQosPolicy object.

The PropertyQosPolicy may be used to configure:

l Durable writer history (see 13.3.2 How To Configure Durable Writer History on page 747)

l Durable reader state (see 13.4.4 How To Configure a DataReader for Durable Reader State on
page 753)

7.5.19 PROPERTY QosPolicy (DDS Extension)

l Built-in and extension Transport Plugins (see 16.6 Setting Builtin Transport Properties with the Prop-
ertyQosPolicy on page 807, 42.2 Setting Up a Transport with the Property QoS on page 1128, Con-
figuring the TCP Transport (Chapter 44 on page 1153)).

l Automatic registration of built-in types (see 3.2.1 Registering Built-in Types on page 39)

l 9.6 Clock Selection on page 683

l 7.3.18 Turbo Mode and Automatic Throttling for DataWriter Performance—Experimental Features
on page 345

l Location or content of your license from RTI (see License Management, in the RTI Connext DDS
Installation Guide)

In addition, you can add your own name/value pairs to the Property QoS of an Entity. Start them with a
prefix other than dds., com.rti., or rti., so that they do not fail validation. (See 7.5.19.1 Property Val-
idation on the next page.) You may also use this QosPolicy to direct Connext DDS to propagate these
name/value pairs with the discovery information for the Entity. Applications that discover the Entity can
then access the user-specific name/value pairs in the discovery information of the remote Entity. This
allows you to add meta-information about an Entity for application-specific use, for example, authen-
tication/authorization certificates (which can also be done using the User or Group Data QoS).

Reasons for using the PropertyQosPolicy include:

l Some features can only be configured through the PropertyQosPolicy, not through other QoS or
APIs (for example, Durable Reader State, Durable Writer History, Built-in Types, Monotonic
Clock).

l Alternative way to configure built-in transports settings. For example, to use non-default values for
the built-in transports without using the PropertyQosPolicy, you would have to create a DomainPar-
ticipant disabled, change the built-in transport property settings, then enable the DomainParticipant.
Using the PropertyQosPolicy to configure built-in transport settings will save you the work of
enabling and disabling the DomainParticipant. Also, transport settings are not a QoS and therefore
cannot be configured through an XML file. By configuring built-in transport settings through the
PropertyQosPolicy instead, XML files can be used.

When using the Java or .NET APIs, transport configuration must take place through the
PropertyQosPolicy (not through the transport property structures).

441

7.5.19 PROPERTY QosPolicy (DDS Extension)

442

l Alternative way to support multiple instances of built-in transports (without using Transport API).

l Alternative way to dynamically load extension transports (such as RTI Secure WAN Transport1 or
RTI TCP Transport2) or user-created transport plugins in C/C++ language bindings. If the extension
or user-created transport plugin is installed using the transport API instead, the library that extra trans-
port library/code will need to be linked into your application and may require recompilation.

l Allows full pluggable transport configuration for non-C/C++ language bindings (Java, C++/CLI,
C#, etc.) The pluggable transport API is not available in those languages. Without using Prop-
ertyQosPolicy, you cannot use extension transports (such as RTI Secure WAN Transport) and you
cannot create your own custom transport.

l Alternative way to provide a license for platforms that do not support a file system, or if a default
license location is not feasible and environment variables are not supported.

The PropertyQosPolicyHelper operations are described in Table 7.65 PropertyQoSPolicyHelper Oper-
ations. For more information, see the API Reference HTML documentation.

Operation Description

get_number_of_properties Gets the number of properties in the input policy.

assert_property Asserts the property identified by name in the input policy. (Either adds it, or replaces an existing one.)

add_property Adds a newproperty to the input policy.

assert_pointer_property
Asserts the property identified by name in the input policy.
Used when the property to store is a pointer.

add_pointer_property
Adds a newproperty to the input policy.
Used when the property to store is a pointer.

lookup_property Searches for a property in the input policy given its name.

remove_property Removes a property from the input policy.

get_properties Retrieves a list of properties whose namesmatch the input prefix.

Table 7.65 PropertyQoSPolicyHelper Operations

7.5.19.1 Property Validation

All the properties that Connext DDS provides (which begin with dds., com.rti., or rti.) are validated when
the entity or the plugin is created. This validation is done to avoid using an unknown or incorrect property

1RTI Secure WAN Transport is an optional component that is installed separately.

2RTI TCP Transport is included with yourConnext DDS distribution but is not a built-in transport and therefore not
enabled by default.

7.5.19 PROPERTY QosPolicy (DDS Extension)

name (for example, due to a typo). Without this validation, Connext DDS ignores the unknown property
name, and you might not know why the property's configuration isn't being applied.

By default, at the creation of an entity or a plugin, if you specify an incorrect property name, Connext
DDS logs an exception similar to the following:

l Entity:

DDS_PropertyQosPolicy_validatePropertyNames:Unexpected property: dds.type_
consistnecy.ignore_sequence_bounds. Closest valid property: dds.type_consistency.ignore_
sequence_bounds
DDS_DataReaderQos_is_consistentI:inconsistent QoS property
DDS_Subscriber_create_datareader_disabledI:ERROR: Inconsistent QoS

l Plugin, such as TCPv4:

DDS_PropertyQosPolicy_validate_plugin_property_suffixes:Unexpected property:
dds.transport.TCPv4.tcp1.invalidPropertyTest. Closest valid property:
dds.transport.TCPv4.tcp1.aliases
NDDS_Transport_TCPv4_Property_parseDDSProperties:Inconsistent QoS property:
dds.transport.TCPv4.
NDDS_Transport_TCPv4_create:!get transport TCPv4 plugin property from DDS Property

You can configure the behavior of this validation by setting a property at the DomainParticipant level.
The DomainParticipant's DataWriters and DataReaders use the participant's setting. Or you can set the
property at the plugin level.

l At the entity-level setting, you can set the property dds.participant.property_validation_action to
any of the following options:

l (default) VALIDATION_ACTION_EXCEPTION: validate properties. Upon failure, log
errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate properties. Upon failure, log warnings and
do not fail.

l At the plugin level setting, you can set the property <plugin_name>.property_validation_action:

l Options:

l VALIDATION_ACTION_EXCEPTION: validate properties. Upon failure, log errors
and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate properties. Upon failure, log warn-
ings and do not fail.

443

7.5.19 PROPERTY QosPolicy (DDS Extension)

444

l If the property is not set, the plugin property validation behavior will be the same as that of the
DomainParticipant, which by default is VALIDATION_ACTION_EXCEPTION.

l For example, to set the property_validation_action for the dds.transport.TCPv4.tcp1 trans-
port plugin via XML:

<domain_participant_qos>
<property>

<value>
<element>

<name>dds.transport.load_plugins</name>
<value>dds.transport.TCPv4.tcp1</value>

</element>
<element>

<name>dds.transport.TCPv4.tcp1.property_validation_action</name>
<value>VALIDATION_ACTION_WARNING</value>

</element>
</value>

</property>
</domain_participant_qos>

In general, it is recommended that you use dds.participant.property_validation_action to control the val-
idation of the properties for both the Connext DDS core libraries and any plugins you might use. However,
there are cases where you might want to configure different behaviors for the core libraries and the plu-
gins. For example, if you are running a customized version of the plugins that supports a new, exper-
imental property, you will need to disable the DomainParticipant validation via
dds.participant.property_validation_action, but still keep the plugin validation (for example, dds.trans-
port.TCPv4.tcp1.property_validation_action). Here's an example of disabling the DomainParticipant
level validation and enabling a plugin level validation:
<domain_participant_qos>

<property>
<value>

<element>
<name>dds.participant.property_validation_action</name>
<value>VALIDATION_ACTION_SKIP</value>

</element>
<element>

<name>dds.transport.TCPv4.tcp1.property_validation_action</name>
<value>VALIDATION_ACTION_EXCEPTION</value>

</element>
</value>

</property>
</domain_participant_qos>

Note that the validation is sequential: first the property is validated when the DomainParticipant is created,
then it is validated when the plugin is created. For example, consider that the DomainParticipant sets the
property dds.participant.property_validation_action to VALIDATION_ACTION_EXCEPTION, but
the plugin is configured to skip the unknown property. In this case, DomainParticipant creation will fail,
and the plugin will never get created. As described above, if you are customizing the plugin, set the

7.5.20 PUBLISH_MODE QosPolicy (DDS Extension)

validation to VALIDATION_ACTION_SKIP at the DomainParticipant level, then set the plugin prop-
erty validation to VALIDATION_ACTION_EXCEPTION. By doing that, the properties will be val-
idated just at the plugin level.

You can find a complete list of the Connext DDS predefined properties in the Property Reference Guide.

7.5.19.2 Properties

This QosPolicy can be changed at any time.

There is no requirement that the publishing and subscribing sides use compatible values.

7.5.19.3 Related QosPolicies

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660

7.5.19.4 Applicable Entities

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

l 9.3 DomainParticipants on page 615

7.5.19.5 System Resource Considerations

The 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660
contains several fields for configuring the resources associated with the properties stored in this QosPolicy.

7.5.20 PUBLISH_MODE QosPolicy (DDS Extension)

This QosPolicy determines the DataWriter’s publishing mode, either asynchronous or synchronous.

The publishing mode controls whether data is written synchronously—in the context of the user thread
when calling write(), or asynchronously—in the context of a separate thread internal to Connext DDS.

Note: For information on asynchronous DataWriters and sender-side filtering, see 5.4.2 Where Filtering
is Applied—Publishing vs. Subscribing Side on page 229.

Each Publisher spawns a single asynchronous publishing thread (set in its 7.4.1 ASYNCHRONOUS_
PUBLISHER QosPolicy (DDS Extension) on page 346) to serve all its asynchronous DataWriters.

When data is written asynchronously, a FlowController (7.6 FlowControllers (DDS Extension) on
page 475), identified by flow_controller_name, can be used to shape the network traffic. The FlowCon-
troller's properties determine when the asynchronous publishing thread is allowed to send data and how
much.

445

7.5.20 PUBLISH_MODE QosPolicy (DDS Extension)

446

The fastest way for Connext DDS to send data is for the user thread to execute the middleware code that
actually sends the data itself. However, there are times when user applications may need or want an
internal middleware thread to send the data instead. For instance, for sending large data reliably, an asyn-
chronous thread must be used (see 7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Exten-
sion) on page 346). See also 23.3 Large Data Fragmentation on page 976.

This QosPolicy can select a FlowController to prioritize or shape the data flow sent by a DataWriter to
DataReaders. Shaping a data flow usually means limiting the maximum data rates with which the mid-
dleware will send data for a DataWriter. The FlowController will buffer data sent faster than the maximum
rate by the DataWriter, and then only send the excess data when the user send rate drops below the max-
imum rate.

If kind is set to DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS, the flow controller referred to by
flow_controller_name must exist. Otherwise, the setting will be considered inconsistent.

This QosPolicy includes the members in Table 7.66 DDS_PublishModeQosPolicy. For the defaults,
please refer to the API Reference HTML documentation.

Type Field
Name Description

DDS_Pub-
lishMode
QosPolicyKind

kind

Either:

l
DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS

l
DDS_SYNCHRONOUS_PUBLISH_MODE_QOS

char*
flow_con-
troller_
name

Name of the associated flow controller.

There are three built-in FlowControllers:

l
DDS_DEFAULT_FLOW_CONTROLLER_NAME

l
DDS_FIXED_RATE_FLOW_CONTROLLER_NAME

l
DDS_ON_DEMAND_FLOW_CONTROLLER_NAME

You may also create your own FlowControllers.

See 7.6 FlowControllers (DDSExtension) on page 475.

DDS_Long priority

A positive integer designating the relative priority of the DataWriter, used to determine the transmission order of
pending writes.

To use publication priorities, this QosPolicy’s kindmust be DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS and the
DataWritermust use a FlowController with a highest-priority first (HPF) scheduling_policy.

See 7.6.4 Prioritized DDSSampleson page 481.

Table 7.66 DDS_PublishModeQosPolicy

The maximum number of DDS samples that will be coalesced depends on NDDS_Transport_Property_
t::gather_send_buffer_count_max (each DDS sample requires at least 2-4 gather-send buffers).

7.5.20 PUBLISH_MODE QosPolicy (DDS Extension)

Performance can be improved by increasing NDDS_Transport_Property_t::gather_send_buffer_
count_max. Note that the maximum value is operating system dependent.

Connext DDS queues DDS samples until they can be sent by the asynchronous publishing thread (as
determined by the corresponding FlowController).

The number of DDS samples that will be queued is determined by the 7.5.12 HISTORY QosPolicy on
page 421: when using KEEP_LAST, the most recent depth DDS samples are kept in the queue.

Once unsent DDS samples are removed from the queue, they are no longer available to the asynchronous
publishing thread and will therefore never be sent.

Unless flow_controller_name points to one of the built-in FlowControllers, finalizing the DataWriterQos
will also free the string pointed to by flow_controller_name. Therefore, you should use DDS_String_
dup() before passing the string to flow_controller_name, or reset flow_controller_name to NULL
before the destructing /finalizing the QoS.

Advantages of Asynchronous Publishing:

Asynchronous publishing may increase latency, but offers the following advantages:

l The write() call does not make any network calls and is therefore faster and more deterministic. This
becomes important when the user thread is executing time-critical code.

l When data is written in bursts or when sending large data types as multiple fragments, a flow con-
troller can throttle the send rate of the asynchronous publishing thread to avoid flooding the net-
work.

l Asynchronously written DDS samples for the same destination will be coalesced into a single net-
work packet which reduces bandwidth consumption.

7.5.20.1 Properties

This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the publishing
and subscribing sides.

7.5.20.2 Related QosPolicies

l 7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) on page 346

l 7.5.12 HISTORY QosPolicy on page 421

7.5.20.3 Applicable Entities

l 7.3 DataWriters on page 288

447

7.5.21 RELIABILITY QosPolicy

448

7.5.20.4 System Resource Considerations

See 7.5.22.1 Configuring Resource Limits for Asynchronous DataWriters on page 454.

System resource usage depends on the settings in the corresponding FlowController (see 7.6 FlowCon-
trollers (DDS Extension) on page 475).

7.5.21 RELIABILITY QosPolicy

This RELIABILITY QosPolicy determines whether or not data published by a DataWriter will be reliably
delivered by Connext DDS to matching DataReaders. The reliability protocol used by Connext DDS is dis-
cussed in Reliable Communications (Chapter 11 on page 694).

The reliability of a connection between a DataWriter and DataReader is entirely user configurable. It can
be done on a per DataWriter/DataReader connection. A connection may be configured to be "best effort"
which means that Connext DDS will not use any resources to monitor or guarantee that the data sent by a
DataWriter is received by a DataReader.

For some use cases, such as the periodic update of sensor values to a GUI displaying the value to a person,
"best effort" delivery is often good enough. It is certainly the fastest, most efficient, and least resource-
intensive (CPU and network bandwidth) method of getting the newest/latest value for a topic from
DataWriters to DataReaders. But there is no guarantee that the data sent will be received. It may be lost
due to a variety of factors, including data loss by the physical transport such as wireless RF or even Eth-
ernet. Packets received out of order are dropped and reported as lost with the reason LOST_BY_
WRITER (see 8.3.7.7 SAMPLE_LOST Status on page 532).

However, there are data streams (topics) in which you want an absolute guarantee that all data sent by a
DataWriter is received reliably by DataReaders. This means that Connext DDS must check whether or
not data was received, and repair any data that was lost by resending a copy of the data as many times as it
takes for the DataReader to receive the data.

Connext DDS uses a reliability protocol configured and tuned by these QoS policies:

l 7.5.12 HISTORY QosPolicy on page 421

l 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390

l 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575

l 7.5.22 RESOURCE_LIMITS QosPolicy on page 452

The Reliability QoS policy is simply a switch to turn on the reliability protocol for a
DataWriter/DataReader connection. The level of reliability provided by Connext DDS is determined by
the configuration of the aforementioned QoS policies.

You can configure Connext DDS to deliver ALL data in the order they were sent (also known as absolute
or strict reliability). Or, as a trade-off for less memory, CPU, and network usage, you can choose a

7.5.21 RELIABILITY QosPolicy

reduced level of reliability where only the last N values are guaranteed to be delivered reliably to
DataReaders (where N is user-configurable). With the reduced level of reliability, there are no guarantees
that the data sent before the last N are received. Only the last N data packets are monitored and repaired if
necessary.

It includes the members in Table 7.67 DDS_ReliabilityQosPolicy. For defaults and valid ranges, please
refer to the API Reference HTML documentation.

Type Field Name Description

DDS_Reli-
abilityQosPolicyKind

kind

Can be either:

l DDS_BEST_EFFORT_RELIABILITY_QOS: DDS data samples are sent once and
missed samples are acceptable.

l DDS_RELIABLE_RELIABILITY_QOS:Connext DDSwill make sure that data sent is
received and missed DDS samples are resent.

DDS_Duration_t
max_blocking_
time

How long a DataWriter can block on a write() when the send queue is full due to un-
acknowledged messages. (Has no meaning forDataReaders.)

DDS_ReliabilityQosPolicy-
AcknowledgmentModeKind

acknowledgment_
kind

Kind of reliable acknowledgment.

Only applies when kind is RELIABLE.

Sets the kind of acknowledgments supported by a DataWriter and sent byDataReader.

Possible values:

l DDS_PROTOCOL_ACKNOWLEDGMENT_MODE

l DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE

l DDS_APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE

See 7.3.12.1 Application Acknowledgment Kindson page 319

Table 7.67 DDS_ReliabilityQosPolicy

The kind of RELIABILITY can be either:

l BEST_EFFORT

Connext DDS will send DDS data samples only once to DataReaders. No effort or resources are
spent to track whether or not sent DDS samples are received. Minimal resources are used. This is
the most deterministic method of sending data since there is no indeterministic delay that can be intro-
duced by buffering or resending data. DDS data samples may be lost. This setting is good for peri-
odic data.

l RELIABLE

Connext DDS will send DDS samples reliably to DataReaders–buffering sent data until they have
been acknowledged as being received by DataReaders and resending any DDS samples that may

449

7.5.21 RELIABILITY QosPolicy

450

have been lost during transport. Additional resources configured by the HISTORY and
RESOURCE_LIMITS QosPolicies may be used. Extra packets will be sent on the network to
query (heartbeat) and acknowledge the receipt of DDS samples by the DataReader. This setting is a
good choice when guaranteed data delivery is required; for example, sending events or commands.

To send large data reliably, you will also need to set the 7.5.20 PUBLISH_MODE QosPolicy
(DDS Extension) on page 445 kind to DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS.
Large in this context means that the data size is larger than the transportmessage_size_max
property value. See 23.3 Large Data Fragmentation on page 976.

While a DataWriter sends data reliably, the 7.5.12 HISTORY QosPolicy on page 421 and 7.5.22
RESOURCE_LIMITS QosPolicy on page 452 determine how many DDS samples can be stored while
waiting for acknowledgements from DataReaders. A DDS sample that is sent reliably is entered in the
DataWriter’s send queue awaiting acknowledgement from DataReaders. How many DDS samples that
the DataWriter is allowed to store in the send queue for a data-instance depends on the kind of the
HISTORY QoS as well as themax_samples_per_instance and max_samples parameter of the
RESOURCE_LIMITS QoS.

If the HISTORY kind is KEEP_LAST, then the DataWriter is allowed to have the HISTORY depth
number of DDS samples per instance of the Topic in the send queue. Should the number of unac-
knowledge DDS samples in the send queue for a data-instance reach the HISTORY depth, then the next
DDS sample written by the DataWriter for the instance will overwrite the oldest DDS sample for the
instance in the queue. This implies that an unacknowledged DDS sample may be overwritten and thus
lost. So even if the RELIABILITY kind is RELIABLE, if the HISTORY kind is KEEP_LAST, it is
possible that some data sent by the DataWriter will not be delivered to the DataReader. What is guar-
anteed is that if the DataWriter stops writing, the last N DDS samples that the DataWriter wrote will be
delivered reliably; where n is the value of the HISTORY depth.

However, if the HISTORY kind is KEEP_ALL, then when the send queue is filled with unac-
knowledged DDS samples (either due to the number of unacknowledged DDS samples for an instance
reaching the RESOURCE_LIMITS max_samples_per_instance value or the total number of unac-
knowledged DDS samples have reached the size of the send queue as specified by RESOURCE_LIMITS
max_samples), the next write() operation on the DataWriter will block until either a DDS sample in the
queue has been fully acknowledged by DataReaders and thus can be overwritten or a timeout of
RELIABILITY max_blocking_period has been reached.

If there is still no space in the queue when max_blocking_time is reached, the write() call will return a
failure with the error code DDS_RETCODE_TIMEOUT.

Thus for strict reliability—a guarantee that all DDS data samples sent by a DataWriter are received by
DataReaders—you must use a RELIABILITY kind of RELIABLE and a HISTORY kind ofKEEP_
ALL for both the DataWriter and the DataReader.

7.5.21 RELIABILITY QosPolicy

Although you can set the RELIABILITY QosPolicy on Topics, its value can only be used to initialize the
RELIABILITY QosPolicies of either a DataWriter or DataReader. It does not directly affect the operation
of Connext DDS, see 5.1.3 Setting Topic QosPolicies on page 220.

7.5.21.1 Example

This QosPolicy is used to achieve reliable communications, which is discussed in Reliable Com-
munications (Chapter 11 on page 694) and 11.3.1 Enabling Reliability on page 702.

7.5.21.2 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be compatible, the
DataWriter and DataReader must use one of the valid combinations for the Reliability kind (see Table
7.68 Valid Combinations of Reliability ‘kind’), and one of the valid combinations for the acknow-
ledgment_kind (see Table 7.69 Valid Combinations of Reliability ‘acknowledgment_kind’):

DataReader requests:

BEST_EFFORT RELIABLE

DataWriter offers:
BEST_EFFORT compatible incompatible

RELIABLE compatible compatible

Table 7.68 Valid Combinations of Reliability ‘kind’

DataReader requests:

PROTOCOL APPLICATION_
AUTO

APPLICATION_
EXPLICIT

DataWriter offers:

PROTOCOL compatible incompatible incompatible

APPLICATION_AUTO compatible compatible compatible

APPLICATION_EXPLICIT compatible compatible compatible

Table 7.69 Valid Combinations of Reliability ‘acknowledgment_kind’

If this QosPolicy is found to be incompatible, statuses ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS will be modified and the corresponding Listeners called
for the DataWriter and DataReader, respectively.

451

7.5.22 RESOURCE_LIMITS QosPolicy

452

There are no compatibility issues regarding the value ofmax_blocking_wait, since it does not apply to
DataReaders.

7.5.21.3 Related QosPolicies

l 7.5.12 HISTORY QosPolicy on page 421

l 7.5.20 PUBLISH_MODE QosPolicy (DDS Extension) on page 445

l 7.5.22 RESOURCE_LIMITS QosPolicy below

7.5.21.4 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.21.5 System Resource Considerations

Setting the kind to RELIABLE will cause Connext DDS to use up more resources to monitor and main-
tain a reliable connection between a DataWriter and all of its reliable DataReaders. This includes the use
of extra CPU and network bandwidth to send and process heartbeat, ACK/NACK, and repair packets (see
Reliable Communications (Chapter 11 on page 694)).

Setting max_blocking_time to a non-zero number may block the sending thread when the
RELIABILITY kind is RELIABLE.

7.5.22 RESOURCE_LIMITS QosPolicy

For the reliability protocol (and the 7.5.9 DURABILITY QosPolicy on page 412), this QosPolicy determ-
ines the actual maximum queue size when the 7.5.12 HISTORY QosPolicy on page 421 is set to KEEP_
ALL.

In general, this QosPolicy is used to limit the amount of system memory that Connext DDS can allocate.
For embedded real-time systems and safety-critical systems, pre-determination of maximum memory usage
is often required. In addition, dynamic memory allocation could introduce non-deterministic latencies in
time-critical paths.

It includes the members in Table 7.70 DDS_ResourceLimitsQosPolicy. For defaults and valid ranges,
please refer to the API Reference HTML documentation.

7.5.22 RESOURCE_LIMITS QosPolicy

Type Field
Name Description

DDS_
Long

max_
samples Maximumnumber of live DDS samples thatConnext DDS can store for a DataWriter/DataReader. This is a physical limit.

DDS_
Long

max_in-
stances

Maximumnumber of active instances that can be managed by a DataWriter/DataReader. (See 8.3.8.6.1 Active State and
MinimumState on page 545.)

ForDataReaders,max_instances must be <=max_total_instances in the 8.6.2 DATA_READER_RESOURCE_LIMITS
QosPolicy (DDSExtension) on page 581.

See also: 7.5.22.2 Example on the next page.

DDS_
Long

max_
samples_
per_in-
stance

On a DataWriter, this resource limit represents the maximumnumber of DDS samples of any one instance thatConnext DDS
will store for a DataWriter.

On a DataReader, this resource limit represents the maximumnumber of DDS samples of any one instance that are stored in
the DataReader output queue—that is, the queue fromwhich the application takes/reads samples.

For keyed types and DataReaders, this value only applies to DDS samples with an instance state of DDS_ALIVE_
INSTANCE_STATE.

If a keyed Topic is not used, thenmax_samples_per_instancemust equalmax_samples.

How this property behaves depends on yourHISTORY and RELIABILITY QoS configurations. See 7.5.12 HISTORY
QosPolicy on page 421.

DDS_
Long

initial_
samples

Initial number of DDS samples thatConnext DDSwill store for a DataWriter/DataReader. (DDS extension)

DDS_
Long

initial_in-
stances Initial number of instances that can be managed by a DataWriter/DataReader. (DDS extension)

DDS_
Long

instance_
hash_
buckets

Number of hash buckets, which are used byConnext DDS to facilitate instance lookup. (DDS extension).

Table 7.70 DDS_ResourceLimitsQosPolicy

One of the most important fields ismax_samples, which sets the size and causes memory to be allocated
for the send or receive queues. For information on how this policy affects reliability, see 11.3.2 Tuning
Queue Sizes and Other Resource Limits on page 702.

When a DataWriter or DataReader is created, the initial_instances and initial_samples parameters
determine the amount of memory first allocated for the those Entities. As the application executes, if more
space is needed in the send/receive queues to store DDS samples or as more instances are created, then
Connext DDS will automatically allocate memory until the limits ofmax_instances and max_samples are
reached.

You may set initial_instances =max_instances and initial_samples =max_samples if you do not want
Connext DDS to dynamically allocate memory after initialization.

For keyed Topics, themax_samples_per_instance field in this policy represents the maximum number of
DDS samples with the same key that are allowed to be stored by a DataWriter (in the DataWriter’s queue)
or by the DataReader (in the DataReader's output queue—that is, the queue from which the application

453

7.5.22 RESOURCE_LIMITS QosPolicy

454

takes/reads samples). Themax_samples_per_instance field is a logical limit. The hard physical limit is
determined by max_samples. However, because the theoretical number of instances may be quite large
(as set by max_instances), you may not want Connext DDS to allocate the total memory needed to hold
the maximum number of DDS samples per instance for all possible instances (max_samples_per_
instance * max_instances) because during normal operations, the application will never have to hold that
much data for the Entity.

So it is possible that an Entity will hit the physical limitmax_samples before it hits themax_samples_
per_instance limit for a particular instance. However, Connext DDS must be able to storemax_samples_
per_instance for at least one instance. Therefore, max_samples_per_instance must be <= max_
samples.

If a keyed data type is not used, there is only a single instance of the Topic, so max_samples_per_
instance must equal max_samples.

Once a physical or logical limit is hit, then how Connext DDS deals with new DDS data samples being
sent or received for a DataWriter or DataReader is described in the 7.5.12 HISTORY QosPolicy on
page 421 setting of DDS_KEEP_ALL_HISTORY_QOS. It is closely tied to whether or not a reliable
connection is being maintained.

Although you can set the RESOURCE_LIMITS QosPolicy on Topics, its value can only be used to ini-
tialize the RESOURCE_LIMITS QosPolicies of either a DataWriter or DataReader. It does not directly
affect the operation of Connext DDS, see 5.1.3 Setting Topic QosPolicies on page 220.

7.5.22.1 Configuring Resource Limits for Asynchronous DataWriters

When using an asynchronous Publisher, if a call to write() is blocked due to a resource limit, the block
will last until the timeout period expires, which will prevent others from freeing the resource. To avoid this
situation, make sure that the DomainParticipant’s outstanding_asynchronous_sample_allocation in the
9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660 is
always greater than the sum of all asynchronous DataWriters’max_samples.

7.5.22.2 Example

If you want to be able to storemax_samples_per_instance for every instance, then you should set
max_samples >= max_instances * max_samples_per_instance

But if you want to save memory and you do not expect that the running application will ever reach the
case where it will seemax_instances of instances, then you may use a smaller value formax_samples to
save memory.

In any case, there is a lower limit formax_samples:
max_samples >= max_samples_per_instance

If the 7.5.12 HISTORY QosPolicy on page 421’s kind is set to KEEP_LAST, then you should set:

7.5.23 SERVICE QosPolicy (DDS Extension)

max_samples_per_instance = HISTORY.depth

7.5.22.3 Properties

This QosPolicy cannot be modified after the Entity is enabled.

There are no requirements that the publishing and subscribing sides use compatible values.

7.5.22.4 Related QosPolicies

l 7.5.12 HISTORY QosPolicy on page 421

l 7.5.21 RELIABILITY QosPolicy on page 448

l For DataReaders, max_instances must be <=max_total_instances in the 8.6.2 DATA_
READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581

7.5.22.5 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.22.6 System Resource Considerations

Larger initial_* numbers will increase the initial system memory usage. Largermax_* numbers will
increase the worst-case system memory usage.

Increasing instance_hash_buckets speeds up instance-lookup time but also increases memory usage.

7.5.23 SERVICE QosPolicy (DDS Extension)

The SERVICE QosPolicy is intended for use by RTI infrastructure services. User applications should not
modify its value. It includes the member in Table 7.71 DDS_ServiceQosPolicy.

455

7.5.24 TOPIC_QUERY_DISPATCH_QosPolicy (DDS Extension)

456

Type Field Name Description

DDS_ServiceQosPolicyKind kind

Kind of service associated with the entity.

Possible values:

l DDS_NO_SERVICE_QOS,

l DDS_PERSISTENCE_SERVICE_QOS,

l DDS_QUEUING_SERVICE_QOS,

l DDS_ROUTING_SERVICE_QOS,

l DDS_RECORDING_SERVICE_QOS,

l DDS_REPLAY_SERVICE_QOS,

l DDS_DATABASE_INTEGRATION_SERVICE_QOS

l DDS_WEB_INTEGRATION_SERVICE_QOS

Table 7.71 DDS_ServiceQosPolicy

An application can determine the kind of service associated with a discovered DataWriter and
DataReader by looking at the service field in the PublicationBuiltinTopicData and Sub-
scriptionBuiltinTopicData structures (see Chapter 18 Built-In Topics on page 837).

7.5.23.1 Properties

This QosPolicy cannot be modified after the Entity is enabled.

There are no requirements that the publishing and subscribing sides use compatible values.

7.5.23.2 Related QosPolicies

None

7.5.23.3 Applicable Entities

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

l 9.3 DomainParticipants on page 615

7.5.23.4 System Resource Considerations

None.

7.5.24 TOPIC_QUERY_DISPATCH_QosPolicy (DDS Extension)

The TOPIC_QUERY_DISPATCH QosPolicy configures the ability of a DataWriter to publish historical
samples in response to a TopicQuery (see Topic Queries (Chapter 24 on page 983)).

7.5.24 TOPIC_QUERY_DISPATCH_QosPolicy (DDS Extension)

It contains the members listed in Table 7.72 DDS_TopicQueryDispatchQosPolicy.

Type Field Name Description

DDS_Boolean enable Allows this writer to dispatch TopicQueries.

struct DDS_Duration_t publication_period Sets the periodic interval at which samples are published.

DDS_Long samples_per_period Sets the maximumnumber of samples to publish in each publication_period

Table 7.72 DDS_TopicQueryDispatchQosPolicy

This QoS policy configures the ability of a DataWriter to publish samples in response to a TopicQuery.

It enables the ability of a DataWriter to publish historical samples upon reception of a TopicQuery and
how often they are published.

Since a TopicQuery selects previously written samples, the DataWriter must have a DurabilityQosPolicy
kind different from DDS_VOLATILE_DURABILITY_QOS. Also, the ReliabilityQosPolicy kind must
be set to DDS_RELIABLE_RELIABILITY_QOS.

A TopicQuery may select multiple samples at once. The writer will publish them periodically, inde-
pendently from newly written samples. TopicQueryDispatchQosPolicy's publication_period configures
the frequency of that period and its samples_per_period configures the maximum number of samples to
publish each period.

If the DataWriter blocks during the publication of one of these samples, it will stop and try again the next
period. (See 7.3.8 Writing Data on page 310 (FooDataWriter::write()) for the conditions that may cause
the write operation to block.)

All the DataWriters that belong to a single Publisher and enable TopicQueries share the same event
thread, but each DataWriter schedules separate events. To configure that thread, see the Asyn-
chronousPublisherQosPolicy's topic_query_publication_thread.

If the DataWriter is dispatching more than one TopicQuery at the same time, the configuration of this peri-
odic event applies to all of them. For example, if a DataWriter receives two TopicQueries around the same
time, the period is 1 second, the number of samples per period is 10, the first TopicQuery selects five
samples, and the second one selects 8, the DataWriter will immediately attempt to publish all five for the
first TopicQuery and five for the second one. After one second, it will publish the remaining three
samples.

7.5.24.1 Properties

This QosPolicy cannot be modified after the Entity is enabled.

There are no requirements that the publishing and subscribing sides use compatible values.

457

7.5.25 TRANSFER_MODE QosPolicy

458

7.5.24.2 Related QosPolicies

7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) on page 346

7.5.24.3 Applicable Entities

l 7.3 DataWriters on page 288

7.5.24.4 System Resource Considerations

None.

7.5.25 TRANSFER_MODE QosPolicy

The TRANSFER_MODE QosPolicy configures the properties of a Zero Copy DataWriter. It contains the
member listed in the following table.

Type Field
Name Description

DDS_
Boolean

enable_
data_con-
sistency_
check

Enables a Zero CopyDataWriter to send a special sequence number as a part of its inline Qos. This sequence number is
used by a Zero CopyDataReader to check for sample consistency in the is_data_consistent() operation . Formore de-
tails, see 23.1.5.1.3 Checking data consistencywith Zero Copy transfer over sharedmemoryon page 972.

Default: true

Table 7.73 DDS_TransferModeQosPolicy

7.5.25.1 Properties

This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on the publishing
and subscribing sides.

7.5.25.2 Related QosPolicies

None.

7.5.25.3 Applicable Entities

7.3 DataWriters on page 288

7.5.25.4 System Resource Considerations

With enable_data_consistency_check set to true, a Zero Copy DataWriter sends an additional sequence
number as part of its inline Qos with every write operation. The use of this inline QoS creates a small addi-
tional wire-payload, consuming extra bandwidth and serialization/deserialization time.

7.5.26 TRANSPORT_PRIORITY QosPolicy

7.5.26 TRANSPORT_PRIORITY QosPolicy

The TRANSPORT_PRIORITY QosPolicy is optional and only supported on certain OSs and transports
by RTI. Its intention is to allow you to specify on a per-DataWriter or per-DataReader basis that the data
sent by a DataWriter or DataReader is of a different priority.

DDS does not specify how a DDS implementation shall treat data of different priorities. It is often difficult
or impossible for DDS implementations to treat data of higher priority differently than data of lower pri-
ority, especially when data is being sent (delivered to a physical transport) directly by the thread that called
the DataWriter’s write() operation. Also, many physical network transports themselves do not have an
end-user controllable level of data packet priority.

In Connext DDS, for the IP-based transports (UDPv4, UDPv6, Real-Time WAN Transport, and TCP),
the value set in the TRANSPORT_PRIORITY QosPolicy can be used to set the differentiated services
field (DS field) bits of the IPv4 and IPv6 headers for datagrams sent by a DataWriter or DataReader. It is
platform-dependent on how and whether setting the DS field has an effect. Some platforms may require
external permissions in order to set the DS field.

The transport priority value is not provided as is to the transports, but transformed according to the trans-
port_priority_mask, transport_priority_mapping_low, and transport_priority_mapping_high prop-
erties (see 16.6 Setting Builtin Transport Properties with the PropertyQosPolicy on page 807). If you want
the priority value to be exactly equal to the DS value, then the only change you need to make is to set
transport_priority_mask to 0xff (and keep the transport_priority_mapping_low and transport_pri-
ority_mapping_high defaults).

It is incorrect to assume that using the TRANSPORT_PRIORITY QosPolicy will have any effect at all on
the end-to-end delivery of data between a DataWriter and DataReader. All network elements such as
switches and routers must have the capability and be enabled to actually use the DS field to treat higher-pri-
ority packets differently. Thus the ability to use the TRANSPORT_PRIORITY QosPolicy must be
designed and configured at a system level; just turning it on in an application may have no effect at all at a
transport level.

For additional details on how to set the DS field in IP-based transports, see 7.5.26.5 Setting DS Field in
IP-Based Transports on the next page.

The TRANSPORT_PRIORITY QosPolicy includes the member in Table 7.74 DDS_Trans-
portPriorityQosPolicy. For the default and valid range, please refer to the API Reference HTML doc-
umentation.

Type Field Name Description

DDS_Long value Hint as to how to set the priority.

Table 7.74 DDS_TransportPriorityQosPolicy

459

7.5.26 TRANSPORT_PRIORITY QosPolicy

460

Connext DDS will propagate the value set on a per-DataWriter or per-DataReader basis to the transport
when the DataWriter publishes data. It is up to the implementation of the transport to do something with
the value, if anything.

You can set the TRANSPORT_PRIORITY QosPolicy on a Topic and use its value to initialize the
TRANSPORT_PRIORITY QosPolicies of DataWriters and DataReaders. The TRANSPORT_
PRIORITY QosPolicy of a Topic does not directly affect the operation of Connext DDS, see 5.1.3 Setting
Topic QosPolicies on page 220.

For discovery DataWriters and DataReaders, the Transport priority can be set using the field metatraffic_
transport_priority in the 9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646.

7.5.26.1 Properties

This QosPolicy cannot be modified after the entity is created.

7.5.26.2 Related QosPolicies

This QosPolicy does not interact with any other policies.

7.5.26.3 Applicable Entities

l 5.1 Topics on page 216

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.26.4 System Resource Considerations

The use of this policy does not significantly impact the use of resources. However, if a transport is imple-
mented to use the value set by this policy, then there may be transport-specific issues regarding the
resources that the transport implementation itself uses.

7.5.26.5 Setting DS Field in IP-Based Transports

Connext DDS allows setting the ToS field of the IPv4 and IPv6 headers. See Figure 7.31: Using DSCP
Values to Prioritize IP Traffic on the next page.

The modern redefinition of the ToS field is an 8-bit differentiated services field (DS field), which consists
of a 6-bit Differentiated Services Code Point (DSCP) field encoded in the most significant bits and a 2-bit
Explicit Congestion Notification (ECN) field encoded in the least significant bits (not shown in Figure
7.31: Using DSCP Values to Prioritize IP Traffic on the next page).

The DSCP values can be used by the underlying network infrastructure to prioritize IP traffic.

7.5.26 TRANSPORT_PRIORITY QosPolicy

Figure 7.31: Using DSCP Values to Prioritize IP Traffic

In theory, a network could have up to 64 different traffic classes using the 64 available DSCP values (6-
bit). The DiffServ RFCs recommend, but do not require, certain encodings. This gives a network operator
great flexibility in defining traffic classes. In practice, however, most networks use the following com-
monly defined per-hop behaviors:

l Default Forwarding (DF or BE) PHB — which is typically best-effort traffic.

l Expedited Forwarding (EF) PHB — dedicated to low-loss, low-latency traffic.

l Assured Forwarding (AF) PHB — gives assurance of delivery under prescribed conditions.

l Class Selector PHBs (CS) — which maintain backward compatibility with the IP precedence field
of the old TOS field.

There are four Assured Forwarding classes, denoted by the letters AF followed by two digits. The first
digit denotes the AF class and can range from 1 through 4. The second digit refers to the level of drop pref-
erence within each AF class and can range from 1 (lowest drop preference) to 3 (highest drop preference).

461

7.5.26 TRANSPORT_PRIORITY QosPolicy

462

7.5.26.5.1 Configuring DS Field with DDS

At the DomainParticipant level, configure the following transport priority mask as shown in the following
XML snippets:

Using properties:
<participant_qos>

<property>
<value>

<element>
<name>dds.transport.UDPv4.builtin.transport_priority_mask</name>
<value>0x00000FF</value>

</element>
</value>

</property>
</participant_qos>

Using the <transport_priority_mask> XML tag:
<participant_qos>

<transport_builtin>
<udpv4>

<transport_priority_mask>0xFF</transport_priority_mask>
</udpv4>

</transport_builtin>
</participant_qos>

Then, for each DataWriter and DataReader, configure the transport priority using the TRANSPORT_
PRIORITY QoS Policy with a value between 0 and FF. The priorities on DataWriters and DataReaders
are independent. The priority set on a DataWriter will set the DS field for RTPS packets sent by the
DataWriter. The priority set on a DataReader will set the ToS field for RTPS packets sent by the
DataReader.

For example:

l Assume that you want to prioritize the traffic sent by a DataWriter using the Expedited Forwarding
(EF) traffic class. In this case, your priority should be set to the following:

<datawriter_qos>
<transport_priority>

<value>0xB8</value>
</transport_priority>

</datawriter_qos>

Where 0xB8 = 101110 00

Where 101110 is the DSCP and 00 is the ECN.

7.5.26 TRANSPORT_PRIORITY QosPolicy

Below find a Wireshark capture snapshot showing how the DS field was set:

l Assume that you want to prioritize the traffic sent by a DataReader using the Assured Forwarding
AF11 traffic class. In this case, your priority should be set to the following:

<datareader_qos>
<transport_priority>

<value>0x28</value>
</transport_priority>

</datareader_qos>

Where 0x28 = 001010 00

Where 001010 is the DSCP, and 00 is the ECN.

Below find a Wireshark capture snapshot showing how the DS field was set:

7.5.26.5.2 Configuring DS Field for Discovery Traffic

You can also set the DS field value for discovery traffic by setting the following QoS value:

463

7.5.27 TRANSPORT_SELECTION QosPolicy (DDS Extension)

464

<participant_qos>
<discovery>

<metatraffic_transport_priority>0xB8</metatraffic_transport_priority>
</discovery>

</participant_qos>

7.5.26.5.3 Configuring DS Field Programmatically

Before the DomainParticipant is created, add the dds.transport.UDPv4.builtin.transport_priority_
mask to the DomainParticipant QoS that will be used to create the DomainParticipant, as indicated in the
following traditional C++ code snippet:
retcode = DDSPropertyQosPolicyHelper::assert_property(

dp_qos.property,
"dds.transport.UDPv4.builtin.transport_priority_mask",
"0xFF",
RTI_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Error */

}

Before creating DataWriters and DataReaders, set the transport priority field in the QoS used to create the
Entity. For example:
dw_qos.transport_priority.value = 0xB8;

7.5.27 TRANSPORT_SELECTION QosPolicy (DDS Extension)

The TRANSPORT_SELECTION QosPolicy allows you to select the transports that have been installed
with the DomainParticipant to be used by the DataWriter or DataReader.

An application may be simultaneously connected to many different physical transports, e.g., Ethernet, Infin-
iband, shared memory, VME backplane, and wireless. By default, the middleware will use up to 16 trans-
ports to deliver data from a DataWriter to a DataReader.

This QosPolicy can be used to both limit and control which of the application’s available transports may
be used by a DataWriter to send data or by a DataReader to receive data.

It includes the member in Table 7.75 DDS_TransportSelectionQosPolicy. For more information, please
refer to the API Reference HTML documentation.

Type Field Name Description

DDS_StringSeq enabled_transports A sequence of aliases for the transports that may be used by the DataWriter orDataReader.

Table 7.75 DDS_TransportSelectionQosPolicy

Connext DDS allows you to configure the transports that it uses to send and receive messages. A number
of built-in transports, such as UDPv4 and shared memory, are available as well as custom ones that you

7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension)

may implement and install. Each transport will be installed in the DomainParticipant with one or more ali-
ases.

To enable a DataWriter or DataReader to use a particular transport, add the alias to the enabled_trans-
ports sequence of this QosPolicy. An empty sequence is a special case, and indicates that all transports
installed in the DomainParticipant can be used by the DataWriter or DataReader.

For more information on configuring and installing transports, please see the API Reference HTML doc-
umentation (from theModules page, select RTI DDS API Reference, Pluggable Transports).

7.5.27.1 Example

Suppose a DomainParticipant has both UDPv4 and shared memory transports installed. If you want a par-
ticular DataWriter to publish its data only over shared memory, then you should use this QosPolicy to spe-
cify that restriction.

7.5.27.2 Properties

This QosPolicy cannot be modified after the Entity is created.

It can be set differently for the DataWriter and the DataReader.

7.5.27.3 Related QosPolicies

l 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension) below

l 8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) on page 596

l 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671

7.5.27.4 Applicable Entities

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.27.5 System Resource Considerations

By restricting DataWriters from sending or DataReaders from receiving over certain transports, you may
decrease the load on those transports.

7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension)

The TRANSPORT_UNICAST QosPolicy allows you to specify unicast network addresses to be used by
DomainParticipant, DataWriters and DataReaders for receiving messages.

Connext DDS may send data to a variety of Entities, not just DataReaders. DomainParticipants receive
messages to support the discovery process discussed in Discovery (Chapter 15 on page 770). DataWriters

465

7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension)

466

may receive ACK/NACK messages to support the reliable protocol discussed in Reliable Communications
(Chapter 11 on page 694).

During discovery, each Entity announces to remote applications a list of (up to 16) unicast addresses to
which the remote application should send data (either user-data packets or reliable protocol meta-data such
as ACK/NACK and Heartbeats).

By default, the list of addresses is populated automatically with values obtained from the enabled transport
plugins allowed to be used by the Entity (see the 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Exten-
sion) on page 671 and 7.5.27 TRANSPORT_SELECTION QosPolicy (DDS Extension) on page 464).
Also, the associated ports are automatically determined (see 15.5.2 Inbound Ports for User Traffic on
page 799).

Use TRANSPORT_UNICAST QosPolicy to manually set the receive address list for an Entity. You may
optionally set a port to use a non-default receive port as well. Only the first 16 addresses will be used. Con-
next DDS will create a receive thread for every unique port number that it encounters (on a per transport
basis).

The QosPolicy structure includes the members in Table 7.76 DDS_TransportUnicastQosPolicy. For more
information and default values, please refer to the API Reference HTML documentation.

Type Field
Name Description

DDS_Trans-
portUnicastSettingsSeq
(see Table 7.77 DDS_Trans-
portUnicastSettings_t)

value

A sequence of up to 16 unicast settings that should be used by remote entities to address messages to
be sent to this Entity. This is a hard limit that cannot be increased. However, this limit can be decreased by
configuring the DomainParticipant property dds.domain_participant.max_announced_locator_list_
size (whose default size is 8).

Table 7.76 DDS_TransportUnicastQosPolicy

Type Field
Name Description

DDS_
StringSeq

transports A sequence of transport aliases that specifies which transports should be used to receive unicast messages for thisEntity.

DDS_
Long

receive_
port

The port that should be used in the addressing of unicast messages destined for thisEntity. A value of 0 will cause Con-
next DDS to use a default port number based on domainand participant ids. See 15.5 PortsUsed for Discovery on
page 797.

Table 7.77 DDS_TransportUnicastSettings_t

A message sent to a unicast address will be received by a single node on the network (as opposed to a mul-
ticast address where a single message may be received by multiple nodes). This policy sets the unicast

7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension)

addresses and ports that remote entities should use when sending messages to the Entity on which the
TRANSPORT_UNICAST QosPolicy is set.

Up to 16 “return” unicast addresses may be configured for an Entity. This is a hard limit that cannot be
increased. However, this limit can be decreased by configuring the DomainParticipant property dds.-
domain_participant.max_announced_locator_list_size. Instead of specifying addresses directly, you
use the transports field of the DDS_TransportUnicastSetting_t to select the transports (using their aliases)
on which remote entities should send messages destined for this Entity. The addresses of the selected trans-
ports will be the “return” addresses. See the API Reference HTML documentation about configuring trans-
ports and aliases (from theModules page, select RTI Connext DDS API Reference, Pluggable
Transports).

Note, a single transport may have more than one unicast address. For example, if a node has multiple net-
work interface cards (NICs), then the UDPv4 transport will have an address for each NIC. When using the
TRANSPORT_UNICAST QosPolicy to set the return addresses, a single value for the DDS_Trans-
portUnicastSettingsSeq may provide more than the maximum number of return addresses that Connext
DDS accepts (8 by default, changeable to 16).

Whether or not you are able to configure the network interfaces that are allowed to be used by a transport
is up to the implementation of the transport. For the built-in UDPv4 transport, you may restrict an instance
of the transport to use a subset of the available network interfaces. See the API Reference HTML doc-
umentation for the built-in UDPv4 transport for more information.

For a DomainParticipant, this QoS policy sets the default list of addresses used by other applications to
send user data for local DataReaders.

For a reliable DataWriter, if set, the other applications will use the specified list of addresses to send reli-
able protocol packets (ACKS/NACKS) on the behalf of reliable DataReaders. Otherwise, if not set, the
other applications will use the addresses set by the DomainParticipant.

For a DataReader, if set, then other applications will use the specified list of addresses to send user data
(and reliable protocol packets for reliable DataReaders). Otherwise, if not set, the other applications will
use the addresses set by the DomainParticipant.

For a DataReader, if the port number specified by this QoS is the same as a port number specified by a
TRANSPORT_MULTICAST QoS, then the transport may choose to process data received both via mul-
ticast and unicast with a single thread. Whether or not a transport must use different threads to process data
received via multicast or unicast for the same port number depends on the implementation of the transport.

To use this QosPolicy, you also need to specify a port number. A port number of 0 will cause Connext
DDS to automatically use a default value. As explained in 15.5 Ports Used for Discovery on page 797, the
default port number for unicast addresses is based on the domain and participant IDs. Should you choose
to use a different port number, then for every unique port number used by Entities in your application,
depending on the transport, Connext DDS may create a thread to process messages received for that port
on that transport. See Connext DDS Threading Model (Chapter 21 on page 914) for more about threads.

467

7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension)

468

Threads are created on a per-transport basis, so if this QosPolicy specifies multiple transports for a
receive_port, then a thread may be created for each transport for that unique port. Some transports may be
able to share a single thread for different ports, others can not. Different Entities can share the same port
number, and thus, the same thread will process all of the data for all of the Entities sharing the same port
number for a transport.

Note: If a DataWriter is using the 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on
page 433, the unicast addresses specified in the TRANSPORT_UNICAST QosPolicy are ignored by that
DataWriter. The DataWriter will not publish DDS samples on those locators.

7.5.28.1 Example

You may use this QosPolicy to restrict an Entity from receiving data through a particular transport. For
example, on a multi-NIC (network interface card) system, you may install different transports for different
NICs. Then you can balance the network load between network cards by using different values for the
TRANSPORT_UNICAST QosPolicy for different DataReaders. Thus some DataReaders will receive
their data from one NIC and other DataReaders will receive their data from another.

7.5.28.2 Properties

This QosPolicy cannot be modified after the Entity is created.

It can be set differently for the DomainParticipant, the DataWriter and the DataReader.

7.5.28.3 Related QosPolicies

l 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on page 433

l 7.5.27 TRANSPORT_SELECTION QosPolicy (DDS Extension) on page 464

l 8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) on page 596

l 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671

7.5.28.4 Applicable Entities

l 9.3 DomainParticipants on page 615

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

7.5.28.5 System Resource Considerations

Because this QosPolicy changes the transports on which messages are received for different Entities, the
bandwidth used on the different transports may be affected.

Depending on the implementation of a transport, Connext DDS may need to create threads to receive and
process data on a unique-port-number basis. Some transports can share the same thread to process data

7.5.29 TYPESUPPORT QosPolicy (DDS Extension)

received for different ports; others like UDPv4 must have different threads for different ports. In addition,
if the same port is used for both unicast and multicast, the transport implementation will determine whether
or not the same thread can be used to process both unicast and multicast data. For UDPv4, only one thread
is needed per port–independent of whether the data was received via unicast or multicast data. See 21.3
Receive Threads on page 917 for more information.

7.5.29 TYPESUPPORT QosPolicy (DDS Extension)

This policy can be used to modify the code generated by RTI Code Generator so that the [de]serialization
routines act differently depending on the information passed in via the object pointer. This policy also
determines if padding bytes are set to zero during serialization.

It includes the members in Table 7.78 DDS_TypeSupportQosPolicy.

Type Field
Name Description

void *
plugin_
data

Value to pass into the type plug-in's serialization/deserialization function. See Note below.

DDS_CdrPad-
dingKind

cdr_pad-
ding_kind

Determines whether or not the padding bytes will be set to zero during CDRserialization.

For a DomainParticipant: Configures howpadding bytes are set when serializing data for the builtin topic
DataWritersand DataReaders.

ForDataWritersand DataReaders: Configures howpadding bytes are set when serializing data for that entity.

May be:

l ZERO_CDR_PADDING (Padding bytes will be set to zero during CDRserialization)

l NOT_SET_CDR_PADDING (Padding bytes will not be set to any value during CDRserialization)

l AUTO_CDR_PADDING (For a DomainParticipant, the default behavior is NOT_SET_CDR_PADDING. For
a DataWriter orDataReader, the behavior is to inherit the value from the DomainParticipant.)

Table 7.78 DDS_TypeSupportQosPolicy

Note: RTI generally recommends that you treat generated source files as compiler outputs
(analogous to object files) and that you do not modify them. RTI cannot support user changes to
generated source files. Furthermore, such changes would make upgrading to newer versions of
Connext DDS more difficult, as this generated code is considered to be a part of the middleware
implementation and consequently does change from version to version. The plugin_data field in
this QoS policy should be considered a back door, only to be used after careful design
consideration, testing, and consultation with your RTI representative.

7.5.29.1 Properties

This QoS policy may be modified after the DataWriter or DataReader is enabled.

It can be set differently for the DataWriter and DataReader.

469

7.5.30 USER_DATA QosPolicy

470

7.5.29.2 Related QoS Policies

None.

7.5.29.3 Applicable Entities

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

l 9.3 DomainParticipants on page 615

7.5.29.4 System Resource Considerations

None.

7.5.30 USER_DATA QosPolicy

This QosPolicy provides an area where your application can store additional information related to a
DomainParticipant, DataWriter, or DataReader. This information is passed between applications during
discovery (see Discovery (Chapter 15 on page 770)) using built-in-topics (see Built-In Topics (Chapter 18
on page 837)). How this information is used will be up to user code. Connext DDS does not do anything
with the information stored as USER_DATA except to pass it to other applications.

Use cases are usually for application-to-application identification, authentication, authorization, and encryp-
tion purposes. For example, applications can use Group or User Data to send security certificates to each
other for RSA-type security.

The value of the USER_DATA QosPolicy is sent to remote applications when they are first discovered, as
well as when the DomainParticipant, DataWriter or DataReader’s set_qos()methods are called after
changing the value of the USER_DATA. User code can set listeners on the built-in DataReaders of the
built-in Topics used by Connext DDS to propagate discovery information. Methods in the built-in topic
listeners will be called whenever new DomainParticipants, DataReaders, and DataWriters are found.
Within the user callback, you will have access to the USER_DATA that was set for the associated Entity.

Currently, USER_DATA of the associated Entity is only propagated with the information that declares a
DomainParticipant, DataWriter or DataReader. Thus, you will need to access the value of USER_
DATA through DDS_ParticipantBuiltinTopicData, DDS_PublicationBuiltinTopicData or DDS_Sub-
scriptionBuiltinTopicData (see Built-In Topics (Chapter 18 on page 837)).

The structure for the USER_DATA QosPolicy includes just one field, as seen in Table 7.79 DDS_User-
DataQosPolicy. The field is a sequence of octets that translates to a contiguous buffer of bytes whose con-
tents and length is set by the user. The maximum size for the data are set in the 9.5.4 DOMAIN_
PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660.

7.5.30 USER_DATA QosPolicy

Type Field Name Description

DDS_OctetSeq value Default: empty

Table 7.79 DDS_UserDataQosPolicy

This policy is similar to the 7.4.4 GROUP_DATA QosPolicy on page 354 and 5.2.1 TOPIC_DATA
QosPolicy on page 225 that apply to other types of Entities.

7.5.30.1 Example

One possible use of USER_DATA is to pass some credential or certificate that your subscriber application
can use to accept or reject communication with the DataWriters (or vice versa, where the publisher applic-
ation can validate the permission of DataReaders to receive its data). Using the same method, an applic-
ation (DomainParticipant) can accept or reject all connections from another application. The value of the
USER_DATA of the DomainParticipant is propagated in the ‘user_data’ field of the DDS_Par-
ticipantBuiltinTopicData that is sent with the declaration of each DomainParticipant. Similarly, the
value of the USER_DATA of the DataWriter is propagated in the ‘user_data’ field of the DDS_Public-
ationBuiltinTopicData that is sent with the declaration of each DataWriter, and the value of the USER_
DATA of the DataReader is propagated in the ‘user_data’ field of the DDS_Sub-
scriptionBuiltinTopicData that is sent with the declaration of each DataReader.

When Connext DDS discovers a DomainParticipant/DataWriter/DataReader, the application can be noti-
fied of the discovery of the new entity and retrieve information about the Entity’s QoS by reading the
DCPSParticipant, DCPSPublication or DCPSSubscription built-in topics (see Built-In Topics
(Chapter 18 on page 837)). The user application can then examine the USER_DATA field in the built-in
Topic and decide whether or not the remote Entity should be allowed to communicate with the local Entity.
If communication is not allowed, the application can use the DomainParticipant’s ignore_participant(),
ignore_publication() or ignore_subscription() operation to reject the newly discovered remote entity as
one with which the application allows Connext DDS to communicate. See 18.2 Built-in DataReaders on
page 838 for an example of how to do this.

7.5.30.2 Properties

This QosPolicy can be modified at any time. A change in the QosPolicy will cause Connext DDS to send
packets containing the new USER_DATA to all of the other applications in the DDS domain.

It can be set differently on the publishing and subscribing sides.

7.5.30.3 Related QosPolicies

l 5.2.1 TOPIC_DATA QosPolicy on page 225

l 7.4.4 GROUP_DATA QosPolicy on page 354

471

7.5.31 WRITER_DATA_LIFECYCLE QoS Policy

472

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660

7.5.30.4 Applicable Entities

l 7.3 DataWriters on page 288

l 8.3 DataReaders on page 509

l 9.3 DomainParticipants on page 615

7.5.30.5 System Resource Considerations

The maximum size of the USER_DATA is set in the participant_user_data_max_length, writer_user_
data_max_length, and reader_user_data_max_length fields of the 9.5.4 DOMAIN_PARTICIPANT_
RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660. Because Connext DDS will allocated
memory based on this value, you should only increase this value if you need to. If your system does not
use USER_DATA, then you can set this value to 0 to save memory. Setting the value of the USER_
DATA QosPolicy to hold data longer than the value set in the [participant,writer,reader]_user_data_
max_length field will result in failure and an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of USER_DATA, you mustmake certain that
all applications in the DDS domain have changed the value of [participant,writer,reader]_user_data_
max_length to be the same. If two applications have different limits on the size of USER_DATA, and
one application sets the USER_DATA QosPolicy to hold data that is greater than the maximum size set by
another application, then the DataWriters and DataReaders between the two applications will not connect.
The DomainParticipants may also reject connections from each other entirely. This is also true for the
GROUP_DATA (7.4.4 GROUP_DATA QosPolicy on page 354) and TOPIC_DATA (5.2.1 TOPIC_
DATA QosPolicy on page 225) QosPolicies.

7.5.31 WRITER_DATA_LIFECYCLE QoS Policy

This QoS policy controls how a DataWriter handles the lifecycle of the instances (keys) that the
DataWriter is registered to manage. This QoS policy includes the members in Table 7.80 DDS_Writer-
DataLifecycleQosPolicy.

7.5.31 WRITER_DATA_LIFECYCLE QoS Policy

Type Field
Name Description

DDS_
Boolean

autodispose_
unregistered_
instances

Controls what happens when the DataWriter unregisters an instance bymeans of the unregister operations. This set-
ting has no impact on the DataWriter deletion operation. When a DataWriter is deleted, and it was the last known
DataWriter for any of the instances that it was writing, the instance will automatically be transitioned to NOT_ALIVE_
NO_WRITERS by all matching DataReaders. No unregistermessages are sent in this scenario, and therefore no dis-
pose messages are sent, either, regardless of the value of this setting.

RTI_TRUE: The DataWriter first disposes of the instance each time it unregisters from the instance. This behavior is
identical to explicitly calling one of the dispose operations on the instance prior to calling the unregister operation.

Note: It is recommended that you keep this QoS setting at FALSE. See 7.5.31.2 Autodisposing Unregistered In-
stanceson the next page.

RTI_FALSE (default): The DataWriter does not dispose of the instance each time it is unregistered. The application
can still call one of the dispose operations prior to unregistering the instance and dispose of the instance that way.
When a DataWriter is deleted, no extra messages are sent.DataReaderswill automatically unregister thisDataWriter
fromall instances when they recognize that the DataWriter has been deleted.

struct
DDS_Dur-
ation_t

autopurge_
unregistered_
instances_
delay

Determines how long the DataWriter will maintain information regarding an instance that has been unregistered.

By default, the DataWriter resources associated with an instance (e.g., the space needed to remember the Instance
Key or KeyHash) are released lazily. This means the resources are only reclaimed when the space is needed for an-
other instance becausemax_instances (7.5.22 RESOURCE_LIMITSQosPolicy on page 452) is exceeded. This be-
havior can be changedby setting autopurge_unregistered_instances_delay to a value other than INFINITE.
After this time elapses, the DataWriter will purge all internal information regarding the instance, including historical DDS
samples even ifmax_instanceshas not been reached.

The purging of unregistered instances can be done based on the source timestamp of the unregister sample or the
time when the unregister sample was added to the DataWriter queue, by setting the following property to 1 or 0 re-
spectively (default: 0): dds.data_writer.history.source_timestamp_based_autopurge_instances_delay. The
source timestamp can differ from the time that the sample was added to the queue if a timestamp was provided along
with the sample when it was written (using the write_with_timestamp() orwrite_with_params() operations). This is
the case, for example, in RTI Routing Servicewhen samples are routed with the original publisher information.

For durable writer history, autopurge_unregistered_instances_delay supports only the INFINITE value.

Default: INFINITE (except for builtin DataWriters, in which case 0)

struct
DDS_Dur-
ation_t

autopurge_
disposed_in-
stances_
delay

Determines the maximumduration forwhich the DataWriter will maintain information regarding an instance once it has
disposed of the instance.

By default, disposing of an instance does not make it eligible to be purged. By setting autopurge_disposed_in-
stances_delay to a value other than DDS_DURATION_INFINITE, the DataWriter will reclaim the resources as-
sociated with an instance (including historical samples) once the time has elapsed and all matching DataReadershave
acknowledged all the samples for this instance, including the dispose sample.

The purging of the disposed instances can be done based on the dispose sample source timestamp or the time when
the dispose sample was added to the DataWriter queue, by setting the following property to 1 or 0 respectively (de-
fault: 0): dds.data_writer.history.source_timestamp_based_autopurge_instances_delay. The source timestamp
can differ from the time that the sample was added to the queue if a timestamp was provided along with the sample
when it was written (using the write_with_timestamp() orwrite_with_params() operations). This is the case, for ex-
ample, in Routing Servicewhen samples are routed with the original publisher information.

autopurge_disposed_instances_delay is supported with durable DataWriter queues only for 0 and INFINITE values
(finite values are not supported).

Default: INFINITE

Table 7.80 DDS_WriterDataLifecycleQosPolicy

473

7.5.31 WRITER_DATA_LIFECYCLE QoS Policy

474

7.5.31.1 Unregistering vs. Disposing

l Disposing an instance conveys an explicit state about an instance: for example, disposing a flight
because it has landed. You can decide what dispose means for your system. See 7.3.14.3 Disposing
Instances on page 329.

l Unregistering an instance can be thought of as a DataWriter unregistering itself from the instance,
indicating that the DataWriter has no more information/data on the instance. An example is when
radar is no longer tracking a flight. In this example, the flight is still a valid, alive instance in the sys-
tem, with the same location and trajectory, but this specific radar is simply no longer tracking it.
Unregistering tells Connext DDS that the DataWriter does not intend to modify that instance any-
more, allowing Connext DDS to recover any resources it allocated for the instance. See 7.3.14.4
Unregistering Instances on page 329.

7.5.31.2 Autodisposing Unregistered Instances

The autodispose_unregistered_instances QoS setting determines whether explicit calls to an unregister
operation also automatically first dispose the instance that it is being unregistered from.

It is recommended to keep the default setting of FALSE for autodispose_unregistered_instances and
manage all instance state transitions through explicit calls to dispose() and unregister_instance() in your
application. The reasons for this recommendation are as follows:

l In many cases where the ownership of a Topic is EXCLUSIVE (see the 7.5.17 OWNERSHIP
QosPolicy on page 435), DataWriters may want to relinquish ownership of a particular instance of
the Topic to allow other DataWriters to send updates for the value of that instance. In this case, you
may want a DataWriter to just unregister an instance—without disposing it (since there are other
writers). Unregistering an instance implies that the DataWriter no longer owns that instance, but it is
a stronger statement to say that instance no longer exists.

l User applications may be coded to trigger on the disposal of instances, thus the ability to unregister
without disposing may be useful to properly maintain the semantic of disposal.

7.5.31.3 Properties

The WRITER_DATA_LIFECYCLE QoS Policy does not apply to DataReaders, so there is no require-
ment that the publishing and subscribing sides use compatible values.

This QoS policy may be modified after the DataWriter is enabled.

7.5.31.4 Related QoS Policies

l None.

7.6 FlowControllers (DDS Extension)

7.5.31.5 Applicable Entities

l 7.3 DataWriters on page 288

7.5.31.6 System Resource Considerations

None.

7.6 FlowControllers (DDS Extension)

This section does not apply when using the separate add-on product, Ada Language Support,
which does not support FlowControllers.

A FlowController is the object responsible for shaping the network traffic by determining when attached
asynchronous DataWriters are allowed to write data. To configure a DataWriter to be asynchronous, see
7.5.20 PUBLISH_MODE QosPolicy (DDS Extension) on page 445.

You can use one of the built-in FlowControllers (and optionally modify their properties), create a custom
FlowController by using the DomainParticipant’s create_flowcontroller() operation (see 7.6.6 Creating
and Deleting FlowControllers on page 486), or create a custom FlowController by using the DomainPar-
ticipant's 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440; see 7.6.5 Creating and Con-
figuring Custom FlowControllers with Property QoS on page 484.

To use a FlowController, you provide its name in the DataWriter’s 7.5.20 PUBLISH_MODE QosPolicy
(DDS Extension) on page 445.

l DDS_DEFAULT_FLOW_CONTROLLER_NAME

By default, flow control is disabled. That is, the built-in DDS_DEFAULT_FLOW_
CONTROLLER_NAME flow controller does not apply any flow control. Instead, it allows data to
be sent asynchronously as soon as it is written by the DataWriter.

l DDS_FIXED_RATE_FLOW_CONTROLLER_NAME

The FIXED_RATE flow controller shapes the network traffic by allowing data to be sent only once
every second. Any accumulated DDS samples destined for the same destination are coalesced into
as few network packets as possible.

l DDS_ON_DEMAND_FLOW_CONTROLLER_NAME

The ON_DEMAND flow controller allows data to be sent only when you call the FlowController’s
trigger_flow() operation. With each trigger, all accumulated data since the previous trigger is sent
(across all Publishers or DataWriters). In other words, the network traffic shape is fully controlled
by the user. Any accumulated DDS samples destined for the same destination are coalesced into as

475

7.6 FlowControllers (DDS Extension)

476

few network packets as possible.

This external trigger source is ideal for users who want to implement some form of closed-loop flow
control or who want to only put data on the wire every so many DDS samples (e.g., with the num-
ber of DDS samples based on NDDS_Transport_Property_t’s gather_send_buffer_count_max).

The default property settings for the built-in FlowControllers are described in the API Reference HTML
documentation.

DDS samples written by an asynchronous DataWriter are not sent in the context of the write() call.
Instead, Connext DDS puts the DDS samples in a queue for future processing and they are sent in the asyn-
chronous publishing thread. (See 7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)
on page 346.) The FlowController associated with each asynchronous DataWriter determines when the
DDS samples are actually sent.

Each FlowController maintains a separate FIFO queue for each unique destination (remote application).
DDS samples written by asynchronous DataWriters associated with the FlowController are placed in the
queues that correspond to the intended destinations of the DDS sample.

When tokens become available, a FlowController must decide which queue(s) to grant tokens first. This is
determined by the FlowController's scheduling_policy property (see Table 7.81 DDS_FlowCon-
trollerProperty_t). Once a queue has been granted tokens, it is serviced by the asynchronous publishing
thread. The queued up DDS samples will be coalesced and sent to the corresponding destination. The num-
ber of DDS samples sent depends on the data size and the number of tokens granted.

Table 7.81 DDS_FlowControllerProperty_t lists the properties for a FlowController.

Type Field
Name Description

DDS_FlowControllerSchedulingPolicy
scheduling_
policy

Round robin, earliest deadline first, or highest priority first. See 7.6.1 Flow Controller
Scheduling Policies on the next page.

DDS_FlowCon-
trollerTokenBucketProperty_t

token_
bucket

See 7.6.3 Token Bucket Properties on page 479.

Table 7.81 DDS_FlowControllerProperty_t

Table 7.82 FlowController Operations lists the operations available for a FlowController.

7.6.1 Flow Controller Scheduling Policies

Operation Description Reference

get_property
Get and Set the FlowController properties.

7.6.8 Getting/Setting Properties for a Specific FlowController on
page 487

set_property

trigger_flow Provides an external trigger to the FlowController. 7.6.9 Adding an ExternalTrigger on page 488

get_name Returns the name of the FlowController.

7.6.10 Other FlowController Operationson page 488
get_participant

Returns the DomainParticipant to which the FlowController
belongs.

Table 7.82 FlowController Operations

7.6.1 Flow Controller Scheduling Policies

l Round Robin

(DDS_RR_FLOW_CONTROLLER_SCHED_POLICY) Perform flow control in a round-robin
(RR) fashion.

Whenever tokens become available, the FlowController distributes the tokens uniformly across all of
its (non-empty) destination queues. No destinations are prioritized. Instead, all destinations are
treated equally and are serviced in a round-robin fashion.

l Earliest Deadline First

(DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY) Perform flow control in an earliest-
deadline-first (EDF) fashion.

A DDS sample's deadline is determined by the time it was written plus the latency budget of the
DataWriter at the time of the write call (as specified in the DDS_LatencyBudgetQosPolicy). The rel-
ative priority of a flow controller's destination queue is determined by the earliest deadline across all
DDS samples it contains.

When tokens become available, the FlowController distributes tokens to the destination queues in
order of their priority. In other words, the queue containing the DDS sample with the earliest dead-
line is serviced first. The number of tokens granted equals the number of tokens required to send the
first DDS sample in the queue. Note that the priority of a queue may change as DDS samples are
sent (i.e., removed from the queue). If a DDS sample must be sent to multiple destinations or two
DDS samples have an equal deadline value, the corresponding destination queues are serviced in a
round-robin fashion.

With the default duration of 0 in the LatencyBudgetQosPolicy, using an EDF_FLOW_
CONTROLLER_SCHED_POLICY FlowController preserves the order in which you call write()
across the DataWriters associated with the FlowController.

477

7.6.2 Managing Fast DataWriters When Using a FlowController

478

Since the LatencyBudgetQosPolicy is mutable, a DDS sample written second may contain an earlier
deadline than the DDS sample written first if the DDS_LatencyBudgetQosPolicy’s duration is suf-
ficiently decreased in between writing the two DDS samples. In that case, if the first DDS sample is
not yet written (still in queue waiting for its turn), it inherits the priority corresponding to the (earlier)
deadline from the second DDS sample.

In other words, the priority of a destination queue is always determined by the earliest deadline
among all DDS samples contained in the queue. This priority inheritance approach is required in
order to both honor the updated duration and to adhere to the DataWriter in-order data delivery
guarantee.

l Highest Priority First

(DDS_HPF_FLOW_CONTROLLER_SCHED_POLICY) Perform flow control in an highest-pri-
ority-first (HPF) fashion.

Note: Prioritized DDS samples are not supported when using the Ada API. Therefore, the Highest
Priority First scheduling policy is not supported when using this API.

The next destination queue to service is determined by the publication priority of the DataWriter, the
channel of a multi-channel DataWriter, or individual DDS sample.

The relative priority of a flow controller's destination queue is determined by the highest publication
priority of all the DDS samples it contains.

When tokens become available, the FlowController distributes tokens to the destination queues in
order of their publication priority. The queue containing the DDS sample with the highest pub-
lication priority is serviced first. The number of tokens granted equals the number of tokens required
to send the first DDS sample in the queue. Note that a queue’s priority may change as DDS samples
are sent (i.e., as they are removed from the queue). If a DDS sample must be sent to multiple des-
tinations or two DDS samples have the same publication priority, the corresponding destination
queues are serviced in a round-robin fashion.

This priority inheritance approach is required to both honor the designated publication priority and
adhere to the DataWriter’s in-order data delivery guarantee.

See also: 7.6.4 Prioritized DDS Samples on page 481.

7.6.2 Managing Fast DataWriters When Using a FlowController

If a DataWriter is writing DDS samples faster than its attached FlowController can throttle, Connext DDS
may drop DDS samples on the writer’s side. This happens because the DDS samples may be removed
from the queue before the asynchronous publisher’s thread has a chance to send them. To work around
this problem, either:

7.6.3 Token Bucket Properties

l Use reliable communication to block the write() call and thereby throttle your application.

l Do not allow the queue to fill up in the first place.

The queue should be sized large enough to handle expected write bursts, so that no DDS samples
are dropped. Then in steady state, the FlowController will smooth out these bursts and the queue
will ideally have only one entry.

7.6.3 Token Bucket Properties

FlowControllers use a token-bucket approach for open-loop network flow control. The flow control char-
acteristics are determined by the token bucket properties. The properties are listed in Table 7.83 DDS_
FlowControllerTokenBucketProperty_t ; see the API Reference HTML documentation for their defaults
and valid ranges.

Type Field Name Description

DDS_Long max_tokens
Maximumnumber of tokens than can accumulate in the token bucket. See 7.6.3.1 max_tokenson the next
page.

DDS_Long
tokens_added_per_
period

The number of tokens added to the token bucket per specified period. See 7.6.3.2 tokens_added_per_
period on the next page.

DDS_Long
tokens_leaked_per_
period

The number of tokens removed from the token bucket per specified period. See 7.6.3.3 tokens_leaked_
per_period on the next page.

DDS_Dur-
ation_t

period Period for adding tokens to and removing tokens from the bucket. See 7.6.3.4 period on the next page.

DDS_Long bytes_per_token
Maximumnumber of bytes allowed to send for each token available. See 7.6.3.5 bytes_per_token on the
next page.

Table 7.83 DDS_FlowControllerTokenBucketProperty_t

Asynchronously published DDS samples are queued up and transmitted based on the token bucket flow
control scheme. The token bucket contains tokens, each of which represents a number of bytes. DDS
samples can be sent only when there are sufficient tokens in the bucket. As DDS samples are sent, tokens
are consumed. The number of tokens consumed is proportional to the size of the data being sent. Tokens
are replenished on a periodic basis.

The rate at which tokens become available and other token bucket properties determine the network traffic
flow.

Note that if the same DDS sample must be sent to multiple destinations, separate tokens are required for
each destination. Only when multiple DDS samples are destined to the same destination will they be
coalesced and sent using the same token(s). In other words, each token can only contribute to a single net-
work packet.

479

7.6.3 Token Bucket Properties

480

7.6.3.1 max_tokens

The maximum number of tokens in the bucket will never exceed this value. Any excess tokens are dis-
carded. This property value, combined with bytes_per_token, determines the maximum allowable data
burst.

Use DDS_LENGTH_UNLIMITED to allow accumulation of an unlimited amount of tokens (and there-
fore potentially an unlimited burst size).

7.6.3.2 tokens_added_per_period

A FlowController transmits data only when tokens are available. Tokens are periodically replenished. This
field determines the number of tokens added to the token bucket with each periodic replenishment.

Available tokens are distributed to associated DataWriters based on the scheduling_policy. Use DDS_
LENGTH_UNLIMITED to add the maximum number of tokens allowed by max_tokens.

7.6.3.3 tokens_leaked_per_period

When tokens are replenished and there are sufficient tokens to send all DDS samples in the queue, this
property determines whether any or all of the leftover tokens remain in the bucket.

Use DDS_LENGTH_UNLIMITED to remove all excess tokens from the token bucket once all DDS
samples have been sent. In other words, no token accumulation is allowed. When new DDS samples are
written after tokens were purged, the earliest point in time at which they can be sent is at the next periodic
replenishment.

7.6.3.4 period

This field determines the period by which tokens are added or removed from the token bucket.

The special value DDS_DURATION_INFINITE can be used to create an on-demand FlowController,
for which tokens are no longer replenished periodically. Instead, tokens must be added explicitly by calling
the FlowController’s trigger_flow() operation. This external trigger adds tokens_added_per_period
tokens each time it is called (subject to the other property settings).

Once period is set to DDS_DURATION_INFINITE, it can no longer be reverted to a finite
period.

7.6.3.5 bytes_per_token

This field determines the number of bytes that can actually be transmitted based on the number of tokens.

Tokens are always consumed in whole by each DataWriter. That is, in cases where bytes_per_token is
greater than the DDS sample size, multiple DDS samples may be sent to the same destination using a
single token (regardless of the scheduling_policy).

7.6.4 Prioritized DDS Samples

Where fragmentation is required, the fragment size will be either (a) bytes_per_token or (b) the minimum
of themessage_size_max transport configuration across all transports installed with the DataWriter,
whichever is less. See information aboutmessage_size_max in the desired transport, such as Table 16.2
Properties for the Builtin UDPv4 Transport.

Use DDS_LENGTH_UNLIMITED to indicate that an unlimited number of bytes can be transmitted per
token. In other words, a single token allows the recipient DataWriter to transmit all its queued DDS
samples to a single destination. A separate token is required to send to each additional destination.

7.6.4 Prioritized DDS Samples

Note: This feature is not supported when using the Ada API.

The Prioritized DDS Samples feature allows you to prioritize traffic that is in competition for transmission
resources. The granularity of this prioritization may be by DataWriter, by instance, or by individual DDS
sample.

Prioritized DDS Samples can improve latency in the following cases:

l Low-Availability Links

With low-availability communication, unsent DDS samples may accumulate while the link is
unavailable. When the link is restored, a large number of DDS samples may be waiting for trans-
mission. High priority DDS samples will be sent first.

l Low-Bandwidth Links

With low-bandwidth communication, a temporary backlog may occur or the link may become con-
gested with large DDS samples. High-priority DDS samples will be sent at the first available gap,
between the fragments of a large low-priority DDS sample.

l Prioritized Topics

With limited bandwidth communication, some topics may be deemed to be of higher priority than
others on an ongoing basis, and DDS samples written to some topics should be given precedence
over others on transmission.

l High Priority Events

Due to external rules or content analysis (e.g., perimeter violation or identification as a threat), the
priority of DDS samples is dynamically determined, and the priority assigned a given DDS sample
will reflect the urgency of its delivery.

481

7.6.4 Prioritized DDS Samples

482

To configure a DataWriter to use prioritized DDS samples:

l Create a FlowController with the scheduling_policy property set to DDS_HPF_FLOW_
CONTROLLER_SCHED_POLICY.

l Create a DataWriter with the 7.5.20 PUBLISH_MODE QosPolicy (DDS Extension) on page 445
kind set to ASYNCHRONOUS and flow_controller_name set to the name of the FlowController.

A single FlowController may perform traffic shaping for multiple DataWriters and multiple DataWriter
channels. The FlowController’s configuration determines how often publication resources are scheduled,
how much data may be sent per period, and other transmission characteristics that determine the ultimate
performance of prioritized DDS samples.

When working with prioritized DDS samples, you should use these operations, which allow you to spe-
cify priority:

l write_w_params() (see 7.3.8 Writing Data on page 310)

l unregister_instance_w_params() (see 7.3.14.4 Unregistering Instances on page 329)

l dispose_w_params() (see 7.3.14.3 Disposing Instances on page 329)

If you use write(), unregister(), or dispose() instead of the _w_params() versions, the affected DDS
sample is assigned priority 0 (undefined priority). If you are using a multi-channel DataWriter with a pri-
ority filter, and you have no channel for priority 0, the DDS sample will be discarded.

7.6.4.1 Designating Priorities

For DataWriters and DataWriter channels, valid publication priority values are:

l DDS_PUBLICATION_PRIORITY_UNDEFINED

l DDS_PUBLICATION_PRIORITY_AUTOMATIC

l Positive integers excluding zero

For individual DDS samples, valid publication priority values are 0 and positive integers.

There are three ways to set the publication priority of a DataWriter or DataWriter channel:

1. For a DataWriter, publication priority is set in the priority field of its 7.5.20 PUBLISH_MODE
QosPolicy (DDS Extension) on page 445. For a multi-channel DataWriter (see 7.5.16
MULTI_CHANNEL QosPolicy (DDS Extension) on page 433), this value will be the default
publication priority for any member channel that has not been assigned a specific value.

7.6.4 Prioritized DDS Samples

2. For a channel of a Multi-channel DataWriter, publication priority can be set in the DataWriter’s
7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on page 433 in channels[].priority.

3. If a DataWriter or a channel of a Multi-channel DataWriter is configured for publication priority
inheritance (DDS_PUBLICATION_PRIORITY_AUTOMATIC), its publication priority is the
highest priority among all the DDS samples currently in the publication queue. When using pub-
lication priority inheritance, the publication priorities of individual DDS samples are set by calling
the write_w_params() operation, which takes a priority parameter.

The effective publication priority is determined from the interaction of the DataWriter, channel, and DDS
sample publication priorities, as shown in Table 7.84 Effective Publication Priority of Samples.

Priority Setting Combinations

Writer Priority Undefined Don’t care AUTOMATIC Don’t care
Designated positive
integer > 0

Channel Priority Undefined AUTOMATIC Undefined Designated positive integer > 0 Undefined

DDS Sample Priority Don’t care
Designated positive
integer > 0

Designated positive
integer > 0

Don’t care Don’t care

Effective Priority
Lowest
Priority

DDS Sample
Priority1

DDS Sample
Priority2

Channel
Priority

Writer
Priority

Table 7.84 Effective Publication Priority of Samples

7.6.4.2 Priority-Based Filtering

The configuration methods explained above are sufficient to create multiple DataWriters, each with its
own assigned priority, all using the same FlowController configured for publication priority-based schedul-
ing. Such a configuration is sufficient to assign different priorities to individual topics, but it does not allow
different publication priorities to be assigned to published data within a Topic.

To assign different priorities to data within a DataWriter, you will need to use a Multi-channel DataWriter
and configure the channels with different priorities. Configuring the publication priorities of DataWriter
channels is explained above. To associate different priorities of data with different publication channels,
configure the channel[].filter_expression in the DataWriter’s 7.5.16 MULTI_CHANNEL QosPolicy
(DDS Extension) on page 433. The filtering criteria that is available for evaluation by each channel is
determined by the filter type, which is configured with the DataWriter’s filter_name (also in the 7.5.16
MULTI_CHANNEL QosPolicy (DDS Extension) on page 433).

1Highest sample priority among all DDS samples currently in the publication queue.

2Highest sample priority among all DDS samples currently in the publication queue.

483

7.6.5 Creating and Configuring Custom FlowControllers with Property QoS

484

For example, using the built-in SQL-based content filter allows channel membership to be determined
based on the content of each DDS sample.

If you do not want to embed priority criteria within each DDS sample, you can use a built-in filter named
DDS_PRIFILTER_NAME that uses the publication priority that is provided when you call write_w_
params() (see 7.3.8 Writing Data on page 310). The filter’s expression syntax is:
@priority OP VAL

where OP can be < , <= , > , >= , = , or <> (standard relational operators), and VAL is a positive integer.

The filter supports multiple expressions, combined with the conjunctions AND and OR. You can use par-
entheses to disambiguate combinations of AND and OR in the same expression. For example:
@priority = 2 OR (@priority > 6 AND @priority < 10)

7.6.5 Creating and Configuring Custom FlowControllers with Property QoS

You can create and configure FlowControllers using the 7.5.19 PROPERTY QosPolicy (DDS Exten-
sion) on page 440. The properties must have a prefix of “dds.flow_controller.token_bucket”, followed by
the name of the FlowController being created or configured. For example, if you want to create/configure
a FlowController namedMyFC, all the properties forMyFC should have the prefix “dds.flow_con-
troller.token_bucket.MyFC“.

Table 7.85 FlowController Properties lists the properties that can be set for FlowControllers in the
DomainParticipant's 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440. A FlowController
with the name "dds.flow_controller.token_bucket.<your flow controllername>" will be implicitly cre-
ated when at least one property using that prefix is specified. Then, to link a DataWriter to your FlowCon-
troller, use "dds.flow_controller.token_bucket.<your flow controllername>" in the DataWriter's publish_
mode.flow_controller_name.

Property Name
prefix with ‘dds.flow_
controller.token_bucket.

<your flow controller name>

Property Value Description

scheduling_policy

Specifies the scheduling policy to be used. (See 7.6.1 Flow Controller Scheduling Policies on
page 477)May be:

DDS_RR_FLOW_CONTROLLER_SCHED_POLICY

DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY

DDS_HPF_FLOW_CONTROLLER_SCHED_POLICY

token_bucket.max_tokens
Maximumnumber of tokens than can accumulate in the token bucket.

Use -1 for unlimited.

Table 7.85 FlowController Properties

7.6.5 Creating and Configuring Custom FlowControllers with Property QoS

Property Name
prefix with ‘dds.flow_
controller.token_bucket.

<your flow controller name>

Property Value Description

token_bucket.tokens_added_per_period
Number of tokens added to the token bucket per specified period.

Use -1 for unlimited.

token_bucket.tokens_leaked_per_period
Number of tokens removed from the token bucket per specified period.

Use -1 for unlimited.

token_bucket.period.sec Period for adding tokens to and removing tokens from the bucket in seconds.

token_bucket.period.nanosec Period for adding tokens to and removing tokens from the bucket in nanoseconds.

token_bucket.bytes_per_token Maximumnumber of bytes allowed to send for each token available.

Table 7.85 FlowController Properties

7.6.5.1 Example

The following example shows how to set FlowController properties.
<domain_participant_qos>

<property>
<value>

<element>
<name>

dds.flow_controller.token_bucket.MyFlowController.scheduling_policy
</name>
<value>DDS_RR_FLOW_CONTROLLER_SCHED_POLICY</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.token_bucket.period.sec

</name>
<value>100</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.token_bucket.period.nanosec

</name>
<value>0</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.token_bucket.tokens_added_per_period

</name>
<value>2</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.token_bucket.tokens_leaked_per_period

</name>

485

7.6.6 Creating and Deleting FlowControllers

486

<value>2</value>
</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.token_bucket.bytes_per_token

</name>
<value>1024</value>

</element>
</value>

</property>
</domain_participant_qos>
<datawriter_qos>

<publish_mode>
<flow_controller_name>

dds.flow_controller.token_bucket.MyFlowController
</flow_controller_name>
<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>

</publish_mode>
</datawriter_qos>

7.6.6 Creating and Deleting FlowControllers

(Note: in the Modern C++ API FlowControllers have reference semantics, see Creating and Deleting Entit-
ies)

If you do not want to use one of the three built-in FlowControllers described in 7.6 FlowControllers (DDS
Extension) on page 475, you can create your own with the DomainParticipant’s create_flowcontroller()
operation:
DDSFlowController* create_flowcontroller

(const char * name,
const DDS_FlowControllerProperty_t & property)

To associate a FlowController with a DataWriter, you set the FlowController’s name in the 7.5.20
PUBLISH_MODE QosPolicy (DDS Extension) on page 445 (flow_controller_name).

A single FlowController may service multiple DataWriters, even if they belong to a different Publisher.
The FlowController’s property structure determines how the FlowController shapes the network traffic.

name Name of the FlowController to create. A DataWriter is associated with a DDSFlowController by name.
Limited to 255 characters.

property Properties to be used for creating the FlowController. The special value DDS_FLOW_CONTROLLER_
PROPERTY_DEFAULT can be used to indicate that the FlowController should be created with the de-
fault DDS_FlowControllerProperty_t set in the DomainParticipant.

Note: If you use DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT, it is not safe to create the
FlowController while another thread may be simultaneously calling set_default_flowcontroller_property
() or looking for that FlowController with lookup_flowcontroller().

To delete an existing FlowController, use the DomainParticipant’s delete_flowcontroller() operation:

7.6.7 Getting/Setting Default FlowController Properties

DDS_ReturnCode_t delete_flowcontroller (DDSFlowController * fc)

The FlowController must belong this the DomainParticipant and not have any attached DataWriters or
the delete call will return an error (PRECONDITION_NOT_MET).

7.6.7 Getting/Setting Default FlowController Properties

To get the default DDS_FlowControllerProperty_t values, use this operation on the DomainParticipant:
DDS_ReturnCode_t get_default_flowcontroller_property

(DDS_FlowControllerProperty_t & property)

The retrieved property will match the set of values specified on the last successful call to the DomainPar-
ticipant’s set_default_flowcontroller_property(), or if the call was never made, the default values listed
in DDS_FlowControllerProperty_t.

To change the default DDS_FlowControllerProperty_t values used when a new FlowController is created,
use this operation on the DomainParticipant:
DDS_ReturnCode_t set_default_flowcontroller_property

(const DDS_FlowControllerProperty_t & property)

The special value DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT may be passed for the prop-
erty to indicate that the default property should be reset to the default values the factory would use if set_
default_flowcontroller_property() had never been called.

Note: It is not safe to set the default FlowController properties while another thread may be simultaneously
calling get_default_flowcontroller_property(), set_default_flowcontroller_property(), or create_flow-
controller() with DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT as the qos parameter. It is
also not safe to get the default FlowController properties while another thread may be simultaneously call-
ing get_default_flowcontroller_property().

7.6.8 Getting/Setting Properties for a Specific FlowController

To get the properties of a FlowController, use the FlowController’s get_property() operation:
DDS_ReturnCode_t DDSFlowController::get_property

(struct DDS_FlowControllerProperty_t & property)

To change the properties of a FlowController, use the FlowController’s set_property() operation:
DDS_ReturnCode_t DDSFlowController::set_property

(const struct DDS_FlowControllerProperty_t & property)

Once a FlowController has been instantiated, only its token_bucket property can be changed. The
scheduling_policy is immutable. A new token.period only takes effect at the next scheduled token dis-
tribution time (as determined by its previous value).

The special value DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT can be used to match the
current default properties set in the DomainParticipant.

487

7.6.9 Adding an External Trigger

488

7.6.9 Adding an External Trigger

Typically, a FlowController uses an internal trigger to periodically replenish its tokens. The period by
which this trigger is called is determined by the period property setting.

The trigger_flow() function provides an additional, external trigger to the FlowController. This trigger
adds tokens_added_per_period tokens each time it is called (subject to the other property settings of the
FlowController).
DDS_ReturnCode_t trigger_flow ()

An on-demand FlowController can be created with a DDS_DURATION_INFINITE as period, in which
case the only trigger source is external (i.e. the FlowController is solely triggered by the user on demand).

trigger_flow() can be called on both a strict on-demand FlowController and a hybrid FlowController
(internally and externally triggered).

7.6.10 Other FlowController Operations

If you have the FlowController object and need its name, call the FlowController’s get_name() operation:
const char* DDSFlowController::get_name()

Conversely, if you have the name of the FlowController and need the FlowController object, call the
DomainPartipant’s lookup_flowcontroller() operation:
DDSFlowController* lookup_flowcontroller (const char * name)

To get a FlowController’s DomainParticipant, call the FlowController’s get_participant() operation:
DDSDomainParticipant* get_participant ()

Note: It is not safe to lookup a FlowController description while another thread is creating that FlowCon-
troller

Chapter 8 Receiving Data
This section discusses how to create, configure, and use Subscribers and DataReaders to receive
data. It describes how these objects interact, as well as the types of operations that are available for
them.

The goal of this section is to help you become familiar with the Entities you need for receiving
data. For up-to-date details such as formal parameters and return codes on any mentioned oper-
ations, please see the Connext DDS API Reference HTML documentation.

8.1 Preview: Steps to Receiving Data

There are three ways to receive data:

l Your application can explicitly check for new data by calling a DataReader’s read() or take
() operation. This method is also known as polling for data.

l Your application can be notified asynchronously whenever new DDS data samples arrive—
this is done with a Listener on either the Subscriber or the DataReader. Connext DDS will
invoke the Listener’s callback routine when there is new data. Within the callback routine,
user code can access the data by calling read() or take() on the DataReader. This method is
the way for your application to receive data with the least amount of latency.

l Your application can wait for new data by using Conditions and aWaitSet, then calling wait
(). Connext DDS will block your application’s thread until the criteria (such as the arrival of
DDS samples, or a specific status) set in the Condition becomes true. Then your application
resumes and can access the data with read() or take().

The DataReader’s read() operation gives your application a copy of the data and leaves the data in
the DataReader’s receive queue. The DataReader’s take() operation removes data from the
receive queue before giving it to your application.

See 8.4 Using DataReaders to Access Data (Read & Take) on page 558 for details on using
DataReaders to access received data.

489

8.1 Preview: Steps to Receiving Data

490

See 4.6 Conditions and WaitSets on page 202 for details on using Conditions and WaitSets.

To prepare to receive data, create and configure the required Entities:

1. Create a DomainParticipant.

2. Register user data types1 with the DomainParticipant. For example, the ‘FooDataType’.

3. Use the DomainParticipant to create a Topic with the registered data type.

4. Optionally2, use the DomainParticipant to create a Subscriber.

5. Use the Subscriber or DomainParticipant to create a DataReader for the Topic.

6. Use a type-safe method to cast the generic DataReader created by the Subscriber to a type-specific
DataReader. For example, ‘FooDataReader’.

Then use one of the following mechanisms to receive data.

l To receive DDS data samples by polling for new data:
l Using a FooDataReader, use the read() or take() operations to access the DDS data samples
that have been received and stored for the DataReader. These operations can be invoked at
any time, even if the receive queue is empty.

l To receive DDS data samples asynchronously:
l Install a Listener on the DataReader or Subscriber that will be called back by an internal Con-
next DDS thread when new DDS data samples arrive for the DataReader.

1. Create a DDSDataReaderListener for the FooDataReader or a DDSSubscriberListener for Sub-
scriber. In C++, C++/CLI, C# and Java, you must derive your own Listener class from those base
classes. In C, you must create the individual functions and store them in a structure.

If you created a DDSDataReaderListener with the on_data_available() callback enabled: on_
data_available() will be called when new data arrives for that DataReader.

If you created a DDSSubscriberListener with the on_data_on_readers() callback enabled: on_
data_on_readers() will be called when data arrives for any DataReader created by the Subscriber.

2. Install the Listener on either the FooDataReader or Subscriber.

For the DataReader, the Listener should be installed to handle changes in the DATA_
AVAILABLE status.

1Type registration is not required for built-in types (see 3.2.1 Registering Built-in Types on page 39).

2You are not required to explicitly create a Subscriber; instead, you can use the 'implicit Subscriber' created from the
DomainParticipant. See 8.2.1 Creating Subscribers Explicitly vs. Implicitly on page 495.

8.2 Subscribers

For the Subscriber, the Listener should be installed to handle changes in the DATA_ON_
READERS status.

3. Only 1 Listener will be called back when new data arrives for a DataReader.

Connext DDS will call the Subscriber’s Listener if it is installed. Otherwise, the DataReader’s
Listener is called if it is installed. That is, the on_data_on_readers() operation takes precedence
over the on_data_available() operation.

If neither Listeners are installed or neither Listeners are enabled to handle their respective statuses,
then Connext DDS will not call any user functions when new data arrives for the DataReader.

4. In the on_data_available()method of the DDSDataReaderListener, invoke read() or take() on the
FooDataReader to access the data.

If the on_data_on_readers()method of the DDSSubscriberListener is called, the code can invoke
read() or take() directly on the Subscriber’s DataReaders that have received new data. Altern-
atively, the code can invoke the Subscriber’s notify_datareaders() operation. This will in turn call
the on_data_available()methods of the DataReaderListeners (if installed and enabled) for each of
the DataReaders that have received new DDS data samples.

To wait (block) until DDS data samples arrive:

1. Use the DataReader to create a ReadCondition that describes the DDS samples for which you want
to wait. For example, you can specify that you want to wait for never-before-seen DDS samples
from DataReaders that are still considered to be ‘alive.’

Alternatively, you can create a StatusCondition that specifies you want to wait for the ON_DATA_
AVAILABLE status.

2. Create aWaitSet.

3. Attach the ReadCondition or StatusCondition to theWaitSet.

4. Call theWaitSet’s wait() operation, specifying how long you are willing to wait for the desired DDS
samples. When wait() returns, it will indicate that it timed out, or that the attached Condition become
true (and therefore the desired DDS samples are available).

5. Using a FooDataReader, use the read() or take() operations to access the DDS data samples that
have been received and stored for the DataReader.

8.2 Subscribers

An application that intends to subscribe to information needs the following Entities: DomainParticipant,
Topic, Subscriber, and DataReader. All Entities have a corresponding specialized Listener and a set of
QosPolicies. The Listener is how Connext DDS notifies your application of status changes relevant to the
Entity. The QosPolicies allow your application to configure the behavior and resources of the Entity.

491

8.2 Subscribers

492

l The DomainParticipant defines the DDS domain on which the information will be available.

l The Topic defines the name of the data to be subscribed, as well as the type (format) of the data
itself.

l The DataReader is the Entity used by the application to subscribe to updated values of the data. The
DataReader is bound at creation time to a Topic, thus specifying the named and typed data stream to
which it is subscribed. The application uses the DataReader’s read() or take() operation to access
DDS data samples received for the Topic.

l The Subscriber manages the activities of several DataReader entities. The application receives data
using a DataReader that belongs to a Subscriber. However, the Subscriber will determine when the
data received from applications is actually available for access through the DataReader. Depending
on the settings of various QosPolicies of the Subscriber and DataReader, data may be buffered until
DDS data samples for associated DataReaders are also received. By default, the data is available to
the application as soon as it is received.

For more information, see 8.2.1 Creating Subscribers Explicitly vs. Implicitly on page 495.

The UML diagram in Figure 8.1: Subscription Module on the next page shows how these Entities are
related as well as the methods defined for each Entity.

Subscribers are used to perform the operations listed in Table 8.1 Subscriber Operations. For details such
as formal parameters and return codes, please see the API Reference HTML documentation. Otherwise,
you can find more information about the operations by looking in the section listed under the Reference
on page 494 column.

8.2 Subscribers

Figure 8.1: Subscription Module

Note: Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

493

8.2 Subscribers

494

Working
with ... Operation Description Reference

DataReaders

begin_ac-
cess

Indicates that the application is about to access the DDS data samples in the
DataReadersof the Subscriber.

8.2.5 Beginning and Ending
Group-Ordered Accesson
page 504

create_
datareader

Creates a DataReader.

8.3.1 Creating DataReaderson
page 515create_

datareader_
with_profile

Creates a DataReader with QoS froma specified QoS profile.

copy_from_
topic_qos

Copies relevant QosPolicies froma Topic into a DataReaderQoS structure.
8.2.4.6 Subscriber QoS-Related
Operationson page 503

DataReaders
cont'd

delete_con-
tained_
entities

Deletes all the DataReaders that were created by the Subscriber. Also deletes
the corresponding ReadConditions created by the contained DataReaders.

8.2.3.1 Deleting Contained
DataReaderson page 498

delete_
datareader

Deletes a specificDataReader.
8.3.3 Deleting DataReaderson
page 517

end_access
Indicates that the application is done accessing the DDS data samples in the
DataReadersof the Subscriber.

8.2.5 Beginning and Ending
Group-Ordered Accesson
page 504

get_all_
datareaders

Retrieves all the DataReaders created from thisSubscriber.
8.3.2 Getting AllDataReaders
on page 517

get_
datareaders

Returns a list ofDataReaders that contain DDS samples with the specified
sample_states, view_states and instance_states.

8.2.7 Getting DataReaderswith
SpecificDDSSampleson
page 507

get_de-
fault_
datareader_
qos

Copies the Subscriber’sdefault DataReaderQos values into a DataReaderQos
structure.

8.2.4 Setting Subscriber
QosPolicies on page 498

DataReaders
cont'd

get_status_
changes

Gets all status changes.
4.1.4 Getting Statusand Status
Changeson page 171

lookup_
datareader

Retrieves a DataReader previously created for a specific Topic.
8.2.8 Finding a Subscriber’s
Related Entities on page 507

notify_
datareaders

Invokes the on_data_available() operation for attached ListenersofDataRead-
ers that have newDDS data samples.

8.2.6 Setting Up Sub-
scriberListeners on page 505

set_de-
fault_
datareader_
qos

Sets or changes the Subscriber’sdefault DataReaderQoS values.
8.2.4 Setting Subscriber
QosPolicies on page 498

Table 8.1 Subscriber Operations

8.2.1 Creating Subscribers Explicitly vs. Implicitly

Working
with ... Operation Description Reference

Libraries
and Profiles

get_de-
fault_library

Gets the Subscriber’sdefault QoS profile library.

8.2.4.4 Getting and SettingsSub-
scriber’sDefault QoSProfile and
Library on page 502

get_de-
fault_profile

Gets the Subscriber’sdefault QoS profile.

get_de-
fault_pro-
file_
library

Gets the library that contains the Subscriber’sdefault QoS profile.

set_de-
fault_library

Sets the default library for a Subscriber.

set_de-
fault_profile

Sets the default profile for a Subscriber.

Participants
get_par-
ticipant

Gets the Subscriber’sDomainParticipant.
8.2.8 Finding a Subscriber’s
Related Entities on page 507

Subscribers

enable Enables the Subscriber.
4.1.2 Enabling DDSEntities on
page 168

equals Compares two Subscriber’sQoS structures for equality.
8.2.4.2 Comparing QoSValues
on page 501

get_listener Gets the currently installed Listener.
8.2.6 Setting Up Sub-
scriberListeners on page 505

get_qos
Gets the Subscriber’s current QosPolicy settings. This is most often used in pre-
paration for calling set_qos.

8.2.4.3 ChangingQoSSettings
After Subscriber HasBeen
Created on page 501

set_listener
Sets the Subscriber’s Listener. If you created the Subscriberwithout a Listener,
you can use this operation to add one later.

8.2.6 Setting Up Sub-
scriberListeners on page 505

set_qos
Sets the Subscriber’sQoS. You can use this operation to change the values for
the Subscriber’sQosPolicies. Note, however, that not all QosPolicies can be
changed after the Subscriber has been created.

8.2.4.3 ChangingQoSSettings
After Subscriber HasBeen
Created on page 501

set_qos_
with_profile

Sets the Subscriber’sQoS based on a QoS profile.
8.2.4.3 ChangingQoSSettings
After Subscriber HasBeen
Created on page 501

Table 8.1 Subscriber Operations

8.2.1 Creating Subscribers Explicitly vs. Implicitly

To receive data, your application must have a Subscriber. However, you are not required to expli-
citly create a Subscriber. If you do not create one, the middleware will implicitly create a Subscriber the
first time you create a DataReader using the DomainParticipant’s operations. It will be created with
default QoS (DDS_SUBCRIBER_QOS_DEFAULT) and no Listener. The 'implicit Subscriber' can be

495

8.2.2 Creating Subscribers

496

accessed using the DomainParticipant’s get_implicit_subscriber() operation (see 9.3.10 Getting the
Implicit Publisher or Subscriber on page 635).You can use this ‘implicit Subscriber’ just like any other Sub-
scriber (it has the same operations, QosPolicies, etc.). So you can change the mutable QoS and set a
Listener if desired.

A Subscriber (implicit or explicit) gets its own default QoS and the default QoS for its child DataReaders
from the DomainParticipant. These default QoS are set when the Subscriber is created. (This is true for
Publishers and DataWriters, too.)

DataReaders are created by calling create_datareader() or create_datareader_with_profile()—these
operations exist for DomainParticipants and Subscribers1. If you use the DomainParticipant to create a
DataReader, it will belong to the implicit Subscriber. If you use a Subscriber to create a DataReader, it
will belong to that Subscriber.

The middleware will use the same implicit Subscriber for all DataReaders that are created using the
DomainParticipant’s operations.

Having the middleware implicitly create a Subscriber allows you to skip the step of creating a Subscriber.
However, having all your DataReaders belong to the same Subscriber can reduce the concurrency of the
system because all the read operations will be serialized.

8.2.2 Creating Subscribers

Before you can explicitly create a Subscriber, you need a DomainParticipant (9.3 DomainParticipants on
page 615). To create a Subscriber, use the DomainParticipant’s create_subscriber() or create_sub-
scriber_with_profile() operation.

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can change
QoS settings without recompiling the application. For details, see Configuring QoS with XML (Chapter
19 on page 854).

Note: The Modern C++ API provides Subscriber constructors whose first, and only required argument is
the DomainParticipant.
DDSSubscriber* create_subscriber(

const DDS_SubscriberQos &qos,
DDSSubscriberListener * listener,
DDS_StatusMask mask)

DDSSubscriber* create_subscriber_with_profile (
const char * library_name,
const char * profile_name,
DDSSubscriberListener * listener,
DDS_StatusMask mask)

Where:

1In the Modern C++ API, you always use a DataReader constructor.

8.2.3 Deleting Subscribers

qos If you want the default QoS settings (described in the API Reference HTML documentation), use DDS_
SUBSCRIBER_QOS_DEFAULT for this parameter (see Figure 8.2: Creating a Subscriber with Default
QosPolicies below). If you want to customize any of the QosPolicies, supply a QoS structure (see Fig-
ure 8.3: Creating a Subscriber with Non-Default QosPolicies (not from a profile) on page 500). The QoS
structure for a Subscriber is described in 8.5 Subscriber QosPolicies on page 575.

Note: If you use DDS_SUBSCRIBER_QOS_DEFAULT, it is not safe to create the Subscriber while an-
other thread may be simultaneously calling set_default_subscriber_qos().

listener Listeners are callback routines. Connext DDS uses them to notify your application when specific events
(new DDS data samples arrive and status changes) occur with respect to the Subscriber or the
DataReaders created by the Subscriber. The listener parameter may be set to NULL if you do not want
to install a Listener. If you use NULL, the Listener of the DomainParticipant to which the Subscriber be-
longs will be used instead (if it is set). For more information on SubscriberListeners, see 8.2.6 Setting
Up SubscriberListeners on page 505.

mask This bit-mask indicates which status changes will cause the Subscriber’s Listener to be invoked. The
bits set in the mask must have corresponding callbacks implemented in the Listener. If you use NULL
for the Listener, use DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all call-
backs, use DDS_STATUS_MASK_ALL. For information on Status, see 4.4 Listeners on page 189.

This bit-mask indicates which status changes will cause the Subscriber’s Listener to be invoked. The
bits set in the mask must have corresponding callbacks implemented in the Listener. If you use NULL
for the Listener, use DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all call-
backs, use DDS_STATUS_MASK_ALL. For information on Status, see 4.4 Listeners on page 189.

library_name A QoS Library is a named set of QoS profiles. See 19.3 QoS Profiles on page 856.

profile_name A QoS profile groups a set of related QoS, usually one per entity. See 19.3 QoS Profiles on page 856.

Figure 8.2: Creating a Subscriber with Default QosPolicies

// create the subscriber
DDSSubscriber* subscriber =

participant->create_subscriber(
DDS_SUBSCRIBER_QOS_DEFAULT,
NULL, DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {
// handle error
}

For more examples, see 8.2.4.1 Configuring QoS Settings when the Subscriber is Created on page 499.

After you create a Subscriber, the next step is to use the Subscriber to create a DataReader for each Topic,
see 8.3.1 Creating DataReaders on page 515. For a list of operations you can perform with a Subscriber,
see Table 8.1 Subscriber Operations.

8.2.3 Deleting Subscribers

(Note: in the Modern C++ API, Entities are automatically destroyed, see 4.1.1 Creating and Deleting
DDS Entities on page 167)

This section applies to both implicitly and explicitly created Subscribers.

To delete a Subscriber:

497

8.2.4 Setting Subscriber QosPolicies

498

1. You must first delete all DataReaders that were created with the Subscriber. Use the Subscriber’s
delete_datareader() operation (8.3.1 Creating DataReaders on page 515) to delete them one at a
time, or use the delete_contained_entities() operation (8.2.3.1 Deleting Contained DataReaders
below) to delete them all at the same time.

DDS_ReturnCode_t delete_datareader (DDSDataReader *a_datareader)

2. Delete the Subscriber by using the DomainParticipant’s delete_subscriber() operation ().

Note: A Subscriber cannot be deleted within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

8.2.3.1 Deleting Contained DataReaders

The Subscriber’s delete_contained_entities() operation deletes all the DataReaders that were created by
the Subscriber. It also deletes the ReadConditions created by each contained DataReader.
DDS_ReturnCode_t DDSSubscriber::delete_contained_entities ()

After this operation returns successfully, the application may delete the Subscriber (see 8.2.3 Deleting Sub-
scribers on the previous page).

The operation will return PRECONDITION_NOT_MET if any of the contained entities cannot be
deleted. This will occur, for example, if a contained DataReader cannot be deleted because the application
has called read() but has not called the corresponding return_loan() operation to return the loaned DDS
samples.

8.2.4 Setting Subscriber QosPolicies

A Subscriber’s QosPolicies control its behavior. Think of the policies as the configuration and behavior
‘properties’ for the Subscriber. The DDS_SubscriberQos structure has the following format:
struct DDS_SubscriberQos {

DDS_PresentationQosPolicy presentation;
DDS_PartitionQosPolicy partition;
DDS_GroupDataQosPolicy group_data;
DDS_EntityFactoryQosPolicy entity_factory;
DDS_ExclusiveAreaQosPolicy exclusive_area;
DDS_EntityNameQosPolicy subscriber_name;

};

Note: set_qos() cannot always be used by a Listener, see 4.5.1 Restricted Operations in Listener Call-
backs on page 200.

Table 8.2 Subscriber QosPolicies summarizes the meaning of each policy. Subscribers have the same set
of QosPolicies as Publishers; they are described in detail in 7.4 Publisher/Subscriber QosPolicies on
page 346. For information on why you would want to change a particular QosPolicy, see the referenced

8.2.4 Setting Subscriber QosPolicies

section. For defaults and valid ranges, please refer to the API Reference HTML documentation for each
policy.

QosPolicy Description

7.4.2 ENTITYFACTORYQosPolicy on page 349 Whether or not new entities created from this entity will start out as ‘enabled.’

7.5.11 ENTITY_NAMEQosPolicy (DDSExtension) on
page 419

Assigns a name and role_name to a Subscriber.

7.4.3 EXCLUSIVE_AREAQosPolicy (DDSExtension) on
page 351

Whether or not the entity uses a multi-thread safe region with deadlock protection.

7.4.4 GROUP_DATAQosPolicy on page 354 A place to pass group-level information among applications. Usage is application-de-
pendent.

7.4.5 PARTITIONQosPolicy on page 357
Set of strings that introduces a logical partition among Topics visible by
Publisher/Subscriber.

7.4.6 PRESENTATIONQosPolicy on page 363 The order in which instance changes are presented to the Subscriber. By default, no
order is used.

Table 8.2 Subscriber QosPolicies

8.2.4.1 Configuring QoS Settings when the Subscriber is Created

As described in 8.2.2 Creating Subscribers on page 496, there are different ways to create a Subscriber,
depending on how you want to specify its QoS (with or without a QoS Profile).

l In 8.2.2 Creating Subscribers on page 496 is an example of how to explicitly create a Subscriber
with default QosPolicies. It used the special constant, DDS_SUBSCRIBER_QOS_DEFAULT,
which indicates that the default QoS values for a Subscriber should be used. The default Subscriber
QosPolicies are configured in the DomainParticipant; you can change them with the DomainPar-
ticipant’s set_default_subscriber_qos() or set_default_subscriber_qos_with_profile() operation
(see 9.3.7.5 Getting and Setting Default QoS for Child Entities on page 633).

l To create a Subscriber with non-default QoS settings, without using a QoS profile, see Figure 8.3:
Creating a Subscriber with Non-Default QosPolicies (not from a profile) on the next page. It uses
the DomainParticipant’s get_default_subscriber_qos()method to initialize a DDS_Sub-
scriberQos structure. Then the policies are modified from their default values before the QoS struc-
ture is passed to create_subscriber().

l You can also create a Subscriber and specify its QoS settings via a QoS Profile. To do so, call cre-
ate_subscriber_with_profile(), as seen in Figure 8.4: Creating a Subscriber with a QoS Profile on
the next page.

l If you want to use a QoS profile, but then make some changes to the QoS before creating the Sub-
scriber, call get_subscriber_qos_from_profile(), modify the QoS and use the modified QoS struc-

499

8.2.4 Setting Subscriber QosPolicies

500

ture when calling create_subscriber(), as seen in Figure 8.5: Getting QoS Values from a Profile,
Changing QoS Values, Creating a Subscriber with Modified QoS Values on the next page.

For more information, see 8.2.2 Creating Subscribers on page 496 and Configuring QoS with XML
(Chapter 19 on page 854).

Figure 8.3: Creating a Subscriber with Non-Default QosPolicies (not from a profile)

DDS_SubscriberQos subscriber_qos;1

// get defaults
if (participant->get_default_subscriber_qos(subscriber_qos) !=

DDS_RETCODE_OK){
// handle error
}
// make QoS changes here. for example, this changes the ENTITY_FACTORY QoS
subscriber_qos.entity_factory.autoenable_created_entities=DDS_BOOLEAN_FALSE;
// create the subscriber
DDSSubscriber * subscriber = participant->create_subscriber(subscriber_qos,

NULL, DDS_STATUS_MASK_NONE);
if (subscriber == NULL) {

// handle error
}

Figure 8.4: Creating a Subscriber with a QoS Profile

// create the subscriber with QoS profile
DDSSubscriber * subscriber = participant->create_subscriber_with_profile(

“MySubscriberLibary”, “MySubscriberProfile”, NULL, DDS_STATUS_MASK_NONE);
if (subscriber == NULL) {

// handle error
}

1Note: In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Handling
Considerations for C on page 182.

8.2.4 Setting Subscriber QosPolicies

Figure 8.5: Getting QoS Values from a Profile, Changing QoS Values, Creating a Subscriber
with Modified QoS Values

DDS_SubscriberQos subscriber_qos;1

// Get subscriber QoS from profile
retcode = factory->get_subscriber_qos_from_profile(subscriber_qos,

“SubscriberLibrary”, “SubscriberProfile”);
if (retcode != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes here
// for example, this changes the ENTITY_FACTORY QoS
subscriber_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_TRUE;
// create the subscriber with modified QoS
DDSPublisher* subscriber = participant->create_subscriber(

“Example Foo”, type_name, subscriber_qos,
NULL, DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {
// handle error

}

8.2.4.2 Comparing QoS Values

The equals() operation compares two Subscriber’s DDS_SubscriberQoS structures for equality. It takes
two parameters for the two Subscriber’s QoS structures to be compared, then returns TRUE is they are
equal (all values are the same) or FALSE if they are not equal.

8.2.4.3 Changing QoS Settings After Subscriber Has Been Created

There are 2 ways to change an existing Subscriber’s QoS after it is has been created—again depending on
whether or not you are using a QoS Profile.

l To change an existing Subscriber’s QoS programmatically (that is, without using a QoS profile),
get_qos() and set_qos(). See the example code in Figure 8.6: Changing the Qos of an Existing Sub-
scriber on the next page. It retrieves the current values by calling the Subscriber’s get_qos() oper-
ation. Then it modify the value and call set_qos() to apply the new value. Note, however, that some
QosPolicies cannot be changed after the Subscriber has been enabled—this restriction is noted in the
descriptions of the individual QosPolicies.

l You can also change a Subscriber’s (and all other Entities’) QoS by using a QoS Profile and calling
set_qos_with_profile(). For an example, see Figure 8.7: Changing the QoS of an Existing Sub-
scriber with a QoS Profile on the next page. For more information, see Configuring QoS with XML
(Chapter 19 on page 854).

1Note: In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Handling
Considerations for C on page 182.

501

8.2.4 Setting Subscriber QosPolicies

502

Figure 8.6: Changing the Qos of an Existing Subscriber

DDS_SubscriberQos subscriber_qos;
// Get current QoS. subscriber points to an existing DDSSubscriber.
if (subscriber->get_qos(subscriber_qos) != DDS_RETCODE_OK) {

// handle error
}
// make changes
// New entity_factory autoenable_created_entities will be true
subscriber_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_TRUE;
// Set the new QoS
if (subscriber->set_qos(subscriber_qos) != DDS_RETCODE_OK) {

// handle error
}

Figure 8.7: Changing the QoS of an Existing Subscriber with a QoS Profile

retcode = subscriber->set_qos_with_profile(
“SubscriberProfileLibrary”,”SubscriberProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

8.2.4.4 Getting and Settings Subscriber’s Default QoS Profile and Library

You can retrieve the default QoS profile used to create Subscribers with the get_default_profile() oper-
ation. You can also get the default library for Subscribers, as well as the library that contains the Sub-
scriber’s default profile (these are not necessarily the same library); these operations are called get_
default_library() and get_default_library_profile(), respectively. These operations are for informational
purposes only (that is, you do not need to use them as a precursor to setting a library or profile.) For more
information, see Configuring QoS with XML (Chapter 19 on page 854).
virtual const char * get_default_library ()
const char * get_default_profile ()
const char * get_default_profile_library ()

There are also operations for setting the Subscriber’s default library and profile:
DDS_ReturnCode_t set_default_library (

const char * library_name)
DDS_ReturnCode_t set_default_profile (

const char * library_name,
const char * profile_name)

These operations only affect which library/profile will be used as the default the next time a default Sub-
scriber library/profile is needed during a call to one of this Subscriber’s operations.

When calling a Subscriber operation that requires a profile_name parameter, you can use NULL to refer
to the default profile. (This same information applies to setting a default library.)

If the default library/profile is not set, the Subscriber inherits the default from the DomainParticipant.

8.2.4 Setting Subscriber QosPolicies

set_default_profile() does not set the default QoS for DataReaders created by the Subscriber; for this
functionality, use the Subscriber’s set_default_datareader_qos_with_profile(), see 8.2.4.5 Getting and
Setting Default QoS for DataReaders below (you may pass in NULL after having called the Subscriber’s
set_default_profile()).

set_default_profile() does not set the default QoS for newly created Subscribers; for this functionality, use
the DomainParticipant’s set_default_subscriber_qos_with_profile() operation, see 9.3.7.5 Getting and
Setting Default QoS for Child Entities on page 633.

8.2.4.5 Getting and Setting Default QoS for DataReaders

These operations set the default QoS that will be used for new DataReaders if create_datareader() is
called with DDS_DATAREADER_QOS_DEFAULT as the ‘qos’ parameter:
DDS_ReturnCode_t set_default_datareader_qos (const DDS_DataReaderQos &qos)

DDS_ReturnCode_t set_default_datareader_qos_with_profile (
const char *library_name, const char *profile_name)

The above operations may potentially allocate memory, depending on the sequences contained in some
QoS policies.

To get the default QoS that will be used for creating DataReaders if create_datareader() is called with
DDS_DATAREADER_QOS_DEFAULT as the ‘qos’ parameter:
DDS_ReturnCode_t get_default_datareader_qos (DDS_DataReaderQos & qos)

The above operation gets the QoS settings that were specified on the last successful call to set_default_
datareader_qos() or set_default_datareader_qos_with_profile(), or if the call was never made, the
default values listed in DDS_DataReaderQos.

Note: It is not safe to set the default DataReader QoS values while another thread may be simultaneously
calling get_default_datareader_qos(), set_default_datareader_qos() or create_datareader() with
DDS_DATAREADER_QOS_DEFAULT as the qos parameter. It is also not safe to get the default
DataReader QoS values while another thread may be simultaneously calling set_default_datareader_
qos().

8.2.4.6 Subscriber QoS-Related Operations

l Copying a Topic’s QoS into a DataReader’s QoS

This method is provided as a convenience for setting the values in a DataReaderQos structure
before using that structure to create a DataReader. As explained in 5.1.3 Setting Topic QosPolicies
on page 220, most of the policies in a TopicQos structure do not apply directly to the Topic itself,
but to the associated DataWriters and DataReaders of that Topic. The TopicQos serves as a single
container where the values of QosPolicies that must be set compatibly across matching DataWriters
and DataReaders can be stored.

503

8.2.5 Beginning and Ending Group-Ordered Access

504

Thus instead of setting the values of the individual QosPolicies that make up a DataReaderQos
structure every time you need to create a DataReader for a Topic, you can use the Subscriber’s
copy_from_topic_qos() operation to “import” the Topic’s QosPolicies into a DataReaderQos struc-
ture. This operation copies the relevant policies in the TopicQos to the corresponding policies in the
DataReaderQos.

This copy operation will often be used in combination with the Subscriber’s get_default_
datareader_qos() and the Topic’s get_qos() operations. The Topic’s QoS values are merged on top
of the Subscriber’s default DataReader QosPolicies with the result used to create a new
DataReader, or to set the QoS of an existing one (see 8.3.9 Setting DataReader QosPolicies on
page 548).

l Copying a Subscriber’s QoS

In the C API users should use the DDS_SubscriberQos_copy() operation rather than using struc-
ture assignment when copying between two QoS structures. The copy() operation will perform a
deep copy so that policies that allocate heap memory such as sequences are copied correctly. In
C++, C++/CLI, C# and Java, a copy constructor is provided to take care of sequences auto-
matically.

l Clearing QoS-Related Memory

Some QosPolicies contain sequences that allocate memory dynamically as they grow or shrink. The
C API’s DDS_SubscriberQos_finalize() operation frees the memory used by sequences but oth-
erwise leaves the QoS unchanged. C users should call finalize() on all DDS_SubscriberQos
objects before they are freed, or for QoS structures allocated on the stack, before they go out of
scope. In C++, C++/CLI, C# and Java, the memory used by sequences is freed in the destructor.

8.2.5 Beginning and Ending Group-Ordered Access

The Subscriber’s begin_access() operation indicates that the application is about to access the DDS data
samples in any of the DataReaders attached to the Subscriber.

If the Subscriber’s access_scope (in the 7.4.6 PRESENTATION QosPolicy on page 363) is GROUP or
HIGHEST_OFFERED and ordered_access (also in the 7.4.6 PRESENTATION QosPolicy on
page 363) is TRUE, the application is required to use this operation to access the DDS samples in order
across DataWriters of the same group (Publisher with access_scope GROUP).

In the above case, begin_access()must be called prior to calling any of the sample-accessing operations:
get_datareaders() on the Subscriber, and read(), take(), read_w_condition(), and take_w_condition()
on any DataReader.

Once the application has finished accessing the DDS data samples, it must call end_access(). To see how
to read samples in order when the Subscriber’s begin_access() operation is called, see 8.2.7 Getting
DataReaders with Specific DDS Samples on page 507.

8.2.6 Setting Up SubscriberListeners

The application is not required to call begin_access() and end_access() to access the DDS samples in
order if the Publisher’s access_scope is something other than GROUP. In this case, calling begin_access
() and end_access() is not considered an error and has no effect.

Calls to begin_access() and end_access()may be nested and must be balanced. That is, end_access()
close a previous call to begin_access().

8.2.6 Setting Up SubscriberListeners

Like all Entities, Subscribers may optionally have Listeners. Listeners are user-defined objects that imple-
ment a DDS-defined interface (i.e. a pre-defined set of callback functions). Listeners provide the means for
Connext DDS to notify applications of any changes in Statuses (events) that may be relevant to it. By writ-
ing the callback functions in the Listener and installing the Listener into the Subscriber, applications can be
notified to handle the events of interest. For more general information on Listeners and Statuses, see 4.4
Listeners on page 189.

Note: Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

As illustrated in Figure 8.1: Subscription Module on page 493, the SubscriberListener interface extends
the DataReaderListener interface. In other words, the SubscriberListener interface contains all the func-
tions in the DataReaderListener interface. In addition, a SubscriberListener has an additional function:
on_data_on_readers(), corresponding to the Subscriber’s DATA_ON_READERS status. This is the
only status that is specific to a Subscriber. This status is closely tied to the DATA_AVAILABLE status
(8.3.7.1 DATA_AVAILABLE Status on page 522) of DataReaders.

The Subscriber’s DATA_ON_READERS status is set whenever the DATA_AVAILABLE status is set
for any of the DataReaders created by the Subscriber. This implies that one of its DataReaders has
received new DDS data samples. When the DATA_ON_READERS status is set, the
SubscriberListener’s on_data_on_readers()method will be invoked.

The DATA_ON_READERS status of a Subscriber takes precedence over the DATA_AVAILABLE
status of any of its DataReaders. Thus, when data arrives for a DataReader, the on_data_on_readers()
operation of the SubscriberListener will be called instead of the on_data_available() operation of the
DataReaderListener—assuming that the Subscriber has a Listener installed that is enabled to handle
changes in the DATA_ON_READERS status. (Note however, that in the SubscriberListener’s on_
data_on_readers() operation, you may choose to call notify_datareaders(), which in turn may cause the
DataReaderListener’s on_data_available() operation to be called.)

All of the other methods of a SubscriberListener will be called back for changes in the Statuses of Sub-
scriber’s DataReaders only if the DataReader is not set up to handle the statuses itself.

If you want a Subscriber to handle status events for its DataReaders, you can set up a SubscriberListener
during the Subscriber’s creation or use the set_listener()method after the Subscriber is created. The last
parameter is a bit-mask with which you should set which Status events that the SubscriberListener will
handle. For example,

505

8.2.6 Setting Up SubscriberListeners

506

DDS_StatusMask mask =
DDS_REQUESTED_DEADLINE_MISSED_STATUS |
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS;

subscriber = participant->create_subscriber(
DDS_SUBSCRIBER_QOS_DEFAULT, listener, mask);

or
DDS_StatusMask mask =

DDS_REQUESTED_DEADLINE_MISSED_STATUS |
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS;

subscriber->set_listener(listener, mask);

As previously mentioned, the callbacks in the SubscriberListener act as ‘default’ callbacks for all the
DataReaders contained within. When Connext DDS wants to notify a DataReader of a relevant Status
change (for example, SUBSCRIPTION_MATCHED), it first checks to see if the DataReader has the
corresponding DataReaderListener callback enabled (such as the on_subscription_matched() operation).
If so, Connext DDS dispatches the event to the DataReaderListener callback. Otherwise, Connext DDS
dispatches the event to the corresponding SubscriberListener callback.

NOTE, the reverse is true for the DATA_ON_READERS/DATA_AVAILABLE status. When
DATA_AVAILABLE changes for any DataReaders of a Subscriber, Connext DDS first checks to see if
the SubscriberListener has DATA_ON_READERS enabled. If so, Connext DDS will invoke the on_
data_on_readers() callback. Otherwise, Connext DDS dispatches the event to the Listener (on_data_
available()) of the DataReader whose DATA_AVAILABLE status actually changed.

A particular callback in a DataReader is not enabled if either:

l The application installed a NULL DataReaderListener (meaning there are no callbacks for the
DataReader at all).

l The application has disabled the callback for a DataReaderListener. This is done by turning off the
associated status bit in the mask parameter passed to the set_listener() or create_datareader() call
when installing the DataReaderListener on the DataReader. For more information on DataRead-
erListener, see 8.3.4 Setting Up DataReaderListeners on page 517.

Similarly, the callbacks in the DomainParticipantListener act as ‘default’ callbacks for all the Subscribers
that belong to it. For more information on DomainParticipantListeners, see 9.3.6 Setting Up DomainPar-
ticipantListeners on page 626.

The Subscriber also provides an operation called notify_datareaders() that can be used to invoke the on_
data_available() callbacks of DataReaders who have new DDS data samples in their receive queues.
Often notify_datareaders() will be used in the on_data_on_readers() callback to pass off the real pro-
cessing of data from the SubscriberListener to the individual DataReaderListeners.

Calling notify_datareaders() causes the DATA_ON_READERS status to be reset.

Figure 8.8: Simple SubscriberListener on the next page shows a SubscriberListener that simply notifies its
DataReaders when new data arrives.

8.2.7 Getting DataReaders with Specific DDS Samples

Figure 8.8: Simple SubscriberListener

class MySubscriberListener : public DDSSubscriberListener {
public:

void on_data_on_readers(DDSSubscriber *);
/* For this example we take no action other operations */
};
void MySubscriberListener::on_data_on_readers (DDSSubscriber *subscriber)
{

// do global processing
...
// now dispatch data arrival event to specific DataReaders
subscriber->notify_datareaders();

}

8.2.7 Getting DataReaders with Specific DDS Samples

The Subscriber’s get_datareaders() operation retrieves a list of DataReaders that have DDS samples
with specific sample_states, view_states, and instance_states.

If the application is outside a begin_access()/end_access() block, or if the Subscriber’s access_scope (in
the 7.4.6 PRESENTATION QosPolicy on page 363) is INSTANCE or TOPIC, or ordered_access (also
in the 7.4.6 PRESENTATION QosPolicy on page 363) is FALSE, the returned collection is a 'set' con-
taining each DataReader at most once, in no specified order.

If the application is within a begin_access()/end_access() block, and the Subscriber’s access_scope is
GROUP or HIGHEST_OFFERED, and ordered_access is TRUE, the returned collection is a 'list' of
DataReaders, where a DataReader may appear more than one time.

To retrieve the DDS samples in the order in which they were published across DataWriters of the same
group (a Publisher configured with GROUP access_scope), the application should read()/take() from
each DataReader in the same order as appears in the output sequence. The application will move to the
next DataReader when the read()/take() operation fails with NO_DATA.
DDS_ReturnCode_t get_datareaders (DDSDataReaderSeq & readers,

DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states)

For more information, see 8.4.6 The SampleInfo Structure on page 570.

8.2.8 Finding a Subscriber’s Related Entities

These Subscriber operations are useful for obtaining a handle to related entities:

l get_participant(): Gets the DomainParticipant with which a Subscriber was created.

507

8.2.9 Statuses for Subscribers

508

l lookup_datareader(): Finds a DataReader created by the Subscriber with a Topic of a particular
name. Note that if multiple DataReaders were created by the same Subscriber with the same Topic,
any one of them may be returned by this method.

You can use this operation on a built-in Subscriber to access the built-in DataReaders for the built-
in topics. The built-in DataReader is created when this operation is called on a built-in topic for the
first time.

If you are going to modify the transport properties for the built-in DataReaders, do so before using
this operation. Built-in transports are implicitly registered when the DomainParticipant is enabled or
the first DataWriter/DataReader is created. To ensure that built-in DataReaders receive all the dis-
covery traffic, you should lookup the DataReader before the DomainParticipant is enabled. There-
fore the suggested sequence when looking up built-in DataReaders is:
1. Create a disabled DomainParticipant (see 7.4.2 ENTITYFACTORY QosPolicy on

page 349).

2. If you want to use non-default values, modify the built-in transport properties (see 16.5 Set-
ting Builtin Transport Properties of Default Transport Instance—get/set_builtin_transport_
properties() on page 805).

3. Call get_builtin_subscriber() (see 18.2 Built-in DataReaders on page 838).

4. Call lookup_datareader().

5. Call enable() on the DomainParticipant (see 4.1.2 Enabling DDS Entities on page 168).

l DDS_Subscriber_as_Entity(): This method is provided for C applications and is necessary when
invoking the parent class Entity methods on Subscribers. For example, to call the Entity method get_
status_changes() on a Subscriber, my_sub, do the following:

DDS_Entity_get_status_changes(DDS_Subscriber_as_Entity(my_sub))

l DDS_Subscriber_as_Entity() is not provided in the C++, C++/CLI, C# and Java APIs because
the object-oriented features of those languages make it unnecessary.

8.2.9 Statuses for Subscribers

The status indicators for a Subscriber are the same as those available for its DataReaders, with one addi-
tional status: DATA_ON_READERS (8.2.9.1 DATA_ON_READERS Status on the next page). The
following statuses can be monitored by the SubscriberListener.

l 8.2.9.1 DATA_ON_READERS Status on the next page

l 8.3.7.1 DATA_AVAILABLE Status on page 522

l 8.3.7.4 LIVELINESS_CHANGED Status on page 529

8.3 DataReaders

l 8.3.7.5 REQUESTED_DEADLINE_MISSED Status on page 531

l 8.3.7.6 REQUESTED_INCOMPATIBLE_QOS Status on page 531

l 8.3.7.7 SAMPLE_LOST Status on page 532

l 8.3.7.8 SAMPLE_REJECTED Status on page 536

l 8.3.7.9 SUBSCRIPTION_MATCHED Status on page 538

You can access Subscriber status by using a SubscriberListener or its inherited get_status_changes() oper-
ation (see 4.1.4 Getting Status and Status Changes on page 171), which can be used to explicitly poll for
the DATA_ON_READERS status of the Subscriber.

8.2.9.1 DATA_ON_READERS Status

The DATA_ON_READERS status, like the DATA_AVAILABLE status for DataReaders, is a read
communication status, which makes it somewhat different from other plain communication statuses. (See
4.3.1 Types of Communication Status on page 183 for more information on statuses and the difference
between read and plain statuses.) In particular, there is no status-specific data structure; the status is either
changed or not, there is no additional associated information.

The DATA_ON_READERS status indicates that there is new data available for one or more DataRead-
ers that belong to this Subscriber. The DATA_AVAILABLE status for each such DataReader will also
be updated.

The DATA_ON_READERS status is reset (the corresponding bit in the bitmask is turned off) when you
call read(), take(), or one of their variations on any of the DataReaders that belong to the Subscriber. This
is true even if the DataReader on which you call read/take is not the same DataReader that caused the
DATA_ON_READERS status to be set in the first place. This status is also reset when you call notify_
datareaders() on the Subscriber, or after on_data_on_readers() is invoked.

If a SubscriberListener has both on_data_on_readers() and on_data_available() callbacks enabled (by
turning on both status bits), only on_data_on_readers() is called.

8.3 DataReaders

To create a DataReader, you need a DomainParticipant, a Topic, and optionally, a Subscriber. You need
at least one DataReader for each Topic whose DDS data samples you want to receive.

After you create a DataReader, you will be able to use the operations listed in Table 8.3 DataReader Oper-
ations. You are likely to use many of these operations from within your DataReader’s Listener, which is
invoked when there are status changes or new DDS data samples. For more details on all operations, see
the API reference HTML documentation. The DataReaderListener is described in 8.3.4 Setting Up
DataReaderListeners on page 517.

DataReaders are created by using operations on a DomainParticipant or a Subscriber, as described in
8.2.1 Creating Subscribers Explicitly vs. Implicitly on page 495. If you use the DomainParticipant’s

509

8.3 DataReaders

510

operations, the DataReader will belong to an implicit Subscriber that is automatically created by the mid-
dleware. If you use a Subscriber’s operations, the DataReader will belong to that Subscriber. So either
way, the DataReader belongs to a Subscriber.

Note: Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

Purpose Operation Description Reference

Configuring the
DataReader

enable Enables the DataReader.
4.1.2 Enabling DDSEntit-
ies on page 168

equals Compares two DataReader’sQoS structures for equality.
8.3.9.2 Comparing QoS
Valueson page 553

get_qos Gets the QoS.

8.3.9 Setting DataReader
QosPolicies on page 548

set_qos Modifies the QoS.

set_qos_with_
profile

Modifies the QoS based on a QoS profile.

get_listener Gets the currently installed Listener. 8.3.4 Setting Up
DataReaderListenerson
page 517set_listener Replaces the Listener.

Table 8.3 DataReader Operations

8.3 DataReaders

Purpose Operation Description Reference

Accessing DDS Data
Samples with “Read”

(Use
FooData-Reader, see
8.4.3 Accessing DDS
Data Sampleswith
Read or Take on
page 560)

read Reads (copies) a collection of DDS data samples from the DataReader.
8.4.3 Accessing DDSData
Sampleswith Read or
Take on page 560

read_instance
Identical to read, but all DDS samples returned belong to a single in-
stance, which you specify as a parameter.

8.4.3.4 read_instance and
take_instance on page 564

read_instance_
w_condition

Identical to read_instance, but all DDS samples returned belong to a
single instance and satisfy a specific ReadCondition.

8.4.3.7 read_instance_w_
condition and take_in-
stance_w_condition on
page 566

read_next_in-
stance

Similar to read_instance, but the actual instance is not directly specified
as a parameter. Instead, the DDS samples will all belong to instance
ordered after the one previously read.

8.4.3.5 read_next_in-
stance and take_next_in-
stance on page 564

read_next_in-
stance_w_
condition

Accesses a collection of DDS data samples of the next instance that
match a specific set ofReadConditions, from the DataReader.

8.4.3.8 read_next_in-
stance_w_condition and
take_next_instance_w_
condition on page 567

read_next_
sample

Reads the next not-previously-accessed data value from the
DataReader.

8.4.3.3 read_next_sample
and take_next_sample on
page 563

read_w_con-
dition

Accesses a collection of DDS data samples from the DataReader that
match specificReadCondition criteria.

8.4.3.6 read_w_condition
and take_w_condition on
page 566

Table 8.3 DataReader Operations

511

8.3 DataReaders

512

Purpose Operation Description Reference

Accessing DDS Data
Samples with “Take”

(Use
FooData-Reader, see
8.4.3 Accessing DDS
Data Sampleswith
Read or Take on
page 560)

take
Like read, but the DDS samples are removed from the DataReader’s re-
ceive queue.

8.4.3 Accessing DDSData
Sampleswith Read or
Take on page 560

take_instance
Identical to take, but all DDS samples returned belong to a single in-
stance, which you specify as a parameter.

8.4.3.4 read_instance and
take_instance on page 564

take_instance_
w_condition

Identical to take_instance, but all DDS samples returned belong to a
single instance and satisfy a specific ReadCondition.

8.4.3.7 read_instance_w_
condition and take_in-
stance_w_condition on
page 566

take_next_in-
stance

Like read_next_instance, but the DDS samples are removed from the
DataReader’s receive queue.

8.4.3.5 read_next_in-
stance and take_next_in-
stance on page 564

take_next_in-
stance_w_
condition

Accesses (and removes) a collection of DDS data samples of the next in-
stance that match a specific set ofReadConditions, from the
DataReader.

8.4.3.8 read_next_in-
stance_w_condition and
take_next_instance_w_
condition on page 567

take_next_
sample

Like read_next_sample, but the DDS samples are removed from the
DataReader’s receive queue.

8.4.3.3 read_next_sample
and take_next_sample on
page 563

take_w_con-
dition

Accesses (and removes) a collection of DDS data samples from the
DataReader that match specificReadCondition criteria.

8.4.3.6 read_w_condition
and take_w_condition on
page 566

Working with DDS Data
Samples and FooData-
Reader

(Use FooData-Reader,
see 8.4.3 Accessing
DDSData Samples
with Read or Take on
page 560)

narrow
A type-safe way to cast a pointer. This takes a DDSDataReader pointer
and ‘narrows’ it to a ‘FooDataReader’ where ‘Foo’ is the related data
type.

8.4.1 Using a Type-Spe-
cificDataReader
(FooDataReader) on
page 558

return_loan Returns buffers loaned in a previous read or take call.
8.4.2 Loaning and Return-
ing Data and SampleInfo
Sequenceson page 558

get_key_value Gets the key for an instance handle.
8.3.10.5 Getting the Key
Value for an Instance on
page 558

lookup_in-
stance

Gets the instance handle that corresponds to an instance key.
8.3.10.4 Looking Up an In-
stance Handle on page 557

Acknowledging DDS
Samples

acknowledge_
all

Acknowledge all previously accessed DDS samples.
8.4.4 Acknowledging DDS
Sampleson page 568

acknowledge_
sample

Acknowledge a single DDS sample.

Table 8.3 DataReader Operations

8.3 DataReaders

Purpose Operation Description Reference

Checking Status

get_liveliness_
changed_
status

Gets LIVELINESS_CHANGED_STATUS
status.

8.3.7 Statuses for
DataReaderson page 521

get_requested_
deadline_
missed_status

Gets REQUESTED_DEADLINE_
MISSED_STATUS status.

get_requested_
incompatible_
qos_status

Gets REQUESTED_INCOMPATIBLE_
QOS_STATUS status.

get_sample_
lost_status

Gets SAMPLE_LOST_STATUS status.

get_sample_re-
jected_
status

Gets SAMPLE_REJECTED_STATUS status.

get_sub-
scription_
matched_
status

Gets SUBSCRIPTION_MATCHED_STATUS status.

get_status_
changes

Gets a list of statuses that changed since last time the application read
the status or the listeners were called.

4.1.4 Getting Statusand
StatusChangeson
page 171

get_
datareader_
cache_
status

Gets DATA_READER_CACHE_STATUS status.

8.3.5 Checking
DataReader Statusand
StatusConditionson
page 519

8.3.7 Statuses for
DataReaderson page 521

get_
datareader_pro-
tocol_
status

Gets DATA_READER_PROTOCOL_
STATUS status.

get_matched_
publication_
datareader_pro-
tocol_
status

Get the protocol status for thisDataReader, permatched publication
identified by the publication_handle.

Table 8.3 DataReader Operations

513

8.3 DataReaders

514

Purpose Operation Description Reference

Navigating Rela-
tionships

get_instance_
handle

Returns the DDS_InstanceHandle_t associated with the Entity.
4.1.3 Getting an Entity’s In-
stance Handle on page 171

get_matched_
publication_
data

Gets information on a publication with a matching Topic and compatible
QoS.

8.3.10.1 FindingMatching
Publicationson page 556

get_matched_
publications

Gets a list of publications that have a matching Topic and compatible
QoS. These are the publications currently associated with the
DataReader.

get_matched_
publication_
participant_
data

Gets information on a DomainParticipant of a matching publication.

8.3.10.2 Finding theMatch-
ing Publication’sPar-
ticipantBuiltinTopicData on
page 557

get_subscriber Gets the Subscriber that created the DataReader. 8.3.10.3 Finding a
DataReader’sRelated
Entities on page 557get_top-

icdescription
Gets the Topic associated with the DataReader.

is_matched_
publication_
alive

Enables you to query whether the matched DataWriter (using the in-
stance handle returned by get_matched_publications) is alive. get_
matched_publications returns all matching DataWriters, including
those that are not alive. This operation enables you to see which match-
ing DataWritersare alive.

8.3.10.1 FindingMatching
Publicationson page 556

Working with
Conditions

create_query-
condition

Creates aQueryCondition.

4.6.7 ReadConditionsand
QueryConditionson
page 210

create_read-
condition

Creates a ReadCondition.

delete_read-
condition

Deletes a ReadCondition/QueryCondition attached to the
DataReader.

delete_con-
tained_entities

Deletes all the ReadConditions/QueryConditions that were created by
means of the "create" operations on the DataReader.

8.3.3.1 Deleting Contained
ReadConditionson
page 517

get_statuscon-
dition

Gets the StatusCondition associated with the Entity.
4.6.8 StatusConditionson
page 213

create_read-
condition_w_
params

Creates a ReadCondition with parameters.
4.6.7 ReadConditionsand
QueryConditionson
page 210

create_query-
condition_w_
params

Creates a QueryCondition with parameters.
4.6.7 ReadConditionsand
QueryConditionson
page 210

Table 8.3 DataReader Operations

8.3.1 Creating DataReaders

Purpose Operation Description Reference

Working with Top-
icQueries

create_topic_
query

Creates a TopicQuery. The returned TopicQuery will haven been issued
if the DataReader is enabled. Otherwise, the TopicQuery will be issued
once the DataReader is enabled.

TopicQueries (Chapter 24
on page 983)

delete_topic_
query

Deletes an active TopicQuery. After deleting a TopicQuery, new
DataWriterswon't discover it and existing DataWriters currently pub-
lishing cached samples may stop before delivering all of them.

lookup_topic_
query

Retrieves the TopicQuery that corresponds to the input GUID.

To get the GUID associated with a TopicQuery, use the TopicQuery's
get_guid().

Waiting forHistorical
Data

wait_for_his-
torical_data

Waits until all "historical" (previously sent) data is received. Only valid for
Reliable DataReaderswith non-VOLATILE DURABILITY.

8.3.6 Waiting for Historical
Data on page 520

Table 8.3 DataReader Operations

8.3.1 Creating DataReaders

Before you can create a DataReader, you need a DomainParticipant and a Topic.

DataReaders are created by calling create_datareader() or create_datareader_with_profile()—these
operations exist for DomainParticipants and Subscribers. If you use the DomainParticipant to create a
DataReader, it will belong to the implicit Subscriber described in 8.2.1 Creating Subscribers Explicitly
vs. Implicitly on page 495. If you use a Subscriber’s operations to create a DataReader, it will belong to
that Subscriber.
A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can change
QoS settings without recompiling the application. For details, see Configuring QoS with XML (Chapter
19 on page 854).

Note: In the Modern C++ API, DataReaders provide constructors whose first argument is a Subscriber.
The only required arguments are the subscriber and the topic.
DDSDataReader* create_datareader(

DDSTopicDescription *topic,
const DDS_DataReaderQos &qos,
DDSDataReaderListener *listener,
DDS_StatusMask mask);

DDSDataReader * create_datareader_with_profile (
DDSTopicDescription * topic,
const char * library_name,
const char * profile_name,
DDSDataReaderListener * listener,
DDS_StatusMask mask)

Where:

topic The Topic to which the DataReader is subscribing. This must have been previously created by the
same DomainParticipant.

515

8.3.1 Creating DataReaders

516

qos If you want the default QoS settings (described in the API Reference HTML documentation), use DDS_
DATAREADER_QOS_DEFAULT for this parameter (see Figure 8.9: Creating a DataReader with De-
fault QosPolicies below). If you want to customize any of the QosPolicies, supply a QoS structure (see
8.3.9 Setting DataReader QosPolicies on page 548).

Note: If you use DDS_DATAREADER_QOS_DEFAULT for the qos parameter, it is not safe to create
the DataReader while another thread may be simultaneously calling the Subscriber’s set_default_
datareader_qos() operation.

listener A DataReader’sListener is where you define the callback routine that will be notified when new DDS
data samples arrive. Connext DDS also uses this Listener to notify your application of specific events
(status changes) that may occur with respect to the DataReader. For more information, see 8.3.4 Set-
ting Up DataReaderListeners on the next page and 8.3.7 Statuses for DataReaders on page 521.

The listener parameter is optional; you may use NULL instead. In that case, the Subscriber’s Listener
(or if that is NULL, the DomainParticipant’s Listener) will receive the notifications instead. See 8.3.4
Setting Up DataReaderListeners on the next page for more on DataReaderListeners.

mask This bit mask indicates which status changes will cause the Listener to be invoked. The bits set in the
mask must have corresponding callbacks implemented in the Listener. If you use NULL for the Listener,
use DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all callbacks, use
DDS_STATUS_MASK_ALL. For information on statuses, see 4.4 Listeners on page 189.

library_name A QoS Library is a named set of QoS profiles. See 19.3 QoS Profiles on page 856.

profile_name A QoS profile groups a set of related QoS, usually one per entity. See 19.3 QoS Profiles on page 856.

After you create a DataReader, you can use it to retrieve received data. See 8.4 Using DataReaders to
Access Data (Read & Take) on page 558.

Note: When a DataReader is created, only those transports already registered are available to the
DataReader. The built-in transports are implicitly registered when (a) the DomainParticipant is enabled,
(b) the first DataReader is created, or (c) you lookup a built-in DataReader, whichever happens first.

Figure 8.9: Creating a DataReader with Default QosPolicies below shows an example of how to create a
DataReader with default QosPolicies.
Figure 8.9: Creating a DataReader with Default QosPolicies

// MyReaderListener is user defined, extends DDSDataReaderListener
DDSDataReaderListener *reader_listener = new MyReaderListener();
DataReader* reader = subscriber->create_datareader(topic,

DDS_DATAREADER_QOS_DEFAULT,
reader_listener, DDS_STATUS_MASK_ALL);

if (reader == NULL) {
// ... error

}
// narrow it into your specific data type
FooDataReader* foo_reader = FooDataReader::narrow(reader);

For more examples on how to create a DataReader, see 8.3.9.1 Configuring QoS Settings when the
DataReader is Created on page 551.

8.3.2 Getting All DataReaders

8.3.2 Getting All DataReaders

To retrieve all the DataReaders created by the Subscriber, use the Subscriber’s get_all_datareaders()
operation:
DDS_ReturnCode_t get_all_datareaders(

DDS_Subscriber* self,
struct DDS_DataReaderSeq* readers);

In the Modern C++ API, use the freestanding function rti::sub::find_datareaders().

8.3.3 Deleting DataReaders

(Note: in the Modern C++ API, Entities are automatically destroyed, see 4.1.1 Creating and Deleting
DDS Entities on page 167)

To delete a DataReader:

Delete any ReadConditions and QueryConditions that were created with the DataReader. Use the
DataReader’s delete_readcondition() operation to delete them one at a time, or use the delete_con-
tained_entities() operation (8.3.3.1 Deleting Contained ReadConditions below) to delete them all at the
same time.
DDS_ReturnCode_t delete_readcondition (DDSReadCondition *condition)

Delete the DataReader by using the Subscriber’s delete_datareader() operation (8.2.3 Deleting Sub-
scribers on page 497).

Note: A DataReader cannot be deleted within its own reader listener callback, see 4.5.1 Restricted Oper-
ations in Listener Callbacks on page 200.

To delete all of a Subscriber’s DataReaders, use the Subscriber’s delete_contained_entities() operation
(see 8.2.3.1 Deleting Contained DataReaders on page 498).

8.3.3.1 Deleting Contained ReadConditions

The DataReader’s delete_contained_entities() operation deletes all the ReadConditions and QueryCondi-
tions (4.6.7 ReadConditions and QueryConditions on page 210) that were created by the DataReader.
DDS_ReturnCode_t delete_contained_entities ()

After this operation returns successfully, the application may delete the DataReader (see 8.3.3 Deleting
DataReaders above).

8.3.4 Setting Up DataReaderListeners

DataReaders may optionally have Listeners. A DataReaderListener is a collection of callback methods;
these methods are invoked by Connext DDS when DDS data samples are received or when there are
status changes for the DataReader.

517

8.3.4 Setting Up DataReaderListeners

518

Note: Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

If you do not implement a DataReaderListener, the associated Subscriber’s Listener is used instead. If that
Subscriber does not have a Listener either, then the DomainParticipant’s Listener is used if one exists (see
8.2.6 Setting Up SubscriberListeners on page 505 and 9.3.6 Setting Up DomainParticipantListeners on
page 626).

If you do not require asynchronous notification of data availability or status changes, you do not need to
set a Listener for the DataReader. In that case, you will need to periodically call one of the read() or take
() operations described in 8.4 Using DataReaders to Access Data (Read & Take) on page 558 to access
the data that has been received.

Listeners are typically set up when the DataReader is created (see 8.3.1 Creating DataReaders on
page 515). You can also set one up after creation by using the DataReader’s get_listener() and set_
listener() operations. Connext DDS will invoke a DataReader’s Listener to report the status changes listed
in Table 8.4 DataReaderListener Callbacks (if the Listener is set up to handle the particular status, see
8.3.4 Setting Up DataReaderListeners on the previous page).

This DataReaderListener callback... ...is triggered by a change in this status:

on_data_available() 8.3.7.1 DATA_AVAILABLEStatuson page 522

on_liveliness_changed() 8.3.7.4 LIVELINESS_CHANGED Statuson page 529

on_requested_deadline_missed() 8.3.7.5 REQUESTED_DEADLINE_MISSED Statuson page 531

on_requested_incompatible_qos() 8.3.7.6 REQUESTED_INCOMPATIBLE_QOSStatuson page 531

on_sample_lost() 8.3.7.7 SAMPLE_LOST Statuson page 532

on_sample_rejected() 8.3.7.8 SAMPLE_REJECTED Statuson page 536

on_subscription_matched() 8.3.7.9 SUBSCRIPTION_MATCHED Statuson page 538

Table 8.4 DataReaderListener Callbacks

Note that the same callbacks can be implemented in the SubscriberListener or DomainParticipantListener
instead. There is only one SubscriberListener callback that takes precedence over a DataReaderListener’s.
An on_data_on_readers() callback in the SubscriberListener (or DomainParticipantListener) takes pre-
cedence over the on_data_available() callback of a DataReaderListener.

If the SubscriberListener implements an on_data_on_readers() callback, it will be invoked instead of the
DataReaderListener’s on_data_available() callback when new data arrives. The on_data_on_readers()
operation can in turn cause the on_data_available()method of the appropriate DataReaderListener to be
invoked by calling the Subscriber’s notify_datareaders() operation. For more information on status and
Listeners, see 4.4 Listeners on page 189.

8.3.5 Checking DataReader Status and StatusConditions

Figure 8.10: Simple DataReaderListener below shows a DataReaderListener that simply prints the data it
receives.

Figure 8.10: Simple DataReaderListener

class MyReaderListener : public DDSDataReaderListener {
public:

virtual void on_data_available(DDSDataReader* reader);
// don’t do anything for the other callbacks

};
void MyReaderListener::on_data_available(DDSDataReader* reader)
{

FooDataReader *Foo_reader = NULL;
FooSeq data_seq; // In C, sequences have to be initialized
DDS_SampleInfoSeq info_seq; // before use, see 8.4.5 The Sequence Data Structure on

page 568
DDS_ReturnCode_t retcode;
int i;
// Must cast generic reader into reader of specific type
Foo_reader = FooDataReader::narrow(reader);
if (Foo_reader == NULL) {

printf("DataReader narrow error\n");
return;

}
retcode = Foo_reader->take(data_seq, info_seq,

DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

if (retcode == DDS_RETCODE_NO_DATA) {
return;

} else if (retcode != DDS_RETCODE_OK) {
printf("take error %d\n", retcode);
return;

}
for (i = 0; i < data_seq.length(); ++i) {

// the data may not be valid if the DDS sample is
// meta information about the creation or deletion
// of an instance
if (info_seq[i].valid_data) {

FooTypeSupport::print_data(&data_seq[i]);
}

}
// Connext DDS gave a pointer to internal memory via
// take(), must return the memory when finished processing the data
retcode = Foo_reader->return_loan(data_seq, info_seq);
if (retcode != DDS_RETCODE_OK) {

printf("return loan error %d\n", retcode);
}

}

8.3.5 Checking DataReader Status and StatusConditions

You can access individual communication status for a DataReader with the operations shown in Table 1
DataReader Status Operations.

519

8.3.6 Waiting for Historical Data

520

Use this operation... ...to retrieve this status:

get_datareader_cache_status 8.3.7.2 DATA_READER_CACHE_STATUSon page 522

get_datareader_protocol_status

8.3.7.3 DATA_READER_PROTOCOL_STATUSon page 525
get_matched_publication_
datareader_protocol_status

get_liveliness_changed_status 8.3.7.4 LIVELINESS_CHANGED Statuson page 529

get_sample_lost_status 8.3.7.7 SAMPLE_LOST Statuson page 532

get_sample_rejected_status 8.3.7.8 SAMPLE_REJECTED Statuson page 536

get_requested_deadline_missed_status 8.3.7.5 REQUESTED_DEADLINE_MISSED Statuson page 531

get_requested_incompatible_qos_status 8.3.7.6 REQUESTED_INCOMPATIBLE_QOSStatuson page 531

get_subscription_match_status 8.3.7.9 SUBSCRIPTION_MATCHED Statuson page 538

get_status_changes All of the above

get_statuscondition See 4.6.8 StatusConditionson page 213

Table 1 DataReader Status Operations

These methods are useful in the event that no Listener callback is set to receive notifications of status
changes. If a Listener is used, the callback will contain the new status information, in which case calling
these methods is unlikely to be necessary.

The get_status_changes() operation provides a list of statuses that have changed since the last time the
status changes were ‘reset.’ A status change is reset each time the application calls the corresponding get_
*_status(), as well as each time Connext DDS returns from calling the Listener callback associated with
that status.

For more on status, see 8.3.4 Setting Up DataReaderListeners on page 517, 8.3.7 Statuses for DataRead-
ers on the next page, and 4.4 Listeners on page 189.

8.3.6 Waiting for Historical Data

The wait_for_historical_data() operation waits (blocks) until all "historical" data is received from
matched DataWriters. "Historical" data means DDS samples that were written before the DataReader
joined the DDS domain.

This operation is intended only for DataReaders that have:

l 7.5.9 DURABILITY QosPolicy on page 412 kind set to TRANSIENT_LOCAL (not VOLATILE)

l 7.5.21 RELIABILITY QosPolicy on page 448 kind set to RELIABLE

8.3.7 Statuses for DataReaders

Calling wait_for_historical_data() on a non-reliable DataReader will always return immediately, since
Connext DDS will never deliver historical data to non-reliable DataReaders.

As soon as an application enables a non-VOLATILE DataReader, it will start receiving both "historical"
data as well as any new data written by matching DataWriters. If you want the subscribing application to
wait until all "historical" data is received, use this operation:
DDS_ReturnCode_t wait_for_historical_data (const DDS_Duration_t & max_wait)

The wait_for_historical_data() operation blocks the calling thread until either all "historical" data is
received or the duration specified by themax_wait parameter elapses, whichever happens first. A return
value of OK indicates that all the "historical" data was received; a return value of TIMEOUT indicates that
max_wait elapsed before all the data was received.

wait_for_historical_data() will return immediately if no DataWriters have been discovered at the time the
operation is called. Therefore it is advisable to make sure at least one DataWriter has been discovered
before calling this operation; one way to do this is to use get_subscription_matched_status(), like this:

while (1) {
DDS_SubscriptionMatchedStatus status;
MyType_reader->get_subscription_matched_status(status);
if (status.current_count > 0) { break; }
NDDSUtility::sleep(sleep_period);

}

8.3.7 Statuses for DataReaders

There are several types of statuses available for a DataReader. You can use the get_*_status() operations
(8.3.5 Checking DataReader Status and StatusConditions on page 519) to access and reset them, use a
DataReaderListener (8.3.4 Setting Up DataReaderListeners on page 517) to listen for changes in their val-
ues (for those statuses that have Listeners), or use a StatusCondition and aWaitSet (4.6.8 StatusConditions
on page 213) to wait for changes. Each status has an associated data structure and is described in more
detail in the following sections.

l 8.3.7.1 DATA_AVAILABLE Status on the next page

l 8.3.7.2 DATA_READER_CACHE_STATUS on the next page

l 8.3.7.3 DATA_READER_PROTOCOL_STATUS on page 525

l 8.3.7.4 LIVELINESS_CHANGED Status on page 529

l 8.3.7.5 REQUESTED_DEADLINE_MISSED Status on page 531

l 8.3.7.6 REQUESTED_INCOMPATIBLE_QOS Status on page 531

l 8.3.7.7 SAMPLE_LOST Status on page 532

l 8.3.7.8 SAMPLE_REJECTED Status on page 536

l 8.3.7.9 SUBSCRIPTION_MATCHED Status on page 538

521

8.3.7 Statuses for DataReaders

522

8.3.7.1 DATA_AVAILABLE Status

This status indicates that new data is available for the DataReader. In most cases, this means that one new
DDS sample has been received. However, there are situations in which more than one DDS samples for
the DataReader may be received before the DATA_AVAILABLE status changes. For example, if the
DataReader has the 7.5.9 DURABILITY QosPolicy on page 412 set to be non-VOLATILE, then the
DataReader may receive a batch of old DDS data samples all at once. Or if data is being received reliably
from DataWriters, Connext DDS may present several DDS samples of data simultaneously to the
DataReader if they have been originally received out of order.

A change to this status also means that the DATA_ON_READERS status is changed for the
DataReader’s Subscriber. This status is reset when you call read(), take(), or one of their variations.

Unlike most other statuses, this status (as well as DATA_ON_READERS for Subscribers) is a read com-
munication status. See 8.2.9 Statuses for Subscribers on page 508 and 4.3.1 Types of Communication
Status on page 183 for more information on read communication statuses.

The DataReaderListener’s on_data_available() callback is invoked when this status changes, unless the
SubscriberListener (8.2.6 Setting Up SubscriberListeners on page 505) or DomainParticipantListener
(9.3.6 Setting Up DomainParticipantListeners on page 626) has implemented an on_data_on_readers()
callback. In that case, on_data_on_readers() will be invoked instead.

8.3.7.2 DATA_READER_CACHE_STATUS

This status keeps track of the number of DDS samples and instances in the reader's cache, including the
number of samples that were dropped for different reasons. For information on the instance states
described in the reader's cache, such as "alive," "no_writers," and "disposed," see 6.1 Instance States on
page 259.

This status does not have an associated Listener. You can access this status by calling the DataReader’s
get_datareader_cache_status() operation, which will return the status structure described in Table 8.5
DDS_DataReaderCacheStatus.

Type Field Name Description

DDS_
LongLong

sample_count_peak
Highest number of DDS samples in the DataReader’squeue over the lifetime of the
DataReader.

DDS_
LongLong

sample_count

Current number of DDS samples in the DataReader’squeue.

Includes DDS samples that may not yet be available to be read or taken by the user due to DDS
samples being received out of order or settings in the 7.4.6 PRESENTATIONQosPolicy on
page 363.

Table 8.5 DDS_DataReaderCacheStatus

8.3.7 Statuses for DataReaders

Type Field Name Description

DDS_
LongLong

writer_removed_batch_sample_
dropped_sample_count

The number of batched samples received by the DataReader that were marked as removed by
the DataWriter.

When the DataReader receives a batch, the batch can contain samples marked as removed by
the DataWriter. Examples of removed samples in a batch are samples that were replaced due to
KEEP_LAST_HISTORY_QOS on the DataWriter (see 7.5.12 HISTORYQosPolicy on
page 421) or samples that outlived the DataWriter's 7.5.14 LIFESPANQoSPolicy on page 426
duration. By default, any sample marked as removed froma batch is dropped, unless you set the
dds.data_reader.accept_writer_removed_batch_samples property in the 7.5.19
PROPERTYQosPolicy (DDSExtension) on page 440 to TRUE. (By default, it is set to FALSE.)

Note:Historical data with removed batch samples written before the DataReader joined the DDS
domain are also included in the count.

DDS_
LongLong

old_source_timestamp_
dropped_sample_count

The number of samples dropped as a result of receiving a sample older than the last one, using
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS.

When the DataReader is using DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_
QOS:

l If the DataReader receives a sample for an instance with a source timestamp that is
older than the last source timestamp received for the instance, the sample is dropped
and included in this count.

l If the DataReader receives a sample for an instance with a source timestamp that is
equal to the last source timestamp received for the instance and the writer has a higher
virtual GUID, the sample is dropped and included in this count.

DDS_
LongLong

tolerance_source_timestamp_
dropped_sample_count

The number of samples dropped as a result of receiving a sample in the future, using DDS_BY_
SOURCE_TIMESTAMP_DESTINATIONORDER_QOS.

When the DataReader is using DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_
QOS, the DataReader will accept a sample only if the source timestamp is no farther in the future
from the reception timestamp than the source_timestamp_tolerance. Otherwise, the sample is
dropped and included in this count.

DDS_
LongLong

ownership_dropped_sample_
count

The number of samples dropped as a result of receiving a sample froma DataWriter with a lower
strength, using Exclusive Ownership.

When using Exclusive Ownership, the DataReader receives data frommultiple DataWriters.
Each instance can only be owned by one DataWriter. If otherDataWriterswrite samples be-
longing to this instance, the samples will be dropped.

DDS_
LongLong

content_filter_dropped_sample_
count

The number of samples filtered by the DataReader due to ContentFilteredTopics.

When using a content filter on the DataReader side, if the sample received by the DataReader
does not pass the filter, it will be dropped.

DDS_
LongLong

time_based_filter_dropped_
sample_count

The number of samples filtered by the DataReader due to the 8.6.4 TIME_BASED_FILTER
QosPolicy on page 593.

When using the 8.6.4 TIME_BASED_FILTERQosPolicy on page 593 on the DataReader
side, if the sample received by the DataReader does not pass theminimum_separation filter, it
will be dropped.

Table 8.5 DDS_DataReaderCacheStatus

523

8.3.7 Statuses for DataReaders

524

Type Field Name Description

DDS_
LongLong

expired_dropped_sample_count

The number of samples expired by the DataReader due to the 7.5.14 LIFESPANQoSPolicy on
page 426 or the autopurge sample delays in the 8.6.3 READER_DATA_LIFECYCLEQoS
Policy on page 591:

l DDS_LifespanQosPolicy:When a sample expires due to the DDS_
LifespanQosPolicy, the data is removed from the DataReader caches. This sample
will be considered dropped if its DDS_SampleStateKind is DDS_NOT_READ_
SAMPLE_STATE.

l DDS_ReaderDataLifecycleQosPolicy::autopurge_nowriter_samples_delay:
When a sample expires due to the autopurge_nowriter_samples_delay, this sample
will be considered dropped if its DDS_SampleStateKind is DDS_NOT_READ_
SAMPLE_STATE.

l DDS_ReaderDataLifecycleQosPolicy::autopurge_disposed_samples_delay:
When a sample expires due to the autopurge_disposed_samples_delay, this sample
will be considered dropped if its DDS_SampleStateKind is DDS_NOT_READ_
SAMPLE_STATE.

DDS_
LongLong

virtual_duplicate_dropped_
sample_count

The number of virtual duplicate samples dropped by the DataReader. A sample is a virtual du-
plicate if it has the same identity (VirtualWriterGUID and Virtual Sequence Number) as a pre-
viously received sample.

When two DataWriterswith the same logical data source publish a sample with the same se-
quence_number, one sample will be dropped and the otherwill be received by the DataReader.

This can happen when multiple writers are writing on behalf of the same originalDataWriter: for
example, in systems with redundantRTI Routing Service applications orwhen a DataReader is
receiving samples both directly from the originalDataWriter and froman instance ofRTI Per-
sistence Service.

DDS_
LongLong

replaced_dropped_sample_
count

The number of samples replaced by the DataReader due to DDS_KEEP_LAST_HISTORY_
QOS replacement in the 7.5.12 HISTORYQosPolicy on page 421.

When the number of samples for an instance in the queue reaches the depth value in the
HISTORY QosPolicy, a new sample for the instance will replace the oldest sample for the in-
stance in the queue. The new sample will be accepted, and the old sample will be dropped.

This counterwill only be updated if the replaced sample's DDS_SampleStateKind is DDS_NOT_
READ_SAMPLE_STATE.

DDS_
LongLong

total_samples_dropped_by_in-
stance_replacement

Number of samples of the state NOT_READ_SAMPLE_STATE that were dropped when re-
moving an instance due to instance replacement via the instance_replacement field in the 8.6.2
DATA_READER_RESOURCE_LIMITSQosPolicy (DDSExtension) on page 581.

DDS_
LongLong

alive_instance_count
Number of instances currently in the DataReader'squeue that have an instance_state of
ALIVE.

DDS_
LongLong

alive_instance_count_peak
Highest number of ALIVE instances in the DataReader'squeue over the lifetime of the
DataReader.

DDS_
LongLong

no_writers_instance_count
Number of instances in the DataReader'squeue that have an instance_state of NOT_ALIVE_
NO_WRITERS.

DDS_
LongLong

no_writers_instance_count_peak
Highest number of NOT_ALIVE_NO_WRITERS instances in the DataReader'squeue over the
lifetime of the DataReader.

Table 8.5 DDS_DataReaderCacheStatus

8.3.7 Statuses for DataReaders

Type Field Name Description

DDS_
LongLong

disposed_instance_count
Number of instances in the DataReader'squeue that have an instance_state of NOT_ALIVE_
DISPOSED.

DDS_
LongLong

disposed_instance_count_peak
Highest number of NOT_ALIVE_DISPOSED instances in the DataReader'squeue over the life-
time of the DataReader.

DDS_
LongLong

detached_instance_count

Number of detached instances—which contain only the minimum instance state—currently being
maintained in the DataReader'squeue.

If keep_minimum_state_for_instances in the 8.6.2 DATA_READER_RESOURCE_LIMITS
QosPolicy (DDSExtension) on page 581 is true (by default, it is), the DataReader will keep up to
max_total_instances (in the DATA_READER_RESOURCE_LIMITS QosPolicy) of detached in-
stances in its queue. See 8.3.8.6.1 Active State andMinimumState on page 545 formore in-
formation.

DDS_
LongLong

detached_instance_count_peak
Highest number of detached instances in the DataReader'squeue over the lifetime of the
DataReader.

Table 8.5 DDS_DataReaderCacheStatus

8.3.7.3 DATA_READER_PROTOCOL_STATUS

The status of a DataReader’s internal protocol related metrics (such as the number of DDS samples
received, filtered, rejected) and the status of wire protocol traffic. The structure for this status appears in
Table 8.6 DDS_DataReaderProtocolStatus.

This status does not have an associated Listener. You can access this status by calling the following oper-
ations on the DataReader (which return the status structure described in Table 8.6 DDS_DataRead-
erProtocolStatus):

get_datareader_protocol_status() returns the sum of the protocol status for all the matched publications
for the DataReader.

get_matched_publication_datareader_protocol_status() returns the protocol status of a particular
matched publication, identified by a publication_handle.

The get_*_status() operations also reset the related status so it is no longer considered “changed.”

Note: Status/data for a matched publication is kept even if the DataWriter is not alive (that is, has lost live-
liness based on the 7.5.15 LIVELINESS QosPolicy on page 428). The status/data will be removed only if
the DataWriter is gone: that is, the DataWriter is destroyed and this change is propagated through a dis-
covery update, or the DataWriter's DomainParticipant is gone (either gracefully or its liveliness expired
and Connext DDS is configured to purge not-alive participants). Once a matched DataWriter is gone, its
status is deleted. If you try to get the status/data for a matched publication that is gone, the 'get status' or '
get data' call will return an error.

The DataReader's protocol status includes information about DATA_FRAG messages (sample fragments)
if you are using DDS-level fragmentation. See 23.3 Large Data Fragmentation on page 976 for more
information.

525

8.3.7 Statuses for DataReaders

526

Type Field Name Description

DDS_LongLong

received_
sample_count

The number of samples received by a DataReader.

Note:When data is fragmented, this count is updated when all of the fragments required to reassemble a
sample are received, not when individual fragments are received. The fragment count is tracked in the re-
ceived_fragment_count.

received_
sample_
count_
change

Change in the received_sample_count since the last time the status was read.

received_
sample_bytes

The number of bytes received by a DataReader.

Note:When data is fragmented, this statistic is updated upon the receipt of each fragment, not when a
sample is reassembled.

received_
sample_
bytes_
change

Change in received_sample_bytes since the last time the status was read.

DDS_LongLong

duplicate_
sample_count

The number of DDS samples received froma DataWriter, not for the first time, by thisDataReader.

duplicate_
sample_
count_
change

Change in duplicate_sample_count since the last time the status was read.

duplicate_
sample_bytes

The number of bytes of DDS samples received froma DataWriter received, not for the first time, by this
DataReader.

duplicate_
sample_
bytes_
change

Change in the duplicate_sample_bytes since the last time the status was read.

Table 8.6 DDS_DataReaderProtocolStatus

8.3.7 Statuses for DataReaders

Type Field Name Description

DDS_LongLong

DEPRECATED

filtered_
sample_count

The number of DDS samples filtered by thisDataReader due to ContentFilteredTopics or Time-Based Filter.

DEPRECATED

filtered_
sample_
count_
change

Change in the filtered_sample_count since the last time the status was read.

DEPRECATED

filtered_
sample_bytes

The number of bytes of DDS samples filtered by thisDataReader due to ContentFilteredTopics or Time-
Based Filter.

DEPRECATED

filtered_
sample_
bytes_
change

Change in the filtered_sample_bytes since the last time the status was read.

DDS_LongLong

received_heart-
beat_count

The number of Heartbeats received froma DataWriter by thisDataReader.

received_heart-
beat_count_
change

Change in the received_heartbeat_count since the last time the status was read.

received_heart-
beat_bytes

The number of bytes of Heartbeats received froma DataWriter by thisDataReader.

received_heart-
beat_bytes_
change

Change in the received_heartbeat_bytes since the last time the status was read.

DDS_LongLong

sent_ack_
count

The number of ACKs sent from thisDataReader to a matching DataWriter.

sent_ack_
count_change

Change in the sent_ack_count since the last time the status was read.

sent_ack_
bytes

The number of bytes of ACKs sent from thisDataReader to a matching DataWriter.

sent_ack_
bytes_change

Change in the sent_ack_bytes since the last time the status was read.

Table 8.6 DDS_DataReaderProtocolStatus

527

8.3.7 Statuses for DataReaders

528

Type Field Name Description

DDS_LongLong

sent_nack_
count

The number of NACKs sent from thisDataReader to a matching DataWriter.

sent_nack_
count_change

Change in the sent_nack_count since the last time the status was read.

sent_nack_
bytes

The number of bytes of NACKs sent from thisDataReader to a matching DataWriter.

sent_nack_
bytes_change

Change in the sent_nack_bytes since the last time the status was read.

DDS_LongLong

received_gap_
count

The number of GAPs received froma DataWriter to thisDataReader.

received_gap_
count_change

Change in the received_gap_count since the last time the status was read.

received_gap_
bytes

The number of bytes of GAPs received froma DataWriter to thisDataReader.

received_gap_
bytes_change

Change in the received_gap_bytes since the last time the status was read.

DDS_LongLong

rejected_
sample_count

The number of times a sample is rejected because it cannot be accepted by a reliable DataReader.
Samples rejected by a reliable DataReader will be NACKed, and they will have to be resent by the
DataWriter if they are still available in the DataWriter queue.

Note: This count is a subset of the total_count in the 8.3.7.8 SAMPLE_REJECTED Statuson
page 536.The total_count in the SAMPLE_REJECTEDstatus includes both protocol-related rejections,
that trigger a repair or resend (the rejected_sample_count described here), and the rejections described in
the 8.3.7.8 SAMPLE_REJECTED Statuson page 536. For example, the DDS_REJECTED_BY_
SAMPLES_PER_INSTANCE_LIMIT in the SAMPLE_REJECTEDstatus is not part of the rejected_
sample_count because it does not trigger a repair or resend.

rejected_
sample_
count_change

Change in the rejected_sample_count since the last time the status was read.

DDS_LongLong
out_of_range_
rejected_
sample_count

The number of samples dropped by the DataReader due to the receive window being full and the sample re-
ceived out-of-order.

When using reliable 7.5.21 RELIABILITYQosPolicy on page 448, if the DataReader receives samples
out-of-order, they are stored internally until the missing samples are received. The number of out-of-order
samples that the DataReader can keep is set by the receive_window_size in the Table 8.19 DDS_Rt-
psReliableReaderProtocol_t on page 578. When the receive window is full, any out-of-order sample re-
ceived will be dropped and included in this count (but not in the SampleRejectedStatus).

Table 8.6 DDS_DataReaderProtocolStatus

8.3.7 Statuses for DataReaders

Type Field Name Description

DDS_
SequenceNumber_
t

first_available_
sample_
sequence_
number

Sequence number of the first available DDS sample in a matched DataWriter's reliability queue. Applicable
only when retrieving matched DataWriter statuses.

last_available_
sample_
sequence_
number

Sequence number of the last available DDS sample in a matched DataWriter's reliability queue. Applicable
only when retrieving matched DataWriter statuses.

last_com-
mitted_
sample_
sequence_
number

Sequence number of the last committed DDS sample (i.e. available to be read or taken) in a matched
DataWriter's reliability queue. Applicable only when retrieving matched DataWriter statuses.

For best-effortDataReaders, this is the sequence number of the latest DDS sample received.

For reliable DataReaders, this is the sequence number of the latest DDS sample that is available to be read
or taken from the DataReader'squeue.

DDS_Long
uncommitted_
sample_count

Number of received DDS samples that are not yet available to be read or taken due to being received out of
order. Applicable only when retrieving matched DataWriter statuses.

DDS_LongLong
received_frag-
ment_count

The number of fragments (DATA_FRAGmessages) that have been received by thisDataReader. This
count is incremented upon the receipt of each DATA_FRAGmessage. Fragments fromduplicate samples
do not count towards this number. Applicable only when data is fragmented.

DDS_LongLong
dropped_frag-
ment_count

The number of DATA_FRAGmessages that have been dropped by the DataReader. This count does not
include malformed fragments. Applicable only when data is fragmented.

DDS_LongLong
reassembled_
sample_count

The number of samples that have been reassembled by the DataReader. This statistic is incremented
when all of the fragments that are required to reassemble an entire sample have been received. Applicable
only when data is fragmented.

DDS_LongLong

sent_nack_
fragment_
count

The number of NACK FRAG RTPS messages that have been sent from the DataReader to a DataWriter.
NACK FRAG RTPS messages are sent when large data is used in conjunction with reliable communication.
They have the same properties as NACK messages, but instead of applying to samples, they apply to frag-
ments. Applicable only when data is fragmented.

sent_nack_
fragment_
bytes

The number of NACK FRAG RTPS message bytes that have been sent from the DataReader to a
DataWriter. NACK FRAG RTPS messages are sent when large data is used in conjunction with reliable com-
munication. They have the same properties as NACK messages, but instead of applying to samples, they
apply to fragments. Applicable only when data is fragmented.

Table 8.6 DDS_DataReaderProtocolStatus

8.3.7.4 LIVELINESS_CHANGED Status

This status indicates that the liveliness of one or more matched DataWriters has changed (i.e., one or more
DataWriters has become alive or not alive). The mechanics of determining liveliness between a
DataWriter and a DataReader is specified in their 7.5.15 LIVELINESS QosPolicy on page 428.

The structure for this status appears in Table 8.7 DDS_LivelinessChangedStatus.

529

8.3.7 Statuses for DataReaders

530

Type Field Name Description

DDS_Long

alive_count Number of matched DataWriters that are currently alive.

not_alive_
count

Number of matched DataWriters that are not currently alive.

alive_count_
change

The change in the alive_count since the last time the Listener was called or the status was read.

not_alive_
count_
change

The change in the not_alive_count since the last time the Listener was called or the status was read.

Note that a positive not_alive_count_changemeans one of the following:

l The DomainParticipant containing the matched DataWriter has lost liveliness or has been
deleted.

l The matched DataWriter has lost liveliness or has been deleted.

DDS_InstanceHandle_t
last_pub-
lication_
handle

This InstanceHandle can be used to look up which remote DataWriter was the last to cause this
DataReader's status to change, using the DataReader's get_matched_publication_data()method.

It's possible that the DataWriter has been purged from the discovery database. If so, get_matched_
publication_data() will not be able to return information about the DataWriter. In this case, the only
way to get information about the lostDataWriter is if you cached the information previously.

Table 8.7 DDS_LivelinessChangedStatus

The DataReaderListener’s on_liveliness_changed() callback may be called for the following reasons:

l The liveliness of any DataWriter matching this DataReader (as defined by the 7.5.15
LIVELINESS QosPolicy on page 428) is lost.

l A DataWriter's liveliness is recovered after being lost.

l A new matching DataWriter has been discovered.

l A QoS Policy has changed such that a DataWriter that matched this DataReader before no longer
matches (such as a change to the PartitionQosPolicy). In this case, Connext DDS will no longer
keep track of the DataWriter's liveliness. Furthermore:

l If the DataWriter was alive when it and the DataReader stopped matching: alive_count will
decrease (since there’s one less matching alive DataWriter) and not_alive_count will remain
the same (since the DataWriter is still alive).

l If the DataWriter was not alive when it and the DataReader stopped matching: alive_count
will remain the same (since the matching DataWriter was not alive) and not_alive_count will
decrease (since there’s one less not-alive matching DataWriter).

Note: There are several ways that a DataWriter and DataReader can become incompatible
after the DataWriter has lost liveliness. For example, when the 7.5.15 LIVELINESS
QosPolicy on page 428 kind is set to MANUAL_BY_PARTICIPANT_LIVELINESS_
QOS, it is possible that the DataWriter has not asserted its liveliness in a timely manner, and

8.3.7 Statuses for DataReaders

then a QoS change occurs on the DataWriter or DataReader that makes the entities incom-
patible.

l A QoS Policy (such as the PartitionQosPolicy) has changed such that a DataWriter that was
unmatched with the DataReader now matches.

You can also retrieve the value by calling the DataReader’s get_liveliness_changed_status() operation;
this will also reset the status so it is no longer considered “changed.”

This status is reciprocal to the 7.3.6.9 RELIABLE_READER_ACTIVITY_CHANGED Status (DDS
Extension) on page 308 for a DataWriter.

8.3.7.5 REQUESTED_DEADLINE_MISSED Status

This status indicates that the DataReader did not receive a new DDS sample for an data-instance within
the time period set in the DataReader’s 7.5.7 DEADLINE QosPolicy on page 407. For non-keyed Top-
ics, this simply means that the DataReader did not receive data within the DEADLINE period. For keyed
Topics, this means that for one of the data-instances that the DataReader was receiving, it has not received
a new DDS sample within the DEADLINE period. For more information about keys and instances, see
2.4 DDS Samples, Instances, and Keys on page 18.

The structure for this status appears in Table 8.8 DDS_RequestedDeadlineMissedStatus.

Type Field Name Description

DDS_Long
total_count

Cumulative number of times that the deadline was violated for any instance read by the
DataReader.

total_count_change The change in total_count since the last time the Listener was called or the status was read.

DDS_InstanceHandle_t
last_instance_
handle

Handle to the last data-instance in the DataReader for which a requested deadline was
missed.

Table 8.8 DDS_RequestedDeadlineMissedStatus

The DataReaderListener’s on_requested_deadline_missed() callback is invoked when this status
changes. You can also retrieve the value by calling the DataReader’s get_requested_deadline_missed_
status() operation; this will also reset the status so it is no longer considered “changed.”

8.3.7.6 REQUESTED_INCOMPATIBLE_QOS Status

A change to this status indicates that the DataReader discovered a DataWriter for the same Topic, but that
DataReader had requested QoS settings incompatible with this DataWriter’s offered QoS.

The structure for this status appears in Table 8.9 DDS_RequestedIncompatibleQosStatus .

531

8.3.7 Statuses for DataReaders

532

Type Field
Name Description

DDS_Long
total_
count

Cumulative number of times the DataReader discovered a DataWriter for the same Topic with an offered
QoS that is incompatible with that requested by the DataReader.

DDS_Long
total_
count_
change

The change in total_count since the last time the Listener was called or the status was read.

DDS_QosPolicyId_t
last_
policy_id

The ID of the QosPolicy that was found to be incompatible the last time an incompatibility was detected.
(Note: if there are multiple incompatible policies, only one of them is reported here.)

DDS_QosPolicyCountSeq policies
A list containing—for each policy—the total number of times that the DataReader discovered a DataWriter
for the same Topicwith a offered QoS that is incompatible with that requested by the DataReader.

Table 8.9 DDS_RequestedIncompatibleQosStatus

The DataReaderListener’s on_requested_incompatible_qos() callback is invoked when this status
changes. You can also retrieve the value by calling the DataReader’s get_requested_incompatible_qos_
status() operation; this will also reset the status so it is no longer considered “changed.”

8.3.7.7 SAMPLE_LOST Status

This status indicates that one or more DDS samples written by a matched DataWriter have failed to be
received and will never be received.

Some samples written by a DataWriter to its matching DataReaders may never be received by the
DataReaders. This can happen because something went wrong while trying to add the sample to the
DataReader’s queue, like a decryption or deserialzation error, or because the sample was removed from
the DataWriter’s queue before it was received by the DataReaders. A sample can be removed from the
DataWriter’s queue before it is delivered to matching DataReaders for a number of reasons, including that
DataWriters are limited in the number of published DDS data samples that they can store, so that if a
DataWriter continues to publish DDS data samples, new data may overwrite old data that has not yet been
received by the DataReader. The DDS samples that are overwritten can never be resent to the
DataReader and thus are considered to be lost. DataWriters may also set the 7.5.14 LIFESPAN QoS
Policy on page 426, and samples that expire due to lifespan may also be reported as lost by a DataReader
that has not received those samples.

The lost status applies to reliable and best-effort DataReaders, see the 7.5.21 RELIABILITY QosPolicy
on page 448. By reporting a sample as lost, the DataReader has declared that the sample will never be
received, and will therefore not NACK it. It cannot be repaired by a DataWriter or resent to the
DataReader.

Before a sample is received by a DataReader it may also be reported as rejected or dropped. (See 8.3.7.8
SAMPLE_REJECTED Status on page 536 and 8.3.7.2 DATA_READER_CACHE_STATUS on
page 522.)

8.3.7 Statuses for DataReaders

The structure for the lost status appears in Table 8.10 DDS_SampleLostStatus.

Type Field Name Description

DDS_Long

total_count
Cumulative count of all the DDS samples that have been lost, across all instances of data written
for the Topic.

total_count_
change

The incremental number of DDS samples lost since the last time the Listener was called or the
status was read.

DDS_
SampleLostStatusKind

last_reason The reason the last DDS sample was lost. See Table 8.11 DDS_SampleLostStatusKind.

Table 8.10 DDS_SampleLostStatus

The reason the DDS sample was lost appears in the last_reason field. The possible values are listed in
Table 8.11 DDS_SampleLostStatusKind.

Reason Kind Description

NOT_LOST The sample was not lost.

LOST_BY_AVAILABILITY_WAITING_TIME
max_data_availability_waiting_time in the 7.5.1 AVAILABILITYQosPolicy (DDSExtension)
on page 371 expired.

LOST_BY_DECODE_FAILURE

When using BEST_EFFORT in the 7.5.21 RELIABILITYQosPolicy on page 448, a sample was
lost because it could not be decoded.

When using RELIABLE in the RELIABILITY QosPolicy, the sample is rejected, not lost, with the
reason REJECTED_BY_DECODE_FAILURE.

LOST_BY_DESERIALIZATION_FAILURE

A sample was lost because it could not be deserialized. A sample may fail to be deserialized for
the following reasons:

l The subscribing application has received a sample with a sequence or string member
that is longer than the maximumallowed by the DataReader'sdata type.

l The subscribing application has received a sample with an unknown enumvalue. See
the description of the dds.sample_assignability.accept_unknown_enum_value prop-
erty in the PropertyReferenceGuide formore information.

l The subscribing application has received a sample with an unknown union discriminator
value. See the description of the dds.sample_assignability.accept_unknown_union_
discriminator property in the PropertyReferenceGuide formore information.

l The subscribing application has received a sample with an out-of-range value for one of
the members that has been configured with a minimumormaximumvalue using the min,
max, or range type annotations.

l Sample corruption has occurred. If this is the case, then using RTI SecurityPluginsor
enabling CRC (see the compute_crc and check_crc fields in the 9.5.9 WIRE_
PROTOCOLQosPolicy (DDSExtension) on page 676) can help avoid these failures.

Table 8.11 DDS_SampleLostStatusKind

533

8.3.7 Statuses for DataReaders

534

Reason Kind Description

LOST_BY_INCOMPLETE_COHERENT_SET

A sample was lost because it is part of an incomplete coherent set. An incomplete coherent set is
a coherent set for which some of the samples are missing.

For example, consider a DataWriter using KEEP_LAST in the 7.5.12 HISTORYQosPolicy on
page 421with a depth of 1. The DataWriter publishes two samples of the same instance as part
of a coherent set “CS1” ; the first sample of “CS1” is replaced by a new sample before it can be suc-
cessfully delivered to the DataReader. In this case, the coherent set containing the two samples
is considered incomplete. The new sample, by default, will not be provided to the application, and
will be reported as LOST_BY_INCOMPLETE_COHERENT_SET. (You can change this default be-
havior by setting drop_incomplete_ coherent_set to FALSE in the 7.4.6 PRESENTATION
QosPolicy on page 363. If you do, the new sample will be provided to the application, but it will be
marked as part of an incomplete coherent set in the 8.4.6 The SampleInfo Structure on
page 570.)

LOST_BY_INSTANCES_LIMIT max_instances in the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452was reached.

LOST_BY_LARGE_COHERENT_SET

A sample was lost because it was part of a large coherent set. A large coherent set is a coherent
set that cannot fit all at once into the DataReader queue because resource limits are exceeded.

For example, ifmax_samples_per_instance on the DataReader is 10 and the coherent set has
15 samples for a given instance, the coherent set is a large coherent set that will be considered in-
complete.

The resource limits that can lead to large coherent sets are:max_samples,max_samples_per_
instance,max_instances, andmax_samples_per_remote_writer.

LOST_BY_OUT_OF_MEMORY A sample was lost because there was not enough memory to store the sample.

LOST_BY_REMOTE_WRITER_SAMPLES_
PER_VIRTUAL_QUEUE_LIMIT

A resource limit on the number of samples published by a DataWriter on behalf of a virtual
DataWriter that a DataReadermay store was reached. (This field is currently not used.)

LOST_BY_REMOTE_WRITERS_PER_
INSTANCE_LIMIT

max_remote_writers_per_instance in the 8.6.2 DATA_READER_RESOURCE_LIMITS
QosPolicy (DDSExtension) on page 581was reached. (This limit is the number ofDataWriters
for a single instance fromwhich a DataReadermay read.)

LOST_BY_REMOTE_WRITERS_PER_
SAMPLE_LIMIT

max_remote_writers_per_sample in the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452
was reached. (This limit is the number ofDataWriters that are allowed to write the same sample.)

LOST_BY_SAMPLES_LIMIT

When using BEST_EFFORT in the 7.5.21 RELIABILITYQosPolicy on page 448,max_samples
in the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452was reached.

When using RELIABLE in the RELIABILITY QosPolicy, reachingmax_samples triggers a re-
jection, not a loss, with the reason REJECTED_BY_SAMPLES_LIMIT.

LOST_BY_SAMPLES_PER_INSTANCE_
LIMIT

When using BEST_EFFORT in the 7.5.21 RELIABILITYQosPolicy on page 448,max_
samples_per_instance in the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452was
reached.

When using RELIABLE in the RELIABILITY QosPolicy, reachingmax_samples_per_instance
triggers a rejection, not a loss, with the reason REJECTED_BY_SAMPLES_PER_INSTANCE_
LIMIT.

Table 8.11 DDS_SampleLostStatusKind

8.3.7 Statuses for DataReaders

Reason Kind Description

LOST_BY_SAMPLES_PER_REMOTE_
WRITER_LIMIT

When using BEST_EFFORT in the 7.5.21 RELIABILITYQosPolicy on page 448,max_
samples_per_remote_writer in the 8.6.2 DATA_READER_RESOURCE_LIMITSQosPolicy
(DDSExtension) on page 581was reached. (This limit is the number of samples froma given
DataWriter that a DataReadermay store.)

When using RELIABLE in the RELIABILITY QosPolicy, reachingmax_samples_per_remote_
writer triggers a rejection, not a loss, with the reason REJECTED_BY_SAMPLES_PER_
REMOTE_WRITER_LIMIT.

LOST_BY_UNKNOWN_INSTANCE
A sample was lost because it didn't contain enough information for the DataReader to knowwhat
instance it was associated with.

LOST_BY_VIRTUAL_WRITERS_LIMIT
max_remote_virtual_writers in the 8.6.2 DATA_READER_RESOURCE_LIMITSQosPolicy
(DDSExtension) on page 581was reached. (This limit is the number of virtualDataWriters from
which a DataReadermay read.)

Table 8.11 DDS_SampleLostStatusKind

535

8.3.7 Statuses for DataReaders

536

Reason Kind Description

LOST_BY_WRITER

A DataWriter removed the DDS sample before being received by the DataReader.

The DataReader detects that a sample is lost:

l ForBest Effort 7.5.21 RELIABILITYQosPolicy on page 448: once a sample with a
higher sequence number is received.

l ForReliable RELIABILITY QosPolicy: once a heartbeat message is received that
announces that a sample that the DataReader was waiting for is no longer available in
the DataWriter’squeue (i.e., the first sequence number in the heartbeat is higher than
the missing sample’s sequence number). Samples that are gapped through GAP mes-
sages are not considered lost.

Samples may be lost for any of the following reasons:

l The lifespan of a sample expired before it was received by a DataReader; see 7.5.14
LIFESPANQoSPolicy on page 426.

l ForBest Effort RELIABILITY QosPolicy: a sample was lost on the network or arrived out
of order at the DataReader. (For example, the DataReader received sample 2 but not
sample 1; the DataReader considers sample 1 LOST_BY_WRITER.)

l ForReliable RELIABILITY QosPolicy:

l When using KEEP_LAST 7.5.12 HISTORYQosPolicy on page 421, unac-
knowledged samples can be overwritten if the history depth limit is reached for
an instance.
Important:Depending on timing, samples that were replaced due to KEEP_
LAST replacement may be gapped by a GAP message and are therefore not
reported as lost by the DataReader, or, at other times, the heartbeat message
will announce that the sample is no longer available, as described above, and
these will be reported as lost.

l ForKEEP_ALL HISTORY QosPolicy, the DataWriter can overwrite a sample in
its queue after the DataReader wasmarked as 'inactive'. Once a DataReader
is marked as 'inactive', samples will no longer be considered unacknowledged
by thatDataReader until it becomes active again. This means that if resource
limits are hit and space is needed for a new sample, an old sample may be
replaced to make roomeven if the inactive DataReader never received it. A
DataReader is considered inactive either because it is not making progress
(see inactivate_nonprogressing_readers) ormax_heartbeat_retries was
exceeded.

See 11.3.2 TuningQueue SizesandOther Resource Limits on page 702 formore information
on changing sample loss or queue configuration.

Table 8.11 DDS_SampleLostStatusKind

The DataReaderListener’s on_sample_lost() callback is invoked when this status changes. You can also
retrieve the value by calling the DataReader’s get_sample_lost_status() operation; this will also reset the
status so it is no longer considered “changed.”

8.3.7.8 SAMPLE_REJECTED Status

This status indicates that one or more DDS samples received from a matched DataWriter have been rejec-
ted by the DataReader because a resource limit would have been exceeded: for example, if the receive

8.3.7 Statuses for DataReaders

queue is full because the number of DDS samples in the queue is equal to themax_samples parameter of
the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452. These rejected samples could be accepted later
once the conditions for acceptance are met (e.g., once the number of samples in the queue becomes less
than max_samples). A sample that is rejected can be resent any number of times until it is eventually repor-
ted as lost, dropped, or accepted.

Samples can be rejected only with reliable communication; see 7.5.21 RELIABILITY QosPolicy on
page 448. In best-effort communication, samples cannot be rejected because samples cannot be received
again and are not eligible for resending.

The structure for the rejected status appears in Table 8.12 DDS_SampleRejectedStatus. The reason the
DDS sample was rejected appears in the last_reason field. The possible values are listed in Table 8.13
DDS_SampleRejectedStatusKind.

Type Field Name Description

DDS_Long

total_count Cumulative count of all the DDS samples that have been rejected by the DataReader.

total_count_
change

The incremental number of DDS samples rejected since the last time the Listener was called or
the status was read.

current_count The current number of writers with which the DataReader is matched.

current_count_
change

The change in current_count since the last time the Listener was called or the status was read.

DDS_SampleRe-
jectedStatusKind

last_reason Reason for rejecting the last DDS sample. See Table 8.13 DDS_SampleRejectedStatusKind.

DDS_InstanceHandle_t
last_instance_
handle

Handle to the data-instance forwhich the last DDS sample was rejected.

Table 8.12 DDS_SampleRejectedStatus

Reason Kind Description

DDS_NOT_REJECTED DDS sample was accepted.

REJECTED_BY_DECODE_FAILURE

When using RELIABLE in the 7.5.21 RELIABILITYQosPolicy on page 448, a sample was re-
jected because it could not be decoded.

When using BEST_EFFORT in the 7.5.21 RELIABILITYQosPolicy on page 448, the sample
is lost, not rejected, with the reason LOST_BY_DECODE_FAILURE.

DDS_REJECTED_BY_
INSTANCES_LIMIT

This field is not currently used.

Table 8.13 DDS_SampleRejectedStatusKind

537

8.3.7 Statuses for DataReaders

538

Reason Kind Description

DDS_REJECTED_BY_
SAMPLES_LIMIT

When using RELIABLE in the 7.5.21 RELIABILITYQosPolicy on page 448,max_samples
in the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452was reached.

When using BEST_EFFORT in the RELIABILITY QosPolicy, reachingmax_samples triggers
a loss, not a rejection, with the reason LOST_BY_SAMPLES_LIMIT.

DDS_REJECTED_BY_
SAMPLES_PER_INSTANCE_LIMIT

When using RELIABLE in the 7.5.21 RELIABILITYQosPolicy on page 448,max_samples_
per_instance in the 7.5.22 RESOURCE_LIMITSQosPolicy on page 452was reached.

When using BEST_EFFORT in the RELIABILITY QosPolicy, reachingmax_samples_per_in-
stance triggers a loss, not a rejection, with the reason LOST_BY_SAMPLES_PER_
INSTANCE_LIMIT.

DDS_REJECTED_BY_
SAMPLES_PER_REMOTE_WRITER_LIMIT

When using RELIABLE in the 7.5.21 RELIABILITYQosPolicy on page 448,max_samples_
per_remote_writer in the 8.6.2 DATA_READER_RESOURCE_LIMITSQosPolicy (DDS
Extension) on page 581was reached. (This limit is the number of samples that a DataReader
may store froma specificDataWriter.)

When using BEST_EFFORT in the RELIABILITY QosPolicy, reachingmax_samples_per_
remote_writer triggers a loss, not a rejection, with the reason LOST_BY_SAMPLES_PER_
REMOTE_WRITER_LIMIT.

DDS_REJECTED_BY_
REMOTE_WRITER_SAMPLES_PER_VIRTUAL_
QUEUE_LIMIT

This field is currently not used.

Table 8.13 DDS_SampleRejectedStatusKind

The DataReaderListener’s on_sample_rejected() callback is invoked when this status changes. You can
also retrieve the value by calling the DataReader’s get_sample_rejected_status() operation; this will also
reset the status so it is no longer considered “changed.”

8.3.7.9 SUBSCRIPTION_MATCHED Status

A change to this status indicates that the DataReader discovered a matching DataWriter. A ‘match’ occurs
only if the DataReader and DataWriter have the same Topic, same or compatible data type, and com-
patible QosPolicies. (For more information on compatible data types, see the RTI Connext DDS Core
Libraries Extensible Types Guide.) In addition, if user code has directed Connext DDS to ignore certain
DataWriters, then those DataWriters will never be matched. See 18.4.2 Ignoring Publications and Sub-
scriptions on page 849 for more on setting up a DomainParticipant to ignore specific DataWriters.

This status is also changed (and the listener, if any, called) when a match is ended. A DataReader will
become unmatched from a DataWriter when that DataWriter goes away for any of the following reasons:

l The DomainParticipant containing the matched DataWriter has lost liveliness.

l The DataReader or the matched DataWriter has changed QoS such that the entities are now incom-
patible.

l The matched DataWriter has been deleted.

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

This status may reflect changes from multiple match or unmatch events, and the current_count_change
can be used to determine the number of changes since the listener was called back or the status was
checked.

The structure for this status appears in Table 8.14 DDS_SubscriptionMatchedStatus.

Type Field
Name Description

DDS_Long

total_count

Cumulative number of times the DataReader discovered a "match" with a DataWriter.

This number increases whenever a newmatch is discovered. It does not decrease when an ex-
isting match goes away for any of the reasons listed above.

total_count_
change

The changes in total_count since the last time the listenerwas called or the status was read.

Note that this numberwill never be negative (because it’s the total number of times the
DataReader evermatched with a DataWriter).

current_
count

The number ofDataWriters currently matched to the concerned DataReader.

This number increases when a newmatch is discovered and decreases when an existing match
goes away for any of the reasons listed above.

current_
count_
change

The change in current_count since the last time the listenerwas called or the status was read.

Note that a negative current_count_changemeans that one ormore DataWritershave become
unmatched for one ormore of the reasons listed above.

current_
count_peak

Greatest number ofDataWriters that matched thisDataReader simultaneously. That is, there
was no moment in time when more than this manyDataWritersmatched thisDataReader. (As a
result, total_count can be higher than current_count_peak.)

DDS_InstanceHandle_t
last_pub-
lication_
handle

This InstanceHandle can be used to look up which remote DataWriter was the last to cause this
DataReader's status to change, using the DataReader's get_matched_publication_data()
method.

If the DataWriter no longermatches thisDataReader due to any of the reasons listed above ex-
cept incompatible QoS, then the DataWriter has been purged from thisDataReader'sDo-
mainParticipant discovery database. (See 15.1What isDiscovery? on page 771.) In that case,
the DataReader's get_matched_publication_datamethod will not be able to return information
about the DataWriter. The only way to get information about the lostDataWriter is if you cached
the information previously.

Table 8.14 DDS_SubscriptionMatchedStatus

The DataReaderListener’s on_subscription_matched() callback is invoked when this status changes.
You can also retrieve the value by calling the DataReader’s get_subscription_match_status() operation;
this will also reset the status so it is no longer considered “changed.”

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

This section describes how instances work on DataReaders. This section applies only to data types that
use keys; see 2.4 DDS Samples, Instances, and Keys on page 18. See also Chapter 6 Working with
Instances on page 258.

539

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

540

A DataReader receives updates about instances and instance state changes as DATA_AVAILABLE
statuses, the same way it receives data updates. (See 8.3.7.1 DATA_AVAILABLE Status on page 522.)
DataReaders can access instance state as part of the SampleInfo that is returned when calling any variant
of read() or take() (such as read_instance() or take_instance()).

8.3.8.1 Instance States

As seen in Figure 8.11: Instance States on the next page, Connext DDS keeps an instance_state for each
instance:

l ALIVE: The following are all true: (a) DDS samples have been received for the instance, (b) there
are live DataWriters writing the instance, and (c) the instance has not been explicitly disposed (or
more DDS samples have been received after it was disposed).

l NOT_ALIVE_DISPOSED: The instance was explicitly disposed by a DataWriter by means of
the dispose() operation, or implicitly as a result of the autodispose_unregistered_instances QoS
setting.

l NOT_ALIVE_NO_WRITERS: The instance has been declared as not-alive by the DataReader
because it has determined that there are no live DataWriter entities that have previously written the
instance.

Instances can cycle through these phases as seen in the state diagram below, becoming NOT_ALIVE and
then becoming ALIVE again. To track these transitions, there is metadata the DataReader can query
called generation counts. (See 8.3.8.2 Generation Counts and Ranks on page 542.)

The events that cause the instance_state to change can depend on the setting of the 7.5.17 OWNERSHIP
QosPolicy on page 435:

l If OWNERSHIP QoS is set to EXCLUSIVE, the instance_state becomes NOT_ALIVE_
DISPOSED only if the DataWriter that currently “owns” the instance explicitly disposes it. The
instance_state will become ALIVE again only if the DataWriter that owns the instance writes it.
Note that ownership of the instance is determined by a combination of the OWNERSHIP
QoSPolicy and 7.5.18 OWNERSHIP_STRENGTH QosPolicy on page 439. Ownership of an
instance can dynamically change.

l If OWNERSHIP QoS is set to SHARED, the instance_state becomes NOT_ALIVE_
DISPOSED if any DataWriter explicitly disposes the instance. The instance_state becomes
ALIVE as soon as any DataWriter writes the instance again.

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

Figure 8.11: Instance States

Transitions shown with dashes are only available if propagate_dispose_of_unregistered_instances = true

Since the instance_state in the SampleInfo structure is a per-instance concept, all DDS data samples
related to the same instance that are returned by read() or take() will have the same value for instance_
state. This means that if there are samples for that instance in the DataReader’s queue that were received
when the instance was ALIVE, and a subsequent dispose message is received, the samples’ metadata will
indicate that the instance’s state is NOT_ALIVE_DISPOSED in all of them.

Note: The instance_state always reflects the current state of the instance at the time of reading.

541

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

542

Figure 8.12: Before and After Dispose Received

When the dispose message is received (the box with the X, with valid_data = false), all samples for the flight 265
instance in the queue are marked as NOT_ALIVE_DISPOSED, even those that contain live data from when the

instance was ALIVE.

Note: If an instance transitions its state to NOT_ALIVE_NO_WRITERS due to one or more
DataWriters losing liveliness, it will not transition back to ALIVE if the DataWriter regains liveliness. It
only returns to the ALIVE state if a DataWriter writes a new sample of the instance.

8.3.8.2 Generation Counts and Ranks

Generation counts and ranks allow your application to distinguish DDS samples belonging to different
‘generations’ of the instance. It is possible for an instance to become alive, be disposed and become not-
alive, and then cycle again from alive to not-alive states during the operation of an application. Each time
an instance becomes alive defines a new generation for the instance.

It is possible that an instance may cycle through alive and not-alive states multiple times before the applic-
ation accesses the DDS data samples for the instance. This means that the DDS data samples returned by
read() and take()may cross generations. That is, some DDS samples were published when the instance
was alive in one generation and other DDS samples were published when the instance transitioned
through the non-alive state into the alive state again. It may be important to your application to distinguish
the DDS data samples by the generation in which they were published.

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

Each DataReader keeps two counters for each instance it detects (recall that instances are distinguished by
their key values):

l disposed_generation_count: Counts how many times the instance_state of the corresponding
instance changes from NOT_ALIVE_DISPOSED to ALIVE.

l no_writers_generation_count: Counts how many times the instance_state of the corresponding
instance changes from NOT_ALIVE_NO_WRITERS to ALIVE.

The disposed_generation_count and no_writers_generation_count fields in the SampleInfo structure
capture a snapshot of the corresponding counters at the time the corresponding DDS sample was received.

The sample_rank and generation_rank in the SampleInfo structure are computed relative to the
sequence of DDS samples returned by read() or take():

l sample_rank: Indicates how many DDS samples of the same instance follow the current one in the
sequence. The DDS samples are always time-ordered, thus the newest DDS sample of an instance
will have a sample_rank of 0. Depending on what you have configured read() and take() to return
(by passing in state masks and through themax_samples_per_read field in 8.6.2 DATA_
READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581), a sample_rank of 0
may or may not be the newest DDS sample that was ever received. It is just the newest DDS sample
in the sequence that was returned. The sample_rank value could be used by an application to
determine that there are newer samples in the sequence and that it might want to skip processing the
older samples.

l generation_rank: Indicates the difference in ‘generations’ between the DDS sample and the newest
DDS sample of the same instance as returned in the sequence. If a DDS sample belongs to the same
generation as the newest DDS sample in the sequence returned by read() and take(), then gen-
eration_rank will be 0.

l absolute_generation_rank: Indicates the difference in ‘generations’ between the DDS sample and
the newest DDS sample of the same instance ever received by the DataReader. Recall that the data
sequence returned by read() and take()may not contain all of the data in the DataReader’s receive
queue. Thus, a DDS sample that belongs to the newest generation of the instance will have an abso-
lute_generation_rank of 0.

By using the sample_rank, generation_rank and absolute_generation_rank information in the
SampleInfo structure, your application can determine exactly what happened to the instance and thus
make appropriate decisions of what to do with the DDS data samples received for the instance. For
example:

l A DDS sample with sample_rank= 0 is the newest DDS sample of the instance in the returned
sequence.

543

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

544

l DDS samples that belong to the same generation will have the same generation_rank (as well as
absolute_generation_rank).

l DDS samples with absolute_generation_rank = 0 belong to the newest generation for the instance
received by the DataReader.

The ‘generation count’ and ‘rank’ values are statistics that are locally generated by each DataReader and
maintained as part of the metadata for the instance that they refer to. Therefore, if the instance is reclaimed
and then returns at a later point in time, these counters will all restart at 0.

8.3.8.3 Valid Data Flag

The SampleInfo structure’s valid_data flag indicates whether the DDS sample contains data or is only
used to communicate a change in the instance_state of the instance.

Normally, each DDS sample contains both a SampleInfo structure and some data. However, there are situ-
ations in which the DDS sample only contains the SampleInfo and does not have any associated data.
This occurs when Connext DDS notifies the application of a change of state for an instance for which
there is no associated data. An example is when Connext DDS detects that an instance has no writers and
changes the corresponding instance_state to NOT_ALIVE_NO_WRITERS.

If the valid_data flag is TRUE, then the DDS sample contains valid data. If the flag is FALSE, the DDS
sample contains no data.

To ensure correctness and portability, your application must check the valid_data flag prior to accessing
the data associated with the DDS sample, and only access the data if it is TRUE. The value of data is
undefined when the valid_data flag is false.

8.3.8.4 Looking up an Instance Handle

Some operations, such as read_instance(), require an instance_handle parameter. If you need to get such
a handle, you can call the FooDataReader’s lookup_instance() operation, which takes a sample with key
fields specified as a parameter and returns a handle to that instance.
DDS_InstanceHandle_t lookup_instance (const Foo & key_holder)

The instance must have been received by the DataReader in order for the DataReader to look it up. If the
instance is not known to the DataReader, this operation returns DDS_HANDLE_NIL.

8.3.8.5 Getting the Key Value for an Instance

Once you have an instance handle (using lookup_instance(), as part of a status change notification, or
through the SampleInfo), you can use the DataReader’s get_key_value() operation to retrieve the value
of the key of the corresponding instance. The key fields of the data structure passed into get_key_value()
will be filled out with the original values used to generate the instance handle. The key fields are defined

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

when the data type is defined; see 2.4 DDS Samples, Instances, and Keys on page 18 for more inform-
ation.

If you set propagate_dispose_of_unregistered_instances to true and wish to call get_key_value() for
instances for which only a dispose sample has been received, the serialize_key_with_dispose field in the
7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390 must be set to true.

8.3.8.6 Instance Resource Limits and Memory Management

In Connext DDS, memory is primarily pre-allocated when creating entities. When data is keyed, the
memory associated with each instance used for storing instance-specific metadata is allocated when the
DataReader is created. Memory is not freed at runtime, unless you delete an entity. Instead, memory is
made available to be reused by the DataReader, or “reclaimed”.

The DataReader can receive a number of instances defined by the 7.5.22 RESOURCE_LIMITS
QosPolicy on page 452 and 8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Exten-
sion) on page 581. It is also important to understand that an instance in the DataReader queue has two
parts that make up the instance metadata: an active state and a minimum state. The resource limits control
the amount of active state and minimum state that should be maintained. (Note: the concept of active and
minimum state does not apply to instance metadata in the DataWriter queue.)

8.3.8.6.1 Active State and Minimum State

An instance is considered either attached or detached in the DataReader queue and is composed of two
parts, which make up the instance metadata: an active state and a minimum state.

545

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

546

Figure 8.13: Active and Minimum Instance States

An instance is considered attached when the DataReader is actively managing all possible state that can
be associated with an instance, including the associated samples, the instance and view states, generation
and sample ranks, the list of remote writers that are known to be writing the instance, and so on. Only
attached instances can have associated samples. A DataReader keeps both the active and the minimum
state for attached instances. The sum of the alive_instance_count, disposed_instance_count, and no_
writers_instance_count statistics in the 8.3.7.2 DATA_READER_CACHE_STATUS on page 522
reflects the total number of attached instances currently in the DataReader queue.

The following is applicable only if keep_minimum_state_for_instances in the 8.6.2 DATA_
READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581 is TRUE (by default, it is).
See 8.6.2.2 keep_minimum_state_for_instances on page 587 for more on this QoS setting.

An instance is considered detached when the DataReader is only maintaining the minimum state for the
instance. When instances are replaced or purged from the DataReader queue, by default only the active
state of the instance is reclaimed. A minimum amount of state for the instance is kept even after the
instance is removed in order to maintain system consistency without having to waste resources (memory
and CPU) by keeping other information around that is no longer relevant (i.e., the active state). The min-
imum state is used when instances that have been removed re-enter the system. This can happen, for
example, when a non-VOLATILE DataReader and DataWriter lose liveliness and then re-discover each
other. The DataWriter will resend its history, but if the DataReader has the minimum state information for
any instances that it removed during the disconnection, the previously received duplicate samples will be

8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)

filtered out and dropped before being accepted into the DataReader’s queue again. The minimum state
includes information such as the last source timestamp, the keyhash, and the list of virtual writers for the
instance. In general, you should keep keep_minimum_state_for_instances set to true if you are using the
Durable Reader State, MultiChannel DataWriters, or RTI Persistence Service, or in any system where
instances may be removed and then re-enter the system either because the original DataWriter is re-dis-
covered or writes the instance again or a new DataWriter begins writing the instance.

An instance transitions from what is considered an attached instance to a detached instance when the
instance is removed from the DataReader queue (purged or replaced). This can happen under the fol-
lowing conditions:

l The instance is replaced due to the instance_replacement settings in the 8.6.2 DATA_READER_
RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581.

l There are no more samples associated with the instance. Samples can be removed from the
DataReader queue through the use of the take() operation, or various QoS configurations such as a
finite lifespan or KEEP_LAST history configuration. In addition, at least one of the following must
be true:

l The instance was in the NOT_ALIVE_NO_WRITERS instance state and autopurge_
nowriter_instances_delay has expired. (The default value for the autopurge_nowriter_
instances_delay is 0, so by default instances are purged as soon as the instance is empty and
transitions to NOT_ALIVE_NO_WRITERS.)

l The instance was in the NOT_ALIVE_DISPOSED instance state and the autopurge_dis-
posed_instances_delay has expired.

The detached_instance_count statistic in the 8.3.7.2 DATA_READER_CACHE_STATUS on
page 522 counts the total number of detached instances currently in the DataReader queue.

8.3.8.6.2 Instance Resource Limit QoS Policies

The 7.5.22 RESOURCE_LIMITS QosPolicy on page 452 and 8.6.2 DATA_READER_RESOURCE_
LIMITS QosPolicy (DDS Extension) on page 581 include the following fields that affect the number of
instances that can be received:

l max_instances (7.5.22 RESOURCE_LIMITS QosPolicy on page 452): A resource limit on the
number of attached instances that can be managed by Connext DDS. By default, max_instances is
UNLIMITED, so you are bounded only by the physical resources of your system. If themax_
instances limit has been hit, and a sample is received for a new instance, Connext DDS will first
attempt to replace an instance according to what you have configured in the instance_replacement
field in the 8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 581. If there are not any replaceable instances (by default empty NOT_ALIVE_DISPOSED
and NOT_ALIVE_NO_WRITERS instances are replaceable, and ALIVE instances are not

547

8.3.9 Setting DataReader QosPolicies

548

replaceable), the sample will be lost with the reason LOST_BY_INSTANCES_LIMIT, and not re-
sent by the DataWriter. The sum of the alive_instance_count, disposed_instance_count, and no_
writers_instance_count statistics in the 8.3.7.2 DATA_READER_CACHE_STATUS on
page 522 reflects the total number of attached instances currently in the DataReader queue.

l max_total_instances (8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Exten-
sion) on page 581): A resource limit on the combined total number of attached+detached instances
that can be managed by Connext DDS. This resource limit limits the number of minimum instance
states that can be kept by the middleware, and both attached and detached instances require the min-
imum instance state to be kept. The detached_instance_count statistic in the 8.3.7.2 DATA_
READER_CACHE_STATUS on page 522 counts the total number of detached instances currently
in the DataReader queue.

l When a DataReader receives a new instance, Connext DDS will check max_instances. If
max_instances is not exceeded, Connext DDS will check max_total_instances. Ifmax_
total_instances is exceeded, Connext DDS will replace one of the detached instances with
the new, attached one. The application could receive duplicate samples for the replaced
instance if it becomes alive again.

l max_total_instances should be equal to the number of attached instances you want to keep,
plus the number of detached instances you want to keep.

l keep_minimum_state_for_instances (8.6.2 DATA_READER_RESOURCE_LIMITS
QosPolicy (DDS Extension) on page 581): This QoS setting can be used to enable or disable Con-
next DDS from keeping minimum instance information for detached instances. By default, this set-
ting is TRUE. This minimum instance information is useful for the features described earlier in this
section. If this QoS setting is FALSE, minimum instance state will not be kept, and therefore
detached instances will not be kept.

The instance_replacement field in the 8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy
(DDS Extension) on page 581 controls whether instances can be replaced to make room for new ones. See
8.6.2.3 Configuring DataReader Instance Replacement on page 588.

The 8.6.3 READER_DATA_LIFECYCLE QoS Policy on page 591 controls whether the DataReader
can remove data from the queue if instance state becomes NOT_ALIVE_NO_WRITERS or NOT_
ALIVE_DISPOSED.

8.3.9 Setting DataReader QosPolicies

A DataReader’s QosPolicies control its behavior. Think of QosPolicies as the 'properties' of a
DataReader.

The DDS_DataReaderQos structure has the following format:
DDS_DataWriterQos struct {

DDS_DurabilityQosPolicy durability;

8.3.9 Setting DataReader QosPolicies

DDS_DeadlineQosPolicy deadline;
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_UserDataQosPolicy user_data;
DDS_OwnershipQosPolicy ownership;
DDS_TimeBasedFilterQosPolicy time_based_filter;
DDS_ReaderDataLifecycleQosPolicy reader_data_lifecycle;
DDS_DataRepresentationQosPolicy representation;
DDS_TypeConsistencyEnforcementQosPolicy type_consistency;
DDS_DataTagQosPolicy data_tags;
// extensions to the DDS standard:
DDS_DataReaderResourceLimitsQosPolicy reader_resource_limits;
DDS_DataReaderProtocolQosPolicy protocol;
DDS_TransportSelectionQosPolicy transport_selection;
DDS_TransportUnicastQosPolicy unicast;
DDS_TransportMulticastQosPolicy multicast;
DDS_PropertyQosPolicy property;
DDS_ServiceQosPolicy service;
DDS_AvailabilityQosPolicy availability;
DDS_EntityNameQosPolicy subscription_name;
DDS_TransportPriorotyQosPolicy transport_priority;
DDS_TypeSupportQosPolicy type_support;

} DDS_DataReaderQos;

Note: set_qos() cannot always be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

Table 8.15 DataReader QosPolicies summarizes the meaning of each policy. (They appear alphabetically
in the table.) For information on why you would want to change a particular QosPolicy, see the referenced
section. For defaults and valid ranges, please refer to the API Reference HTML documentation.

QosPolicy Description

Availability

This QoS policy is used in the context of two features:

l For a Collaborative DataWriter, specifies the group of DataWriters expected to collaboratively provide
data and the timeouts that control when to allow data to be available that may skip DDS samples.

l For a Durable Subscription, configures a set of Durable Subscriptions on a DataWriter.

See 7.5.1 AVAILABILITYQosPolicy (DDSExtension) on page 371.

DataReaderProtocol
This QosPolicy configures the DDS on-the-network protocol, RTPS. See 8.6.1 DATA_READER_PROTOCOL
QosPolicy (DDSExtension) on page 575.

Table 8.15 DataReader QosPolicies

549

8.3.9 Setting DataReader QosPolicies

550

QosPolicy Description

DataReaderResourceLimits
Various settings that configure howDataReadersallocate and use physicalmemory for internal resources. See
8.6.2 DATA_READER_RESOURCE_LIMITSQosPolicy (DDSExtension) on page 581.

DataRepresentation
Specifies which versions of the Extended Common Data Representation (CDR) are requested. See 7.5.3 DATA_
REPRESENTATIONQosPolicy on page 381.

DataTag
A sequence of (name, value) string pairs that may be used by the Access Control plugin. See 7.5.4 DATATAG
QosPolicy on page 389.

Deadline

For a DataReader, it specifies the maximumexpected elapsed time between arriving DDS data samples.

For a DataWriter, it specifies a commitment to publish DDS samples with no greater elapsed time between them.

See 7.5.7 DEADLINEQosPolicy on page 407.

DestinationOrder
Controls howConnext DDSwill deal with data sent by multiple DataWriters for the same topic. Can be set to "by re-
ception timestamp" or to "by source timestamp". See 7.5.8 DESTINATION_ORDERQosPolicy on page 409.

Durability
Specifies whether or notConnext DDSwill store and deliver data that were previously published to newDataRead-
ers. See 7.5.9 DURABILITYQosPolicy on page 412.

DurabilityService
Various settings to configure the externalPersistence Service used byConnext DDS forDataWriterswith a Dur-
ability QoS setting of Persistent Durability. See 7.5.10 DURABILITYSERVICEQosPolicy on page 417.

EntityName Assigns a name to a DataReader. See 7.5.11 ENTITY_NAMEQosPolicy (DDSExtension) on page 419.

History
Specifies howmuch data must to stored byConnext DDS for the DataWriter orDataReader. This QosPolicy af-
fects the 7.5.21 RELIABILITYQosPolicy on page 448 as well as the 7.5.9 DURABILITYQosPolicy on
page 412. See 7.5.12 HISTORYQosPolicy on page 421.

LatencyBudget
Suggestion to Connext DDS on howmuch time is allowed to deliver data. See 7.5.13 LATENCYBUDGET QoS
Policy on page 426.

Liveliness
Specifies and configures the mechanism that allowsDataReaders to detect when DataWritersbecome dis-
connected or "dead." See 7.5.15 LIVELINESSQosPolicy on page 428.

Property

Stores name/value (string) pairs that can be used to configure certain parameters ofConnext DDS that are not ex-
posed through formalQoS policies. It can also be used to store and propagate application-specific name/value
pairs, which can be retrieved by user code during discovery. See 7.5.19 PROPERTYQosPolicy (DDSExtension)
on page 440.

ReaderDataLifecycle
Controls how a DataReadermanages the lifecycle of the data that it has received. See 8.6.3 READER_DATA_
LIFECYCLEQoSPolicy on page 591.

Reliability
Specifies whether or notConnext DDSwill deliver data reliably. See 7.5.21 RELIABILITYQosPolicy on
page 448.

ResourceLimits
Controls the amount of physicalmemory allocated for entities, if dynamic allocations are allowed, and how they oc-
cur. Also controls memory usage among different instance values for keyed topics. See 7.5.22 RESOURCE_
LIMITSQosPolicy on page 452.

Service
Intended for use by RTI infrastructure services. User applications should not modify its value. See 7.5.23
SERVICEQosPolicy (DDSExtension) on page 455.

Table 8.15 DataReader QosPolicies

8.3.9 Setting DataReader QosPolicies

QosPolicy Description

TimeBasedFilter
Set by a DataReader to limit the number of new data values received over a period of time. See 8.6.4 TIME_
BASED_FILTERQosPolicy on page 593.

TransportMulticast
Specifies the multicast address on which a DataReader wants to receive its data. Can specify a port number as
well as a subset of the available transports with which to receive the multicast data. See 8.6.5 TRANSPORT_
MULTICAST QosPolicy (DDSExtension) on page 596.

TransportPriority
Set by a DataReader to tellConnext DDS that the data being sent is a different "priority" than other data. See
7.5.26 TRANSPORT_PRIORITYQosPolicy on page 459.

TransportSelection
Allows you to select which physical transports a DataWriter orDataReadermay use to send or receive its data.
See 7.5.27 TRANSPORT_SELECTIONQosPolicy (DDSExtension) on page 464.

TransportUnicast
Specifies a subset of transports and port number that can be used by an Entity to receive data. See 7.5.28
TRANSPORT_UNICAST QosPolicy (DDSExtension) on page 465.

TypeConsistencyEnforcement
Defines rules that determine whether the type used to publish a given data stream is consistent with that used to
subscribe to it. See 8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy on page 599.

TypeSupport
Used to attach application-specific value(s) to a DataWriter orDataReader. These values are passed to the seri-
alization or deserialization routine of the associated data type. Also controls whether padding bytes are set to 0
during serialization. See 7.5.29 TYPESUPPORT QosPolicy (DDSExtension) on page 469.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a buffer of bytes to Connext DDS's
discovery meta-data. See 7.5.30 USER_DATAQosPolicy on page 470.

Table 8.15 DataReader QosPolicies

For a DataReader to communicate with a DataWriter, their corresponding QosPolicies must be com-
patible. For QosPolicies that apply both to the DataWriter and the DataReader, the setting in the
DataWriter is considered what the DataWriter “offers” and the setting in the DataReader is what the
DataReader “requests.” Compatibility means that what is offered by the DataWriter equals or surpasses
what is requested by the DataReader. See 4.2.1 QoS Requested vs. Offered Compatibility—the RxO
Property on page 180.

Some of the policies may be changed after the DataReader has been created. This allows the application
to modify the behavior of the DataReader while it is in use. To modify the QoS of an already-created
DataReader, use the get_qos() and set_qos() operations on the DataReader. This is a general pattern for
all Entities, described in 4.1.7.3 Changing the QoS for an Existing Entity on page 175.

8.3.9.1 Configuring QoS Settings when the DataReader is Created

As described in 8.3.1 Creating DataReaders on page 515, there are different ways to create a
DataReader, depending on how you want to specify its QoS (with or without a QoS Profile).

l In Figure 8.9: Creating a DataReader with Default QosPolicies on page 516, there is an example of
how to create a DataReader with default QosPolicies by using the special constant, DDS_
DATAREADER_QOS_DEFAULT, which indicates that the default QoS values for a

551

8.3.9 Setting DataReader QosPolicies

552

DataReader should be used. The default DataReader QoS values are configured in the Subscriber
or DomainParticipant; you can change them with set_default_datareader_qos() or set_default_
datareader_qos_with_profile(). Then any DataReaders created with the Subscriber will use the
new default values. As described in 4.1.7 Getting, Setting, and Comparing QosPolicies on
page 172, this is a general pattern that applies to the construction of all Entities.

l To create a DataReader with non-default QoS without using a QoS Profile, see the example code in
Figure 8.14: Creating a DataReader with Modified QosPolicies (not from a profile) below. It uses
the Subscriber’s get_default_reader_qos()method to initialize a DDS_DataReaderQos structure.
Then the policies are modified from their default values before the structure is used in the create_
datareader()method.

l You can also create a DataReader and specify its QoS settings via a QoS Profile. To do so, you will
call create_datareader_with_profile(), as seen in Figure 8.15: Creating a DataReader with a QoS
Profile on the next page.

l If you want to use a QoS profile, but then make some changes to the QoS before creating the
DataReader, call get_datawriter_qos_from_profile() and create_datawriter() as seen in Figure
8.16: Getting QoS Values from Profile, Changing QoS Values, Creating DataReader with Modified
QoS Values on the next page.

For more information, see 7.3.1 Creating DataWriters on page 293 and Configuring QoS with XML
(Chapter 19 on page 854).

Notes:

l The examples in this section use the Traditional C++ API; for examples in the Modern C++ API,
see the sections "DataReader Use Cases," "Qos Use Cases," and "Qos Provider Use Cases" in the
API Reference HTML documentation, under "Programming How-To's."

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 8.14: Creating a DataReader with Modified QosPolicies (not from a profile)

DDS_DataReaderQos reader_qos;
// initialize reader_qos with default values
subscriber->get_default_datareader_qos(reader_qos);
// make QoS changes
reader_qos.history.depth = 5;
// Create the reader with modified qos
DDSDataReader * reader = subscriber->create_datareader(

topic, reader_qos, NULL, DDS_STATUS_MASK_NONE);
if (reader == NULL) {

// ... error
}
// narrow it for your specific data type
FooDataReader* foo_reader = FooDataReader::narrow(reader);

8.3.9 Setting DataReader QosPolicies

Figure 8.15: Creating a DataReader with a QoS Profile

// Create the datareader
DDSDataReader * reader =

subscriber->create_datareader_with_profile(
topic, “MyReaderLibrary”, “MyReaderProfile”,
NULL, DDS_STATUS_MASK_NONE);

if (reader == NULL) {
// ... error

};
// narrow it for your specific data type
FooDataReader* foo_reader = FooDataReader::narrow(reader);

Figure 8.16: Getting QoS Values from Profile, Changing QoS Values, Creating DataReader
with Modified QoS Values

DDS_DataReaderQos reader_qos;
// Get reader QoS from profile
retcode = factory->get_datareader_qos_from_profile(

reader_qos, “ReaderProfileLibrary”, “ReaderProfile”);
if (retcode != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes
reader_qos.history.depth = 5;
DDSDataReader * reader = subscriber->create_datareader(

topic, reader_qos, NULL, DDS_STATUS_MASK_NONE);
if (participant == NULL) {

// handle error
}

8.3.9.2 Comparing QoS Values

The equals() operation compares two DataReader’s DDS_DataReaderQoS structures for equality. It takes
two parameters for the two DataReader’s QoS structures to be compared, then returns TRUE is they are
equal (all values are the same) or FALSE if they are not equal.

8.3.9.3 Changing QoS Settings After the DataReader has been Created

There are two ways to change an existing DataReader’s QoS after it is has been created—again depend-
ing on whether or not you are using a QoS Profile.

l To change QoS programmatically (that is, without using a QoS Profile), use get_qos() and set_qos
(). See the example code in Figure 8.17: Changing the QoS of Existing DataReader (without a QoS
Profile) on the next page. It retrieves the current values by calling the DataWriter’s get_qos() oper-
ation. Then it modifies the value and calls set_qos() to apply the new value. Note, however, that
some QosPolicies cannot be changed after the DataWriter has been enabled—this restriction is

553

8.3.9 Setting DataReader QosPolicies

554

noted in the descriptions of the individual QosPolicies.

l You can also change a DataReader’s (and all other Entities’) QoS by using a QoS Profile and call-
ing set_qos_with_profile(). For an example, see Figure 8.18: Changing the QoS of Existing
DataReader with a QoS Profile below. For more information, see Configuring QoS with XML
(Chapter 19 on page 854).

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 8.17: Changing the QoS of Existing DataReader (without a QoS Profile)

DDS_DataReaderQos reader_qos;
// Get current QoS.
if (datareader->get_qos(reader_qos) != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes here
reader_qos.history.depth = 5;
// Set the new QoS
if (datareader->set_qos(reader_qos) != DDS_RETCODE_OK) {

// handle error
}

Figure 8.18: Changing the QoS of Existing DataReader with a QoS Profile

retcode = reader->set_qos_with_profile(
“ReaderProfileLibrary”,”ReaderProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

8.3.9.4 Using a Topic’s QoS to Initialize a DataReader’s QoS

Several DataReader QosPolicies can also be found in the QosPolicies for Topics (see 5.1.3 Setting Topic
QosPolicies on page 220). The QosPolicies set in the Topic do not directly affect the DataReaders (or
DataWriters) that use that Topic. In many ways, some QosPolicies are a Topic-level concept, even though
the DDS standard allows you to set different values for those policies for different DataWriters and
DataReaders of the same Topic. Thus, the policies in the DDS_TopicQos structure exist as a way to help
centralize and annotate the intended or suggested values of those QosPolicies. Connext DDS does not
check to see if the actual policies set for a DataReader is aligned with those set in the Topic to which it is
bound.

There are many ways to use the QosPolicies’ values set in the Topic when setting the QosPolicies’ values
in a DataReader. The most straightforward way is to get the values of policies directly from the Topic and

8.3.9 Setting DataReader QosPolicies

use them in the policies for the DataReader, as shown in Figure 8.19: Copying Selected QoS from a
Topic when Creating a DataReader below.

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 8.19: Copying Selected QoS from a Topic when Creating a DataReader

DDS_DataReaderQos reader_qos;
DDS_TopicQos topic_qos;
// topic and publisher already created
// get current QoS for the topic, default QoS for the reader
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {

// handle error
}
if (publisher->get_default_datareader_qos(reader_qos)

!= DDS_RETCODE_OK) {
// handle error

}
// Copy specific policies from topic QoS to reader QoS
reader_qos.deadline = topic_qos.deadline;
reader_qos.reliability = topic_qos.reliability;
// Create the DataReader with the modified QoS
DDSDataReader* reader = publisher->create_datareader(topic,

reader_qos,NULL, DDS_STATUS_MASK_NONE);

You can use the Subscriber’s copy_from_topic_qos() operation to copy all of the common policies from
the Topic QoS to a DataReader QoS. This is illustrated in Figure 8.20: Copying all QoS from a Topic
when Creating a DataReader below.
Figure 8.20: Copying all QoS from a Topic when Creating a DataReader

DDS_DataReaderQos reader_qos;
DDS_TopicQos topic_qos;
// topic, publisher, reader_listener already created
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {
// handle error
}
if (publisher->get_default_datareader_qos(reader_qos)

!= DDS_RETCODE_OK)
{

// handle error
}
// copy relevant QoS from topic into reader’s qos
publisher->copy_from_topic_qos(reader_qos, topic_qos);
// Optionally, modify policies as desired
reader_qos.deadline.duration.sec = 1;
reader_qos.deadline.duration.nanosec = 0;
// Create the DataReader with the modified QoS

555

8.3.10 Navigating Relationships Among Entities

556

DDSDataReader* reader = publisher->create_datareader(topic,
reader_qos, reader_listener, DDS_STATUS_MASK_ALL);

The special macro, DDS_DATAREADER_QOS_USE_TOPIC_QOS, can be used to indicate that the
DataReader should be created with the QoS that results from modifying the default DataReader QoS with
the values specified by the Topic. See Figure 7.23: Combining Default Topic and DataWriter QoS (Option
1) on page 342 and Figure 7.24: Combining Default Topic and DataWriter QoS (Option 2) on page 343
for examples involving DataWriters. The same pattern applies to DataReaders.

For more information on the general use and manipulation of QosPolicies, see 4.1.7 Getting, Setting, and
Comparing QosPolicies on page 172.

8.3.10 Navigating Relationships Among Entities

8.3.10.1 Finding Matching Publications

The following DataReader operations can be used to get information about the DataWriters that will send
data to this DataReader. A publication consists of information about the DataWriter and its associated Pub-
lisher and Topic.

l get_matched_publications()

l get_matched_publication_data()

The get_matched_publications() operation will return a sequence of handles to matched DataWriters.
You can use these handles in the get_matched_publication_data()method to get information about the
DataWriter such as the values of its QosPolicies, as well as information about its Publisher and Topic.

Note that DataWriters that have been ignored using the DomainParticipant’s ignore_publication() oper-
ation are not considered to be matched even if the DataWriter has the same Topic and compatible
QosPolicies. Thus, they will not be included in the list of DataWriters returned by get_matched_pub-
lications(). See 18.4.2 Ignoring Publications and Subscriptions on page 849 for more on ignore_pub-
lication().

You can also get the DATA_READER PROTOCOL_STATUS for matching publications with get_
matched_publication_datareader_protocol_status() (see 8.3.7.3 DATA_READER_PROTOCOL_
STATUS on page 525).

Notes:

l The get_matched_publications() function includes the return of handles of matched DataWriters
that are no longer alive. All of the handles returned by this function are valid inputs to the get_
matched_publication_data() function.

l Status/data for a matched publication is kept even if the matched DataWriter is not alive. Status/data
for a matched publication will be removed only if the DataWriter is gone: that is, the DataWriter is

8.3.10 Navigating Relationships Among Entities

destroyed and this change is propagated through a discovery update, or the DataWriter's
DomainParticipant is gone (either gracefully or its liveliness expired and Connext DDS is con-
figured to purge not-alive participants). Once a matched DataWriter is gone, its status is deleted. If
you try to get the status/data for a matched DataWriter that is gone, the 'get status' or ' get data' call
will return an error.

l If you want to know which matched DataWriters are not alive, use is_matched_publication_alive
(). See Table 8.3 DataReader Operations on page 510.

l The get_matched_publication_data() operation does not retrieve the type_code information from
built-in-topic data structures. This information is available through the on_data_available() callback
(if a DataReaderListener is installed on the PublicationBuiltinTopicDataDataReader).

See also: 8.3.10.2 Finding the Matching Publication’s ParticipantBuiltinTopicData below

8.3.10.2 Finding the Matching Publication’s ParticipantBuiltinTopicData

get_matched_publication_participant_data() allows you to get the DDS_ParticipantBuiltinTopicData
(see Table 18.1 Participant Built-in Topic’s Data Type (DDS_ParticipantBuiltinTopicData)) of a matched
publication using a publication handle.

This operation retrieves the information on a discovered DomainParticipant associated with the pub-
lication that is currently matching with the DataReader.

The publication handle passed into this operation must correspond to a publication currently associated
with the DataReader. Otherwise, the operation will fail with RETCODE_BAD_PARAMETER. The
operation may also fail with RETCODE_PRECONDITION_NOT_MET if the publication handle cor-
responds to the same DomainParticipant to which the DataReader belongs.

Use get_matched_publications() (see 8.3.10.1 Finding Matching Publications on the previous page) to
find the publications that are currently matched with the DataReader.

8.3.10.3 Finding a DataReader’s Related Entities

These DataReader operations are useful for obtaining a handle to various related entities:

l get_subscriber()

l get_topicdescription()

The get_subscriber() operation returns the Subscriber that created the DataReader. get_topicdescription
() returns the Topic with which the DataReader is associated.

8.3.10.4 Looking Up an Instance Handle

Some operations, such as read_instance() and take_instance(), take an instance_handle parameter. If
you need to get such as handle, you can call the lookup_instance() operation, which takes an instance as a

557

8.4 Using DataReaders to Access Data (Read & Take)

558

parameter and returns a handle to that instance.

8.3.10.5 Getting the Key Value for an Instance

If you have a handle to a data-instance, you can use the FooDataReader’s get_key_value() operation to
retrieve the key for that instance. The value of the key is decomposed into its constituent fields and
returned in a Foo structure. For information on keys and keyed data types, please see 2.4 DDS Samples,
Instances, and Keys on page 18.

8.4 Using DataReaders to Access Data (Read & Take)

For user applications to access the data received for a DataReader, they must use the type-specific derived
class or set of functions in the C API. Thus for a user data type ‘Foo’, you must use methods of the
FooDataReader class. The type-specific class or functions are automatically generated if you use RTI
Code Generator. Else, you will have to create them yourself, see 3.2.8 Type Codes for Built-in Types on
page 74 for more details.

8.4.1 Using a Type-Specific DataReader (FooDataReader)

This section doesn't apply to the Modern C++ API, where a DataReader's data type is part of its
template definition: DataReader<Foo>.

Using a Subscriber you will create a DataReader associating it with a specific data type, for example
‘Foo’. Note that the Subscriber’s create_datareader()method returns a generic DataReader. When your
code is ready to access DDS data samples received for the DataReader, you must use type-specific oper-
ations associated with the FooDataReader, such as read() and take().

To cast the generic DataReader returned by create_datareader() into an object of type FooDataReader,
you should use the type-safe narrow()method of the FooDataReader class. narrow() will make sure
that the generic DataReader passed to it is indeed an object of the FooDataReader class before it makes
the cast. Else, it will return NULL. Figure 8.8: Simple SubscriberListener on page 507 shows an example:
Foo_reader = FooDataReader::narrow(reader);

Table 8.3 DataReader Operations lists type-specific operations using a FooDataReader. Also listed are
generic, non-type specific operations that can be performed using the base class object DDSDataReader
(or DDS_DataReader in C). In C, you must pass a pointer to a DDS_DataReader to those generic func-
tions.

8.4.2 Loaning and Returning Data and SampleInfo Sequences

8.4.2.1 C, Traditional C++, Java and .NET

The read() and take() operations (and their variations) return information to your application in two
sequences:

8.4.2 Loaning and Returning Data and SampleInfo Sequences

l Received DDS data samples in a sequence of the data type

l Corresponding information about each DDS sample in a SampleInfo sequence

These sequences are parameters that are passed by your code into the read() and take() operations. If you
use empty sequences (sequences that are initialized but have a maximum length of 0), Connext DDS will
fill those sequences with memory directly loaned from the receive queue itself. There is no copying of the
data or of SampleInfo when the contents of the sequences are loaned. This is certainly the most efficient
way for your code to retrieve the data.

However when you do so, your code must return the loaned sequences back to Connext DDS so that they
can be reused by the receive queue. If your code does not return the loan by calling the FooDataReader’s
return_loan()method, then Connext DDS will eventually run out of memory to store DDS data samples
received from the network for that DataReader. See Figure 8.21: Using Loaned Sequences in read() and
take() below for an example of borrowing and returning loaned sequences.
DDS_ReturnCode_t return_loan(

FooSeq &received_data, DDS_SampleInfoSeq &info_seq);

Figure 8.21: Using Loaned Sequences in read() and take()

// In C++ and Java, sequences are automatically initialized
// to be empty
FooSeq data_seq;
DDS_SampleInfoSeq info_seq;
DDS_ReturnCode_t retcode;
...
// with empty sequences, a take() or read() will return loaned
// sequence elements
retcode = Foo_reader->take(data_seq, info_seq,

DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);
... // process the returned data

// must return the loaned sequences when done processing
Foo_reader->return_loan(data_seq, info_seq);
...

For the C API, you must use the FooSeq_initialize() and DDS_SampleInfoSeq_initialize() operations or
the macro DDS_SEQUENCE_INITIALIZER to initialize the FooSeq and DDS_SampleInfoSeq to be
empty. For example, DDS_SampleInfoSeq infoSeq; DDS_SampleInfoSeq_initialize(&infoSeq); or
FooSeq fooSeq = DDS_SEQUENCE_INITIALIZER;

If your code provides its own sequences to the read/take operations, then Connext DDS will copy the data
from the receive queue. In that case, you do not have to call return_loan() when you are finished with the
data. However, you must make sure the following is true, or the read/take operation will fail with a return
code of DDS_RETCODE_PRECONDITION_NOT_MET:

559

8.4.3 Accessing DDS Data Samples with Read or Take

560

l The received_data of type FooSeq and info_seq of type DDS_SampleInfoSeq passed in as para-
meters have the same maximum size (length).

l The maximum size (length) of the sequences are less than or equal to the passed in parameter, max_
samples.

8.4.2.2 Modern C++

The read() and take() operations (and their variations) return LoanedSamples, an iterable collection of
loaned, read-only samples each containing the actual data and meta-information about the sample.
A LoanedSamples collection automatically returns the loan to the middleware in its destructor. You can
also explicitly call LoanedSamples::return_loan().

Figure 8.22: Using LoanedSamples to read data

dds::sub::LoanedSamples<Foo> samples = reader.take();
for (auto sample : samples) { // process the data

if (sample.info().valid()) {
std::cout << sample.data() << std::endl;

}
}

8.4.3 Accessing DDS Data Samples with Read or Take

To access the DDS data samples that Connext DDS has received for a DataReader, you must invoke the
read() or take()methods. These methods return a list (sequence) of DDS data samples and additional
information about the DDS samples in a corresponding list (sequence) of SampleInfo structures. The con-
tents of SampleInfo are described in 8.4.6 The SampleInfo Structure on page 570.

Calling read(), take(), or one of their variations resets the DATA_AVAILABLE status.

The way Connext DDS builds the collection of DDS samples depends on QoS policies set on the
DataReader and Subscriber, the source_timestamp of the DDS samples, and the sample_states, view_
states, and instance_states parameters passed to the read/take operation.

In read() and take(), you may enter parameters so that Connext DDS selectively returns DDS data samples
currently stored in the DataReader’s receive queue. You may want Connext DDS to return all of the data
in a single list or only a subset of the available DDS samples as configured using the sample_states,
view_Connext DDSstates, and instance_states masks. 8.4.6 The SampleInfo Structure on page 570
describes how these masks are used to determine which DDS data samples should be returned.

8.4.3.1 Read vs. Take

The difference between read() and take() is how Connext DDS treats the data that is returned. With take
(), Connext DDS will remove the data from the DataReader’s receive queue. The data returned by Con-
next DDS is no longer stored by Connext DDS. With read(), Connext DDS will continue to store the data
in the DataReader’s receive queue. The same data may be read again until it is taken in subsequent take()

8.4.3 Accessing DDS Data Samples with Read or Take

calls. Note that the data stored in the DataReader’s receive queue may be overwritten, even if it has not
been read, depending on the setting of the 7.5.12 HISTORY QosPolicy on page 421.

The read() and take() operations are non-blocking calls, so that they may return no data (DDS_
RETCODE_NO_DATA) if the receive queue is empty or has no data that matches the criteria specified
by the StateMasks.

The read_w_condition() and take_w_condition() operations take a ReadCondition as a parameter
instead of DDS sample, view or instance states. The only DDS samples returned will be those for which
the ReadCondition is TRUE. These operations, in conjunction with ReadConditions and a WaitSet, allow
you to perform ‘waiting reads.’ For more information, see 4.6.7 ReadConditions and QueryConditions on
page 210.

As you will see, read and take have the same parameters:

DDS_ReturnCode_t read(FooSeq &received_data_seq,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

DDS_ReturnCode_t take(FooSeq &received_data_seq,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

Note: These operations may loan internal Connext DDS memory, which must be returned with return_
loan(). See 8.4.2 Loaning and Returning Data and SampleInfo Sequences on page 558.

Both operations return an ordered collection of DDS data samples (in the received_data_seq parameter)
and information about each DDS sample (in the info_seq parameter). Exactly how they are ordered
depends on the setting of the 7.4.6 PRESENTATION QosPolicy on page 363 and the 7.5.8
DESTINATION_ORDER QosPolicy on page 409. For more details please see the API Reference
HTML documentation for read() and take().

In read() and take(), you can use the sample_states, view_states, and instance_states parameters to spe-
cify properties that are used to select the actual DDS samples that are returned by those methods. With dif-
ferent combinations of these three parameters, you can direct Connext DDS to return all DDS data
samples, DDS data samples that you have not accessed before, the DDS data samples of instances that you
have not seen before, DDS data samples of instances that have been disposed, etc. The possible values for
the different states are described both in the API Reference HTML documentation and in 8.4.6 The
SampleInfo Structure on page 570.

Table 8.16 Read and Take Operations lists the variations of the read() and take() operations.

561

8.4.3 Accessing DDS Data Samples with Read or Take

562

Read
Operations

Take
Operations

Modern
C++1 Description Reference

read take

reader.read()

or

reader.select()

.state(...)

.read()

Reads/takes a collection of DDS data samples from the
DataReader.

Can be used for both keyed and non-keyed data types.

8.4.3 Accessing DDS
Data Sampleswith Read
or Take on page 560

read_in-
stance

take_in-
stance

reader.select()

.instance(...)

.read()

Identical to read() and take(), but all returned DDS samples belong
to a single instance, which you specify as a parameter.

Can only be used with keyed data types.

8.4.3.4 read_instance
and take_instance on
page 564

read_in-
stance_
w_condition

take_in-
stance_
w_condition

reader.select()

.instance()

.condition(...)

.read()

Identical to read_instance() and take_instance(), but all returned
DDS samples belong to the single specified instance and satisfy the
specified ReadCondition.

8.4.3.7 read_instance_
w_condition and take_in-
stance_w_condition on
page 566

read_next_in-
stance

take_next_in-
stance

reader.select
().next_instance
(...).read()

Similar to read_instance() and take_instance(), but the actual in-
stance is not directly specified as a parameter. Instead, the DDS
samples will all belong to instance ordered after the instance that is
specified by the previous_handle parameter.

8.4.3.5 read_next_in-
stance and take_next_in-
stance on page 564

read_next_in-
stance_
w_condition

take_next_in-
stance_
w_condition

reader.select()

.next_instance
(...)

.condition(...)

.read()

Accesses a collection of DDS data samples of the next instance that
match a specific set of ReadConditions, from the DataReader.

8.4.3.8 read_next_in-
stance_w_condition and
take_next_instance_w_
condition on page 567

read_next_
sample

take_next_
sample

reader.select()

.state
(DataState::not_
read())

Provides a convenient way to access the next DDS DDS sample in
the receive queue that has not been accessed before.

8.4.3.3 read_next_
sample and take_next_
sample on the next page

read_w_con-
dition

take_w_con-
dition

reader.select()

.condition(...)

Accesses a collection of DDS data samples from the DataReader
that match specific ReadCondition criteria.

8.4.3.6 read_w_con-
dition and take_w_con-
dition on page 566

Table 8.16 Read and Take Operations

8.4.3.2 General Patterns for Accessing Data

Once the DDS data samples are available to the data readers, the DDS samples can be read or taken by the
application. The basic rule is that the application may do this in any order it wishes. This approach is very
flexible and allows the application ultimate control.

To access data coherently, or in order, the 7.4.6 PRESENTATION QosPolicy on page 363 must be set
properly.

1For the Modern C++, only the read() operation is shown; the take() variant is parallel.

8.4.3 Accessing DDS Data Samples with Read or Take

Accessing DDS samples If No Order or Coherence Is Required

Simply access the data by calling read/take on each DataReader in any order you want.

You do not have to call begin_access() and end_access(). However, doing so is not an error and it will
have no effect.

You can call the Subscriber’sget_datareaders() operation to see which DataReaders have data to be
read, but you do not need to read all of them or read them in a particular order. The get_datareaders()
operation will return a logical 'set' in the sense that the same DataReader will not appear twice. The order
of the DataReaders returned is not specified.

Accessing DDS samples within a SubscriberListener

This case describes how to access the data inside the listener's on_data_on_readers() operation (regard-
less of the PRESENTATION QoS policy settings).

To do so, you can call read/take on each DataReader in any order. You can also delegate accessing of the
data to the DataReaderListeners by calling the Subscriber’snotify_datareaders() operation.

Similar to the previous case, you can still call the Subscriber’s get_datareaders() operation to determine
which DataReaders have data to be read, but you do not have to read all of them, or read them in a par-
ticular order. get_datareaders() will return a logical 'set.'

You do not have to call begin_access() and end_access(). However, doing so is not an error and it will
have no effect.

8.4.3.3 read_next_sample and take_next_sample

The read_next_sample() or take_next_sample() operation is used to retrieve the next DDS sample that
hasn’t already been accessed. It is a simple way to 'read' DDS samples and frees your application from
managing sequences and specifying DDS sample, instance or view states. It behaves the same as calling
read() or take() with max_samples = 1, sample_states = NOT_READ, view_states = ANY_VIEW_
STATE, and instance_states = ANY_INSTANCE_STATE.

DDS_ReturnCode_t read_next_sample(
Foo & received_data, DDS_SampleInfo & sample_info);

DDS_ReturnCode_t take_next_sample(
Foo & received_data, DDS_SampleInfo & sample_info);

It copies the next, not-previously-accessed data value from the DataReader. It also copies the DDS
sample’s corresponding DDS_SampleInfo structure.

If there is no unread data in the DataReader, the operation will return DDS_RETCODE_NO_DATA
and nothing is copied.

Since this operation copies both the DDS data sample and the SampleInfo into user-provided storage, it
does not allocate nor loan memory. You do not have to call return_loan() after this operation.

563

8.4.3 Accessing DDS Data Samples with Read or Take

564

Note: If the received_data parameter references a structure that contains a sequence and that sequence has
not been initialized, the operation will return DDS_RETCODE_ERROR.

8.4.3.4 read_instance and take_instance

The read_instance() and take_instance() operations are identical to read() and take(), but they are used
to access DDS samples for just a specific instance (key value). The parameters are the same, except you
must also supply an instance handle. These functions can only be used when the DataReader is tied to a
keyed type, see 2.4 DDS Samples, Instances, and Keys on page 18 for more about keyed data types.

These operations may return BAD_PARAMETER if the instance handle does not correspond to an exist-
ing data-object known to the DataReader.

The handle to a particular data instance could have been cached from a previous read() operation (value
taken from the SampleInfo struct) or created by using the DataReader’s lookup_instance() operation.

DDS_ReturnCode_t read_instance(
FooSeq &received_data,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
const DDS_InstanceHandle_t &a_handle,

DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

Note: This operation may loan internal Connext DDS memory, which must be returned with return_loan
(). See 8.4.2 Loaning and Returning Data and SampleInfo Sequences on page 558.

8.4.3.5 read_next_instance and take_next_instance

The read_next_instance() and take_next_instance() operations are similar to read_instance() and take_
instance() in that they return DDS samples for a specific data instance (key value). The difference is that
instead of passing the handle of the data instance for which you want DDS data samples, instead you pass
the handle to a ‘previous’ instance. The returned DDS samples will all belong to the 'next' instance, where
the ordering of instances is explained below.

DDS_ReturnCode_t read_next_instance(
FooSeq &received_data,
DDS_Long max_samples,
const DDS_InstanceHandle_t &previous_handle
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states)

Connext DDS orders all instances relative to each other. This ordering depends on the value of the key as
defined for the data type associated with the Topic. For the purposes of this discussion, it is 'as if' each

8.4.3 Accessing DDS Data Samples with Read or Take

instance handle is represented by a unique integer and thus different instance handles can be ordered by
their value. (The ordering of the instances is specific to each implementation of the DDS standard; to max-
imize the portability of your code, do not assume any particular order. In the case of Connext DDS, and
likely other DDS implementations, the order is not likely to be meaningful to you as a developer; it is
simply important that some ordering exists.)

This operation will return values for the next instance handle that has DDS data samples stored in the
receive queue (that meet the criteria specified by the StateMasks). The next instance handle will be
ordered after the previous_handle that is passed in as a parameter.

The special value DDS_HANDLE_NIL can be passed in as the previous_handle. Doing so, you will
receive values for the “smallest” instance handle that has DDS data samples stored in the receive queue
that you have not yet accessed.

You can call the read_next_instance() operation with a previous_handle that does not correspond to an
instance currently managed by the DataReader. For example, you could use this approach to iterate
though all the instances, take all the DDS samples with a NOT_ALIVE_NO_WRITERS instance_state,
return the loans (at which point the instance information may be removed, and thus the handle becomes
invalid), and then try to read the next instance.

The example below shows how to use take_next_instance() iteratively to process all the data received for
an instance, one instance at a time. We always pass in DDS_HANDLE_NIL as the value of previous_
handle. Each time through the loop, we will receive DDS samples for a different instance, since the pre-
vious time through the loop, all of the DDS samples of the previous instance were returned (and thus
accessed).

In the C API, you must use the FooSeq_initialize() and DDS_SampleInfoSeq_initialize() operations or
the macro DDS_SEQUENCE_INITIALIZER to initialize the FooSeq and DDS_SampleInfoSeq to be
empty. For example, DDS_SampleInfoSeq infoSeq; DDS_SampleInfoSeq_initialize(&infoSeq); or
FooSeq fooSeq = DDS_SEQUENCE_INITIALIZER;

565

8.4.3 Accessing DDS Data Samples with Read or Take

566

FooSeq received_data;
DDS_SampleInfoSeq info_seq;
while (retcode = reader->take_next_instance(received_data, info_seq,

DDS_LENGTH_UNLIMITED, DDS_HANDLE_NIL,
DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE)
!= DDS_RETCODE_NO_DATA) {

// the data samples returned in received_data will all
// be for a single instance
// process the data
// now return the loaned sequences
if (reader->return_loan(received_data, info_seq)
!= DDS_RETCODE_OK) {

// handle error
}

}

Note: This operation may loan internal Connext DDS memory, which must be returned with return_loan
(). See 8.4.2 Loaning and Returning Data and SampleInfo Sequences on page 558.

8.4.3.6 read_w_condition and take_w_condition

The read_w_condition() and take_w_condition() operations are identical to read() and take(), but
instead of passing in the sample_states, view_states, and instance_states mask parameters directly, you
pass in a ReadCondition (which specifies these masks).
DDS_ReturnCode_t read_w_condition (

FooSeq &received_data,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
DDSReadCondition *condition)

Note: This operation may loan internal Connext DDS memory, which must be returned with return_loan
(). See 8.4.2 Loaning and Returning Data and SampleInfo Sequences on page 558.

8.4.3.7 read_instance_w_condition and take_instance_w_condition

The read_instance_w_condition() and take_instance_w_condition() operations are similar to read_
instance() and take_instance(), respectively, except that the returned DDS samples must also satisfy a spe-
cified ReadCondition.
DDS_ReturnCode_t read_instance_w_condition(

FooSeq & received_data,
DDS_SampleInfoSeq & info_seq,
DDS_Long max_samples,
const DDS_InstanceHandle_t & a_handle,
DDSReadCondition * condition);

The behavior of read_instance_w_condition() and take_instance_w_condition() follows the same rules
as read() and take() regarding pre-conditions and post-conditions for the received_data and sample_info
parameters.

8.4.3 Accessing DDS Data Samples with Read or Take

These functions can only be used when the DataReader is tied to a keyed type, see 2.4 DDS Samples,
Instances, and Keys on page 18 for more about keyed data types.

Similar to read(), these operations must be provided on the specialized class that is generated for the par-
ticular application data-type that is being accessed.

Note: These operations may loan internal Connext DDS memory, which must be returned with return_
loan(). See 8.4.2 Loaning and Returning Data and SampleInfo Sequences on page 558.

8.4.3.8 read_next_instance_w_condition and take_next_instance_w_condition

The read_next_instance_w_condition() and take_next_instance_w_condition() operations are identical
to read_next_instance() and take_next_instance(), but instead of passing in the sample_states, view_
states, and instance_states mask parameters directly, you pass in a ReadCondition (which specifies these
masks).
DDS_ReturnCode_t read_next_instance_w_condition (

FooSeq &received_data,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
const DDS_InstanceHandle_t &previous_handle,
DDSReadCondition *condition)

Note: This operation may loan internal Connext DDS memory, which must be returned with return_loan
(). See 8.4.2 Loaning and Returning Data and SampleInfo Sequences on page 558.

8.4.3.9 The select() API (Modern C++)

The Modern C++ API combines all the previous ways to read data into a single operation: reader.select
().This call is followed by one or more calls to functions that configure the query and always ends in a call
to read() or take(). These are the functions that configure a select():

Function Description Default

max_
samples()

Specifies the maximumnumber of samples to read or take in this call
Up to the value specified in max_
samples_per_read on page 582

instance() Specifies an instance to read or take All instances

next_in-
stance()

Indicates that read or take should return samples for the instance that follows the one being
passed (Note: both next_instance() and instance() can't be specified at the same time)

All instances

state() Specifies the sample state, view state and instance state All samples

content() Specifies a query on the data values to read All samples

condition()

Specifies a condition (see read_w_condition()). If condition() is specified state() and content
()cannot be specified.

When running a query more than once on the same DataReader, it is more efficient to create a
QueryCondition and pass it to condition() rather than using content().

All samples

567

8.4.4 Acknowledging DDS Samples

568

To read or take using the default options, simply call reader.read() or reader.take() with no arguments.

The following example shows how to call select():
dds::sub::LoanedSamples<Foo> samples =

reader.select()
.max_samples(20)
.state(dds::sub::status::DataState::new_instance())
.content(dds::sub::Query(reader, "x > 10"))
.instance(my_instance_handle)
.take();

8.4.4 Acknowledging DDS Samples

DDS samples can be acknowledged one at a time, or as a group.

To explicitly acknowledge a single DDS sample:
DDS_ReturnCode_t acknowledge_sample (

const DDS_SampleInfo & sample_info);
DDS_ReturnCode_t acknowledge_sample (

const DDS_SampleInfo & sample_info,
const DDS_AckResponseData_t & response_data);

Or you may acknowledge all previously accessed DDS samples by calling:
DDS_ReturnCode_t DDSDataReader::acknowledge_all ()
DDS_ReturnCode_t DDSDataReader::acknowledge_all (

const DDS_AckResponseData_t & response_data)

Where:

sample_info is of type DDS_SampleInfo, identifying the DDS sample being acknowledged

response_data is response data sent to the DataWriter upon acknowledgment

These operations can only be used when the DataReader’s 7.5.21 RELIABILITY QosPolicy on
page 448 has an acknowledgment_kind set to DDS_APPLICATION_EXPLICIT_
ACKNOWLEDGMENT_MODE. You must also setmax_app_ack_response_length (in the 8.6.2
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581) to a value greater
than zero.

See also: 7.3.12 Application Acknowledgment on page 318 and Guaranteed Delivery of Data (Chapter
14 on page 758).

8.4.5 The Sequence Data Structure

(This section doesn't apply to the Modern C++ API)

The DDS specification uses sequences whenever a variable-length array of elements must be passed
through the API. This includes passing QosPolicies into Connext DDS, as well as retrieving DDS data
samples from Connext DDS. A sequence is an ordered collection of elements of the same type. The type

8.4.5 The Sequence Data Structure

of a sequence containing elements of type “Foo” (whether “Foo” is one of your types or a built-in Con-
next DDS type) is typically called “FooSeq.”

In all APIs except Java, FooSeq contains deep copies of Foo elements; in Java, which does not provide
direct support for deep copy semantics, FooSeq contains references to Foo objects. In Java, sequences
implement the java.util.List interface, and thus support all of the collection APIs and idioms familiar to
Java programmers.

A sequence is logically composed of three things: an array of elements, a maximum number of elements
that the array may contain (i.e. its allocated size), and a logical length indicating how many of the allocated
elements are valid. The length may vary dynamically between 0 and the maximum (inclusive); it is not per-
missible to access an element at an index greater than or equal to the length.

A sequence may either “own” the memory associated with it, or it may “borrow” that memory. If a
sequence owns its own memory, then the sequence itself will allocate the its memory and is permitted to
grow and shrink that memory (i.e. change its maximum) dynamically.

You can also loan a sequence of memory using the sequence-specific operations loan_contiguous() or
loan_discontiguous(). This is useful if you want Connext DDS to copy the received DDS data samples
directly into data structures allocated in user space.

Please do not confuse (a) the user loaning memory to a sequence with (b) Connext DDS loaning internal
memory from the receive queue to the user code via the read() or take() operations. For sequences of user
data, these are complementary operations. read() and take() loan memory to the user, passing in a
sequence that has been loaned memory with loan_contiguous() or loan_discontinguous().

A sequence with loaned of memory may not change its maximum size.

For C developers:

In C, because there is no concept of a constructor, sequences must be initialized before they are used. You
can either set a sequence equal to the macro DDS_SEQUENCE_INITIALIZER or use a sequence-spe-
cific method, <type>Seq_initialize(), to initialize sequences.

For Traditional C++, C++/CLI, and C# developers:

Traditional C++ sequence classes overload the [] operators to allow you to access their elements as if the
sequence were a simple array. However, for code portability reasons, Connext DDS’s Traditional C++
implementation of sequences does not use the Standard Template Library (STL).

For Java developers:

In Java, sequences implement the List interface, and typically, a Listmust contain Objects; it cannot con-
tain primitive types directly. This restriction makes Lists of primitives types less efficient because each
type must be wrapped and unwrapped into and from an Object as it is added to and removed from the
List.

569

8.4.6 The SampleInfo Structure

570

Connext DDS provides a more efficient implementation for sequences of primitive types. In Connext DDS,
primitive sequence types (e.g., IntSeq, FloatSeq, etc.) are implemented as wrappers around arrays of prim-
itive types. The wrapper also provides the usual List APIs; however, these APIs manipulate Objects that
store the primitive type.

More efficient APIs are also provided that manipulate the primitive types directly and thus avoid unne-
cessary memory allocations and type casts. These additional methods are named according to the pattern
<standard method><primitive type>; for example, the IntSeq class defines methods addInt() and getInt()
that correspond to the List APIs add() and get(). addInt() and getInt() directly manipulate int values
while add() and get()manipulate Objects that contain a single int.

For more information on sequence APIs in all languages, please consult the API Reference HTML doc-
umentation (from the main page, selectModules, RTI Connext DDS API Reference, Infrastructure
Module, Sequence Support).

8.4.6 The SampleInfo Structure

When you invoke the read/take operations, for every DDS data sample that is returned, a corresponding
SampleInfo is also returned. SampleInfo structures provide you with additional information about the
DDS data samples received by Connext DDS.

Table 8.17 DDS_SampleInfo Structure shows the format of the SampleInfo structure.

Type Field
Name Description

DDS_
SampleStateKind

sample_
state

See 8.4.6.2 Sample Stateson page 573

DDS_
ViewStateKind

view_state See 8.4.6.3 View Stateson page 574

DDS_In-
stanceStateKind

instance_
state

See 8.3.8.1 Instance Stateson page 540

DDS_Time_t
source_
timestamp

Time stored by the DataWriter when the DDS sample was written.

DDS_In-
stanceHandle_t

instance_
handle

Handle to the data-instance corresponding to the DDS sample.

DDS_In-
stanceHandle_t

publication_
handle

Local handle to the DataWriter that modified the instance. This is the same instance handle returned by get_
matched_publications(). You can use this handle when calling get_matched_publication_data().

Table 8.17 DDS_SampleInfo Structure

8.4.6 The SampleInfo Structure

Type Field
Name Description

DDS_Long

disposed_
generation_
count

See 8.3.8.2 Generation Counts and Rankson page 542.

no_writers_
generation_
count

sample_rank

generation_
rank

absolute_
generation_
rank

DDS_Boolean valid_data Indicates whether the DDS data sample includes valid data. See 8.3.8.3 Valid Data Flag on page 544.

DDS_Time_t
reception_
timestamp

Time stored when the DDS sample was committed by the DataReader. See 8.4.6.1 Reception Timestamp
on page 573.

DDS_
SequenceNumber_
t

publication_
sequence_
number

Publication sequence number assigned when the DDS sample was written by the DataWriter.

DDS_
SequenceNumber_
t

reception_se-
quence_num-
ber

Reception sequence number assigned when the DDS sample was committed by the DataReader. See
8.4.6.1 Reception Timestamp on page 573.

struct DDS_GUID_t
original_pub-
lication_
virtual_guid

Original publication virtual GUID.

If the Publisher’s access_scope is GROUP, this field contains the Publisher virtual GUID that uniquely iden-
tifies the DataWriter group.

struct DDS_
SequenceNumber_
t

original_pub-
lication_
virtual_se-
quence_num-
ber

Original publication virtual sequence number.

If the Publisher’s access_scope is GROUP, this field contains the Publisher virtual sequence number that
uniquely identifies a DDS sample within the DataWriter group.

DDS_GUID_t
topic_query_
guid

The GUID of the DDS_TopicQuery that is related to the sample.

This GUID indicates whether a sample is part of the response to a DDS_TopicQuery or a regular ("live")
sample:

If the sample was written for the TopicQuery stream, this field contains the GUID of the target TopicQuery.

If the sample was written for the live stream, this field will be set to DDS_GUID_UNKNOWN.

Table 8.17 DDS_SampleInfo Structure

571

8.4.6 The SampleInfo Structure

572

Type Field
Name Description

DDS_Long flag

Flags associated with the DDS sample; set by using the flag field in DDS_WriteParams_t when writing a DDS
sample with FooDataWriter_write_w_params() (see 7.3.8 Writing Data on page 310).

RTI reserves least-significant bits [0-7] formiddleware-specific usage. The application can use least sig-
nificant bits [8-15].

The first bit, REDELIVERED_SAMPLE, is reserved to mark a DDS sample as redelivered when using RTI
Queuing Service.

The second bit, INTERMEDIATE_REPLY_SEQUENCE_SAMPLE, is used to indicate that a response DDS
sample is not the last response DDS sample for a given request. This bit is usually set by Connext DDS Repli-
ers sending multiple responses for a request.

The third bit, REPLICATE_SAMPLE, indicates if a sample must be broadcast by one Queuing Service replica
to other replicas.

The fourth bit, LAST_SHARED_READER_QUEUE_SAMPLE, indicates that a sample is the last sample in a
SharedReaderQueue for a QueueConsumerDataReader.

The fifth bit, INTERMEDIATE_TOPIC_QUERY_SAMPLE, indicates that a sample for a TopicQuery will be fol-
lowed bymore samples. This flag only applies to samples that have been published as a response to a Top-
icQuery. When this bit is not set and topic_query_guid is different fromGUID_UNKNOWN, this sample is the
last sample for that TopicQuery coming from the DataWriter identified by original_publication_virtual_guid
on the previouspage.

The sixth bit, WRITER_REMOVED_BATCH_SAMPLE, will be set if the sample was accepted into the
DataReader queue even though it wasmarked by the DataWriter as removed. Examples of removed
samples in a batch are samples that were replaced due to KEEP_LAST_HISTORY_QOS on the DataWriter
(see 7.5.12 HISTORYQosPolicy on page 421) or samples that outlived the DataWriter's 7.5.14 LIFESPAN
QoSPolicy on page 426 duration. If the DataReader sets the property dds.data_reader.accept_writer_re-
moved_batch_samples to true (in the 7.5.19 PROPERTYQosPolicy (DDSExtension) on page 440), the
removed sample will be accepted into the DataReader queue and this flag will be set.

struct DDS_GUID_t source_guid The application logical data source associated with the sample.

struct DDS_GUID_t
related_
source_guid

The application logical data source that is related to the sample.

struct DDS_GUID_t
related_sub-
scription_
guid

The related_reader_guid associated with the sample.

Table 8.17 DDS_SampleInfo Structure

8.4.6 The SampleInfo Structure

Type Field
Name Description

struct DDS_Co-
herentSetInfo_t

coherent_
set_info

Information about the coherent set that this sample is a part of. This field is set for all samples that are part of a
coherent set. This field contains the following members:

l group_guid identifies the DataWriter or the group ofDataWriterspublishing the coherent set,
depending on the value of the Subscriber's access_scope in the 7.4.6 PRESENTATION
QosPolicy on page 363. (If access_scope is TOPIC or INSTANCE, then group_guid identifies a
single DataWriter; if access_scope is GROUP, then group_guid identifies all the DataWriters
within a Publisher.)

l coherent_set_sequence_number identifies a sample as part of a DataWriter coherent set. When
the Subscriber's access_scope in the 7.4.6 PRESENTATIONQosPolicy on page 363 is TOPIC
or INSTANCE, the coherent set associated with a sample is identified by the pair (group_guid, coher-
ent_set_sequence_number).

l group_coherent_set_sequence_number identifies a sample as part of a group coherent set. When
the Subscriber's access_scope in the 7.4.6 PRESENTATIONQosPolicy on page 363 is GROUP,
the coherent set associated with a sample is identified by the pair (group_guid, group_coherent_
set_sequence_number).

l incomplete_coherent_set indicates if a sample is part of an incomplete coherent set. An incomplete
coherent set is a coherent set for which not all samples have been received. Note that a coherent set
is also considered incomplete if some of its samples are filtered by content or time on the DataWriter
side. By default, received samples froman incomplete coherent set are not provided to the applic-
ation and they are reported as LOST_BY_INCOMPLETE_COHERENT_SET (see 8.3.7.7
SAMPLE_LOST Statuson page 532). You can change this behavior by setting drop_incomplete_
coherent_set to FALSE in the 7.4.6 PRESENTATIONQosPolicy on page 363.

Table 8.17 DDS_SampleInfo Structure

8.4.6.1 Reception Timestamp

In reliable communication, if DDS data samples are received out received of order, Connext DDS will not
deliver them until all the previous DDS data samples have been received. For example, if DDS sample 2
arrives before DDS sample 1, DDS sample 2 cannot be delivered until DDS sample 1 is received. The
reception_timestamp is the time when all previous DDS samples has been received—the time at which
the DDS sample is committed. If DDS samples are all received in order, the committed time will be same
as reception time. However, if DDS samples are lost on the wire, then the committed time will be later
than the initial reception time.

8.4.6.2 Sample States

For each DDS sample received, Connext DDS keeps a sample_state relative to each DataReader. The
sample_state can be either:

l READ: The DataReader has already accessed that DDS sample by means of read().

l NOT_READ: The DataReader has never accessed that DDS sample before.

The DDS samples retrieved by a read() or take() need not all have the same sample_state.

573

8.4.6 The SampleInfo Structure

574

8.4.6.3 View States

For each instance (identified by a unique key value), Connext DDS keeps a view_state relative to each
DataReader. The view_state can be either:

l NEW: Either this is the first time the DataReader has ever accessed DDS samples of the instance, or
the DataReader has accessed previous DDS samples of the instance, but the instance has since been
reborn (i.e., become not-alive and then alive again). These two cases are distinguished by examining
the disposed_generation_count and the no_writers_generation_count (see 8.3.8.2 Generation
Counts and Ranks on page 542).

l NOT_NEW:The DataReader has already accessed DDS samples of the same instance and the
instance has not been reborn since.

The view_state in the SampleInfo structure is really a per-instance concept (as opposed to the sample_
state which is per DDS sample). Thus all DDS data samples related to the same instance that are returned
by read() or take() will have the same value for view_state.

8.4.6.4 Instance States

Connext DDS keeps an instance_state for each instance; it can be:

l ALIVE

l NOT_ALIVE_DISPOSED

l NOT_ALIVE_NO_WRITERS

For more information, see 8.3.8.1 Instance States on page 540.

8.4.6.5 Generation Counts and Ranks

Each DataReader keeps two counters for each new instance it detects (recall that instances are dis-
tinguished by their key values):

l disposed_generation_count

l no_writers_generation_count

For more information, see 8.3.8.2 Generation Counts and Ranks on page 542.

8.4.6.6 Valid Data Flag

The SampleInfo structure’s valid_data flag indicates whether the DDS sample contains data or is only
used to communicate a change in the instance_state of the instance.

8.5 Subscriber QosPolicies

For more information, see 8.3.8.3 Valid Data Flag on page 544.

8.5 Subscriber QosPolicies

Subscribers have the same set of QosPolicies as Publishers; see 7.4 Publisher/Subscriber QosPolicies on
page 346.

l 7.4.2 ENTITYFACTORY QosPolicy on page 349

l 7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension) on page 351

l 7.4.4 GROUP_DATA QosPolicy on page 354

l 7.4.5 PARTITION QosPolicy on page 357

l 7.4.6 PRESENTATION QosPolicy on page 363

8.6 DataReader QosPolicies

This section describes the QosPolicies that are strictly for DataReaders (not for DataWriters). For a com-
plete list of QosPolicies that apply to DataReaders, see Table 8.15 DataReader QosPolicies .

l 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) below

l 8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581

l 8.6.3 READER_DATA_LIFECYCLE QoS Policy on page 591

l 8.6.4 TIME_BASED_FILTER QosPolicy on page 593

l 8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) on page 596

l 8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy on page 599

8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)

The DATA_READER_PROTOCOL QosPolicy applies only to DataReaders that are set up for reliable
operation (see 7.5.21 RELIABILITY QosPolicy on page 448). This policy allows the application to fine-
tune the reliability protocol separately for each DataReader. For details of the reliable protocol used by
Connext DDS, see Reliable Communications (Chapter 11 on page 694).

Connext DDS uses a standard protocol for packet (user and meta data) exchange between applications.
The DataReaderProtocol QosPolicy gives you control over configurable portions of the protocol, includ-
ing the configuration of the reliable data delivery mechanism of the protocol on a per DataReader basis.

These configuration parameters control timing and timeouts, and give you the ability to trade off between
speed of data loss detection and repair, versus network and CPU bandwidth used to maintain reliability.

575

8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)

576

It is important to tune the reliability protocol on a per DataReader basis to meet the requirements of the
end-user application so that data can be sent between DataWriters and DataReaders in an efficient and
optimal manner in the presence of data loss.

You can also use this QosPolicy to control how DDS responds to "slow" reliable DataReaders or ones
that disconnect or are otherwise lost.

See the 7.5.21 RELIABILITY QosPolicy on page 448 for more information on the per-DataRead-
er/DataWriter reliability configuration. The 7.5.12 HISTORY QosPolicy on page 421 and 7.5.22
RESOURCE_LIMITS QosPolicy on page 452 also play an important role in the DDS reliability protocol.

This policy includes the members presented in Table 8.18 DDS_DataReaderProtocolQosPolicy and Table
8.19 DDS_RtpsReliableReaderProtocol_t. For defaults and valid ranges, please refer to the API Reference
HTML documentation.

When setting the fields in this policy, the following rule applies. If this is false, Connext DDS returns
DDS_RETCODE_INCONSISTENT_POLICY when setting the QoS:

max_heartbeat_response_delay >= min_heartbeat_response_delay

Type Field Name Description

DDS_GUID_t virtual_guid

The virtual GUID (Global Unique Identifier) is used to
uniquely identify the same DataReader across multiple in-
carnations. In otherwords, this value allowsConnext DDS
to remember information about a DataReader that may be
deleted and then recreated.

This value is used to provide durable reader state.

Formore information, see 13.2 Durability and Persistence
Based on VirtualGUIDson page 743.

By default,Connext DDSwill assign a virtual GUID auto-
matically. If you want to restore the DataReader’s state
after a restart, you can get the DataReader's virtual GUID
using its get_qos() operation, then set the virtual GUID of
the restarted DataReader to the same value.

DDS_UnsignedLong rtps_object_id

Determines the DataReader’sRTPS object ID, according
to the DDS-RTPS Interoperability Wire Protocol.

Only the last 3 bytes are used; the most significant byte is ig-
nored.

The rtps_host_id, rtps_app_id, rtps_instance_id in the
9.5.9 WIRE_PROTOCOLQosPolicy (DDSExtension) on
page 676, togetherwith the 3 least significant bytes in
rtps_object_id, and another byte assigned byConnext
DDS o identify the entity type, forms the BuiltinTopicKey in
SubscriptionBuiltinTopicData.

Table 8.18 DDS_DataReaderProtocolQosPolicy

8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)

Type Field Name Description

DDS_Boolean expects_inline_qos

Specifies whether thisDataReader expects inline QoS
with every DDS sample.

DataReadersusually rely on the discovery process to
propagate QoS changes formatched DataWriters.
Anotherway to get QoS information is to have it sent inline
with a DDS sample.

WithConnext DDS,DataWritersand DataReaders cache
discovery information, so sending inline QoS is typically un-
necessary. The use of inline QoS is only needed for state-
less implementations of DDS in which DataReadersdo not
cache Discovery information.

The complete set of QoS that a DataWritermay send inline
is specified by the Real-Time Publish-Subscribe (RTPS)
Wire Interoperability Protocol.

Note: The use of inline QoS creates an additional wire-pay-
load, consuming extra bandwidth and seri-
alization/deserialization time.

DDS_Boolean disable_positive_acks

Determines whether the DataReader sends positive ac-
knowledgements (ACKs) to matching DataWriters.

When TRUE. the matching DataWriter will keep DDS
samples in its queue for thisDataReader for a minimum
keep duration (see 7.5.5.3 Disabling Positive Ac-
knowledgements on page 397).

When strict-reliability is not required and NACK-based re-
liability is sufficient, setting this field reduces overhead net-
work traffic.

DDS_Boolean
propagate_dispose_of_unregistered_
instances

Indicates whether or not an instance can move to the
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE state
without being in the DDS_ALIVE_INSTANCE_STATE
state. See 6.1 Instance Stateson page 259 formore in-
formation about this transition.

When set to TRUE, the DataReader will receive dispose no-
tifications even if the instance is not alive.

This field only applies to keyed DataReaders.

To make sure the key is available to the FooDataReader’s
get_key_value() operation, use this option in combination
with setting the DataWriter’s serialize_key_with_dis-
pose field (in the 7.5.5 DATA_WRITER_PROTOCOL
QosPolicy (DDSExtension) on page 390) to TRUE.

See 7.5.5.5 Propagating Serialized Keyswith Disposed-
Instance Notificationson page 399.

Table 8.18 DDS_DataReaderProtocolQosPolicy

577

8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)

578

Type Field Name Description

DDS_Boolean
propagate_unregister_of_disposed_
instances

Indicates whether or not an instance can move to the
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE
state directly from the DDS_NOT_ALIVE_DISPOSED_
INSTANCE_STATE. See 6.1 Instance Stateson page 259
formore information about this transition.

When set to TRUE, the DataReader will receive unregister
notifications even if the instance is already disposed.

This field only applies to keyed DataReaders.

DDS_RtpsReliableReaderProtocol_t rtps_reliable_reader See Table 8.19 DDS_RtpsReliableReaderProtocol_t

Table 8.18 DDS_DataReaderProtocolQosPolicy

Type Field Name Description

DDS_Duration_t min_heartbeat_response_delay
Minimumdelay between when the DataReader receives a heartbeat and when
it sends an ACK/NACK.

DDS_Duration_t max_heartbeat_response_delay
Maximumdelay between when the DataReader receives a heartbeat and when
it sends an ACK/NACK. Increasing this value helps prevent NACK storms, but in-
creases latency.

DDS_Duration_t heartbeat_suppression_duration

How long additionally received heartbeats are suppressed.

When a reliable DataReader receives consecutive heartbeats within a short dur-
ation, this may trigger redundant NACKs. To prevent the DataReader fromsend-
ing redundant NACKs, the DataReadermay ignore the latter heartbeat(s) for
this amount of time.

See 11.3.4.1 How Often Heartbeats are Resent (heartbeat_period) on
page 710.

DDS_Duration_t nack_period
Rate at which to send negative acknowledgements to newDataWriters. See
8.6.1.3 Example on page 580.

DDS_Long receive_window_size
The number of received out-of-orderDDS samples a reader can keep at a time.
See 8.6.1.1 ReceiveWindow Size on the next page

DDS_Duration_t round_trip_time
The duration fromsending a NACK to receiving a repair of a DDS sample. See
8.6.1.2 Round-Trip Time For Filtering Redundant NACKson page 580

DDS_Duration_t app_ack_period

The period at which application-level acknowledgment messages are sent.

A DataReader sends application-level acknowledgment messages to a
DataWriter at this periodic rate, and will continue sending until it receives a mes-
sage from the DataWriter that it has received and processed the ac-
knowledgment.

Table 8.19 DDS_RtpsReliableReaderProtocol_t

8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)

Type Field Name Description

DDS_Duration_t
min_app_ack_response_keep_
duration

Minimumduration forwhich application-level acknowledgment response data is
kept.

The user-specified response data of an explicit application-level ac-
knowledgment (called by DataReader’s acknowledge_sample() orac-
knowledge_all() operations) is cached by the DataReader for the purpose of
reliably resending the data with the acknowledgment message. After this dur-
ation has passed from the time of the first acknowledgment, the response data is
dropped from the cache and will not be resent with future acknowledgments for
the corresponding DDS sample(s).

DDS_Long samples_per_app_ack

The minimumnumber of DDS samples acknowledged by one application-level
acknowledgment message.

This setting applies only when the 7.5.21 RELIABILITYQosPolicy on page 448
acknowledgment_kind is set to APPLICATION_EXPLICIT or APPLICATION_
AUTO.

A DataReader will immediately send an application-level acknowledgment mes-
sage when it has at least this many DDS samples that have been ac-
knowledged. It will not send an acknowledgment message until it has at least
this many DDS samples pending acknowledgment.

For example, calling the DataReader’s acknowledge_sample() this many
times consecutively will trigger the sending of an acknowledgment message.
Calling the DataReader’s acknowledge_all()may trigger the sending of an ac-
knowledgment message, if at least this many DDS samples are being ac-
knowledged at once. See 8.4.4 Acknowledging DDSSampleson page 568.

This is independent of the DDS_RtpsReliableReaderProtocol_t’s app_ack_
period, where a DataReader will send acknowledgment messages at the peri-
odic rate regardless.

When this is set to DDS_LENGTH_UNLIMITED, acknowledgment messages are
sent only periodically, at the rate set by DDS_RtpsReliableReaderProtocol_t’s
app_ack_period.

Table 8.19 DDS_RtpsReliableReaderProtocol_t

8.6.1.1 Receive Window Size

A reliable DataReader presents DDS samples it receives to the user in-order. If it receives DDS samples
out-of-order, it stores them internally until the other missing DDS samples are received. For example, if the
DataWriter sends DDS samples 1 and 2, if the DataReader receives 2 first, it will wait until it receives 1
before passing the DDS samples to the user.

The number of out-of-order DDS samples that a DataReader can keep is set by the receive_window_size.
A larger window allows more out-of-order DDS samples to be kept. When the window is full, any sub-
sequent out-of-order DDS samples received will be rejected, and such rejections would necessitate NACK
repairs that would degrade throughput. So, in network environments where out-of-order samples are more
probable or where NACK repairs are costly, this window likely should be increased.

By default, the window is set to 256, which is the maximum number of DDS samples a single NACK
submessage can request.

579

8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)

580

Samples rejected for exceeding the receive_window_size are counted in out_of_range_rejected_
sample_count in the 8.3.7.3 DATA_READER_PROTOCOL_STATUS on page 525, but not included
in the 8.3.7.8 SAMPLE_REJECTED Status on page 536.

8.6.1.2 Round-Trip Time For Filtering Redundant NACKs

When a DataReader requests for a DDS sample to be resent, there is a delay from when the NACK is
sent, to when it receives the resent DDS sample. During that delay, the DataReader may receive
HEARTBEATs that normally would trigger another NACK for the same DDS sample. Such redundant
repairs waste bandwidth and degrade throughput.

The round_trip_time is a user-configured estimate of the delay between sending a NACK to receiving a
repair. A DataReader keeps track of when a DDS sample has been NACK'd, and will prevent subsequent
NACKs from redundantly requesting for the same DDS sample, until the round trip time has passed.

Note that the default value of 0 seconds means that the DataReader does not filter for redundant NACKs.

8.6.1.3 Example

For many applications, changing these values will not be necessary. However, the more nodes that your
distributed application uses, and the greater the amount of network traffic it generates, the more likely it is
that you will want to consider experimenting with these values.

When a reliable DataReader receives a heartbeat from a DataWriter, it will send an ACK/NACK packet
back to the DataWriter. Instead of sending the packet out immediately, the DataReader can choose to
send it after a delay. This policy sets the minimum and maximum time to delay; the actual delay will be a
random value in between. (For more on heartbeats and ACK/NACK messages, see Discovery (Chapter
15 on page 770).)

Why is a delay useful? For DataWriters that have multiple reliable DataReaders, an efficient way of heart-
beating all of the DataReaders is to send a single heartbeat via multicast. In that case, all of the DataRead-
ers will receive the heartbeat (approximately) simultaneously. If all DataReaders immediately respond
with a ACK/NACK packet, the network may be flooded. While the size of a ACK/NACK packet is rel-
atively small, as the number of DataReaders increases, the chance of packet collision also increases. All of
these conditions may lead to dropped packets which forces the DataWriter to send out additional heart-
beats that cause more simultaneous heartbeats to be sent, ultimately resulting a network packet storm.

By forcing each DataReader to wait for a random amount of time, bounded by the minimum and max-
imum values in this policy, before sending an ACK/NACK response to a heartbeat, the use of the network
is spread out over a period of time, decreasing the peak bandwidth required as well as the likelihood of
dropped packets due to collisions. This can increase the overall performance of the reliable connection
while avoiding a network storm.

When a reliable DataReader first matches a reliable DataWriter, the DataReader sends periodic NACK
messages at the specified period to pull historical data from the DataWriter. The DataReader will stop
sending periodic NACKs when it has received all historical data available at the time that it matched the

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

DataWriter. The DataReader ensures that at least one NACK is sent per period; for example, if, within a
NACK period, the DataReader responds to a HEARTBEAT message with a NACK, then the
DataReader will not send another periodic NACK.

8.6.1.4 Properties

This QosPolicy cannot be modified after the DataReader is created.

It only applies to DataReaders, so there are no restrictions for setting it compatibly with respect to
DataWriters.

8.6.1.5 Related QosPolicies

l 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390

l 7.5.21 RELIABILITY QosPolicy on page 448

8.6.1.6 Applicable DDS Entities

l 8.3 DataReaders on page 509

8.6.1.7 System Resource Considerations

Changing the values in this policy requires making tradeoffs between minimizing latency (decreasing
min_heartbeat_response_delay), maximizing determinism (decreasing the difference between min_
heartbeat_response_delay and max_heartbeat_response_delay), and minimizing network col-
lisions/spreading out the ACK/NACK packets across a time interval (increasing the difference between
min_heartbeat_response_delay and max_heartbeat_response_delay and/or shifting their values
between different DataReaders).

If the values are poorly chosen with respect to the characteristics and requirements of a given application,
the latency and/or throughput of the application may suffer.

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

The DATA_READER_RESOURCE_LIMITS QosPolicy extends your control over the memory alloc-
ated by Connext DDS for DataReaders beyond what is offered by the 7.5.22 RESOURCE_LIMITS
QosPolicy on page 452. RESOURCE_LIMITS controls memory allocation with respect to the
DataReader itself: the number of DDS samples that it can store in the receive queue and the number of
instances that it can manage simultaneously. DATA_READER_RESOURCE_LIMITS controls memory
allocation on a per matched-DataWriter basis. The two are orthogonal.

This policy includes the members in Table 8.20 DDS_DataReaderResourceLimitsQosPolicy. For defaults
and valid ranges, please refer to the API Reference HTML documentation.

581

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

582

Type Field Name Description

DDS_
Long

max_remote_
writers

Maximumnumber ofDataWriters fromwhich a DataReadermay re-
ceive DDS data samples, among all instances.

For unkeyed Topics:max_remote_writers must =max_remote_
writers_per_instance

max_remote_
writers_
per_instance

Maximumnumber ofDataWriters fromwhich a DataReadermay re-
ceive DDS data samples for a single instance.

For unkeyed Topics:max_remote_writers must =max_remote_
writers_per_instance

max_samples_
per_remote_
writer

Maximumnumber of DDS samples received out-of-order that a
DataReader can store froma single reliable DataWriter.

max_samples_per_remote_writer must be <=RESOURCE_
LIMITS::max_samples

max_infos

Maximumnumber of DDS_SampleInfo structures that a
DataReader can allocate.

max_infos must be >=RESOURCE_LIMITS::max_samples

initial_remote_
writers

Initial number ofDataWriters fromwhich a DataReadermay receive
DDS data samples, including all instances.

For unkeyed Topics: initial_remote_writers must = initial_re-
mote_writers_per_instance

initial_remote_
writers_per_in-
stance

Initial number ofDataWriters fromwhich a DataReadermay receive
DDS data samples for a single instance.

For unkeyed Topics: initial_remote_writers must = initial_re-
mote_writers_per_instance

initial_infos
Initial number of DDS_SampleInfo structures that a DataReader will
allocate.

initial_out-
standing_
reads

Initial number of times in which memory can be concurrently loaned
via read/take calls without being returned with return_loan().

max_out-
standing_
reads

Maximumnumber of times in which memory can be concurrently
loaned via read/take calls without being returned with return_loan
().

max_samples_
per_
read

Maximumnumber of DDS samples that can be read/taken on a
DataReader.

DDS_
Boolean

disable_frag-
mentation_
support

Determines whether the DataReader can receive fragmented DDS
samples.

When fragmentation support is not needed, disabling fragmentation
support will save some memory resources.

Table 8.20 DDS_DataReaderResourceLimitsQosPolicy

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

Type Field Name Description

DDS_
Long

max_frag-
mented_
samples

The maximumnumber of DDS samples forwhich the DataReader
may store fragments at a given point in time.

At any given time, a DataReadermay store fragments for up to
max_fragmented_samples DDS samples while waiting for the re-
maining fragments. These DDS samples need not have consecutive
sequence numbers and may have been sent by different
DataWriters. Once all fragments of a DDS sample have been re-
ceived, the DDS sample is treated as a regularDDS sample and be-
comes subject to standard QoS settings, such asmax_samples.
Connext DDSwill drop fragments if the max_fragmented_samples
limit has been reached.

For best-effort communication,Connext DDSwill accept a fragment
for a newDDS sample, but drop the oldest fragmented DDS sample
from the same remote writer.

For reliable communication,Connext DDSwill drop fragments for
any newDDS samples until all fragments for at least one olderDDS
sample from that writer have been received.

Only applies if disable_fragmentation_support is FALSE.

initial_frag-
mented_
samples

The initial number of DDS samples forwhich a DataReadermay
store fragments.

Only applies if disable_fragmentation_support is FALSE.

max_frag-
mented_
samples_per_
remote_
writer

The maximumnumber of DDS samples per remote writer for which a
DataReadermay store fragments. This is a logical limit, so a single
remote writer cannot consume all available resources.

Only applies if disable_fragmentation_support is FALSE.

max_frag-
ments_per_
sample

Maximumnumber of fragments for a single DDS sample.

Only applies if disable_fragmentation_support is FALSE.

DDS_
Boolean

dynamically_al-
locate_
fragmented_
samples

By default, the middleware does not allocate memory upfront, but in-
stead allocates memory from the heap upon receiving the first frag-
ment of a new sample. The amount of memory allocated equals the
amount of memory needed to store all fragments in the sample.
Once all fragments of a sample have been received, the sample is
deserialized and stored in the regular receive queue. At that time,
the dynamically allocated memory is freed again.

This QoS setting is useful for large, but variable-sized data types
where up-front memory allocation formultiple samples based on the
maximumpossible sample size may be expensive. The main dis-
advantage of not pre-allocating memory is that one can no longer
guarantee the middleware will have sufficient resources at run-time.

If dynamically_allocate_fragmented_samples is FALSE, the mid-
dleware will allocate memory up-front for storing fragments for up to
initial_fragmented_samples samples. This memory may grow up to
max_fragmented_samples if needed.

Only applies if disable_fragmentation_support is FALSE.

Table 8.20 DDS_DataReaderResourceLimitsQosPolicy

583

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

584

Type Field Name Description

DDS_
Long

max_total_in-
stances

Maximumnumber of instances (attached + detached instances) for
which a DataReader will keep state. Only applicable if keep_min-
imum_state_for_intsances is TRUE.

See 8.6.2.1 max_total_instancesandmax_instanceson page 587

DDS_DataRead-
erResourceLimitsInstanceReplacementSettings

instance_re-
placement

Sets the kinds of instances allowed to be replaced for each instance
state when a DataReader reachesmax_instances in the 7.5.22
RESOURCE_LIMITSQosPolicy on page 452. See 8.6.2.3 Con-
figuring DataReader Instance Replacement on page 588.

DDS_
Long

max_remote_
virtual_
writers

The maximumnumber of virtual writers (identified by a virtual GUID)
fromwhich a DataReader may read, including all instances.

When the Subscriber’s access_scope is GROUP, this value de-
termines the maximumnumber ofDataWriter groups supported by
the Subscriber. Since the Subscribermay contain more than one
DataReader, only the setting of the first applies.

DDS_
Long

initial_remote_
virtual_
writers

The initial number of virtual writers fromwhich a DataReadermay
read, including all instances.

DDS_
Long

max_remote_
virtual_
writers_per_in-
stance

Maximumnumber of virtual remote writers that can be associated
with an instance.

For unkeyed types, this value is ignored.

The features of Durable Reader State and MultiChannel
DataWriters, as well asPersistence Service, require Connext DDS
to keep some internal state per virtual writer and instance that is
used to filter duplicate DDS samples. These duplicate DDS samples
could be coming fromdifferentDataWriter channels or frommultiple
executions of Persistence Service.

Once an association between a remote virtual writer and an instance
is established, it is permanent—it will not disappear even if the phys-
ical writer incarnating the virtual writer is destroyed.

Ifmax_remote_virtual_writers_per_instance is exceeded for an
instance,Connext DDSwill not associate this instance with new vir-
tual writers. Duplicate DDS samples coming from these virtual writers
will not be filtered on the reader.

If you are not using Durable Reader State, MultiChannel
DataWritersorPersistence Service, you can set this property to 1 to
optimize resources.

For additional information about the virtual writers seeMechanisms
for Achieving Information Durability and Persistence (Chapter 13
on page 738).

DDS_
Long

initial_remote_
virtual_
writers_per_in-
stance

Initial number of virtual remote writers per instance.

For unkeyed types, this value is ignored.

Table 8.20 DDS_DataReaderResourceLimitsQosPolicy

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

Type Field Name Description

DDS_
Long

max_remote_
writers_
per_sample

Maximumnumber of remote writers that are allowed to write the
same DDS sample.

One scenario in which two DataWriters may write the same DDS
sample is when using Persistence Service. The DataReadermay re-
ceive the same DDS sample from the original DataWriter and froman
Persistence ServiceDataWriter.

DDS_
Long

max_query_
condition_
filters

This value determines the maximumnumber of unique query con-
dition content filters that a readermay create.

Each query condition content filter is comprised of both its query_ex-
pression and query_parameters. Two query conditions that have
the same query_expressionwill require unique query condition fil-
ters if theirquery_parameters differ. Query conditions that differ
only in their state masks will share the same query condition filter.

DDS_
Long

max_app_
ack_re-
sponse_
length

Maximum length of application-level acknowledgment response
data.

The maximum length of response data in an application-level ac-
knowledgment.

When set to zero, no response data is sent with application-level ac-
knowledgments.

DDS_Boolean
keep_min-
imum_state_
for_instances

Determines whether the DataReader keeps a minimum instance
state for up tomax_total_instances. The minimumstate is useful
for filtering samples in certain scenarios. See 8.6.2.1 max_total_in-
stancesandmax_instanceson page 587

DDS_Long
initial_topic_
queries

The initial number of TopicQueries allocated by a DataReader.

DDS_Long
max_topic_
queries

The maximumnumber of active TopicQueries that a DataReader
can create. Once this limit is reached, a DataReader can create
more TopicQueries only if it deletes some of the previously created
ones.

DDS_AllocationSettings_t

shmem_ref_
transfer_
mode_at-
tached_seg-
ment_
allocation

Configures the allocation resource used to attach to different shared
memory segments if you are using Zero Copy transfer over shared
memory. See 23.1.5 Zero CopyTransfer Over SharedMemoryon
page 968.

Table 8.20 DDS_DataReaderResourceLimitsQosPolicy

DataReaders must allocate internal structures to handle: the maximum number of DataWriters that may
connect to it; whether or not a DataReader handles data fragmentation and how many data fragments that
it may handle (for DDS data samples larger than the MTU of the underlying network transport); how
many simultaneous outstanding loans of internal memory holding DDS data samples can be provided to
user code; as well as others.

Most of these internal structures start at an initial size and, by default, will grow as needed by dynamically
allocating additional memory. You may set fixed, maximum sizes for these internal structures if you want

585

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

586

initial size to the maximum size will prevent Connext DDS from dynamically allocating any memory after
the DataReader is created.

This policy also controls how the allocated internal data structure may be used. For example, DataReaders
need data structures to keep track of all of the DataWriters that may be sending it DDS data samples. The
total number of DataWriters that it can keep track of is set by the initial_remote_writers and max_
remote_writers values. For keyed Topics, initial_remote_writers_per_instance and max_remote_
writers_per_instance control the number of DataWriters allowed by the DataReader to modify the value
of a single instance.

By setting the max value to be less than max_remote_writers, you can prevent instances with many
DataWriters from using up the resources and starving other instances. Once the resources for keeping
track of DataWriters are used up, the DataReader will not be able to accept “connections” from new
DataWriters. The DataReader will not be able to receive data from new matching DataWriters which
would be ignored.

In the reliable protocol used by Connext DDS to support a RELIABLE setting for the 7.5.21
RELIABILITY QosPolicy on page 448, the DataReader must temporarily store DDS data samples that
have been received out-of-order from a reliable DataWriter. The storage of out-of-order DDS samples is
allocated from the DataReader’s receive queue and shared among all reliable DataWriters. The parameter
max_samples_per_remote_writer controls the maximum number of out-of-order data DDS samples that
the DataReader is allowed to store for a single DataWriter. This value must be less than themax_samples
value set in the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452.

max_samples_per_remote_writer allows Connext DDS to share the limited resources of the DataReader
equitably so that a single DataWriter is unable to use up all of the storage of the DataReader while miss-
ing DDS data samples are being resent.

When setting the values of the members, the following rules apply:

l max_remote_writers >= initial_remote_writers

l max_remote_writers_per_instance >= initial_remote_writers_per_instance
max_remote_writers_per_instance <= max_remote_writers

l max_infos >= initial_infos
max_infos >= RESOURCE_LIMITS::max_samples

l max_outstanding_reads >= initial_outstanding_reads

l max_remote_writers >= max_remote_writers_per_instance

l max_samples_per_remote_writer <= RESOURCE_LIMITS::max_samples

If any of the above are false, Connext DDS returns the error code DDS_RETCODE_
INCONSISTENT_POLICY when setting the DataReader’s QoS.

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

8.6.2.1 max_total_instances and max_instances

The features 13.4 Durable Reader State on page 750, Multi-channel DataWriters (Chapter 20 on
page 902), and Persistence Service (Part 8: RTI Persistence Service on page 1184) require Connext DDS
to keep some minimum internal state even for instances without DataWriters or DDS samples in the
DataReader’s queue or that have been purged due to a dispose. Instances for which only this minimum
state is kept are called detached instances. The additional state is used to filter duplicate DDS samples that
could be coming from different DataWriter channels or from multiple executions of Persistence Service.
The total maximum number of instances that will be managed by the middleware, attached plus detached
instances, is determined by max_total_instances. This additional state will only be kept for up to max_
total_instances if keep_minimum_state_for_instances is TRUE, otherwise the additional state will not
be kept for any instances. The minimum state includes information such as the source timestamp of the last
sample received by the instance and the last sequence number received from a virtual GUID. See also
8.3.8.6.1 Active State and Minimum State on page 545.

8.6.2.2 keep_minimum_state_for_instances

There are important implications of the minimum state setting.

When a DataReader is exposed to an unbounded number of instances over its lifetime (for example, if the
key for an instance is a UUID and the application cycles through unlimited numbers of such UUIDs over
time) and the DataReader does keep its minimum state, the set of minimum state data will grow with the
total number of instances (unique keys) the DataReader has been exposed to untilmax_total_instances is
reached.

max_total_instances by default gets its value frommax_instances. Ifmax_instances is set to its default
value, which is unbounded, the DataReader’s memory will grow slowly but without bound until the
DataReader itself is deleted. As a rule of thumb, when instances are used only once in a system and are
never used again after being disposed or unregistered, setmax_instances and max_total_instances to
finite values or bound the lifetime of the DataReader (see 4.1.1 Creating and Deleting DDS Entities on
page 167). If neither of these options is practical, it may help to set keep_minimum_state_for_instances
to FALSE.

If a DataReader does not retain this minimum state, there may be correctness implications if the
DataReader is exposed to an instance again after it has been removed from the DataReader cache. For
example, because the last source timestamp is not preserved, eventual consistency cannot be assured (even
if destination order is by source timestamp). Samples that had already been received by the DataReader
may be re-delivered and provided to the application again as if for the first time (especially when using
redundant Routing Service routes, Persistence Service, or Collaborative DataWriters). As a rule of thumb,
when instances have complex lifecycles (especially involving multiple DataWriters modifying the
instance), in which an instance can become not alive and later come alive again, set keep_minimum_
state_for_instances to TRUE.

587

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

588

8.6.2.3 Configuring DataReader Instance Replacement

When themax_instances limit in the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452 is reached, a
DataReader will try to make space for a new instance by replacing an existing instance according to the
instance replacement kind set in instance_replacement in the 8.6.2 DATA_READER_RESOURCE_
LIMITS QosPolicy (DDS Extension) on page 581. If it cannot make space for the new instance, the
sample for the new instance will be lost with the reason LOST_BY_INSTANCES_LIMIT (see 8.3.7.7
SAMPLE_LOST Status on page 532).

The instance_replacement field is useful for managing large volumes of instances that come and go. It is
important to be able to set an upper limit on the resources that will be used by an application to avoid run-
ning into decreased performance and potentially running out of system resources. The instance_replace-
ment QoS setting allows you to set an upper bound on the resources that will be used for instances. It
allows DataReaders to make room for new instances by replacing older ones. For example, a hospital may
have 100 beds. Many patients (instances) come and go, so at any given time you only need resources for
100 instances, but over time you will see an unbounded number of instances. An instance replacement
policy can help manage this flow.

For each instance state (see 8.3.8.1 Instance States on page 540), you can set the following removal kinds:

l The alive_instance_removal kind sets a removal policy for ALIVE instances (default: DDS_NO_
INSTANCE_REMOVAL).

l The disposed_instance_removal kind sets a removal policy for NOT_ALIVE_DISPOSED
instances (default: DDS_EMPTY_INSTANCE_REMOVAL).

l The no_writers_instance_removal kind sets a removal policy for NOT_ALIVE_NO_WRITERS
instances (default: DDS_EMPTY_INSTANCE_REMOVAL).

For each instance state, you can choose among the following replacement kinds:

l DDS_NO_INSTANCE_REMOVAL: Instances in the associated state cannot be replaced.

l DDS_EMPTY_INSTANCE_REMOVAL: Instances in the associated state can be replaced only if
they are empty (all samples have been taken or removed from the DataReader queue due to QoS set-
tings such as, but not limited to, the 7.5.14 LIFESPAN QoS Policy on page 426 or sample purging
due to the 8.6.3 READER_DATA_LIFECYCLE QoS Policy on page 591), and there are no out-
standing loans on any of the instance's samples.

l DDS_FULLY_PROCESSED_INSTANCE_REMOVAL: Instances in the associated state can be
replaced only if every sample has been processed by the application. A sample is considered pro-
cessed by the application based on the Reliability kind:

l If the Reliability kind is RELIABLE, a sample is considered processed by the application
based on the ApplicationAcknowledgementKind (see 7.3.12.1 Application

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

Acknowledgment Kinds on page 319):

l PROTOCOL_ACKNOWLEDGMENT_MODE or APPLICATION_AUTO_
ACKNOWLEDGEMENT_MODE: The sample is considered processed when it has
been read or taken by the application and return_loan has been called.

l APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE: The sample is con-
sidered processed when the subscribing application has explicitly acknowledged the
sample by calling either the DataReader’s acknowledge_sample() or acknowledge_
all() operations, the AppAckConf message has been received, and the application has
called return_loan.

l If the Reliability kind is BEST_EFFORT, a sample is considered processed by the application
when all samples have been read or taken by the application and return_loan has been
called.

l DDS_ANY_INSTANCE_REMOVAL: Instances in the associated state can be replaced regardless
of whether the subscribing application has processed all of the samples. Samples that have not been
processed will be dropped and accounted for by the total_samples_dropped_by_instance_replace-
ment statistic in the 8.3.7.2 DATA_READER_CACHE_STATUS on page 522.

For all kinds, instance replacement starts with the least-recently-updated (LRU) instance that matches the
allowed criteria. For example, if alive_instance_removal is set to DDS_EMPTY_INSTANCE_
REMOVAL: when themax_instances limit is reached, the least-recently-updated, empty, ALIVE
instance will be replaced to make room for the new instance. An instance is considered updated when a
valid sample or dispose sample for the instance is received and accepted by the DataReader. An instance
is not considered updated in the following cases:

l When using EXCLUSIVE_OWNERSHIP, when samples that are received from DataWriters that
do not own the instance. Only the owner of an instance can update the instance.

l A sample that is filtered out due to content filtering does not count as updating the instance.

l Unregister messages do not count as an update to the instance because the unregister message con-
veys information about the DataWriter (that it is finished updating the instance), as opposed to any
change to the instance itself.

There is no preference among the instance states as far as which instance is replaced first; instance replace-
ment relies only on the LRU. For example, imagine if Connext DDS were to prefer disposed_instance_
removal over alive_instance_removal. It doesn't, but if it did, the application might never see disposed
instances, yet have very old alive instances in its queue. The same is true for the replacement criteria
options. If you choose DDS_FULLY_PROCESSED_INSTANCE_REMOVAL (for example), Connext
DDS will not look for empty instances first and then fully processed instances; the LRU instance that is
considered fully-processed will be replaced.

589

8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

590

If no replaceable instance exists after the instance replacement kinds above have been applied, the sample
for the new instance will be considered lost with the reason LOST_BY_INSTANCES_LIMIT in the
8.3.7.7 SAMPLE_LOST Status on page 532; the instance will not be inserted into the DataReader
queue.

8.6.2.4 Example

Themax_samples_per_remote_writer value affects sharing and starvation. max_samples_per_remote_
writer can be set to less than the RESOURCE_LIMITS QosPolicy’smax_samples to prevent a single
DataWriter from starving others. This control is especially important for Topics that have their 7.5.17
OWNERSHIP QosPolicy on page 435 set to SHARED.

In the case of EXCLUSIVE ownership, a lower-strength remote DataWriter can "starve" a higher-
strength remote DataWriter by making use of more of the DataReader's resources, an undesirable con-
dition. In the case of SHARED ownership, a remote DataWriter may starve another remote DataWriter,
making the sharing not really equal.

8.6.2.5 Properties

This QosPolicy cannot be modified after the DataReader is created.

It only applies to DataReaders, so there are no restrictions for setting it compatibly on the DataWriter.

8.6.2.6 Related QosPolicies

l 7.5.22 RESOURCE_LIMITS QosPolicy on page 452

l 7.5.17 OWNERSHIP QosPolicy on page 435

8.6.2.7 Applicable DDS Entities

l 8.3 DataReaders on page 509

8.6.2.8 System Resource Considerations

Increasing any of the “initial” values in this policy will increase the amount of memory allocated by Con-
next DDS when a new DataReader is created. Increasing any of the “max” values will not affect the initial
memory allocated for a new DataReader, but will affect how much additional memory may be allocated
as needed over the DataReader’s lifetime.

Setting a max value greater than an initial value thus allows your application to use memory more dynam-
ically and efficiently in the event that the size of the application is not well-known ahead of time.
However, Connext DDS may dynamically allocate memory in response to network communications.

8.6.3 READER_DATA_LIFECYCLE QoS Policy

8.6.3 READER_DATA_LIFECYCLE QoS Policy

This policy controls the behavior of the DataReader with regards to the lifecycle of the data instances it
manages, that is, the data instances that have been received and for which the DataReader maintains some
internal resources.

When a DataReader receives data, it is stored in a receive queue for the DataReader. The user application
may either take the data from the queue or leave it there. This QoS controls whether or not Connext DDS
will automatically remove data from the receive queue (so that user applications cannot access it afterward)
when Connext DDS detects that there are no more DataWriters alive for that data.

DataWriters may also call dispose() on its data, informing DataReaders that the data no longer exists. This
QosPolicy also controls whether or not Connext DDS automatically removes disposed data from the
receive queue.

For keyed Topics, the consideration of removing DDS data samples from the receive queue is done on a
per instance (key) basis. Thus when Connext DDS detects that there are no longer DataWriters alive for a
certain key value for a Topic (an instance of the Topic), it can be configured to remove all DDS data
samples for a certain instance (key). DataWriters also can dispose its data on a per instance basis. Only the
DDS data samples of disposed instances would be removed by Connext DDS if so configured.

This policy helps purge untaken DDS samples from not-alive-instances and thus may prevent a
DataReader from reclaiming resources. With this policy, the untaken DDS samples from not-alive-
instances are purged and treated as if the DDS samples were taken after the specified amount of time.

The DataReader internally maintains the DDS samples that have not been taken by the application, sub-
ject to the constraints imposed by other QoS policies such as 7.5.12 HISTORY QosPolicy on page 421
and 7.5.22 RESOURCE_LIMITS QosPolicy on page 452.

The DataReader also maintains information regarding the identity, view-state, and instance-state of data
instances, even after all DDS samples have been ‘taken’ (see 8.4.3 Accessing DDS Data Samples with
Read or Take on page 560). This is needed to properly compute the states when future DDS samples
arrive.

Under normal circumstances, a DataReader can only reclaim all resources for instances for which there
are no DataWriters and for which all DDS samples have been ‘taken.’ The last DDS sample taken by the
DataReader for that instance will have an instance state of NOT_ALIVE_NO_WRITERS or NOT_
ALIVE_DISPOSED_INSTANCE (depending on whether or not the instance was disposed by the last
DataWriter that owned it.) If you are using the default (infinite) values for this QosPolicy, this behavior
can cause problems if the application does not ‘take’ those DDS samples for some reason. The ‘untaken’
DDS samples will prevent the DataReader from reclaiming the resources and they would remain in the
DataReader indefinitely.

A DataReader can also reclaim all resources for instances that have an instance state of NOT_ALIVE_
DISPOSED and for which all DDS samples have been 'taken'. DataReaders will only reclaim resources
in this situation when autopurge_disposed_instances_delay has been set to zero.

591

8.6.3 READER_DATA_LIFECYCLE QoS Policy

592

It includes the members in Table 8.21 DDS_ReaderDataLifecycleQosPolicy.

Type Field
Name Description

DDS_Dur-
ation_t

autopurge_
nowriter_
samples_
delay

Minimumduration forwhich the DataReader will maintain samples regarding an instance once its instance_state be-
comesNOT_ALIVE_NO_WRITERS. An instance will transition to NOT_ALIVE_NO_WRITERSwhen all known writers
for the instance have lost liveliness, been deleted, or unregistered from the instance.

After this time elapses, the DataReader will purge all samples for the instance even if they have not been read by the ap-
plication. These samples will be dropped. (See expired_dropped_sample_count in 8.3.7.2 DATA_READER_
CACHE_STATUSon page 522.) This purge is done lazily when space is needed for other samples or instances (for ex-
ample, when a resource limit such as max_sampleson page 453 is hit).

Default: INFINITE

DDS_Dur-
ation_t

autopurge_
disposed_
samples_
delay

Minimumduration forwhich the DataReader will maintain samples for an instance once its instance_state becomes
NOT_ALIVE_DISPOSED.

After this time elapses, the DataReader will purge all samples for the instance even if they have not been read by the ap-
plication. These samples will be dropped. (See expired_dropped_sample_count in 8.3.7.2 DATA_READER_
CACHE_STATUSon page 522.) This purge is done lazily when space is needed for other samples or instances (for ex-
ample, when a resource limit such as max_sampleson page 453 is hit).

Default: INFINITE

DDS_Dur-
ation_t

autopurge_
disposed_
instances_
delay

Minimumduration forwhich the DataReader will maintain "active state" information about a received instance once its in-
stance_state becomesNOT_ALIVE_DISPOSED, and there are no samples for the instance in the DataReader
queue.(See 8.3.8.6.1 Active State andMinimumState on page 545.) Note: only values of 0 or INFINITE are currently
supported. A value of 0 will purge an instance’s state immediately after the instance state transitions to NOT_ALIVE_
DISPOSED, as long as all samples, including the dispose sample, associated with that instance have been ‘taken.’

After this time elapses, when the last sample for the disposed instance is taken, the DataReader will keep only a min-
imumamount of state about the instance. To disable retention of even this minimumstate after the delay period, also set
keep_minimum_state_for_instances to FALSE in the 8.6.2 DATA_READER_RESOURCE_LIMITSQosPolicy
(DDSExtension) on page 581. See 8.6.2.2 keep_minimum_state_for_instanceson page 587.

Default: INFINITE

DDS_Dur-
ation_t

autopurge_
nowriter_in-
stances_
delay

Minimumduration forwhich the DataReader will maintain "active state" information about a received instance once its in-
stance_state becomesNOT_ALIVE_NO_WRITERS and there are no samples for the instance in the DataReader
queue. (See 8.3.8.6.1 Active State andMinimumState on page 545.)

An instance will transition to NOT_ALIVE_NO_WRITERSwhen all known writers for the instance have lost liveliness,
been deleted, or unregistered from the instance. After this time elapses, when the last sample for the instance without
writers is taken, the DataReader will keep only the minimumstate about the instance.

To disable retention of even this minimumstate after the delay period, also set keep_minimum_state_for_instances to
FALSE in the 8.6.2 DATA_READER_RESOURCE_LIMITSQosPolicy (DDSExtension) on page 581. See 8.6.2.2
keep_minimum_state_for_instanceson page 587.

(Note: only values of 0 or INFINITE are currently supported. A value of 0 will purge an instance’s state immediately after
the instance state transitions to NOT_ALIVE_NO_WRITERS, as long as all samples, including the no_writers sample,
associated with that instance have been ‘taken.’)

Default: 0

Table 8.21 DDS_ReaderDataLifecycleQosPolicy

8.6.3.1 Properties

This QoS policy can be modified after the DataReader is enabled.

8.6.4 TIME_BASED_FILTER QosPolicy

It only applies to DataReaders, so there are no RxO restrictions for setting it compatibly on the
DataWriter.

8.6.3.2 Related QoS Policies

l 7.5.12 HISTORY QosPolicy on page 421

l 7.5.15 LIVELINESS QosPolicy on page 428

l 7.5.17 OWNERSHIP QosPolicy on page 435

l 7.5.22 RESOURCE_LIMITS QosPolicy on page 452

l 7.5.31 WRITER_DATA_LIFECYCLE QoS Policy on page 472

8.6.3.3 Applicable DDS Entities

l 8.3 DataReaders on page 509

8.6.3.4 System Resource Considerations

None.

8.6.4 TIME_BASED_FILTER QosPolicy

The TIME_BASED_FILTER QosPolicy allows you to specify that data should not be delivered more
than once per specified period for data-instances of a DataReader—regardless of how fast DataWriters are
publishing new DDS samples of the data-instance.

This QoS policy allows you to optimize resource usage (CPU and possibly network bandwidth) by only
delivering the required amount of data to different DataReaders.

DataWriters may send data faster than needed by a DataReader. For example, a DataReader of sensor
data that is displayed to a human operator in a GUI application does not need to receive data updates faster
than a user can reasonably perceive changes in data values. This is often measure in tenths (0.1) of a
second up to several seconds. However, a DataWriter of sensor information may have DataReaders that
are processing the sensor information to control parts of the system and thus need new data updates in
measures of hundredths (0.01) or thousandths (0.001) of a second.

With this QoS policy, different DataReaders can set their own time-based filters, so that data published
faster than the period set by a DataReader will be dropped by the middleware and not delivered to the
DataReader. Note that all filtering takes place on the reader side.

It includes the member in Table 8.22 DDS_TimeBasedFilterQosPolicy. For the default and valid range,
please refer to the API Reference HTML documentation.

593

8.6.4 TIME_BASED_FILTER QosPolicy

594

Type Field Name Description

DDS_Duration_t minimum_separation
Minimumseparation time between DDS samples of the same instance.

Must be <=DEADLINE::period

Table 8.22 DDS_TimeBasedFilterQosPolicy

As seen in Figure 8.23: Accepting Data for DataReaders below, it is inconsistent to set a DataReader’s
minimum_separation longer than its 7.5.7 DEADLINE QosPolicy on page 407 period.
Figure 8.23: Accepting Data for DataReaders

DDS data samples for a DataReader can be filtered out using the TIME_BASED_FILTER QoS (minimum_separation).
Once a DDS sample for an instance has been received, Connext DDS will accept but drop any new data samples for the
same instance that arrives within the time specified by minimum_separation. After the minimum_separation, a new DDS
sample that arrives is accepted and stored in the receive queue, and the timer starts again. If no DDS samples arrive by
the DEADLINE, the REQUESTED_DEADLINE_MISSED status will be changed and Listeners called back if installed.

This QosPolicy allows a DataReader to subsample the data being published for a data instance by
DataWriters. If a user application only needs new DDS samples for a data instance to be received at a spe-
cified period, then there is no need for Connext DDS to deliver data faster than that period. However,
whether or not data being published by a DataWriter at a faster rate than set by the TIME_BASED_
FILTER QoS is sent on the wire depends on several factors, including whether the DataReader is receiv-
ing the data reliably and if the data is being sent via multicast for multiple DataReaders.

For best effort data delivery, if the data type is unkeyed and the DataWriter has an infinite liveliness lease_
duration (7.5.15 LIVELINESS QosPolicy on page 428), Connext DDS will only send as many packets
to a DataReader as required by the TIME_BASED_FILTER, no matter how fast the DataWriter’s write
() function is called.

8.6.4 TIME_BASED_FILTER QosPolicy

For multicast data delivery to multiple DataReaders, the DataReader with the lowest TIME_BASED_
FILTER minimum_separation determines the DataWriter's send rate. For example, if a DataWriter
sends multicast to two DataReaders, one with minimum_separation of 2 seconds and one with min-
imum_separation of 1 second, the DataWriter will send every 1 second.

Other configurations (for example, when the DataWriter is reliable, or the data type is keyed, or the
DataWriter has a finite liveliness lease_duration) must send all data published by the DataWriter. On
reception, only the data that passes the TIME_BASED_FILTER will be stored in the DataReader’s
receive queue. Extra data will be accepted but dropped. Note that filtering is only applied on ‘alive’ DDS
samples (that is, DDS samples that have not been disposed/unregistered).

8.6.4.1 Example

The purpose of this QosPolicy is to prevent fast DataWriters from overwhelming a DataReader that can-
not process the data at the rate the data is being published. In certain configurations, the number of packets
sent by Connext DDS can also be reduced thus minimizing the consumption of network bandwidth.

You may want to change theminimum_separation between DDS data samples for one or more of the fol-
lowing reasons:

l The DataReader is connected to the network via a low-bandwidth connection that is unable to sus-
tain the amount of traffic generated by the matched DataWriter(s).

l The rate at which the matched DataWriter(s) can generate DDS samples is faster than the rate at
which the DataReader can process them. Or faster than needed by the DataReader. For example, a
graphical user interface seldom needs to be updated faster than 30 times a second, even if new data
values are available much faster.

l The resource limits of the DataReader are constrained relative to the number of DDS samples that
could be generated by the matched DataWriter(s). Too many packets coming at once will cause
them to be exhausted before the DataReader has time to process them.

8.6.4.2 Properties

This QosPolicy can be modified at any time.

It only applies to DataReaders, so there are no restrictions for setting it compatibly on the DataWriter.

8.6.4.3 Related QosPolicies

l 7.5.21 RELIABILITY QosPolicy on page 448

l 7.5.7 DEADLINE QosPolicy on page 407

l 8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) on the next page

595

8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension)

596

8.6.4.4 Applicable DDS Entities

l 8.3 DataReaders on page 509

8.6.4.5 System Resource Considerations

Depending on the values of other QosPolicies such as RELIABILITY and TRANSPORT_
MULTICAST, this policy may be able to decrease the usage of network bandwidth and CPU by pre-
venting unneeded packets from being sent and processed.

8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension)

This QosPolicy specifies the multicast address on which a DataReader wants to receive its data. It can also
specify a port number as well as a subset of the available transports with which to receive the multicast
data.

By default, DataWriters will send individually addressed packets for each DataReader that subscribes to
the topic of the DataWriter—this is known as unicast delivery. Thus, as many copies of the data will be
sent over the network as there are DataReaders for the data. The network bandwidth used by a
DataWriter will thus increase linearly with the number of DataReaders.

Multicast is a concept supported by some transports, most notably UDP/IP, so that a single packet on the
network can be addressed such that it is received by multiple nodes. This is more efficient when the same
data needs to be sent to multiple nodes. By using multicast, the network bandwidth usage will be constant,
independent of the number of DataReaders.

Coordinating the multicast address specified by DataReaders can help optimize network bandwidth usage
in systems where there are multiple DataReaders for the same Topic.

The QosPolicy structure includes the members in Table 8.23 DDS_TransportMulticastQosPolicy.

Type Field
Name Description

DDS_Trans-
portMulticastSettingSeq
(A sequence of the type
shown in Table 8.24 DDS_
TransportMulticastSetting_t)

value

A sequence of up to 16 multicast locators. This is a hard limit that cannot be increased. However, this limit
can be decreased by configuring the DomainParticipant property dds.domain_participant.max_an-
nounced_locator_list_size. Formore information on the locator format, see 15.2.1.1 Locator Format
on page 776.

Table 8.23 DDS_TransportMulticastQosPolicy

8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension)

Type Field
Name Description

DDS_TransportMulticastKind kind

This field can be set to one of the following two values: DDS_AUTOMATIC_TRANSPORT_MULTICAST_
QOS orDDS_UNICAST_ONLY_TRANSPORT_MULTICAST_QOS.

If it is set to DDS_AUTOMATIC_TRANSPORT_MULTICAST_QOS, the behavior depends on the content
of DDS_TransportMulticastQosPolicy::value:

If DDS_TransportMulticastQosPolicy::value does not have any elements, multicast will not be used.

If DDS_TransportMulticastQosPolicy::value first element has an empty address, the address will be ob-
tained fromDDS_TransportMulticastMappingQosPolicy.

If none of the elements in DDS_TransportMulticastQosPolicy::value are empty, and at least one element
has a valid address, then that address will be used.

If it is set to DDS_UNICAST_ONLY_TRANSPORT_MULTICAST_QOS, then multicast will not be used.

Table 8.23 DDS_TransportMulticastQosPolicy

Type Field
Name Description

DDS_
StringSeq

transports
A sequence of transport aliases that specifies which transports should be used to receive multicast messages for this
DataReader.

char *
receive_
address

A multicast group address to which the DataWriter should send data for thisDataReader.

DDS_
Long

receive_
port

The port that should be used in the addressing of multicast messages destined for thisDataReader. A value of 0 will cause
Connext DDS to use a default port number based on domain ID. See 15.5 PortsUsed for Discovery on page 797.

Table 8.24 DDS_TransportMulticastSetting_t

To take advantage of multicast, the value of this QosPolicy must be coordinated among all of the applic-
ations on a network for DataReaders of the same Topic. For a DataWriter to send a single packet that will
be received by all DataReaders simultaneously, the same multicast address must be used.

To use this QosPolicy, you will also need to specify a port number. A port number of 0 will cause Con-
next DDS to automatically use a default value. As explained in 15.5 Ports Used for Discovery on
page 797, the default port number for multicast addresses is based on the domain ID. Should you choose
to use a different port number, then for every unique port number used by Entities in your application,
depending on the transport, Connext DDS may create a thread to process messages received for that port
on that transport. See Connext DDS Threading Model (Chapter 21 on page 914) for more about threads.

Threads are created on a per-transport basis, so if this QosPolicy specifies multiple transports for a
receive_port, then a thread may be created for each transport for that unique port. Some transports may be
able to share a single thread for different ports, others can not. Note that different Entities can share the
same port number, and thus, the same thread will process all of the data for all of the Entities sharing the
same port number for a transport.

597

8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension)

598

Also note that if the port number specified by this QoS is the same as a port number specified by a
TRANSPORT_UNICAST QoS, then the transport may choose to process data received both via mul-
ticast and unicast with a single thread. Whether or not a transport must use different threads to process data
received via multicast or unicast for the same port number depends on the implementation of the transport.

Notes:

l The same multicast address can be used by DataReaders of different Topics.

l Even though the TRANSPORT_MULTICAST QoS allows you to specify multiple multicast
addresses for a DataReader, Connext DDS currently only uses one multicast address (the first in the
sequence) per DataReader.

l If a DataWriter is using the 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on page 433,
the multicast addresses specified in the TRANSPORT_MULTICAST QosPolicy are ignored by
that DataWriter. The DataWriter will not publish DDS samples on those locators.

8.6.5.1 Example

In an airport, there may be many different monitors that display current flight information. Assuming each
monitor is controlled by a networked application, network bandwidth would be greatly reduced if flight
information was published using multicast.

Figure 8.24: Setting Up a Multicast DataReader below shows an example of how to set this QosPolicy.
Figure 8.24: Setting Up a Multicast DataReader

...
DDS_DataReaderQos reader_qos;
reader_listener = new HelloWorldListener();
if (reader_listener == NULL) {

// handle error
}
// Get default data reader QoS to customize
retcode = subscriber->get_default_datareader_qos(reader_qos);
if (retcode != DDS_RETCODE_OK) {

// handle error
}
// Set up multicast reader
reader_qos.multicast.value.ensure_length(1,1);
reader_qos.multicast.value[0].receive_address =

DDS_String_dup("239.192.0.1");
reader = subscriber->create_datareader(

topic,reader_qos,
reader_listener, DDS_STATUS_MASK_ALL);

8.6.5.2 Properties

This QosPolicy cannot be modified after the Entity is created.

8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

For compatibility between DataWriters and DataReaders, the DataWriter must be able to send to the mul-
ticast address that the DataReader has specified.

8.6.5.3 Related QosPolicies

l 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on page 433

l 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension) on page 465

l 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671

8.6.5.4 Applicable DDS Entities

l 9.3 DomainParticipants on page 615

l 8.3 DataReaders on page 509

8.6.5.5 System Resource Considerations

On Ethernet-based systems, the number of multicast addresses that can be “listened” to by the network
interface card is usually limited. The exact number of multicast addresses that can be monitored sim-
ultaneously by a NIC depends on its manufacturer. Setting a multicast address for a DataReader will use
up one of the multicast-address slots of the NIC.

What happens if the number of different multicast addresses used by different DataReaders across dif-
ferent applications on the same node exceeds the total number supported by a NIC depends on the specific
operating system. Some will prevent you from configuring too many multicast addresses to be monitored.

Many operating systems will accommodate the extra multicast addresses by putting the NIC in promis-
cuous mode. This means that the NIC will pass every Ethernet packet to the operating system, and the
operating system will pass the packets with the specified multicast addresses to the application(s). This res-
ults in extra CPU usage. We recommend that your applications do not use more multicast addresses on a
single node than the NICs on that node can listen to simultaneously in hardware.

Depending on the implementation of a transport, Connext DDS may need to create threads to receive and
process data on a unique-port-number basis. Some transports can share the same thread to process data
received for different ports; others like UDPv4 must have different threads for different ports. In addition,
if the same port is used for both unicast and multicast, the transport implementation will determine whether
or not the same thread can be used to process both unicast and multicast data. For UDPv4, only one thread
is needed per port–independent of whether the data was received via unicast or multicast data. See 21.3
Receive Threads on page 917 for more information.

8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

The TypeConsistencyEnforcementQosPolicy defines the rules that determine whether the type used to pub-
lish a given topic is consistent with the type used to subscribe to it.

599

8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

600

Note: If the type information is not available for a topic (and force_type_validation is false), these
rules do not apply.

The QosPolicy structure includes the members in the following table.

Type Field
Name Description

DDS_TypeCon-
sistencyKind

kind

Can be any of the following values:

l AUTO_TYPE_COERCION (default)

l ALLOW_TYPE_COERCION

l DISALLOW_TYPE_COERCION

See below for details.

DDS_Boolean
ignore_se-
quence_
bounds

Controls whether sequence bounds are taken into consideration for type assignability.

If false, a DataWriter’s type containing a sequence with a largermaximum length will not be assigned to a
DataReader’s type containing a sequence with a smallermaximum length. Since the types are not as-
signable, the DataReader will not match when type information is available.

If true, a sequence in a DataReader's type can have a maximum length smaller than that of a sequence in a
DataWriter's type. The types will be assignable, and the DataReader will match; however, when the length
of the sequence in a particularDataWriter's sample is larger than the DataReader'smaximum length, that
sample is discarded. See "Verifying Sample Consistency: Sample Assignability" in the Core LibrariesEx-
tensible TypesGuide.

Default: true

DDS_Boolean
ignore_
string_
bounds

Controls whether string bounds are taken into consideration for type assignability.

If false, then a DataWriter’s type containing a string with a largermaximum length will not be assigned to a
DataReader’s type containing a string with a smallermaximum length. Since the types are not assignable,
the DataReader will not match when type information is available.

If true, then a string in a DataReader’s type can have a maximum length smaller than that of a string in a
DataWriter’s type. They are assignable, and the DataReader will match; however, when the length of the
string in a particularDataWriter’s sample is larger than the DataReader’smaximum length, that sample is dis-
carded. See "Verifying Sample Consistency: Sample Assignability" in the Core LibrariesExtensible Types
Guide.

Default: true

Table 8.25 DDS_TypeConsistencyEnforcementQosPolicy

8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

Type Field
Name Description

DDS_Boolean
ignore_
member_
names

Controls whethermember names are taken into consideration for type assignability.

If false, types containing members with the same ID and different names are not assignable to each other.
Since the types are not assignable, the DataReader will not match when type information is available.

If true, members of a type can change their name while keeping theirmember ID. For example, MyType and
MyTypeSpanish are only assignable if ignore_member_names is true:

struct MyType {
@id(10) int32 x;
@id(20) int32 angle;

};
struct MyTypeSpanish {

@id(10) int32 x;
@id(20) int32 angulo;

};

Since the types are assignable, the DataReader will match.

Default: false

DDS_Boolean
prevent_
type_
widening

Controls whether type widening is allowed. A type T2 widens a type T1 when T2 contains required members
that are not present in T1.

If a DataReader of T2 sets prevent_type_widening to true, then the DataReader will not be matched with a
DataWriter of T1 with fewermembers because T1 is not assignable to T2.

If a DataReader of T2 sets prevent_type_widening to false, then the DataReader will match with the
DataWriter of T1. The DataReader will assume a value formembers in T2 that are not in T1. See "Prevent
Type Widening" below.

Default: false

DDS_Boolean
force_
type_val-
idation

Controls whether type information must be available in order to complete matching between a DataWriter
and thisDataReader.

If false, matching may occur as long as the type namesmatch. Note that if the types have the same name, but
the types are not assignable,DataReadersmay fail to deserialize incoming data samples. If force_type_val-
idation is true and no type information is available, then the DataReader will not match.

Default: false

DDS_Boolean

ignore_
enum_lit-
eral_
names

Controls whether enumeration constant names are taken into consideration for type assignability. If the op-
tion is set to true, then enumeration constants may change their names, but not their values, and still maintain
type assignability. If the option is set to false, then in order for enumerations to be assignable, any constant
that has the same value in both enumerations must also have the same name. For example, enumColor
{RED= 0} and enumColor {ROJO = 0} are assignable if and only if ignore_enum_literal_names is true.

Default: false

Table 8.25 DDS_TypeConsistencyEnforcementQosPolicy

The type-consistency enforcement rules consist of two steps:

1. If both the DataWriter and DataReader specify a TypeObject, it is considered first. If the
DataReader allows type coercion, then its type must be assignable from the DataWriter’s type, tak-
ing into account the values of prevent_type_widening, ignore_sequence_bounds, ignore_string_
bounds, ignore_member_names, and ignore_enum_literal_names. If the DataReader does not
allow type coercion, then its type must be equivalent to the type of the DataWriter.

601

8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

602

2. If either the DataWriter or the DataReader does not provide a TypeObject definition, then the
registered type names are examined. The DataReader’s and DataWriter’s registered type names
must match exactly, as was true in Connext DDS releases prior to 5.0. This step will fail if force_
type_validation is true, regardless of the type names.

If either Step 1 or Step 2 fails, the Topics associated with the DataReader and DataWriter are considered
to be inconsistent and the 5.3.1 INCONSISTENT_TOPIC Status on page 227 is updated.

The default enforcement kind is DDS_AUTO_TYPE_COERCION. This default kind translates to
DDS_ALLOW_TYPE_COERCION, except in the following cases:

l When a Zero Copy DataReader is used, the kind is translated to DDS_DISALLOW_TYPE_
COERCION.

l When the middleware is introspecting the built-in topic data declaration of a remote DataReader in
order to determine whether it can match with a local DataWriter, if it observes that no TypeCon-
sistencyEnforcementQosPolicy value is provided (as would be the case when communicating with a
Service implementation not in conformance with this specification), it assumes a kind of DDS_
DISALLOW_TYPE_COERCION.

8.6.6.1 Values for TypeConsistencyKind

l AUTO_TYPE_COERCION (default)

For a regular DataReader, this default value is translated to ALLOW_TYPE_COERCION. For a
Zero Copy DataReader, this default value is translated to DISALLOW_TYPE_COERCION. (See
23.1.5 Zero Copy Transfer Over Shared Memory on page 968 for information on why a Zero
Copy DataReader requires the DISALLOW_TYPE_COERCION option.)

l DISALLOW_TYPE_COERCION

With this setting, the DataWriter and DataReader must support the same data type in order for them
to communicate. (This is the degree of enforcement required by the OMG DDS Specification prior
to the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification.)

When Connext DDS is introspecting the built-in topic data declaration of a remote DataWriter or
DataReader, if no TypeConsistencyEnforcementQosPolicy value is provided (as would be the case
when communicating with an implementation not in conformance with the Extensible and Dynamic
Topic Types for DDS" (DDS-XTypes) specification), Connext DDS shall assume a kind of
DISALLOW_TYPE_COERCION.

l ALLOW_TYPE_COERCION

With this setting, the DataWriter and the DataReader need not support the same data type in order
for them to communicate, as long as the DataReader’s type is assignable from the DataWriter’s

http://www.omg.org/spec/DDS-XTypes/

8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

type.

For example, the following two extensible types will be assignable to each other since MyDe-
rivedType contains all the members of MyBaseType (member_1) plus an additional element (mem-
ber_2).
struct MyBaseType {

int32 member_1;
};
struct MyDerivedType: MyBaseType {

int32 member_2;
};

Even if MyDerivedType was not explicitly inherited fromMyBaseType, the types would still be
assignable. For example:
struct MyBaseType {

int32 member_1;
};
struct MyDerivedType {

int32 member_1;
int32 member_2;

};

For more information, see the RTI Connext DDS Core Libraries Extensible Types Guide and the OMG
‘Extensible and Dynamic Topic Types for DDS’ Specification.

8.6.6.2 Prevent Type Widening

The prevent_type_widening field determines whether type widening is allowed. In Figure 8.25: prevent_
type_widening = false on the next page, VehicleData_v2 has three members and VehicleData_v1 two
members. With type widening allowed, the narrower car (VehicleData_v1, with two members) can write
to the wider car (VehicleData_v2), but notice that the DataReader assumes a value that might be mis-
leading (in this case, a default speed of zero).

603

http://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/DDS-XTypes/

8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

604

Figure 8.25: prevent_type_widening = false

If widening is not allowed (Figure 8.26: prevent_type_widening = true below), VehicleData_v1 and
VehicleData_v2 do not communicate with each other.
Figure 8.26: prevent_type_widening = true

8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

8.6.6.3 Properties

This QosPolicy cannot be modified after the DataReader is enabled.

It only applies to DataReaders, so there is no requirement that the publishing and subscribing sides use
compatible values.

8.6.6.4 Related QoS Policies

l None.

8.6.6.5 Applicable Entities

l 8.3 DataReaders on page 509

8.6.6.6 System Resource Considerations

l None.

605

Chapter 9 Working with DDS Domains
This section discusses how to use DomainParticipants. It describes the types of operations that are
available for them and their QosPolicies.

The goal of this section is to help you become familiar with the objects you need for setting up
your Connext DDS application. For specific details on any mentioned operations, see the API
Reference HTML documentation.

9.1 Fundamentals of DDS Domains and DomainParticipants

DomainParticipants are the focal point for creating, destroying, and managing other Connext DDS
objects. A DDS domain is a logical network of applications: only applications that belong to the
same DDS domain may communicate using Connext DDS. A DDS domain is identified by a
unique integer value known as a domain ID. An application participates in a DDS domain by cre-
ating a DomainParticipant for that domain ID.

606

9.1 Fundamentals of DDS Domains and DomainParticipants

607

Figure 9.1: Relationship between Applications and DDS Domains

Applications can belong to multiple DDS domains—A belongs to DDS domains 1 and 2. Applications in the same DDS
domain can communicate with each other, such as A and B, or A and C. Applications in different DDS domains, such as

B and C, are not even aware of each other and will not exchange messages.

As seen in Figure 9.1: Relationship between Applications and DDS Domains above, a single application
can participate in multiple DDS domains by creating multiple DomainParticipants with different domain
IDs. DomainParticipants in the same DDS domain form a logical network; they are isolated from
DomainParticipants of other DDS domains, even those running on the same set of physical computers
sharing the same physical network. DomainParticipants in different DDS domains will never exchange
messages with each other. Thus, a DDS domain establishes a “virtual network” linking all DomainPar-
ticipants that share the same domain ID.

An application that wants to participate in a certain DDS domain will need to create a DomainParticipant.
As seen in Figure 9.2: DDS Domain Module on the next page, a DomainParticipant object is a container
for all other Entities that belong to the same DDS domain. It acts as factory for the Publisher, Subscriber,
and Topic entities. (As seen in Sending Data (Chapter 7 on page 271) and Receiving Data (Chapter 8 on
page 489), in turn, Publishers are factories for DataWriters and Subscribers are factories for
DataReaders.) DomainParticipants cannot contain other DomainParticipants.

Like all Entities, DomainParticipants have QosPolicies and Listeners. The DomainParticipant entity also
allows you to set ‘default’ values for the QosPolicies for all the entities created from it or from the entities
that it creates (Publishers, Subscribers, Topics, DataWriters, and DataReaders).

9.2 DomainParticipantFactory

Figure 9.2: DDS Domain Module

Note: MultiTopics are not supported.

9.2 DomainParticipantFactory

l C, Traditional C++, Java and .NET APIs:

The main purpose of a DomainParticipantFactory is to create and destroy DomainParticipants.

In C++ terms, this is a singleton class; that is, you will only have a single DomainPar-
ticipantFactory in an application—no matter how many DomainParticipants the application may
create. Figure 9.3: Instantiating a DomainParticipantFactory on the next page shows how to

608

9.2 DomainParticipantFactory

609

instantiate a DomainParticipantFactory. Notice that there are no parameters to specify. Altern-
atively, in C++, C++/CLI, and C#, the predefined macro, DDSTheParticipantFactory, can also be
used to retrieve the singleton factory. (In C, the macro is DDS_TheParticipantFactory. In Java,
use the static class method DomainParticipantFactory.TheParticipantFactory.)

Unlike the other Entities that you create, the DomainParticipantFactory does not have an associated
Listener. However, it does have associated QosPolicies, see 9.2.1 Setting DomainPar-
ticipantFactory QosPolicies on page 611. You can change them using the factory’s get_qos() and
set_qos() operations. The DomainParticipantFactory also stores the default QoS settings that can
be used when a DomainParticipant is created. These default settings can be changed as well, see
9.3.7.5 Getting and Setting Default QoS for Child Entities on page 633.
Figure 9.3: Instantiating a DomainParticipantFactory

DDSDomainParticipantFactory* factory = NULL;
factory = DDSDomainParticipantFactory::get_instance();
if (factory == NULL) {

// ... error
}

l Modern C++ API:

In the Modern C++ API, there isn’t a explicit DomainParticipantFactory. DomainParticipants are
created using their constructors andare automatically destroyed as a reference type (See 4.1.1 Creat-
ing and Deleting DDS Entities on page 167).

The operations to set and get the default DomainParticipantQos are static functions in DomainPar-
ticipant: DomainParticipant::default_participant_qos(). The operations to look up participants
are freestanding functions in the dds::domain and rti::domain namespaces: dds::domain::find(),
rti::domain::find_participant_by_name(), and rti::domain::find_participants(). The class
QosProvider is responsible for managing QoS profiles (see 19.5 How to Load XML-Specified QoS
Settings on page 888).

There is a DomainParticipantFactoryQos, but it only contains the ENTITY_FACTORY to indicate
if a DomainParticipant should be enabled in its constructor or by calling enable(), and SYSTEM_
RESOURCE_LIMITS. The DomainParticipantFactoryQos getter and setter are static functions in
DomainParticipant: DomainParticipant::participant_factory_qos().

Another static function in DomainParticipant allows finalizing the implicit DomainPar-
ticipantFactory singleton: DomainParticipant::finalize_participant_factory().

Once you have a DomainParticipantFactory, you can use it to perform the operations listed in Table 9.1
DomainParticipantFactory Operations. The most important one is create_participant(), described in 9.3.1
Creating a DomainParticipant on page 621. For more details on all operations, see the API Reference
HTML documentation as well as the section of the manual listed in the Reference column.

9.2 DomainParticipantFactory

Working
with ... Operation Description Reference

Domain-Par-
ticipants

create_par-
ticipant

Creates a DomainParticipant.

9.3.1 Creating a Do-
mainParticipant on page 621create_par-

ticipant_
with_
profile

Creates a DomainParticipant based on a QoS profile.

delete_par-
ticipant

Deletes a DomainParticipant.
9.3.2 Deleting Do-
mainParticipants on page 623

get_default_
participant_
qos

Gets the default QoS forDomainParticipants.
9.2.2 Getting and Setting Default
QoS for DomainParticipants on
page 613

get_par-
ticipants

Returns a sequence of pointers to all the DomainParticipantswithin the Do-
mainParticipantFactory.

9.2.4 Looking UpDo-
mainParticipants on page 614

lookup_par-
ticipant

Finds a specificDomainParticipant, based on a domain ID.

lookup_par-
ticipant_by_
name

Finds a specificDomainParticipant, based on a domain name.

set_default_
participant_
qos

Sets the default QoS forDomainParticipants.

9.2.2 Getting and Setting Default
QoS for DomainParticipants on
page 613set_default_

participant_
qos_
with_profile

Sets the default QoS forDomainParticipantsbased on a QoS profile.

The Fact-
ory’s In-
stance

get_instance Gets the singleton instance of this class. 9.2.3 Freeing ResourcesUsed
by the DomainParticipantFactory
on page 613finalize_in-

stance
Destroys the singleton instance of this class.

The Fact-
ory’s Own
QoS

get_qos
Gets/sets the DomainParticipantFactory’s QoS.

4.1.7 Getting, Setting, and Com-
paring QosPolicies on page 172

set_qos

equals Compares two DomainParticipantFactory’s QoS structures for equality.

Table 9.1 DomainParticipantFactory Operations

610

9.2.1 Setting DomainParticipantFactory QosPolicies

611

Working
with ... Operation Description Reference

Threads

set_thread_
factory

Specifies a ThreadFactory implementation that DomainParticipants will use to cre-
ate and delete all threads.

21.7 User-Managed Threadson
page 921

unregister_
thread

Frees all resources related to a thread.

This function is intended to be used at the end of any user-created threads that
invoke Connext DDSAPIs (not all users will have this situation). The best ap-
proach is to call it immediately before exiting such a thread, after allConnext
DDSAPIs have been called.

Profiles &
Libraries

get_default_
library

Gets the default library for a DomainParticipantFactory.

9.2.1.1 Getting and Setting the
DomainParticipantFactory’sDe-
fault QoSProfile and Library on
the next page

get_default_
profile

Gets the default QoS profile for a DomainParticipantFactory.

get_default_
profile_library

Gets the library that contains the default QoS profile for a Do-
mainParticipantFactory.

get_
<entity>_
qos_from_
profile

Gets the <entity> QoS values associated with a specified QoS profile. <entity>
may be topic, datareader, datawriter, subscriber, publisher, orparticipant.

9.2.5 Getting QoSValues from a
QoSProfile on page 614get_

<entity>_
qos_from_
profile_w_
topic_name

Like get_<entity>_qos_from_profile(), but this operation allows you to specify a
topic name associated with the entity. The topic filter expressions in the profile will
be evaluated on the topic name.

<entity> may be topic, datareader, ordatawriter.

get_qos_pro-
files

Gets the names of all XML QoS profiles associated with a specified XML QoS pro-
file library.

19.4 Tags for Configuring QoS
with XML on page 880

get_qos_pro-
file_libraries

Gets the names of all XML QoS profile libraries associated with the Do-
mainParticipantFactory.

19.10.1 Retrieving a List of Avail-
able Libraries on page 900

load_profiles

Explicitly loads or reloads the QoS profiles.
19.5.1 Loading, Reloading and
Unloading Profiles on page 890reload_pro-

files

set_default_
profile

Sets the default QoS profile for a DomainParticipantFactory. 9.2.1.1 Getting and Setting the
DomainParticipantFactory’sDe-
fault QoSProfile and Library on
the next page

set_default_
library

Sets the default library for a DomainParticipantFactory.

unload_pro-
files

Frees the resources associated with loading QoS profiles.
19.5.1 Loading, Reloading and
Unloading Profiles on page 890

Table 9.1 DomainParticipantFactory Operations

9.2.1 Setting DomainParticipantFactory QosPolicies

The DDS_DomainParticipantFactoryQos structure has the following format:

9.2.1 Setting DomainParticipantFactory QosPolicies

struct DDS_DomainParticipantFactoryQos {
DDS_EntityFactoryQosPolicy entity_factory;
DDS_SystemResourceLimitsQosPolicy resource_limits;
DDS_ProfileQosPolicy profile;
DDS_LoggingQosPolicy logging;

};

For information on why you would want to change a particular QosPolicy, see the section referenced in
Table 9.2 DomainParticipantFactory QoS.

QosPolicy Description

EntityFactory Controls whether or not child entities are created in the enabled state. See 7.4.2 ENTITYFACTORYQosPolicy on page 349.

Logging
Configures the properties associated with Connext DDS logging. See 9.4.1 LOGGINGQosPolicy (DDSExtension) on
page 638.

Profile
Configures the way that XML documents containing QoS profiles are loaded by RTI. See 9.4.2 PROFILEQosPolicy (DDSEx-
tension) on page 639.

SystemResource-
Limits

ConfiguresDomainParticipant-independent resources used byConnext DDS. Mainly used to change the maximumnumber of
DomainParticipants that can be created within a single process (address space). See 9.4.3 SYSTEM_RESOURCE_LIMITS
QoSPolicy (DDSExtension) on page 641.

Table 9.2 DomainParticipantFactory QoS

9.2.1.1 Getting and Setting the DomainParticipantFactory’s Default QoS Profile and Library

You can retrieve the default QoS profile for the DomainParticipantFactory with the get_default_profile()
operation. You can also get the default library for the DomainParticipantFactory, as well as the library that
contains the DomainParticipantFactory’s default profile (these are not necessarily the same library); these
operations are called get_default_library() and get_default_library_profile(), respectively. These oper-
ations are for informational purposes only (that is, you do not need to use them as a precursor to setting a
library or profile.) For more information, see Configuring QoS with XML (Chapter 19 on page 854).
virtual const char * get_default_library ()
const char * get_default_profile ()
const char * get_default_profile_library ()

There are also operations for setting the DomainParticipantFactory’s default library and profile:
DDS_ReturnCode_t set_default_library (const char * library_name)
DDS_ReturnCode_t set_default_profile (const char * library_name,

const char * profile_name)

set_default_profile() specifies the profile that will be used as the default the next time a default
DomainParticipantFactory profile is needed during a call to a DomainParticipantFactory operation.

When calling a DomainParticipantFactory operation that requires a profile_name parameter, you can use
NULL to refer to the default profile. (This same information applies to setting a default library.)

612

9.2.2 Getting and Setting Default QoS for DomainParticipants

613

set_default_profile() does not set the default QoS for the DomainParticipant that can be created by the
DomainParticipantFactory. To set the default QoS using a profile, use the DomainParticipantFactory’s
set_default_participant_qos_with_profile() operation (see 9.2.2 Getting and Setting Default QoS for
DomainParticipants below).

9.2.2 Getting and Setting Default QoS for DomainParticipants

To get the default QoS that will be used for creating DomainParticipants if create_participant() is called
with DDS_PARTICIPANT_QOS_DEFAULT as the qos parameter, use this DomainParticipantFactory
operation:
DDS_ReturnCode_t get_default_participant_qos (DDS_DomainParticipantQos & qos)

This operation gets the QoS settings that were specified on the last successful call to set_default_par-
ticipant_qos() or set_default_participant_qos_with_profile(), or if the call was never made, the default
values listed in DDS_DomainParticipantQos.

To set the default QoS that will be used for new DomainParticipants, use the following operations. Then
these default QoS will be used if create_participant() is called with DDS_PARTICIPANT_QOS_
DEFAULT as the ‘qos’ parameter.
DDS_ReturnCode_t set_default_participant_qos (

const DDS_DomainParticipantQos &qos)

or
DDS_ReturnCode_t set_default_participant_qos_with_profile (

const char *library_name, const char *profile_name)

Notes:

l These operations may potentially allocate memory, depending on the sequences contained in some
QoS policies.

l It is not safe to set the default DomainParticipant QoS values while another thread may be sim-
ultaneously calling get_default_participant_qos(), set_default_participant_qos(), or create_par-
ticipant() with DDS_PARTICIPANT_QOS_DEFAULT as the qos parameter. It is also not safe to
get the default DomainParticipant QoS values while another thread may be simultaneously calling
set_default_participant_qos().

9.2.3 Freeing Resources Used by the DomainParticipantFactory

The finalize_instance() operation explicitly reclaims resources used by the participant factory singleton
(including resources use for QoS profiles).

On many operating systems, these resources are automatically reclaimed by the OS when the program ter-
minates. However, some memory-check tools will flag those resources as unreclaimed. This method
provides a way to clean up all the memory used by the participant factory.

9.2.4 Looking Up DomainParticipants

Before calling finalize_instance() on a DomainParticipantFactory, all of the participants created by the
factory must have been deleted. For a DomainParticipant to be successfully deleted, all Entities created by
the participant or by the Entities that the participant created must have been deleted. In essence, the
DomainParticipantFactory cannot be deleted until all other Entities have been deleted in an application.

Except for Linux systems: get_instance() and finalize_instance() are UNSAFE on the FIRST call. It is
not safe for two threads to simultaneously make the first call to get or finalize the factory instance. Sub-
sequent calls are thread safe.

9.2.4 Looking Up DomainParticipants

The DomainParticipantFactory has these useful operations for retrieving its DomainParticipants:

l get_participants() returns a sequence of pointers to all the DomainParticipants within the
DomainParticipantFactory.

DDS_ReturnCode_t
get_participants (DDSDomainParticipantSeq & participants)

l lookup_participant() locates an existing DomainParticipant based on its domain ID.

DDSDomainParticipant *
lookup_participant (DDS_DomainId_t domainId)

l lookup_participant_by_name () locates an existing DomainParticipant based on its name.

DDSDomainParticipant *
lookup_participant_by_name(const char * participant_name)

Note: in the Modern C++ API these operations are freestanding functions rti::domain::find_participants
(), dds::domain::find(), and rti::domain::find_participant_by_name(), respectively.

9.2.5 Getting QoS Values from a QoS Profile

A QoS Profile may include configuration settings for all types of Entities. If you just want the settings for a
specific type of Entity, call get_<entity>_qos_from_profile() (where <entity> may be participant, pub-
lisher, subscriber, datawriter, datareader, or topic). This is useful if you want to get the QoS values
from the profile in a structure, make some changes, and then use that structure to create an entity.
DDS_ReturnCode_t get_<entity>_qos_from_profile (

DDS_<Entity>Qos &qos,
const char *library_name,
const char *profile_name)

For an example, see Figure 7.5: Getting QoS Values from a Profile, Changing QoS Values, Creating a
Publisher with Modified QoS Values on page 281.

614

9.3 DomainParticipants

615

The get_<entity>_qos_from_profile() operations do not take into account the topic_filter attributes that
may be set for DataWriter, DataReader, or Topic QoSs in profiles (see 19.3.4 Topic Filters on page 876).
If there is a topic name associated with an entity, you can call get_<entity>_qos_from_profile_w_topic_
name() (where <entity> can be datawriter, datareader, or topic) and the topic filter expressions in the pro-
file will be evaluated on the topic name.
DDS_ReturnCode_t get_<entity>_qos_from_profile_w_topic_name(

DDS_<entity>Qos &qos,
const char *library_name,
const char *profile_name,
const char *topic_name)

get_<entity>_qos_from_profile() and get_<entity>_qos_from_profile_w_topic_name()may allocate
memory, depending on the sequences contained in some QoS policies.

Note: in the Modern C++ API, the class QosProvider provides the functionality described in thi section.
Please see the API Reference HTML documentation: Modules, RTI Connext DDS API Reference, Con-
figuring QoS Profiles with XML, QosProvider.

9.3 DomainParticipants

A DomainParticipant is a container for Entity objects that all belong to the same DDS domain. Each
DomainParticipant has its own set of internal threads and internal data structures that maintain information
about the Entities created by itself and other DomainParticipants in the same DDS domain. A DomainPar-
ticipant is used to create and destroy Publishers, Subscribers and Topics.

Once you have a DomainParticipant, you can use it to perform the operations listed in Table 9.3
DomainParticipant Operations. For more details on all operations, see the API Reference HTML doc-
umentation. Some of the first operations you’ll be interested in are create_topic(), create_subscriber(),
and create_publisher().

Note: Some operations cannot be used within a listener callback, see 4.5.1 Restricted Operations in
Listener Callbacks on page 200.

Working
with ... Operation Description Reference

Builtin Sub-
scriber

get_builtin_sub-
scriber

Returns the builtin Subscriber.
18.2 Built-in DataReaderson
page 838

Table 9.3 DomainParticipant Operations

9.3 DomainParticipants

Working
with ... Operation Description Reference

Domain-Par-
ticipants

add_peer Adds an entry to the peer list.
9.5.2.3 Adding and Removing
Peers List Entries on page 647

enable Enables the DomainParticipant.
4.1.2 Enabling DDSEntities on
page 168

equals Compares two DomainParticipant’sQoS structures for equality.
9.3.7.2 Comparing QoSVal-
ueson page 631

get_discovered_par-
ticipant_data

Provides the ParticipantBuiltinTopicData for a discovered Do-
mainParticipant. 9.3.12 Learning about Dis-

covered DomainParticipants on
page 636get_discovered_par-

ticipants
Provides a list ofDomainParticipants that have been discovered.

get_domain_id Gets the domain ID of the DomainParticipant.
9.3.4 Choosing a Domain ID
and CreatingMultiple DDSDo-
mainson page 624

get_listener Gets the currently installed DomainParticipantListener.
9.3.6 Setting UpDo-
mainParticipantListenerson
page 626

get_qos Gets the DomainParticipantQoS.
9.3.7 Setting Do-
mainParticipant QosPolicies on
page 628

ignore_participant Rejects the connection to a remote DomainParticipant.
18.4 Restricting Com-
munication—Ignoring Entities on
page 847

remove_peer Removes an entry from the peer list.
9.5.2.3 Adding and Removing
Peers List Entries on page 647

set_listener Replaces the DomainParticipantListener.
9.3.6 Setting UpDo-
mainParticipantListenerson
page 626

set_qos Sets the DomainParticipantQoS. 9.3.7 Setting Do-
mainParticipant QosPolicies on
page 628set_qos_with_pro-

file
Sets the DomainParticipantQoS based on a QoS profile.

Table 9.3 DomainParticipant Operations

616

9.3 DomainParticipants

617

Working
with ... Operation Description Reference

Content-
Filtered-Top-
ics

create_con-
tentfilteredtopic

Creates a ContentFilteredTopic that can be used to process content-
based subscriptions.

5.4.3 Creating Con-
tentFilteredTopicson page 230create_con-

tentfilteredtopic_
with_filter

delete_con-
tentfilteredtopic

Deletes a ContentFilteredTopic.
5.4.4 Deleting Con-
tentFilteredTopicson page 234

register_contentfilter Registers a new content filter.
5.4.10.2 Registering a Custom
Filter on page 250

unregister_con-
tentfilter

Unregisters a new content filter.
5.4.10.3 Unregistering a Cus-
tom Filter on page 252

lookup_contentfilter Gets a previously registered content filter.
5.4.10.4 Retrieving a Con-
tentFilter on page 253

DataReaders

create_datareader
Creates a DataReader with a given DataReaderListener, and an implicit
Subscriber.

8.3.1 Creating DataReaders
on page 515create_datareader_

with_
profile

Creates a DataReader based on a QoS profile, with a given DataRead-
erListener, and an implicit Subscriber.

delete_datareader Deletes a DataReader that belongs to the ‘implicit Subscriber.’
8.3.3 Deleting DataReaders
on page 517

get_default_
datareader_qos

Copies the default DataReaderQoS values into the provided structure.

9.3.7.5 Getting and Setting De-
fault QoS for Child Entities on
page 633

ignore_subscription Rejects the connection to a DataReader

set_default_
datareader_qos

Sets the default DataReaderQos values.

set_default_
datareader_
qos_with_profile

Sets the default DataReaderQos using values froma QoS profile.

Table 9.3 DomainParticipant Operations

9.3 DomainParticipants

Working
with ... Operation Description Reference

DataWriters

create_datawriter
Creates a DataWriter with a given DataWriterListener, and an implicit Pub-
lisher.

7.2.2 Creating Publishers on
page 277create_datawriter_

with_
profile

Creates a DataWriter based on a QoS profile, with a given DataWriter-
Listener, and an implicit Publisher.

delete_datawriter Deletes a DataWriter that belongs to the ‘implicit Publisher.’
7.2.3 Deleting Publishers on
page 278

ignore_publication Rejects the connection to a DataWriter.
18.4 Restricting Com-
munication—Ignoring Entities on
page 847

get_default_
datawriter_qos

Copies the default DataWriterQos values into the provided DataWriterQos
structure.

9.3.7.5 Getting and Setting De-
fault QoS for Child Entities on
page 633

set_default_
datawriter_qos

Sets the default DataWriterQoS values.

set_default_
datawriter_
qos _with_profile

Sets the default DataWriterQos using values froma profile.

Publishers

create_publisher Creates a Publisher and a PublisherListener.

7.2.2 Creating Publishers on
page 277create_publisher_

with_
profile

Creates a Publisher based on a QoS profile, and a PublisherListener.

delete_publisher Deletes a Publisher.
7.2.3 Deleting Publishers on
page 278

get_default_pub-
lisher_qos

Copies the default PublisherQos values into the provided PublisherQos
structure.

9.3.7.5 Getting and Setting De-
fault QoS for Child Entities on
page 633

get_implicit_pub-
lisher

Gets the Publisher that is implicitly created by the DomainParticipant.
9.3.10 Getting the Implicit Pub-
lisher or Subscriber on
page 635

get_publishers Provides a list of allPublishersowned by the DomainParticipant.
9.3.15.3 Getting AllPublishers
and Subscribers on page 638

set_default_pub-
lisher_qos

Sets the default PublisherQos values.
9.3.7.5 Getting and Setting De-
fault QoS for Child Entities on
page 633set_default_pub-

lisher_qos_with_pro-
file

Sets the default PublisherQos using values froma QoS profile.

Table 9.3 DomainParticipant Operations

618

9.3 DomainParticipants

619

Working
with ... Operation Description Reference

Subscribers

create_subscriber Creates a Subscriber and a SubscriberListener.

8.2.2 Creating Subscribers on
page 496create_subscriber_

with_
profile

Creates a Subscriber based on a QoS profile, and a SubscriberListener.

delete_subscriber Deletes a Subscriber.
8.2.3 Deleting Subscribers on
page 497

get_default_sub-
scriber_qos

Copies the default SubscriberQos values into the provided Sub-
scriberQos structure.

9.3.7.5 Getting and Setting De-
fault QoS for Child Entities on
page 633

get_implicit_sub-
scriber

Gets the Subscriber that is implicitly created by the DomainParticipant.
9.3.10 Getting the Implicit Pub-
lisher or Subscriber on
page 635

get_subscribers Provides a list of allSubscribersowned by the DomainParticipant.
9.3.15.3 Getting AllPublishers
and Subscribers on page 638

set_default_sub-
scriber_qos

Sets the default SubscriberQos values.
9.3.7.5 Getting and Setting De-
fault QoS for Child Entities on
page 633set_default_sub-

scriber_qos_with_
profile

Sets the default SubscriberQos values using values froma QoS profile.

Durable
Subscriptions

delete_durable_sub-
scription

Deletes an existing Durable Subscription. The quorumof the existing DDS
samples will be considered satisfied.

46.9 Configuring Durable Sub-
scriptions in Persistence Ser-
vice on page 1205register_durable_

subscription

Creates a Durable Subscription that will receive all DDS samples pub-
lished on a Topic, including those published while a DataReader is in-
active or before it may be created.

RTI Persistence Servicewill ensure that all the DDS samples on that
Topicare retained until they are acknowledged by at leastNDataRead-
ersbelonging to the Durable Subscription, where N is the quorumcount.

If the same Durable Subscription is created on a different Topic,RTI Per-
sistence Servicewill implicitly delete the previous Durable Subscription
and create a newone on the newTopic.

Table 9.3 DomainParticipant Operations

9.3 DomainParticipants

Working
with ... Operation Description Reference

Topics

create_topic Creates a Topicand a TopicListener.

5.1.1 Creating Topics on
page 218

create_topic _with_
profile

Creates a Topic based on a QoS profile, and a TopicListener.

delete_topic Deletes a Topic.

get_default_topic_
qos

Copies the default TopicQos values into the provided TopicQos structure.
9.3.7.5 Getting and Setting De-
fault QoS for Child Entities on
page 633

get_discovered_
topic_data

Retrieves the BuiltinTopicData for a discovered Topic.
9.3.13 Learning about Dis-
covered Topics on page 636

get_discovered_top-
ics

Returns a list of all (non-ignored) discovered Topics.

ignore_topic Rejects a remote topic.
18.4 Restricting Com-
munication—Ignoring Entities on
page 847

lookup_top-
icdescription

Gets an existing locally-created TopicDescription (Topic).
9.3.8 Looking up TopicDe-
scriptionson page 634

set_default_topic_
qos

Sets the default TopicQos values. 9.3.7.5 Getting and Setting De-
fault QoS for Child Entities on
page 633set_default_topic_

qos_with_profile
Sets the default TopicQos values using values froma profile.

find_topic Finds an existing Topic, based on its name.
9.3.9 Finding a Topic on
page 634

Flow-Con-
trollers

create_flow-
controller

Creates a customFlowController object.
7.6.6 Creating and Deleting
FlowControllers on page 486

delete_flow-
controller

Deletes a customFlowController object.

get_default_flow-
controller_property

Gets the default properties used when a newFlowController is created. 7.6.7 Getting/Setting Default
FlowController Properties on
page 487set_default_flow-

controller_property
Sets the default properties used when a newFlowController is created.

lookup_flow-
controller

Finds a FlowController, based on its name.
7.6.10 Other FlowController
Operationson page 488

Table 9.3 DomainParticipant Operations

620

9.3.1 Creating a DomainParticipant

621

Working
with ... Operation Description Reference

Libraries and
Profiles

get_default_library Gets the default library.

9.3.7.4 Getting and Setting Do-
mainParticipant’sDefault QoS
Profile and Library on page 632

get_default_profile Gets the default profile.

get_default_profile_
library

Gets the library that contains the default profile.

set_default_profile Sets the default QoS profile.

set_default_library Sets the default library.

MultiTopics
create_multitopic

Creates aMultiTopic that can be used to subscribe to multiple topics and
combine/filter the received data into a resulting type.

Currently not supported.

delete_multitopic Deletes aMultiTopic.

Other

assert_liveliness Manually asserts the liveliness of thisDomainParticipant.
9.3.10 Getting the Implicit Pub-
lisher or Subscriber on
page 635

delete_contained_
entities

Recursively deletes all the entities that were created using the "create" op-
erations on the DomainParticipant and its children.

9.3.3 Deleting Contained Entit-
ies on page 623

contains_entity Confirms if an entity belongs to the DomainParticipant or not.
9.3.15.1 Verifying EntityCon-
tainment on page 637

get_current_time Gets the current time used byConnext DDS.
9.3.15.2 Getting the Current
Time on page 637

get_status_
changes

Gets a list of statuses that have changed since the last time the ap-
plication read the status or the Listenerswere called.

4.1.4 Getting Statusand Status
Changeson page 171

Table 9.3 DomainParticipant Operations

9.3.1 Creating a DomainParticipant

Typically, you will only need to create one DomainParticipant per DDS domain per application.
(Although unusual, you can create multiple DomainParticipants for the same DDS domain in an applic-
ation.)

To create a DomainParticipant, use the DomainParticipantFactory’s create_participant() or create_par-
ticipant_with_profile() operation:

A QoS profile is way to use QoS settings from an XML file or string. With this approach, you can change
QoS settings without recompiling the application. For details, see Configuring QoS with XML (Chapter
19 on page 854).

Note: In the Modern C++ API, you will use the DomainParticipant constructors.
DDSDomainParticipant * create_participant(

DDS_DomainId_t domainId,
const DDS_DomainParticipantQos &qos,

9.3.1 Creating a DomainParticipant

DDSDomainParticipantListener *listener,
DDS_StatusMask mask)

DDSDomainParticipant * create_participant_with_profile (
DDS_DomainId_t domainId,
const char * library_name,
const char *profile_name,
DDSDomainParticipantListener *listener,
DDS_StatusMask mask)

Where:

domainId The domain ID uniquely identifies the DDS domain that the DomainParticipant is in. It controls with
which other DomainParticipants it will communicate. See 9.3.4 Choosing a Domain ID and Creating
Multiple DDS Domains on page 624 for more information on domain IDs.

qos If you want the default QoS settings (described in the API Reference HTML documentation), use DDS_
PARTICIPANT_QOS_DEFAULT for this parameter (see Figure 9.4: Creating a DomainParticipant with
Default QosPolicies below). If you want to customize any of the QosPolicies, supply a Do-
mainParticipantQos structure that is described in 9.3.7 Setting DomainParticipant QosPolicies on
page 628.

Note: If you use DDS_PARTICIPANT_QOS_DEFAULT, it is not safe to create the DomainParticipant
while another thread may simultaneously be calling the DomainParticipantFactory’s set_default_par-
ticipant_qos() operation.

listener Listeners are callback routines. Connext DDS uses them to notify your application of specific events
(status changes) that may occur. The listener parameter may be set to NULL if you do not want to install
a Listener. The DomainParticipant’s Listener is a catchall for all of the events of all of its Entities. If an
event is not handled by an Entity’s Listener, then the DomainParticipantListener may be called in re-
sponse to the event. For more information, see 9.3.6 Setting Up DomainParticipantListeners on
page 626.

mask This bit mask indicates which status changes will cause the Listener to be invoked. The bits set in the
mask must have corresponding callbacks implemented in the Listener. If you use NULL for the
Listener, use DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all callbacks,
use DDS_STATUS_MASK_ALL. For information on statuses, see 4.4 Listeners on page 189.

library_name A QoS Library is a named set of QoS profiles. See 19.3 QoS Profiles on page 856.

profile_name A QoS profile groups a set of related QoS, usually one per entity. See 19.3 QoS Profiles on page 856.

After you create a DomainParticipant, the next step is to register the data types that will be used by the
application, see 3.6 Using RTI Code Generator (rtiddsgen) on page 152. Then you will need to create
the Topics that the application will publish and/or subscribe, see 5.1.1 Creating Topics on page 218.
Finally, you will use the DomainParticipant to create Publishers and/or Subscribers, see 7.2.2 Creating
Publishers on page 277 and 8.2.2 Creating Subscribers on page 496.

Note: It is not safe to create one DomainParticipant while another thread may simultaneously be look-
ing up (9.2.4 Looking Up DomainParticipants on page 614) or deleting (9.3.2 Deleting Do-
mainParticipants on the next page) the same DomainParticipant.

For more examples, see 9.3.7.1 Configuring QoS Settings when DomainParticipant is Created on
page 629.

Figure 9.4: Creating a DomainParticipant with Default QosPolicies

DDS_DomainId_t domain_id = 10;
// MyDomainParticipantListener is user defined and
// extends DDSDomainParticipantListener
MyDomainParticipantListener* participant_listener =

622

9.3.2 Deleting DomainParticipants

623

new MyDomainParticipantListener(); // or = NULL
// Create the participant
DDSDomainParticipant* participant = factory->create_participant(

domain_id, DDS_PARTICIPANT_QOS_DEFAULT,
participant_listener, DDS_STATUS_MASK_ALL);

if (participant == NULL) {
// ... error

};

9.3.2 Deleting DomainParticipants

If the application is no longer interested in communicating in a certain DDS domain, the DomainPar-
ticipant can be deleted. A DomainParticipant can be deleted only after all the Entities that were created by
the DomainParticipant have been deleted (see 9.3.3 Deleting Contained Entities below).

To delete a DomainParticipant:

You must first delete all Entities (Publishers, Subscribers, ContentFilteredTopics, and Topics) that were
created with the DomainParticipant. Use the DomainParticipant’s delete_<entity>() operations to delete
them one at a time, or use the delete_contained_entities() operation (9.3.3 Deleting Contained Entities
below) to delete them all at the same time.
DDS_ReturnCode_t delete_publisher (DDSPublisher *p)
DDS_ReturnCode_t delete_subscriber (DDSSubscriber *s)
DDS_ReturnCode_t delete_contentfilteredtopic

(DDSContentFilteredTopic *a_contentfilteredtopic)
DDS_ReturnCode_t delete_topic (DDSTopic *topic)

Delete the DomainParticipant by using the DomainParticipantFactory’s delete_participant() operation.
DDS_ReturnCode_t delete_participant

(DDSDomainParticipant *a_participant)

Note: A DomainParticipant cannot be deleted within its Listener callback, see 4.5.1 Restricted Oper-
ations in Listener Callbacks on page 200.

After a DomainParticipant has been deleted, all of the participant’s internal Connext DDS threads and
allocated memory will have been deleted. You should delete the DomainParticipantListener only after the
DomainParticipant itself has been deleted.

Note: In the Modern C++ API, Entities are automatically destroyed.

9.3.3 Deleting Contained Entities

The DomainParticipant’s delete_contained_entities() operation deletes all the Publishers (including an
implicitly created one, if it exists), Subscribers (including an implicitly created one, if it exists), Con-
tentFilteredTopics, and Topics that have been created by the DomainParticipant.
DDS_ReturnCode_t delete_contained_entities()

Prior to deleting each contained entity, this operation recursively calls the corresponding delete_con-
tained_entities() operation on each contained entity (if applicable). This pattern is applied recursively.

9.3.4 Choosing a Domain ID and Creating Multiple DDS Domains

Therefore, delete_contained_entities() on the DomainParticipant will end up deleting all the entities
recursively contained in the DomainParticipant, that is also the DataWriter, DataReader, as well as the
QueryCondition and ReadCondition objects belonging to the contained DataReader.

If delete_contained_entities() returns successfully, the application may delete the DomainParticipant
knowing that it has no contained entities (see 9.3.2 Deleting DomainParticipants on the previous page).

9.3.4 Choosing a Domain ID and Creating Multiple DDS Domains

A domain ID identifies the DDS domain in which the DomainParticipant is communicating. DomainPar-
ticipants with the same domain ID are on the same communication “channel”. DomainParticipants with
different domain IDs are completely isolated from each other.

The domain ID is a purely arbitrary value; you can use any integer 0 or higher, provided it does not violate
the guidelines for the DDS_RtpsWellKnownPorts_t structure (9.5.9.2 Ports Used for Discovery on
page 678). Domain IDs are typically between 0 and 232. Please see the API Reference HTML doc-
umentation for the DDS_RtpsWellKnownPorts_t structure and in particular, DDS_INTEROPERABLE_
RTPS_WELL_KNOWN_PORTS.

Note: On Windows, you should avoid using ports 49152 through 65535 for inbound traffic. Connext
DDS’s ephemeral ports (see 15.5 Ports Used for Discovery on page 797) may be within that range
(see https://msdn.microsoft.com/en-us/library/windows/desktop/ms737550(v=vs.85).aspx). With the
default RtpsWellKnownPorts settings, port 49152 corresponds to domain ID 167, so using domain
IDs 168 through 232 on Windows introduces the risk of a port collision and failure to create the
DomainParticipant when using multicast discovery. You may see this error:

RTIOsapiSocket_bindWithIP:OS bind() failure, error 0X271D: An attempt was made to access a
socket in a way forbidden by its access permissions.

Most distributed systems can use a single DDS domain for all of its applications. Thus a single domain ID
is sufficient. Some systems may need to logically partition nodes to prevent them from communicating
with each other directly, and thus will need to use multiple DDS domains. However, even in systems that
only use a single DDS domain, during the testing and development phases, one may want to assign dif-
ferent users/testers different domain IDs for running their applications so that their tests do not interfere
with each other.

To run multiple applications on the same node with the same domain ID, Connext DDS uses a participant
ID to distinguish between the different DomainParticipants in the different applications. The participant
ID is simply an integer value that must be unique across all DomainParticipants created on the same node
that use the same domain ID. The participant_id is part of the 9.5.9 WIRE_PROTOCOL QosPolicy
(DDS Extension) on page 676.

Although usually those DomainParticipants have been created in different applications, the same applic-
ation can also create multiple DomainParticipants with the same domain ID. For optimal results, the par-
ticipant_id should be assigned sequentially to the different DomainParticipants, starting from the default
value of 0.

624

https://msdn.microsoft.com/en-us/library/windows/desktop/ms737550(v=vs.85).aspx

9.3.5 Choosing a Domain Tag

625

Once you have a DomainParticipant, you can retrieve its domain ID with the get_domain_id() operation.

The domain ID and participant ID are mapped to port numbers that are used by transports for discovery
traffic. For information on how port numbers are calculated, see 15.5 Ports Used for Discovery on
page 797. How DomainParticipants discover each other is discussed in Discovery (Chapter 15 on
page 770).

9.3.5 Choosing a Domain Tag

The Domain Tag is an intuitive way of subdividing domains. It consists of a string value (with a maximum
of 255 characters). It allows DomainParticipants to drop Participant Discovery messages not belonging to
the same Domain Tag they are using. The Domain Tag is immutable, and cannot be changed after creating
the DomainParticipant.

Unlike Domain IDs, Domain Tags are not mapped to port numbers that are used by transports for dis-
covery traffic. Consequently, a DomainParticipantmay receive Participant Discovery traffic belonging to
a different Domain Tag; however, this traffic will be dropped upon reception. Another consequence of
Domain Tag having no impact on port mapping is that multiple DomainParticipants running on the same
machine with the same Domain ID, but with different Domain Tags, will end up using different participant
IDs to avoid port collision.

As an example, a system with six DomainParticipants could be configured as follows:

l Participant A: Domain ID = 24, Domain Tag = "ENG. DEPT"

l Participant B: Domain ID = 24, Domain Tag = "ENG. DEPT"

l Participant C: Domain ID = 24, Domain Tag = "SALES DEPT"

l Participant D: Domain ID = 24, Domain Tag = "SALES DEPT"

l Participant E: Domain ID = 42, Domain Tag = "ENG. DEPT"

l Participant F: Domain ID = 42, Domain Tag = "ENG. DEPT"

In this system, Participants A, B, C, and D are all on the same Domain ID, so all of them will receive the
discovery traffic belonging to domain 24; however, only DomainParticipant pairs A-B and C-D will be
able to discover each other, since they have a matching Domain Tag. (Any discovery message not match-
ing the expected Domain Tag will be dropped.) Participants E and F are in a different domain (42), so they
are completely isolated from the rest, not even receiving the discovery traffic from the rest of the
DomainParticipants. For more information, see 15.1.1 Simple Participant Discovery on page 771.

By default, a DomainParticipant is in an empty ("", zero-length string) Domain Tag. To associate a
Domain Tag with a DomainParticipant, use the following DomainParticipant PropertyQos property:

dds.domain_participant.domain_tag: A string (with a maximum of 255 characters) defining the
Domain Tag the DomainParticipant will propagate through Participant Discovery. Participants will
drop any Participant discovery message that contains a Domain Tag that does not match the local

9.3.6 Setting Up DomainParticipantListeners

Domain Tag. This parameter is only propagated if it is set to a value different than the default. Default:
"" (empty, zero-length string).

Note:While Domain ID is fully supported across the whole Connext DDS ecosystem, Domain Tag sup-
port is currently limited to the Core Libraries and infrastructure Services (by setting the aforementioned
DomainParticipant PropertyQos property). Domain Tags are not well supported in Connext tools (such as
Admin Console). Connext tools do not provide a tool-specific mechanism to configure Domain Tags. Con-
sequently, if you configure an application to use Domain Tags, that application will not be able to com-
municate with Connext tools, unless you edit the tool's QoS configuration (if it has one—for instance, see
Admin Console's Preferences dialog) to use Domain Tags.

9.3.6 Setting Up DomainParticipantListeners

DomainParticipants may optionally have Listeners. Listeners are essentially callback routines and are how
Connext DDS will notify your application of specific events (changes in status) for entities Topics, Pub-
lishers, Subscribers, DataWriters, and DataReaders. Each Entity may have a Listener installed and
enabled to process the events for itself and all of the sub-Entities created from it. If an Entity does not have
a Listener installed or is not enabled to listen for a particular event, then Connext DDS will propagate the
event to the Entity’s parent. If the parent Entity does not process the event, Connext DDS will continue to
propagate the event up the object hierarchy until either a Listener is invoked or the event is dropped.

The DomainParticipantListener is the last chance that an event can be processed for the Entities des-
cended from a DomainParticipant. The DomainParticipantListener is used only if an event is not handled
by any of the Entities contained by the participant.

A Listener is typically set up when the DomainParticipant is created (see 9.3.1 Creating a DomainPar-
ticipant on page 621). You can also set one up after creation time by using the set_listener() operation, as
illustrated in Figure 9.5: Setting up DomainParticipantListener below. The get_listener() operation can be
used to retrieve the current DomainParticipantListener.
Figure 9.5: Setting up DomainParticipantListener

// MyDomainParticipantListener only handles PUBLICATION_MATCHED and
// SUBSCRIPTION_MATCHED status for DomainParticipant Entities
class MyDomainParticipantListener :

public DDSDomainParticipantListener {
public:
virtual void on_publication_matched(DDSDataWriter *writer,

const DDS_PublicationMatchedStatus &status);
virtual void on_subscription_matched(DDSDataReader *reader,

const DDS_SubscriptionMatchedStatus &status);
};
void MyDomainParticipantListener::on_publication_matched(

DDSDataWriter *writer,
const DDS_PublicationMatchedStatus &status)

{
const char *name = writer->get_topic()->get_name();
printf(“Number of matching DataReaders for Topic %s is %d\n”,

name, status.current_count);

626

9.3.6 Setting Up DomainParticipantListeners

627

};
void MyDomainParticipantListener::on_subscription_matched(

DDSDataReader *reader,
const DDS_SubscriptionMatchedStatus &status)

{
const char *name =

reader->get_topicdescription()->get_name();
printf(“Number of matching DataWriters for Topic %s is %d\n”,

name, status.current_count);
};

// Set up participant listener
MyDomainParticipantListener* participant_listener =

new MyDomainParticipantListener();
if (participant_listener == NULL) {

// ... handle error
}
// Create the participant with a listener
DDSDomainParticipant* participant = factory->create_participant(

domain_id, participant_qos, participant_listener,
DDS_PUBLICATION_MATCHED_STATUS |
DDS_SUBSCRIPTION_MATCHED_STATUS);

if (participant == NULL) {
// ... handle error

}

If a Listener is set for a DomainParticipant, the Listener needs to exist as long as the DomainParticipant
exists. It is unsafe to destroy the Listener while it is attached to a participant. However, you may remove
the DomainParticipantListener from a DomainParticipant by calling set_listener() with a NULL value.
Once the Listener has been removed from the participant, you may safely destroy it (see 4.4.1 Types of
Listeners on page 190).

Notes:

l Due to a thread-safety issue, the destruction of a DomainParticipantListener from an enabled
DomainParticipant should be avoided—even if the DomainParticipantListener has been removed
from the DomainParticipant. (This limitation does not affect the Java API.)

l It is possible for multiple internal Connext DDS threads to call the same method of a DomainPar-
ticipantListener simultaneously. You must write the methods of a DomainParticipantListener to be
multithread safe and reentrant. The methods of the Listener of other Entities do not have this con-
straint and are guaranteed to have single threaded access.

See also:

l 5.1.5 Setting Up TopicListeners on page 224

l 7.2.5 Setting Up PublisherListeners on page 285

l 7.3.4 Setting Up DataWriterListeners on page 295

9.3.7 Setting DomainParticipant QosPolicies

l 8.2.6 Setting Up SubscriberListeners on page 505

l 8.3.4 Setting Up DataReaderListeners on page 517

9.3.7 Setting DomainParticipant QosPolicies

A DomainParticipant’s QosPolicies are used to configure discovery, database sizing, threads, information
sent to other DomainParticipants, and the behavior of the DomainParticipant when acting as a factory for
other Entities.

Note: set_qos() cannot always be used in a listener callback; see 4.5.1 Restricted Operations in Listener
Callbacks on page 200.

The DDS_DomainParticipantQos structure has the following format:
struct DDS_DomainParticipantQos {

DDS_UserDataQosPolicy user_data;
DDS_EntityFactoryQosPolicy entity_factory;
DDS_WireProtocolQosPolicy wire_protocol;
DDS_TransportBuiltinQosPolicy transport_builtin;
DDS_TransportUnicastQosPolicy default_unicast;
DDS_DiscoveryQosPolicy discovery;
DDS_DomainParticipantResourceLimitsQosPolicy resource_limits;
DDS_EventQosPolicy event;
DDS_ReceiverPoolQosPolicy receiver_pool;
DDS_DatabaseQosPolicy database;
DDS_DiscoveryConfigQosPolicy discovery_config;
DDS_PropertyQosPolicy property;
DDS_EntityNameQosPolicy participant_name;
DDS_TransportMulticastMappingQosPolicy multicast_mapping;
DDS_ServiceQosPolicy service;
DDS_TypeSupportQosPolicy type_support;

};

Table 9.4 DomainParticipant QosPolicies summarizes the meaning of each policy (listed alphabetically).
For information on why you would want to change a particular QosPolicy, see the section referenced in
the table.

QosPolicy Description

Database
Various settings and resource limits used byConnext DDS to control its internal database. See 9.5.1
DATABASEQosPolicy (DDSExtension) on page 643.

Discovery
Configures the mechanismused byConnext DDS to automatically discover and connect with new remote ap-
plications. See 9.5.2 DISCOVERYQosPolicy (DDSExtension) on page 646.

DiscoveryConfig
Controls the amount of delay in discovering entities in the systemand the amount of discovery traffic in the net-
work. See 9.5.3 DISCOVERY_CONFIGQosPolicy (DDSExtension) on page 650.

Table 9.4 DomainParticipant QosPolicies

628

9.3.7 Setting DomainParticipant QosPolicies

629

QosPolicy Description

DomainParticipantResourceLimits
Various settings that configure howDomainParticipantsallocate and use physicalmemory for internal re-
sources, including the maximumsizes of various properties. See 9.5.4 DOMAIN_PARTICIPANT_
RESOURCE_LIMITSQosPolicy (DDSExtension) on page 660.

EntityFactory
Controls whether or not child entities are created in the enabled state. See 7.4.2 ENTITYFACTORY
QosPolicy on page 349.

EntityName
Assigns a name to a DomainParticipant. See 7.5.11 ENTITY_NAMEQosPolicy (DDSExtension) on
page 419.

Event
Configures the DomainParticipant’s internal thread that handles timed events. See 9.5.5 EVENT QosPolicy
(DDSExtension) on page 668.

Property

Stores name/value(string) pairs that can be used to configure certain parameters ofConnext DDS that are not
exposed through formalQoS policies. It can also be used to store and propagate application-specific name/-
value pairs, which can be retrieved by user code during discovery. See 7.5.19 PROPERTYQosPolicy (DDS
Extension) on page 440.

ReceiverPool
Configures threads used byConnext DDS to receive and process data from transports (for example, UDP sock-
ets). See 9.5.6 RECEIVER_POOLQosPolicy (DDSExtension) on page 670.

Service
Intended for use by RTI infrastructure services. User applications should not modify its value. See 7.5.23
SERVICEQosPolicy (DDSExtension) on page 455.

TransportBuiltin
Specifies which built-in transport plugins are used. See 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDSEx-
tension) on page 671.

TransportMulticastMapping
Specifies the automatic mapping between a list of topic expressions and multicast address that can be used by
a DataReader to receive data for a specific topic. See 9.5.8 TRANSPORT_MULTICAST_MAPPING
QosPolicy (DDSExtension) on page 673.

TransportUnicast
Specifies a subset of transports and port number that can be used by an Entity to receive data. See 7.5.28
TRANSPORT_UNICAST QosPolicy (DDSExtension) on page 465.

TypeSupport
Used to attach application-specific value(s) to a DataWriter orDataReader. These values are passed to the
serialization or deserialization routine of the associated data type. See 7.5.29 TYPESUPPORT QosPolicy
(DDSExtension) on page 469.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a buffer of bytes to Connext
DDS's discovery meta-data. See 7.5.30 USER_DATAQosPolicy on page 470.

WireProtocol
Specifies IDs used by the RTPS wire protocol to create globally unique identifiers. See 9.5.9 WIRE_
PROTOCOLQosPolicy (DDSExtension) on page 676.

Table 9.4 DomainParticipant QosPolicies

9.3.7.1 Configuring QoS Settings when DomainParticipant is Created

As described in 9.3.1 Creating a DomainParticipant on page 621, there are different ways to create a
DomainParticipant, depending on how you want to specify its QoS (with or without a QoS Profile).

9.3.7 Setting DomainParticipant QosPolicies

l Figure 9.4: Creating a DomainParticipant with Default QosPolicies on page 622 has an example of
how to create a DomainParticipant with default QosPolicies by using the special constant, DDS_
PARTICIPANT_QOS_DEFAULT, which indicates that the default QoS values for a DomainPar-
ticipant should be used. The default DomainParticipant QoS values are configured in the
DomainParticipantFactory; you can change them with set_default_participant_qos() or set_
default_participant_qos_with_profile() (see 9.2.2 Getting and Setting Default QoS for
DomainParticipants on page 613). Then any DomainParticipants created with the DomainPar-
ticipantFactory will use the new default values. As described in 4.1.7 Getting, Setting, and Com-
paring QosPolicies on page 172, this is a general pattern that applies to the construction of all
Entities.

l To create a DomainParticipant with non-default QoS without using a QoS Profile, see the example
code in Figure 9.6: Creating DomainParticipant with Modified QosPolicies (not from profile) below.
It uses the DomainParticipantFactory’s get_default_participant_qos()method to initialize a
DDS_ParticipantQos structure. Then, the policies are modified from their default values before the
structure is used in the create_participant()method.

l You can also create a DomainParticipant and specify its QoS settings via a QoS Profile. To do so,
you will call create_participant_with_profile(), as seen in Figure 9.7: Creating DomainParticipant
with QoS Profile on the next page.

l If you want to use a QoS profile, but then make some changes to the QoS before creating the
DomainParticipant, call get_participant_qos_from_profile() and create_participant() as seen in
Figure 9.8: Getting QoS from Profile, Creating DomainParticipant with Modified QoS Values on
the next page.

For more information, see 9.3.1 Creating a DomainParticipant on page 621 and Configuring QoS with
XML (Chapter 19 on page 854).

Notes:

l The examples in this section use the Traditional C++ API; for examples in the Modern C++ API,
see the sections "Participant Use Cases," "Qos Use Cases," and "Qos Provider Use Cases" in the
API Reference HTML documentation, under "Programming How-To's."

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 9.6: Creating DomainParticipant with Modified QosPolicies (not from profile)

DDS_DomainId_t domain_id = 10;
DDS_DomainParticipantQos participant_qos;
// initialize participant_qos with default values
factory->get_default_participant_qos(participant_qos);
// make QoS changes here
participant_qos.wire_protocol.participant_id = 2;
// Create the participant with modified qos
DDSDomainParticipant* participant = factory->create_participant(

630

9.3.7 Setting DomainParticipant QosPolicies

631

domain_id, participant_qos, NULL, DDS_STATUS_MASK_NONE);
if (participant == NULL) {

// ... error
}

Figure 9.7: Creating DomainParticipant with QoS Profile

DDS_DomainId_t domain_id = 10;
// MyDomainParticipantListener is user defined and
// extends DDSDomainParticipantListener
MyDomainParticipantListener* participant_listener

= new MyDomainParticipantListener(); // or = NULL
// Create the participant
DDSDomainParticipant* participant =

factory->create_participant_with_profile(domain_id,
“MyDomainLibrary”, “MyDomainProfile”,
participant_listener, DDS_STATUS_MASK_ALL);

if (participant == NULL) {
// ... error

};

Figure 9.8: Getting QoS from Profile, Creating DomainParticipant with Modified QoS Values

DDS_DomainParticipantQos participant_qos;
// Get DomainParticipant QoS from profile
retcode = factory->get_participant_qos_from_profile(participant_qos,

“DomainParticipantProfileLibrary”, “DomainParticipantProfile”);
if (retcode != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes here
participant_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_FALSE;
// create participant with modified QoS
DDSDomainParticipant* participant = factory->create_participant(domain_id,

participant_qos, NULL, DDS_STATUS_MASK_NONE);
if (participant == NULL) {

// handle error
}

9.3.7.2 Comparing QoS Values

The equals() operation compares two DomainParticipant’s DDS_DomainParticipantQoS structures for
equality. It takes two parameters for the two DomainParticipant’s QoS structures to be compared, then
returns TRUE is they are equal (all values are the same) or FALSE if they are not equal.

9.3.7.3 Changing QoS Settings After DomainParticipant Has Been Created

There are two ways to change an existing DomainParticipant’s QoS after it is has been created—again
depending on whether or not you are using a QoS Profile.

l To change QoS programmatically (that is, without using a QoS Profile), use get_qos() and set_qos
(). See the example code in Figure 9.9: Changing QoS of Existing Participant (without QoS Profile)
on the next page. It retrieves the current values by calling the DomainParticipant’s get_qos()

9.3.7 Setting DomainParticipant QosPolicies

operation. Then it modifies the value and calls set_qos() to apply the new value. Note, however,
that some QosPolicies cannot be changed after the DomainParticipant has been enabled—this restric-
tion is noted in the descriptions of the individual QosPolicies.

l You can also change a DomainParticipant’s (and all other Entities’) QoS by using a QoS Profile
and calling set_qos_with_profile(). For an example, see Figure 9.10: Changing QoS of Existing
Participant with QoS Profile below. For more information, see Configuring QoS with XML
(Chapter 19 on page 854).

Note:

l In C, you must initialize the QoS structures before they are used, see 4.2.2 Special QosPolicy Hand-
ling Considerations for C on page 182.

Figure 9.9: Changing QoS of Existing Participant (without QoS Profile)
DDS_DomainParticipantQos participant_qos;
// Get current QoS
//participant points to an existing DDSDomainParticipant
if (participant->get_qos(participant_qos) != DDS_RETCODE_OK) {

// handle error
}
// Make QoS changes
participant_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_FALSE;
// Set the new QoS
if (participant->set_qos(participant_qos) != DDS_RETCODE_OK) {

// handle error
}

Figure 9.10: Changing QoS of Existing Participant with QoS Profile

DDS_DomainParticipantQos participant_qos;
// Get current QoS
//participant points to an existing DDSDomainParticipant
if (participant->get_qos(participant_qos) != DDS_RETCODE_OK) {

// handle error
}
// Make QoS changes
participant_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_FALSE;
// Set the new QoS
if (participant->set_qos(participant_qos) != DDS_RETCODE_OK) {

// handle error
}

9.3.7.4 Getting and Setting DomainParticipant’s Default QoS Profile and Library

You can get the default QoS profile for the DomainParticipant with the get_default_profile() operation.
You can also get the default library for the DomainParticipant, as well as the library that contains the
DomainParticipant’s default profile (these are not necessarily the same library); these operations are called
get_default_library() and get_default_library_profile(), respectively. These operations are for

632

9.3.7 Setting DomainParticipant QosPolicies

633

informational purposes only (that is, you do not need to use them as a precursor to setting a library or pro-
file.) For more information, see Configuring QoS with XML (Chapter 19 on page 854).
virtual const char * get_default_library ()
const char * get_default_profile ()
const char * get_default_profile_library ()

There are also operations for setting the DomainParticipant’s default library and profile:
DDS_ReturnCode_t set_default_library (

const char * library_name)
DDS_ReturnCode_t set_default_profile (

const char * library_name,
const char * profile_name)

If the default profile/library is not set, the DomainParticipant inherits the default from the DomainPar-
ticipantFactory.

l set_default_profile() specifies the profile that will be used as the default the next time a default
DomainParticipant profile is needed during a call to one of this DomainParticipant’s operations.
When calling a DomainParticipant operation that requires a profile_name parameter, you can use
NULL to refer to the default profile. (This same information applies to setting a default library.)

l set_default_profile() does not set the default QoS for entities created by the DomainParticipant;
for this functionality, use the DomainParticipant’s set_default_<entity>_qos_with_profile() oper-
ation (you may pass in NULL after having called set_default_profile(), see 9.3.7.5 Getting and Set-
ting Default QoS for Child Entities below).

l set_default_profile() does not set the default QoS for newly created DomainParticipants; for this
functionality, use the DomainParticipantFactory’s set_default_participant_qos_with_profile(), see
9.2.2 Getting and Setting Default QoS for DomainParticipants on page 613).

9.3.7.5 Getting and Setting Default QoS for Child Entities

The set_default_<entity>_qos() and set_default_<entity>_qos_with_profile() operations set the default
QoS that will be used for newly created entities (where <entity> may be publisher, subscriber,
datawriter, datareader, or topic). The new QoS settings will only be used if DDS_<entity>_QOS_
DEFAULT is specified as the qos parameter when create_<entity>() is called. For example, for a Pub-
lisher, you can use either:
DDS_ReturnCode_t set_default_publisher_qos (

const DDS_PublisherQos &qos)
DDS_ReturnCode_t set_default_publisher_qos_with_profile (

const char *library_name,
const char *profile_name)

The following operation gets the default QoS that will be used for creating Publishers if DDS_
PUBLISHER_QOS_DEFAULT is specified as the ‘qos’ parameter when create_publisher() is called:

9.3.8 Looking up Topic Descriptions

DDS_ReturnCode_t get_default_publisher_qos (
DDS_PublisherQos & qos)

There are similar operations for Subscribers, DataWriters, DataReaders and Topics. These operations,
get_default_<entity>_qos(), get the QoS settings that were specified on the last successful call to set_
default_<entity>_qos() or set_default_<entity>_qos_with_profile(), or if the call was never made, the
default values listed in DDS_<entity>Qos. They may potentially allocate memory depending on the
sequences contained in some QoS policies.

Note: It is not safe to set default QoS values for an entity while another thread may be
simultaneously getting or setting them, or using the QOS_DEFAULT constant to create the entity.

9.3.8 Looking up Topic Descriptions

The lookup_topicdescription() operation allows you to access a locally created DDSTopicDescription
based on the Topic’s name.
DDSTopicDescription* lookup_topicdescription(const char *topic_name)

DDSTopicDescription is the base class for Topics, MultiTopics1 and ContentFilteredTopics. You can nar-
row the DDSTopicDescription returned from lookup_topicdescription() to a Topic or Con-
tentFilteredTopic as appropriate.

Unlike find_topic() (see 9.3.9 Finding a Topic below), which logically returns a new Topic that must be
independently deleted, this operation returns a reference to the original local object.

If no TopicDescription has been created yet with the given Topic name, this method will return a NULL
value.

The DomainParticipant does not have to be enabled when you call lookup_topicdescription().

Note: It is not safe to create or delete a topic while another thread is calling lookup_topicdescription() for
that same topic.

9.3.9 Finding a Topic

The find_topic() operation finds an existing (or ready to exist) Topic, based on its name. This call can be
used to block for a specified duration to wait for the Topic to be created.
DDSTopic* DDSDomainParticipant::find_topic (const char * topic_name,

const DDS_Duration_t & timeout)

If the requested Topic already exists, it is returned. Otherwise, find_topic() waits until either another
thread creates it, or returns when the specified timeout occurs.

find_topic() is useful when multiple threads are concurrently creating and looking up topics. In that case,
one thread can call find_topic() and, if another thread has not yet created the topic being looked up, it can

1Multitopics are not supported.

634

9.3.10 Getting the Implicit Publisher or Subscriber

635

wait for some period of time for it to do so. In almost all other cases, it is more straightforward to call
lookup_topicdescription() (see 9.3.8 Looking up Topic Descriptions on the previous page).

The DomainParticipantmust be enabled when you call find_topic().

Note: Each DDSTopic obtained by find_topic()must also be deleted by calling the DomainParticipant’s
delete_topic() operation (see 5.1.2 Deleting Topics on page 220).

9.3.10 Getting the Implicit Publisher or Subscriber

The get_implicit_publisher() operation allows you to access the DomainParticipant’s implicit Publisher.
If one does not already exist, this operation creates an implicit Publisher.

There is a similar operation for implicit Subscribers:
DDSPublisher * get_implicit_publisher ()
DDSSubscriber * get_implicit_subscriber()

There can only be one implicit Publisher and one implicit Subscriber per DomainParticipant. They are cre-
ated with default QoS values (DDS_PUBLISHER_QOS_DEFAULT) and no Listener. For more inform-
ation, see 7.2.1 Creating Publishers Explicitly vs. Implicitly on page 276. You can use an implicit
Publisher or implicit Subscriber just like an explicitly created one.

An implicit Publisher/Subscriber is deleted automatically when delete_contained_entities() is called. It
can also be deleted by calling delete_publisher/subscriber() with the implicit Publisher/Subscriber as a
parameter.

When a DomainParticipant is deleted, if there are no attached DataReaders that belong to the implicit Sub-
scriber or no attached DataWriters that belong to the implicit Publisher, any implicit Publisher/Subscriber
will be deleted by the middleware implicitly.

Note: It is not safe to create an implicit Publisher/Subscriber while another thread may be simultaneously
calling set_default_[publisher/subscriber]_qos().

How to get the implicit Publisher/Subscriber. (For simplicity, error handling is not shown.)
using namespace DDS;
...
Publisher * publisher = NULL;
Subscriber * subscriber = NULL;
PublisherQos publisher_qos;
SubscriberQos subscriber_qos;
...
publisher = participant->get_implicit_publisher();
/* Change implicit publisher QoS */
publisher->get_qos(publisher_qos);
publisher_qos.partition.name.maximum(3);
publisher_qos.partition.name.length(3);
publisher_qos.partition.name[0] = DDS_String_dup("partition_A");
publisher_qos.partition.name[1] = DDS_String_dup("partition_B");
publisher_qos.partition.name[2] = DDS_String_dup("partition_C");

9.3.11 Asserting Liveliness

publisher->set_qos(publisher_qos);
/* Get implicit subscriber */
subscriber = participant->get_implicit_subscriber();
/* Change implicit subscriber QoS */
subscriber_qos.partition.name.maximum(3);
subscriber _qos.partition.name.length(3);
subscriber _qos.partition.name[0] = DDS_String_dup("partition_A");
subscriber _qos.partition.name[1] = DDS_String_dup("partition_B");
subscriber _qos.partition.name[2] = DDS_String_dup("partition_C");
subscriber->set_qos(subscriber_qos);

9.3.11 Asserting Liveliness

The assert_liveliness() operation manually asserts the liveliness of all the DataWriters created by this
DomainParticipant that has 7.5.15 LIVELINESS QosPolicy on page 428 kind set to MANUAL_BY_
PARTICIPANT. When assert_liveliness() is called, then for those DataWriters who have their
LIVELINESS set to MANUAL_BY_PARTICIPANT, Connext DDS will send a packet to all matched
DataReaders that indicates that the DataWriter is still alive.

However, the LIVELINESS contract of periodically sending liveliness packets to DataReaders is also ful-
filled when the write(), assert_liveliness(), unregister_instance() and dispose() operations on a
DataWriter itself is called. Those calls will also cause Connext DDS to send packets that indicate the live-
liness of the DataWriter. Therefore, it is necessary for the application to call assert_liveliness() on the
DomainParticipant only if those operations on a DataWriter are not being invoked within the period spe-
cified by the 7.5.15 LIVELINESS QosPolicy on page 428

9.3.12 Learning about Discovered DomainParticipants

The get_discovered_participants() operation provides you with a list of DomainParticipants that have
been discovered in the DDS domain (except any that you have said to ignore via the ignore_participant()
operation (see 18.4 Restricting Communication—Ignoring Entities on page 847)).

Once you have a list of discovered DomainParticipants, you can get more information about them by call-
ing the get_discovered_participant_data() operation. This operation can only be used on DomainPar-
ticipants that are in the same DDS domain and have not been marked as ‘ignored.’ Otherwise, the
operation will fail and return DDS_RETCODE_PRECONDITION_NOT_MET. The returned inform-
ation is of type DDS_ParticipantBuiltinTopicData, described in Table 18.1 Participant Built-in Topic’s
Data Type (DDS_ParticipantBuiltinTopicData).

9.3.13 Learning about Discovered Topics

The get_discovered_topics() operation provides you with a list of Topics that have been discovered in the
DDS domain (except any that you have said to ignore via the ignore_topic() operation (see 18.4 Restrict-
ing Communication—Ignoring Entities on page 847)).

Once you have a list of discovered Topics, you can get more information about them by calling the get_dis-
covered_topic_data() operation. This operation can only be used on Topics that have been created by a

636

9.3.14 Getting Participant Protocol Status

637

DomainParticipant in the same DDS domain as the participant on which this operation is invoked and
must not have been "ignored" by means of the DomainParticipant ignore_topic() operation. Otherwise,
the operation will fail and return DDS_RETCODE_PRECONDITION_NOT_MET. The returned inform-
ation is of type DDS_TopicBuiltinTopicData, described in Table 18.4 Topic Built-in Topic’s Data Type
(DDS_TopicBuiltinTopicData) .

9.3.14 Getting Participant Protocol Status

Statistics about corrupted RTPS messages received by the participant can be obtained from the DomainPar-
ticipantProtocolStatus.

Type Field Name Description

DDS_
LongLong

corrupted_rtps_message_count The number of corrupted RTPS messages detected by the participant.

DDS_
LongLong

corrupted_rtps_message_count_
change

The incremental change in the number of corrupted messages detected since the last time the
status was read.

DDS_Time_t
last_corrupted_message_
timestamp

The timestamp of the last corrupted RTPS message detected by the participant.

Table 9.5 DDS_DomainParticipantProtocolStatus

You can get the DomainParticipantProtocolStatus by using the get_participant_protocol_status() oper-
ation. The WireProtocolQosPolicy’s compute_crc and check_crc must be enabled in the publishing and
subscribing applications, respectively, when the protocol status is obtained.
DDS_ReturnCode_t get_participant_protocol_status(DDS_DomainParticipantProtocolStatus &status)

9.3.15 Other DomainParticipant Operations

9.3.15.1 Verifying Entity Containment

If you have a handle to an Entity, and want to see if that Entity was created from your DomainParticipant
(or any of its Publishers or Subscribers), use the contains_entity() operation, which returns a boolean.

An Entity’s instance handle may be obtained from built-in topic data (see Built-In Topics (Chapter 18 on
page 837)), various statuses, or from the get_instance_handle() operation (see 4.1.3 Getting an Entity’s
Instance Handle on page 171).

9.3.15.2 Getting the Current Time

The get_current_time() operation returns the current time value from the same time-source (clock) that
Connext DDS uses to timestamp the data published by DataWriters (source_timestamp of the SampleInfo
structure, see 8.4.6 The SampleInfo Structure on page 570). The time-sources used by Connext DDS do
not have to be synchronized nor are they synchronized by Connext DDS.

9.4 DomainParticipantFactory QosPolicies

See also: 9.6 Clock Selection on page 683.

9.3.15.3 Getting All Publishers and Subscribers

The get_publishers() and get_subscribers() operations will provide you with a list of the DomainPar-
ticipant’s Publishers and Subscribers, respectively.

9.4 DomainParticipantFactory QosPolicies

This section describes QosPolicies that are strictly for the DomainParticipantFactory (not the DomainPar-
ticipant). For a complete list of QosPolicies that apply to DomainParticipantFactory, see Table 9.2
DomainParticipantFactory QoS.

l 9.4.1 LOGGING QosPolicy (DDS Extension) below

l 9.4.2 PROFILE QosPolicy (DDS Extension) on the next page

l 9.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension) on page 641

9.4.1 LOGGING QosPolicy (DDS Extension)

This QosPolicy configures the properties associated with the Connext DDS logging facility.

This QosPolicy includes the members in Table 9.6 DDS_LoggingQosPolicy. For defaults and valid
ranges, please refer to the API Reference HTML documentation.

See also: 25.2 Controlling Messages from Connext DDS on page 990 and 25.2.2 Configuring Logging
via XML on page 998.

Type Field Name Description

NDDS_ConfigLogVerbosity verbosity Specifies the verbosity at which Connext DDS diagnostic information will be logged.

NDDS_Config_LogCategory category Specifies the category forwhich logging needs to be enabled.

NDDS_Config_LogPrintFormat print_format Specifies the format to be used to outputConnext DDS diagnostic information.

char * output_file Specifies the file to which the logged output is redirected.

char * output_file_suffix Sets the file suffix when logging to a set of files.

DDS_Long max_bytes_per_file Specifies the maximumnumber of bytes a single file can contain.

DDS_Long max_files Specifices the maximumnumber of files to create before overwriting the previous ones.

Table 9.6 DDS_LoggingQosPolicy

638

9.4.2 PROFILE QosPolicy (DDS Extension)

639

9.4.1.1 Example

DSDomainParticipantFactory *factory =
DDSDomainParticipantFactory::get_instance();

DDS_DomainParticipantFactoryQos factoryQos;
DDS_ReturnCode_t retcode = factory->get_qos(factoryQos);
if (retcode != DDS_RETCODE_OK) {

// error
}
factoryQos.logging.output_file = DDS_String_dup(“myOutput.txt”);
factoryQos.logging.verbosity = NDDS_CONFIG_LOG_VERBOSITY_STATUS_LOCAL;
factory->set_qos(factoryQos);

9.4.1.2 Properties

This QosPolicy can be changed at any time.

Since it is only configuring logging, there are no compatibility restrictions for how it is set on the pub-
lishing and subscribing sides.

9.4.1.3 Related QosPolicies

l None

9.4.1.4 Applicable DDS Entities

l 9.2 DomainParticipantFactory on page 608

9.4.1.5 System Resource Considerations

Because the output_file will be freed by Connext DDS, you should use DDS_String_dup() to allocate
the string.when providing an output_file.

9.4.2 PROFILE QosPolicy (DDS Extension)

This QosPolicy determines the way that XML documents containing QoS profiles are loaded.

All QoS values for Entities can be configured with QoS profiles defined in XML documents. XML doc-
uments can be passed to Connext DDS in string form, or more likely, through files found on a file system.
This QoS configures how a DomainParticipantFactory loads the QoS profiles defined in XML. QoS pro-
files may be stored in this QoS as XML documents as a string. The location of XML files defining QoS
profiles may be configured via this QoS. There are also default locations where the DomainPar-
ticipantFactory will look for files to load QoS profiles. You may disable any or all of these default loc-
ations using the Profile QoS. For more information about QoS profiles and libraries, please see
Configuring QoS with XML (Chapter 19 on page 854).

This QosPolicy includes the members in Table 9.7 DDS_ProfileQosPolicy. For the defaults and valid
ranges, please refer to the API Reference HTML documentation.

9.4.2 PROFILE QosPolicy (DDS Extension)

Type Field
Name Description

DDS_
StringSeq

string_profile

Sequence of strings (empty by default) containing an XML document to load.

The concatenation of the strings in this sequence must be a valid XML document according to the XML QoS profile
schema.

url_profile
A sequence of XML files (empty by default) containing a set of XML documents to load. See 19.5 How to Load XML-
Specified QoSSettingson page 888.

DDS_
Boolean

ignore_user_
profile

When TRUE, the QoS profiles contained in the file USER_QOS_PROFILES.xml in the current working directory will
be ignored.

ignore_en-
vironment_
profile

When TRUE, the value of the environment variable NDDS_QOS_PROFILESwill be ignored.

ignore_re-
source_
profile

When TRUE, the QoS profiles in the file $NDDSHOME/resource/xml/NDDS_QOS_PROFILES.xml will be ignored.

NDDS_QOS_PROFILES.xml does not exist by default. However,NDDS_QOS_PROFILES.example.xml is
shipped with the host bundle of the product; you can copy it to NDDS_QOS_PROFILES.xml and modify it for your
own use.

Table 9.7 DDS_ProfileQosPolicy

In the Modern C++ API, there is not a PROFILE QosPolicy, because the class that manages QoS profiles
is dds::core::QosProvider—not the DomainParticipantFactory. A QosProvider can receive a QosPro-
viderParams instance, which encapsulates the fields described before.

9.4.2.1 Example

Traditional C++:
DDSDomainParticipantFactory *factory =

DDSDomainParticipantFactory::get_instance();
DDS_DomainParticipantFactoryQos factoryQos;

DDS_ReturnCode_t retcode = factory->get_qos(factoryQos);
if (retcode != DDS_RETCODE_OK) {

// error
}
const char *url_profiles[2] = {

"file://usr/local/default_dds.xml",
"file://usr/local/alternative_default_dds.xml" };

factoryQos.profile.url_profile.from_array(url_profiles, 2);

factoryQos.profile.ignore_resource_profile = DDS_BOOLEAN_TRUE;
factory->set_qos(factoryQos);

Modern C++:
rti::core::QosProviderParams params =

dds::core::QosProvider::Default()->default_provider_params();

std::vector<std::string> url_profiles = {

640

9.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension)

641

"file://usr/local/default_dds.xml",
"file://usr/local/alternative_default_dds.xml" };

params.url_profile(url_profiles);
params.ignore_resource_profile(true);

dds::core::QosProvider::Default()->default_provider_params(params);

9.4.2.2 Properties

This QosPolicy can be changed at any time.

Since it is only for the DomainParticipantFactory, there are no compatibility restrictions for how it is set on
the publishing and subscribing sides.

9.4.2.3 Related QosPolicies

l None

9.4.2.4 Applicable Entities

l 9.2 DomainParticipantFactory on page 608

9.4.2.5 System Resource Considerations

Once the QoS profiles are loaded, the DomainParticipantFactory will keep one copy of each QoS in the
QoS profiles in memory.

You can free the memory associated with the XML QoS profiles by calling the DomainPar-
ticipantFactory’s unload_profiles() operation.

9.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension)

The SYSTEM_RESOURCE_LIMITS QosPolicy configures DomainParticipant-independent resources
used by Connext DDS. Its main use is to change the maximum number of DomainParticipants that can be
created within a single process (address space).

It contains the single member as shown in Table 9.8 DDS_SystemResourceLimitsQosPolicy. For the
default and valid range, please refer to the API Reference HTML documentation.

Type Field Name Description

DDS_Long max_objects_per_thread Sizes the thread storage that is allocated on a per-thread basis when the thread callsConnext DDSAPIs.

Table 9.8 DDS_SystemResourceLimitsQosPolicy

The only parameter that you can set, max_objects_per_thread, controls the size of thread-specific storage
that is allocated by Connext DDS for every thread that invokes a Connext DDS API. This storage is used

9.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension)

to cache objects that have to be created on a per-thread basis when a thread traverses different portions of
Connext DDS internal code.

Thus instead of dynamically creating and destroying the objects as a thread enters and leaves different
parts of the code, Connext DDS caches the objects by storing them in thread-specific storage. We assume
that a thread will repeatedly call Connext DDS APIs so that the objects cached will be needed again and
again.

The number of objects that will be stored in the cache depends on the number of APIs (sections of Con-
next DDS code) that a thread invokes. It also depends on the number of different DomainParticipants with
which the thread interacts. For a single DomainParticipant, the maximum number of objects that could be
stored is a constant—independent of the number of Entities created in or by the participant. A safe number
to use is 200 objects per DomainParticipant.

A user thread that only interacts with a single DomainParticipant or the Entities thereof, would never have
more than 200 objects stored in its cache. However, if the same thread invokes Connext DDS APIs on
other Entities of other DomainParticipants, the maximum number of objects that may be stored will
increase with the number of participants involved.

The default setting of this resource should work for most user applications. However, if your applic-
ation uses more than 4 DomainParticipants, you may need to increase the value of max_objects_
per_thread.

9.4.3.1 Properties

This QoS policy cannot be modified after the DomainParticipantFactory is used to create the first
DomainParticipant or WaitSet in an application. Therefore, it cannot be set in an XML file—only in code.

This QoS can be set to different values in different applications without affecting interoperability.

9.4.3.2 Related QoS Policies

There are no interactions with other QosPolicies.

9.4.3.3 Applicable DDS Entities

l 9.2 DomainParticipantFactory on page 608

9.4.3.4 System Resource Considerations

max_objects_per_thread is used to determine the size of an array of pointers to objects used in a thread.
Increasing max_objects_per_thread will increase the amount of memory allocated by Connext DDS for
every thread that access Connext DDS code. This includes internal Connext DDS threads as well as user
threads.

642

9.5 DomainParticipant QosPolicies

643

9.5 DomainParticipant QosPolicies

This section describes the QosPolicies that are strictly for DomainParticipants (and no other types of Entit-
ies). For a complete list of QosPolicies that apply to DomainParticipant, see Table 9.4 DomainParticipant
QosPolicies.

l 9.5.1 DATABASE QosPolicy (DDS Extension) below

l 9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646

l 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660

l 9.5.5 EVENT QosPolicy (DDS Extension) on page 668

l 9.5.6 RECEIVER_POOL QosPolicy (DDS Extension) on page 670

l 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671

l 9.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension) on page 673

l 9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension) on page 676

9.5.1 DATABASE QosPolicy (DDS Extension)

The Database QosPolicy configures how Connext DDS manages its internal database, including how
often it cleans up, the priority of the database thread, and limits on resources that may be allocated by the
database. RTI uses an internal in-memory database to store information about entities created locally as
well as remote entities found during the discovery process. This database uses a background thread to
garbage-collect records related to deleted entities. When the DomainParticipant that maintains this data-
base is deleted, it shuts down this thread..

It includes the members in Table 9.9 DDS_DatabaseQosPolicy. For defaults and valid ranges, please refer
to the API Reference HTML documentation.

Type Field
Name Description

DDS_
ThreadSettings_
t

thread.mask

thread.priority

thread.stack_
size

Thread settings for the database thread used byConnext DDS to periodically remove deleted records from the
database. The values used for these settings are OS-dependent; see the RTI Connext DDSCore Libraries
PlatformNotes for details.

Note: thread.cpu_list and thread.cpu_rotation are not relevant in this QoS policy.

DDS_Duration_t
shutdown_
timeout

The maximum time that the DomainParticipantwill wait for the database thread to terminate when the par-
ticipant is destroyed.

Table 9.9 DDS_DatabaseQosPolicy

9.5.1 DATABASE QosPolicy (DDS Extension)

Type Field
Name Description

DDS_Duration_t
cleanup_
period

The period at which the database thread wakes up to removed deleted records.

DDS_Duration_t
shutdown_
cleanup_
period

The period at which the database thread wakes up to removed deleted records when the DomainParticipant is
being destroyed.

DDS_Long initial_records
The number of records that is initially created for the database. These records hold information for both local and
remote entities that are dynamically created or discovered.

DDS_Long
max_skiplist_
level

This is a performance tuning parameter that optimizes the time it takes to search the database for a record. A
‘Skip List’ is an algorithm formaintaining a list that is faster to search than a binary tree.

This value should be set to log2(N), where N is the maximumnumber of elements that will be stored in a single
list. The list that stores the records for remote DataReadersor the one for remote DataWriters tend to have the
most entries. So, the number ofDataWritersorDataReaders in a systemacross allDomainParticipants in a
singleDDS domain, which ever is greater, can be used to set this parameter.

DDS_Long
max_weak_
references

This parameter sets the maximumnumber of entries in the weak reference table. Weak references are used as a
technique for ensuring that unreferenced objects are deleted.

The actual number of weak references is permitted to grow from the value set by initial_weak_references to this
maximum.

To preventConnext DDS fromallocating memory forweak references after initialization, you should set the ini-
tial and maximumweak references to the same value.

However, it is difficult to calculate howmany weak references an application will use. To allowConnext DDS to
grow the weak reference table as needed, and thus dynamically allocate memory, you should set the value of
this field to DDS_LENGTH_UNLIMITED, the default setting.

DDS_Long
initial_weak_
references

The initial number of entries in the weak reference table.

Seemax_weak_references.

Connext DDSmay decide to use a larger initial value if initial_weak_references is set too small. If you access
this parameter after a DomainParticipant has been created, you will see the actual value used.

Table 9.9 DDS_DatabaseQosPolicy

You may be interested in modifying the shutdown_timeout and shutdown_cleanup_period parameters
to decrease the time it takes to delete a DomainParticipant when your application is shutting down.

The 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660
controls the memory allocation for elements stored in the database.

Real-time programmers will probably want to adjust the priorities of all of the threads created by Connext
DDS relative to each other as well as relative to non-Connext DDS threads in their applications. Connext
DDS Threading Model (Chapter 21 on page 914), 9.5.5 EVENT QosPolicy (DDS Extension) on
page 668, and 9.5.6 RECEIVER_POOL QosPolicy (DDS Extension) on page 670 discuss the other
threads that are created by Connext DDS.

A record in the database can be deleted only when no threads are using it. Connext DDS uses a thread that
periodically checks the database if records that have been marked for deletion can be removed. This period
is set by cleanup_period. When a DomainParticipant is being destroyed, the thread will wake up faster at

644

9.5.1 DATABASE QosPolicy (DDS Extension)

645

the shutdown_cleanup_period as other threads delete and release records in preparation for shutting
down.

On Windows and VxWorks® systems, the thread that is destroying the DomainParticipantmay block up
to shutdown_timeout seconds while waiting for the database thread to finish removing all records and ter-
minating. On other operating systems, the thread destroying the DomainParticipant will block as long as
required for the database thread to terminate.

The default values for those and the rest of the parameters in this QosPolicy should be sufficient for most
applications.

9.5.1.1 Example

The priority of the database thread should be set to the lowest priority among all threads in a real-time sys-
tem. Although, the database thread should not be permitted to starve, the work that it performs is non-time-
critical.

9.5.1.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

9.5.1.3 Related QosPolicies

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660

l 9.5.5 EVENT QosPolicy (DDS Extension) on page 668

l 9.5.6 RECEIVER_POOL QosPolicy (DDS Extension) on page 670

9.5.1.4 Applicable DDS Entities

l 9.3 DomainParticipants on page 615

9.5.1.5 System Resource Considerations

Setting the thread parameters correctly on a real-time operating system is usually critical to the proper over-
all functionality of the applications on that system. Larger values for the thread.stack_size parameter will
use up more memory.

Smaller values for the cleanup_period and shutdown_cleanup_period will cause the database thread to
wake up more frequently using more CPU.

Connext DDS is permitted to use up more memory for larger values ofmax_skiplist_level and max_
weak_references. Whether or not more memory is actually used depends on actual operating conditions.

9.5.2 DISCOVERY QosPolicy (DDS Extension)

9.5.2 DISCOVERY QosPolicy (DDS Extension)

The DISCOVERY QoS configures how DomainParticipants discover each other on the network. It iden-
tifies where on the network this application can potentially discover other applications with which to com-
municate. The middleware will periodically send network packets to these locations, announcing itself to
any remote applications that may be present, and will listen for announcements from those applications.
The discovery process is described in detail in Discovery (Chapter 15 on page 770).

This QosPolicy includes the members in Table 9.10 DDS_DiscoveryQosPolicy. For defaults and valid
ranges, please refer to the API Reference HTML documentation.

Type Field Name Description

DDS_
StringSeq

enabled_trans-
ports

Transports available for use by the discovery process. See 9.5.2.1 TransportsUsed for Discovery below.

DDS_
StringSeq

initial_peers
Unicast locators (address/indices) of potential participants with which thisDomainParticipantwill attempt to es-
tablish communications. See 9.5.2.2 Setting the ‘InitialPeers’ List below.

DDS_
StringSeq

multicast_re-
ceive_addresses

List of multicast addresses on which Discovery-related messages can be received by the DomainParticipant. See
9.5.2.4 ConfiguringMulticast Receive Addresseson page 648.

DDS_
Long

metatraffic_trans-
port_priority

Transport priority to be used for sending Discovery messages. See 9.5.2.5 Meta-Traffic Transport Priority on
page 648.

DDS_
Boolean

accept_un-
known_peers

Whether to accept a participant discovered via unicast that is not in the initial_peers list. See 9.5.2.6 Controlling
Acceptance of Unknown Peers on page 648.

DDS_
Boolean

enable_en-
dpoint_discovery

Whether endpoint discovery will automatically occurwith discovered DomainParticipants. See 18.4.5 Supervising
Endpoint Discovery on page 851.

Table 9.10 DDS_DiscoveryQosPolicy

9.5.2.1 Transports Used for Discovery

The enabled_transports field allows you to specify the set of installed and enabled transports that can be
used to discover other DomainParticipants. This field is a sequence of strings where each string specifies
an alias of a registered (and thus installed and enabled) transport. Please see the API Reference HTML doc-
umentation (selectModules, RTI Connext DDS API Reference, Pluggable Transports) for more
information.

9.5.2.2 Setting the ‘Initial Peers’ List

When a DomainParticipant is created, it needs to find other participants in the same DDS domain—this is
known as the ‘discovery process’ which is discussed in Discovery (Chapter 15 on page 770). One way to
do so is to use this QosPolicy to specify a list of potential participants. This is the role of the parameter ini-
tial_peers. The strings containing peer descriptors are stored in the initial_peers string sequence. The
format of a string discussed in 15.2.1 Peer Descriptor Format on page 775.

646

9.5.2 DISCOVERY QosPolicy (DDS Extension)

647

The peers stored in initial_peers are merely potential peers—there is no requirement that the peer
DomainParticipants are actually up and running or even will eventually exist. The Connext DDS dis-
covery process will try to contact all potential peer participants in the list periodically using unicast trans-
ports (as configured by the 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650).

The initial_peers parameter can be modified in source code or it can be initialized from an environment
variable, NDDS_DISCOVERY_PEERS or from a text file, see 15.2 Configuring the Peers List Used in
Discovery on page 773.

Some transports accept the use of hostnames to specify the initial peers. By default, Connext DDS only
resolves those hostnames when the DomainParticipant is created, but the DNS tracker can be used to
keep the IP addresses of these hostnames updated. See 17.3 Using DNS Tracker to Keep Peer List
Updated on page 836.

9.5.2.3 Adding and Removing Peers List Entries

The DomainParticipant’s add_peer() operation adds a peer description to the internal peer list that was ini-
tialized by the initial_peer field of the DISCOVERY QosPolicy.
DDS_ReturnCode_t DDSDomainParticipant::add_peer (

const char* peer_desc)

The peer_desc string must be formatted as specified in 15.2.1 Peer Descriptor Format on page 775.

You can call this operation any time after the DomainParticipant has been enabled. An attempt will be
made to contact the new peer immediately.

Adding peers with this operation has no effect on the initial_peers list. After a DomainParticipant has
been created, the contents of the initial_peers field merely shows what the internal peer list was initialized
to be. Therefore, initial_peers may not reflect the actual potential peer list used by a DomainParticipant.
Furthermore, if you call get_qos(), the returned list of peers will not include the added peer—get_qos()
will only show you what is set in the initial_peers list.

A peer added with add_peer() is not considered to be “unknown.” (That is, you may have accept_
unknown_peers (9.5.2.6 Controlling Acceptance of Unknown Peers on the next page) set to FALSE
and still use add_peer().)

This behavior may change depending on the DNS tracker configuration; see 17.3 Using DNS Tracker to
Keep Peer List Updated on page 836. Adding a peer with a hostname that cannot be resolved into an IP
address will produce an error if the DNS Tracker has not been enabled for that DomainParticipant.

You can remove an entry from the list with remove_peer(). Note that remove_peer() is only supported if
Simple Participant Discovery (see 15.1.1 Simple Participant Discovery on page 771) is enabled for the
Participant.

You can ignore data from a participant by using the ignore_participant() operation described in 18.4
Restricting Communication—Ignoring Entities on page 847.

9.5.2 DISCOVERY QosPolicy (DDS Extension)

9.5.2.4 Configuring Multicast Receive Addresses

The multicast_receive_addresses field in the DISCOVERY QosPolicy is a sequence of strings that spe-
cifies a set of multicast group addresses on which the DomainParticipant will listen for discovery meta-
traffic. Each string must have a valid multicast address in either IPv4 dot notation or IPv6 presentation
format. Please look at publicly available documentation of the IPv4 and IPv6 standards for the definition
and valid address ranges for multicast.

The multicast_receive_addresses field can be initialized from multicast addresses that appear in the
NDDS_DISCOVERY_PEERS environment variable or text file, see 15.2 Configuring the Peers List
Used in Discovery on page 773. A multicast address found in the environment variable or text file will be
added both to the initial_peers and multicast_receive_addresses fields. Note that the addresses in initial_
peers are ones in which the DomainParticipant will send discovery meta-traffic, and the ones in multicast_
receive_addresses are used for receiving discovery meta-traffic.

If NDDS_DISCOVERY_PEERS does not contain a multicast address, then multicast_receive_
addresses is cleared and the RTI discovery process will not listen for discovery messages via multicast.

If NDDS_DISCOVERY_PEERS contains one or more multicast addresses, the addresses are stored in
multicast_receive_addresses, starting at element 0. They will be stored in the order in which they appear
in NDDS_DISCOVERY_PEERS.

Note: Currently, Connext DDS will only listen for discovery traffic on the first multicast address (element
0) in multicast_receive_addresses.

If you want to send discovery meta-traffic on a different set of multicast addresses than you want to receive
discovery meta-traffic, set initial_peers and multicast_receive_addresses via the QosPolicy API.

9.5.2.5 Meta-Traffic Transport Priority

The metatraffic_transport_priority field is used to specify the transport priority to be used for sending all
discovery meta-traffic. See the 7.5.26 TRANSPORT_PRIORITY QosPolicy on page 459 for details on
how transport priorities may be used.

9.5.2.6 Controlling Acceptance of Unknown Peers

The accept_unknown_peers field controls whether or not a DomainParticipant is allowed to communicate
with other DomainParticipants found via unicast transport that are not in its peers list (which is the com-
bination of the initial_peers list and any peers added with the add_peer() operation described in 9.5.2.3
Adding and Removing Peers List Entries on the previous page).

Suppose Participant A is included in Participant B’s initial peers list, but Participant B is not in Participant
A’s list. When Participant B contacts Participant A by sending it a unicast discovery packet, then Par-
ticipant A has a choice:

648

9.5.2 DISCOVERY QosPolicy (DDS Extension)

649

l If accept_unknown_peers is DDS_BOOLEAN_TRUE, then Participant A will reply to Par-
ticipant B, and communications will be established.

l If accept_unknown_peers is DDS_BOOLEAN_FALSE, then Participant A will ignore Par-
ticipant B, and A and B will never talk.

Note that Participants do not exchange peer lists. So if Participant A knows about Participant B, and Par-
ticipant B knows about Participant C, Participant A will not discover Participant C.

Note: If accept_unknown_peers is false and shared memory is disabled, applications on the same node
will not communicate if only ‘localhost’ is specified in the peer list. If shared memory is disabled or
‘shmem://’ is not specified in the peer list, if you want to communicate with other applications on the same
node through the loopback interface, you must put the actual node address or hostname in NDDS_
DISCOVERY_PEERS.

9.5.2.7 Example

You will always use this policy to set the participant_id when you want to run more than one DomainPar-
ticipant in the same DDS domain on the same host.

The easiest way to set the initial peers list is to use the NDDS_DISCOVERY_PEERS environment vari-
able. However, should you want asymmetric multicast addresses for sending or receiving meta-traffic, you
will need to use this QosPolicy directly.

A reason to use asymmetric multicast addresses is to take advantage of the efficiency provided by using
multicast, while at the same time preventing all participants from discovering each other. For example, sup-
pose you have a system in which you have a single server node and a hundred client nodes. The client
nodes do not publish or subscribe to each other’s data and thus never need to know about each others exist-
ence.

If we did not use multicast, we would have to populate the server application’s peer list with 100 peer
descriptors for each of the client nodes. Each client application would only need to have the server applic-
ation in its peer list. The maintenance of the list is unwieldy, especially if nodes are constantly reconfigured
and addresses changed. In addition, the server will send out discovery packets on a per client basis since
the peer list essentially holds 100 unicast addresses.

Instead, if we used a single multicast address in the NDDS_DISCOVERY_PEERS environment variable,
the server and all of the clients would discover each other. Certainly, the list is easier to maintain, but the
total amount of traffic has actually increased since the clients are now exchanging packets with each other
uselessly.

To keep the list maintainable, as well as to minimize discovery traffic, we can have the server send out
packets on a multicast address by modifying its initial_peer field. The clients would have theirmulticast_
receive_addresses field set to the same address used by the server. The initial_peers of the clients would
only need the single unicast peer descriptor of the server as before.

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

Now, the server can send a single packet that will be received by all of the clients, but the clients will not
discover each other because they never send out a multicast packet themselves.

9.5.2.8 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

9.5.2.9 Related QosPolicies

l 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) below

l 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671

9.5.2.10 Applicable Entities

l 9.3 DomainParticipants on page 615

9.5.2.11 System Resource Considerations

For every entry in the initial_peers list, Connext DDS will periodically send a discovery packet to see if
that participant exists. If the list has many potential participants that are never started, then CPU and net-
work bandwidth may be wasted in sending out packets that will never be received.

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

The DISCOVERY_CONFIG QosPolicy is used to tune the discovery process. It controls how often to
send discovery packets, how to determine when participants are alive or dead, and resources used by the
discovery mechanism.

The amount of network traffic required by the discovery process can vary widely based on how your
application has chosen to configure the middleware's network addressing (unicast vs. multicast, multicast
TTL, etc.), the size of the system, whether all applications are started at the same time or whether start
times are staggered, and other factors. Your application can use this policy to make trade-offs between dis-
covery completion time and network bandwidth utilization. In addition, you can introduce random back-
off periods into the discovery process to decrease the probability of network contention when many applic-
ations start simultaneously.

This QosPolicy includes the members in Table 9.11 DDS_DiscoveryConfigQosPolicy. Many of these
members are described in Discovery (Chapter 15 on page 770). For defaults and valid ranges, please refer
to the API Reference HTML documentation.

650

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

651

Type Field Name Description

DDS_Duration_t
participant_liveliness_lease_
duration

The time period after which otherDomainParticipants can consider
this one dead if they do not receive a liveliness packet from this Do-
mainParticipant.

DDS_Duration_t
participant_liveliness_
assert_period

The period of time at which this DomainParticipant will send out pack-
ets asserting that it is alive.

DDS_RemoteParticipantPurgeKind remote_participant_purge_kind

Controls the DomainParticipant's behavior for purging records of re-
mote participants (and their contained entities)with which discovery
communication has been lost. See 9.5.3.2 Controlling Purging of
Remote Participants on page 658.

DDS_Duration_t
max_liveliness_loss_detection_
period

The maximumamount of time between when a remote entity stops
maintaining its liveliness and when the matched local entity realizes
that fact.

DDS_Long
initial_participant_an-
nouncements

Sets howmany initial liveliness announcements the Do-
mainParticipant will send when it is first enabled, or after discovering
a new remote participant.

DDS_Duration_t
min_initial_participant_an-
nouncement_period

Sets the minimumand maximum times between liveliness an-
nouncements.

When a participant is first enabled, or after discovering a new remote
participant,Connext DDS sends initial_paricipant_annoucements
number of discovery messages. These messages are sent with a
sleep period between them that is a randomduration between min_
initial_participant_announcement_period and max_initial_par-
ticipant_announcement_period.

DDS_Duration_t
max_initial_participant_an-
nouncement_period

Table 9.12 DDS_Built-
inTopicReaderResourceLimits_t

participant_reader_resource_
limits

Configures the resource for the built-in DataReaders used to access
discovery information; see 9.5.3.1 Resource Limits for Builtin-Topic
DataReaderson page 656 and Built-In Topics (Chapter 18 on
page 837).

Table 8.19 DDS_Rt-
psReliableReaderProtocol_t

publication_reader
Configures the RTPS reliable protocol parameters for a built-in pub-
lication reader.

Table 9.12 DDS_Built-
inTopicReaderResourceLimits_t

publication_reader_resource_
limits

Configures the resource for the built-in DataReaders used to access
discovery information; see 9.5.3.1 Resource Limits for Builtin-Topic
DataReaderson page 656 and Built-In Topics (Chapter 18 on
page 837).

Table 8.19 DDS_Rt-
psReliableReaderProtocol_t

subscription_reader

Configures the RTPS reliable protocol parameters for a built-in sub-
scription reader.

Built-in subscription readers receive discovery information reliably
fromDomainParticipants that were dynamically discovered (see Dis-
covery (Chapter 15 on page 770)).

Table 9.12 DDS_Built-
inTopicReaderResourceLimits_t

subscription_reader_resource_
limits

Configures the resource for the built-in DataReaders used to access
discovery information; see 9.5.3.1 Resource Limits for Builtin-Topic
DataReaderson page 656 and Built-In Topics (Chapter 18 on
page 837).

Table 9.11 DDS_DiscoveryConfigQosPolicy

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

Type Field Name Description

Table 7.45 DDS_Rt-
psReliableWriterProtocol_t

publication_writer

Configures the RTPS reliable protocol parameters for the writer side
of a reliable connection.

Built-in DataWriters send reliable discovery information to Do-
mainParticipants that were dynamically discovered (see Discovery
(Chapter 15 on page 770)).

Table 7.80 DDS_Writer-
DataLifecycleQosPolicy

publication_writer_data_li-
fecycle

Configures writer data-lifecycle settings for a built-in publication
writer. (DDS_WriterDataLifecycleQosPolicy::
autodispose_unregistered_instances will always be TRUE.)

Table 7.45 DDS_Rt-
psReliableWriterProtocol_t

subscription_writer

Configures the RTPS reliable protocol parameters for the writer side
of a reliable connection.

Built-in DataWriters send reliable discovery information to Do-
mainParticipants that were dynamically discovered (see Discovery
(Chapter 15 on page 770)).

Table 7.80 DDS_Writer-
DataLifecycleQosPolicy

subscription_writer_data_li-
fecycle

Configures writer data-lifecycle settings for a built-in subscription
writer. (DDS_WriterDataLifecycleQosPolicy::autodispose_un-
registered_instances will always be TRUE.)

DDS_Dis-
coveryConfigBuiltinPluginKindMask

builtin_discovery_plugins

The bit mask of available kinds for selecting builtin discovery plugins:

l (default) DDS_DISCOVERYCONFIG_BUILTIN_SDP:
Enables the builtin Simple Discovery Protocol, which con-
sists of both the 15.1.1 Simple Participant Discovery on
page 771 (SPDP) and the 15.1.2 Simple Endpoint Dis-
covery on page 772 (SEDP).

l DDS_DISCOVERYCONFIG_BUILTIN_SPDP: Enables
only the 15.1.1 Simple Participant Discovery on page 771,
which means that you intend to use a non-builtin alternative
for endpoint discovery, such as Limited Bandwidth End-
point Discovery (LBED).

l DDS_DISCOVERYCONFIG_BUILTIN_SEDP: Enables
only the 15.1.2 Simple Endpoint Discovery on page 772,
which means that you intend to use a non-builtin alternative
for participant discovery, such as Limited Bandwidth Par-
ticipant Discovery (LBPD).

l DDS_DISCOVERYCONFIG_BUILTIN_PLUGIN_MASK_
NONE: No builtin discovery is used. This setting should be
used if you are replacing both endpoint and participant dis-
covery algorithms with non-builtin alternatives. For
example, MASK_NONE can be used when LBEDand
LBPDare both (simultaneously) enabled via the Limited
Bandwidth Plugins.

DDS_ReliabilityQosPolicyKind
participant_message_reader_
reliability_kind

Reliability kind configuration setting for a built-in participant message
reader (default: best-effort).

See Table 7.67 DDS_ReliabilityQosPolicy

Table 8.19 DDS_Rt-
psReliableReaderProtocol_t

participant_message_reader
RTPS protocol-related configuration settings for a built-in participant
message reader.

Table 9.11 DDS_DiscoveryConfigQosPolicy

652

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

653

Type Field Name Description

Table 7.45 DDS_Rt-
psReliableWriterProtocol_t

participant_message_writer
RTPS protocol-related configuration settings for a built-in participant
message writer.

Table 7.66 DDS_PublishModeQosPolicy publication_writer_publish_
mode

Determines whether the Discovery built-in publication DataWriter
publishes data synchronously or asynchronously and how.

Table 7.66 DDS_PublishModeQosPolicy subscription_writer_publish_
mode

Determines whether the Discovery built-in subscription DataWriter
publishes data synchronously or asynchronously and how.

Table 7.19 DDS_Asyn-
chronousPublisherQosPolicy

asynchronous_publisher
Asynchronous publishing settings for the Discovery Publisher and all
entities that are created by it.

DDS_Duration_t
default_domain_
announcement_period

The period at which a participant will announce itself to the default
DDS domain 0 using the default UDPv4 multicast group address for
discovery traffic on that DDS domain.

ForDDS domain 0, the default discovery multicast address is
239.255.0.1:7400.

To disable announcement to the default DDS domain, set this to
DURATION_INFINITE.

When this period is set to a value other than

DURATION_INFINITE and ignore_default_domain_an-
nouncements (see below) is FALSE, you can get information about
participants running in different DDS domains by creating a par-
ticipant in DDS domain 0 and implementing the on_data_available
callback (see 8.3.7.1 DATA_AVAILABLEStatuson page 522) in
the ParticipantBuiltinTopicData built-in DataReader's listener (see
18.2 Built-in DataReaderson page 838).

You can learn the domain ID associated with a participant by looking
at the domain_id on page 839 in the ParticipantBuiltinTopicData.

DDS_Boolean
ignore_default_domain_
announcements

When TRUE, ignores the announcements received by a participant
on the default DDS domain 0 corresponding to participants running
on domains IDs other than 0.

This setting only applies to participants running on the default DDS
domain 0 and using the default port mapping.

When TRUE, a participant running on the default DDS domain 0 will
ignore announcements fromparticipants running on different DDS
domain IDs.

When FALSE, a participant running on the default DDS domain 0 will
provide announcements fromparticipants running on different DDS
domain IDs to the application via the ParticipantBuiltinTopicData
built-in DataReader (see 18.2 Built-in DataReaderson page 838).

Table 7.45 DDS_Rt-
psReliableWriterProtocol_t

service_request_writer
RTPS protocol-related configuration settings for the built-in service
request writer.

Table 7.80 DDS_Writer-
DataLifecycleQosPolicy

service_request_writer_data_li-
fecycle

Configures writer data-lifecycle settings for the built-in service re-
quest writer.

Table 7.66 DDS_
PublishModeQosPolicy)

service_request_writer_pub-
lish_mode

Determines whether the Discovery built-in service request DataWriter
publishes data synchronously or asynchronously and how.

Table 9.11 DDS_DiscoveryConfigQosPolicy

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

Type Field Name Description

Table 8.18 DDS_DataRead-
erProtocolQosPolicy

service_request_reader
RTPS protocol-related configuration settings for the built-in service
request reader.

DDS_Duration_t
locator_reachability_assert_
period

Configures the period at which thisDomainParticipantwill ping all
the locators that it has discovered fromotherDomainParticipants.

This period should be strictly less than locator_reachability_lease_
duration below.

If locator_reachability_lease_duration below is INFINITE, this para-
meter is ignored.

The DomainParticipantwill not assert remote locators.

DDS_Duration_t
locator_reachability_lease_dur-
ation

For the purpose of this explanation, we use 'local' to refer to the Do-
mainParticipant in which we configure locator_reachability_lease_
duration above and 'remote' to refer to the otherDo-
mainParticipants communicating with the localDomainParticipant.

This setting configures a timeout announced to the remote Do-
mainParticipants.

This timeout is used by the remote DomainParticipantsas the max-
imumperiod by which a remote locatormust be asserted by the local
DomainParticipant (through a REACHABILITY PINGmessage) be-
fore considering this locator as "unreachable" from the localDo-
mainParticipant.

When a remote DomainParticipant detects that one of its locators is
not reachable from the localDomainParticipant, it will notify the local
DomainParticipant of this event. From that moment on, and until no-
tified otherwise, the localDomainParticipantwill not send RTPS mes-
sages to remote DomainParticipantsusing this locator.

If this value is set to INFINITE, the localDomainParticipantwill send
RTPS messages to a remote DomainParticipant on the locators an-
nounced by the remote DomainParticipant, regardless of whether
or not the remote DomainParticipant can be reached using these
locators.

DDS_Duration_t
locator_reachability_change_
detection_period

Determines the maximumperiod at which thisDomainParticipantwill
check to see if its locators are reachable fromotherDo-
mainParticipants according to the otherDomainParticipants' loc-
ator_reachability_lease_duration above.

If locator_reachability_lease_duration above is INFINITE, this para-
meter is ignored.

The DomainParticipantwill not schedule an event to see if its loc-
ators are reachable fromotherDomainParticipants.

Table 7.45 DDS_Rt-
psReliableWriterProtocol_t

secure_volatile_writer
RTPS protocol-related configuration settings for the builtin Key Ex-
change writer.

Table 7.66 DDS_PublishModeQosPolicy secure_volatile_writer_publish_
mode

Publish mode policy for the builtin secure volatile writer.

Determines whether the builtin secure volatile DataWriter publishes
data synchronously or asynchronously and how.

Table 9.11 DDS_DiscoveryConfigQosPolicy

654

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

655

Type Field Name Description

Table 8.19 DDS_Rt-
psReliableReaderProtocol_t

secure_volatile_reader
RTPS protocol-related configuration settings for the builtin Key Ex-
change reader.

DDS_Long
endpoint_type_object_lb_
serialization_threshold

Minimumsize (in bytes) of the serialized TypeObject that will trigger
the serialization of a TypeObjectLb instead of the regular TypeOb-
ject. TypeObjectLb is a compressed version of the serialized
TypeObject. This compressed version reduces the size needed to
propagate a TypeObject as part of Simple Endpoint Discovery. For
example, setting this policy to 1000 will trigger the serialization of the
TypeObjectLb for TypeObjects whose serialized size is greater than
1000 Bytes.

Range: [-1, 2147483647]. The sentinel value -1 disables TypeOb-
ject compression (by never sending TypeObjectLb). Any non-valid
values will behave as 0.

Default: 0 (TypeObjectLb is enabled by default)

DDS_Duration_t dns_tracker_polling_period

Configures the frequency used by the DNS Tracker thread to query
the DNS service.

If this parameter is set to INFINITE, the DNS tracker is disabled and
changes in hostnames will not be tracked.

See 17.3 Using DNSTracker to Keep Peer List Updated on
page 836 formore information.

Table 9.11 DDS_DiscoveryConfigQosPolicy

A DomainParticipant needs to send a message periodically to other DomainParticipants to let the other
participants know that it is still alive. These liveliness messages are sent to all peers in the peer list that was
initialized by the initial_peers parameter of the 9.5.2 DISCOVERY QosPolicy (DDS Extension) on
page 646. Peer participants on the peer list may or may not be alive themselves. The peer DomainPar-
ticipants that already know about this DomainParticipant will use the participant_liveliness_lease_dur-
ation provided by this participant to declare the participant dead, if they have not received a liveliness
message for the specified time.

The participant_liveliness_assert_period is the periodic rate at which this DomainParticipant will be
sending liveliness messages. Since these liveliness messages are not sent reliably and can get dropped by
the transport, it is important to set:

participant_liveliness_assert_period < participant_liveliness_lease_duration/N

where N is the number of liveliness messages that other DomainParticipants must miss before they decide
that this DomainParticipant is dead.

DomainParticipants that receive a liveliness message from a participant that they did not know about pre-
viously will have “discovered” the participant. When one DomainParticipant discovers another, the dis-
coverer will immediately send its own liveliness packets back. initial_participant_announcements
controls how many of these initial liveliness messages are sent, and max_initial_participant_announce-
ment_period controls the time period in between each message.

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

After the initial set of liveliness messages are sent (when the DomainParticipant is first enabled or dis-
covers a new remote participant), the DomainParticipant will return to sending liveliness packets to all
peers in its peer list at the rate governed by participant_liveliness_assert_period.

For more information on the discovery process, see Discovery (Chapter 15 on page 770).

9.5.3.1 Resource Limits for Builtin-Topic DataReaders

The DDS_BuiltinTopicReaderResourceLimits_t structure is shown in Table 9.12 DDS_Built-
inTopicReaderResourceLimits_t. This structure contains several fields that are used to configure the
resource limits of the builtin-topic DataReaders used to receive discovery meta-traffic from other
DomainParticipants.

Type Field Name Description

DDS_
Long

initial_samples Initial number of meta-traffic DDS data samples that can be stored by a builtin-topicDataReader.

max_samples Maximumnumber of meta-trafficDDS data samples that can be stored by a builtin-topicDataReader.

initial_infos Initial number of DDS_SampleInfo structures allocated for the builtin-topicDataReader.

max_infos

Maximumnumber of DDS_SampleInfo structures that can be allocated for the built-in topic
DataReader.

max_infos must be >=max_samples

initial_outstanding_reads
Initial number of times in which memory can be concurrently loaned via read/take calls on the builtin-
topicDataReader without being returned with return_loan().

max_outstanding_reads
Maximumnumber of times in which memory can be concurrently loaned via read/take calls on the
builtin-topicDataReader without being returned with return_loan().

max_samples_per_read Maximumnumber of DDS samples that can be read/taken on a same built-in topicDataReader.

DDS_
Boolean

disable_fragmentation_sup-
port

Determines whether the builtin-topicDataReader can receive fragmented DDS samples.

When fragmentation support is not needed, disabling fragmentation support will save some memory re-
sources.

Table 9.12 DDS_BuiltinTopicReaderResourceLimits_t

656

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

657

Type Field Name Description

DDS_
Long

max_fragmented_samples

The maximumnumber of DDS samples forwhich the DataReadermay store fragments at a given point
in time.

At any given time, a DataReadermay store fragments for up tomax_fragmented_samples DDS
samples while waiting for the remaining fragments. These DDS samples need not have consecutive se-
quence numbers and may have been sent by differentDataWriters. Once all fragments of a DDS
sample have been received, the DDS sample is treated as a regularDDS sample and becomes subject
to standard QoS settings, such asmax_samples.Connext DDSwill drop fragments if the max_frag-
mented_samples limit has been reached.

For best-effort communication,Connext DDSwill accept a fragment for a newDDS sample, but drop
the oldest fragmented DDS sample from the same remote writer.

For reliable communication,Connext DDSwill drop fragments for any newDDS samples until all frag-
ments for at least one olderDDS sample from that writer have been received.

Only applies if disable_fragmentation_support is FALSE.

DDS_
Long

initial_fragmented_samples
The initial number of DDS samples forwhich a builtin-topicDataReadermay store fragments.

Only applies if disable_fragmentation_support on the previouspage is FALSE.

DDS_
Long

max_fragmented_samples_
per_remote_writer

The maximumnumber of DDS samples per remote writer for which a builtin-topicDataReadermay store
fragments.

Logical limit so a single remote writer cannot consume all available resources.

Only applies if disable_fragmentation_support on the previouspage is FALSE.

DDS_
Long

max_fragments_per_sample
Maximumnumber of fragments for a single DDS sample.

Only applies if disable_fragmentation_support on the previouspage is FALSE.

DDS_
Boolean

dynamically_allocate_
fragmented_samples

By default, the middleware does not allocate memory upfront, but instead allocates memory from the
heap upon receiving the first fragment of a new sample. The amount of memory allocated equals the
amount of memory needed to store all fragments in the sample. Once all fragments of a sample have
been received, the sample is deserialized and stored in the regular receive queue. At that time, the dy-
namically allocated memory is freed again.

This QoS setting is useful for large, but variable-sized data types where up-front memory allocation for
multiple samples based on the maximumpossible sample size may be expensive. The main dis-
advantage of not pre-allocating memory is that one can no longer guarantee the middleware will have
sufficient resources at run-time.

If dynamically_allocate_fragmented_samples is FALSE, the middleware will allocate memory up-front
for storing fragments for up to initial_fragmented_samples samples. This memory may grow up to max_
fragmented_samples if needed.

Only applies if disable_fragmentation_support on the previouspage is FALSE.

Table 9.12 DDS_BuiltinTopicReaderResourceLimits_t

There are builtin-topics for exchanging data about DomainParticipants, for publications
(Publisher/DataWriter combination) and for subscriptions (Subscriber/DataReader combination). The
DataReaders for the publication and subscription builtin-topics are reliable. The DataReader for the par-
ticipant builtin-topic is best effort.

You can set listeners on these DataReaders that are created automatically when a DomainParticipant is
created. With these listeners, your code can be notified when remote DomainParticipants,
Publishers/DataWriters, and Subscriber/DataReaders are discovered. You can always check the receive

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

queues of those DataReaders for the same information about discovered entities at any time. Please see
Built-In Topics (Chapter 18 on page 837) for more details.

The initial_samples and max_samples, and related initial_infos and max_infos, fields size the amount of
declaration messages can be stored in each builtin-topic DataReader.

9.5.3.2 Controlling Purging of Remote Participants

When discovery communication with a remote participant has been lost, the local participant must make a
decision about whether to continue attempting to communicate with that participant and its contained entit-
ies. The remote_participant_purge_kind is used to select the desired behavior.

This does not pertain to the situation in which a remote participant has been gracefully deleted and noti-
fication of that deletion has been successfully received by its peers. In that case, the local participant will
immediately stop attempting to communicate with those entities and will remove the associated remote
entity records from its internal database.

The remote_participant_purge_kind can be set to the following values:

DDS_LIVELINESS_BASED_REMOTE_PARTICIPANT_PURGE

This value causes Connext DDS to keep the state of a remote participant and its contained entities for as
long as the participant maintains its liveliness contract (as specified by its participant_liveliness_lease_
duration in the 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650).

A participant will maintain its own liveliness to any remote participant via inter-participant liveliness traffic
(see 7.5.15 LIVELINESS QosPolicy on page 428).

The default Simple Discovery Protocol described in Discovery (Chapter 15 on page 770) automatically
maintains this liveliness, whereas other discovery mechanisms may or may not.

DDS_NO_REMOTE_PARTICIPANT_PURGE

With this value, Connext DDS will never purge the records of a remote participant with which discovery
communication has been lost.

l If the remote participant is later rediscovered, the records that remain in the database will be re-used.

l If the remote participant is not rediscovered, the records will continue to take up space in the data-
base for as long as the local participant remains in existence.

In most cases, you will not need to change this value from its default, DDS_LIVELINESS_BASED_
REMOTE_PARTICIPANT_PURGE.

However, DDS_NO_REMOTE_PARTICIPANT_PURGE may be a good choice if the following con-
ditions apply:

658

9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

659

Discovery communication with a remote participant may be lost while data communication remains intact.
This will not be the typical case if discovery takes place over the Simple Discovery Protocol.

Extensive and prolonged lack of discovery communication between participants is not expected to be com-
mon, either because loss of the participant will be rare, or because participants may be lost sporadically but
will typically return again.

Maintaining inter-participant liveliness is problematic, perhaps because a participant has no writers with the
appropriate 7.5.15 LIVELINESS QosPolicy on page 428 kind.

9.5.3.3 Controlling the Reliable Protocol Used by Builtin-Topic DataWriters/DataReaders

The connection between the DataWriters and DataReaders for the publication and subscription builtin-top-
ics are reliable. The publication_writer, subscription_writer, publication_reader, and subscription_reader
parameters of the 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650 configure the
reliable messaging protocol used by Connext DDS for those topics. Connext DDS’s reliable messaging pro-
tocol is discussed in Reliable Communications (Chapter 11 on page 694).

See also:

l 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390

l 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575.

9.5.3.4 Example

Users will be most interested in setting the participant_liveliness_lease_duration and participant_liveliness_
assert_period values for their DomainParticipants. Basically, the lease duration governs how fast an applic-
ation realizes another application dies unexpectedly. The shorter the periods, the quicker a DomainPar-
ticipant can determine that a remote participant is dead and act accordingly by declaring all of the remote
DataWriters and DataReaders of that participant dead as well.

However, you should realize that the shorter the period the more liveliness packets will sent by the
DomainParticipant. How many packets is also determined by the number of peers in the peer list of the
participant–whether or not the peers on the list are actually alive.

9.5.3.5 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

9.5.3.6 Related QosPolicies

l 9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) below

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

l 9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension) on page 676

l 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390

l 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575

l 8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581

9.5.3.7 Applicable DDS Entities

l 9.3 DomainParticipants on page 615

9.5.3.8 System Resource Considerations

Setting smaller values for time periods can increase the CPU and network bandwidth usage. Setting larger
values for maximum limits can increase the maximum memory that Connext DDS may allocate for a
DomainParticipant while increasing the initial values will increase the initial memory allocated for a
DomainParticipant.

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS
Extension)

The DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy includes various settings that con-
figure how DomainParticipants allocate and use physical memory for internal resources, including the
maximum sizes of various properties.

This QosPolicy sets maximum size limits on variable-length parameters used by the participant and its con-
tained Entities. It also controls the initial and maximum sizes of data structures used by the participant to
store information about locally-created and remotely-discovered entities (such as DataWriters/DataRead-
ers), as well as parameters used by the internal database to size the hash tables used by the data structures.

By default, a DomainParticipant is allowed to dynamically allocate memory as needed as users create
local Entities such as DataWriters and DataReaders or as the participant discovers new applications to
store their information. By setting fixed values for the maximum parameters in this QosPolicy, you can
bound the memory that can be allocated by a DomainParticipant. In addition, by setting the initial values
to the maximum values, you can reduce the amount of memory allocated by DomainParticipants after the
initialization period. Notice that memory can still be allocated dynamically after the initialization period.
For example, when a new local DataWriter or DataReader is created, the initial memory required for its
queue is allocated dynamically.

The maximum sizes of several variable-length parameters—such as the number of partitions that can be
stored in the 7.4.5 PARTITION QosPolicy on page 357, the maximum length of data store in the 7.5.30
USER_DATA QosPolicy on page 470 and 7.4.4 GROUP_DATA QosPolicy on page 354, and many
others—can be changed from their defaults using this QoS. However, it is important that all DomainPar-
ticipants that need to communicate with each other use the same set of maximum values. Otherwise, when
these parameters are propagated from one DomainParticipant to another, a DomainParticipant with a
smaller maximum length may reject the parameter resulting in an error.

660

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

661

This QosPolicy includes the members in Table 9.13 DDS_DomainParticipantResourceLimitsQosPolicy .
For defaults and valid ranges, please refer to the API Reference HTML documentation.

Type Field Name Description

DDS_Allocation-
Settings_t

(see description
column)

local_writer_allocation

Each allocation structure configures howmany objects of each type, <object>_al-
location, will be allocated by the DomainParticipant.

See 9.5.4.1 Configuring Resource Limits for AsynchronousDataWriters on
page 666.
DDS_AllocationSettings_t
{

DDS_Long initial_count;
DDS_Long max_count;
DDS_Long incremental_count;

};

See above row local_reader_allocation See above row

See above row local_publisher_allocation See above row

See above row local_subscriber_allocation See above row

See above row local_topic_allocation See above row

See above row remote_writer_allocation See above row

See above row remote_reader_allocation See above row

See above row remote_participant_allocation See above row

See above row
matching_writer_reader_pair_al-
location

See above row

See above row
matching_reader_writer_pair_al-
location

See above row

See above row ignored_entity_allocation See above row

See above row content_filtered_topic_allocation See above row

See above row content_filter_allocation See above row

See above row read_condition_allocation See above row

See above row query_condition_allocation See above row

See above row
outstanding_asynchronous_
sample_
allocation

See above row

See above row flow_controller_allocation See above row

Table 9.13 DDS_DomainParticipantResourceLimitsQosPolicy

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

Type Field Name Description

DDS_
DomainParticipant
ResourceLimits
IgnoredEntity
ReplacementKind

ignored_entity_replacement_
kind

Sets the kinds of entities allowed to be replaced when a DomainParticipant reaches
ignored_entity_allocation.max_count. See 18.4.4 Resource LimitsCon-
siderations for Ignored Entities on page 851.

DDS_Long local_writer_hash_buckets
Used to configure the hash tables used for database searches. If these numbers are
too large then memory is wasted. If these number are too small, searching for an ob-
ject will be less efficient.

DDS_Long local_reader_hash_buckets See above row

DDS_Long local_publisher_hash_buckets See above row

DDS_Long local_subscriber_hash_buckets See above row

DDS_Long local_topic_hash_buckets See above row

DDS_Long remote_writer_hash_buckets See above row

DDS_Long remote_reader_hash_buckets See above row

DDS_Long remote_participant_hash_buckets See above row

DDS_Long
matching_writer_reader_pair_
hash_buckets

See above row

DDS_Long
matching_reader_writer_pair_
hash_buckets

See above row

DDS_Long ignored_entity_hash_buckets See above row

DDS_Long
content_filtered_topic_hash_buck-
ets

See above row

DDS_Long content_filter_hash_buckets See above row

DDS_Long flow_controller_hash_buckets See above row

DDS_Long max_gather_destinations
Configures the maximumnumber of destinations that a message can be addressed
in a single network send operation. Can improve efficiency if the underlying transport
support can send to multiple destinations.

DDS_Long participant_user_data_max_length

Controls the maximum lengths of 7.5.30 USER_DATAQosPolicy on page 470,
5.2.1 TOPIC_DATAQosPolicy on page 225 and 7.4.4 GROUP_DATAQosPolicy
on page 354 for different entities.

Must be configured to be the same values on allDomainParticipants in the same
DDS domain.

DDS_Long topic_data_max_length See above row

DDS_Long publisher_group_data_max_length See above row

Table 9.13 DDS_DomainParticipantResourceLimitsQosPolicy

662

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

663

Type Field Name Description

DDS_Long
subscriber_group_data_max_
length

See above row

DDS_Long writer_user_data_max_length See above row

DDS_Long reader_user_data_max_length See above row

DDS_Long max_partitions

Controls the maximumnumber of partitions that can be assigned to a Publisher or
Subscriberwith the 7.4.5 PARTITIONQosPolicy on page 357.

Must be configured to be the same value on allDomainParticipants in the same DDS
domain.

DDS_Long
max_partition_cumulative_char-
acters

Controls the maximumnumber of combined characters among all partition names in
the 7.4.5 PARTITIONQosPolicy on page 357.

Must be configured to be the same value on allDomainParticipants in the same
DDS domain.

DDS_Long type_code_max_serialized_length

Maximumsize of serialized string for type code.

If your data type has an especially complex type code, you may need to increase this
value. See 3.7 UsingGenerated Typeswithout Connext DDS (Standalone) on
page 152.

Note: TypeObject is now the standard method of exchanging type information in Con-
next DDS, so type_code_max_serialized_length defaults to 0 bytes. It is re-
commended to use type_object_max_serialized_length to configure the maximum
serialized size for the TypeObject describing the type.

DDS_Long type_object_max_serialized_length

Maximum length, in bytes, that the buffer to serialize TypeObject can consume.

This parameter limits the size of the TypeObject that a DomainParticipant is able to
propagate. Since TypeObjects contain all of the information of a data structure, in-
cluding the strings that define the names of the members of a structure, complex
data-structures can result in TypeObjects larger than the default maximum. This field
allows you to specify a larger value.

Cannot be unlimited.

DDS_Long
type_object_max_deserialized_
length

Maximumnumber of bytes that a deserialized TypeObject can consume.

This parameter limits the size of the TypeObject that a DomainParticipant is able to
store.

DDS_Long
serialized_type_object_dynamic_al-
location_threshold

Threshold, in bytes, for dynamic memory allocation for the serialized typeObject.
Above this threshold, the memory for a TypeObject is allocated dynamically. Below it,
the memory is obtained froma pool of fixed-size buffers.

If type_object_max_serialized_length is not LENGTH_UNLIMITEDand is smaller
than serialized_type_object_dynamic_allocation_threshold, then serialized_
type_object_dynamic_allocation_thresholdwill be adjusted to type_object_
max_serialized_length and a warning will be logged.

By default, serialized_type_object_dynamic_allocation_threshold is the same
value as type_object_max_serialized_length, 8192. This means that the typeOb-
ject memory is obtained froma pool of fixed-size buffers.

Table 9.13 DDS_DomainParticipantResourceLimitsQosPolicy

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

Type Field Name Description

DDS_Long
deserialized_type_object_dy-
namic_
allocation_threshold

Threshold, in bytes, for dynamic memory allocation for the deserialized TypeObject.
Above this threshold, the memory for a TypeObject is allocated dynamically. Below it,
the memory is obtained froma pool of fixed-size buffers. The size of the buffers is
equal to this threshold.

If type_object_max_deserialized_length is not LENGTH_UNLIMITEDand is smal-
ler than deserialized_type_object_dynamic_allocation_threshold, then deseri-
alized_type_object_dynamic_allocation_thresholdwill be adjusted to type_
object_max_deserialized_length and a warning will be logged.

DDS_Long contentfilter_property_max_length Maximum length of all data related to 5.4 ContentFilteredTopicson page 228.

DDS_Long channel_seq_max_length
Maximumnumber of channels that can be specified in a DataWriter’s 7.5.16
MULTI_CHANNELQosPolicy (DDSExtension) on page 433.

DDS_Long
channel_filter_expression_max_
length

Maximum length of a channel filter_expression in a DataWriter’s 7.5.16 MULTI_
CHANNELQosPolicy (DDSExtension) on page 433.

DDS_Long
participant_property_list_max_
length

Maximumnumber of properties ((name, value) pairs) that can be stored in the Do-
mainParticipant’s 7.5.19 PROPERTYQosPolicy (DDSExtension) on page 440.

DDS_Long
participant_property_string_max_
length

Maximumcumulative length (in bytes, including the null terminating characters) of all
the (name, value) pairs in a DomainParticipant’sProperty QosPolicy.

DDS_Long writer_property_list_max_length
Maximumnumber of properties ((name, value) pairs) that can be stored in a
DataWriter’sProperty QosPolicy.

DDS_Long writer_property_string_max_length
Maximumcumulative length (in bytes, including the null terminating characters) of all
the (name, value) pairs in a DataWriter’sProperty QosPolicy.

DDS_Long reader_property_list_max_length
Maximumnumber of properties ((name, value) pairs) that can be stored in a
DataReader’sProperty QosPolicy.

DDS_Long
reader_property_string_max_
length

Maximumcumulative length (in bytes, including the null terminating characters) of all
the (name, value) pairs in a DataReader’sProperty QosPolicy.

DDS_Long

max_endpoint_groups
Maximumnumber of endpoint groups allowed in an 8.6.1 DATA_READER_
PROTOCOLQosPolicy (DDSExtension) on page 575 .

max_endpoint_group_cumulative_
characters

Maximumnumber of combined role_name characters allowed in all endpoint groups
in an 7.5.1 AVAILABILITYQosPolicy (DDSExtension) on page 371. Themaximum
number of combined characters should account for a terminating NULL ('') char-
acter for each role_name string.

Table 9.13 DDS_DomainParticipantResourceLimitsQosPolicy

664

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

665

Type Field Name Description

DDS_Long transport_info_list_max_length

When sending DomainParticipant discovery information, this value defines the max-
imumnumber of transports whose properties will be announced to otherDo-
mainParticipants.

If a DomainParticipant has three transports installed and this value is two, the Do-
mainParticipantwill only announce information about the first two transports. When
receiving DomainParticipant information, this value defines the maximumsize of the
list containing information about the transports installed in a remote Do-
mainParticipant. The information about the transports installed in a Do-
mainParticipant is made available to remote DomainParticipants through the
sequence field transport_info in the Participant Built-in Topic’s Data (see Table 18.1
Participant Built-in Topic’sData Type (DDS_ParticipantBuiltinTopicData)

Setting this value to 0 disables the capability ofConnext DDS to detect and report
transport misconfigurations. However, it does not affect the capability of reaching a
given DomainParticipant in all transports available on thatDomainParticipant.

DDS_Al-
locationSettings_t

remote_topic_query_allocation

Allocation settings applied to remote TopicQueries.

These settings are applied to the allocation of information about TopicQueries cre-
ated by other participants and discovered by this participant. When the participant re-
ceives a new topic query that would make the current count go abovemax_count, it
is not processed until the current count drops (i.e. another topic query is canceled).
The topic query stays in the Built-in ServiceRequest DataReader queue until it can be
processed or it is canceled.

DDS_Long remote_topic_query_hash_buckets Number of hash buckets for remote TopicQueries.

DDS_Long writer_data_tag_list_max_length
Maximumnumber of data tags ((name, value) pairs) that can be stored in a
DataWriter’s DataTag QosPolicy.

DDS_Long writer_data_tag_string_max_length
Maximumcumulative length (in bytes, including the null terminating characters) of all
the (name, value) pairs in a DataWriter’s DataTag QosPolicy.

DDS_Long reader_data_tag_list_max_length
Maximumnumber of data tags ((name, value) pairs) that can be stored in a
DataReader’s DataTag QosPolicy.

DDS_Long
reader_data_tag_string_max_
length

Maximumcumulative length (in bytes, including the null terminating characters) of all
the (name, value) pairs in a DataReader’s DataTag QosPolicy.

DDS_UnsignedLong
shmem_ref_transfer_mode_max_
segments

Sets the maximumnumber of shared memory segments that can be created by all
DataWritersbelonging to this participant if you are using Zero Copy transfer over
shared memory. See 23.1.5 Zero CopyTransfer Over SharedMemoryon
page 968.

Table 9.13 DDS_DomainParticipantResourceLimitsQosPolicy

Most of the parameters for this QosPolicy are described in the Description column of the table. However,
you may need to refer to the sections listed in the column to fully understand the context in which the para-
meter is used.

An important parameter in this QosPolicy that is often changed by users is the type_object_max_seri-
alized_length. This parameter limits the size of the TypeObject that a DomainParticipant is able to store
and propagate for user data types. TypeObjects are the wire representation for a type code. Type codes can
be used by external applications to understand user data types without having the data type predefined in

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

compiled form. However, since type codes contain all of the information of a data structure, including the
strings that define the names of the members of a structure, complex data structures can result in TypeOb-
jects larger than the default maximum of 8192 bytes. Thus it is common for users to set this parameter to a
larger value. However, as with all parameters in this QosPolicy defining maximum sizes for variable-
length elements, all DomainParticipants should set the same value for type_object_max_serialized_
length.

The <object type> hash_buckets configure the hash-table data structure that is used to efficiently search the
database. The optimal number of buckets depend on the actual number of objects that will be stored in the
hash table. So if you know how many DataWriters will be created in a DomainParticipant, you may
change the value of local_writer_hash_buckets to balance memory usage against search efficiency. A smal-
ler value will use up less memory, but a larger value will make database lookups for the object more effi-
cient.

If you modify any of the <entity type>_data_max_length, max_partitions, or max_partition_cummulative_
characters parameters, then you must make sure that they are modified to be the same value for all
DomainParticipants in the same DDS domain for all applications. If they are different and an application
sends data that is larger than another application is configure to hold, then the two Entities, whether a
matching DataWriter/DataReader pair or even two DomainParticipants will fail to connect.

9.5.4.1 Configuring Resource Limits for Asynchronous DataWriters

When using an asynchronous Publisher, if a call to write() is blocked due to a resource limit, the block
will last until the timeout period expires, which will prevent others from freeing the resource. To avoid this
situation, make sure that the DomainParticipant’s resource_limits.outstanding_asynchronous_sample_
allocation is always greater than the sum of all asynchronous DataWriters’ resource_limits.max_samples
(see 7.5.22 RESOURCE_LIMITS QosPolicy on page 452).

9.5.4.2 Configuring Memory Allocation

The <object type>_allocation configures the number of <object type>’s that can be stored in the internal
Connext DDS database. For example, local_writer_allocation configures how many local DataWriters can
be created for the DomainParticipant.

The DDS_AllocationSettings_t structure sets the initial and maximum number of each object type that can
be stored. The initial_count will determine how many objects are initially allocated, and max_count will
determine the maximum amount of objects that Connext DDS is allowed to allocate. The incremental_
count is used to allocate more objects in chunks when the number of objects created exceed the initial_
count. You can used fixed-size increments or -1 to double the amount of extra memory allocated each
time memory is needed.

Notice that the memory pre-allocated for an object using the DDS_AllocationSettings_t structure is not the
full memory that will be required by the object during its lifecycle. Memory can still be allocated dynam-
ically when the object is actually used. For example, when a new local DataWriter or DataReader is cre-
ated, the memory required for its queue is allocated from the heap dynamically at the moment of creation,

666

9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

667

independently of the DDS_AllocationSettings_t value. The memory pre-allocated for the object by using
the DDS_AllocationSettings_t structure only accounts for the memory required to store the object in the
internal in-memory database, not its full state.

You should only modify these parameters if you want to decrease the initial memory used by Connext
DDS when a DomainParticipant is created or you want to increase the maximum number of local and
remote Entities that can be stored in a DomainParticipant.

9.5.4.3 Example

For most applications, the default values for this QosPolicy may be sufficient. However, if an application
uses the PARTITION, USER_DATA, TOPIC_DATA, or GROUP_DATA QosPolicies, the default max-
imum sizes of the data associated with those policies may need to be adjusted as required by the applic-
ation. As noted previously, you must make sure that all DomainParticipants in the same DDS domain use
the same sets of values or it is possible that Connext DDS will not successfully connect two Entities.

9.5.4.4 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

9.5.4.5 Related QosPolicies

l 9.5.1 DATABASE QosPolicy (DDS Extension) on page 643

l 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650

l 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on page 433

l 7.5.30 USER_DATA QosPolicy on page 470

l 5.2.1 TOPIC_DATA QosPolicy on page 225

l 7.4.4 GROUP_DATA QosPolicy on page 354

l 7.4.5 PARTITION QosPolicy on page 357

l 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440

9.5.4.6 Applicable DDS Entities

l 9.3 DomainParticipants on page 615

9.5.4.7 System Resource Considerations

Memory and CPU usage are directly affected by the values set for parameters of this QosPolicy. See the
detailed descriptions above for specifics.

9.5.5 EVENT QosPolicy (DDS Extension)

9.5.5 EVENT QosPolicy (DDS Extension)

The EVENT QosPolicy configures the internal Connext DDS Event thread.

This QoS allows the you to configure thread properties such as priority level and stack size. You can also
configure the maximum number of events that can be posted to the event thread. It contains the members
in Table 9.14 DDS_EventQoSPolicy. For defaults and valid ranges, please refer to the API Reference
HTML documentation.

Type Field
Name Description

DDS_ThreadSet-
tings_t

thread.mask

thread.priority

thread.stack_
size

Thread settings for the event thread used byConnext DDS to wake up for a timed event and possibly execute
listener callbacks. The values used for these settings are OS-dependent; see the RTI Connext DDSCore
LibrariesPlatformNotes for details.

Note: thread.cpu_list and thread.cpu_rotation are not relevant in this QoS policy.

DDS_Long initial_count Initial number of events that can be stored simultaneously.

DDS_Long max_count Maximumnumber of events that can be stored simultaneously.

Table 9.14 DDS_EventQoSPolicy

The Event thread is used to wake up and execute timed events posted to the event queue. In a DomainPar-
ticipant, different Entities may have constraints that have to be checked at periodic intervals or at specific
times. If the constraint is violated, a callback function may need to be executed. Timed events include
checking for timeouts and deadlines, and executing internal and user timeout or exception handling
routines/callbacks. A combination of a time, constraint, and callback can be considered to be an event. For
more information, see 21.2 Event Thread on page 916.

For example, a DataReader may have a constraint that requires data to be received within a period of time
specified by the 7.5.7 DEADLINE QosPolicy on page 407. For that DataReader, an event is stored by
the Event thread so that it will wake up periodically to check to see if data has arrived in time. If not, the
Event thread will execute the on_requested_deadline_missed() Listener callback of the DataReader (if it
was installed and enabled).

A reliable connection between a DataWriter and DataReader will also post events for sending heartbeats
used in the reliable protocol discussed in Reliable Communications (Chapter 11 on page 694).

This QoS configures the parameters associated with thread creation as well as the number of events that
can be simultaneously stored by the Event thread.

9.5.5.1 Example

In a real-time operating system, the priority of the Event thread should be set relative to the priority of the
events that it must handle. For example, you may want the Event thread to have a high priority if the dead-

668

9.5.6 RECEIVER_POOL QosPolicy (DDS Extension)

669

lines and callbacks that it handles are time or safety critical. It may be critical that the data of a particular
DataReader arrives on time or if not, alternative action is taken with minimal latency.

If you create many Entities in a DomainParticipant with QosPolicies that will post events that check dead-
lines, liveliness or send heartbeats, then you may need to increase the maximum number of events that can
be stored by the Event thread.

If your application is sending a lot of reliable data, you should increase the event thread priority to be
higher than the sending thread priority.

9.5.5.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

9.5.5.3 Related QosPolicies

l 9.5.1 DATABASE QosPolicy (DDS Extension) on page 643

l 9.5.6 RECEIVER_POOL QosPolicy (DDS Extension) on the next page

9.5.5.4 Applicable DDS Entities

l 9.3 DomainParticipants on page 615

9.5.5.5 System Resource Considerations

Increasing initial_count and max_count will increase initial and maximum memory used for storing
events.

Setting the thread parameters correctly on a real-time operating system is usually critical to the proper over-
all functionality of the applications on that system. Larger values for the thread.stack_size parameter will
use up more memory.

By default, a DomainParticipant will dynamically allocate memory as needed for events posted to the
event thread. However, by setting a maximum value or setting the initial and maximum value to be the
same, you can either bound the amount of memory allocated for the event thread or prevent a DomainPar-
ticipant from dynamically allocating memory for the event thread after initialization.

9.5.6 RECEIVER_POOL QosPolicy (DDS Extension)

The RECEIVER_POOL QosPolicy configures the internal Connext DDS thread used to process the data
received from a transport. The Receive thread is described in detail in 21.3 Receive Threads on page 917.

This QosPolicy contains the members in Table 9.15 DDS_ReceiverPoolQoSPolicy.

9.5.6 RECEIVER_POOL QosPolicy (DDS Extension)

Type Field
Name Description

struct DDS_
ThreadSettings_
t

thread.mask

thread.priority

thread.stack_
size

hread.cpu_
list

thread.cpu_
rotation

Thread settings for the receive thread(s) used byConnext DDS to process data received froma transport. The
values used for these settings are OS-dependent; see the RTI Connext DDSCore LibrariesPlatformNotes
for details.

See also: 21.5 Controlling CPU Core Affinity for RTI Threadson page 919.

DDS_Long buffer_size

Size of the receive buffer in bytes.

The receive buffer is used by the receive thread to store the raw data that arrives over the transports in non-zero-
copy transports.

Zero-copy transports do not copy their data into the buffer provided by the receive thread. Instead, they provide
the receive thread data in buffers allocated by the transports themselves. Only the shared memory built-in trans-
port (SHMEM) supports zero-copy.

buffer_sizemust always be at least as large as the maximummessage_size_max across allof the transports
being used that are not doing zero-copy.

By default, the buffer_size is AUTO (e.g., DDS_LENGTH_AUTO in C/C++), which is equal to the maximummes-
sage_size_max across allof the non-zero-copy transports. You may want the value to be greater than the de-
fault if you try to limit the largest data packet that can be sent through the transport(s) in one application, but you
still want to receive data fromother applications that have not made the same change.

For example, to avoid IP fragmentation, you may want to set themessage_size_max for IP-based transports
to a small value, such as 1400 bytes. However, you may not be able to apply this change to all the applications
at the same time. To receive data from these other applications, the buffer_size should be equal to the original
message_size_max for the transport.

For information on the valid range, see the API Reference HTML documentation.

DDS_Long
buffer_align-
ment

Byte-alignment of the receive buffer. For the default and valid range, see the API Reference HTML doc-
umentation.

Table 9.15 DDS_ReceiverPoolQoSPolicy

This QosPolicy sets the thread properties, like priority level and stack size, for the threads used to receive
and process data from transports. Connext DDS uses a separate receive thread per port per transport plu-
gin. To force Connext DDS to use a separate thread to process the data for a DataReader, you should set a
unique port for the 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension) on page 465 or 8.6.5
TRANSPORT_MULTICAST QosPolicy (DDS Extension) on page 596 for the DataReader.

Connext DDS creates at least one thread for every transport that is installed and enabled for use by the
DomainParticipant for receiving data. These threads are used to process data DDS samples received for
the participant’s DataReaders, as well as messages used by Connext DDS itself in support of the applic-
ation discovery process discussed in Discovery (Chapter 15 on page 770).

The user application may configure Connext DDS to create many more threads for receiving data sent via
multicast or even to dedicate a thread to process the DDS data samples of a single DataReader received on
a particular transport. This QosPolicy is used in the creation of all receive threads.

670

9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension)

671

9.5.6.1 Example

When new data arrives on a transport, the receive thread may invoke the on_data_available() of the
Listener callback of a DataReader. Thus, you may want to adjust the priority of the receive threads with
respect to the other threads in the application as appropriate for the proper operation of the system.

9.5.6.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

9.5.6.3 Related QosPolicies

l 9.5.1 DATABASE QosPolicy (DDS Extension) on page 643

l 9.5.5 EVENT QosPolicy (DDS Extension) on page 668

9.5.6.4 Applicable DDS Entities

l 9.3 DomainParticipants on page 615

9.5.6.5 System Resource Considerations

Increasing the buffer_size will increase memory used by a receive thread.

Setting the thread parameters correctly on a real-time operating system is usually critical to the proper over-
all functionality of the applications on that system. Larger values for the thread.stack_size parameter will
use up more memory.

9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension)

Connext DDS comes with three different transport plugins built into the core libraries (for most supported
target platforms). These are plugins for UDPv4, shared memory (SHMEM), and UDPv6. (If you've
installed RTI Real-Time WAN Transport, UDPv4_WAN is also available.)

This QosPolicy allows you to control which builtin transport plugins are used by a DomainParticipant. By
default, only the UDPv4 and shared memory plugins are enabled (for most platforms; on some platforms,
the shared memory plugin is not available). You can disable one or all of the builtin transports.

In some cases, users will disable the shared memory transport when they do not want applications to use
shared memory to communicate when running on the same node.

This QoS Policy contains the member in Table 9.16 DDS_TransportBuiltinQosPolicy. For the default and
valid values, please refer to the API Reference HTML documentation (selectModules, RTI Connext
DDS API Reference, QoS Policies, TRANSPORT_BUILTIN).

9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension)

Type Field
Name Description

DDS_Trans-
portBuiltinKindMask

mask

A mask with bits that indicate which builtin transports will be installed. Three different transport plug-ins are
built into the core Connext DDS libraries (formost supported target platforms): SHMEM, UDPv4, and UDPv6.
(If you've installed Part 5: RTI Real-TimeWAN Transport on page 1040, UDPv4_WAN is also available.)

By default, the mask is set to SHMEM | UDPv4. Transports that are not in the mask will be disabled. MASK_
NONE disables all the builtin transports.

Table 9.16 DDS_TransportBuiltinQosPolicy

You can set the mask programmatically or via XML. For example, programmatically:
participant_qos.transport_builtin.mask = DDS_TRANSPORTBUILTIN_UDPv4 | DDS_TRANSPORTBUILTIN_
SHMEM;

Via XML, you can use the <transport_builtin> tags. For example:
<domain_participant_qos>

<transport_builtin>
<mask>UDPv4</mask>

</transport_builtin>
</domain_participant_qos>

In XML only, you can additionally configure the builtin transport properties, such as <message_size_
max>. See 19.4.6 Transport Properties on page 886.

Note: Currently, Connext DDS will only listen for discovery traffic on the first multicast address (element
0) in multicast_receive_addresses.

9.5.7.1 Example

See 9.5.7.5 System Resource Considerations on the next page for an example of why you may want to
use this QosPolicy.

In addition, customers may wish to install and use their own custom transport plugins instead of any of the
builtin transports. In that case, this QosPolicy may be used to disable all builtin transports.

9.5.7.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

9.5.7.3 Related QosPolicies

l 7.5.27 TRANSPORT_SELECTION QosPolicy (DDS Extension) on page 464

l 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension) on page 465

672

9.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension)

673

l 8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) on page 596

9.5.7.4 Applicable DDS Entities

l 9.3 DomainParticipants on page 615

9.5.7.5 System Resource Considerations

You can save memory and other system resources if you disable the builtin transports that your application
will not use. For example, if you only run a single application with a single DomainParticipant on each
machine in your network, then you can disable the shared memory transport since your applications will
never use it to send or receive messages.

9.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension)

The multicast address on which a DataReader wants to receive its data can be explicitly configured using
the 8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) on page 596. However in systems
with many multicast addresses, managing the multicast configuration can become cumbersome. The Trans-
portMulticastMapping QosPolicy is designed to make configuration and assignment of the DataReader's
multicast addresses more manageable. When using this QosPolicy, the middleware will automatically
assign a multicast receive address for a DataReader from a range by using configurable mapping rules.

DataReaders can be assigned a single multicast receive address using the rules defined in this QosPolicy
on the DomainParticipant. This multicast receive address is exchanged during simple discovery in the
same manner used when the multicast receive address is defined explicitly. No additional configuration on
the writer side is needed.

Mapping within a range is done through a mapping function. The middleware provides a default hash
(md5) mapping function. This interface is also pluggable, so you can specify a custom mapping function to
minimize collisions.

To use this QosPolicy, you must set the kind in the 8.6.5 TRANSPORT_MULTICAST
QosPolicy (DDS Extension) on page 596 to AUTOMATIC.

This QosPolicy contains the member in Table 9.17 DDS_TransportMulticastMappingQosPolicy.

Type Field
Name Description

DDS_Trans-
portMapping
SettingsSeq

value
A sequence of multicast communication settings, each of which has the format shown in Table 9.18 DDS_
TransportMulticastSettings_t.

Table 9.17 DDS_TransportMulticastMappingQosPolicy

9.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension)

Type Field
Name Description

char * addresses
A string containing a comma-separated list of IP addresses or IP address ranges to be used to receive multicast
traffic for the entity with a topic that matches the topic_expression.

See 9.5.8.1 Formatting Rules for Addresseson the next page.

char *
topic_
expression

A regular expression used tomap topic names to corresponding addresses.

See 5.4.6.5 SQL Extension: Regular ExpressionMatching on page 242.

DDS_Trans-
portMulticast
MappingFunction_
t

mapping_
function

Optional.Defines a user-provided pluggable mapping function. See Table 9.19 DDS_Trans-
portMulticastMappingFunction_t.

Table 9.18 DDS_TransportMulticastSettings_t

Type Field
Name Description

char * dll

Specifies a dynamic library that contains a mapping function.

You may specify a relative or absolute path.

If the name is specified as "foo", the library name on Linux systems will be libfoo.so; on Windows systems it will be foo.dll.

char *
function_
name

Specifies the name of a mapping function in the library specified in the above dll.

The function must implement the following interface:
int function(const char* topic_name, int numberOfAddresses);

The function must return an integer that indicates the indexof the address to use for the given topic_name. For example, if the
first address in the list should be used, it must return 0; if the second address in the list should be used, it must return 1, etc.

Table 9.19 DDS_TransportMulticastMappingFunction_t

9.5.8.1 Formatting Rules for Addresses

l The string must contain IPv4 or IPv6 addresses separated by commas. For example:
"239.255.100.1,239.255.100.2,239.255.100.3"

l You may specify ranges of addresses by enclosing the start and end addresses in square brackets.
For example: "[239.255.100.1,239.255.100.3]".

l You may combine the two approaches.
For example: "239.255.200.1,[239.255.100.1,239.255.100.3], 239.255.200.3"

l IPv4 addresses must be specified in Dot-decimal notation.

l IPv6 addresses must be specified using 8 groups of 16-bit hexadecimal values separated by colons.
For example: FF00:0000:0000:0000:0202:B3FF:FE1E:8329.

674

9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

675

l Leading zeroes can be skipped. For example: FF00:0:0:0:202:B3FF:FE1E:8329.

l You may replace a consecutive number of zeroes with a double colon, but only once within an
address. For example: FF00::202:B3FF:FE1E:8329.

9.5.8.2 Example

This QoS policy configures the multicast ranges and mapping rules at the DomainParticipant level. You
can configure a large set of multicast addresses on the DomainParticipant.

In addition, you can configure a mapping between topic names and multicast addresses. For example,
topic "A" can be assigned to address 239.255.1.1 and topic "B" can be assigned to address 239.255.1.2.

This configuration is quite flexible. For example, you can specify mappings between a subset of topics to a
range of multicast addresses. For example, topics "X", "Y" and Z" can be mapped to [239.255.1.1,
239.255.1.255], or using regular expressions, "X*" and "B-Z" can be mapped to a sub-range of addresses.
See 5.4.6.5 SQL Extension: Regular Expression Matching on page 242.

9.5.8.3 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

9.5.8.4 Related QosPolicies

l 8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) on page 596

9.5.8.5 Applicable DDS Entities

l 9.3 DomainParticipants on page 615

9.5.8.6 System Resource Considerations

See 8.6.5.5 System Resource Considerations on page 599.

9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

The WIRE_PROTOCOL QosPolicy configures some global Real-Time Publish Subscribe (RTPS) pro-
tocol-related properties for the DomainParticipant. The RTPS OMG-standard, interoperability protocol is
used by Connext DDS to format and interpret messages between DomainParticipants.

It includes the members in Table 9.20 DDS_WireProtocolQosPolicy. For defaults and valid ranges, please
refer to the API Reference HTML documentation. (The default values contain the correctly initialized wire
protocol attributes. They should not be modified without an understanding of the underlying Real-Time
Publish Subscribe (RTPS) wire protocol.)

9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

Type Field
Name Description

DDS_Long
participant_
id

Unique identifier for participants that belong to the same DDS domain on the same host. See
9.5.9.1 Choosing Participant IDson the next page.

DDS_UnsignedLong

rtps_host_
id

A machine/OS-specific host ID, unique in the DDS domain. See 9.5.9.3 Controlling How the
GUID isSet (rtps_auto_id_kind) on page 679.

rtps_app_
id

A participant-specific ID, unique within the scope of the rtps_host_id. See 9.5.9.3 Controlling
How theGUID isSet (rtps_auto_id_kind) on page 679.

rtps_in-
stance_id

An instance-specific ID of the DomainParticipant that, togetherwith the rtps_app_id, is unique
within the scope of the rtps_host_id. See 9.5.9.3 Controlling How theGUID isSet (rtps_auto_
id_kind) on page 679.

DDS_RtpsWellKnownPorts_t
rtps_well_
known
_ports

Determines the well-known multicast and unicast ports for discovery and user traffic. See 9.5.9.2
PortsUsed for Discovery on page 678.

DDS_
RtpsReservedPortKindMask

rtps_
reserved_
ports
_mask

Specifies which well-known multicast and unicast ports to reserve when enabling the Do-
mainParticipant.

DDS_WirePro-
tocolQosPolicyAutoKind

rtps_auto_
id_kind

Kind of auto mechanismused to calculate the GUID prefix.

DDS_Boolean
compute_
crc

Adds an RTPS CRC submessage to every message.

DDS_Boolean check_crc
Checks if the received RTPS message is valid by comparing the computed CRCwith the received
RTPS CRC submessage.

Table 9.20 DDS_WireProtocolQosPolicy

Note that 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390 and 8.6.1
DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575 configure RTPS and reli-
ability properties on a per DataWriter and DataReader basis.

9.5.9.1 Choosing Participant IDs

When you create a DomainParticipant, you must specify a domain ID, which identifies the com-
munication channel across the whole system. Each DomainParticipant in the same DDS domain on the
same host also needs a unique integer, known as the participant_id.

The participant_id uniquely identifies a DomainParticipant from other DomainParticipants in the same
DDS domain on the same host. You can use the same participant_id value for DomainParticipants in the
same DDS domain but running on different hosts.

The participant_id is also used to calculate the default unicast user-traffic and the unicast meta-traffic port
numbers, as described in 15.5 Ports Used for Discovery on page 797. If you only have one DomainPar-
ticipant in the same DDS domain on the same host, you will not need to modify this value.

676

9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

677

You can either allow Connext DDS to select a participant ID automatically (by setting participant_id to -
1), or choose a specific participant ID (by setting participant_id to the desired value).

l Automatic Participant ID Selection

The default value of participant_id is -1, which means Connext DDS will select a participant ID for
you.

Connext DDS will pick the smallest participant ID, based on the unicast ports available on the trans-
ports enabled for discovery, based on the unicast and/or multicast ports available on the transports
enabled for discovery and/or user traffic.

The rtps_reserved_ports_mask field determines which ports to check when picking the next avail-
able participant ID. The reserved ports are calculated based on the formula specified in 15.5.1
Inbound Ports for Meta-Traffic on page 799 an 15.5.2 Inbound Ports for User Traffic on page 799.
By default, Connext DDS will reserve the meta-traffic unicast port, the meta-traffic multicast port,
and the user traffic unicast port.

Connext DDS will attempt to resolve an automatic port ID either when a DomainParticipant is
enabled, or when a DataReader or a DataWriter is created. Therefore, all the transports enabled for
discovery must have been registered by this time. Otherwise, the discovery transports registered after
resolving the automatic port index may produce port conflicts when the DomainParticipant is
enabled.

To see what value Connext DDS has selected, either:
l Change the verbosity level of the NDDS_CONFIG_LOG_CATEGORY_API category to
NDDS_CONFIG_LOG_VERBOSITY_STATUS_LOCAL (see 25.2 Controlling Messages
from Connext DDS on page 990).

l Call get_qos() and look at the participant_id value in the 9.5.9 WIRE_PROTOCOL
QosPolicy (DDS Extension) on the previous page after the DomainParticipant is enabled.

l Manual Participant ID Selection

If you do have multiple DomainParticipants on the same host, you should use consecutively
numbered participant indices start from 0. This will make it easier to specify the discovery peers
using the initial_peers parameter of this QosPolicy or the NDDS_DISCOVERY_PEERS envir-
onment variable. See 15.2 Configuring the Peers List Used in Discovery on page 773 for more
information.

Do not use random participant indices since this would make DISCOVERY incredibly difficult to
configure. In addition, the participant_id has a maximum value of 120 (and will be less for domain
IDs other than 0) when using an IP-based transport since the participant_id is used to create the
port number (see 15.5 Ports Used for Discovery on page 797), and for IP, a port number cannot be
larger than 65536.

9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

For details, see 15.5 Ports Used for Discovery on page 797.

9.5.9.2 Ports Used for Discovery

The rtps_well_known_ports structure allows you to configure the ports that are used for discovery of
inbound meta-traffic (discovery data internal to Connext DDS) and user traffic (from your application).

It includes the members in Table 9.21 DDS_RtpsWellKnownPorts_t. For defaults and valid ranges, please
refer to the API Reference HTML documentation.

Type Field Name Description

DDS_
Long

port_base
The base port offset. All mapped well-known ports are offset by this value. Resulting ports must be within the
range imposed by the underlying transport.

domain_id_gain
Tunable gain parameters. See 15.5 PortsUsed for Discovery on page 797.

participant_id_gain

builtin_multicast_
port_offset

Additional offset formeta-traffic port. See 15.5.1 Inbound Ports for Meta-Traffic on page 799.
builtin_unicast_
port_offset

user_multicast_
port_offset

Additional offset for user traffic port. See 15.5.2 Inbound Ports for User Traffic on page 799.
user_unicast_port_
offset

Table 9.21 DDS_RtpsWellKnownPorts_t

9.5.9.3 Controlling How the GUID is Set (rtps_auto_id_kind)

In order for the discovery process to work correctly, each DomainParticipantmust have a unique iden-
tifier. This QoS policy specifies how that identifier should be generated.

RTPS defines a 96-bit prefix to this identifier; each DomainParticipantmust have a unique value of this
prefix relative to all other participants in its DDS domain.

If an application dies unexpectedly and is restarted, the IDs used by the new instance of DomainPar-
ticipants should be different than the ones used by the previous instances. A change in these values allows
other DomainParticipants to know that they are communicating with a new instance of an application, and
not the previous instance.

For legacy reasons, Connext DDS divides the 96-bit prefix into three integers:

l The first integer is called host ID. The original purpose of this integer was to contain the identity of
the machine on which the DomainParticipant is executing.

678

9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

679

l The second integer is called an application ID. The original purpose of this integer was to contain a
value that identifies the process or task in which the DomainParticipant is contained.

l The third integer is called instance ID. The original purpose was to contain a value that uniquely
identifies a DomainParticipant within a task or process.

The rtps_auto_id_kind field can be used to configure the algorithm that Connext DDS uses to populate
the 96-bit prefix. Then you can optionally overwrite specific parts of the 96-bit prefix by explicitly con-
figuring the rtps_host_id (first integer), rtps_app_id (second integer), and rtps_instance_id (third
integer).

The rtps_auto_id_kind field supports three different prefix generation algorithms:

1. In the default and most common scenario, rtps_auto_id_kind is set to RTPS_AUTO_ID_FROM_
UUID. As the name suggests, this mechanism uses a unique, randomly generated UUID to fill the
rtps_host_id, rtps_app_id, or rtps_instance_id fields. The first two bytes of the rtps_host_id are
replaced with the RTI vendor ID (0x0101).

2. (Legacy) When rtps_auto_id_kind is set to DDS_RTPS_AUTO_ID_FROM_IP, the 96-bit prefix
is generated as follows:

l rtps_host_id: the 32 bit value of the IPv4 of the first up and running interface of the host
machine is assigned. If the host does not have an IPv4 address, the host-id will be auto-
matically set to 0x7F000001.

l rtps_app_id: the process (or task) ID is assigned.

l rtps_instance_id: A counter is assigned that is incremented per new participant within a pro-
cess.

DDS_RTPS_AUTO_ID_FROM_IP is not a good algorithm to guarantee prefix uniqueness,
because the process ID can be recycled by the OSs. See 9.5.9.3.2 Uniqueness Problem with DDS_
RTPS_AUTO_ID_FROM_IP and DDS_RTPS_AUTO_ID_FROM_MAC on page 682 for addi-
tional information.

3. (Legacy) When rtps_auto_id_kind is set to DDS_RTPS_AUTO_ID_FROM_MAC, the 96-bit
prefix is generated as follows:

l rtps_host_id: the first 32 bits of the MAC address of the first up and running interface of the
host machine are assigned.

l rtps_app_id: the last 32 bits of the MAC address of the first up and running interface of the
host machine are assigned.

l rtps_instance_id: this field is split into two different parts. The process (or task) ID is
assigned to the first 24 bits. A counter is assigned to the last 8 bits. This counter is incre-
mented per new participant. In both scenarios, you can change the value of each field inde-
pendently.

9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

DDS_RTPS_AUTO_ID_FROM_IP is not a good algorithm to guarantee prefix uniqueness
because the process ID can be recycled by the OSs. See 9.5.9.3.2 Uniqueness Problem with DDS_
RTPS_AUTO_ID_FROM_IP and DDS_RTPS_AUTO_ID_FROM_MAC on page 682 for addi-
tional information.

9.5.9.3.1 Overwriting the Default RTPS 96-bit Prefix

Some examples are provided to better explain the behavior of this QoSPolicy in case you want to change
the default behavior with DDS_RTPS_AUTO_ID_FROM_MAC.

1. Get the DomainParticipant QoS from the DomainParticipantFactory:

DDS_DomainParticipantFactory_get_default_participant_qos(
DDS_DomainParticipantFactory_get_instance(),
&participant_qos);

2. Change the WireProtocolQosPolicy using one of the following options.

l Use DDS_RTPS_AUTO_ID_FROM_MAC to explicitly set just the application/task iden-
tifier portion of the rtps_instance_id field:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id =
DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id =
DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id =
(/* App ID */ (12 << 8) |
/* Instance ID*/ (DDS_RTPS_AUTO_ID));

l Only set the per participant counter and let Connext DDS handle the application/task iden-
tifier:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id =
DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id =
DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id =
(/* App ID */ (DDS_RTPS_AUTO_ID) |
/* Instance ID*/ (12));

l Set the entire rtps_instance_id field yourself:

680

9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

681

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id =
DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id =
DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id =
(/* App ID */ (12 << 8)) |
/* Instance ID */ (9))

Note: If you are using DDS_RTPS_AUTO_ID_FROM_MAC as rtps_auto_id_kind and
you decide to manually handle the rtps_instance_id field, you must ensure that both parts
are non-zero (otherwise Connext DDS will take responsibility for them).

RTI recommends that you always specify the two parts separately in order to avoid errors.
l Let Connext DDS handle the entire rtps_instance_id field:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;

participant_qos.wire_protocol.rtps_host_id =
DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_app_id =
DDS_RTPS_AUTO_ID;

participant_qos.wire_protocol.rtps_instance_id =
DDS_RTPS_AUTO_ID;

Note: If you are using DDS_RTPS_AUTO_ID_FROM_MAC as rtps_auto_id_kind and
you decide to manually set the rtps_instance_id field, you must ensure that both parts are
non-zero (otherwise Connext DDS will take responsibility for them). RTI recommends that
you always specify the two parts separately in order to clearly show the difference.

3. Create the DomainParticipant as usual using the modified QoS structure instead of the default one.

9.5.9.3.2 Uniqueness Problem with DDS_RTPS_AUTO_ID_FROM_IP and DDS_RTPS_AUTO_ID_
FROM_MAC

This section applies only when rtps_auto_id_kind is set to DDS_RTPS_AUTO_ID_FROM_IP or
DDS_RTPS_AUTO_ID_FROM_MAC.

On many real-time operating systems, and even on some non-real-time operating systems, when a node is
rebooted, and applications are automatically started, process IDs are deterministically assigned. That is,
when the system restarts or if an application dies and is restarted, the application will be reassigned the
same process or task ID.

This means that Connext DDS’s automatic algorithm for creating unique rtps_app_id’s will produce the
same value between sequential instances of the same application. This will confuse the other DomainPar-
ticipants on the network into thinking that they are communicating with the previous instance of the applic-
ation instead of a new instance. Errors usually resulting in a failure to communicate will ensue.

9.6 Clock Selection

Thus, for applications running on nodes that may be rebooted without letting the application shutdown
appropriately (destroying the DomainParticipant), especially on nodes running real-time operating systems
like VxWorks, you will want to set the rtps_app_id manually. We suggest that a strictly incrementing
counter is stored either on a file system or in non-volatile RAM for the rtps_app_id.

Whatever method you use, you should make sure that the rtps_app_id is unique across all DomainPar-
ticipants running on a host as well as DomainParticipants that were recently running on the host. After a
period configured through the 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650,
existing applications will eventually flush old DomainParticipants that did not properly shutdown from
their databases. When that is done, then rtps_app_id may be reused.

9.5.9.4 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

If manually set, it must be set differently for every DomainParticipant in the same DDS domain across all
applications. The value of rtps_app_id should also change between different invocations of the same
application (for example, when an application is restarted).

9.5.9.5 Related QosPolicies

l 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650

9.5.9.6 Applicable DDS Entities

l 9.3 DomainParticipants on page 615

9.5.9.7 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

9.6 Clock Selection

Connext DDS uses clocks to measure time and generate timestamps.

The middleware uses two clocks: an internal clock and an external clock.

l The internal clock measures time and handles all timing in the middleware.

l The external clock is used solely to generate timestamps (such as the source timestamp and the recep-
tion timestamp), in addition to providing the time given by the DomainParticipant’s get_current_
time() operation (see 9.3.15.2 Getting the Current Time on page 637).

9.6.1 Available Clocks

Two clock implementations are generally available: the real-time clock and the monotonic clock.

682

9.6.2 Clock Selection Strategy

683

The real-time clock provides the real time of the system. This clock may generally be monotonic, but may
not be guaranteed to be so. It is adjustable and may be subject to small and large changes in time. The time
obtained from this clock is generally a meaningful time, in that it is the amount of time from a known
epoch. For the purposes of clock selection, this clock can be referenced by the names "realtime" or "sys-
tem"—both names map to the same real-time clock.

The monotonic clock provides times that are monotonic from a clock that is not adjustable. This clock is
not subject to changes in the system or realtime clock, which may be adjusted by the user or via time syn-
chronization protocols. However, this clock’s time generally starts from an arbitrary point in time, such as
system start-up. Note that the monotonic clock is not available for all architectures. Please see the RTI Con-
next DDS Core Libraries Platform Notes for the architectures on which it is supported. For the purposes of
clock selection, this clock can be referenced by the name "monotonic".

9.6.2 Clock Selection Strategy

To configure the clock selection, use the DomainParticipant’s 7.5.19 PROPERTY QosPolicy (DDS
Extension) on page 440. Table 9.22 Clock Selection Properties lists the supported properties.

Property Description

dds.clock.external_clock
Comma-delimited list of clocks to use for the external clock, in the order of preference.

Valid clock names are “realtime”, “system”, or “monotonic”.

dds.clock.internal_clock
Comma-delimited list of clocks to use for the internal clock, in the order of preference.

Valid clock names are “realtime”, “system”, or “monotonic”.

Table 9.22 Clock Selection Properties

By default, both the internal and external clocks use the realtime clock.

If you want your application to be robust to changes in the system time, you may use the monotonic clock
as the internal clock, and leave the system clock as the external clock. However, note that this may slightly
diminish performance, in that both the send and receive paths may need to get times from both clocks.

Since the monotonic clock is not available on all architectures, you may want to specify "monotonic, real-
time" for the internal_clock property (see Table 9.22 Clock Selection Properties). By doing so, the mid-
dleware will attempt to use the monotonic clock if it is available, and will fall back to the realtime clock if
the monotonic clock is not available.

If you want the application to be robust to changes in the system time, you are not relying on source
timestamps, and you want to avoid obtaining times from both clocks, you may use the monotonic clock for
both the internal and external clocks.

9.7 System Properties

9.7 System Properties

Connext DDS uses the DomainParticipant’s PropertyQosPolicy to maintain a set of properties that
provide system information, such as the hostname.

Unless the default the DDS_DomainParticipantQos structure (see 9.3.7 Setting DomainParticipant
QosPolicies on page 628) is overwritten, the system properties are automatically set in the DDS_
DomainParticipantQos structure that is obtained by calling the DomainParticipantFactory’s get_default_
participant_qos() operation or by using the constant DDS_PARTICIPANT_QOS_DEFAULT.

System properties are also automatically set in the DDS_DomainParticipantQos structure loaded from an
XML QoS profile unless you disable property inheritance using the attribute inherit in the XML tag <prop-
erty>.

By default, the system properties are propagated to other DomainParticipants in the system and can be
accessed through the property field in the Table 18.1 Participant Built-in Topic’s Data Type (DDS_Par-
ticipantBuiltinTopicData).

You can disable propagation of individual properties by setting the property’s propagate flag to FALSE
or by removing the property using the PropertyQosPolicyHelper operation, remove_property() (see
Table 7.65 PropertyQoSPolicyHelper Operations).

The number of system properties that are initialized for a DomainParticipant is platform specific: only pro-
cess_id and os_arch are supported on all platforms.

These properties will only be created if Connext DDS can obtain the information for them; see Table 9.23
System Properties.

System properties are affected by the DomainParticipantResourceLimitsQosPolicy’s participant_prop-
erty_list_max_length and participant_property_string_max_length.

Property Name Description

dds.sys_info.creation_timestamp Time when the executable was created.1

dds.sys_info.executable_filepath Name and full path of the executable.2

dds.sys_info.execution_timestamp Time when the execution started.3

Table 9.23 System Properties

1Only supported on Windows, INtime®, and Linux architectures.

2Only supported on Windows and Linux architectures.

3Only supported on Windows, INtime, and Linux architectures.

684

9.7 System Properties

685

Property Name Description

dds.sys_info.hostname Hostname1

dds.sys_info.target Architecture forwhich the library was compiled (for example, x64Darwin10gcc4.2.1).

dds.sys_info.process_id Process ID

dds.sys_info.username Username that is running the process.2

Table 9.23 System Properties

1Supported on Windows, Linux, macOS, INtime, and QNX architectures.

2Only supported on Windows, INtime, and Linux architectures.

Chapter 10 Building Applications
This chapter provides instructions on how to build Connext DDS applications for the following
platforms:

l 10.4 Linux Platforms on page 689

l 10.5 Windows Platforms on page 690

l 10.6 Java Platforms on page 691

While you can create applications for other operating systems, the platforms presented in this
chapter are a good starting point. We recommend that you first build and test your application on
one of these systems.

Instructions for other supported target platforms are provided in the RTI Connext DDS Core Librar-
ies Platform Notes.

To build a non-Java application using Connext DDS, you must specify the following items:

l NDDSHOME environment variable

l Connext DDS header files

l Connext DDS libraries to link

l Compatible system libraries

l Compiler options

To build Java applications using Connext DDS, you must specify the following items:

l NDDSHOME environment variable

l Connext DDS JAR file

686

10.1 Running on a Computer Not Connected to a Network

687

l Compatible Java virtual machine (JVM)

l Compiler options

This chapter describes the basic steps you will take to build an application on the above-mentioned plat-
forms. Specific details, such as exactly which libraries to link, compiler flags, etc. are in the RTI Connext
DDS Core Libraries Platform Notes.

10.1 Running on a Computer Not Connected to a Network

If you want to run Connext DDS applications on the same computer, and that computer is not connected to
a network, you must set NDDS_DISCOVERY_PEERS so that it will only use shared memory. For
example:
set NDDS_DISCOVERY_PEERS=4@shmem://

(The number 4 is only an example. This is the maximum participant ID.)

10.2 Connext DDS Header Files — All Architectures

You must include the appropriate Connext DDS header files, which are listed in Table 10.1 Header Files
to Include for Connext DDS (All Architectures). The header files that need to be included depend on the
API being used.

Connext DDS API Header Files

C #include “ndds/ndds_c.h”

C++ #include “ndds/ndds_cpp.h”

C++/CLI, C#, Java none

Table 10.1 Header Files to Include for Connext DDS (All Architectures)

For the compiler to find the included files, the path to the appropriate include directories must be provided.
Table 10.2 Include Paths for Compilation (All Architectures) lists the appropriate include path for use with
the compiler. The exact path depends on where you installed Connext DDS. See Paths Mentioned in
Documentation on page 1.

Connext DDS API Include Path Directories

Cand C++
<NDDSHOME>/include

<NDDSHOME>/include/ndds

C++/CLI, C#, Java none

Table 10.2 Include Paths for Compilation (All Architectures)

10.3 Choosing the Right Libraries

The header files that define the data types you want to use within the application also need to be included.
For example, Table 10.3 Header Files to Include for Data Types (All Architectures) lists the files to be
include for type “Foo” (these are the filenames generated by RTI Code Generator, described in Data
Types and DDS Data Samples (Chapter 3 on page 27)).

Connext DDS API User Data Type Header Files

Cand C++
#include “Foo.h”

#include “FooSupport.h”

C++/CLI, C#, Java none

Table 10.3 Header Files to Include for Data Types (All Architectures)

10.3 Choosing the Right Libraries

10.3.1 Required Libraries

All required system and Connext DDS libraries are listed in the RTI Connext DDS Core Libraries Plat-
form Notes.

You must choose between dynamic (shared) and static libraries. Do not mix the different types of libraries
during linking. The benefit of linking against the dynamic libraries is that your final executables’ sizes will
be significantly smaller. You will also use less memory when you are running several Connext DDS applic-
ations on the same node. However, shared libraries require more setup and maintenance during upgrades
and installations.

To see if dynamic libraries are supported for your target architecture, see the RTI Connext DDS Core
Libraries Platform Notes1.

10.3.2 Mixing Static and Dynamic Libraries not Supported

You must choose either static or dynamic linking. Mixing static and dynamic RTI libraries—for example,
using RTI static core libraries and dynamic TCP Transport—is not supported.

The examples in this section are for Linux systems, but except for small differences in names, the same
concepts apply to Windows and macOS systems.

Suppose you have a Connext DDS-based application myApp, and you want to use the TCP Transport plu-
gin. The library dependency looks something like that in Figure 10.1: Library Dependency on the next
page.

1In the Platform Notes, see the “Building Instructions...” table for your target architecture.

688

10.4 Linux Platforms

689

Figure 10.1: Library Dependency

Figure 10.1: Library Dependency above is a simple and common situation, but make sure that the core lib-
raries that your application uses are the same kinds of libraries that the TCP Transport plugin uses. For
example, ifmyApp links statically with nddsc, but you load nddstransporttcp dynamically, there will be
a mismatch between the libraries, potentially creating a dangerous situation. You must use static or
dynamic linking, but not both.

Important: Even if a combination of static and dynamic libraries seems to work, RTI cannot
guarantee there won't be issues when running the Connext DDS application.

10.4 Linux Platforms

Before building a Connext DDS application for a Linux platform (including QNX® systems), make sure
that:

l A supported version of your architecture is installed. See the RTI Connext DDS Core Libraries Plat-
form Notes for supported architectures.

l Connext DDS 6.x.y is installed (where 6.x.y stands for the version number of the current release).
For installation instructions, refer to the RTI Connext DDS Installation Guide.

l A “make” tool is installed. RTI recommends GNU Make. If you do not have it, you may be able to
download it from your operating system vendor. Learn more at www.gnu.org/software/make/ or
download from ftpmirror.gnu.org/make as source code.

l The NDDSHOME environment variable is set to the root directory of the Connext DDS installation
(such as /home/user/rti_connext_dds-6.x.y).

l To confirm, type this at a command prompt:

echo $NDDSHOME
env | grep NDDSHOME

l

If it is not set or is set incorrectly, type:

setenv NDDSHOME <correct directory>

http://www.gnu.org/software/make/
http://ftpmirror.gnu.org/make

10.5 Windows Platforms

To compile a Connext DDS application of any complexity, either modify the auto-generated makefile cre-
ated by running RTI Code Generator or write your own makefile. See the RTI Connext DDS Core Librar-
ies Platform Notes for information on compiler flags.

10.5 Windows Platforms

Before building an application for a Microsoft Windows® platform, make sure that:

l Supported versions of Windows and Visual Studio are installed. See the Windows section of the
RTI Connext DDS Core Libraries Platform Notes.

l Connext DDS 6.x.y is installed (where 6.x.y stands for the version numbers of the current release).
For installation instructions, refer to the RTI Connext DDS Installation Guide.

l The NDDSHOME environment variable is set to the root directory of the Connext DDS installation
(such as C:\Program Files\rti_connext_dds-6.x.y). To confirm, type this at a command prompt:

echo %NDDSHOME%

l You use the dynamicMFC Library (not static).

To avoid communication problems in your Connext DDS application, use the dynamic MFC library,
not the static version. (If you use the static version, your Connext DDS application may stop receiv-
ing DDS samples once the Windows sockets are initialized.)

To compile a Connext DDS application of any complexity, use a project file in Microsoft Visual Studio.
The project settings are described below. The Windows section of the RTI Connext DDS Core Libraries
Platform Notes contains more information.

10.5.1 Using Visual Studio

1. Select the multi-threaded project setting:
a. From the Projectmenu, select Properties.

b. Select the C/C++ folder.

c. Select Code Generation.

d. Set the Runtime Library field to one of the options from Table 10.4 Runtime Library Set-
tings for Visual Studio.

2. Link against the Connext DDS libraries:
a. Select the Linker folder on the Project, Properties dialog box.

b. Select the Input properties.

c. See the Windows section of the RTI Connext DDS Core Libraries Platform Notes for a list
of required libraries. You have a choice of whether to link with Connext DDS’s static or

690

10.6 Java Platforms

691

dynamic libraries. Decide whether or not you want debugging symbols on. In either case, be
sure to use a space as a delimiter between libraries, not a comma. Add the libraries to the
beginning of the Additional Dependencies field.

d. Select the General properties.

e. Add the following to the Additional library path field (replace <architecture> to match your
installed system):

$(NDDSHOME)\lib\<architecture>

3. Specify the path to Connext DDS’s header file:
a. Select the C/C++ folder.

b. Select the General properties.

c. In the Additional include directories: field, add paths to the “include” and “include\ndds” dir-
ectories.
For example: (your paths may differ, depending on where you installed Connext DDS).

c:\Program Files\rti_connext_dds-6.x.y\include\
c:\Program Files\rti_connext_dds-6.x.y\include\ndds

If you are using this Library Format... Set the Runtime Library field to...

Release version of static libraries Multi-threaded DLL (/MD)

Debug version of static libraries Multi-threaded Debug DLL (/MDd)

Release version of dynamic libraries Multi-threaded DLL (/MD)

Debug version of dynamic libraries Multi-threaded Debug DLL (/MDd)

Table 10.4 Runtime Library Settings for Visual Studio

10.6 Java Platforms

Before building an application for a Windows or Linux Java platform, make sure that:

l Connext DDS 6.x.y is installed (where 6.x.y stands for the version numbers of the current release).

l A supported version of a JDK is installed. See the appropriate section of the RTI Connext DDS
Core Libraries Platform Notes.

10.6.1 Java Libraries

Connext DDS requires that certain Java archive (JAR) files be on your classpath when running Connext
DDS applications. See the RTI Connext DDS Core Libraries Platform Notes for more details.

10.6.2 Native Libraries

10.6.2 Native Libraries

Connext DDS for Java is implemented using Java Native Interface (JNI), so it is necessary to provide your
Connext DDS distributed applications access to certain native shared libraries. See the RTI Connext DDS
Core Libraries Platform Notes for more details.

10.7 Building Applications Using CMake

Connext DDS allows you to integrate the RTI Connext DDS libraries with build systems implemented
using CMake®. A “Find Package” CMake script is provided as part of the Connext DDS installation. That
script helps the build system find all the RTI Connext DDS libraries and include directories needed by your
application. So, instead of setting the variables manually in your CMake scripts, you can call the Connext
DDS “Find Package CMake” script to set all the variables needed by your application.

You can find the script (FindRTIConnextDDS.cmake) in <NDDSHOME>/resource/cmake. To know
more about the input and output variables, see the documentation included in the script.

See the RTI Connext DDS Core Libraries Platform Notes for the platforms that support this script.

692

Part 3: Advanced Concepts

693

Part 3: Advanced Concepts
This part of the manual will guide you through some of the more advanced concepts:

l Reliable Communications (Chapter 11 on page 694)

l Collaborative DataWriters (Chapter 12 on page 733)

l Mechanisms for Achieving Information Durability and Persistence (Chapter 13 on page 738)

l Guaranteed Delivery of Data (Chapter 14 on page 758)

l Discovery (Chapter 15 on page 770)

l Transport Plugins (Chapter 16 on page 802)

l RTPS Locators and IP Mobility (Chapter 17 on page 833)

l Built-In Topics (Chapter 18 on page 837)

l Configuring QoS with XML (Chapter 19 on page 854)

l Multi-channel DataWriters (Chapter 20 on page 902)

l Connext DDS Threading Model (Chapter 21 on page 914)

l DDS Sample and Instance Memory Management (Chapter 22 on page 932)

l Sending Large Data (Chapter 23 on page 949)

l Topic Queries (Chapter 24 on page 983)

l Troubleshooting (Chapter 25 on page 987)

Chapter 11 Reliable Communications
Connext DDS uses best-effort delivery by default. The other type of delivery that Connext DDS
supports is called reliable. This chapter provides instructions on how to set up and use reliable com-
munication.

This chapter includes the following sections:

l 11.1 Sending Data Reliably below

l 11.2 Overview of the Reliable Protocol on page 696

l 11.3 Using QosPolicies to Tune the Reliable Protocol on page 700

11.1 Sending Data Reliably

The DCPS reliability model recognizes that the optimal balance between time-determinism and
data-delivery reliability varies widely among applications and can vary among different pub-
lications within the same application. For example, individual DDS samples of signal data can
often be dropped because their value disappears when the next DDS sample is sent. However,
each DDS sample of command data must be received and it must be received in the order sent.

The QosPolicies provide a way to customize the determinism/reliability trade-off on a per Topic
basis, or even on a per DataWriter/DataReader basis.

There are two delivery models:

l Best-effort delivery mode“I’m not concerned about missed or unordered DDS samples.”

l Reliable delivery model“Make sure all DDS samples get there, in order.”

11.1.1 Best-effort Delivery Model

By default, Connext DDS uses the best-effort delivery model: there is no effort spent ensuring in-
order delivery or resending lost DDS samples. Best-effort DataReaders ignore lost DDS samples

694

11.1.2 Reliable Delivery Model

695

in favor of the latest DDS sample. Your application is only notified if it does not receive a new DDS
sample within a certain time period (set in the 7.5.7 DEADLINE QosPolicy on page 407).

The best-effort delivery model is best for time-critical information that is sent continuously. For instance,
consider a DataWriter for the value of a sensor device (such as a the pressure inside a tank), and assume
the DataWriter sends DDS samples continuously. In this situation, a DataReader for this Topic is only
interested in having the latest pressure reading available—older DDS samples are obsolete.

11.1.2 Reliable Delivery Model

Reliable delivery means the DDS samples are guaranteed to arrive, in the order published.

The DataWriter maintains a send queue with space to hold the last X number of DDS samples sent. Sim-
ilarly, a DataReader maintains a receive queue with space for consecutive X expected DDS samples.

The send and receive queues are used to temporarily cache DDS samples until Connext DDS is sure the
DDS samples have been delivered and are not needed anymore. Connext DDS removes DDS samples
from a publication’s send queue after the DDS sample has been acknowledged by all reliable sub-
scriptions. When positive acknowledgements are disabled (see 7.5.5 DATA_WRITER_PROTOCOL
QosPolicy (DDS Extension) on page 390 and 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS
Extension) on page 575), DDS samples are removed from the send queue after the corresponding keep-
duration has elapsed (see Table 7.45 DDS_RtpsReliableWriterProtocol_t).

If an out-of-order DDS sample arrives, Connext DDS speculatively caches it in the DataReader’s receive
queue (provided there is space in the queue). Only consecutive DDS samples are passed on to the
DataReader.

DataWriters can be set up to wait for available queue space when sending DDS samples. This will cause
the sending thread to block until there is space in the send queue. (Or, you can decide to sacrifice sending
DDS samples reliably so that the sending rate is not compromised.) If the DataWriter is set up to ignore
the full queue and sends anyway, then older cached DDS samples will be pushed out of the queue before
all DataReaders have received them. In this case, the DataReader (or its Subscriber) is notified of the miss-
ing DDS samples through its Listener and/or Conditions.

Connext DDS automatically sends acknowledgments (ACKNACKs) as necessary to maintain reliable
communications. The DataWriter may choose to block for a specified duration to wait for these acknow-
ledgments (see 7.3.11 Waiting for Acknowledgments in a DataWriter on page 318).

Connext DDS establishes a virtual reliable channel between the matching DataWriter and all
DataReaders. This mechanism isolates DataReaders from each other, allows the application to control
memory usage, and provides mechanisms for the DataWriter to balance reliability and determinism.
Moreover, the use of send and receive queues allows Connext DDS to be implemented efficiently without
introducing unnecessary delays in the stream.

Note that a successful return code (DDS_RETCODE_OK) from write() does not necessarily mean that all
DataReaders have received the data. It only means that the DDS sample has been added to the

11.2 Overview of the Reliable Protocol

DataWriter’s queue. To see if all DataReaders have received the data, look at the 7.3.6.8 RELIABLE_
WRITER_CACHE_CHANGED Status (DDS Extension) on page 306 to see if any DDS samples are
unacknowledged.

Suppose DataWriter A reliably publishes a Topic to which DataReaders B and C reliably subscribe. B
has space in its queue, but C does not. Will DataWriter A be notified? Will DataReader C receive any
error messages or callbacks? The exact behavior depends on the QoS settings:

l If HISTORY_KEEP_ALL is specified for C, C will reject DDS samples that cannot be put into the
queue and request A to resend missing DDS samples. The Listener is notified with the on_sample_
rejected() callback (see 8.3.7.8 SAMPLE_REJECTED Status on page 536). If A has a queue large
enough, or A is no longer writing new DDS samples, A won’t notice unless it checks the 7.3.6.8
RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) on page 306.

l If HISTORY_KEEP_LAST is specified for C, C will drop old DDS samples and accept new ones.
To A, it is as if all DDS samples have been received by C (that is, they have all been acknow-
ledged).

11.2 Overview of the Reliable Protocol

An important advantage of Connext DDS is that it can offer the reliability and other QoS guarantees man-
dated by DDS on top of a very wide variety of transports, including packet-based transports, unreliable net-
works, multicast-capable transports, bursty or high-latency transports, etc. Connext DDS is also capable of
maintaining liveliness and application-level QoS even in the presence of sporadic connectivity loss at the
transport level, an important benefit in mobile networks. Connext DDS accomplishes this by implementing
a reliable protocol that sequences and acknowledges application-level messages and monitors the liveliness
of the link. This is called the Real-Time Publish-Subscribe (RTPS) protocol; it is an open, international
standard.1

In order to work in this wide range of environments, the reliable protocol defined by RTPS is highly con-
figurable with a set of parameters that let the application fine-tune its behavior to trade-off latency, respons-
iveness, liveliness, throughput, and resource utilization. This section describes the most important features
to the extent needed to understand how the configuration parameters affect its operation.

The most important features of the RTPS protocol are:

l Support for both push and pull operating modes

l Support for both positive and negative acknowledgments

l Support for high data-rate DataWriters

1For a link to the RTPS specification, see the RTI website, www.rti.com.

696

http://www.rti.com/

11.2 Overview of the Reliable Protocol

697

l Support for multicast DataReaders

l Support for high-latency environments

In order to support these features, RTPS uses several types of messages: Data messages (DATA), acknow-
ledgments (ACKNACKs), and heartbeats (HBs).

l DATA messages contain snapshots of the value of data-objects and associate the snapshot with a
sequence number that Connext DDS uses to identify them within the DataWriter’s history. These
snapshots are stored in the history as a direct result of the application calling write() on the
DataWriter. Incremental sequence numbers are automatically assigned by the DataWriter each time
write() is called. In Figure 11.1: Basic RTPS Reliable Protocol on the next page through 11.3 Using
QosPolicies to Tune the Reliable Protocol on page 700, these messages are represented using the
notation DATA(<value>, <sequenceNum>). For example, DATA(A,1) represents a message that
communicates the value ‘A’ and associates the sequence number ‘1’ with this message. A DATA is
used for both keyed and non-keyed data types.

l HB messages announce to the DataReader that it should have received all snapshots up to the one
tagged with a range of sequence numbers and can also request the DataReader to send an acknow-
ledgement back. For example, HB(1-3) indicates to the DataReader that it should have received
snapshots tagged with sequence numbers 1, 2, and 3 and asks the DataReader to confirm this.

l ACKNACKmessages communicate to the DataWriter that particular snapshots have been suc-
cessfully stored in the DataReader’s history. ACKNACKs also tell the DataWriter which snapshots
are missing on the DataReader side. The ACKNACK message includes a set of sequence numbers
represented as a bit map. The sequence numbers indicate which ones the DataReader is missing.
(The bit map contains the base sequence number that has not been received, followed by the number
of bits in bit map and the optional bit map. The maximum size of the bit map is 256.) All numbers
up to (not including) those in the set are considered positively acknowledged. They are represented
in Figure 11.1: Basic RTPS Reliable Protocol on the next page through Figure 11.7: Use of heart-
beat_period on page 712 as ACKNACK(<first-missing>) or ACKNACK(<first-missing>-<last-
missing>). For example, ACKNACK(4) indicates that the snapshots with sequence numbers 1, 2,
and 3 have been successfully stored in the DataReader history, and that 4 has not been received.

It is important to note that Connext DDS can bundle multiple of the above messages within a single net-
work packet. This ‘submessage bundling’ provides for higher performance communications.

It is also worth noting that because HB and ACKNACK messages communicate the state of reliable com-
munication between individual writer and reader pairs, Connext DDS requires at least one unicast des-
tination so that these messages can be sent to the correct destinations, as opposed to being broadcast over a
multicast destination. Connext DDS does support enabling sending periodic heartbeats to a multicast des-
tination using the enable_multicast_periodic_heartbeat in the 9.5.9 WIRE_PROTOCOL QosPolicy
(DDS Extension) on page 676.

11.2 Overview of the Reliable Protocol

Figure 11.1: Basic RTPS Reliable Protocol

Figure 11.1: Basic RTPS Reliable Protocol above illustrates the basic behavior of the protocol when an
application calls the write() operation on a DataWriter that is associated with a DataReader. As men-
tioned, the RTPS protocol can bundle multiple submessages into a single network packet. In Figure 11.1:
Basic RTPS Reliable Protocol above this feature is used to piggyback a HB message to the DATA mes-
sage. Note that before the message is sent, the data is given a sequence number (1 in this case) which is
stored in the DataWriter’s send queue. As soon as the message is received by the DataReader, it places it
into the DataReader’s receive queue. From the sequence number the DataReader can tell that it has not
missed any messages and therefore it can make the data available immediately to the user (and call the
DataReaderListener). This is indicated by the “ü” symbol. The reception of the HB(1) causes the
DataReader to check that it has indeed received all updates up to and including the one with
sequenceNumber=1. Since this is true, it replies with an ACKNACK(2) to positively acknowledge all mes-
sages up to (but not including) sequence number 2. The DataWriter notes that the update has been acknow-
ledged, so it no longer needs to be retained in its send queue. This is indicated by the “ü” symbol.

698

11.2 Overview of the Reliable Protocol

699

Figure 11.2: RTPS Reliable Protocol in the Presence of Message Loss

Figure 11.2: RTPS Reliable Protocol in the Presence of Message Loss above illustrates the behavior of the
protocol in the presence of lost messages. Assume that the message containing DATA(A,1) is dropped by
the network. When the DataReader receives the next message (DATA(B,2); HB(1-2)) the DataReader
will notice that the data associated with sequence number 1 was never received. It realizes this because the
heartbeat HB(1-2) tells the DataReader that it should have received all messages up to and including the
one with sequence number 2. This realization has two consequences:

l The data associated with sequence number 2 (B) is tagged with ‘X’ to indicate that it is not deliv-
erable to the application (that is, it should not be made available to the application, because the

11.3 Using QosPolicies to Tune the Reliable Protocol

application needs to receive the data associated with DDS sample 1 (A) first).

l An ACKNACK(1) is sent to the DataWriter to request that the data tagged with sequence number 1
be resent.

Reception of the ACKNACK(1) causes the DataWriter to resend DATA(A,1). Once the DataReader
receives it, it can ‘commit’ both A and B such that the application can now access both (indicated by the
“ü”) and call the DataReaderListener. From there on, the protocol proceeds as before for the next data
message (C) and so forth.

A subtle but important feature of the RTPS protocol is that ACKNACK messages are only sent as a direct
response to HB messages. This allows the DataWriter to better control the overhead of these ‘admin-
istrative’ messages. For example, if the DataWriter knows that it is about to send a chain of DATA mes-
sages, it can bundle them all and include a single HB at the end, which minimizes ACKNACK traffic.

11.3 Using QosPolicies to Tune the Reliable Protocol

Reliability is controlled by the QosPolicies in Table 11.1 QosPolicies for Reliable Communications. To
enable reliable delivery, read the following sections to learn how to change the QoS for the DataWriter
and DataReader:

l 11.3.1 Enabling Reliability on page 702

l 11.3.2 Tuning Queue Sizes and Other Resource Limits on page 702

l 11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy on page 710

l 11.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy on page 718

l 11.3.6 Resending DDS Samples to Late-Joiners with the Durability QosPolicy on page 718

Then see 11.3.7 Use Cases on page 719 to explore example use cases:

QosPolicy Description
Related
Entities

1
Reference

Reliability
To establish reliable communication, this QoS must be set to DDS_
RELIABLE_RELIABILITY_QOS for the DataWriter and itsDataRead-
ers.

DW, DR

11.3.1 Enabling Reliability
on page 702, 7.5.21
RELIABILITYQosPolicy on
page 448

Table 11.1 QosPolicies for Reliable Communications

1DW = DataWriter, DR = DataReader

700

11.3 Using QosPolicies to Tune the Reliable Protocol

701

QosPolicy Description
Related
Entities

1
Reference

ResourceLimits

This QoS determines the amount of resources each side can use to man-
age instances and DDS samples of instances. Therefore it controls the
size of the DataWriter’s send queue and the DataReader’s receive
queue. The send queue stores DDS samples until they have been
ACKed by allDataReaders. The DataReader’s receive queue stores
DDS samples for the user’s application to access.

DW, DR

11.3.2 TuningQueue Sizes
andOther Resource Limits
on the next page, 7.5.22
RESOURCE_LIMITS
QosPolicy on page 452

History
This QoS affects how a DataWriter/DataReader behaves when its
send/receive queue fills up.

DW, DR

11.3.3 Controlling Queue
Depth with the History
QosPolicy on page 709,
7.5.12 HISTORYQosPolicy
on page 421

DataWriterProtocol
This QoS configuresDataWriter-specific protocol. The QoS can disable
positive ACKs for itsDataReaders.

DW

11.3.4 Controlling Heart-
beats and Retrieswith
DataWriterProtocol
QosPolicy on page 710,
7.5.5 DATA_WRITER_
PROTOCOLQosPolicy
(DDSExtension) on
page 390

DataReaderProtocol

When a reliable DataReader receives a heartbeat froma DataWriter
and needs to return an ACKNACK, the DataReader can choose to delay
a while. This QoS sets the minimumand maximumdelay. It can also dis-
able positive ACKs for the DataReader.

DR

11.3.5 AvoidingMessage
Stormswith DataRead-
erProtocolQosPolicy on
page 718, 8.6.1 DATA_
READER_PROTOCOL
QosPolicy (DDSExtension)
on page 575

DataReaderResourceLimits

This QoS determines additional amounts of resources that the
DataReader can use to manage DDS samples (namely, the size of the
DataReader’s internal queues, which cache DDS samples until they are
ordered for reliability and can be moved to the DataReader’s receive
queue for access by the user’s application).

DR

11.3.2 TuningQueue Sizes
andOther Resource Limits
on the next page,8.6.2
DATA_READER_
RESOURCE_LIMITS
QosPolicy (DDSExtension)
on page 581

Durability
This QoS affects whether late-joining DataReaderswill receive all pre-
viously-sent data or not.

DW, DR

11.3.6 Resending DDS
Samples to Late-Joinerswith
the DurabilityQosPolicy on
page 718, 7.5.9
DURABILITYQosPolicy on
page 412

Table 11.1 QosPolicies for Reliable Communications

1DW = DataWriter, DR = DataReader

11.3.1 Enabling Reliability

11.3.1 Enabling Reliability

You must modify the 7.5.21 RELIABILITY QosPolicy on page 448 of the DataWriter and each of its
reliable DataReaders. Set the kind field to DDS_RELIABLE_RELIABILITY_QOS:

l DataWriter

writer_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

l DataReader

reader_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

11.3.1.1 Blocking until the Send Queue Has Space Available

Themax_blocking_time property in the 7.5.21 RELIABILITY QosPolicy on page 448 indicates how
long a DataWriter can be blocked during a write().

Ifmax_blocking_time is non-zero and the reliability send queue is full, the write is blocked (the DDS
sample is not sent). Ifmax_blocking_time has passed and the DDS sample is still not sent, write() returns
DDS_RETCODE_TIMEOUT and the DDS sample is not sent.

If the number of unacknowledged DDS samples in the reliability send queue drops below max_samples
(set in the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452) beforemax_blocking_time, the DDS
sample is sent and write() returns DDS_RETCODE_OK.

Ifmax_blocking_time is zero and the reliability send queue is full, write() returns DDS_RETCODE_
TIMEOUT and the DDS sample is not sent.

11.3.2 Tuning Queue Sizes and Other Resource Limits

Set the 7.5.12 HISTORY QosPolicy on page 421 appropriately to accommodate however many DDS
samples should be saved in the DataWriter’s send queue or in the DataReader’s receive queue.

Set the size of the send window in the DDS_RtpsReliableWriterProtocol_t policy (in the 7.5.5 DATA_
WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390) appropriately to accommodate the
maximum number of unacknowledged DDS samples that can be queued at a time from a DataWriter.

For more information, see the following sections:

l 11.3.2.1 Understanding the Send Queue and Setting its Size on the next page

l 11.3.2.2 Understanding the Receive Queue and Setting Its Size on page 706

l 7.5.5.4 Configuring the Send Window Size on page 398

Note:The HistoryQosPolicy’s depth must be less than or equal to the ResourceLimitsQosPolicy’smax_
samples_per_instance;max_samples_per_instance must be less than or equal to the

702

11.3.2 Tuning Queue Sizes and Other Resource Limits

703

ResourceLimitsQosPolicy’smax_samples (see 7.5.22 RESOURCE_LIMITS QosPolicy on page 452),
and max_samples_per_remote_writer (see 8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy
(DDS Extension) on page 581) must be less than or equal to max_samples.

l depth <=max_samples_per_instance <=max_samples

l max_samples_per_remote_writer <=max_samples

Examples:

DataWriter

writer_qos.resource_limits.initial_instances = 10;
writer_qos.resource_limits.initial_samples = 200;
writer_qos.resource_limits.max_instances = 100;
writer_qos.resource_limits.max_samples = 2000;
writer_qos.resource_limits.max_samples_per_instance = 20;
writer_qos.history.depth = 20;

DataReader

reader_qos.resource_limits.initial_instances = 10;
reader_qos.resource_limits.initial_samples = 200;
reader_qos.resource_limits.max_instances = 100;
reader_qos.resource_limits.max_samples = 2000;
reader_qos.resource_limits.max_samples_per_instance = 20;
reader_qos.history.depth = 20;
reader_qos.reader_resource_limits.max_samples_per_remote_writer = 20;

11.3.2.1 Understanding the Send Queue and Setting its Size

A DataWriter’s send queue is used to store each DDS sample it writes. A DDS sample will be removed
from the send queue after it has been acknowledged (through an ACKNACK) by all the reliable
DataReaders. A DataReader can request that the DataWriter resend a missing DDS sample (through an
ACKNACK). If that DDS sample is still available in the send queue, it will be resent. To elicit timely
ACKNACKs, the DataWriter will regularly send heartbeats to its reliable DataReaders.

A DataWriter’s send queue size is determined by its 7.5.22 RESOURCE_LIMITS QosPolicy on
page 452, specifically themax_samples field. The appropriate value depends on application parameters
such as how fast the publication calls write().

A DataWriter has a "send window" that is the maximum number of unacknowledged DDS samples
allowed in the send queue before a DataWriter will start blocking during the write() call (see 7.3.8.1
Blocking During a write() on page 313). The send window enables throttling of the publishing application
to avoid overwhelming matched DataReaders. If the DataReaders are not acknowledging samples fast
enough and the DataWriter’s send window fills up, the DataWriter will be slowed down because each
write() call will block until the unacknowledged sample count in the send window decreases.

11.3.2 Tuning Queue Sizes and Other Resource Limits

The size of the send window is determined by the DataWriterProtocolQosPolicy, specifically the fields
min_send_window_size and max_send_window_size within the rtps_reliable_writer field of type
DDS_RtpsReliableWriterProtocol_t. Other fields can be used to configure a variable-sized send window,
where the send window size changes in response to network congestion to maximize the effective send
rate. Like formax_samples, the appropriate values depend on application parameters. For more inform-
ation on configuring the send window size, refer to 7.5.5.4 Configuring the Send Window Size on
page 398.

Strict reliability: If a DataWriter does not receive ACKNACKs from one or more reliable DataReaders,
it is possible for the reliability send queue—either its finitemax_send_window_size or its effectivemax_
send_window_size ifmax_send_window_size is infinite—to fill up. Effectivemax_send_window_size
is defined as eithermax_samples (if batching is not used) ormax_batches (if batching is used). If you
want to achieve strict reliability, the kind field in the 7.5.12 HISTORY QosPolicy on page 421 for both
the DataReader and DataWriter must be set to KEEP_ALL, positive acknowledgments must be enabled
for both the DataReader and DataWriter, and your publishing application should wait until space is avail-
able in the reliability queue before writing any more DDS samples. Connext DDS provides two mech-
anisms to do this:

l Allow the write() operation to block until there is space in the reliability queue again to store the
DDS sample. The maximum time this call blocks is determined by themax_blocking_time field in
the 7.5.21 RELIABILITY QosPolicy on page 448 (also discussed in 11.3.1.1 Blocking until the
Send Queue Has Space Available on page 702).

l Use the DataWriter’s Listener to be notified when the reliability queue fills up or empties again.

When the 7.5.12 HISTORY QosPolicy on page 421 on the DataWriter is set to KEEP_LAST, strict reli-
ability is not guaranteed. When there are depth number of DDS samples in the queue (set in the 7.5.12
HISTORY QosPolicy on page 421, see 11.3.3 Controlling Queue Depth with the History QosPolicy on
page 709) the oldest DDS sample will be dropped from the queue when a new DDS sample is written.
Note that in such a reliable mode, when the send window is larger than max_samples (or max_batches if
batching is enabled), the DataWriter will never block, but strict reliability is no longer guaranteed. If there
is a request for the purged DDS sample from any DataReaders, the DataWriter will send a heartbeat that
no longer contains the sequence number of the dropped DDS sample (it will not be able to send the DDS
sample).

Alternatively, a DataWriter with KEEP_LAST may block on write() when its send window is smaller
than its send queue. The DataWriter will block when its send window is full. After the blocking time has
elapsed, the DataWriter may replace a DDS sample, regardless of its acknowledgement status. See 7.3.8.2
write() behavior with KEEP_LAST and KEEP_ALL on page 313 for a detailed explanation of what hap-
pens when certain limits are reached during a call to write().

The send queue size is set in themax_samples field of the 7.5.22 RESOURCE_LIMITS QosPolicy on
page 452. The appropriate size for the send queue depends on application parameters (such as the send

704

11.3.2 Tuning Queue Sizes and Other Resource Limits

705

rate), channel parameters (such as end-to-end delay and probability of packet loss), and quality of service
requirements (such as maximum acceptable probability of DDS sample loss).

The DataReader’s receive queue size should generally be larger than the DataWriter’s send queue size.
Receive queue size is discussed in 11.3.2.2 Understanding the Receive Queue and Setting Its Size on the
next page.

A good rule of thumb, based on a simple model that assumes individual packet drops are not correlated
and time-independent, is that the size of the reliability send queue, N, is as shown in Figure 11.3: Cal-
culating Minimum Send Queue Size for a Desired Level of Reliability below.
Figure 11.3: Calculating Minimum Send Queue Size for a Desired Level of Reliability

N = 2RT(log(1-Q))/log(p))

Simple formula for determining the minimum size of the send queue required for strict reliability

In the above equation, R is the rate of sending DDS samples, T is the round-trip transmission time, p is the
probability of a packet loss in a round trip, and Q is the required probability that a DDS sample is even-
tually successfully delivered. Of course, network-transport dropouts must also be taken into account and
may influence or dominate this calculation.

Table 11.2 Required Size of the Send Queue for Different Network Parameters gives the required size of
the send queue for several common scenarios.

Q1 p2 T3 R4 N5

99% 1% 0.0016 sec 100 Hz 1

99% 1% 0.001 sec 2000 Hz 2

99% 5% 0.001 sec 100 Hz 1

99% 5% 0.001 sec 2000 Hz 4

Table 11.2 Required Size of the Send Queue for Different Network Parameters

1"Q" is the desired level of reliability measured as the probability that any data update will eventually be delivered
successfully. In other words, percentage of DDS samples that will be successfully delivered.

2"p" is the probability that any single packet gets lost in the network.

3"T" is the round-trip transport delay in the network

4"R" is the rate at which the publisher is sending updates.

5"N" is the minimum required size of the send queue to accomplish the desired level of reliability "Q".

6The typical round-trip delay for a dedicated 100 Mbit/second ethernet is about 0.001 seconds.

11.3.2 Tuning Queue Sizes and Other Resource Limits

Q1 p2 T3 R4 N5

99.99% 1% 0.001 sec 100 Hz 1

99.99% 1% 0.001 sec 2000 Hz 6

99.99% 5% 0.001 sec 100 Hz 1

99.99% 5% 0.001 sec 2000 Hz 8

Table 11.2 Required Size of the Send Queue for Different Network Parameters

Note: Packet loss on a network frequently happens in bursts, and the packet loss events are correlated.
This means that the probability of a packet being lost is much higher if the previous packet was lost
because it indicates a congested network or busy receiver. For this situation, it may be better to use a queue
size that can accommodate the longest period of network congestion, as illustrated in Figure 11.4: Cal-
culating Minimum Send Queue Size for Networks with Dropouts below.
Figure 11.4: Calculating Minimum Send Queue Size for Networks with Dropouts

N = RD (Q)

Send queue size as a function of send rate "R" and maximum dropout time D

In the above equation R is the rate of sending DDS samples, D(Q) is a time such that Q percent of the dro-
pouts are of equal or lesser length, and Q is the required probability that a DDS sample is eventually suc-
cessfully delivered. The problem with the above formula is that it is hard to determine the value of D(Q)
for different values of Q.

For example, if we want to ensure that 99.9% of the DDS samples are eventually delivered successfully,
and we know that the 99.9% of the network dropouts are shorter than 0.1 seconds, then we would use N =
0.1*R. So for a rate of 100Hz, we would use a send queue of N = 10; for a rate of 2000Hz, we would use
N = 200.

11.3.2.2 Understanding the Receive Queue and Setting Its Size

DDS samples are stored in the DataReader’s receive queue, which is accessible to the user’s application.

1"Q" is the desired level of reliability measured as the probability that any data update will eventually be delivered
successfully. In other words, percentage of DDS samples that will be successfully delivered.

2"p" is the probability that any single packet gets lost in the network.

3"T" is the round-trip transport delay in the network

4"R" is the rate at which the publisher is sending updates.

5"N" is the minimum required size of the send queue to accomplish the desired level of reliability "Q".

706

11.3.2 Tuning Queue Sizes and Other Resource Limits

707

A DDS sample is removed from the receive queue after it has been accessed by take(), as described in
8.4.3 Accessing DDS Data Samples with Read or Take on page 560. Note that read() does not remove
DDS samples from the queue.

A DataReader's receive queue size is limited by its 7.5.22 RESOURCE_LIMITS QosPolicy on
page 452, specifically the max_samples field. The storage of out-of-order DDS samples for each
DataWriter is also allocated from the DataReader’s receive queue; this DDS sample resource is shared
among all reliable DataWriters. That is, max_samples includes both ordered and out-of-order DDS
samples.

A DataReader can maintain reliable communications with multiple DataWriters (e.g., in the case of the
7.5.18 OWNERSHIP_STRENGTH QosPolicy on page 439 setting of SHARED). The maximum num-
ber of out-of-order DDS samples from any one DataWriter that can occupy in the receive queue is set in
the max_samples_per_remote_writer field of the 8.6.2 DATA_READER_RESOURCE_LIMITS
QosPolicy (DDS Extension) on page 581; this value can be used to prevent a single DataWriter from
using all the space in the receive queue. max_samples_per_remote_writer must be set to be <=max_
samples.

The DataReader will cache DDS samples that arrive out of order while waiting for missing DDS samples
to be resent. (Up to 256 DDS samples can be resent; this limitation is imposed by the wire protocol.) If
there is no room, the DataReader has to reject out-of-order DDS samples and request them again later
after the missing DDS samples have arrived.

The appropriate size of the receive queue depends on application parameters, such as the DataWriter’s
sending rate and the probability of a dropped DDS sample. However, the receive queue size should gen-
erally be larger than the send queue size. Send queue size is discussed in 11.3.2.1 Understanding the Send
Queue and Setting its Size on page 703.

Figure 11.5: Effect of Receive-Queue Size on Performance: Large Queue Size on the next page and Fig-
ure 11.6: Effect of Receive Queue Size on Performance: Small Queue Size on page 709 compare two
hypothetical DataReaders, both interacting with the same DataWriter. The queue on the left represents an
ordering cache, allocated from receive queue—DDS samples are held here if they arrive out of order. The
DataReader in Figure 11.5: Effect of Receive-Queue Size on Performance: Large Queue Size on the next
page has a sufficiently large receive queue (max_samples) for the given send rate of the DataWriter and
other operational parameters. In both cases, we assume that all DDS samples are taken from the
DataReader in the Listener callback. (See 8.4.3 Accessing DDS Data Samples with Read or Take on
page 560 for information on take() and related operations.)

In Figure 11.6: Effect of Receive Queue Size on Performance: Small Queue Size on page 709, max_
samples is too small to cache out-of-order DDS samples for the same operational parameters. In both
cases, the DataReaders eventually receive all the DDS samples in order. However, the DataReader with
the largermax_samples will get the DDS samples earlier and with fewer transactions. In particular, DDS
sample “4” is never resent for the DataReader with the larger queue size.

11.3.2 Tuning Queue Sizes and Other Resource Limits

Figure 11.5: Effect of Receive-Queue Size on Performance: Large Queue Size

708

11.3.3 Controlling Queue Depth with the History QosPolicy

709

Figure 11.6: Effect of Receive Queue Size on Performance: Small Queue Size

11.3.3 Controlling Queue Depth with the History QosPolicy

If you want to achieve strict reliability, set the kind field in the 7.5.12 HISTORY QosPolicy on page 421
for both the DataReader and DataWriter to KEEP_ALL; in this case, the depth does not matter.

Or, for non-strict reliability, you can leave the kind set to KEEP_LAST (the default). This will provide
non-strict reliability; some DDS samples may not be delivered if the resource limit is reached.

The depth field in the 7.5.12 HISTORY QosPolicy on page 421 controls how many DDS samples Con-
next DDS will attempt to keep on the DataWriter’s send queue or the DataReader’s receive queue. For
reliable communications, depth should be >= 1. The depth can be set to 1, but cannot be more than the
max_samples_per_instance in 7.5.22 RESOURCE_LIMITS QosPolicy on page 452.

11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

Example:

l DataWriter

writer_qos.history.depth = <number of DDS samples to keep in send queue>;

l DataReader

reader_qos.history.depth = <number of DDS samples to keep in receive queue>;

11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

In the Connext DDS reliability model, the DataWriter sends DDS data samples and heartbeats to reliable
DataReaders. A DataReader responds to a heartbeat by sending an ACKNACK, which tells the
DataWriter what the DataReader has received so far.

In addition, the DataReader can request missing DDS samples (by sending an ACKNACK) and the
DataWriter will respond by resending the missing DDS samples. This section describes some advanced
timing parameters that control the behavior of this mechanism. Many applications do not need to change
these settings. These parameters are contained in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy
(DDS Extension) on page 390.

The protocol described in 11.2 Overview of the Reliable Protocol on page 696 uses very simple rules such
as piggybacking HB messages to each DATA message and responding immediately to ACKNACKs with
the requested repair messages. While correct, this protocol would not be capable of accommodating
optimum performance in more advanced use cases.

This section describes some of the parameters configurable by means of the rtps_reliable_writer structure
in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390 and how they
affect the behavior of the RTPS protocol.

11.3.4.1 How Often Heartbeats are Resent (heartbeat_period)

If a DataReader does not acknowledge a DDS sample that has been sent, the DataWriter resends the heart-
beat. These heartbeats are resent at the rate set in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy
(DDS Extension) on page 390, specifically its heartbeat_period field.

For example, a heartbeat_period of 3 seconds means that if a DataReader does not receive the latest
DDS sample (for example, it gets dropped by the network), it might take up to 3 seconds before the
DataReader realizes it is missing data. The application can lower this value when it is important that recov-
ery from packet loss is very fast.

The basic approach of sending HB messages as a piggyback to DATA messages has the advantage of min-
imizing network traffic. However, there is a situation where this approach, by itself, may result in large
latencies. Suppose there is a DataWriter that writes bursts of data, separated by relatively long periods of
silence. Furthermore assume that the last message in one of the bursts is lost by the network. This is the

710

11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

711

case shown for message DATA(B, 2) in Figure 11.7: Use of heartbeat_period on the next page. If HBs
were only sent piggybacked to DATA messages, the DataReader would not realize it missed the ‘B’
DATA message with sequence number ‘2’ until the DataWriter wrote the next message. This may be a
long time if data is written sporadically. To avoid this situation, Connext DDS can be configured so that
HBs are sent periodically as long as there are DDS samples that have not been acknowledged even if no
data is being sent. The period at which these HBs are sent is configurable by setting the rtps_reliable_
writer.heartbeat_period field in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)
on page 390.

Note that a small value for the heartbeat_period will result in a small worst-case latency if the last mes-
sage in a burst is lost. This comes at the expense of the higher overhead introduced by more frequent HB
messages.

Also note that the heartbeat_period should not be less than the rtps_reliable_reader.heartbeat_sup-
pression_duration in the 8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on
page 575; otherwise those HBs will be lost.

11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

Figure 11.7: Use of heartbeat_period

11.3.4.2 How Often Piggyback Heartbeats are Sent (heartbeats_per_max_samples)

A DataWriter will automatically send heartbeats with new DDS samples to request regular ACKNACKs
from the DataReader. These are called “piggyback” heartbeats.

A piggyback heartbeat is sent every [(current send-window size/heartbeats_per_max_samples)] number
of DDS samples written.

The heartbeats_per_max_samples field is part of the rtps_reliable_writer structure in the 7.5.5
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390. If heartbeats_per_max_

712

11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

713

samples is set equal to max_send_window_size, this means that a heartbeat will be sent with each DDS
sample. A value of 8 means that a heartbeat will be sent with every 'current send-window size/8' DDS
samples. Say current send window is 1024, then a heartbeat will be sent once every 128 DDS samples. If
you set this to zero, DDS samples are sent without any piggyback heartbeat. Themax_send_window_
size field is part of the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390.

Figure 11.1: Basic RTPS Reliable Protocol and Figure 11.2: RTPS Reliable Protocol in the Presence of
Message Loss seem to imply that a heartbeat (HB) is sent as a piggyback to each DATA message.
However, in situations where data is sent continuously at high rates, piggybacking a HB to each message
may result in too much overhead; not so much on the HB itself, but on the ACKNACKs that would be
sent back as replies by the DataReader.

There are two reasons to send a HB:

l To request that a DataReader confirm the receipt of data via an ACKNACK, so that the DataWriter
can remove it from its send queue and therefore prevent the DataWriter’s history from filling up
(which could cause the write() operation to temporarily block1).

l To inform the DataReader of what data it should have received, so that the DataReader can send a
request for missing data via an ACKNACK.

The DataWriter’s send queue can buffer many DDS data samples while it waits for ACKNACKs, and the
DataReader’s receive queue can store out-of-order DDS samples while it waits for missing ones. So it is
possible to send HB messages much less frequently than DATA messages. The ratio of piggyback HB
messages to DATA messages is controlled by the rtps_reliable_writer.heartbeats_per_max_samples
field in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390.

A HB is used to get confirmation from DataReaders so that the DataWriter can remove acknowledged
DDS samples from the queue to make space for new DDS samples. Therefore, if the queue size is large,
or new DDS samples are added slowly, HBs can be sent less frequently.

In Figure 11.8: Use of heartbeats_per_max_samples on the next page, the DataWriter sets the heartbeats_
per_max_samples to certain value so that a piggyback HB will be sent for every three DDS samples. The
DataWriter first writes DDS sample A and B. The DataReader receives both. However, since no HB has
been received, the DataReader won’t send back an ACKNACK. The DataWriter will still keep all the
DDS samples in its queue. When the DataWriter sends DDS sample C, it will send a piggyback HB along
with the DDS sample. Once the DataReader receives the HB, it will send back an ACKNACK for DDS
samples up to sequence number 3, such that the DataWriter can remove all three DDS samples from its
queue.

1Note that data could also be removed from the DataWriter’s send queue if it is no longer relevant due to some other QoS
such a HISTORY KEEP_LAST (7.5.12 HISTORY QosPolicy on page 421) or LIFESPAN (7.5.14 LIFESPAN QoS
Policy on page 426).

11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

Figure 11.8: Use of heartbeats_per_max_samples

11.3.4.3 Controlling Packet Size for Resent DDS Samples (max_bytes_per_nack_response)

A DataWriter may resend multiple missed DDS samples in the same packet. Themax_bytes_per_nack_
response field in the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390
limits the size of this ‘repair’ packet. The reliable DataWriter will include at least one sample in the repair
packet.

For example, if the DataReader requests 20 DDS samples, each 10K, and themax_bytes_per_nack_
response is set to 100K, the DataWriter will only send the first 10 DDS samples at most. The DataReader
will have to ACKNACK again to receive the other DDS samples.

714

11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

715

Regardless of this setting, the maximum number of samples that can be part of a repair packet is limited to
32. This limit cannot be changed by configuration. In addition, the number of samples is limited by the
value of NDDS_Transport_Property_t’s gather_send_buffer_count_max (see 16.6.1 Setting the Max-
imum Gather-Send Buffer Count for UDP Transports on page 825).

11.3.4.4 Controlling How Many Times Heartbeats are Resent (max_heartbeat_retries)

If a DataReader does not respond within max_heartbeat_retries number of heartbeats, it will be dropped
by the DataWriter and the reliable DataWriter’s Listener will be called with a 7.3.6.9 RELIABLE_
READER_ACTIVITY_CHANGED Status (DDS Extension) on page 308.

If the dropped DataReader becomes available again (perhaps its network connection was down tem-
porarily), it will be added back to the DataWriter the next time the DataWriter receives some message
(ACKNACK) from the DataReader.

When a DataReader is ‘dropped’ by a DataWriter, the DataWriter will not wait for the DataReader to
send an ACKNACK before any DDS samples are removed. However, the DataWriter will still send data
and HBs to this DataReader as normal.

Themax_heartbeat_retries field is part of the 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) on page 390.

11.3.4.5 Treating Non-Progressing Readers as Inactive Readers (inactivate_
nonprogressing_readers)

In addition to max_heartbeat_retries, if inactivate_nonprogressing_readers is set, then not only are
non-responsive DataReaders considered inactive, but DataReaders sending non-progressing NACKs can
also be considered inactive. A non-progressing NACK is one which requests the same oldest DDS sample
as the previously received NACK. In this case, the DataWriter will not consider a non-progressing NACK
as coming from an active reader, and hence will inactivate the DataReader if no new NACKs are received
beforemax_heartbeat_retries number of heartbeat periods has passed.

One example for which it could be useful to turn on inactivate_nonprogressing_readers is when a
DataReader’s (keep-all) queue is full of untaken historical DDS samples. Each subsequent heartbeat
would trigger the same NACK, and nominally the DataReader would not be inactivated. A user not requir-
ing strict-reliability could consider setting inactivate_nonprogressing_readers to allow the DataWriter to
progress rather than being held up by this non-progressing DataReader.

11.3.4.6 Coping with Redundant Requests for Missing DDS Samples (max_nack_response_
delay)

When a DataWriter receives a request for missing DDS samples from a DataReader and responds by
resending the requested DDS samples, it will ignore additional requests for the same DDS samples during
the time period max_nack_response_delay.

11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

The rtps_reliable_writer.max_nack_response_delay field is part of the 7.5.5 DATA_WRITER_
PROTOCOL QosPolicy (DDS Extension) on page 390.

If your send period is smaller than the round-trip delay of a message, this can cause unnecessary DDS
sample retransmissions due to redundant ACKNACKs. In this situation, an ACKNACK triggered by an
out-of-order DDS sample is not received before the next DDS sample is sent. When a DataReader
receives the next message, it will send another ACKNACK for the missing DDS sample. As illustrated in
Figure 11.9: Resending Missing Samples due to Duplicate ACKNACKs below, duplicate ACKNACK
messages cause another resending of missing DDS sample “2” and lead to wasted CPU usage on both the
publication and the subscription sides.
Figure 11.9: Resending Missing Samples due to Duplicate ACKNACKs

While these redundant messages provide an extra cushion for the level of reliability desired, you can con-
serve the CPU and network bandwidth usage by limiting how often the same ACKNACK messages are
sent; this is controlled by min_nack_response_delay.

Reliable subscriptions are prevented from resending an ACKNACK within min_nack_response_delay
seconds from the last time an ACKNACK was sent for the same DDS sample. Our testing shows that the

716

11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

717

defaultmin_nack_response_delay of 0 seconds achieves an optimal balance for most applications on typ-
ical Ethernet LANs.

However, if your system has very slow computers and/or a slow network, you may want to consider
increasing min_nack_response_delay. Sending an ACKNACK and resending a missing DDS sample
inherently takes a long time in this system. So you should allow a longer time for recovery of the lost DDS
sample before sending another ACKNACK. In this situation, you should increasemin_nack_response_
delay.

If your system consists of a fast network or computers, and the receive queue size is very small, then you
should keep min_nack_response_delay very small (such as the default value of 0). If the queue size is
small, recovering a missing DDS sample is more important than conserving CPU and network bandwidth
(new DDS samples that are too far ahead of the missing DDS sample are thrown away). A fast system can
cope with a smallermin_nack_response_delay value, and the reliable DDS sample stream can normalize
more quickly.

11.3.4.7 Disabling Positive Acknowledgements (disable_positive_acks_min_sample_keep_
duration)

When ACKNACK storms are a primary concern in a system, an alternative to tuning heartbeat and
ACKNACK response delays is to disable positive acknowledgments (ACKs) and rely just on NACKs to
maintain reliability. Systems with non-strict reliability requirements can disable ACKs to reduce network
traffic and directly solve the problem of ACK storms. ACKs can be disabled for the DataWriter and the
DataReader; when disabled for the DataWriter, none of its DataReaders will send ACKs, whereas dis-
abling it at the DataReader allows per-DataReader configuration.

Normally when ACKs are enabled, strict reliability is maintained by the DataWriter, guaranteeing that a
DDS sample stays in its send queue until all DataReaders have positively acknowledged it (aside from rel-
evant DURABILITY, HISTORY, and LIFESPAN QoS policies). When ACKs are disabled, strict reli-
ability is no longer guaranteed, but the DataWriter should still keep the DDS sample for a sufficient
duration for ACK-disabled DataReaders to have a chance to NACK it. Thus, a configurable “keep-dur-
ation” (disable_postive_acks_min_sample_keep_duration) applies for DDS samples written for ACK-
disabled DataReaders, where DDS samples are kept in the queue for at least that keep-duration. After the
keep-duration has elapsed for a DDS sample, the DDS sample is considered to be “acknowledged” by its
ACK-disabled DataReaders.

The keep duration should be configured for the expected worst-case from when the DDS sample is written
to when a NACK for the DDS sample could be received. If set too short, the DDS sample may no longer
be queued when a NACK requests it, which is the cost of not enforcing strict reliability.

If the peak send rate is known and writer resources are available, the writer queue can be sized so that
writes will not block. For this case, the queue size must be greater than the send rate multiplied by the keep
duration.

11.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy

11.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy

DataWriters send DDS data samples and heartbeats to DataReaders. A DataReader responds to a heart-
beat by sending an acknowledgement that tells the DataWriter what the DataReader has received so far
and what it is missing. If there are many DataReaders, all sending ACKNACKs to the same DataWriter
at the same time, a message storm can result. To prevent this, you can set a delay for each DataReader, so
they don’t all send ACKNACKs at the same time. This delay is set in the 8.6.1 DATA_READER_
PROTOCOL QosPolicy (DDS Extension) on page 575.

If you have several DataReaders per DataWriter, varying this delay for each one can avoid ACKNACK
message storms to the DataWriter. If you are not concerned about message storms, you do not need to
change this QosPolicy.

Example:
reader_qos.protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
reader_qos.protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
reader_qos.protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
reader_qos.protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec =

0.5 * 1000000000UL; // 0.5 sec

As the name suggests, the minimum and maximum response delay bounds the random wait time before the
response. Setting both to zero will force immediate response, which may be necessary for the fastest recov-
ery in case of lost DDS samples.

11.3.6 Resending DDS Samples to Late-Joiners with the Durability
QosPolicy

The 7.5.9 DURABILITY QosPolicy on page 412 is also somewhat related to Reliability. Connext DDS
requires a finite time to "discover" or match DataReaders to DataWriters. If an application attempts to
send data before the DataReader and DataWriter "discover" one another, then the DDS sample will not
actually get sent. Whether or not DDS samples are resent when the DataReader and DataWriter even-
tually "discover" one another depends on how the DURABILITY and 7.5.12 HISTORY QosPolicy on
page 421 are set. The default setting for the Durability QosPolicy is VOLATILE, which means that the
DataWriter will not store DDS samples for redelivery to late-joining DataReaders.

Connext DDS also supports the TRANSIENT_LOCAL setting for the Durability, which means that the
DDS samples will be kept stored for redelivery to late-joining DataReaders, as long as the DataWriter is
around. The DDS samples are not stored beyond the lifecycle of the DataWriter.

How many samples are sent to late-joining DataReaders is determined by the writer_depth in the
DURABILITY QosPolicy.

See also: 8.3.6 Waiting for Historical Data on page 520.

718

11.3.7 Use Cases

719

11.3.7 Use Cases

This section contains advanced material that discusses practical applications of the reliability related QoS.

11.3.7.1 Importance of Relative Thread Priorities

For high throughput, the Connext DDS Event thread’s priority must be sufficiently high on the sending
application. Unlike an unreliable writer, a reliable writer relies on internal Connext DDS threads: the
Receive thread processes ACKNACKs from the DataReaders, and the Event thread schedules the events
necessary to maintain reliable data flow.

l When DDS samples are sent to the same or another application on the same host, the Receive thread
priority should be higher than the writing thread priority (priority of the thread calling write() on the
DataWriter). This will allow the Receive thread to process the messages as they are sent by the writ-
ing thread. A sustained reliable flow requires the reader to be able to process the DDS samples from
the writer at a speed equal to or faster than the writer emits.

l The default Event thread priority is low. This is adequate if your reliable transfer is not sustained;
queued up events will eventually be processed when the writing thread yields the CPU. The Con-
next DDS can automatically grow the event queue to store all pending events. But if the reliable com-
munication is sustained, reliable events will continue to be scheduled, and the event queue will
eventually reach its limit. The default Event thread priority is unsuitable for maintaining a fast and
sustained reliable communication and should be increased through the participant_qos.event.-
thread.priority. This value maps directly to the OS thread priority, see 9.5.5 EVENT QosPolicy
(DDS Extension) on page 668).

The Event thread should also be increased to minimize the reliable latency. If events are processed at a
higher priority, dropped packets will be resent sooner.

Now we consider some practical applications of the reliability related QoS:

l 11.3.7.2 Aperiodic Use Case: One-at-a-Time below

l 11.3.7.3 Aperiodic, Bursty on page 724

l 11.3.7.4 Periodic on page 727

11.3.7.2 Aperiodic Use Case: One-at-a-Time

Suppose you have aperiodically generated data that needs to be delivered reliably, with minimum latency,
such as a series of commands (“Ready,” “Aim,” “Fire”). If a writing thread may block between each DDS
sample to guarantee reception of the just-sent DDS sample on the reader’s middleware end, a smaller
queue will provide a smaller upper bound on the DDS sample delivery time. Adequate writer QoS for this
use case are presented in Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer on the next
page.

11.3.7 Use Cases

Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer

1. qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2. qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3. qos->protocol.push_on_write = DDS_BOOLEAN_TRUE;
4.
5. //use these hard coded value unless you use a key
6. qos->resource_limits.initial_samples = qos->resource_limits.max_samples = 1;
7. qos->resource_limits.max_samples_per_instance =
8. qos->resource_limits.max_samples;
9. qos->resource_limits.initial_instances =
10. qos->resource_limits.max_instances = 1;
11.
12. // want to piggyback HB w/ every sample.
13. qos->protocol.rtps_reliable_writer.heartbeats_per_max_samples =
14. qos->resource_limits.max_samples;
15.
16. qos->protocol.rtps_reliable_writer.high_watermark = 1;
17. qos->protocol.rtps_reliable_writer.low_watermark = 0;
18. qos->protocol.rtps_reliable_writer.min_nack_response_delay.sec = 0;
19. qos->protocol.rtps_reliable_writer.min_nack_response_delay.nanosec = 0;
20. //consider making non-zero for reliable multicast
21. qos->protocol.rtps_reliable_writer.max_nack_response_delay.sec = 0;
22. qos->protocol.rtps_reliable_writer.max_nack_response_delay.nanosec = 0;
23.
24. // should be faster than the send rate, but be mindful of OS resolution
25. 25 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.sec = 0;
26. 26 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.nanosec =
27. alertReaderWithinThisMs * 1000000;
28.
29. qos->reliability.max_blocking_time = blockingTime;
30. qos->protocol.rtps_reliable_writer.max_heartbeat_retries = 7;
31.
32. // essentially turn off slow HB period
33. qos->protocol.rtps_reliable_writer.heartbeat_period.sec = 3600 * 24 * 7;

Line 1 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer above): This is the default set-
ting for a writer, shown here strictly for clarity.

Line 2 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer above): Setting the History
kind to KEEP_ALL guarantees that no DDS sample is ever lost.

Line 3 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer above): This is the default set-
ting for a writer, shown here strictly for clarity. ‘Push’ mode reliability will yield lower latency than ‘pull’
mode reliability in normal situations where there is no DDS sample loss. (See 7.5.5 DATA_WRITER_
PROTOCOL QosPolicy (DDS Extension) on page 390.) Furthermore, it does not matter that each packet
sent in response to a command will be small, because our data sent with each command is likely to be
small, so that maximizing throughput for this data is not a concern.

Line 5 - Line 10 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer above): For this
example, we assume a single writer is writing DDS samples one at a time. If we are not using keys (see
2.4 DDS Samples, Instances, and Keys on page 18), there is no reason to use a queue with room for more
than one DDS sample, because we want to resolve a DDS sample completely before moving on to the
next. While this negatively impacts throughput, it minimizes memory usage. In this example, a written

720

11.3.7 Use Cases

721

DDS sample will remain in the queue until it is acknowledged by all active readers (only 1 for this
example).

Line 12 - Line 14 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer on the previous
page): The fastest way for a writer to ensure that a reader is up-to-date is to force an acknowledgment with
every DDS sample. We do this by appending a Heartbeat with every DDS sample. This is akin to a cer-
tified mail; the writer learns—as soon as the system will allow—whether a reader has received the letter,
and can take corrective action if the reader has not. As with certified mail, this model has significant over-
head compared to the unreliable case, trading off lower packet efficiency in favor of latency and fast recov-
ery.

Line 16-Line 17 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer on the previous
page): Since the writer takes responsibility for pushing the DDS samples out to the reader, a writer will go
into a “heightened alert” mode as soon as the high water mark is reached (which is when any DDS sample
is written for this writer) and only come out of this mode when the low water mark is reached (when all
DDS samples have been acknowledged for this writer). Note that the selected high and low watermarks
are actually the default values.

Line 18-Line 22 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer on the previous
page): When a reader requests a lost DDS sample, we respond to the reader immediately in the interest of
faster recovery. If the readers receive packets on unicast, there is no reason to wait, since the writer will
eventually have to feed individual readers separately anyway. In case of multicast readers, it makes sense
to consider further. If the writer delayed its response enough so that all or most of the readers have had a
chance to NACK a DDS sample, the writer may coalesce the requests and send just one packet to all the
multicast readers. Suppose that all multicast readers do indeed NACK within approximately 100 msec. Set-
ting the minimum and maximum delays at 100 msec will allow the writer to collect all these NACKs and
send a single response over multicast. (See 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) on page 390 for information on setting min_nack_response_delay and max_nack_response_
delay.) Note that Connext DDS relies on the OS to wait for this 100 msec. Unfortunately, not all operating
systems can sleep for such a fine duration. On Windows systems, for example, the minimum achievable
sleep time is somewhere between 1 to 20 milliseconds, depending on the version. On VxWorks systems,
the minimum resolution of the wait time is based on the tick resolution, which is 1/system clock rate (thus,
if the system clock rate is 100 Hz, the tick resolution is 10 millisecond). On such systems, the achievable
minimum wait is actually far larger than the desired wait time. This could have an unintended consequence
due to the delay caused by the OS; at a minimum, the time to repair a packet may be longer than you spe-
cified.

Line 24-Line 27 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer on the previous
page): If a reader drops a DDS sample, the writer recovers by notifying the reader of what it has sent, so
that the reader may request resending of the rejected DDS sample. Therefore, the recovery time depends
primarily on how quickly the writer pings the reader that has fallen behind. If commands will not be gen-
erated faster than one every few seconds, it may be acceptable for the writer to ping the reader several hun-
dred milliseconds after the DDS sample is sent.

11.3.7 Use Cases

l Suppose that the round-trip time of fairly small packets between the writer and the reader application
is 50 microseconds, and that the reader does not delay response to a Heartbeat from the writer (see
8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575 for how to
change this). If a DDS sample is dropped by the network, the writer will ping the reader after a max-
imum of the OS delay resolution discussed above and alertReaderWithinThisMs (let’s say 10 ms
for this example). The reader will request the missing DDS sample immediately, and with the code
set as above, the writer will feed the missing DDS sample immediately. Neglecting the processing
time on the writer or the reader end, and assuming that this retry succeeds, the time to recover the
DDS sample from the original publication time is: alertReaderWithinThisMs + 50 msec + 25
msec.

If the OS is capable of micro-sleep, the recovery time can be within 100 msec, barely noticeable to a
human operator. If the OS minimum wait resolution is much larger, the recovery time is dominated
by the wait resolution of the OS. Since ergonomic studies suggest that delays in excess of a 0.25
seconds start hampering operations that require low latency data, even a 10 ms limitation seems to
be acceptable.

l What if two packets are dropped in a row? Then the recovery time would be
2 * alertReaderWithinThisMs + 2 * 50 msec + 25 msec. If alertReaderWithinThisMs is 100 ms,
the recovery time now exceeds 200 ms, and can perhaps degrade user experience.

Line 29-Line 30 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer on page 720): What
if another command (like another button press) is issued before the recovery? Since we must not drop this
new DDS sample, we block the writer until the recovery completes. If alertReaderWithinThisMs is 10
ms, and we assume no more than 7 consecutive drops, the longest time for recovery will be just above
(alertReaderWithinThisMs * max_heartbeat_retries), or 70 ms.

So if we set blockingTime to about 80 ms, we will have given enough chance for recovery. Of course, in
a dynamic system, a reader may drop out at any time, in which casemax_heartbeat_retrieswill be
exceeded, and the unresponsive reader will be dropped by the writer. In either case, the writer can con-
tinue writing. Inappropriate values will cause a writer to prematurely drop a temporarily unresponsive (but
otherwise healthy) reader, or be stuck trying unsuccessfully to feed a crashed reader. In the unfortunate
case where a reader becomes temporarily unresponsive for a duration exceeding (aler-
tReaderWithinThisMs * max_heartbeat_retries), the writer may issue gaps to that reader when it
becomes active again; the dropped DDS samples are irrecoverable. So estimating the worst case unre-
sponsive time of all potential readers is critical if DDS sample drop is unacceptable.

Line 33 (Figure 11.10: QoS for an Aperiodic, One-at-a-time Reliable Writer on page 720): Since the com-
mand may not be issued for hours or even days on end, there is no reason to keep announcing the writer’s
state to the readers.

Figure 11.11: QoS for an Aperiodic, One-at-a-time Reliable Reader on the next page shows how to set the
QoS for the reader side, followed by a line-by-line explanation.

722

11.3.7 Use Cases

723

Figure 11.11: QoS for an Aperiodic, One-at-a-time Reliable Reader

1. qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2. qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3.
4. // 1 is ok for normal use. 2 allows fast infinite loop
5. qos->reader_resource_limits.max_samples_per_remote_writer = 2;
6. qos->resource_limits.initial_samples = 2;
7. qos->resource_limits.initial_instances = 1;
8.
9. qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
10. qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec = 0;
11. qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
12. qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;

Line 1-Line 2 (Figure 11.11: QoS for an Aperiodic, One-at-a-time Reliable Reader above): Unlike a
writer, the reader’s default reliability setting is best-effort, so reliability must be turned on. Since we don’t
want to drop anything, we choose KEEP_ALL history.

Line 4-Line 6 (Figure 11.11: QoS for an Aperiodic, One-at-a-time Reliable Reader above): Since we
enforce reliability on each DDS sample, it would be sufficient to keep the queue size at 1, except in the fol-
lowing case: suppose that the reader takes some action in response to the command received, which in turn
causes the writer to issue another command right away. Because Connext DDS passes the user data up to
the application even before acknowledging the DDS sample to the writer (for minimum latency), the first
DDS sample is still pending for acknowledgement in the writer’s queue when the writer attempts to write
the second DDS sample, and will cause the writing thread to block until the reader completes processing
the first DDS sample and acknowledges it to the writer; all are as they should be. But if you want to run
this infinite loop at full throttle, the reader should buffer one more DDS sample. Let’s follow the packets
flow under a normal circumstance:

1. The sender application writes DDS sample 1 to the reader. The receiver application processes it and
sends a user-level response 1 to the sender application, but has not yet ACK’d DDS sample 1.

2. The sender application writes DDS sample 2 to the receiving application in response to response 1.
Because the reader’s queue is 2, it can accept DDS sample 2 even though it may not yet have
acknowledged DDS sample 1. Otherwise, the reader may drop DDS sample 2, and would have to
recover it later.

3. At the same time, the receiver application acknowledges DDS sample 1, and frees up one slot in the
queue, so that it can accept DDS sample 3, which it on its way.

The above steps can be repeated ad-infinitum in a continuous traffic.

Line 7 (Figure 11.11: QoS for an Aperiodic, One-at-a-time Reliable Reader above): Since we are not
using keys, there is just one instance.

Line 9-Line 12 (11.3.7 Use Cases on page 719): We choose immediate response in the interest of fastest
recovery. In high throughput, multicast scenario, delaying the response (with event thread priority set high

11.3.7 Use Cases

of course) may decrease the likelihood of NACK storm causing a writer to drop some NACKs. This ran-
dom delay reduces this chance by staggering the NACK response. But the minimum delay achievable
once again depends on the OS.

11.3.7.3 Aperiodic, Bursty

Suppose you have aperiodically generated bursts of data, as in the case of a new aircraft approaching an
airport. The data may be the same or different, but if they are written by a single writer, the challenge to
this writer is to feed all readers as quickly and efficiently as possible when this burst of hundreds or thou-
sands of DDS samples hits the system.

If you use an unreliable writer to push this burst of data, some of them may be dropped over an unreliable
transport such as UDP.

If you try to shape the burst according to however much the slowest reader can process, the system
throughput may suffer, and places an additional burden of queueing the DDS samples on the sender applic-
ation.

If you push the data reliably as fast they are generated, this may cost dearly in repair packets, especially to
the slowest reader, which is already burdened with application chores.

Connext DDS pull mode reliability offers an alternative in this case by letting each reader pace its own data
stream. It works by notifying the reader what it is missing, then waiting for it to request only as much as it
can handle. As in the aperiodic one-at-a-time case (11.3.7.2 Aperiodic Use Case: One-at-a-Time on
page 719), multicast is supported, but its performance depends on the resolution of the minimum delay sup-
ported by the OS. At the cost of greater latency, this model can deliver reliability while using far fewer
packets than in the push mode. The writer QoS is given in Figure 11.12: QoS for an Aperiodic, Bursty
Writer below, with a line-by-line explanation below.

Figure 11.12: QoS for an Aperiodic, Bursty Writer

1. qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2. qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3. qos->protocol.push_on_write = DDS_BOOLEAN_FALSE;
4.
5. //use these hard coded value until you use key
6. qos->resource_limits.initial_instances =
7. qos->resource_limits.max_instances = 1;
8. qos->resource_limits.initial_samples = qos->resource_limits.max_samples
9. = worstBurstInSample;
10. qos->resource_limits.max_samples_per_instance =
11. qos->resource_limits.max_samples;
12.
13. // piggyback HB not used
14. qos->protocol.rtps_reliable_writer.heartbeats_per_max_samples = 0;
15.
16. qos->protocol.rtps_reliable_writer.high_watermark = 1;
17. qos->protocol.rtps_reliable_writer.low_watermark = 0;
18.
19. qos->protocol.rtps_reliable_writer.min_nack_response_delay.sec = 0;
20. qos->protocol.rtps_reliable_writer.min_nack_response_delay.nanosec = 0;

724

11.3.7 Use Cases

725

21. qos->protocol.rtps_reliable_writer.max_nack_response_delay.sec = 0;
22. qos->protocol.rtps_reliable_writer.max_nack_response_delay.nanosec = 0;
23. qos->reliability.max_blocking_time = blockingTime;
24.
25. // should be faster than the send rate, but be mindful of OS resolution
26. qos->protocol.rtps_reliable_writer.fast_heartbeat_period.sec = 0;
27. qos->protocol.rtps_reliable_writer.fast_heartbeat_period.nanosec =
28. alertReaderWithinThisMs * 1000000;
29. qos->protocol.rtps_reliable_writer.max_heartbeat_retries = 5;
30.
31. // essentially turn off slow HB period
32. qos->protocol.rtps_reliable_writer.heartbeat_period.sec = 3600 * 24 * 7;

Line 1 (Figure 11.12: QoS for an Aperiodic, Bursty Writer on the previous page): This is the default set-
ting for a writer, shown here strictly for clarity.

Line 2 (Figure 11.12: QoS for an Aperiodic, Bursty Writer on the previous page): Since we do not want
any data lost, we want the History kind set to KEEP_ALL.

Line 3 (Figure 11.12: QoS for an Aperiodic, Bursty Writer on the previous page): The default Connext
DDS reliable writer will push, but we want the reader to pull instead.

Line 5-Line 11 (Figure 11.12: QoS for an Aperiodic, Bursty Writer on the previous page): We assume a
single instance, in which case the maximum DDS sample count will be the same as the maximum DDS
sample count per writer. In contrast to the one-at-a-time case discussed in 11.3.7.2 Aperiodic Use Case:
One-at-a-Time on page 719, the writer’s queue is large; as big as the burst size in fact, but no more
because this model tries to resolve a burst within a reasonable period, to be computed shortly. Of course,
we could block the writing thread in the middle of the burst, but that might complicate the design of the
sending application.

Line 13-Line 14 (Figure 11.12: QoS for an Aperiodic, Bursty Writer on the previous page): By a ‘piggy-
back’ Heartbeat, we mean only a Heartbeat that is appended to data being pushed from the writer. Strictly
speaking, the writer will also append a Heartbeat with each reply to a reader’s lost DDS sample request,
but we call that a ‘framing’ Heartbeat. Since data is pulled, heartbeats_per_max_samples is ignored.

Line 16-Line 17 (Figure 11.12: QoS for an Aperiodic, Bursty Writer on the previous page): Similar to the
previous aperiodic writer, this writer spends most of its time idle. But as the name suggests, even a single
new DDS sample implies more DDS sample to follow in a burst. Putting the writer into a fast mode
quickly will allow readers to be notified soon. Only when all DDS samples have been delivered, the writer
can rest.

Line 19- Line 23 (Figure 11.12: QoS for an Aperiodic, Bursty Writer on the previous page): Similar to the
one-at-a-time case, there is no reason to delay response with only one reader. In this case, we can estimate
the time to resolve a burst with only a few parameters. Let’s say that the reader figures it can safely receive
and process 20 DDS samples at a time without being overwhelmed, and that the time it takes a writer to
fetch these 20 DDS samples and send a single packet containing these 20 DDS samples, plus the time it
takes a reader to receive and process these DDS samples, and send another request back to the writer for
the next 20 DDS samples is 11 ms. Even on the same hardware, if the reader’s processing time can be

11.3.7 Use Cases

reduced, this time will decrease; other factors such as the traversal time through Connext DDS and the
transport are typically in microseconds range (depending on machines of course).

For example, let’s also say that the worst case burst is 1000 DDS samples. The writing thread will of
course not block because it is merely copying each of the 1000 DDS samples to the Connext DDS queue
on the writer side; on a typical modern machine, the act of writing these 1000 DDS samples will probably
take no more than a few ms. But it would take at least 1000/20 = 50 resend packets for the reader to catch
up to the writer, or 50 times 11 ms = 550 ms. Since the burst model deals with one burst at a time, we
would expect that another burst would not come within this time, and that we are allowed to block for at
least this period. Including a safety margin, it would appear that we can comfortably handle a burst of
1000 every second or so.

But what if there are multiple readers? The writer would then take more time to feed multiple readers, but
with a fast transport, a few more readers may only increase the 11 ms to only 12 ms or so. Eventually, how-
ever, the number of readers will justify the use of multicast. Even in pull mode, Connext DDS supports
multicast by measuring how many multicast readers have requested DDS sample repair. If the writer does
not delay response to NACK, then repairs will be sent in unicast. But a suitable NACK delay allows the
writer to collect potentially NACKs from multiple readers, and feed a single multicast packet. But as dis-
cussed in 11.3.7.2 Aperiodic Use Case: One-at-a-Time on page 719, by delaying reply to coalesce
response, we may end up waiting much longer than desired. On a Windows system with 10 ms minimum
sleep achievable, the delay would add at least 10 ms to the 11 ms delay, so that the time to push 1000
DDS samples now increases to 50 times 21 ms = 1.05 seconds. It would appear that we will not be able to
keep up with incoming burst if it came at roughly 1 second, although we put fewer packets on the wire by
taking advantage of multicast.

Line 25-Line 28 (11.3.7 Use Cases on page 719): We now understand how the writer feeds the reader in
response to the NACKs. But how does the reader realize that it is behind? The writer notifies the reader
with a Heartbeat to kick-start the exchange. Therefore, the latency will be lower bound by the writer’s fast
heartbeat period. If the application is not particularly sensitive to latency, the minimum wait time supported
by the OS (10 ms on Windows systems, for example) might be a reasonable value.

Line 29 (Figure 11.12: QoS for an Aperiodic, Bursty Writer on page 724): With a fast heartbeat period of
50 ms, a writer will take 500 ms (50 ms times the defaultmax_heartbeat_retriesof 10) to write-off an
unresponsive reader. If a reader crashes while we are writing a lot of DDS samples per second, the writer
queue may completely fill up before the writer has a chance to drop the crashed reader. Lowering max_
heartbeat_retrieswill prevent that scenario.

Line 31-Line 32 (Figure 11.12: QoS for an Aperiodic, Bursty Writer on page 724): For an aperiodic
writer, turning off slow periodic Heartbeats will remove unwanted traffic from the network.

Figure 11.13: QoS for an Aperiodic, Bursty Reader on the next page shows example code for a cor-
responding aperiodic, bursty reader.

726

11.3.7 Use Cases

727

Figure 11.13: QoS for an Aperiodic, Bursty Reader

1. qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2. qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3. qos->resource_limits.initial_samples =
4. qos->resource_limits.max_samples =
5. qos->reader_resource_limits.max_samples_per_remote_writer = 32;
6.
7. //use these hard coded value until you use key
8. qos->resource_limits.max_samples_per_instance =
9. qos->resource_limits.max_samples;
10. qos->resource_limits.initial_instances =
11. qos->resource_limits.max_instances = 1;
12.
13. // the writer probably has more for the reader; ask right away
14. qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
15. qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
16. qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
17. qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec = 0;

Line 1-Line 2 (Figure 11.13: QoS for an Aperiodic, Bursty Reader above): Unlike a writer, the reader’s
default reliability setting is best-effort, so reliability must be turned on. Since we don’t want to drop any-
thing, we choose KEEP_ALL for the History QoS kind.

Line 3-Line 5 (Figure 11.13: QoS for an Aperiodic, Bursty Reader above): Unlike the writer, the reader’s
queue can be kept small, since the reader is free to send ACKs for as much as it wants anyway. In general,
the larger the queue, the larger the packet needs to be, and the higher the throughput will be. When the
reader NACKs for lost DDS sample, it will only ask for this much.

Line 7-Line 11 (Figure 11.13: QoS for an Aperiodic, Bursty Reader above): We do not use keys in this
example.

Line 13-Line 17 (Figure 11.13: QoS for an Aperiodic, Bursty Reader above): We respond immediately to
catch up as soon as possible. When there are many readers, this may cause a NACK storm, as discussed in
the reader code for one-at-a-time reliable reader.

11.3.7.4 Periodic

In a periodic reliable model, we can use the writer and the reader queue to keep the data flowing at a
smooth rate. The data flows from the sending application to the writer queue, then to the transport, then to
the reader queue, and finally to the receiving application. Unless the sending application or any one of the
receiving applications becomes unresponsive (including a crash) for a noticeable duration, this flow should
continue uninterrupted.

The latency will be low in most cases, but will be several times higher for the recovered and many sub-
sequent DDS samples. In the event of a disruption (e.g., loss in transport, or one of the readers becoming
temporarily unresponsive), the writer’s queue level will rise, and may even block in the worst case. If the
writing thread must not block, the writer’s queue must be sized sufficiently large to deal with any fluc-
tuation in the system. Figure 11.14: QoS for a Periodic Reliable Writer on the next page shows an
example, with line-by-line analysis below.

11.3.7 Use Cases

Figure 11.14: QoS for a Periodic Reliable Writer

1. qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2. qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3. qos->protocol.push_on_write = DDS_BOOLEAN_TRUE;
4.
5. //use these hard coded value until you use key
6. qos->resource_limits.initial_instances =
7. qos->resource_limits.max_instances = 1;
8.
9. int unresolvedSamplePerRemoteWriterMax =
10. worstCaseApplicationDelayTimeInMs * dataRateInHz / 1000;
11. qos->resource_limits.max_samples = unresolvedSamplePerRemoteWriterMax;
12. qos->resource_limits.initial_samples = qos->resource_limits.max_samples/2;
13. qos->resource_limits.max_samples_per_instance =
14. qos->resource_limits.max_samples;
15.
16. int piggybackEvery = 8;
17. qos->protocol.rtps_reliable_writer.heartbeats_per_max_samples =
18. qos->resource_limits.max_samples / piggybackEvery;
19.
20. qos->protocol.rtps_reliable_writer.high_watermark = piggybackEvery * 4;
21. qos->protocol.rtps_reliable_writer.low_watermark = piggybackEvery * 2;
22. qos->reliability.max_blocking_time = blockingTime;
23.
24. qos->protocol.rtps_reliable_writer.min_nack_response_delay.sec = 0;
25. qos->protocol.rtps_reliable_writer.min_nack_response_delay.nanosec = 0;
26.
27. qos->protocol.rtps_reliable_writer.max_nack_response_delay.sec = 0;
28. qos->protocol.rtps_reliable_writer.max_nack_response_delay.nanosec = 0;
29.
30. qos->protocol.rtps_reliable_writer.fast_heartbeat_period.sec = 0;
31. qos->protocol.rtps_reliable_writer.fast_heartbeat_period.nanosec =
32. ` alertReaderWithinThisMs * 1000000;
33. qos->protocol.rtps_reliable_writer.max_heartbeat_retries = 7;
34.
35. // essentially turn off slow HB period
36. qos->protocol.rtps_reliable_writer.heartbeat_period.sec = 3600 * 24 * 7;

Line 1 (Figure 11.14: QoS for a Periodic Reliable Writer above): This is the default setting for a writer,
shown here strictly for clarity.

Line 2 (Figure 11.14: QoS for a Periodic Reliable Writer above): Since we do not want any data lost, we
set the History kind to KEEP_ALL.

Line 3 (Figure 11.14: QoS for a Periodic Reliable Writer above): This is the default setting for a writer,
shown here strictly for clarity. Pushing will yield lower latency than pulling.

Line 5-Line 7 (Figure 11.14: QoS for a Periodic Reliable Writer above): We do not use keys in this
example, so there is only one instance.

Line 9-Line 11 (Figure 11.14: QoS for a Periodic Reliable Writer above): Though a simplistic model of
queue, this is consistent with the idea that the queue size should be proportional to the data rate and the
wort case jitter in communication.

728

11.3.7 Use Cases

729

Line 12 (Figure 11.14: QoS for a Periodic Reliable Writer on the previous page): Even though we have
sized the queue according to the worst case, there is a possibility for saving some memory in the normal
case. Here, we initially size the queue to be only half of the worst case, hoping that the worst case will not
occur. When it does, Connext DDS will keep increasing the queue size as necessary to accommodate new
DDS samples, until the maximum is reached. So when our optimistic initial queue size is breached, we
will incur the penalty of dynamic memory allocation. Furthermore, you will wind up using more memory,
as the initially allocated memory will be orphaned (note: does not mean a memory leak or dangling
pointer); if the initial queue size is M_i and the maximal queue size is M_m, where M_m = M_i * 2^n, the
memory wasted in the worst case will be (M_m - 1) * sizeof(DDS sample) bytes. Note that the memory
allocation can be avoided by setting the initial queue size equal to its max value.

Line 13-Line 14 (Figure 11.14: QoS for a Periodic Reliable Writer on the previous page): If there is only
one instance, maximum DDS samples per instance is the same as maximum DDS samples allowed.

Line 16-Line 18 (Figure 11.14: QoS for a Periodic Reliable Writer on the previous page): Since we are
pushing out the data at a potentially rapid rate, the piggyback heartbeat will be useful in letting the reader
know about any missing DDS samples. The piggybackEvery can be increased if the writer is writing at a
fast rate, with the cost that more DDS samples will need to queue up for possible resend. That is, you can
consider the piggyback heartbeat to be taking over one of the roles of the periodic heartbeat in the case of a
push. So sending fewer DDS samples between piggyback heartbeats is akin to decreasing the fast heart-
beat period seen in previous sections. Please note that we cannot express piggybackEvery directly as its
own QoS, but indirectly through the maximum DDS samples.

Line 20-Line 22 (Figure 11.14: QoS for a Periodic Reliable Writer on the previous page): If piggy-
backEvery was exactly identical to the fast heartbeat, there would be no need for fast heartbeat or the high
watermark. But one of the important roles for the fast heartbeat period is to allow a writer to abandon inact-
ive readers before the queue fills. If the high watermark is set equal to the queue size, the writer would not
doubt the status of an unresponsive reader until the queue completely fills—blocking on the next write (up
to blockingTime). By lowering the high watermark, you can control how vigilant a writer is about check-
ing the status of unresponsive readers. By scaling the high watermark to piggybackEvery, the writer is
expressing confidence that an alive reader will respond promptly within the time it would take a writer to
send 4 times piggybackEvery DDS samples. If the reader does not delay the response too long, this
would be a good assumption. Even if the writer estimated on the low side and does go into fast mode (sus-
pecting that the reader has crashed) when a reader is temporarily unresponsive (e.g., when it is performing
heavy computation for a few milliseconds), a response from the reader in question will resolve any doubt,
and data delivery can continue uninterrupted. As the reader catches up to the writer and the queue level
falls below the low watermark, the writer will pop out to the normal, relaxed mode.

Line 24-Line 28 (Figure 11.14: QoS for a Periodic Reliable Writer on the previous page): When a reader
is behind (including a reader whose Durability QoS is non-VOLATILE and therefore needs to catch up to
the writer as soon as it is created), how quickly the writer responds to the reader’s request will determine
the catch-up rate. While a multicast writer (that is, a writer with multicast readers) may consider delaying
for some time to take advantage of coalesced multicast packets. Keep in mind the OS delay resolution
issue discussed in the previous section.

11.3.7 Use Cases

Line 30-Line 33 (Figure 11.14: QoS for a Periodic Reliable Writer on page 728): The fast heartbeat mech-
anism allows a writer to detect a crashed reader and move along with the remaining readers when a reader
does not respond to any of themax_heartbeat_retriesnumber of heartbeats sent at the fast_heartbeat_
period rate. So if you want a more cautious writer, decrease either numbers; conversely, increasing either
number will result in a writer that is more reluctant to write-off an unresponsive reader.

Line 35-Line 36 (Figure 11.14: QoS for a Periodic Reliable Writer on page 728): Since this a periodic
model, a separate periodic heartbeat to notify the writer’s status would seem unwarranted; the piggyback
heartbeat sent with DDS samples takes over that role.

Figure 11.15: QoS for a Periodic Reliable Reader below shows how to set the QoS for a matching reader,
followed by a line-by-line explanation.

Figure 11.15: QoS for a Periodic Reliable Reader

1. qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2. qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3. qos->resource_limits.initial_samples =
4. qos->resource_limits.max_samples =
5. qos->reader_resource_limits.max_samples_per_remote_writer =
6. ((2*piggybackEvery - 1) + dataRateInHz * delayInMs / 1000);
7.
8. //use these hard coded value until you use key
9. qos->resource_limits.max_samples_per_instance =
10. qos->resource_limits.max_samples;
11. qos->resource_limits.initial_instances =
12. qos->resource_limits.max_instances = 1;
13.
14. qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
15. qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
16. qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
17. qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec = 0;

Line 1-Line 2 (Figure 11.15: QoS for a Periodic Reliable Reader above): Unlike a writer, the reader’s
default reliability setting is best-effort, so reliability must be turned on. Since we don’t want to drop any-
thing, we choose KEEP_ALL for the History QoS.

Line 3-Line 6 (Figure 11.15: QoS for a Periodic Reliable Reader above) Unlike the writer, the reader
queue is sized not according to the jitter of the reader, but rather how many DDS samples you want to
cache speculatively in case of a gap in sequence of DDS samples that the reader must recover. Remember
that a reader will stop giving a sequence of DDS samples as soon as an unintended gap appears, because
the definition of strict reliability includes in-order delivery. If the queue size were 1, the reader would have
no choice but to drop all subsequent DDS samples received until the one being sought is recovered. Con-
next DDS uses speculative caching, which minimizes the disruption caused by a few dropped DDS
samples. Even for the same duration of disruption, the demand on reader queue size is greater if the writer
will send more rapidly. In sizing the reader queue, we consider two factors that comprise the DDS sample
recovery time:

730

11.4 Auto Throttling for DataWriter Performance—Experimental Feature

731

l How long it takes a reader to request a resend to the writer.

The piggyback heartbeat tells a reader about the writer’s state. If only DDS samples between two
piggybacked DDS samples are dropped, the reader must cache piggybackEvery DDS samples
before asking the writer for resend. But if a piggybacked DDS sample is also lost, the reader will not
get around to asking the writer until the next piggybacked DDS sample is received. Note that in this
worst case calculation, we are ignoring stand-alone heartbeats (i.e., not piggybacked heartbeat from
the writer). Of course, the reader may drop any number of heartbeats, including the stand-alone
heartbeat; in this sense, there is no such thing as the absolute worst case—just reasonable worst case,
where the probability of consecutive drops is acceptably low. For the majority of applications, even
two consecutive drops is unlikely, in which case we need to cache at most (2*piggybackEvery - 1)
DDS samples before the reader will ask the writer to resend, assuming no delay (Line 14-Line 17,
Figure 11.15: QoS for a Periodic Reliable Reader on the previous page).

l How long it takes for the writer to respond to the request.

Even ignoring the flight time of the resend request through the transport, the writer takes a finite time
to respond to the repair request--mostly if the writer delays reply for multicast readers. In case of
immediate response, the processing time on the writer end, as well as the flight time of the messages
to and from the writer do not matter unless very larger data rate; that is, it is the product term that mat-
ters. In case the delay for multicast is random (that is, the minimum and the maximum delay are not
equal), one would have to use the maximum delay to be conservative.

Line 8-Line 12 (Figure 11.15: QoS for a Periodic Reliable Reader on the previous page): Since we are not
using keys, there is just one instance.

Line 14-Line 17 (Figure 11.15: QoS for a Periodic Reliable Reader on the previous page): If we are not
using multicast, or the number of readers being fed by the writer, there is no reason to delay.

11.4 Auto Throttling for DataWriter Performance—Experimental Feature

Auto Throttling is an experimental feature that allows you to configure a DataWriter to automatically
adjust its writing rate and send window size to provide the best latency/throughput tradeoff as system con-
ditions change.

When DataWriters and DataReaders are configured to be reliable, DDS samples that did not reach the
matched DataReaders for any reason (such as network drops or sample rejection by the DataReader) are
repaired automatically by Connext DDS. However, the repair path consumes bandwidth and increases
latency. A high number of repaired DDS samples can reduce the throughput and increase the com-
munication latency. With Auto Throttling, the number of repair DDS samples is reduced by using feed-
back provided by DataReaders in terms of ACK and NACK messages to adjust the DataWriter's write
rate and send window size.

To configure Auto Throttling, use the following properties:

11.4 Auto Throttling for DataWriter Performance—Experimental Feature

dds.domain_participant.auto_throttle.enable: Configures the DomainParticipant to gather internal
measurements (during DomainParticipant creation) that are required for the Auto Throttle feature. This
allows DataWriters belonging to this DomainParticipant to use the Auto Throttle feature. Default: false.

dds.data_writer.auto_throttle.enable: Enables automatic throttling in the DataWriter so it can auto-
matically adjust the writing rate and the send window size; this minimizes the need for repair DDS samples
and improves latency. Default: false.

Note: This property takes effect only in DataWriters that belong to a DomainParticipant that has set the
property dds.domain_participant.auto_throttle.enable (described above) to true.

When Auto throttling is enabled, the size of the send window size is adjusted within the interval [min_
send_window_size, max_send_window_size] configured in 7.5.5 DATA_WRITER_PROTOCOL
QosPolicy (DDS Extension) on page 390.

732

Chapter 12 Collaborative DataWriters
The Collaborative DataWriters feature allows you to have multiple DataWriters publishing DDS
samples from a common logical data source. The DataReaders will combine the DDS samples
coming from these DataWriters in order to reconstruct the correct order in which they were pro-
duced at the source. This combination process for the DataReaders can be configured using the
7.5.1 AVAILABILITY QosPolicy (DDS Extension) on page 371. It requires the middleware to
provide a way to uniquely identify every DDS sample published in a DDS domain independently
of the actual DataWriter that published the DDS sample.

In Connext DDS, every modification (DDS sample) to the global dataspace made by a DataWriter
within a DDS domain is identified by a pair (virtual GUID, sequence number).

The virtual GUID (Global Unique Identifier) is a 16-byte character identifier associated with the
logical data source. DataWriters can be assigned a virtual GUID using virtual_guid in the 7.5.5
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390.

The virtual sequence number is a 64-bit integer that identifies changes within the logical data
source.

Several DataWriters can be configured with the same virtual GUID. If each of these DataWriters
publishes a DDS sample with sequence number '0', the DDS sample will only be received once by
the DataReaders subscribing to the content published by the DataWriters (see Figure 12.1: Global
Dataspace Changes on the next page).

733

12.1 Collaborative DataWriters Use Cases

734

Figure 12.1: Global Dataspace Changes

12.1 Collaborative DataWriters Use Cases

l Ordered delivery of DDS samples in high availability scenarios

One example of this is RTI Persistence Service1.When a late-joining DataReader configured with
7.5.9 DURABILITY QosPolicy on page 412 set to PERSISTENT or TRANSIENT joins a DDS
domain, it will start receiving DDS samples from multiple DataWriters. For example, if the original
DataWriter is still alive, the newly created DataReader will receive DDS samples from the original
DataWriter and one or more RTI Persistence Service DataWriters (PRSTDataWriters).

l Ordered delivery of DDS samples in load-balanced scenarios

Multiple instances of the same application can work together to process and deliver DDS samples.
When the DDS samples arrive through different data-paths out of order, the DataReader will be able
to reconstruct the order at the source. An example of this is when multiple instances of RTI Per-
sistence Service are used to persist the data. Persisting data to a database on disk can impact per-
formance. By dividing the workload (e.g., DDS samples larger than 10 are persisted by Persistence
Service 1, DDS samples smaller or equal to 10 are persisted by Persistence Service 2) across dif-
ferent instances of RTI Persistence Service using different databases the user can improve scalability
and performance.

l Ordered delivery of DDS samples with Group Ordered Access

The Collaborative DataWriters feature can also be used to configure the DDS sample ordering pro-
cess when the Subscriber is configured with 7.4.6 PRESENTATION QosPolicy on page 363

1For more information on Persistence Service, see Part 8: RTI Persistence Service on page 1184.

12.2 DDS Sample Combination (Synchronization) Process in a DataReader

access_scope set to GROUP. In this case, the Subscriber must deliver in order the DDS samples
published by a group of DataWriters that belong to the same Publisher and have access_scope set
to GROUP.

Figure 12.2: Load-Balancing with Persistence Service

12.2 DDS Sample Combination (Synchronization) Process in a
DataReader

A DataReader will deliver a DDS sample (VGUIDn, VSNm) to the application only when if one of the
following conditions is satisfied:

l (VGUIDn, VSNm-1) has already been delivered to the application.

l All the known DataWriters publishing VGUIDn have announced that they do not have (VGUIDn,
VSNm-1).

l None of the known DataWriters publishing VGUIDn have announced potential availability of
(VGUIDn, VSNm-1) and a configurable timeout (max_data_availability_waiting_time) expires.

For additional details on how the reconstruction process works see the 7.5.1 AVAILABILITY QosPolicy
(DDS Extension) on page 371.

735

12.3 Configuring Collaborative DataWriters

736

12.3 Configuring Collaborative DataWriters

12.3.1 Associating Virtual GUIDs with DDS Data Samples

There are two ways to associate a virtual GUID with the DDS samples published by a DataWriter.

l Per DataWriter: Using virtual_guid in 7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) on page 390.

l Per DDS Sample: By setting the writer_guid in the identity field of the WriteParams_t structure
provided to the write_w_params operation (see 7.3.8 Writing Data on page 310). Since the
writer_guid can be set per DDS sample, the same DataWriter can potentially write DDS samples
from independent logical data sources. One example of this is RTI Persistence Service where a
single persistence service DataWriter can write DDS samples on behalf of multiple original
DataWriters.

12.3.2 Associating Virtual Sequence Numbers with DDS Data Samples

You can associate a virtual sequence number with a DDS sample published by a DataWriter by setting the
sequence_number in the identity field of the WriteParams_t structure provided to the write_w_params
operation (see 7.3.8 Writing Data on page 310). Virtual sequence numbers for a given virtual GUID must
be strictly monotonically increasing. If you try to write a DDS sample with a sequence number less than or
equal to the last sequence number, the write operation will fail.

12.3.3 Specifying which DataWriters will Deliver DDS Samples to the
DataReader from a Logical Data Source

The required_matched_endpoint_groups field in the 7.5.1 AVAILABILITY QosPolicy (DDS Exten-
sion) on page 371 can be used to specify the set of DataWriter groups that are expected to provide DDS
samples for the same data source (virtual GUID). The quorum count in a group represents the number of
DataWriters that must be discovered for that group before the DataReader is allowed to provide non-con-
secutive DDS samples to the application.

A DataWriter becomes a member of an endpoint group by configuring the role_name in 7.5.11
ENTITY_NAME QosPolicy (DDS Extension) on page 419.

12.3.4 Specifying How Long to Wait for a Missing DDS Sample

A DataReader’s 7.5.1 AVAILABILITY QosPolicy (DDS Extension) on page 371 specifies how long to
wait for a missing DDS sample. For example, this is important when the first DDS sample is received:
how long do you wait to determine the lowest sequence number available in the system?

l Themax_data_availability_waiting_time defines how much time to wait before delivering a DDS
sample to the application without having received some of the previous DDS samples.

12.4 Collaborative DataWriters and Persistence Service

l Themax_endpoint_availability_waiting_time defines how much time to wait to discover
DataWriters providing DDS samples for the same data source (virtual GUID).

12.4 Collaborative DataWriters and Persistence Service

The DataWriters created by persistence service are automatically configured to do collaboration:

l Every DDS sample published by the Persistence Service DataWriter keeps its original identity.

l Persistence Service associates the role name PERSISTENCE_SERVICE with all the DataWriters
that it creates. You can overwrite that setting by changing the DataWriter QoS configuration in per-
sistence service.

For more information, see Part 8: RTI Persistence Service on page 1184.

737

Chapter 13 Mechanisms for Achieving
Information Durability and
Persistence

13.1 Introduction

Durable Writer History and Durable Reader State are deprecated as of release 6.1.1 and
will be removed in a future release. Use Part 8: RTI Persistence Service on page 1184 to
persist your data instead.

Connext DDS offers the following mechanisms for achieving durability and persistence:

l Durable Writer History This feature allows a DataWriter to persist its historical cache, per-
haps locally, so that it can survive shutdowns, crashes and restarts. When an application
restarts, each DataWriter that has been configured to have durable writer history auto-
matically loads all of the data in this cache from disk and can carry on sending data as if it
had never stopped executing. To the rest of the system, it will appear as if the DataWriter
had been temporarily disconnected from the network and then reappeared.

l Durable Reader State This feature allows a DataReader to persist its state and remember
which data it has already received. When an application restarts, each DataReader that has
been configured to have durable reader state automatically loads its state from disk and can
carry on receiving data as if it had never stopped executing. Data that had already been
received by the DataReader before the restart will be suppressed so that it is not even sent
over the network.

l Data Durability This feature is a full implementation of the OMG DDS Persistence Profile.
The 7.5.9 DURABILITY QosPolicy on page 412 allows an application to configure a
DataWriter so that the information written by the DataWriter survives beyond the lifetime of
the DataWriter. In this manner, a late-joining DataReader can subscribe to and receive the
information even after the DataWriter application is no longer executing. To use this feature,

738

13.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History)

739

you need Persistence Service, a separate application described in Introduction to RTI Persistence
Service (Chapter 45 on page 1185).

These features can be configured separately or in combination. To use Durable Writer State and Durable
Reader State, you need a relational database, which is not included with Connext DDS. Persistence Ser-
vice does not require a database when used in TRANSIENT mode (see 13.5.1 RTI Persistence Service
on page 755) or in PERSISTENT mode with file-system storage (see 13.5.1 RTI Persistence Service on
page 755 and 46.5 Configuring Remote Administration on page 1193). See RTI Connext DDS Core
Libraries Database Setup for a list of supported relational databases and setup instructions.

To understand how these features interact we will examine the behavior of the system using the following
scenarios:

l 13.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History) below

l 13.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader State) on
page 741

l 13.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data) on page 742

13.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable
Writer History)

In this scenario, a DomainParticipant joins the domain, creates a DataWriter and writes some data, then
the DataWriter shuts down (gracefully or due to a fault). The DataWriter restarts and a DataReader joins
the domain. Depending on whether the DataWriter is configured with durable history, the late-joining
DataReader may or may not receive the data published already by the DataWriter before it restarted. This
is illustrated in Figure 13.1: Durable Writer History on the next page. For more information, see 13.3 Dur-
able Writer History on page 745.

13.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History)

Figure 13.1: Durable Writer History

740

13.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader State)

741

13.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable
Reader State)

In this scenario, two DomainParticipants join a domain; one creates a DataWriter and the other a
DataReader on the same Topic. The DataWriter publishes some data ("a" and "b") that is received by the
DataReader. After this, the DataReader shuts down (gracefully or due to a fault) and then restarts—all
while the DataWriter remains present in the domain.

Depending on whether the DataReader is configured with Durable Reader State, the DataReader may or
may not receive a duplicate copy of the data it received before it restarted. This is illustrated in Figure 13.2:
Durable Reader State below. For more information, see 13.4 Durable Reader State on page 750.
Figure 13.2: Durable Reader State

13.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data)

13.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain
(Durable Data)

In this scenario, a DomainParticipant joins a domain, creates a DataWriter, publishes some data on a
Topic and then shuts down (gracefully or due to a fault). Later, a DataReader joins the domain and sub-
scribes to the data. Persistence Service is running.

Depending on whether Durable Data is enabled for the Topic, the DataReader may or may not receive the
data previous published by the DataWriter. This is illustrated in Figure 13.3: Durable Data on the next
page. For more information, see 13.5 Data Durability on page 755

742

13.2 Durability and Persistence Based on Virtual GUIDs

743

Figure 13.3: Durable Data

This third scenario is similar to 13.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable
Writer History) on page 739 except that in this case the DataWriter does not need to restart for the
DataReader to get the data previously written by the DataWriter. This is because Persistence Service acts
as an intermediary that stores the data so it can be given to late-joining DataReaders.

13.2 Durability and Persistence Based on Virtual GUIDs

Every modification to the global dataspace made by a DataWriter is identified by a pair (virtual GUID,
sequence number).

13.2 Durability and Persistence Based on Virtual GUIDs

l The virtual GUID (Global Unique Identifier) is a 16-byte character identifier associated with a
DataWriter or DataReader; it is used to uniquely identify this entity in the global data space.

l The sequence number is a 64-bit identifier that identifies changes published by a specific
DataWriter.

Several DataWriters can be configured with the same virtual GUID. If each of these DataWriters pub-
lishes a sample with sequence number '0', the sample will only be received once by the DataReaders sub-
scribing to the content published by the DataWriters (see Figure 13.4: Global Dataspace Changes below).
Figure 13.4: Global Dataspace Changes

Additionally, Connext DDS uses the virtual GUID to associate a persisted state (state in permanent stor-
age) to the corresponding Entity.

For example, the history of a DataWriter will be persisted in a database table with a name generated from
the virtual GUID of the DataWriter. If the DataWriter is restarted, it must have associated the same virtual
GUID to restore its previous history.

Likewise, the state of a DataReader will be persisted in a database table whose name is generated from the
DataReader virtual GUID (see Figure 13.5: History/State Persistence Based on Virtual GUID on the next
page).

744

13.3 Durable Writer History

745

Figure 13.5: History/State Persistence Based on Virtual GUID

l A DataWriter’s virtual GUID can be configured using the member virtual_guid in the 7.5.5
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390.

l A DataReader’s virtual GUID can be configured using the member virtual_guid in the 8.6.1
DATA_READER_PROTOCOL QosPolicy (DDS Extension) on page 575.

The DDS_PublicationBuiltinTopicData and DDS_SubscriptionBuiltinTopicData structures include the vir-
tual GUID associated with the discovered publication or subscription (see 18.2 Built-in DataReaders on
page 838).

13.3 Durable Writer History

The 7.5.9 DURABILITY QosPolicy on page 412 controls whether or not, and how, published samples
are stored by the DataWriter application for DataReaders that are found after the samples were initially
written. The samples stored by the DataWriter constitute the DataWriter’s history.

Connext DDS provides the capability to make the DataWriter history durable, by persisting its content in a
relational database. This makes it possible for the history to be restored when the DataWriter restarts. See
RTI Connext DDS Core Libraries Database Setup for a list of supported relational databases and setup
instructions.

The association between the history stored in the database and the DataWriter is done using the virtual
GUID.

13.3.1 Durable Writer History Use Case

13.3.1 Durable Writer History Use Case

The following use case describes the durable writer history functionality:

1. A DataReader receives two samples with sequence number 1 and 2 published by a DataWriter with
virtual GUID 1.

2. The process running the DataWriter is stopped and a new late-joining DataReader is created.

The new DataReader with virtual GUID 2 does not receive samples 1 and 2 because the original
DataWriter has been destroyed. If the samples must be available to late-joining DataReaders after
the DataWriter deletion, you can use Persistence Service, described in Introduction to RTI Per-
sistence Service (Chapter 45 on page 1185).

3. The DataWriter is restarted using the same virtual GUID.

After being restarted, the DataWriter restores its history. The late-joining DataReader will receive
samples 1 and 2 because they were not received previously. The DataReader with virtual GUID 1
will not receive samples 1 and 2 because it already received them

746

13.3.2 How To Configure Durable Writer History

747

4. The DataWriter publishes two new samples.

The two new samples with sequence numbers 3 and 4 will be received by both DataReaders.

13.3.2 How To Configure Durable Writer History

Connext DDS allows a DataWriter’s history to be stored in a relational database that provides an ODBC
driver.

For each DataWriter history that is configured to be durable, Connext DDS will create a maximum of two
tables:

l The first table is used to store the samples associated with the writer history. The name of that table
is WS<32 uuencoding of the writer virtual GUID>.

l The second table is only created for keyed-topic and it is used to store the instances associated with
the writer history. The name of the second table is WI<32 uuencoding of the writer virtual GUID>.

To configure durable writer history, use the 7.5.19 PROPERTY QosPolicy (DDS Extension) on
page 440 associated with DataWriters and DomainParticipants.

A ‘durable writer history’ property defined in the DomainParticipant will be applicable to all the
DataWriters belonging to the DomainParticipant unless it is overwritten by the DataWriter. Table 13.1
Durable Writer History Properties lists the supported ‘durable writer history’ properties.

Property Description

dds.data_writer-
.history.plugin_
name

Required.

Must be set to "dds.data_writer.history.odbc_plugin.builtin" to enable durable writer history in the DataWriter.

Table 13.1 Durable Writer History Properties

13.3.2 How To Configure Durable Writer History

Property Description

dds.data_writer-
.history.odbc_plu-
gin.
dsn

Required.

The ODBCDSN (Data Source Name) associated with the database where the writer history must be persisted.

dds.data_writer-
.history.odbc_plu-
gin.
driver

TellsConnext DDSwhich ODBCdriver to load. If the property is not specified,Connext DDSwill try to use the standard
ODBCdrivermanager library (UnixOdbc on Linux systems, the WindowsODBCdrivermanager on Windows systems).

dds.data_writer-
.history.odbc_plu-
gin.
username Configures the username/password used to connect to the database.

Default: No password or usernamedds.data_writer-
.history.odbc_plu-
gin.
password

dds.data_writer-
.history.odbc_plu-
gin.
instance_cache_
max_size

These properties configure the resource limits associated with the ODBCwriter history caches.

To minimize the number of accesses to the database,Connext DDS uses two caches, one for samples and one for in-
stances. The initial size and the maximumsize of these caches are configured using these properties.

The resource limits, initial_instances,max_instances, initial_samples,max_samples, andmax_samples_per_in-
stance defined in 7.5.22 RESOURCE_LIMITSQosPolicy on page 452 are used to configure the maximumnumber of
samples and instances that can be stored in the relational database.

Defaults:

instance_cache_max_size:max_instances in 7.5.22 RESOURCE_LIMITSQosPolicy on page 452

instance_cache_init_size: initial_instances in 7.5.22 RESOURCE_LIMITSQosPolicy on page 452

sample_cache_max_size: 32

sample_cache_init_size: 32

If in_memory_state (see below in this table) is 1, instance_cache_max_size is always equal to
max_instances in 7.5.22 RESOURCE_LIMITS QosPolicy on page 452—it cannot be changed.

dds.data_writer-
.history.odbc_plu-
gin.
instance_cache_
init_size

dds.data_writer-
.history.odbc_plu-
gin.
sample_cache_
max_size

dds.data_writer-
.history.odbc_plu-
gin.
sample_cache_init_
size

dds.data_writer-
.history.odbc_plu-
gin.
restore

This property indicates whether or not the persisted writer history must be restored once the DataWriter is restarted.

If this property is 0, the content of the database associated with the DataWriter being restarted will be deleted.

If it is 1, the DataWriter will restore its previous state from the database content.

Default: 1

Table 13.1 Durable Writer History Properties

748

13.3.2 How To Configure Durable Writer History

749

Property Description

dds.data_writer-
.history.odbc_plu-
gin.
in_memory_state

This property determines howmuch state will be kept in memory by the ODBCwriter history in order to avoid accessing the
database.

If this property is 1, then the property instance_cache_max_size (see above in this table) is always equal tomax_in-
stances in 7.5.22 RESOURCE_LIMITSQosPolicy on page 452—it cannot be changed. In addition, the ODBCwriter his-
tory will keep in memory a fixed state overhead of 24 bytes per sample. This mode provides the best ODBCwriter history
performance. However, the restore operation will be slower and the maximumnumber of samples that the writer history can
manage is limited by the available physicalmemory.

If it is 0, all the state will be kept in the underlying database. In this mode, the maximumnumber of samples in the writer his-
tory is not limited by the physicalmemory available.

Default: 1

Table 13.1 Durable Writer History Properties

Durable Writer History is not supported for Multi-channel DataWriters (see Multi-channel
DataWriters (Chapter 20 on page 902)) or when Batching is enabled (see 7.5.2 BATCH
QosPolicy (DDS Extension) on page 375); an error is reported if this type of DataWriter tries to
configure Durable Writer History.

See also: 13.4 Durable Reader State on the next page.

Example C++ Code
/* Get default QoS */
...
retcode = DDSPropertyQosPolicyHelper::add_property (writerQos.property,

"dds.data_writer.history.plugin_name",
"dds.data_writer.history.odbc_plugin.builtin",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
retcode = DDSPropertyQosPolicyHelper::add_property (writerQos.property,

"dds.data_writer.history.odbc_plugin.dsn",
"<user DSN>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
retcode = DDSPropertyQosPolicyHelper::add_property (writerQos.property,

"dds.data_writer.history.odbc_plugin.driver",
"<ODBC library>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
/* Create Data Writer */
...

13.4 Durable Reader State

13.4 Durable Reader State

Durable reader state allows a DataReader to locally store its state in disk and remember the data that has
already been processed by the application1. When an application restarts, each DataReader configured to
have durable reader state automatically reads its state from disk. Data that has already been processed by
the application before the restart will not be provided to the application again.

Important: The DataReader does not persist the full contents of the data in its historical cache; it only per-
sists an identification (e.g. sequence numbers) of the data the application has processed. This distinction is
not meaningful if your application always uses the ‘take’ methods to access your data, since these methods
remove the data from the cache at the same time they deliver it to your application. (See 8.4.3.1 Read vs.
Take on page 560) However, if your application uses the ‘read’ methods, leaving the data in the
DataReader's cache after you've accessed it for the first time, those previously viewed samples will not be
restored to the DataReader's cache in the event of a restart.

Connext DDS requires a relational database to persist the state of a DataReader. This database is accessed
using ODBC. See RTI Connext DDS Core Libraries Database Setup for a list of supported relational data-
bases and setup instructions.

13.4.1 Durable Reader State With Protocol Acknowledgment

For each DataReader configured to have durable state, Connext DDS will create one database table with
the following naming convention: RS<32 uuencoding of the reader virtual GUID>. This table will
store the last sequence number processed from each virtual GUID. For DataReaders on keyed topics
requesting instance-ordering (see 7.4.6 PRESENTATION QosPolicy on page 363), this state will be
stored per instance per virtual GUID..

Criteria to consider a sample “processed by the application”

l For the read/take methods that require calling return_loan(), a sample 's1' with sequence number
's1_seq_num' and virtual GUID ‘vg1’ is considered processed by the application when the
DataReader’s return_loan() operation is called for sample 's1' or any other sample with the same
virtual GUID and a sequence number greater than 's1_seq_num'. For example:

retcode = Foo_reader->take(data_seq, info_seq,
DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

if (retcode == DDS_RETCODE_NO_DATA) {
return;

} else if (retcode != DDS_RETCODE_OK) {
/* report error */

return;

1The circumstances under which a data sample is considered “processed by the application” are described in the sections
that follow.

750

13.4.1 Durable Reader State With Protocol Acknowledgment

751

}
for (i = 0; i < data_seq.length(); ++i) {

/* Operate with the data */
}
/* Return the loan */
retcode = Foo_reader->return_loan(data_seq, info_seq);
if (retcode != DDS_RETCODE_OK) {

/* Report and error */
}
/* At this point the samples contained in data_seq
will be considered as received. If the DataReader
restarts, the samples will not be received again */

l For the read/take methods that do not require calling return_loan(), a sample 's1' with sequence
number 's1_seq_num' and virtual GUID ‘vg1’ will be considered processed after the application
reads or takes the sample 's1' or any other sample with the same virtual GUID and with a sequence
number greater than 's1_seq_num'. For example:

retcode = Foo_reader->take_next_sample(data,info);
/* At this point the sample contained in data will be
considered as received. All the samples with a sequence
number smaller than the sequence number associated with
data will also be considered as received.
If the DataReader restarts, these sample will not
be received again */

If you access the samples in the DataReader cache out of order—for example via QueryCondition,
specifying an instance state, or reading by instance when the PRESENTATION QoS is not set to
INSTANCE_PRESENTATION_QOS—then the samples that have not yet been taken or read by
the application may still be considered as ”processed by the application”.

13.4.1.1 Bandwidth Utilization

To optimize network usage, if a DataReader configured with durable reader state is restarted and it dis-
covers a DataWriter with a virtual GUID ‘vg’, the DataReader will ACK all the samples with a sequence
number smaller than ‘sn’, where ‘sn’ is the first sequence number that has not been being processed by the
application for ‘vg’.

Notice that the previous algorithm can significantly reduce the number of duplicates on the wire. However,
it does not suppress them completely in the case of keyed DataReaders where the durable state is kept per
(instance, virtual GUID). In this case, and assuming that the application has read samples out of order
(e.g., by reading different instances), the ACK is sent for the lowest sequence number processed across all
instances and may cause samples already processed to flow on the network again. These redundant
samples waste bandwidth, but they will be dropped by the DataReader and not be delivered to the applic-
ation.

13.4.2 Durable Reader State with Application Acknowledgment

13.4.2 Durable Reader State with Application Acknowledgment

This section assumes you are familiar with the concept of Application Acknowledgment as described in
7.3.12 Application Acknowledgment on page 318.

For each DataReader configured to be durable and that uses application acknowledgement (see 7.3.12
Application Acknowledgment on page 318), Connext DDS will create one database table with the fol-
lowing naming convention: RS<32 uuencoding of the reader virtual GUID>. This table will store the
list of sequence number intervals that have been acknowledged for each virtual GUID. The size of the
column that stores the sequence number intervals is limited to 32767 bytes. If this size is exceeded for a
given virtual GUID, the operation that persists the DataReader state into the database will fail.

13.4.2.1 Bandwidth Utilization

To optimize network usage, if a DataReader configured with durable reader state is restarted and it dis-
covers a DataWriter with a virtual GUID ‘vg’, the DataReader will send an APP_ACK message with all
the samples that were auto-acknowledged or explicitly acknowledged in previous executions.

Notice that this algorithm can significantly reduce the number of duplicates on the wire. However, it does
not suppress them completely since the DataReader may send a NACK and receive some samples from
the DataWriter before the DataWriter receives the APP_ACK message.

13.4.3 Durable Reader State Use Case

The following use case describes the durable reader state functionality:

1. A DataReader receives two samples with sequence number 1 and 2 published by a DataWriter with
virtual GUID 1. The application takes those samples.

2. After the application returns the loan on samples 1 and 2, the DataReader considers them as pro-
cessed and it persists the state change.

752

13.4.4 How To Configure a DataReader for Durable Reader State

753

3. The process running the DataReader is stopped.

4. The DataReader is restarted.

Because all the samples with sequence number smaller or equal than 2 were considered received,
the reader will not ask for these samples from the DataWriter.

13.4.4 How To Configure a DataReader for Durable Reader State

To configure a DataReader with durable reader state, use the 7.5.19 PROPERTY QosPolicy (DDS
Extension) on page 440 associated with DataReaders and DomainParticipants.

A property defined in the DomainParticipant will be applicable to all the DataReaders contained in the
participant unless it is overwritten by the DataReaders. Table 13.2 Durable Reader State Properties lists
the supported properties.

13.4.4 How To Configure a DataReader for Durable Reader State

Property Description

dds.data_read-
er.state.odbc.dsn

Required.

The ODBCDSN (Data Source Name) associated with the database where the DataReader state must be persisted.

dds.data_reader.state.
filter_redundant_samples

To enable durable reader state, this property must be set to 1.

When set to 0, the reader state is not maintained and Connext DDS does not filter duplicate samples that may be
coming from the same virtual writer.

Default: 1

dds.data_read-
er.state.odbc.driver

This property indicates which ODBCdriver to load. If the property is not specified,Connext DDSwill try to use the
standard ODBCdrivermanager library (UnixOdbc on Linux systems, the WindowsODBCdrivermanager on Win-
dows systems).

dds.data_read-
er.state.odbc.username These two properties configure the username and password used to connect to the database.

Default: No password or usernamedds.data_read-
er.state.odbc.password

dds.data_
reader.state.restore

This property indicates if the persisted DataReader state must be restored or not once the DataReader is restarted.

If this property is 0, the previous state will be deleted from the database. If it is 1, the DataReader will restore its pre-
vious state from the database content.

Default: 1

dds.data_reader.state.
checkpoint_frequency

This property controls how often the reader state is stored into the database. A value ofNmeans store the state
once everyN samples.

A high frequency will provide better performance. However, if the reader is restarted it may receive some duplicate
samples. These samples will be filtered byConnext DDS and they will not be propagated to the application.

Default: 1

dds.data_read-
er.state.persistence_
service.request_depth

This property indicates howmany of the most recent historical samples the persisted DataReader wants to receive
upon start-up.

Default: 0

Table 13.2 Durable Reader State Properties

Example (C++ code):
/* Get default QoS */
...
retcode = DDSPropertyQosPolicyHelper::add_property(

readerQos.property,
"dds.data_reader.state.odbc.dsn",
"<user DSN>", DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
retcode = DDSPropertyQosPolicyHelper::add_property(readerQos.property,

"dds.data_reader.state.odbc.driver",
"<ODBC library>", DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

754

13.5 Data Durability

755

}
retcode = DDSPropertyQosPolicyHelper::add_property(readerQos.property,

"dds.data_reader.state.restore", "<0|1>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
/* Create Data Reader */
...

13.5 Data Durability

The data durability feature is an implementation of the OMG DDS Persistence Profile. The 7.5.9
DURABILITY QosPolicy on page 412 allows an application to configure a DataWriter so that the inform-
ation written by the DataWriter survives beyond the lifetime of the DataWriter.

Connext DDS implements TRANSIENT and PERSISTENT durability using an external service called
RTI Persistence Service, available for purchase as a separate RTI product.

Persistence Service receives information from DataWriters configured with TRANSIENT or
PERSISTENT durability and makes that information available to late-joining DataReaders—even if the
original DataWriter is not running.

The samples published by a DataWriter can be made durable by setting the kind field of the 7.5.9
DURABILITY QosPolicy on page 412 to one of the following values:

l DDS_TRANSIENT_DURABILITY_QOS:Connext DDS will store previously published samples
in memory using Persistence Service, which will send the stored data to newly discovered
DataReaders.

l DDS_PERSISTENT_DURABILITY_QOS: Connext DDS will store previously published
samples in permanent storage, like a disk, using Persistence Service, which will send the stored data
to newly discovered DataReaders.

A DataReader can request TRANSIENT or PERSISTENT data by setting the kind field of the cor-
responding 7.5.9 DURABILITY QosPolicy on page 412. A DataReader requesting PERSISTENT data
will not receive data from DataWriters or Persistence Service applications that are configured with
TRANSIENT durability.

13.5.1 RTI Persistence Service

Persistence Service is a Connext DDS application that is configured to persist topic data. For each one of
the topics that must be persisted for a specific domain, the service will create a DataWriter (known as
PRSTDataWriter) and a DataReader (known as PRSTDataReader). The samples received by the
PRSTDataReaders will be published by the corresponding PRSTDataWriters to be available for late-join-
ing DataReaders.

13.5.1 RTI Persistence Service

For more information on Persistence Service, please see:

l Introduction to RTI Persistence Service (Chapter 45 on page 1185)

l Configuring Persistence Service (Chapter 46 on page 1186)

l Running RTI Persistence Service (Chapter 47 on page 1211)

Persistence Service can be configured to operate in PERSISTENT or TRANSIENT mode:

l TRANSIENT mode The PRSTDataReaders and PRSTDataWriters will be created with
TRANSIENT durability and Persistence Service will keep the received samples in memory.
Samples published by a TRANSIENT DataWriter will survive the DataWriter lifecycle but will not
survive the lifecycle of Persistence Service (unless you are running multiple copies).

l PERSISTENT mode The PRSTDataWriters and PRSTDataReaders will be created with
PERSISTENT durability and Persistence Service will store the received samples in files or in an
external relational database. Samples published by a PERSISTENT DataWriter will survive the
DataWriter lifecycle as well as any restarts of Persistence Service.

Peer-to-Peer Communication:

By default, a PERSISTENT/TRANSIENT DataReader will receive samples directly from the original
DataWriter if it is still alive. In this scenario, the DataReader may also receive the same samples from Per-
sistence Service. Duplicates will be discarded at the middleware level. This Peer-To-Peer communication
pattern is illustrated in Figure 13.6: Peer-to-Peer Communication on the next page. To use this peer-to-peer
communication pattern, set the direct_communication field in the 7.5.9 DURABILITY QosPolicy on
page 412 to TRUE. A PERSISTENT/TRANSIENT DataReader will receive information directly from
PERSISTENT/TRANSIENT DataWriters.

756

13.5.1 RTI Persistence Service

757

Figure 13.6: Peer-to-Peer Communication

Relay Communication

A PERSISTENT/TRANSIENT DataReader may also be configured to not receive samples from the ori-
ginal DataWriter. In this case the traffic is relayed by Persistence Service. This ‘relay communication’ pat-
tern is illustrated in Figure 13.7: Relay Communication below. To use relay communication, set the
direct_communication field in the 7.5.9 DURABILITY QosPolicy on page 412 to FALSE. A
PERSISTENT/TRANSIENT DataReader will receive all the information from Persistence Service.
Figure 13.7: Relay Communication

Chapter 14 Guaranteed Delivery of Data
14.1 Introduction

Some application scenarios need to ensure that the information produced by certain producers is
delivered to all the intended consumers. This chapter describes the mechanisms available in Con-
next DDS to guarantee the delivery of information from producers to consumers such that the deliv-
ery is robust to many kinds of failures in the infrastructure, deployment, and even the
producing/consuming applications themselves.

Guaranteed information delivery is not the same as protocol-level reliability (described in Reliable
Communications (Chapter 11 on page 694)) or information durability (described in Mechanisms
for Achieving Information Durability and Persistence (Chapter 13 on page 738)). Guaranteed
information delivery is an end-to-end application-level QoS, whereas the others are middleware-
level QoS. There are significant differences between these two:

l With protocol-level reliability alone, the producing application knows that the information is
received by the protocol layer on the consuming side. However the producing application
cannot be certain that the consuming application read that information or was able to suc-
cessfully understand and process it. The information could arrive in the consumer’s protocol
stack and be placed in the DataReader cache but the consuming application could either
crash before it reads it from the cache, not read its cache, or read the cache using queries or
conditions that prevent that particular DDS data sample from being accessed. Furthermore,
the consuming application could access the DDS sample, but not be able to interpret its
meaning or process it in the intended way.

l With information durability alone, there is no way to specify or characterize the intended con-
sumers of the information. Therefore the infrastructure has no way to know when the inform-
ation has been consumed by all the intended recipients. The information may be persisted
such that it is not lost and is available to future applications, but the infrastructure and pro-
ducing applications have no way to know that all the intended consumers have joined the
system, received the information, and processed it successfully.

758

14.1.1 Identifying the Required Consumers of Information

759

The guaranteed data-delivery mechanism provided in Connext DDS overcomes the limitations described
above by providing the following features:

l Required subscriptions. This feature provides a way to configure, identify and detect the applic-
ations that are intended to consume the information. See 7.3.13 Required Subscriptions on
page 324.

l Application-level acknowledgments. This feature provides the means ensure that the information
was successfully processed by the application-layer in a consumer application. See 7.3.12 Applic-
ation Acknowledgment on page 318.

l Durable subscriptions. This feature leverages the RTI Persistence Service to persist DDS DDS
samples intended for the required subscriptions such that they are delivered even if the originating
application is not available. See 46.9 Configuring Durable Subscriptions in Persistence Service on
page 1205.

These features used in combination with the mechanisms provided for Information Durability and Per-
sistence (see Mechanisms for Achieving Information Durability and Persistence (Chapter 13 on page 738))
enable the creation of applications where the information delivery is guaranteed despite application and
infrastructure failures. 14.2 Scenarios on page 763 describes various guaranteed-delivery scenarios and
how to configure the applications to achieve them.

When implementing an application that needs guaranteed data delivery, we have to consider three key
aspects:

Key Aspects to Consider Related Features and QoS

Identifying the required consumers of information

Required subscriptions

Durable subscriptions

EntityName QoS policy

Availability QoS policy

Ensuring the intended consumer applications process the data successfully

Application-level acknowledgment

Acknowledgment by a quorumof required and durable subscriptions

Reliability QoS policy (acknowledgment mode)

Availability QoS policy

Ensuring information is available to late joining applications

Persistence Service

Durable Subscriptions

Durability QoS

Durable Writer History

14.1.1 Identifying the Required Consumers of Information

The first step towards ensuring that information is processed by the intended consumers is the ability to spe-
cify and recognize those intended consumers. This is done using the required subscriptions feature (7.3.13

14.1.1 Identifying the Required Consumers of Information

Required Subscriptions on page 324) configured via the 7.5.11 ENTITY_NAME QosPolicy (DDS Exten-
sion) on page 419 and 7.5.1 AVAILABILITY QosPolicy (DDS Extension) on page 371).

Connext DDS DataReader entities (as well as DataWriter and DomainParticipant entities) can have a
name and a role_name. These names are configured using the 7.5.11 ENTITY_NAME QosPolicy
(DDS Extension) on page 419, which is propagated via DDS discovery and is available as part of the
builtin-topic data for the Entity (see Built-In Topics (Chapter 18 on page 837)).

The DDS DomainParticipant, DataReader and DataWriter entities created by RTI-provided applications
and services, specifically services such as RTI Persistence Service, automatically configure the ENTITY_
NAME QoS policy according to their function. For example the DataReaders created by RTI Persistence
Service have their role_name set to “PERSISTENCE_SERVICE”.

Unless explicitly set by the user, the DomainParticipant, DataReader and DataWriter entities created by
end-user applications have their name and role_name set to NULL. However applications may modify
this using the 7.5.11 ENTITY_NAME QosPolicy (DDS Extension) on page 419.

Connext DDS uses the role_name of DataReaders to identify the consumer’s logical function. For this
reason Connext DDS’s required subscriptions feature relies on the role_name to identify intended con-
sumers of information. The use of the DataReader’s role_name instead of the name is intentional. From
the point of view of the information producer, the important thing is not the concrete DataReader (iden-
tified by its name, for example, “Logger123”) but rather its logical function in the system (identified by its
role_name, for example “LoggingService”).

A DataWriter that needs to ensure its information is delivered to all the intended consumers uses the 7.5.1
AVAILABILITY QosPolicy (DDS Extension) on page 371 to configure the role names of the consumers
that must receive the information.

The AVAILABILITY QoS Policy set on a DataWriter lets an application configure the required con-
sumers of the data produced by the DataWriter. The required consumers are specified in the required_
matched_endpoint_groups attribute within the AVAILABILITY QoS Policy. This attribute is a
sequence of DDS EndpointGroup structures. Each EndpointGroup represents a required information con-
sumer characterized by the consumer’s role_name and quorum_count. The role_name identifies a
logical consumer; the quorum_count specifies the minimum number of consumers with that role_name
that must acknowledge the DDS sample before the DataWriter can consider it delivered to that required
consumer.

For example, an application that wants to ensure data written by a DataWriter is delivered to at least two
Logging Services and one Display Service would configure the DataWriter’s AVAILABILITY QoS
Policy with a required_matched_endpoint_groups consisting of two elements. The first element would
specify a required consumer with the role_name “LoggingService” and a quorum_count of 2. The
second element would specify a required consumer with the role_name “DisplayService” and a quorum_
count of 1. Furthermore, the application would set the logging service DataReader ENTITY_NAME
policy to have a role_name of “LoggingService” and similarly the display service DataReader ENTITY_
NAME policy to have the role_name of “DisplayService.”

760

14.1.2 Ensuring Consumer Applications Process the Data Successfully

761

A DataWriter that has been configured with an AVAILABILITY QoS policy will not remove DDS
samples from the DataWriter cache until they have been “delivered” to both the already-discovered
DataReaders and the minimum number (quorum_count) of DataReaders specified for each role. In par-
ticular, DDS samples will be retained by the DataWriter if the quorum_count of matched DataReaders
with a particular role_name have not been discovered yet.

We used the word “delivered” in quotes above because the level of assurance a DataWriter has that a par-
ticular DDS sample has been delivered depends on the setting of the 7.5.21 RELIABILITY QosPolicy on
page 448. We discuss this next in 14.1.2 Ensuring Consumer Applications Process the Data Successfully
below.

14.1.2 Ensuring Consumer Applications Process the Data Successfully

14.1.1 Identifying the Required Consumers of Information on page 759 described mechanisms by which
an application could configure who the required consumers of information are. This section is about the cri-
teria, mechanisms, and assurance provided by Connext DDS to ensure consumers have the information
delivered to them and process it in a successful manner.

RTI provides four levels of information delivery guarantee. You can set your desired level using the 7.5.21
RELIABILITY QosPolicy on page 448. The levels are:

l Best-effort, relying only on the underlying transportThe DataWriter considers the DDS sample
delivered/acknowledged as soon as it is given to the transport to send to the DataReader’s des-
tination. Therefore, the only guarantee is the one provided by the underlying transport itself. Note
that even if the underlying transport is reliable (e.g., shared memory or TCP) the reliability is limited
to the transport-level buffers. There is no guarantee that the DDS sample will arrive to the
DataReader cache because after the transport delivers to the DataReader’s transport buffers, it is
possible for the DDS sample to be dropped because it exceeds a resource limit, fails to deserialize
properly, the receiving application crashes, etc.

l Reliable with protocol acknowledgmentThe DDS-RTPS reliability protocol used by Connext
DDS provides acknowledgment at the RTPS protocol level: a DataReader will acknowledge it has
deserialized the DDS sample correctly and stored it in the DataReader’s cache. However, there is
no guarantee the application actually processed the DDS sample. The application might crash before
processing the DDS sample, or it might simply fail to read it from the cache.

l Reliable with Application Acknowledgment (Auto)Application Acknowledgment in Auto mode
causes Connext DDS to send an additional application-level acknowledgment (above and beyond
the RTPS protocol level acknowledgment) after the consuming application has read the DDS
sample from the DataReader cache and the application has subsequently called the DataReader’s
return_loan() operation (see 8.4.2 Loaning and Returning Data and SampleInfo Sequences on
page 558) for that DDS sample. This mode guarantees that the application has fully read the DDS
sample all the way until it indicates it is done with it. However it does not provide a guarantee that
the application was able to successfully interpret or process the DDS sample. For example, the DDS

14.1.3 Ensuring Information is Available to Late-Joining Applications

sample could be a command to execute a certain action and the application may read the DDS
sample and not understand the command or may not be able to execute the action.

l Reliable with Application Acknowledgment (Explicit)Application Acknowledgment in Explicit
mode causes Connext DDS to send an application-level acknowledgment only after the consuming
application has read the DDS sample from the DataReader cache and subsequently called the
DataReader’s acknowledge_sample() operation (see 8.4.4 Acknowledging DDS Samples on
page 568) for that DDS sample. This mode guarantees that the application has fully read the DDS
sample and completed operating on it as indicated by explicitly calling acknowledge_sample(). In
contrast with the Auto mode described above, the application can delay the acknowledgment of the
DDS sample beyond the time it holds onto the data buffers, allowing it to be process in a more flex-
ible manner. Similar to the Auto mode, it does not provide a guarantee that the application was able
to successfully interpret or process the DDS sample. For example, the DDS sample could be a com-
mand to execute a certain action and the application may read the DDS sample and not understand
the command or may not be able to execute the action. Applications that need guarantees that the
data was successfully processed and interpreted should use a request-reply interaction (see Part 4:
Request-Reply and RPC Communication Patterns on page 1005).

14.1.3 Ensuring Information is Available to Late-Joining Applications

The third aspect of guaranteed data delivery addresses situations where the application needs to ensure that
the information produced by a particular DataWriter is available to DataReaders that join the system after
the data was produced. The need for data delivery may even extend beyond the lifetime of the producing
application; that is, it may be required that the information is delivered to applications that join the system
after the producing application has left the system.

Connext DDS provides four mechanisms to handle these scenarios:

l The DDS Durability QoS Policy. The 7.5.9 DURABILITY QosPolicy on page 412 specifies
whether DDS samples should be available to late joiners. The policy is set on the DataWriter and
the DataReader and supports four kinds: VOLATILE, TRANSIENT_LOCAL, TRANSIENT, or
PERSISTENT. If the DataWriter’s Durability QoS policy is set to VOLATILE kind, the
DataWriter’s DDS samples will not be made available to any late joiners. If the DataWriter’s policy
kind is set to TRANSIENT_LOCAL, TRANSIENT, or PERSISTENT, the DDS samples will be
made available for late-joining DataReaders who also set their DURABILITY QoS policy kind to
something other than VOLATILE.

l Durable Writer History. A DataWriter configured with a DURABILITY QoS policy kind other
than VOLATILE keeps its data in a local cache so that it is available when the late-joining applic-
ation appears. The data is maintained in the DataWriter’s cache until it is considered to be no longer
needed. The precise criteria depends on the configuration of additional QoS policies such as 7.5.14
LIFESPAN QoS Policy on page 426, 7.5.12 HISTORY QosPolicy on page 421, 7.5.22
RESOURCE_LIMITS QosPolicy on page 452, etc. For the purposes of guaranteeing information
delivery it is important to note that the DataWriter’s cache can be configured to be a memory cache

762

14.2 Scenarios

763

or a durable (disk-based) cache. A memory cache will not survive an application restart. However, a
durable (disk-based) cache can survive the restart of the producing application. The use of a durable
writer history, including the use of an external ODBC database as a cache, is described in 13.3 Dur-
able Writer History on page 745.

l RTI Persistence Service. This service allows the information produced by a DataWriter to survive
beyond the lifetime of the producing application. Persistence Service is an stand-alone application
that runs on many supported platforms. This service complies with the Persistent Profile of the
OMG DDS specification. The service uses DDS to subscribe to the DataWriters that specify a 7.5.9
DURABILITY QosPolicy on page 412 kind of TRANSIENT or PERSISTENT. Persistence Ser-
vice receives the data from those DataWriters, stores the data in its internal caches, and makes the
data available via DataWriters (which are automatically created by Persistence Service) to late-join-
ing DataReaders that specify a Durability kind of TRANSIENT or PERSISTENT. Persistence Ser-
vice can operate as a relay for the information from the original writer, preserving the source_
timestamp of the data, as well as the original DDS sample virtual writer GUID (see 13.5.1 RTI Per-
sistence Service on page 755). In addition, you can configure Persistence Service itself to use a
memory-based cache or a durable (disk-based or database-based) cache. See 46.6 Configuring Per-
sistent Storage on page 1194. Configuration of redundant and load-balanced persistence services is
also supported.

l Durable Subscriptions. This is a Persistence Service configuration setting that allows configuration
of the required subscriptions (14.1.1 Identifying the Required Consumers of Information on
page 759) for the data stored by Persistence Service (7.3.14 Managing Instances (Working with
Keyed Data Types) on page 326). Configuring required subscriptions for Persistence Service
ensures that the service will store the DDS samples until they have been delivered to the configured
number (quorum_count) of DataReaders that have each of the specified roles.

14.2 Scenarios

In each of the scenarios below, we assume both the DataWriter and DataReader are configured for strict
reliability (RELIABLE ReliabilityQosPolicyKind and KEEP_ALL HistoryQosPolicyKind, see 11.3.3
Controlling Queue Depth with the History QosPolicy on page 709). As a result, when the DataWriter’s
cache is full of unacknowledged DDS samples, the write() operation will block until DDS samples are
acknowledged by all the intended consumers.

14.2.1 Scenario 1: Guaranteed Delivery to a-priori Known Subscribers

A common use case is to guarantee delivery to a set of known subscribers. These subscribers may be
already running and have been discovered, they may be temporarily non-responsive, or it could be that
some of those subscribers are still not present in the system. See Figure 14.1: Guaranteed Delivery Scen-
ario 1 on the next page.

To guarantee delivery, the list of required subscribers should be configured using the 7.5.1
AVAILABILITY QosPolicy (DDS Extension) on page 371 on the DataWriters to specify the role_name

14.2.1 Scenario 1: Guaranteed Delivery to a-priori Known Subscribers

and quorum_count for each required subscription. Similarly the 7.5.11 ENTITY_NAME QosPolicy
(DDS Extension) on page 419 should be used on the DataReaders to specify their role_name. In addition
we use 7.3.12 Application Acknowledgment on page 318 to guarantee the DDS sample was delivered
and processed by the DataReader.
Figure 14.1: Guaranteed Delivery Scenario 1

The DataWriter's and DataReader's RELIABILITY QoS Policy can be configured for either AUTO or
EXPLICIT application acknowledgment kind. As the DataWriter publishes the DDS sample, it will await

764

14.2.2 Scenario 2: Surviving a Writer Restart when Delivering DDS Samples to a priori Known

765

acknowledgment from the DataReader (through the protocol-level acknowledgment) and from the sub-
scriber application (though the additional application-level acknowledgment). The DataWriter will only
consider the DDS sample acknowledged when it has been acknowledged by all discovered active
DataReaders and also by the quorum_count of each required subscription.

In this specific scenario, DataReader #1 is configured for EXPLICIT application acknowledgment. After
reading and processing the DDS sample, the subscribing application calls acknowledge_sample() or
acknowledge_all() (see 8.4.4 Acknowledging DDS Samples on page 568). As a result, Connext DDS
will send an application-level acknowledgment to the DataWriter, which will in its turn confirm the
acknowledgment.

If the DDS sample was lost in transit, the reliability protocol will repair the DDS sample. Since it has not
been acknowledged, it remains available in the writer’s queue to be automatically resent by Connext DDS.
The DDS sample will remain available until acknowledged by the application. If the subscribing applic-
ation crashes while processing the DDS sample and restarts, Connext DDS will repair the unac-
knowledged DDS sample. DDS samples which already been processed and acknowledged will not be
resent.

In this scenario, DataReader #2 may be a late joiner. When it starts up, because it is configured with
TRANSIENT_LOCAL Durability, the reliability protocol will re-send the DDS samples previously sent
by the writer. These DDS samples were considered unacknowledged by the DataWriter because they had
not been confirmed yet by the required subscription (identified by its role_name: ‘logger’).

DataReader #2 does not explicitly acknowledge the DDS samples it reads. It is configured to use AUTO
application acknowledgment, which will automatically acknowledge DDS samples that have been read or
taken after the application calls the DataReader return_loan operation.

This configuration works well for situations where the DataReader may not be immediately available or
may restart. However, this configuration does not provide any guarantee if the DataWriter restarts. When
the DataWriter restarts, DDS samples previously unacknowledged are lost and will no longer be available
to any late joining DataReaders.

14.2.2 Scenario 2: Surviving a Writer Restart when Delivering DDS Samples
to a priori Known Subscribers

Scenario 1 describes a use case where DDS samples are delivered to a list of a priori known subscribers.
In that scenario, Connext DDS will deliver DDS samples to the late-joining or restarting subscriber.
However, if the producer is re-started the DDS samples it had written will no longer be available to future
subscribers.

To handle a situation where the producing application is restarted, we will use the 13.3 Durable Writer His-
tory on page 745 feature. See Figure 14.2: Guaranteed Delivery Scenario 2 on the next page.

A DataWriter can be configured to maintain its data and state in durable storage. This configuration is
done using the PROPERTY QoS policy as described in 13.3.2 How To Configure Durable Writer

14.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to a priori Known

History on page 747.. With this configuration the DDS data samples written by the DataWriter and any
necessary internal state is persisted by the DataWriter into durable storage As a result, when the
DataWriter restarts, DDS samples which had not been acknowledged by the set of required subscriptions
will be resent and late-joining DataReaders specifying DURABILITY kind different from VOLATILE
will receive the previously-written DDS samples.
Figure 14.2: Guaranteed Delivery Scenario 2

14.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and
Forward) to a priori Known Subscribers

Previous scenarios illustrated that using the DURABILITY, RELIABILITY, and AVAILABILITY QoS
policies we can ensure that as long as the DataWriter is present in the system, DDS samples written by a
DataWriter will be delivered to the intended consumers. The use of the durable writer history in the pre-
vious scenario extended this guarantee even in the presence of a restart of the application writing the data.

This scenario addresses the situation where the originating application that produced the data is no longer
available. For example, the network could have become partitioned, the application could have been ter-
minated, it could have crashed and not have been restarted, etc.

766

14.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to a priori Known

767

In order to deliver data to applications that appear after the producing application is no longer available on
the network it is necessary to have another service that stores those DDS samples and delivers them. This
is the purpose of the RTI Persistence Service.

Persistence Service can be configured to automatically discover DataWriters that specify a
DURABILITY QoS with kind TRANSIENT or PERSISTENT and automatically create pairs
(DataReader, DataWriter) that receive and store that information (see Introduction to RTI Persistence Ser-
vice (Chapter 45 on page 1185)).

All DataReaders created by the RTI Persistence Service have the ENTITY_QOS policy set with the role_
name of “PERSISTENCE_SERVICE”. This allows an application to specify Persistence Service as one
of the required subscriptions for its DataWriters.

In this third scenario, we take advantage of this capability to configure the DataWriter to have the RTI Per-
sistence Service as a required subscription. See Figure 14.3: Guaranteed Delivery Scenario 3 below.
Figure 14.3: Guaranteed Delivery Scenario 3

The RTI Persistence Service can also have its DataWriters configured with required subscriptions. This
feature is known as Persistence Service “durable subscriptions”. DataReader #1 is pre configured in Per-
sistence Service as a Durable Subscription. (Alternatively, DataReader #1 could have registered itself
dynamically as Durable Subscription using the DomainParticipant register_durable_subscription() oper-
ation).

14.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to a priori Known

We also configure the RELIBILITY QoS policy setting of the AcknowledgmentKind to
APPLICATION_AUTO_ACKNOWLEDGMENT_MODE in order to ensure DDS samples are stored
in the Persistence Service and properly processed on the consuming application prior to them being
removed from the DataWriter cache.

With this configuration in place the DataWriter will deliver DDS samples to the DataReader and to the
Persistence Service reliably and wait for the Application Acknowledgment from both. Delivery of DDS
samples to DataReader #1 and the Persistence Service occurs concurrently. The Persistence Service in
turn takes responsibility to deliver the DDS samples to the configured “logger” durable subscription. If the
original publisher is no longer available, DDS samples can still be delivered by the Persistence Service. to
DataReader #1 and any other late-joining DataReaders.

When DataReader #1 acknowledges the DDS sample through an application-acknowledgment message,
both the original DataWriter and Persistence Service will receive the application-acknowledgment. Con-
next DDS takes advantage of this to reduce or eliminate delivery if duplicate DDS samples, that is, the Per-
sistence Service can notice that DataReader #1 has acknowledged a DDS sample and refrain from
separately sending the same DDS sample to DataReader #1.

14.2.3.1 Variation: Using Redundant Persistence Services

Using a single Persistence Service to guarantee delivery can still raise concerns about having the Per-
sistence Service as a single point of failure. To provide a level of added redundancy, the publisher may be
configured to await acknowledgment from a quorum of multiple persistence services (role_name remains
PERSISTENCE). Using this configuration we can achieve higher levels of redundancy
Figure 14.4: Guaranteed Delivery Scenario 3 with Redundant Persistence Service

768

14.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to a priori Known

769

The RTI Persistence Services will automatically share information to keep each other synchronized. This
includes both the data and also the information on the durable subscriptions. That is, when a Persistence
Service discovers a durable subscription, information about durable subscriptions is automatically rep-
licated and synchronized among persistence services (CITE: New section to be written in Persistence Ser-
vice Chapter).

14.2.3.2 Variation: Using Load-Balanced Persistent Services

The Persistence Service will store DDS samples on behalf of many DataWriters and, depending on the
configuration, it might write those DDS samples to a database or to disk. For this reason the Persistence
Service may become a bottleneck in systems with high durable DDS sample throughput.

It is possible to run multiple instances of the Persistence Service in a manner where each is only respons-
ible for the guaranteed delivery of certain subset of the durable data being published. These Persistence
Service can also be run different computers and in this manner achieve much higher throughput. For
example, depending on the hardware, using typical hard-drives a single a Persistence Service may be able
to store only 30000 DDS samples per second. By running 10 persistence services in 10 different com-
puters we would be able to handle storing 10 times that system-wide, that is, 300000 DDS samples per
second.

The data to be persisted can be partitioned among the persistence services by specifying different Topics to
be persisted by each Persistence Service. If a single Topic has more data that can be handled y a single Per-
sistence Service it is also possible to specify a content-filter so that only the data within that Topic that
matches the filter will be stored by the Persistence Service. For example assume the Topic being persisted
has an member named “x” of type float. It is possible to configure two Persistence Services one with the fil-
ter “x>10”, and the other “x <=10”, such that each only stores a subject of the data published on the Topic.
See also: 46.9 Configuring Durable Subscriptions in Persistence Service on page 1205.

Chapter 15 Discovery
This section discusses how Connext DDS objects on different nodes find out about each other
using the default Simple Discovery Protocol (SDP). It describes the sequence of messages that are
passed between Connext DDS on the sending and receiving sides.

This section includes:

l 15.1 What is Discovery? on the next page

l 15.2 Configuring the Peers List Used in Discovery on page 773

l 15.3 Discovery Implementation on page 779

l 15.4 Debugging Discovery on page 795

l 15.5 Ports Used for Discovery on page 797

The discovery process occurs automatically, so you do not have to implement any special code.
We recommend that all users read 15.1 What is Discovery? on the next page and 15.2 Configuring
the Peers List Used in Discovery on page 773. The remaining sections contain advanced material
for those who have a particular need to understand what is happening ‘under the hood.’ This
information can help you debug a system in which objects are not communicating.

You may also be interested in reading Transport Plugins (Chapter 16 on page 802) , as well as
learning about these QosPolicies:

l 7.5.27 TRANSPORT_SELECTION QosPolicy (DDS Extension) on page 464

l 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671

l 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension) on page 465

l 8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension) on page 596

770

15.1 What is Discovery?

771

15.1 What is Discovery?

Discovery is the behind-the-scenes way in which Connext DDS objects (DomainParticipants,
DataWriters, and DataReaders) on different nodes find out about each other. Each DomainParticipant
maintains a database of information about all the active DataReaders and DataWriters that are in the same
DDS domain. This database is what makes it possible for DataWriters and DataReaders to communicate.
To create and refresh the database, each application follows a common discovery process.

This chapter describes the default discovery mechanism known as the Simple Discovery Protocol, which
includes two phases: 15.1.1 Simple Participant Discovery below and 15.1.2 Simple Endpoint Discovery
on the next page.

The goal of these two phases is to build, for each DomainParticipant, a complete picture of all the entities
that belong to the remote participants that are in its peers list. The peers list is the list of nodes with which a
participant may communicate. It starts out the same as the initial_peers list that you configure in the 9.5.2
DISCOVERY QosPolicy (DDS Extension) on page 646. If the accept_unknown_peers flag in that same
QosPolicy is TRUE, then other nodes may also be added as they are discovered; if it is FALSE, then the
peers list will match the initial_peers list, plus any peers added using the DomainParticipant’s add_peer()
operation.

15.1.1 Simple Participant Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Participant Discovery Protocol
(SPDP).

During the Participant Discovery phase, DomainParticipants learn about each other. The DomainPar-
ticipant’s details are communicated to all other DomainParticipants in the same DDS domain by sending
participant declaration messages, also known as participant DATA submessages or participant announce-
ments. The details include the DomainParticipant’s unique identifying key (GUID or Globally Unique ID
described below), transport locators (addresses and port numbers), and QoS. These messages are sent on a
periodic basis using best-effort communication.

Participant DATAs are sent periodically to maintain the liveliness of the DomainParticipant. They are also
used to communicate changes in the DomainParticipant’s QoS. Only changes to QosPolicies that are part
of the DomainParticipant’s built-in data (namely, the 7.5.30 USER_DATA QosPolicy on page 470)
need to be propagated.

When receiving remote participant discovery information, Connext DDS determines if the local participant
matches the remote one. A ‘match’ between the local and remote participant occurs only if the local and
remote participant have the same Domain ID and Domain Tag (see 9.3.4 Choosing a Domain ID and
Creating Multiple DDS Domains on page 624 and 9.3.5 Choosing a Domain Tag on page 625). This
matching process occurs as soon as the local participant receives discovery information from the remote
one. If there is no match, the discovery DATA is ignored, resulting in the remote participant (and all its
associated entities) not being discovered.

15.1.2 Simple Endpoint Discovery

When a DomainParticipant is deleted, a participant DATA (delete) submessage with the DomainPar-
ticipant's identifying GUID is sent.

The GUID is a unique reference to an entity. It is composed of a GUID prefix and an Entity ID. By
default, the GUID prefix is calculated from the IP address and the process ID. (For more on how the
GUID is calculated, see 9.5.9.3 Controlling How the GUID is Set (rtps_auto_id_kind) on page 679.) The
IP address and process ID are stored in the DomainParticipant’s 9.5.9 WIRE_PROTOCOL QosPolicy
(DDS Extension) on page 676. The entityID is set by Connext DDS (you may be able to change it in a
future version).

Once a pair of participants have discovered each other, they can move on to the Endpoint Discovery
phase, which is how DataWriters and DataReaders find each other.

You may replace Simple Participant Discovery with Limited Bandwidth Participant Discovery (LBPD) or
other discovery protocols. See builtin_discovery_plugins in the 9.5.3 DISCOVERY_CONFIG
QosPolicy (DDS Extension) on page 650 for more information.

15.1.2 Simple Endpoint Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Endpoint Discovery Protocol
(SEDP).

During the Endpoint Discovery phase, Connext DDS matches DataWriters and DataReaders. Information
(GUID, QoS, etc.) about your application’s DataReaders and DataWriters is exchanged by sending pub-
lication/subscription declarations in DATA messages that we will refer to as publication DATAs and sub-
scription DATAs. The Endpoint Discovery phase uses reliable communication.

As described in 15.3 Discovery Implementation on page 779, these declaration or DATA messages are
exchanged until each DomainParticipant has a complete database of information about the participants in
its peers list and their entities. Then the discovery process is complete and the system switches to a steady
state. During steady state, participant DATAs are still sent periodically to maintain the liveliness status of
participants. They may also be sent to communicate QoS changes or the deletion of a DomainParticipant.

When a remote DataWriter/DataReader is discovered, Connext DDS determines if the local application
has a matching DataReader/DataWriter. A ‘match’ between the local and remote entities occurs only if
the DataReader and DataWriter have the same Topic, same data type, and compatible QosPolicies (which
includes having the same partition name string, see 7.4.5 PARTITION QosPolicy on page 357). Fur-
thermore, if the DomainParticipant has been set up to ignore certain DataWriters/DataReaders, those entit-
ies will not be considered during the matching process. See 18.4.2 Ignoring Publications and
Subscriptions on page 849 for more on ignoring specific publications and subscriptions.

This ‘matching’ process occurs as soon as a remote entity is discovered, even if the entire database is not
yet complete: that is, the application may still be discovering other remote entities.

A DataReader and DataWriter can only communicate with each other if each one’s application has
hooked up its local entity with the matching remote entity. That is, both sides must agree to the connection.

772

15.2 Configuring the Peers List Used in Discovery

773

15.3 Discovery Implementation on page 779 describes the details about the discovery process.

You may replace Simple Endpoint Discovery with Limited Bandwidth Endpoint Discovery (LBED) or
other discovery protocols. See builtin_discovery_plugins in the 9.5.3 DISCOVERY_CONFIG
QosPolicy (DDS Extension) on page 650 for more information.

15.2 Configuring the Peers List Used in Discovery

As part of the participant phase of the discovery process, Connext DDS will announce itself within the
DDS domain. Connext DDS will try to contact all possible participants in the ‘initial peers list,’ specified in
the DomainParticipant’s 9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646. Note, however,
it is not known if there are actually Connext DDS applications running on the hosts in the inital peers list.
The initial peers list may include both unicast and multicast peer locators.

After startup, you can add to the ‘peers list’ with the add_peer() operation (see 9.5.2.3 Adding and
Removing Peers List Entries on page 647). The ‘peers list’ may also grow as peers are automatically dis-
covered (if accept_unknown_peers is TRUE, see 9.5.2.6 Controlling Acceptance of Unknown Peers on
page 648).

When you call get_default_participant_qos() for a DomainParticipantFactory, the values used for the
DiscoveryQosPolicy’s initial_peers and multicast_receive_addresses may come from the following:

l A file named NDDS_DISCOVERY_PEERS, which is formatted as described in 15.2.3 NDDS_
DISCOVERY_PEERS File Format on page 778. The file must be in your application’s current
working directory.

l An environment variable named NDDS_DISCOVERY_PEERS, defined as a comma-separated list
of peer descriptors (see 15.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format on
page 777).

l The value specified in the default XML QoS profile (see 19.4 Tags for Configuring QoS with XML
on page 880).

If NDDS_DISCOVERY_PEERS (file or environment variable) does not contain a multicast address,
then multicast_receive_addresses is cleared and the RTI discovery process will not listen for discovery
messages via multicast.

If NDDS_DISCOVERY_PEERS (file or environment variable) contains one or more multicast
addresses, the addresses are stored in multicast_receive_addresses, starting at element 0. They will be
stored in the order in which they appear in NDDS_DISCOVERY_PEERS.

Note: Setting initial_peers in the default XML QoS Profile does not modify the value ofmulticast_
receive_address.

15.2 Configuring the Peers List Used in Discovery

If both the file and environment variable are found, the file takes precedence and the environment variable
will be ignored.1 The settings in the default XML QoS Profile take precedence over the file and envir-
onment variable. In the absence of a file, environment variable, or default XML QoS profile values, Con-
next DDS will use a default value. See the API Reference HTML documentation for details (in the section
on the DISCOVERY QosPolicy).

If initial peers are specified in both the currently loaded QoS XML profile and in the NDDS_
DISCOVERY_PEERS file, the values in the profile take precedence.

The file, environment variable, and default XML QoS Profile make it easy to reconfigure which nodes
will take part in the discovery process—without recompiling your application.

The file, environment variable, and default XML QoS Profile are the possible sources for the default initial
peers list. You can, of course, explicitly set the initial list by changing the values in the QoS provided to
the DomainParticipantFactory's create_participant() operation, or by adding to the list after startup with
the DomainParticipant’s add_peer() operation (see 9.5.2.3 Adding and Removing Peers List Entries on
page 647).

If you set NDDS_DISCOVERY_PEERS and You Want to Communicate over Shared Memory:

Suppose you want to communicate with other Connext DDS applications on the same host and you are
explicitly setting NDDS_DISCOVERY_PEERS (generally in order to use unicast discovery with applic-
ations on other hosts).

If the local host platform does not support the shared memory transport, then you can include the name of
the local host in the NDDS_DISCOVERY_PEERS list. (To check if your platform supports shared
memory, see the RTI Connext DDS Core Libraries Platform Notes.)

If the local host platform supports the shared memory transport, then you must do one of the following:

l Include "shmem://" in the NDDS_DISCOVERY_PEERS list. This will cause shared memory to
be used for discovery and data traffic for applications on the same host.

or:

l Include the name of the local host in the NDDS_DISCOVERY_PEERS list, and disable the
shared memory transport in the 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) on
page 671 of the DomainParticipant. This will cause UDP loopback to be used for discovery and
data traffic for applications on the same host.

1This is true even if the file is empty.

774

15.2.1 Peer Descriptor Format

775

15.2.1 Peer Descriptor Format

A peer descriptor string specifies a range of participants at a given locator. Peer descriptor strings are used
in the 9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646 initial_peers field (see 9.5.2.2 Set-
ting the ‘Initial Peers’ List on page 646) and the DomainParticipant’s add_peer() and remove_peer()
operations (see 9.5.2.3 Adding and Removing Peers List Entries on page 647).

The anatomy of a peer descriptor is illustrated in Figure 15.1: Example Peer Descriptor Address Strings
below using a special "StarFabric" transport example.
Figure 15.1: Example Peer Descriptor Address Strings

A peer descriptor consists of:

l [optional] A participant ID limit. If a simple integer is specified, it indicates the maximum par-
ticipant ID to be contacted by the Connext DDS discovery mechanism at the given locator. If that
integer is enclosed in square brackets (e.g., [2]), then only that Participant ID will be used. You can
also specify a range in the form of [a-b]: in this case only the Participant IDs in that specific range
are contacted. If omitted, a default value of 4 is implied and participant IDs 0, 1, 2, 3, and 4 will be
contacted.

l A locator, as described in 15.2.1.1 Locator Format on the next page.

These are separated by the '@' character. The separator may be omitted if a participant ID limit is not expli-
citly specified.

15.2.1 Peer Descriptor Format

The "participant ID limit" only applies to unicast locators; it is ignored for multicast locators (and therefore
should be omitted for multicast peer descriptors).

15.2.1.1 Locator Format

A locator string specifies a transport and an address in string format. Locators are used to form peer
descriptors. A locator is equivalent to a peer descriptor with the default participant ID limit (4).

A locator consists of:

l [optional] Transport name (alias or class). This identifies the set of transport plug-ins (transport ali-
ases) that may be used to parse the address portion of the locator. Note that a transport class name is
an implicit alias used to refer to all the transport plug-in instances of that class.

l [optional] An address, as described in 15.2.1.2 Address Format below.

These are separated by the "://" string. The separator is specified if and only if a transport name is spe-
cified.

If a transport name is specified, the address may be omitted; in that case all the unicast addresses (across all
transport plug-in instances) associated with the transport class are implied. Thus, a locator string may spe-
cify several addresses.

If an address is specified, the transport name and the separator string may be omitted; in that case all the
available transport plug-ins for the Entity may be used to parse the address string.

The transport names for the built-in transport plug-ins are:

l shmem - Shared Memory Transport

l udpv4 - UDPv4 Transport

l udpv6 - UDPv6 Transport

15.2.1.2 Address Format

An address string specifies a transport-independent network address that qualifies a transport-dependent
address string. Addresses are used to form locators. Addresses are also used in the 9.5.2 DISCOVERY
QosPolicy (DDS Extension) on page 646 multicast_receive_addresses and the DDS_Trans-
portMulticastSettings_t::receive_address fields. An address is equivalent to a locator in which the transport
name and separator are omitted.

An address consists of:

l [optional] A network address in IPv4 or IPv6 string notation. If omitted, the network address of the
transport is implied.

776

15.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format

777

l [optional] A transport address, which is a string that is passed to the transport for processing. The
transport maps this string into NDDS_Transport_Property_t::address_bit_count bits. If omitted,
the network address is used as the fully qualified address. The transport plugin sets the value for
NDDS_Transport_Property_t::address_bit_count bits.

The network and transport addressed are separated by the '#' character. If a separator is specified, it must
be followed by a non-empty string that is passed to the transport plug-in. If the separator is omitted, it is
treated as a transport address with an implicit network address (of the transport plugin). The implicit net-
work address is the address used when registering the transport: e.g., the UDPv4 implicit network address
is 0.0.0.0.0.0.0.0.0.0.0.0.

The bits resulting from the transport address string are prepended with the network address. The least sig-
nificant NDDS_Transport_Property_t::address_bit_count bits of the network address are ignored.

15.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format

You can set the default value for the initial peers list in an environment variable named NDDS_
DISCOVERY_PEERS. Multiple peer descriptor entries must be separated by commas. Table 15.1
NDDS_DISCOVERY_PEERS Environment Variable Examples shows some examples. The examples
use an implied maximum participant ID of 4 unless otherwise noted. (If you need instructions on how to
set environment variables, see Set Up Environment Variables (rtisetenv), in "Hands-On 1" of Introduction
to Publish/Subscribe, in the RTI Connext DDS Getting Started Guide.)

NDDS_DISCOVERY_
PEERS Description of Host(s)

239.255.0.1 multicast

localhost localhost

192.168.1.1 10.10.30.232 (IPv4)

FAA0::1 FAA0::0 (IPv6)

himalaya,gangotri himalaya and gangotri

1@himalaya,1@gangotri himalaya and gangotri (with a maximumparticipant ID of 1 on each host)

FAA0::0#localhost FAA0::0#localhost (could be a UDPv4 transport plug-in registered at network address of FAA0::0) (IPv6)

udpv4://himalaya himalaya accessed using the "udpv4" transport plug-in (IPv4)

udpv4://FAA0::0#localhost localhost using the "udpv4" transport plug-in registered at network address FAA0::0

0/0/R

#0/0/R
0/0/R (StarFabric)

Table 15.1 NDDS_DISCOVERY_PEERS Environment Variable Examples

15.2.3 NDDS_DISCOVERY_PEERS File Format

NDDS_DISCOVERY_
PEERS Description of Host(s)

starfabric://0/0/R

starfabric://#0/0/R
0/0/R (StarFabric) using the "starfabric" (StarFabric) transport plug-ins

starfabric://FBB0::0#0/0/R 0/0/R (StarFabric) using the "starfabric" (StarFabric) transport plug-ins registered at network address FAA0::0

starfabric:// all unicast addresses accessed via the "starfabric" (StarFabric) transport plug-ins

shmem://FCC0::0
all unicast addresses accessed via the "shmem" (shared memory) transport plug-ins registered at network ad-
dress FCC0::0

Table 15.1 NDDS_DISCOVERY_PEERS Environment Variable Examples

15.2.3 NDDS_DISCOVERY_PEERS File Format

You can set the default value for the initial peers list in a file named NDDS_DISCOVERY_PEERS. The
file must be in your application’s current working directory.

The file is optional. If it is found, it supersedes the values in any environment variable of the same name.

Entries in the file must contain a sequence of peer descriptors separated by whitespace or the comma (',')
character. The file may also contain comments starting with a semicolon (';') character until the end of the
line.

Example file contents:
;; NDDS_DISCOVERY_PEERS - Discovery Configuration File
;; Multicast builtin.udpv4://239.255.0.1 ; default discovery multicast addr

;; Unicast
localhost,192.168.1.1 ; A comma can be used a separator
FAA0::1 FAA0::0#localhost ; Whitespace can be used as a separator
1@himalaya ; Max participant ID of 1 on 'himalaya'
1@gangotri

;; UDPv4
udpv4://himalaya ; 'himalaya' via 'udpv4' transport plugin(s)
udpv4://FAA0::0#localhost ; 'localhost' via 'updv4' transport plugin

; registered at network address FAA0::0
;; Shared Memory
shmem:// ; All 'shmem' transport plugin(s)
builtin.shmem:// ; The builtin builtin 'shmem' transport plugin
shmem://FCC0::0 ; Shared memory transport plugin registered

; at network address FCC0::0
;; StarFabric
0/0/R ; StarFabric node 0/0/R
starfabric://0/0/R ; 0/0/R accessed via 'starfabric'

; transport plugin(s)
starfabric://FBB0::0#0/0/R ; StarFabric transport plugin registered

; at network address FBB0::0
starfabric:// ; All 'starfabric' transport plugin(s)

778

15.3 Discovery Implementation

779

15.3 Discovery Implementation

Note: this section contains advanced material not required by most users.

Discovery is implemented using built-in DataWriters and DataReaders. These are the same class of entit-
ies your application uses to send/receive data. That is, they are also of type
DDSDataWriter/DDSDataReader. For each DomainParticipant, three built-in DataWriters and three
built-in DataReaders are automatically created for discovery purposes. Figure 15.2: Built-in Writers and
Readers for Discovery below shows how these objects are used. (For more on built-in DataReaders and
DataWriters, see Built-In Topics (Chapter 18 on page 837)).
Figure 15.2: Built-in Writers and Readers for Discovery

For each DomainParticipant, there are six objects automatically created for discovery purposes. The top two objects
are used to send/receive participant DATA messages, which are used in the Participant Discovery phase to find remote
DomainParticipants. This phase uses best-effort communications. Once the participants are aware of each other, they
move on to the Endpoint Discovery Phase to learn about each other’s DataWriters and DataReaders. This phase uses

reliable communications.

The implementation is split into two separate protocols:

Simple Participant Discovery Protocol (SPDP)
+ Simple Endpoint Discovery Protocol (SEDP)

= Simple Discovery Protocol (SDP)

15.3.1 Participant Discovery

15.3.1 Participant Discovery

When a DomainParticipant is created, a DataWriter and a DataReader are automatically created to
exchange participant DATA messages in the network. These DataWriters and DataReaders are "special"
because the DataWriter can send to a given list of destinations, regardless of whether there is a Connext
DDS application at the destination, and the DataReader can receive data from any source, whether the
source is previously known or not. In other words, these special readers and writers do not need to dis-
cover the remote entity and perform a match before they can communicate with each other.

When a DomainParticipant joins or leaves the network, it needs to notify its peer participants. The list of
remote participants to use during discovery comes from the peer list described in the 9.5.2 DISCOVERY
QosPolicy (DDS Extension) on page 646. The remote participants are notified via participant DATA mes-
sages. In addition, if a participant’s QoS is modified in such a way that other participants need to know
about the change (that is, changes to the 7.5.30 USER_DATA QosPolicy on page 470), a new par-
ticipant DATA will be sent immediately.

Participant DATAs are also used to maintain a participant’s liveliness status. These are sent at the rate set
in the participant_liveliness_assert_period in the 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS
Extension) on page 650.

Let’s examine what happens when a new remote participant is discovered. If the new remote participant is
in the local participant's peer list, the local participant will add that remote participant into its database. If
the new remote participant is not in the local application's peer list, it may still be added, if the accept_
unknown_peers field in the 9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646 is set to
TRUE.

Once a remote participant has been added to the Connext DDS database, Connext DDS keeps track of that
remote participant’s participant_liveliness_lease_duration. If a participant DATA for that participant
(identified by the GUID) is not received at least once within the participant_liveliness_lease_duration,
the remote participant is considered stale, and the remote participant, together with all its entities, will be
removed from the database of the local participant.

To keep from being purged by other participants, each participant needs to periodically send a participant
DATA to refresh its liveliness. The rate at which the participant DATA is sent is controlled by the par-
ticipant_liveliness_assert_period in the participant’s 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS
Extension) on page 650. This exchange, which keeps Participant A from appearing ‘stale,’ is illustrated in
Figure 15.3: Periodic ‘participant DATAs’ on the next page. Figure 15.4: Ungraceful Termination of a Par-
ticipant on page 782 shows what happens when Participant A terminates ungracefully and therefore needs
to be seen as ‘stale.’

780

15.3.1 Participant Discovery

781

Figure 15.3: Periodic ‘participant DATAs’

The DomainParticipant on Node A sends a ‘participant DATA’ to Node B, which is in Node A’s peers list. This occurs
regardless of whether or not there is a Connext DDS application on Node B.

�The green short dashed lines are periodic participant DATAs. The time between these messages is controlled by the
participant_liveliness_assert_period in the DiscoveryConfig QosPolicy.

k In addition to the periodic participant DATAs, ‘initial repeat messages’ (shown in blue, with longer dashes) are sent
from A to B. These messages are sent at a random time between min_initial_participant_announcement_period and
max_initial_participant_announcement_period (in A’s DiscoveryConfig QosPolicy). The number of these initial

repeat messages is set in initial_participant_announcements.

15.3.1 Participant Discovery

Figure 15.4: Ungraceful Termination of a Participant

Participant A is removed from participant B’s database if it is not refreshed within the liveliness lease duration.
Dashed lines are periodic participant DATA messages.

(Periodic resends of ‘participant B DATA’ from B to A are omitted from this diagram for simplicity. Initial repeat mes-
sages from A to B are also omitted from this diagram—these messages are sent at a random time between min_initial_
participant_announcement_period and max_initial_participant_announcement_period, see Figure 15.3: Periodic

‘participant DATAs’ on the previous page.)

782

15.3.1 Participant Discovery

783

15.3.1.1 Refresh Mechanism

To ensure that a late-joining participant does not need to wait until the next refresh of the remote par-
ticipant DATA to discover the remote participant, there is a resend mechanism. If the received participant
DATA is from a never-before-seen remote participant, and it is in the local participant's peers list, the applic-
ation will resend its own participant DATA to all its peers. This resend can potentially be done multiple
times, with a random sleep time in between. Figure 15.5: Resending ‘participant DATA’ to a Late-Joiner
on the next page illustrates this scenario.

The number of retries and the random amount of sleep between them are controlled by each participant’s
9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650 (see Figure 15.5: Resending
‘participant DATA’ to a Late-Joiner on the next page).

15.3.1 Participant Discovery

Figure 15.5: Resending ‘participant DATA’ to a Late-Joiner

Participant A has Participant B in its peers list. Participant B does not have Participant A in its peers list, but [Dis-
coveryQosPolicy.accept_unknown_peers] is set to DDS_BOOLEAN_TRUE. Participant A joins the system after B has

sent its initial announcement. After B discovers A, it waits for time Á, then resends its participant DATA.

784

15.3.1 Participant Discovery

785

(Initial repeat messages are omitted from this diagram for simplicity, see Figure 15.3: Periodic ‘participant DATAs’
on page 781.)

Figure 15.6: Participant Discovery Summary below provides a summary of the messages sent during the
participant discovery phase.

Figure 15.6: Participant Discovery Summary

Participants A and B both have each other in their peers lists. Participant A is created first.

15.3.1.2 Maintaining DataWriter Liveliness for kinds AUTOMATIC and MANUAL_BY_
PARTICIPANT

To maintain the liveliness of DataWriters that have a 7.5.15 LIVELINESS QosPolicy on page 428 kind
field set to AUTOMATIC orMANUAL_BY_PARTICIPANT, Connext DDS uses a built-in
DataWriter and DataReader pair, referred to as the inter-participant reader and inter-participant writer.

If the DomainParticipant has any DataWriters with Liveliness QosPolicy kind set to AUTOMATIC, the
inter-participant writer will reliably broadcast an AUTOMATIC Liveliness message at a period equal to
X, where X is the shortest assertion period of these DataWriters. (The assertion period for a DataWriter is

15.3.1 Participant Discovery

calculated as lease_duration / assertions_per_lease_duration, which are fields in the 7.5.15
LIVELINESS QosPolicy on page 428.) Figure 15.7: DataWriter with AUTOMATIC Liveliness below
illustrates this scenario.

Figure 15.7: DataWriter with AUTOMATIC Liveliness

A Liveliness message is sent automatically when a DataWriter with AUTOMATIC Liveliness kind is created, and then
periodically.

If the DomainParticipant has any DataWriters with Liveliness QosPolicy kind set toMANUAL_BY_
PARTICIPANT, Connext DDS will periodically check to see if any of them have called write(),
assert_liveliness(), dispose() or unregister(). The rate of this check is every X/2 seconds, where X is the
smallest lease_duration among all the DomainParticipant'sMANUAL_BY_PARTICIPANT
DataWriters. (The lease_duration is a field in the 7.5.15 LIVELINESS QosPolicy on page 428.) If any

786

15.3.1 Participant Discovery

787

of theMANUAL_BY_PARTICIPANT DataWriters have called any of those operations, the inter-par-
ticipant writer will reliably broadcast aMANUAL Liveliness message.

If a DomainParticipant's assert_liveliness() operation is called, and that DomainParticipant has any
MANUAL_BY_PARTICIPANT DataWriters, the inter-participant writer will reliably broadcast a
MANUAL Liveliness message within the above-defined X/2 time period. TheseMANUAL Liveliness
messages are used to update the liveliness of all the DomainParticipant'sMANUAL_BY_
PARTICIPANT DataWriters. As described in 7.5.15.1 Timing Considerations for MANUAL_BY_
PARTICIPANT on page 431, Connext DDS applications should make sure to assert liveliness at a period
that is shorter than half of the minimum lease duration; otherwise, liveliness might be lost for the
DataWriter. Figure 15.8: DataWriter with MANUAL_BY_PARTICIPANT Liveliness on the next page
shows an example sequence.

15.3.1 Participant Discovery

Figure 15.8: DataWriter with MANUAL_BY_PARTICIPANT Liveliness

Once a MANUAL_BY_PARTICIPANT DataWriter is created, subsequent calls to assert_liveliness, write, dispose, or
unregister_instance will trigger Liveliness messages, which update the liveliness status of all the participant’s

DataWriters.

The inter-participant reader receives data from remote inter-participant writers and asserts the liveliness of
remote DomainParticipants endpoints accordingly.

If the DomainParticipant has no DataWriters with 7.5.15 LIVELINESS QosPolicy on page 428 kind set
to AUTOMATIC orMANUAL_BY_PARTICIPANT, then no Liveliness messages are ever sent from
the inter-participant writer.

788

15.3.2 Endpoint Discovery

789

15.3.2 Endpoint Discovery

As we saw in Figure 15.2: Built-in Writers and Readers for Discovery on page 779, reliable DataReaders
and Datawriters are automatically created to exchange publication/subscription information for each
DomainParticipant. We will refer to these as ‘discovery endpoint readers and writers.’ However, nothing
is sent through the network using these entities until they have been ‘matched’ with their remote coun-
terparts. This ‘matching’ is triggered by the Participant Discovery phase. The goal of the Endpoint Dis-
covery phase is to add the remote endpoint to the local database, so that user-created endpoints (your
application’s DataWriters/DataReaders) can communicate with each other.

When a new remote DomainParticipant is discovered and added to a participant’s database, Connext DDS
assumes that the remote DomainParticipant is implemented in the same way and therefore is creating the
appropriate counterpart entities. Therefore, Connext DDS will automatically add two remote discovery end-
point readers and two remote discovery endpoint writers for that remote DomainParticipant into the local
database. Once that is done, there is now a match with the local discovery endpoint writers and readers,
and publication DATAs and subscription DATAs can then be sent between the discovery endpoint read-
ers/writers of the two DomainParticipant.

When you create a DataWriter/DataReader for your user data, a publication/subscription DATA describ-
ing the newly created object is sent from the local discovery endpoint writer to the remote discovery end-
point readers of the remote DomainParticipants that are currently in the local database.

If your application changes any of the following QosPolicies for a local user-data DataWriter/DataReader,
a modified subscription/publication DATA is sent to propagate the QoS change to other DomainPar-
ticipants:

l 5.2.1 TOPIC_DATA QosPolicy on page 225

l 7.4.4 GROUP_DATA QosPolicy on page 354

l 7.5.30 USER_DATA QosPolicy on page 470

l 7.5.18 OWNERSHIP_STRENGTH QosPolicy on page 439

l 7.4.5 PARTITION QosPolicy on page 357

l 8.6.4 TIME_BASED_FILTER QosPolicy on page 593

l 7.5.14 LIFESPAN QoS Policy on page 426

What the above QosPolicies have in common is that they are all changeable and part of the built-in data
(see Built-In Topics (Chapter 18 on page 837)).

Similarly, if the application deletes any user-data writers/readers, the discovery endpoint writer/readers
send delete publication/subscription DATAs. In addition to sending publication/subscription DATAs, the
discovery endpoint writer will check periodically to see if the remote discovery endpoint reader is up-to-
date. (The rate for this check is the publication_writer.heartbeat_period or subscription_writer.heartbeat_
period in the 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650. If the discovery

15.3.2 Endpoint Discovery

endpoint writer has not been acknowledged by the remote discovery endpoint reader regarding receipt of
the latest DATA, the discovery endpoint writer will send a special Heartbeat (HB) message with the Final
bit set to 0 (F=0) to request acknowledgement from the remote discovery endpoint reader, as seen in Fig-
ure 15.9: Endpoint Discovery Summary below.
Figure 15.9: Endpoint Discovery Summary

790

15.3.2 Endpoint Discovery

791

Assume participants A and B have been discovered on both sides. A’s DiscoveryConfigQosPolicy.publication_writer-
.heartbeats_per_max_samples = 0, so no HB is piggybacked with the publication DATA. A HB with F=0 is a request for

an ACK/NACK. The periodic and initial repeat participant DATAs are omitted from the diagram.

Discovery endpoint writers and readers have their 7.5.12 HISTORY QosPolicy on page 421 set to
KEEP_LAST, and their 7.5.9 DURABILITY QosPolicy on page 412 set to TRANSIENT_LOCAL.
Therefore, even if the remote DomainParticipant has not yet been discovered at the time the local user’s
DataWriter/DataReader is created, the remote DomainParticipant will still be informed about the pre-
viously created DataWriter/DataReader. This is achieved by the HB and ACK/NACK that are imme-
diately sent by the built-in endpoint writer and built-in endpoint reader respectively when a new remote
participant is discovered. Figure 15.10: DataWriter Discovered by Late-Joiner, Triggered by HB below
and Figure 15.11: DataWriter Discovered by Late-Joiner, Triggered by ACKNACK on the next page illus-
trate this sequence for HB and ACK/NACK triggers, respectively.
Figure 15.10: DataWriter Discovered by Late-Joiner, Triggered by HB

Writer C is created on Participant A before Participant A discovers Participant B. Assuming Dis-
coveryConfigQosPolicy.publication_writer.heartbeats_per_max_samples = 0, no HB is piggybacked with the publication
DATA. Participant B has A in its peer list, but not vice versa. Accept_unknown_locators is true. On A, in response to

15.3.2 Endpoint Discovery

receiving the new participant B DATA message, a participant A DATA message is sent to B. The discovery endpoint
reader on A will also send an ACK/NACK to the discovery endpoint writer on B. (Initial repeat participant messages
and periodic participant messages are omitted from this diagram for simplicity, see Figure 15.3: Periodic ‘participant

DATAs’ on page 781 in 15.3.1 Participant Discovery on page 780.)

Figure 15.11: DataWriter Discovered by Late-Joiner, Triggered by ACKNACK

Writer C is created on Participant A before Participant A discovers Participant B. Assuming Dis-
coveryConfigQosPolicy.publication_writer.heartbeats_per_max_samples = 0, no HB is piggybacked with the publication
DATA message. Participant A has B in its peer list, but not vice versa. Accept_unknown_locators is true. In response to
receiving the new Participant A DATA message on node B, a participant B DATA message will be sent to A. The dis-
covery endpoint writer on Node B will also send a HB to the discovery endpoint reader on Node A. These are omitted
in the diagram for simplicity. (Initial repeat participant messages and periodic participant messages are omitted from
this diagram, see Figure 15.3: Periodic ‘participant DATAs’ on page 781 in 15.3.1 Participant Discovery on

page 780.)

Endpoint discovery latency is determined by the following members of the DomainParticipant’s 9.5.3
DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650:

l publication_writer

l subscription_writer

792

15.3.3 Discovery Traffic Summary

793

l publication_reader

l subscription_reader

When a remote entity record is added, removed, or changed in the database, matching is performed with
all the local entities. Only after there is a successful match on both ends can an application’s user-created
DataReaders and DataWriters communicate with each other.

For more information about reliable communication, see Reliable Communications (Chapter 11 on
page 694).

15.3.3 Discovery Traffic Summary

This diagram shows both phases of the discovery process. Participant A is created first, followed by Participant B.
Each has the other in its peers list. After they have discovered each other, a DataWriter is created on Participant A.

Periodic participant DATAs, HBs and ACK/NACKs are omitted from this diagram.

15.3.4 Discovery-Related QoS

15.3.4 Discovery-Related QoS

Each DomainParticipant needs to be uniquely identified in the DDS domain and specify which other
DomainParticipants it is interested in communicating with. The 9.5.9 WIRE_PROTOCOL QosPolicy
(DDS Extension) on page 676 uniquely identifies a DomainParticipant in the DDS domain. The 9.5.2
DISCOVERY QosPolicy (DDS Extension) on page 646 specified the peer participants it is interested in
communicating with.

There is a trade-off between the amount of traffic on the network for the purposes of discovery and the
delay in reaching steady state when the DomainParticipant is first created.

For example, if the 9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646’s participant_live-
liness_assert_period and participant_liveliness_lease_duration fields are set to small values, the discovery
of stale remote DomainParticipants will occur faster, but more discovery traffic will be sent over the net-
work. Setting the participant’s heartbeat_period1 to a small value can cause late-joining DomainPar-
ticipants to discover remote user-data DataWriters and DataReaders at a faster rate, but Connext DDS
might send HBs to other nodes more often. This timing can be controlled by the following DomainPar-
ticipant QosPolicies:

l 9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646 — specifies how other DomainPar-
ticipants in the network can communicate with this DomainParticipant, and which other
DomainParticipants in the network this DomainParticipant is interested in communicating with.
See also: 15.5 Ports Used for Discovery on page 797.

l 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650 — specifies the QoS of
the discovery readers and writers (parameters that control the HB and ACK rates of discovery end-
point readers/writers, and periodic refreshing of participant DATA from discovery participant read-
ers/writers). It also allow you to configure asynchronous writers in order to send data with a larger
size than the transport message size.

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660 — specifies the number of local and remote entities expected in the system.

l 9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension) on page 676 — specifies the rtps_app_id
and rtps_host_id that uniquely identify the participant in the DDS domain.

The other important parameter is the domain ID: DomainParticipants can only discover each other if they
belong to the same DDS domain. The domain ID is a parameter passed to the create_participant() oper-
ation (see 9.3.1 Creating a DomainParticipant on page 621).

1heartbeat_period is part of the DDS_RtpsReliableWriterProtocol_t structure used in the 9.5.2 DISCOVERY QosPolicy
(DDS Extension) on page 646’s publication_writer and subscription_writer fields.

794

15.4 Debugging Discovery

795

15.4 Debugging Discovery

To understand the flow of messages during discovery, you can increase the verbosity of the messages
logged by Connext DDS so that you will see whenever a new entity is discovered, and whenever there is a
match between a local entity and a remote entity.

This can be achieved with the logging API:
NDDSConfigLogger::get_instance()->set_verbosity_by_category (NDDS_CONFIG_LOG_CATEGORY_ENTITIES,
NDDS_CONFIG_LOG_VERBOSITY_STATUS_REMOTE);

Using the scenario in the summary diagram in 15.3.3 Discovery Traffic Summary on page 793, these are
the messages as seen on DomainParticipant A:
[D0049|ENABLE]DISCPluginManager_onAfterLocalParticipantEnabled:announcing new local
participant: 0XA0A01A1,0X5522,0X1,0X1C1
[D0049|ENABLE]DISCPluginManager_onAfterLocalParticipantEnabled:at {46c614d9,0C43B2DC}

(The above messages mean: First participant A DATA sent out when participant A is enabled.)
DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:discovered new participant:
host=0x0A0A01A1, app=0x0000552B, instance=0x00000001
DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:at {46c614dd,8FA13C1F}
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin discovered/updated remote
participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at {46c614dd,8FACE677}
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin accepted new remote participant:
0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at {46c614dd,8FACE677}

(The above messages mean: Received participant B DATA.)
DISCSimpleParticipantDiscoveryPlugin_remoteParticipantDiscovered:re-announcing participant
self: 0XA0A01A1,0X5522,0X1,0X1C1
DISCSimpleParticipantDiscoveryPlugin_remoteParticipantDiscovered:at {46c614dd,8FC02AF7}

(The above messages mean: Resending participant A DATA to the newly discovered remote participant.)
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X200C2, local 0x000200C7 in
reliable reader service
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X200C7, local 0x000200C2 in
reliable writer service
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X4C7, local 0x000004C2 in
reliable writer service
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X3C7, local 0x000003C2 in
reliable writer service
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X4C2, local 0x000004C7 in
reliable reader service
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X3C2, local 0x000003C7 in
reliable reader service
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X100C2, local 0x000100C7 in
best effort reader service

(The above messages mean: Automatic matching of the discovery readers and writers. A built-in remote
endpoint's object ID always ends with Cx.)

15.4 Debugging Discovery

DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:discovered modified
participant: host=0x0A0A01A1, app=0x0000552B, instance=0x00000001
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin discovered/updated remote
participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at {46c614dd,904D876C}

(The above messages mean: Received participant B DATA.)
DISCPluginManager_onAfterLocalEndpointEnabled:announcing new local publication:
0XA0A01A1,0X5522,0X1,0X80000003
DISCPluginManager_onAfterLocalEndpointEnabled:at {46c614d9,1013B9F0}
DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalWriterEnabled:announcing new
publication: 0XA0A01A1,0X5522,0X1,0X80000003
DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalWriterEnabled:at {46c614d9,101615EB}

(The above messages mean: Publication C DATA has been sent.)
DISCSimpleEndpointDiscoveryPlugin_subscriptionReaderListenerOnDataAvailable:discovered
subscription: 0XA0A01A1,0X552B,0X1,0X80000004
DISCSimpleEndpointDiscoveryPlugin_subscriptionReaderListenerOnDataAvailable:at
{46c614dd,94FAEFEF}
DISCEndpointDiscoveryPlugin_assertRemoteEndpoint:plugin discovered/updated remote endpoint:
0XA0A01A1,0X552B,0X1,0X80000004
DISCEndpointDiscoveryPlugin_assertRemoteEndpoint:at {46c614dd,950203DF}

(The above messages mean: Receiving subscription D DATA from Node B.)
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X80000004, local 0x80000003
in best effort writer service

(The above message means: User-created DataWriter C and DataReader D are matched.)
[D0049|DELETE_CONTAINED]DISCPluginManager_onAfterLocalEndpointDeleted:announcing disposed local
publication: 0XA0A01A1,0X5522,0X1,0X80000003
[D0049|DELETE_CONTAINED]DISCPluginManager_onAfterLocalEndpointDeleted:at {46c61501,288051C8}
[D0049|DELETE_CONTAINED]DISCSimpleEndpointDiscoveryPluginPDFListener_
onAfterLocalWriterDeleted:announcing disposed publication: 0XA0A01A1,0X5522,0X1,0X80000003
[D0049|DELETE_CONTAINED]DISCSimpleEndpointDiscoveryPluginPDFListener_
onAfterLocalWriterDeleted:at {46c61501,28840E15}

(The above messages mean: Publication C DATA(delete) has been sent.)
DISCPluginManager_onBeforeLocalParticipantDeleted:announcing before disposed local participant:
0XA0A01A1,0X5522,0X1,0X1C1
DISCPluginManager_onBeforeLocalParticipantDeleted:at {46c61501,28A11663}

(The above messages mean: Participant A DATA(delete) has been sent.)

796

15.5 Ports Used for Discovery

797

DISCParticipantDiscoveryPlugin_removeRemoteParticipantsByCookie:plugin removing 3 remote
entities by cookie
DISCParticipantDiscoveryPlugin_removeRemoteParticipantsByCookie:at {46c61501,28E38A7C}
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:plugin discovered disposed remote
participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:at {46c61501,28E68E3D}
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:remote entity removed from database:
0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:at {46c61501,28E68E3D}

(The above messages mean: Removing discovered entities from local database, before shutting down.)

As you can see, the messages are encoded, since they are primarily used by RTI support personnel.

For more information on the message logging API, see 25.2 Controlling Messages from Connext DDS on
page 990.

If you notice that a remote entity is not being discovered, check the QoS related to discovery (see 15.3.4
Discovery-Related QoS on page 794).

If a remote entity is discovered, but does not match with a local entity as expected, check the QoS of both
the remote and local entity.

15.5 Ports Used for Discovery

There are two kinds of traffic in a Connext DDS application: discovery (meta) traffic, and user traffic.
Meta-traffic is for data (declarations) that is sent between the automatically-created discovery writers and
readers; user traffic is for data that is sent between user-created DataWriters and DataReaders. To keep
the two kinds of traffic separate, Connext DDS uses different ports, as described below.

Note: The ports described in this section are used for incoming data. Connext DDS uses ephemeral ports
for outbound data.

Connext DDS uses the RTPS wire protocol. The discovery protocols defined by RTPS rely on well-
known ports to initiate discovery. These well-known ports define the multicast and unicast ports on which
a Participant will listen for meta-traffic from other Participants. The meta-traffic contains the information
required by Connext DDS to establish the presence of remote Entities in the network.

The well-known incoming ports are defined by RTPS in terms of port mapping expressions with several
tunable parameters. This allows you to customize what network ports are used for receiving data by Con-
next DDS. These parameters are shown in Table 15.2 WireProtocol QosPolicy’s rtps_well_known_ports
(DDS_RtpsWellKnownPorts_t). (For defaults and valid ranges, please see the API Reference HTML doc-
umentation.)

15.5 Ports Used for Discovery

Type Field Name Description

DDS_
Long

port_base
The base port offset. All mapped well-known ports are offset by this value. Resulting ports must be within the
range imposed by the underlying transport.

domain_id_gain
Tunable gain parameters. See 15.5.4 Tuning domain_id_gain and participant_id_gain on page 800.

participant_id_gain

builtin_multicast_
port_offset

Additional offset formeta-traffic port. See 15.5.1 Inbound Ports for Meta-Traffic on the next page.
builtin_unicast_
port_offset

user_multicast_
port_offset

Additional offset for user traffic port. See 15.5.2 Inbound Ports for User Traffic on the next page.
user_unicast_port_
offset

Table 15.2 WireProtocol QosPolicy’s rtps_well_known_ports (DDS_RtpsWellKnownPorts_t)

In order for all Participants in a system to correctly discover each other, it is important that they all use the
same port mapping expressions.

In addition to the parameters listed in Table 15.2 WireProtocol QosPolicy’s rtps_well_known_ports
(DDS_RtpsWellKnownPorts_t), the port formulas described below depend on:

l The domain ID specified when the DomainParticipant is created (see 9.3.1 Creating a DomainPar-
ticipant on page 621). The domain ID ensures no port conflicts exist between Participants belonging
to different domains. This also means that discovery traffic in one DDS domain is not visible to
DomainParticipants in other DDS domains.

l The participant_id is a field in the 9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension) on
page 676, see 9.5.9.1 Choosing Participant IDs on page 677. The participant_id ensures that
unique unicast port numbers are assigned to DomainParticipants belonging to the same DDS
domain on a given host.

Backwards Compatibility: Connext DDS supports the standard DDS Interoperability Wire Protocol
based on the Real-time Publish-Subscribe (RTPS) protocol. This protocol is not compatible with the one
used by earlier releases (4.2c or lower). Therefore, applications built with 4.2d or higher will not inter-
operate with applications built with 4.2c or lower. The default port mapping from domainID and par-
ticipant index has also been changed according to the new interoperability specification. The message
types and formats used by RTPS have also changed.

Port Aliasing:When modifying the port mapping parameters, avoid port aliasing. This would result in
undefined discovery behavior. The chosen parameter values will also determine the maximum possible
number of DDS domains in the system and the maximum number of participants per DDS domain.

798

15.5.1 Inbound Ports for Meta-Traffic

799

Additionally, any resulting mapped port number must be within the range imposed by the underlying trans-
port. For example, for UDPv4, this range typically equals [1024 - 65535].

15.5.1 Inbound Ports for Meta-Traffic

The Wire Protocol QosPolicy’s rtps_well_known_ports.metatraffic_unicast_port determines the port
used for receiving meta-traffic using unicast:
metatraffic_unicast_port = port_base +

(domain_id_gain * Domain ID) +
(participant_id_gain * participant_id) +
builtin_unicast_port_offset

Similarly, rtps_well_known_ports.metatraffic_multicast_port determines the port used for receiving
meta-traffic using multicast. The corresponding multicast group addresses are specified viamulticast_
receive_addresses (see 9.5.2.4 Configuring Multicast Receive Addresses on page 648).
metatraffic_multicast_port = port_base +

(domain_id_gain * Domain ID) +
builtin_multicast_port_offset

Note:Multicast is only used for meta-traffic if a multicast address is specified in the NDDS_
DISCOVERY_PEERS environment variable or file or if themulticast_receive_addresses field of the
9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) on page 650 is set.

15.5.2 Inbound Ports for User Traffic

RTPS also defines the default multicast and unicast ports on which DataReaders and DataWriters receive
user traffic. These default ports can be overridden using the DataReader’s 8.6.5 TRANSPORT_
MULTICAST QosPolicy (DDS Extension) on page 596 and 7.5.28 TRANSPORT_UNICAST
QosPolicy (DDS Extension) on page 465, or the DataWriter’s 7.5.28 TRANSPORT_UNICAST
QosPolicy (DDS Extension) on page 465.

The WireProtocol QosPolicy’s rtps_well_known_ports.usertraffic_unicast_port determines the port
used for receiving user data using unicast:
usertraffic_unicast_port =

port_base +
(domain_id_gain * Domain ID) +
(participant_id_gain * participant_id)+
user_unicast_port_offset

Similarly, rtps_well_known_ports.usertraffic_multicast_port determines the port used for receiving
user data using multicast. The corresponding multicast group addresses can be configured using the 7.5.28
TRANSPORT_UNICAST QosPolicy (DDS Extension) on page 465.

15.5.3 Automatic Selection of participant_id and Port Reservation

usertraffic_multicast_port =
port_base +
(domain_id_gain * Domain ID) +
user_multicast_port_offset

15.5.3 Automatic Selection of participant_id and Port Reservation

The 9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension) on page 676rtps_reserved_ports_mask
field determines what type of ports are reserved when the DomainParticipant is enabled. See 9.5.9.1
Choosing Participant IDs on page 677.

15.5.4 Tuning domain_id_gain and participant_id_gain

The domain_id_gain is used as a multiplier of the domain ID. Together with participant_id_gain (15.5.4
Tuning domain_id_gain and participant_id_gain above), these values determine the highest domain ID and
participant_id allowed on this network.

In general, there are two ways to set up the domain_id_gain and participant_id_gain parameters.

l If domain_id_gain > participant_id_gain, it results in a port mapping layout where all
DomainParticipants in a DDS domain occupy a consecutive range of domain_id_gain ports. Pre-
cisely, all ports occupied by the DDS domain fall within:

(port_base + (domain_id_gain * Domain ID))

and:
(port_base + (domain_id_gain * (Domain ID + 1)) - 1)

In this case, the highest domain ID is limited only by the underlying transport's maximum port. The
highest participant_id, however, must satisfy:
max_participant_id < (domain_id_gain / participant_id_gain)

l Or if domain_id_gain <= participant_id_gain, it results in a port mapping layout where a given
DDS domain's DomainParticipant instances occupy ports spanned across the entire valid port range
allowed by the underlying transport. For instance, it results in the following potential mapping:

Mapped Port Domain ID Participant ID

higher port number

1
2

0

1
1

0

1
0

lower port number 0

800

15.5.4 Tuning domain_id_gain and participant_id_gain

801

In this case, the highest participant_id is limited only by the underlying transport's maximum port. The
highest domain_id, however, must satisfy:
max_domain_id < (participant_id_gain / domain_id_gain)

The domain_id_gain also determines the range of the port-specific offsets:
domain_id_gain >
abs(builtin_multicast_port_offset - user_multicast_port_offset)

and
domain_id_gain >
abs(builtin_unicast_port_offset - user_unicast_port_offset)

Violating this may result in port aliasing and undefined discovery behavior.

The participant_id_gain also determines the range of builtin_unicast_port_offset and user_unicast_
port_offset.
participant_id_gain >
abs(builtin_unicast_port_offset - user_unicast_port_offset)

In all cases, the resulting ports must be within the range imposed by the underlying transport.

Chapter 16 Transport Plugins
Connext DDS has a pluggable-transports architecture. The core of Connext DDS is transport
agnostic—it does not make any assumptions about the actual transports used to send and receive
messages. Instead, Connext DDS uses an abstract "transport API" to interact with the transport plu-
gins that implement that API. A transport plugin implements the abstract transport API, and per-
forms the actual work of sending and receiving messages over a physical transport.

There are essentially three categories of transport plugins:

l Builtin Transport Plugins Connext DDS comes with a set of commonly used transport plu-
gins. These ‘builtin’ plugins include UDPv4, UDPv6, and shared memory. So that Connext
DDS applications can work out-of-the-box, some of these are enabled by default (see 9.5.7
TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671).

l Extension Transport Plugins RTI offers extension transports, including RTI Secure WAN
Transport (see Part 6: RTI Secure WAN Transport on page 1114 and RTI TCP Transport
(see Part 7: RTI TCP Transport on page 1147).

l Custom-developed Transport Plugins RTI supports the use of custom transport plugins.
This is a powerful capability that distinguishes Connext DDS from competing middleware
approaches. If you are interested in developing a custom transport plugin for Connext DDS,
please contact your local RTI representative or email sales@rti.com.

16.1 Builtin Transport Plugins

There are two ways in which the builtin transport plugins may be registered:

l Default builtin Transport Instances: Builtin transports that are turned "on" in the 9.5.7
TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671 are implicitly
registered when (a) the DomainParticipant is enabled, (b) the first DataWriter/DataReader
is created, or (c) you look up a builtin DataReader (by calling lookup_datareader() on a
Subscriber), whichever happens first. The builtin transport plugins have default properties. If

802

16.2 Extension Transport Plugins

803

you want to change these properties, do so before1 the transports are registered.

l Other Transport Instances: There are two ways to install non-default builtin transport instances:
l Transport plugins may be explicitly registered by first creating an instance of the transport plu-
gin (by calling NDDS_Transport_UDPv4_new(), NDDS_Transport_UDPv6_new() or
NDDS_Transport_Shmem_new(), see 16.4 Explicitly Creating Builtin Transport Plugin
Instances on the next page), then calling register_transport() (16.7 Installing Additional Builtin
Transport Plugins with register_transport() on page 827). (For example, suppose you want an
extra instance of a transport.) (Not available for the Java or .NET API.)

l Additional builtin transport instances can also be installed through the 7.5.19 PROPERTY
QosPolicy (DDS Extension) on page 440.

To configure the properties of the builtin transports:

l Set properties by calling set_builtin_transport_property() (see 16.5 Setting Builtin Transport Prop-
erties of Default Transport Instance—get/set_builtin_transport_properties() on page 805)

or

l Specify predefined property strings in the DomainParticipant’s PropertyQosPolicy, as described in
16.6 Setting Builtin Transport Properties with the PropertyQosPolicy on page 807.

For other builtin transport instances:

l If the builtin transport plugin is created with NDDS_Transport_UDPv4_new(), NDDS_Trans-
port_UDPv6_new() or NDDS_Transport_Shmem_new(), properties can be specified during cre-
ation time. See 16.4 Explicitly Creating Builtin Transport Plugin Instances on the next page.

l If the additional builtin transport instances are installed through the 7.5.19 PROPERTY QosPolicy
(DDS Extension) on page 440, the properties of the builtin transport plugins can also be specified
through that same QosPolicy.

16.2 Extension Transport Plugins

If you want to change the properties for an extension transport plugin, do so before the plugin is registered.
Any transport property changes made after the plugin is registered will have no effect.

There are two ways to install an extension transport plugin:

1Any transport property changes made after the plugin is registered will have no effect.

16.3 The NDDSTransportSupport Class

l Implicit Registration: Transports can be installed through the predefined strings in the DomainPar-
ticipant’s PropertyQosPolicy. Once the transport’s properties are specified in the Prop-
ertyQosPolicy, the transport will be implicitly registered when (a) the DomainParticipant is enabled,
(b) the first DataWriter/DataReader is created, or (c) you look up a builtin DataReader (by calling
lookup_datareader() on a Subscriber), whichever happens first.

QosPolicies can also be configured from XML resources (files, strings)—with this approach, you
can change the QoS without recompiling the application. The QoS settings are automatically loaded
by the DomainParticipantFactory when the first DomainParticipant is created. For more inform-
ation, see Configuring QoS with XML (Chapter 19 on page 854).

l Explicit Registration: Transports may be explicitly registered by first creating an instance of the
transport plugin (see 16.4 Explicitly Creating Builtin Transport Plugin Instances below) and then
calling register_transport() (see 16.7 Installing Additional Builtin Transport Plugins with register_
transport() on page 827).

16.3 The NDDSTransportSupport Class

The register_transport() and set_builtin_transport_property() operations are part of the NDDSTrans-
portSupport class, which includes the operations listed in Table 16.1 Transport Support Operations.

Operation Description Reference

get_transport_plu-
gin

Retrieves a previously registered trans-
port plugin.

16.7 Installing AdditionalBuiltin Transport Pluginswith register_transport() on
page 827

register_transport
Registers a transport plugin for use with
a DomainParticipant.

get_builtin_trans-
port_property

Gets the properties used to create a
builtin transport plugin.

16.5 Setting Builtin Transport Properties of Default Transport Instance—get/set_
builtin_transport_properties() on the next page

set_builtin_trans-
port_property

Sets the properties used to create a
builtin transport plugin.

add_send_route Adds a route for outgoing messages. 16.9.1 Adding a Send Route on page 830

add_receive_route Adds a route for incoming messages. 16.9.2 Adding a Receive Route on page 831

lookup_transport
Looks up a transport plugin within a Do-
mainParticipant.

16.9.3 Looking Up a Transport Plugin on page 832

Table 16.1 Transport Support Operations

16.4 Explicitly Creating Builtin Transport Plugin Instances

The builtin transports (UDPv4, UDPv6, and Shared Memory) are implicitly created by default (if they are
enabled via the 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671). Therefore,

804

16.5 Setting Builtin Transport Properties of Default Transport Instance—get/set_builtin_transport_

805

you only need to explicitly create a new instance if you want an extra instance (suppose you want two
UDPv4 transports, one with special settings).

Transport plugins may be explicitly registered by first creating an instance of the transport plugin and then
calling register_transport() (16.7 Installing Additional Builtin Transport Plugins with register_transport()
on page 827). (For example, suppose you want an extra instance of a transport.) (Not available for the Java
API.)

To create an instance of a builtin transport plugin, use one of the following functions:
NDDS_Transport_Plugin* NDDS_Transport_UDPv4_new (

const struct NDDS_Transport_UDPv4_Property_t * property_in)
NDDS_Transport_Plugin* NDDS_Transport_UDPv4_new (

const struct NDDS_Transport_UDPv4_Property_t * property_in)
NDDS_Transport_Plugin* NDDS_Transport_Shmem_new (

const struct NDDS_Transport_Shmem_Property_t * property_in)

Where:

property_in Desired behavior of this transport. May be NULL for default properties.

For details on using these functions, please see the API Reference HTML documentation.

Your application may create and register multiple instances of these transport plugins with Connext DDS.
This may be done to partition the network interfaces across multiple DDS domains. However, note that the
underlying transport, the operating system's IP layer, is still a "singleton." For example, if a unicast trans-
port has already bound to a port, and another unicast transport tries to bind to the same port, the second
attempt will fail.

16.5 Setting Builtin Transport Properties of Default Transport Instance—
get/set_builtin_transport_properties()

Perhaps you want to use one of the builtin transports, but need to modify the properties. (For default val-
ues, please see the API Reference HTML documentation.) Used together, the two operations below allow
you to customize properties of the builtin transport when it is implicitly registered (see 16.1 Builtin Trans-
port Plugins on page 802).

Note: Another way to change the properties is with the Property QosPolicy, see 16.6 Setting Builtin Trans-
port Properties with the PropertyQosPolicy on page 807. Changing properties with the Property QosPolicy
will overwrite the properties set by calling set_builtin_transport_property().
DDS_ReturnCode_t
NDDSTransportSupport::get_builtin_transport_property(

DDSDomainParticipant * participant_in,
DDS_TransportBuiltinKind builtin_transport_kind_in,
struct NDDS_Transport_Property_t

&builtin_transport_property_inout)
DDS_ReturnCode_t
NDDSTransportSupport::set_builtin_transport_property(

16.5 Setting Builtin Transport Properties of Default Transport Instance—get/set_builtin_transport_

DDSDomainParticipant * participant_in,
DDS_TransportBuiltinKind builtin_transport_kind_in,
const struct NDDS_Transport_Property_t

&builtin_transport_property_in)

Where:

participant_in A valid non-NULL DomainParticipant that has not been enabled. If the DomainParticipant if
already enabled when this operation is called, your transport property changes will not be
reflected in the transport used by the DomainParticipant's DataWriters and DataReaders.

builtin_transport_kind_in The builtin transport kind for which to specify the properties.

builtin_transport_property_
inout

(Used by the “get” operation only.) The storage area where the retrieved property will be
output. The specific type required by the builtin_transport_kind_in must be used.

builtin_transport_property_
in

(Used by the “set” operation only.) The new transport property that will be used to the cre-
ate the builtin transport plugin. The specific type required by the builtin_transport_kind_in
must be used.

In this example, we want to use the builtin UDPv4 transport, but with modified properties.
/* Before this point, create a disabled DomainParticipant */
struct NDDS_Transport_UDPv4_Property_t property =

NDDS_TRANSPORT_UDPV4_PROPERTY_DEFAULT;
if (NDDSTransportSupport::get_builtin_transport_property(

participant, DDS_TRANSPORTBUILTIN_UDPv4,
(struct NDDS_Transport_Property_t&)property) !=
DDS_RETCODE_OK) {
printf("**Error: get builtin transport property\n");

}
/* Make your desired changes here */
/* For example, to increase the UDPv4 max msg size to 64K: */
property.parent.message_size_max = 65535;
property.recv_socket_buffer_size = 65535;
property.send_socket_buffer_size = 65535;
if (NDDSTransportSupport::set_builtin_transport_property(

participant, DDS_TRANSPORTBUILTIN_UDPv4,
(struct NDDS_Transport_Property_t&)property)
!= DDS_RETCODE_OK) {
printf("***Error: set builtin transport property\n");

}
/* Enable the participant to turn on communications with

other participants in the DDS domain using the new
properties for the automatically registered builtin
transport plugins */

if (entity->enable() != DDS_RETCODE_OK) {
printf("***Error: failed to enable entity\n");

}

Note:Builtin transport property changes will have no effect after the builtin transport has been registered.
The builtin transports are implicitly registered when (a) the DomainParticipant is enabled, (b) the first
DataWriter/DataReader is created, or (c) you lookup a builtin DataReader, whichever happens first.

806

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

807

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

The 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440 allows you to set name/value pairs of
data and attach them to an entity, such as a DomainParticipant.

To assign properties, use the add_property() operation:
DDS_ReturnCode_t DDSPropertyQosPolicyHelper::add_property

(DDS_PropertyQosPolicy policy,
const char * name,
const char * value,
DDS_Boolean propagate)

For more information on add_property() and the other operations in the DDSPropertyQosPolicyHelper
class, please see Table 7.65 PropertyQoSPolicyHelper Operations, as well as the API Reference HTML
documentation.

The ‘name’ part of the name/value pairs is a predefined string. The property names for the builtin trans-
ports are described in these tables:

l Table 16.2 Properties for the Builtin UDPv4 Transport

l Table 16.3 Properties for Builtin UDPv6 Transport

l Table 16.4 Properties for Builtin Shared-Memory Transport

See also:

l 16.6.1 Setting the Maximum Gather-Send Buffer Count for UDP Transports on page 825

l 16.6.2 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists on page 826

Note:

Changing properties with the 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440 will over-
write any properties set by calling set_builtin_transport_property().

Property Name

(prefix with
‘dds.transport.UDPv4.builtin.’)

Property Value Description

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext DDS core.

Currently, the only property supported is whether or not the transport plugin will always loan a buffer
when Connext DDS tries to receive a message using the plugin. This is in support of a zero-copy in-
terface.

Default: 0

Table 16.2 Properties for the Builtin UDPv4 Transport

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

Property Name

(prefix with
‘dds.transport.UDPv4.builtin.’)

Property Value Description

parent.
gather_send_buffer_count_max

Specifies the maximumnumber of buffers thatConnext DDS can pass to the send()method of a trans-
port plugin.

The transport plugin send() API supports a gather-send concept, where the send() call can take several
discontiguous buffers, assemble and send them in a single message. This enablesConnext DDS to
send a message fromparts obtained fromdifferent sources without first having to copy the parts into a
single contiguous buffer.

However, most transports that support a gather-send concept have an upper limit on the number of buf-
fers that can be gathered and sent. Setting this value will preventConnext DDS from trying to gather too
many buffers into a send call for the transport plugin.

Connext DDS requires all transport-plugin implementations to support a gather-send of least a minimum
number of buffers. This minimumnumber is NDDS_TRANSPORT_PROPERTY_GATHER_SEND_
BUFFER_COUNT_MIN.

See 16.6.1 Setting theMaximumGather-Send Buffer Count for UDPTransports on page 825.

Default: 16

parent.message_size_max

The maximumsize of a message in bytes that can be sent or received by the transport plugin. Above this
size, DDS-level fragmentation will occur. See 23.3 Large Data Fragmentation on page 976.

This value must be set before the transport plugin is registered, so thatConnext DDS can properly use
the plugin.

Default for Integrity platforms: 9216

Default for non-Integrity platforms: 65507

parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name. Interfacesmust be
specified as comma-separated strings, with each comma delimiting an interface.

For example, the following are acceptable strings:

192.168.1.1

192.168.1.*

192.168.*

192.*

ether0

If the list is non-empty, this "white" list is applied before the parent.deny_interfaces_list on the next page
list. The DomainParticipantwill use the resulting list of interfaces to inform its remote participant(s) about
which unicast addressesmay be used to contact the DomainParticipant.

The resulting list restricts reception to a particular set of interfaces for unicast UDP.Multicast output will
still be sent andmaybe received over the interfaces in the list (if multicast is supported on the platform).

You must manage the memory of the list. The memory may be freed after the DomainParticipant is de-
leted.

Default: empty list that represents all available interfaces

Table 16.2 Properties for the Builtin UDPv4 Transport

808

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

809

Property Name

(prefix with
‘dds.transport.UDPv4.builtin.’)

Property Value Description

parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name. If the list is non-
empty, deny the use of these interfaces.

Interfacesmust be specified as comma-separated strings, with each comma delimiting an interface.

For example, the following are acceptable strings:

192.168.1.1

192.168.1.*

192.168.*

192.*

ether0

This "black" list is applied after the parent.allow_interfaces_list on the previouspage list and filters out
the interfaces that should not be used for receiving data.

The resulting list restricts reception to a particular set of interfaces for unicast UDP.Multicast output will
still be sent andmaybe received over the interfaces in the list (if multicast is supported on the platform).

You must manage the memory of the list. The memory may be freed after the DomainParticipant is de-
leted.

Default: empty list that represents no denied interfaces

parent.
allow_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name. If the list is non-
empty, allow the use of multicast only on these interfaces. If the list is empty, allow the use of all the al-
lowed interfaces.

Interfacesmust be specified as comma-separated strings, with each comma delimiting an interface.

This list sub-selects from the allowed interfaces that are obtained after applying the parent.allow_in-
terfaces_list on the previouspage "white" list and the parent.deny_interfaces_list above "black" list.
From that resulting list, parent.deny_multicast_interfaces_list below is applied. Multicast output will be
sent and may be received over the interfaces in the resulting list (if multicast is supported on the platform).

If this list is empty, all the allowed interfacesmay potentially be used formulticast.

You must manage the memory of the list. The memory may be freed after the DomainParticipant is de-
leted.

Default: empty list that represents all available interfaces

parent.
deny_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name. If the list is non-
empty, deny the use of those interfaces formulticast.

Interfaces should be specified as comma-separated strings, with each comma delimiting an interface.

This "black" list is applied after the parent.allow_multicast_interfaces_list above list and filters out the in-
terfaces that should not be used formulticast. The final resulting list will be those interfaces that—if mul-
ticast is available—will be used formulticast sends.

You must manage the memory of the list. The memory may be freed after the DomainParticipant is de-
leted.

Default: empty list that represents no denied interfaces

Table 16.2 Properties for the Builtin UDPv4 Transport

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

Property Name

(prefix with
‘dds.transport.UDPv4.builtin.’)

Property Value Description

send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most operating systems, setsockopt()
will be called to set the SENDBUF to the value of this parameter.

This value must be greater than or equal to the property,
parent.message_size_maxon page 808. The maximumvalue is operating system-dependent.

If -1, setsockopt() (or equivalent) will not be called to size the send buffer of the socket. The transport will
use the OS default.

Default: 131072

recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving. On most operating systems, setsockopt
() will be called to set the RECVBUF to the value of this parameter.

This value must be greater than or equal to the property, parent.message_size_maxon page 808. The
maximumvalue is operating system-dependent.

If -1, setsockopt() (or equivalent) will not be called to size the receive buffer of the socket. The transport
will use the OS default.

Default: 131072

unicast_enabled

Allows the transport plugin to use unicast UDP for sending and receiving. By default, it will be turned on.
Also by default, it will use all the allowed network interfaces that it finds up and running when the plugin is
instanced.

Can be 1 (enabled) or 0 (disabled).

Default: 1

multicast_enabled

Allows the transport plugin to use multicast for sending and receiving. You can turn multicast on or off for
this plugin. The default is that multicast is on and the plugin will use the all network interfaces allowed for
multicast that it finds up and running when the plugin is instanced.

Can be 1 (enabled) or 0 (disabled).

Default: 1

multicast_ttl

Value for the time-to-live parameter for all multicast sends using this plugin. This is used to set the TTL of
multicast packets sent by this transport plugin.

Default: 1

multicast_loopback_disabled

Prevents the transport plugin fromputting multicast packets onto the loopback interface.

If disabled, then when sending multicast packets, do not put a copy on the loopback interface. This will
prevent other applications on the same node (including itself) from receiving those packets.

Note:Windows CE does not support multicast loopback. This field is ignored forWindows CE targets.

Default: 0, meaning multicast loopback is enabled. Turning off multicast loopback (setting to 1)may result
in minor performance gains when using multicast.

Table 16.2 Properties for the Builtin UDPv4 Transport

810

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

811

Property Name

(prefix with
‘dds.transport.UDPv4.builtin.’)

Property Value Description

ignore_loopback_interface

Prevents the transport plugin fromusing the IP loopback interface. Three values are allowed:

l 0: Forces local traffic to be sent over loopback, even if a more efficient transport (such as shared
memory) is installed (in which case traffic will be sent over both transports).

l 1: Disables local traffic via this plugin. The IP loopback interface will not be used, even if no NICs
are discovered. This is useful when you want applications running on the same node to use a
more efficient transport (such as shared memory) instead of the IP loopback.

l -1: Automatic. Enables local traffic via this plugin. To avoid redundant traffic,Connext DDSwill
selectively ignore the loopback destinations that are also reachable through shared memory.

Default: -1

DEPRECATED

ignore_nonup_interfaces

This property is only supported on Windows platforms with statically configured IP addresses.

It allows/disallows the use of interfaces that are not reported as UP (by the operating system) in the
UDPv4 transport. Two values are allowed:

l 0: Allow interfaces that are reported as DOWN.
l Setting this value to 0 supports communication scenarios in which interfaces are enabled after the participant is cre-

ated. Once the interfaces are enabled, discovery will not occur until the participant sends the next periodic announce-
ment (controlled by the parameter participant_qos.discovery_config.participant_liveliness_assert_period).

l To reduce discovery time, youmay want to decrease the value of participant_liveliness_assert_period. For the
above scenario, there is one caveat: non-UP interfaces must have a static IP assigned.

l 1: Do not allow interfaces that are reported as DOWN.

Default: 1

ignore_nonrunning_interfaces

Prevents the transport plugin fromusing a network interface that is not reported as RUNNING by the op-
erating system.

The transport checks the flags reported by the operating system for each network interface upon ini-
tialization. An interface which is not reported as UP will not be used. This property allows the same check
to be extended to the IFF_RUNNING flag implemented by some operating systems. The RUNNING flag is
defined to mean that "all resources are allocated", and may be off if there is no link detected, e.g., the net-
work cable is unplugged. Two values are allowed:

l 0: Do not check the RUNNING flag when enumerating interfaces, just make sure the interface is
UP.

l 1: Check the flag when enumerating interfaces, and ignore those that are not reported as
RUNNING. This can be used on some operating systems to cause the transport to ignore inter-
faces that are enabled but not connected to the network.

By default this property is set to 1, so Connext DDSwill ignore non-running interfaces.

Table 16.2 Properties for the Builtin UDPv4 Transport

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

Property Name

(prefix with
‘dds.transport.UDPv4.builtin.’)

Property Value Description

DEPRECATED

no_zero_copy

Prevents the transport plugin fromdoing a zero copy.

By default, this plugin will use the zero copy on OSs that offer it. While this is good for performance, it may
sometime tax the OS resources in a manner that cannot be overcome by the application.

The best example is if the hardware/device driver lends the buffer to the application itself. If the ap-
plication does not return the loaned buffers soon enough, the node may error ormalfunction. In case you
cannot reconfigure the hardware, device driver, or the OS to allow the zero-copy feature to work for your
application, you may have no choice but to turn off zero-copy.

By default this is set to 0, so Connext DDSwill use the zero-copy API if offered by the OS.

send_blocking

Controls the blocking behavior of send sockets.CHANGING THIS FROM THE DEFAULT CAN
CAUSE SIGNIFICANT PERFORMANCE PROBLEMS. Currently two values are defined:

l 1 (NDDS_TRANSPORT_UDP_BLOCKING_ALWAYS): Sockets are blocking (default socket
options for operating system).

l 0 (NDDS_TRANSPORT_UDP_BLOCKING_NEVER): Sockets are modified to make themnon-
blocking. This may cause significant performance problems.

Default: 1

transport_priority_mask

Mask for the transport priority field. This is used in conjunction with transport_priority_mapping_low be-
low and transport_priority_mapping_high below to define the mapping from the 7.5.26
TRANSPORT_PRIORITYQosPolicy on page 459 to the IPv4 TOS field. Defines a contiguous region of
bits in the 32-bit transport priority value that is used to generate values for the IPv4 TOS field on an out-
going socket.

For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the mapping. The value will be
scaled from the mask range (0x0000 - 0xff00 in this case) to the range specified by low and high.

If the mask is set to zero, then the transport will not set IPv4 TOS for send sockets.

Default: 0

transport_priority_mapping_low
Sets the low and high values of the output range to IPv4 TOS.

These values are used in conjunction with transport_priority_maskabove to define the mapping from
the 7.5.26 TRANSPORT_PRIORITYQosPolicy on page 459 to the IPv4 TOS field. Defines the low
and high values of the output range for scaling.

Note that IPv4 TOS is generally an 8-bit value.

Default: 0 for transport_priority_mapping_low and 0xFF for transport_priority_mapping_high
transport_priority_mapping_high

send_ping

This property specifies whether to send a PINGmessage before commencing the discovery process. On
certain operating systems orwith certain switches the initial UDP packet, configuring the ARP table, was
unfortunately dropped. To avoid dropping the initial RTPS discovery sample, a PINGmessage is sent to
preconfigure the ARP table in those environments.

Default: 1

Table 16.2 Properties for the Builtin UDPv4 Transport

812

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

813

Property Name

(prefix with
‘dds.transport.UDPv4.builtin.’)

Property Value Description

interface_poll_period

Specifies the period in milliseconds to query for changes in the state of all the interfaces.

When possible, the detection of an IP address changes is done asynchronously using the APIs offered
by the underlying OS. If there is no mechanism to do that, the detection will use a polling strategy where
the polling period can be configured by setting this property.

Default: 500

reuse_multicast_receive_resource

Controls whether or not to reuse receive resources. Setting this to 0 (FALSE) prevents multicast crosstalk
by uniquely configuring a port and creating a receive thread for each multicast group address.

Affects Linux systems only; ignored for non-Linux systems.

Default: 1

protocol_overhead_max

Maximumsize in bytes of protocol overhead, including headers.

This value is the maximumsize, in bytes, of protocol-related overhead. Normally, the overhead accounts
forUDP and IP headers. The default value is set to accommodate the most common UDP/IP header size.

Note that when parent.message_size_maxon page 808 plus this overhead is larger than the UDPv4
maximummessage size (65535 bytes), the middleware will automatically reduce the effectivemessage_
size_max to 65535 minus this overhead.

Default: 28

disable_interface_tracking

Disables detection of network interface changes.

By default, network interfaces changes are propagated in the formof locators to other applications. This
is done to support IP mobility scenarios. For example, you could start a application with Wi-Fi and move to
a wired connection. In order to continue communicating with other applications this interface change
must be propagated.

In 5.0 and earlier versions of the product, IP mobility scenarios were not supported. Applications using
5.2 will report errors if they detect locator changes in a DataWriter orDataReader.

You can disable the notification and propagation of interface changes by setting this property to 1. This
way, an interface change in a newer application will not trigger errors in an application running 5.2 GARor
earlier. Of course, this will prevent the newapplication frombeing able to detect network interface
changes.

Table 16.2 Properties for the Builtin UDPv4 Transport

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

Property Name

(prefix with
‘dds.transport.UDPv4.builtin.’)

Property Value Description

public_address

Public IP address associated with the transport instantiation.

Setting the public IP address is only necessary to support communication overWAN that involves Net-
work Address Translation (NAT).

Typically, the address is the public address of the IP NAT router that provides access to the WAN.

By default, the DomainParticipant creating the transport will announce the IP addresses obtained from
the NICs to otherDomainParticipants in the system.

When this property is set, the DomainParticipant will announce the IP address corresponding to the prop-
erty value instead of the LAN IP addresses associated with the NICs.

Notes:

Setting this property is necessary, but is not a sufficient condition for sending and receiving data over the
WAN. You must also configure the IP NAT router to allowUDP traffic and to map the public IP address
specified by this property to the DomainParticipant'sprivate LAN IP address. This is typically done with
one of these mechanisms:

l Port Forwarding: You must map the private ports used to receive discovery and user data traffic
to the corresponding public ports (see Table 9.21 DDS_RtpsWellKnownPorts_t). Public and
private ports must be the same since the transport does not allow you to change the mapping.

l 1:1 NAT:You must add a 1:1 NAT entry that maps the public IP address specified in this property
to the private LAN IP address of the DomainParticipant.

By setting this property, the DomainParticipant only announces its public IP address to otherDo-
mainParticipants. Therefore, communication with DomainParticipantswithin the LAN that are running on
different nodes will not work unless the NAT router is configured to enable NAT reflection (hairpin NAT).

There is anotherway to achieve simultaneous communication with DomainParticipants running in the
LANand WAN, that does not require hairpin NAT. This way uses a gateway application such as RTI Rout-
ing Service to provide access to the WAN.

Default: NULL (the transport uses the IP addresses obtained from the NICs)

use_checksum

This property specifies whether the UDP checksumwill be computed. On Windows and Linux systems,
the UDP checksumwill not be set when use_checksum is set to 0. This is useful when RTPS protocol stat-
istics related to corrupted messages need to be collected through the operation get_participant_pro-
tocol_status() (see 9.3.14 Getting Participant ProtocolStatuson page 637).

Default: 1

force_interface_poll_detection

This property forces the interface tracker to use a polling method to detect changes to the network in-
terfaces in IP mobility scenarios. It only applies to operating systems that support asynchronous no-
tifications of interface changes.

If set to TRUE, the interface trackerwill use a polling method that queries the interfaces periodically to de-
tect the changes. If set to FALSE, the interface trackerwill use the operating system’s default method.

Basically, this property allows you—for an operating system that supports asynchronous notification—to
use the polling method instead.

Default: FALSE

Table 16.2 Properties for the Builtin UDPv4 Transport

814

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

815

Property Name

(prefix with
‘dds.transport.UDPv4.builtin.’)

Property Value Description

join_multicast_group_timeout

Windows only.

On Windows, a network interface may be detected before it is allowed to join a multicast group address.
This property adjusts howmuch time (in milliseconds) to wait for the ADD_MEMBERSHIP multicast op-
eration to succeed before withdrawing.

Default: 5000

property_validation_action

By default, property names given in the 7.5.19 PROPERTYQosPolicy (DDSExtension) on page 440
are validated to avoid using incorrect or unknown names (for example, due to a typo). This property con-
figures the validation of the property names associated with the transport:

l VALIDATION_ACTION_EXCEPTION: validate the properties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the properties. Upon failure, log warnings and do
not fail.

If this property is not set, the property validation behaviorwill be the same as that of the Do-
mainParticipant, which by default is VALIDATION_ACTION_EXCEPTION. See 7.5.19.1 PropertyVal-
idation on page 442 formore information.

thread_name_prefix

You can set this field with your own value, to help you identify the transport thread in a way that's mean-
ingful to you. Do not exceed 8 characters.

If you do not set this field,Connext DDS creates the following prefix:

'r' + 'Tr' + participant identifier + '\0'

Where 'r' indicates this is a thread fromRTI, 'Tr' indicates the thread is related to a transport, and par-
ticipant identifier contains 5 characters as follows:

l If participant_name is set: The participant identifier will be the first 3 characters and the last 2
characters of the participant_name.

l If participant_name is not set, then the identifier is computed as domain_id (3 characters) fol-
lowed by participant_id (2 characters).

l If participant_name is not set and the participant_id is set to -1 (default value), then the par-
ticipant identifier is computed as the last 5 digits of the rtps_instance_id in the participant
GUID.

See 21.9 Identifying ThreadsUsed byConnext DDSon page 922.

Table 16.2 Properties for the Builtin UDPv4 Transport

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext DDS core.

Currently, the only property supported is whether or not the transport plugin will always loan a buffer
when Connext DDS tries to receive a message using the plugin. This is in support of a zero-copy in-
terface.

parent.gather_send_buffer_
count_max

Specifies the maximumnumber of buffers thatConnext DDS can pass to the send()method of a trans-
port plugin.

The transport plugin send() API supports a gather-send concept, where the send() call can take several
discontiguous buffers, assemble and send them in a single message. This enablesConnext DDS to
send a message fromparts obtained fromdifferent sources without first having to copy the parts into a
single contiguous buffer.

However, most transports that support a gather-send concept have an upper limit on the number of buf-
fers that can be gathered and sent. Setting this value will preventConnext DDS from trying to gather too
many buffers into a send call for the transport plugin.

Connext DDS requires all transport-plugin implementations to support a gather-send of least a minimum
number of buffers. This minimumnumber is NDDS_TRANSPORT_PROPERTY_GATHER_SEND_
BUFFER_COUNT_MIN.

parent.message_size_max

The maximumsize of a message in bytes that can be sent or received by the transport plugin. Above this
size, DDS-level fragmentation will occur. See 23.3 Large Data Fragmentation on page 976.

This value must be set before the transport plugin is registered, so thatConnext DDS can properly use
the plugin.

Default for Integrity platforms: 9196

Default for non-Integrity platforms: 65487

parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name.

Interfacesmust be specified as comma-separated strings, with each comma delimiting an interface. See
16.6.2 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’AddressLists on page 826.

If the list is non-empty, this "white" list is applied before the parent.deny_interfaces_list below list. The
DomainParticipantwill use the resulting list of interfaces to inform its remote participant(s) about which
unicast addressesmay be used to contact the DomainParticipant.

The resulting list restricts reception to a particular set of interfaces for unicast UDP.Multicast output will
still be sent andmaybe received over the interfaces in the list (if multicast is supported on the platform).

You must manage the memory of the list. The memory may be freed after the DomainParticipant is de-
leted.

parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name. If the list is non-
empty, deny the use of these interfaces.

Interfacesmust be specified as comma-separated strings, with each comma delimiting an interface. See
16.6.2 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’AddressLists on page 826.

This "black" list is applied after the parent.allow_interfaces_list above list and filters out the interfaces
that should not be used.

The resulting list restricts reception to a particular set of interfaces for unicast UDP.Multicast output will
still be sent andmaybe received over the interfaces in the list (if multicast is supported on the platform).

You must manage the memory of the list. The memory may be freed after the DomainParticipant is de-
leted.

Table 16.3 Properties for Builtin UDPv6 Transport

816

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

817

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description

parent.
allow_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name. If the list is non-
empty, allow the use of multicast only these interfaces; otherwise allow the use of all the allowed in-
terfaces.

Interfacesmust be specified as comma-separated strings, with each comma delimiting an interface. See
16.6.2 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’AddressLists on page 826.

This list sub-selects from the allowed interfaces that are obtained after applying the parent.allow_in-
terfaces_list on the previouspage "white" list and the parent.deny_interfaces_list on the previouspage
"black" list. Finally, the parent.deny_multicast_interfaces_list below is applied. Multicast output will be
sent and may be received over the interfaces in the resulting list (if multicast is supported on the platform).

If this list is empty, all the allowed interfacesmay potentially be used formulticast.

You must manage the memory of the list. The memory may be freed after the DomainParticipant is de-
leted.

parent.
deny_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name. If the list is non-
empty, deny the use of those interfaces formulticast.

Interfacesmust be specified as comma-separated strings, with each comma delimiting an interface. See
16.6.2 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’AddressLists on page 826.

This "black" list is applied after the parent.allow_multicast_interfaces_list above list and filters out the in-
terfaces that should not be used formulticast. Multicast output will be sent and may be received over the
interfaces in the resulting list (if multicast is supported on the platform).

You must manage the memory of the list. The memory may be freed after the DomainParticipant is de-
leted.

send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most operating systems, setsockopt()
will be called to set the SENDBUF to the value of this parameter.

This value must be greater than or equal to parent.message_size_max. The maximumvalue is op-
erating system-dependent.

If -1, setsockopt() (or equivalent) will not be called to size the send buffer of the socket. The transport will
use the OS default.

Default: 131072

recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving. On most operating systems, setsockopt
() will be called to set the RECVBUF to the value of this parameter.

This value must be greater than or equal to parent.message_size_max. The maximumvalue is op-
erating system-dependent.

If -1, setsockopt() (or equivalent) will not be called to size the receive buffer of the socket. The transport
will use the OS default.

Default: 131072

unicast_enabled

Allows the transport plugin to use unicast UDP for sending and receiving. By default, it will be turned on
(1). Also by default, it will use all the allowed network interfaces that it finds up and running when the plu-
gin is instanced.

Can be 1 (enabled) or 0 (disabled).

Table 16.3 Properties for Builtin UDPv6 Transport

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description

multicast_enabled

Allows the transport plugin to use multicast for sending and receiving.

You can turn multicast UDP on or off for this plugin. By default, it will be turned on (1). Also by default, it
will use the all network interfaces allowed formulticast that it finds up and running when the plugin is in-
stanced.

Can be 1 (enabled) or 0 (disabled).

multicast_ttl
Value for the time-to-live parameter for all multicast sends using this plugin.

This is used to set the TTL of multicast packets sent by this transport plugin

multicast_loopback_disabled

Prevents the transport plugin fromputting multicast packets onto the loopback interface.

If disabled, then when sending multicast packets,Connext DDSwill not put a copy on the loopback in-
terface. This will prevent applications on the same node (including itself) from receiving those packets.

This is set to 0 by default, meaning multicast loopback is enabled. Disabling multicast loopback off (set-
ting this value to 1)may result in minor performance gains when using multicast.

ignore_loopback_interface

Prevents the transport plugin fromusing the IP loopback interface. Three values are allowed:

0: Enable local traffic via this plugin. This plugin will only use and report the IP loopback interface if there
are no other network interfaces (NICs) up on the system.

1: Disable local traffic via this plugin. Do not use the IP loopback interface even if no NICs are discovered.
This is useful when you want applications running on the same node to use a more efficient plugin like
Shared Memory instead of the IP loopback.

-1: Automatic. Enables local traffic via this plugin. To avoid redundant traffic,Connext DDSwill se-
lectively ignore the loopback destinations that are also reachable through shared memory.

ignore_nonrunning_interfaces

Prevents the transport plugin fromusing a network interface that is not reported as RUNNING by the op-
erating system.

The transport checks the flags reported by the operating system for each network interface upon ini-
tialization. An interface which is not reported as UP will not be used. This property allows the same check
to be extended to the IFF_RUNNING flag implemented by some operating systems. The RUNNING flag is
defined to mean that "all resources are allocated", and may be off if there is no link detected, e.g., the net-
work cable is unplugged. Two values are allowed:

l 0: Do not check the RUNNING flag when enumerating interfaces, just make sure the interface is
UP.

l 1: Check the flag when enumerating interfaces, and ignore those that are not reported as
RUNNING. This can be used on some operating systems to cause the transport to ignore inter-
faces that are enabled but not connected to the network.

By default this property is set to 1, so Connext DDSwill ignore non-running interfaces.

DEPRECATED

no_zero_copy

Prevents the transport plugin fromdoing a zero copy.

By default, this plugin will use the zero copy on OSs that offer it. While this is good for performance, it may
sometime tax the OS resources in a manner that cannot be overcome by the application.

The best example is if the hardware/device driver lends the buffer to the application itself. If the ap-
plication does not return the loaned buffers soon enough, the node may error ormalfunction. In case you
cannot reconfigure the H/W, device driver, or the OS to allow the zero-copy feature to work for your ap-
plication, you may have no choice but to turn off zero-copy.

By default this is set to 0, so Connext DDSwill use the zero-copy API if offered by the OS.

Table 16.3 Properties for Builtin UDPv6 Transport

818

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

819

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description

send_blocking

Controls the blocking behavior of send sockets.CHANGING THIS FROM THE DEFAULT CAN
CAUSE SIGNIFICANT PERFORMANCE PROBLEMS.Currently two values are defined:

l 1 (NDDS_TRANSPORT_UDP_BLOCKING_ALWAYS): Sockets are blocking (default socket
options forOperating System).

l 0 (NDDS_TRANSPORT_UDP_BLOCKING_NEVER): Sockets are modified to make themnon-
blocking. This may cause significant performance problems.

Default: 1

enable_v4mapped

Specifies whether the UDPv6 transport will process IPv4 addresses.

Set this to 1 to turn on processing of IPv4 addresses. Note that this maymake it incompatible with use of
the UDPv4 transport within the same DomainParticipant.

transport_priority_mask

Sets a mask for use of transport priority field.

If transport priority mapping is supported on the platform1, this mask is used in conjunction with trans-
port_priority_mapping_low below and transport_priority_mapping_high below to define the mapping
from the DDS transport priority 7.5.26 TRANSPORT_PRIORITYQosPolicy on page 459 to the IPv6
TCLASS field.

Defines a contiguous region of bits in the 32-bit transport priority value that is used to generate values for
the IPv6 TCLASS field on an outgoing socket.

For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the mapping. The value will be
scaled from the mask range (0x0000 - 0xff00 in this case) to the range specified by low and high.

If the mask is set to zero, then the transport will not set IPv6 TCLASS for send sockets.

transport_priority_mapping_low
Sets the low and high values of the output range to IPv6 TCLASS.

These values are used in conjunction with transport_priority_maskabove to define the mapping from
DDS transport priority to the IPv6 TCLASS field. Defines the low and high values of the output range for
scaling.

Note that IPv6 TCLASS is generally an 8-bit value.
transport_priority_mapping_high

send_ping

This property specifies whether to send a PINGmessage before commencing the discovery process. On
certain operating systems orwith certain switches the initial UDP packet, configuring the ARP table, was
unfortunately dropped. To avoid dropping the initial RTPS discovery sample, a PINGmessage is sent to
preconfigure the ARP table in those environments.

interface_poll_period See interface_poll_period on page 813 in Table 16.2 Properties for the Builtin UDPv4 Transport

reuse_multicast_receive_resource This property controls whether or not to reuse multicast receive resources.

Table 16.3 Properties for Builtin UDPv6 Transport

1See the RTI Connext DDS Core Libraries Platform Notes to find out if the transport priority is supported on a specific
platform.

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description

protocol_overhead_max

This value is the maximumsize, in bytes, of protocol-related overhead. Normally, the overhead accounts
forUDP and IP headers. The default value is set to accommodate the most common UDP/IP header size.

Note that when NDDS_Transport_Property_t::message_size_max plus this overhead is larger than
the parent.message_size_maxon page 816(65535 bytes), the middleware will automatically reduce
the effectivemessage_size_max, to 65535 minus this overhead.

disable_interface_tracking
Disables detection of network interface changes. See disable_interface_tracking in Table 16.2 Prop-
erties for the Builtin UDPv4 Transport.

public_address See public_address in Table 16.2 Properties for the Builtin UDPv4 Transport.

force_interface_poll_detection

This property forces the interface tracker to use a polling method to detect changes to the network in-
terfaces in IP mobility scenarios. It only applies to operating systems that support asynchronous no-
tifications of interface changes.

If set to TRUE, the interface trackerwill use a polling method that queries the interfaces periodically to de-
tect the changes. If set to FALSE, the interface trackerwill use the operating system’s default method.

Basically, this property allows you—for an operating system that supports asynchronous notification—to
use the polling method instead.

Default: FALSE

join_multicast_group_timeout

Windows only.

On Windows, a network interface may be detected before it is allowed to join a multicast group address.
This property adjusts howmuch time (in milliseconds) to wait for the ADD_MEMBERSHIP multicast op-
eration to succeed before withdrawing.

Default: 5000

property_validation_action

By default, property names given in the 7.5.19 PROPERTYQosPolicy (DDSExtension) on page 440
are validated to avoid using incorrect or unknown names (for example, due to a typo). This property con-
figures the validation of the property names associated with the transport:

l VALIDATION_ACTION_EXCEPTION: validate the properties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the properties. Upon failure, log warnings and do
not fail.

If this property is not set, the property validation behaviorwill be the same as that of the Do-
mainParticipant, which by default is VALIDATION_ACTION_EXCEPTION. See 7.5.19.1 PropertyVal-
idation on page 442 formore information.

Table 16.3 Properties for Builtin UDPv6 Transport

820

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

821

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description

thread_name_prefix

You can set this field with your own value, to help you identify the transport thread in a way that's mean-
ingful to you. Do not exceed 8 characters.

If you do not set this field,Connext DDS creates the following prefix:

'r' + 'Tr' + participant identifier + '\0'

Where 'r' indicates this is a thread fromRTI, 'Tr' indicates the thread is related to a transport, and par-
ticipant identifier contains 5 characters as follows:

l If participant_name is set: The participant identifier will be the first 3 characters and the last 2
characters of the participant_name.

l If participant_name is not set, then the identifier is computed as domain_id (3 characters) fol-
lowed by participant_id (2 characters).

l If participant_name is not set and the participant_id is set to -1 (default value), then the par-
ticipant identifier is computed as the last 5 digits of the rtps_instance_id in the participant
GUID.

See 21.9 Identifying ThreadsUsed byConnext DDSon page 922.

Table 16.3 Properties for Builtin UDPv6 Transport

Property Name
(prefix with

‘dds.transport.shmem.builtin.’)
Property Value Description

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext DDS core.

Currently, the only property supported is whether or not the transport plugin will always loan a bufferwhen
Connext DDS tries to receive a message using the plugin. This is in support of a zero-copy interface.

parent.gather_send_buffer_
count_max

Specifies the maximumnumber of buffers thatConnext DDS can pass to the send()method of a trans-
port plugin.

The transport plugin send() API supports a gather-send concept, where the send() call can take several
discontiguous buffers, assemble and send them in a single message. This enablesConnext DDS to
send a message fromparts obtained fromdifferent sources without first having to copy the parts into a
single contiguous buffer.

However, most transports that support a gather-send concept have an upper limit on the number of buf-
fers that can be gathered and sent. Setting this value will preventConnext DDS from trying to gather too
many buffers into a send call for the transport plugin.

Connext DDS requires all transport-plugin implementations to support a gather-send of least a minimum
number of buffers. This minimum is NDDS_TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_
COUNT_MIN.

Table 16.4 Properties for Builtin Shared-Memory Transport

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

Property Name
(prefix with

‘dds.transport.shmem.builtin.’)
Property Value Description

parent.message_size_max

The maximumsize of a message in bytes that can be sent or received by the transport plugin. Above this
size, DDS-level fragmentation will occur. See 23.3 Large Data Fragmentation on page 976.

This value must be set before the transport plugin is registered, so thatConnext DDS can properly use
the plugin.

Default for Integrity platforms: 9216

Default for non-Integrity platforms: 65536

parent.allow_interfaces_list

Not applicable to the Shared-Memory Transport

parent.deny_interfaces_list

parent.
allow_multicast_interfaces_list

parent.
deny_multicast_interfaces_list

received_message_count_max

Number of messages that can be buffered in the receive queue. This is the maximumnumber of mes-
sages that can be buffered in a RecvResource of the Transport Plugin. This does not guarantee that the
Transport-Plugin will actually be able to buffer received_message_count_max messages of the max-
imumsize set in parent.message_size_maxabove.

The total number of bytes that can be buffered for a RecvResource is actually controlled by receive_buf-
fer_size on the next page.

Table 16.4 Properties for Builtin Shared-Memory Transport

822

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

823

Property Name
(prefix with

‘dds.transport.shmem.builtin.’)
Property Value Description

receive_buffer_size

The total number of bytes that can be buffered in the receive queue.

This number controls howmuch memory is allocated by the plugin for the receive queue (on a perRecvRe-
source basis). The actual number of bytes allocated is:

size = receive_buffer_size +message_size_max +
received_message_count_max * fixedOverhead

where fixedOverhead is some small number of bytes used by the queue data structure.

If receive_buffer_size <
(message_size_max * received_message_count_max), the transport plugin will not be able to store
received_message_count_max messages of sizemessage_size_max.

If receive_buffer_size >
(message_size_max * received_message_count_max), then there will be memory allocated that can-
not be used by the plugin and thus wasted.

To optimize memory usage, specify a receive queue size less than that required to hold the maximum
number of messages which are all of the maximumsize.

In most situations, the average message size may be far less than the maximummessage size. So for ex-
ample, if the maximummessage size is 64K bytes, and you configure the plugin to buffer at least 10 mes-
sages, then 640K bytes of memory would be needed if all messages were 64K bytes. Should this be
desired, then receive_buffer_size should be set to 640K bytes.

However, if the average message size is only 10K bytes, then you could set the receive_buffer_size to
100K bytes. This allows you to optimize the memory usage of the plugin for the average case and yet al-
low the plugin to handle the extreme case.

The queue will always be able to hold 1 message ofmessage_size_max bytes, regardless of the value
of receive_buffer_size.

host_id

Host ID used to generate the shared memory transport network address.

Shared memory transport has an associated network address to communicate with otherDo-
mainParticipantswithin the same node. This network address is typically generated from the host ID, a
unique host identifier.Connext DDS computes this host ID based on the hardware address, ormedia ac-
cess control (MAC) address, of the first network interface found and the value of rtps_auto_id_kind.

When set, this property forces the use of a specific host ID to generate the shared memory network ad-
dress instead of computing it as described above. This property takes an unsigned integer value that is
converted into the network address.

This host ID should satisfy the following properties:

l Should be unique across nodes. Otherwise, remote DomainParticipantsmay try to com-
municate using shared memory transport with DomainParticipants froma different node (which
will not work).

l Should be the same for allDomainParticipantswithin the same node that want to communicate
using shared memory if accept_unknown_peers is set to FALSE or there are DomainPar-
ticipants in the system running a Connext DDS version previous to 6.0.0.

Note: This property is needed in very few scenarios: for example, when two differentConnext DDS ap-
plications in the same node have rtps_auto_id_kind set to DDS_RTPS_AUTO_ID_FROM_UUID, the
first detected network interface is different for each application, and accept_unknown_peers is set to
FALSE.

Table 16.4 Properties for Builtin Shared-Memory Transport

16.6 Setting Builtin Transport Properties with the PropertyQosPolicy

Property Name
(prefix with

‘dds.transport.shmem.builtin.’)
Property Value Description

enable_udp_debugging

Enables UDP debugging when using shared memory. If set to '1', all shared memory traffic will be pub-
lished to udp_debugging_address::udp_debugging_port, and the number of shared memory transport
gather buffers will be the value of parent.gather_send_buffer_count_max or 16, whichever is smaller.
Default: 0.

udp_debugging_address
IP address to which shared memory traffic will be published if enable_udp_debugging is set to '1'. De-
fault: 239.255.1.2.

udp_debugging_port
Port to which shared memory traffic will be published if enable_udp_debugging is set to '1'. Default:
7399.

use_530_from_uuid_locator

This property only applies when the WireProtocolQoS policy (specifically rtps_auto_id_kind) is set to
DDS_RTPS_AUTO_ID_FROM_UUID. If set to TRUE, the generated shared memory locatorwill be com-
patible with the locator created in version 5.3. If set to FALSE the generated shared memory locatorwill
not be compatible, and communication will not occur. Formore information, see theMigration Guide on
the RTI Community Portal (https://community.rti.com/documentation).

Default: FALSE

property_validation_action

By default, property names given in the 7.5.19 PROPERTYQosPolicy (DDSExtension) on page 440
are validated to avoid using incorrect or unknown names (for example, due to a typo). This property con-
figures the validation of the property names associated with the transport:

l VALIDATION_ACTION_EXCEPTION: validate the properties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the properties. Upon failure, log warnings and do
not fail.

If this property is not set, the property validation behaviorwill be the same as that of the Do-
mainParticipant, which by default is VALIDATION_ACTION_EXCEPTION. See 7.5.19.1 PropertyVal-
idation on page 442 formore information.

thread_name_prefix

You can set this field with your own value, to help you identify the transport thread in a way that's mean-
ingful to you. Do not exceed 8 characters.

If you do not set this field,Connext DDS creates the following prefix:

'r' + 'Tr' + participant identifier + '\0'

Where 'r' indicates this is a thread fromRTI, 'Tr' indicates the thread is related to a transport, and par-
ticipant identifier contains 5 characters as follows:

l If participant_name is set: The participant identifier will be the first 3 characters and the last 2
characters of the participant_name.

l If participant_name is not set, then the identifier is computed as domain_id (3 characters) fol-
lowed by participant_id (2 characters).

l If participant_name is not set and the participant_id is set to -1 (default value), then the par-
ticipant identifier is computed as the last 5 digits of the rtps_instance_id in the participant
GUID.

See 21.9 Identifying ThreadsUsed byConnext DDSon page 922.

Table 16.4 Properties for Builtin Shared-Memory Transport

824

https://community.rti.com/documentation

16.6.1 Setting the Maximum Gather-Send Buffer Count for UDP Transports

825

16.6.1 Setting the Maximum Gather-Send Buffer Count for UDP Transports

To minimize memory copies, Connext DDS uses the "gather send" API that may be available on the trans-
port.

Some operating systems limit the number of gather buffers that can be given to the gather-send function.
This limits Connext DDS's ability to concatenate multiple DDS samples into a single network message. An
example is the UDP transport's sendmsg() call, which on some OSs (such as Solaris) can only take 16
gather buffers, limiting the number of DDS samples that can be concatenated to five or six.

To match this limitation, Connext DDS sets the UDP transport plug-ins' gather_send_buffer_count_max
to 16 by default for all operating systems. This field is part of the NDDS_Transport_Property_t struc-
ture.

l On VxWorks 5.5 operating systems, gather_send_buffer_count_max can be set as high as 63.

l On Windows and INTEGRITY operating systems, gather_send_buffer_count_max can be set as
high as 128.

l On most other operating systems, gather_send_buffer_count_max can be set as high as 16.

If you are using an OS that allows more than 16 gather buffers for a sendmsg() call, you may increase the
UDP transport plug-in's gather_send_buffer_count_max from the default up to your OS's limit (but no
higher than 128).

For example, if your OS imposes a limit of 64 gather buffers, you may increase the gather_send_buffer_
count_max up to 64. However, if your OS's gather-buffer limit is 1024, you may only increase the
gather_send_buffer_count_max up to 128.

By changing gather_send_buffer_count_max, you can increase performance in the following situations:

l When a DataWriter is sending multiple packets to a DataReader either because the DataReader is a
late-joiner and needs to catch up, or because several packets were dropped by the network or rejec-
ted and need to be resent. Changing the setting will help when the DataWriter needs to send or
resend more than five or six packets at a time.

l If your application has more than five or six DataWriters or DataReaders in a participant. (In this
case, the change will make the discovery process more efficient.)

l When using an asynchronous DataWriter, DDS samples are sent asynchronously by a separate
thread. DDS samples may not be sent immediately, but may be queued instead, depending on the set-
tings of the associated FlowController. If multiple DDS samples in the queue must be sent to the
same destination, they will be coalesced into as few network packets as possible. The number of
DDS samples that can be put in a single message is directly proportional to gather_send_buffer_
count_max. Therefore, by maximizing gather_send_buffer_count_max, you can minimize the
number of packets on the wire.

16.6.2 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists

16.6.2 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists

This section describes how to format the strings in the properties that create “allow” and “deny” lists:

l dds.transport.UDPv6.builtin. parent.allow_interfaces_list on page 808

l dds.transport.UDPv6.builtin. parent.deny_interfaces_list on page 809

l dds.transport.UDPv6.builtin. parent.allow_multicast_interfaces_list on page 809

l dds.transport.UDPv6.builtin. parent.deny_multicast_interfaces_list on page 809

These properties may contain a list of strings, each identifying a range of interface addresses or an interface
name. Interfaces should be specified as comma-separated strings, with each comma delimiting an interface.

The strings can be addresses and patterns in IPv6 notation. They are case-insensitive.

They may contain a wildcard '*' and can expand up to 4 digits in a block. The wildcard must be either lead-
ing or trailing (cannot be in the middle of the string). Multiple wildcards can be specified in a single filter,
but only one wildcard can be specified per block (between colons). Table 16.5 Examples of IPv6 Address
Filters shows some examples.

Example Filter Equivalent Filters Matches

::*:*:*:*:*:*

FE80::*:* fe80::*:*,

Fe80:0:0::*:*

Fe80:0:0:0:0:0:*:* FE80:0000:0000:0000:0000:0000:xxxx:xxxx

FE80:aBC::202:2*:*:*2 FE80:0ABC:0000:0000:0202:2xxx:xxxx:xxx2

Table 16.5 Examples of IPv6 Address Filters

16.6.3 RTPS Overhead

Connext DDS adds protocol information to every RTPS message it sends out. By default, this information
is calculated automatically based on the content of the RTPS message. You can use the property dds.-
participant.protocol.rtps_overhead (see 7.5.19 PROPERTY QosPolicy (DDS Extension) on
page 440) to overwrite the size that is calculated automatically with your own value. Your value does not
include the security overhead. The security RTPS overhead is automatically added to the dds.-
participant.protocol.rtps_overhead value.

So, the maximum user payload per data packet is (parent.message_size_max - rtps_overhead - security
RTPS overhead).

826

16.7 Installing Additional Builtin Transport Plugins with register_transport()

827

16.7 Installing Additional Builtin Transport Plugins with register_
transport()

After you create an instance of a transport plugin (see 16.4 Explicitly Creating Builtin Transport Plugin
Instances on page 804) , you have to register it.

The builtin transports (UDPv4, UDPv6, and Shared Memory) are implicitly registered by default (if they
are enabled via the 9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension) on page 671). There-
fore, you only need to explicitly register a builtin transport if you want an extra instance of it (suppose you
want two UDPv4 transports, one with special settings).

The register_transport() operation registers a transport plugin for use with a DomainParticipant and
assigns it a network address. (Note: this operation is only available in the APIs other than Java or .NET. If
you are using Java or .NET, use the Property QosPolicy to install additional transport plugins.)
NDDS_Transport_Handle_t NDDSTransportSupport::register_transport(

DDSDomainParticipant * participant_in,
NDDS_Transport_Plugin * transport_in,
const DDS_StringSeq & aliases_in,
const NDDS_Transport_Address_t & network_address_in)

Where:

participant_in A non-NULL, disabled DomainParticipant.

transport_in A non-NULL transport plugin that is currently not registered with another DomainParticipant.

aliases_in A non-NULL sequence of strings used as aliases to refer to the transport plugin symbolically. The trans-
port plugin will be "available for use" to an Entity contained in the DomainParticipant, if the transport
alias list associated with the Entity contains one of these transport aliases. An empty alias list rep-
resents a WILDCARD and matches ALL aliases. See 16.7.2 Transport Aliases on the next page.

network_ad-
dress_in

The network address at which to register this transport plugin. The least significant transport_in-
.property.address_bit_count will be truncated. The remaining bits are the network address of the trans-
port plugin. See 16.7.3 Transport Network Addresses on page 829.

Note: You must ensure that the transport plugin instance is only used by one DomainParticipant at a time.
See 16.7.1 Transport Lifecycles on the next page.

Upon success, a valid non-NIL transport handle is returned, representing the association between the
DomainParticipant and the transport plugin. If the transport cannot be registered, NDDS_TRANSPORT_
HANDLE_NIL is returned.

Note that a transport plugin's class name is automatically registered as an implicit alias for the plugin. Thus,
a class name can be used to refer to all the transport plugin instances of that class.

The C and C++ APIs also have a operation to retrieve a registered transport plugin, get_transport_plugin
().

16.7.1 Transport Lifecycles

NDDS_Transport_Plugin* get_transport_plugin(
DDSDomainParticipant* participant_in,
const char* alias_in);

16.7.1 Transport Lifecycles

If you create and register a transport plugin with a DomainParticipant, you are responsible for deleting it
by calling its destructor. Builtin transport plugins are automatically managed by Connext DDS if they are
implicitly registered through the TransportBuiltinQosPolicy.

User-created transport plugins must not be deleted while they are is still in use by a DomainParticipant.
This generally means that a user-created transport plugin instance can only be deleted after the DomainPar-
ticipant with which it was registered is deleted. Note that a transport plugin cannot be "unregistered" from
a DomainParticipant.

A transport plugin instance cannot be registered with more than one DomainParticipant at a time. This
requirement is necessary to guarantee the multi-threaded safety of the transport API.

Thus, if the same physical transport resources are to be used with multiple DomainParticipants in the same
address space, the transport plugin should be written in such a way so that it can be instantiated multiple
times—once for each DomainParticipant in the address space. Note that it is always possible to write the
transport plugin so that multiple transport plugin instances share the same underlying resources; however
the burden (if any) of guaranteeing multi-threaded safety to access shared resource shifts to the transport
plugin developer.

16.7.2 Transport Aliases

In order to use a transport plugin instance in a Connext DDS application, it must be registered with a
DomainParticipant using the register_transport() operation (16.7 Installing Additional Builtin Transport
Plugins with register_transport() on the previous page). register_transport() takes a pointer to the trans-
port plugin instance, and in addition allows you to specify a sequence of "alias" strings to symbolically
refer to the transport plugin. The same alias strings can be used to register more than one transport plugin.

Multiple transport plugins can be registered with a DomainParticipant. An alias symbolically refers to one
or more transport plugins registered with the DomainParticipant. Pre-configured builtin transport plugin
instances can be referred to using preconfigured aliases.

A transport plugin's class name is automatically used as an implicit alias. It can be used to refer to all the
transport plugin instance of that class.

You can use aliases to refer to transport plugins in order to specify:

l Transport plugins to use for discovery (see enabled_transports in 9.5.2 DISCOVERY QosPolicy
(DDS Extension) on page 646), and for DataWriters and DataReaders (see 7.5.27 TRANSPORT_
SELECTION QosPolicy (DDS Extension) on page 464).

828

16.7.3 Transport Network Addresses

829

l Multicast addresses on which to receive discovery messages (seemulticast_receive_addresses in
9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646), and the multicast addresses and
ports on which to receive user data (DDS_DataReaderQos::multicast).

l Unicast ports used for user data (see 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Exten-
sion) on page 465) on both DataWriters and DataReaders.

l Transport plugins used to parse an address string in a locator.

A DomainParticipant (and its contained entities) will start using a transport plugin after the DomainPar-
ticipant is enabled (see 4.1.2 Enabling DDS Entities on page 168). An entity will use all the transport plu-
gins that match the specified transport QoS policy. All transport plugins are treated uniformly, regardless
of how they were created or registered; there is no notion of some transports being more "special" that oth-
ers.

16.7.3 Transport Network Addresses

The address bits not used by the transport plugin for its internal addressing constitute its network address
bits.

In order for Connext DDS to properly route the messages, each unicast interface in the DDS domain must
have a unique address.

You specify the network address when installing a transport plugin via the register_transport() operation
(16.7 Installing Additional Builtin Transport Plugins with register_transport() on page 827). Choose the
network address for a transport plugin so that the resulting fully qualified 128-bit address will be unique in
the DDS domain.

If two instances of a transport plugin are registered with a DomainParticipant, they need different network
addresses so that their unicast interfaces will have unique, fully qualified 128-bit addresses.

While it is possible to create multiple transports with the same network address (this can be useful for cer-
tain situations), this requires special entity configuration for most transports to avoid clashes in resource use
(e.g., sockets for UDPv4 transport).

16.8 Installing Additional Builtin Transport Plugins with
PropertyQosPolicy

Similar to default builtin transport instances, additional builtin transport instances can also be configured
through 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440.

To install additional instances of builtin transport, the Properties listed in Table 16.6 Properties for Dynam-
ically Loading and Registering Additional Builtin Transport Plugins are required.

16.9 Other Transport Support Operations

Property Name Description

dds.transport.load_
plugins

Comma-separated list of <TRANSPORT_PREFIX>. Up to 8 entries may be specified.

<TRANSPORT_
PREFIX>

Indicates the additional builtin transport instances to be installed, and must be in one of the following form, where <STRING>
can be any string other than “builtin”:

dds.transport.shmem.<STRING>

dds.transport.UDPv4.<STRING>

dds.transport.UDPv6.<STRING>

In the following examples in this table, <TRANSPORT_PREFIX> is used to indicate one element of this string that is used as
a prefix in the property names for all the settings that are related to the plugin.

<TRANSPORT_
PREFIX>.

aliases

Optional.

Aliases used to register the transport to the DomainParticipant.Refer to the aliases_in parameter in register_transport()
(see 16.7 Installing AdditionalBuiltin Transport Pluginswith register_transport() on page 827). Aliases should be specified
as a comma separated string, with each comma delimiting an alias.

If it is not specified, the prefix—without the leading "dds.transport"—is used as the default alias for the plugin. For example, if
the <TRANSPORT_PREFIX> is "dds.transport.mytransport", the default alias for the plugin is "mytransport".

<TRANSPORT_
PREFIX>.

network_address

Optional.

Network address used to register the transport to the DomainParticipant. Refer to network_address_in parameter in re-
gister_transport() (see 16.7 Installing AdditionalBuiltin Transport Pluginswith register_transport() on page 827). If it is not
specified, the network_address_out output parameter fromNDDS_Transport_create_plugin is used. The default value is
a zeroed out network address.

<TRANSPORT
_PREFIX>.

<property_name>

Optional.

Property for creating the transport plugin. More than one <TRANSPORT_PREFIX>.<property_name> can be specified. See
Table 16.2 Properties for the Builtin UDPv4 Transport through Table 16.4 Properties for Builtin Shared-MemoryTrans-
port for the property names that can be used to configure the additional builtin transport instances. The only difference is that
the property name will be prefixed by dds.transport.<builitn_transport_name>.<instance_name>, where <instance_
name> is configured through the dds.transport.load_plugins property instead of dds.transport.<builtin_transport_
name>.builtin.

Table 16.6 Properties for Dynamically Loading and Registering Additional Builtin Transport
Plugins

16.9 Other Transport Support Operations

16.9.1 Adding a Send Route

By default, a transport plugin will send outgoing messages using the network address range at which the
plugin was registered.

The add_send_route() operation allows you to control the routing of outgoing messages, so that a trans-
port plugin will only send messages to certain ranges of destination addresses.

Before using this operation, the DomainParticipant to which the transport is registered must be disabled.
DDS_ReturnCode_t NDDSTransportSupport::add_send_route(

const NDDS_Transport_Handle_t & transport_handle_in,

830

16.9.2 Adding a Receive Route

831

const NDDS_Transport_Address_t & address_range_in,
DDS_Long address_range_bit_count_in)

Where:

transport_handle_in A valid non-NIL transport handle as a result of a call to register_transport() (16.7 In-
stalling Additional Builtin Transport Plugins with register_transport() on page 827).

address_range_in The outgoing address range for which to use this transport plugin.

address_range_bit_count_in The number of most significant bits used to specify the address range.

It returns one of the standard return codes or DDS_RETCODE_PRECONDITION_NOT_MET.

The method can be called multiple times for a transport plugin, with different address ranges. You can set
up a routing table to restrict the use of a transport plugin to send messages to selected addresses ranges.

Outgoing AddressRange 1 -> Transport Plugin

... -> ...

Outgoing AddressRange K -> Transport Plugin

16.9.2 Adding a Receive Route

By default, a transport plugin will receive incoming messages using the network address range at which
the plugin was registered.

The add_receive_route() operation allows you to configure a transport plugin so that it will only receive
messages on certain ranges of addresses.

Before using this operation, the DomainParticipant to which the transport is registered must be disabled.
DDS_ReturnCode_t NDDSTransportSupport::add_receive_route(

const NDDS_Transport_Handle_t & transport_handle_in,
const NDDS_Transport_Address_t & address_range_in,
DDS_Long address_range_bit_count_in)

Where:

transport_handle_in A valid non-NIL transport handle as a result of a call to register_transport() (16.7 In-
stalling Additional Builtin Transport Plugins with register_transport() on page 827).

address_range_in The incoming address range for which to use this transport plugin.

address_range_bit_count_in The number of most significant bits used to specify the address range.

It returns one of the standard return codes or DDS_RETCODE_PRECONDITION_NOT_MET.

The method can be called multiple times for a transport plugin, with different address ranges.

Transport Plugin <- Incoming AddressRange 1

16.9.3 Looking Up a Transport Plugin

... <- ...

Transport Plugin <- Incoming AddressRangeM

You can set up a routing table to restrict the use of a transport plugin to receive messages from selected
ranges. For example, you may restrict a transport plugin to:

Receive messages from a certain multicast address range.

Receive messages only on certain unicast interfaces (when multiple unicast interfaces are available on the
transport plugin).

16.9.3 Looking Up a Transport Plugin

If you need to get the handle associated with a transport plugin that is registered with a
DomainParticipant, use the lookup_transport() operation.
NDDS_Transport_Handle_t NDDSTransportSupport::lookup_transport(

DDSDomainParticipant * participant_in,
DDS_StringSeq & aliases_out,
NDDS_Transport_Address_t & network_address_out,
NDDS_Transport_Plugin * transport_in)

Where:

participant_in A non-NULL DomainParticipant.

aliases_out A sequence of strings where the aliases used to refer to the transport plugin symbolically will be re-
turned. NULL if not interested.

network_ad-
dress_out

The network address at which to register the transport plugin will be returned here. NULL if not in-
terested.

transport_in A non-NULL transport plugin that is already registered with the DomainParticipant.

If successful, this operation returns a valid non-NIL transport handle, representing the association between
the DomainParticipant and the transport plugin; otherwise it returns a NDDS_TRANSPORT_
HANDLE_NIL upon failure.

832

Chapter 17 RTPS Locators and IP Mobility
DDS endpoints (DataWriters and DataReaders) can be reached at specific addresses called RTPS
locators. An RTPS locator is an n-tuple (transport, address, port). For example (UDPv4,
192.168.1.1, 7400) is a locator for the UDPv4 transport. Locator information is sent as part of the
Participant and Endpoint DATA messages (see Discovery (Chapter 15 on page 770)).

The initial set of locators that a DomainParticipant will use to communicate with other
DomainParticipants is provided using a peer descriptor (see 15.2 Configuring the Peers List Used
in Discovery on page 773).

17.1 Locator Changes at Run Time

In Connext DDS 5.2.3 and earlier, the set of locators associated with a DDS endpoint could not be
changed after the DomainParticipant containing the endpoints was enabled. Therefore, Connext
DDS was not prepared to deal with, for example, IP address changes in IP-based transports.

Starting with Connext DDS 5.3.0, locator changes are propagated as part of new Participant and
Endpoint DATA messages.

17.1.1 Locator Changes in IP-Based Transports

For IP-based transports, including UDPv4 and UDPv6, the following IP mobility use cases (i.e.,
the need for IP-address changes at runtime) are supported in Connext DDS 5.3.0 and higher:

l Starting a DomainParticipant without network connectivity and connecting to the network
at runtime.

l Switching network interfaces (for example, going from wired to Wi-Fi).

l Acquiring a new IP address after DHCP lease expiration.

l Having mobile devices roaming across network segments.

Connext DDS 5.3.0 introduced support for IP mobility for the following transports:

833

17.1.1 Locator Changes in IP-Based Transports

834

l UDPv4 and DTLSv4

l UDPv6

l TCPv4 and TLSv4

l LBRTPS

l ZRTPS

The functionality is enabled out-of-the-box.

When possible, the detection of IP address changes is done asynchronously using the APIs offered by the
underlying OS. If there is no mechanism to do that, the detection will use a polling strategy.

The polling period can be configured using the following transport property in the DomainParticipant's
PropertyQosPolicy: <<transport prefix>>.interface_poll_period. For example, for UDPv4 the property
name is dds.transport.UDPv4.builtin.interface_poll_period.

17.1.1.1 Starting a DomainParticipant without Enabled Network Interfaces

For this use case, the GUID prefix generation algorithm must not be based on the IPv4/MAC address of
the first enabled interface, but must use a UUID algorithm instead. This is necessary to avoid collisions on
the GUID, which needs to be unique on the network.

In Connext DDS 5.3.x, to enable the use of a UUID algorithm to generate the GUID, you had to modify
the rtps_auto_id_kind field in the DomainParticipant's 9.5.9 WIRE_PROTOCOL QosPolicy (DDS
Extension) on page 676 to DDS_RTPS_AUTO_ID_FROM_UUID. Starting with Connext DDS 6.0.0,
the default value of this field changed to DDS_RTPS_AUTO_ID_FROM_UUID, and you do not need to
modify it.

17.1.1.2 Locator Changes in IP-Based Transports when NATs are Involved

Locator changes at run time are not supported for UDP communications in the presence of NATs because
this functionality is currently not supported by the RTI Secure WAN Transport.

For TCP communication, locator changes are supported on the client side in the presence of NATs as long
as the TCP transport is used in asymmetric mode.

17.1.1.3 Disabling IP Locator Change Propagation

Connext DDS 5.2.3 and earlier will report errors if it detects locator changes in a DDS endpoint. You can
disable the notification and propagation of these changes for a DomainParticipant. This way, an interface
change in a 5.3.0 or higher application will not trigger errors in an application running 5.2.3 or earlier. Set-
ting this property to true will prevent a 5.3.0 application from being able to detect network interface
changes.

17.2 Detection of Unreachable Locators

To disable the notification of IP locator changes, set the following transport property in the DomainPar-
ticipant's PropertyQosPolicy: <<transport prefix>>.disable_interface_tracking. For example, for
UDPv4 the property name is dds.transport.UDPv4.builtin.disable_interface_tracking. To disable the
property in XML, for example:
<domain_participant_qos>

<property>
<value>

<element>
<name>dds.transport.UDPv4.builtin.disable_interface_tracking</name>
<value>true</value>

</element>
</value>

</property>
</domain_participant_qos>

17.2 Detection of Unreachable Locators

It is possible for a DomainParticipant to announce locators for endpoints that are temporarily or per-
manently unreachable from a different DomainParticipant.

For example, DomainParticipant 'A' may send to a different DomainParticipant 'B' one locator where the
IP address corresponds to a subnet that is not reachable from DomainParticipant 'B'. In such case, the
DomainParticipant 'B' running in a different subnet should not use this address to send information to the
endpoints of DomainParticipant 'A'.

In Connext DDS 5.2.3 and earlier, the middleware did not have the ability to detect unreachable locators.
This had two main consequences:

1. The middleware could waste CPU cycles and bandwidth sending messages to unreachable locators.

2. If the unreachable locator was a multicast locator, the destination endpoint would never receive live
samples from the sender's endpoints. For best-effort communication, this would have resulted in
never receiving samples. For reliable communication, this would have resulted in sending samples
as repair traffic.

Connext DDS 5.3.0 introduces a new locator REACHABILITY PING mechanism, which the mid-
dleware can use to detect when an endpoint is not reachable at a locator; then it can stop using the locator
to send data to the endpoint. For temporary disconnections, the middleware will be able to detect and use
an endpoint’s locator that becomes reachable again. While data is not being sent to an unreachable locator,
the middleware still sends periodic REACHABILITY PING messages to see if it is still unreachable.

The configuration of the REACHABILITY mechanism is done using the following DomainParticipant's
QosPolicy values:

835

17.3 Using DNS Tracker to Keep Peer List Updated

836

l participant_qos.discovery_config.locator_reachability_assert_period

l participant_qos.discovery_config.reachability_lease_duration

l participant_qos.discovery_config.locator_reachability_change_detection_period

For more information on these QoS values, see Table 9.11 DDS_DiscoveryConfigQosPolicy.

17.3 Using DNS Tracker to Keep Peer List Updated

Connext DDS allows the use of hostnames instead of IP addresses when configuring peers for specific
transports (e.g., UDPv4 and UDPv6). By default, Connext DDS resolves hostnames into IP addresses
only when the DomainParticipant is created. But you can use the DNS tracker to keep the IP addresses of
these hostnames updated. The DNS tracker does this by creating a thread that regularly polls the DNS ser-
vice. This thread detects changes in the IP address that a hostname is resolved to and updates the related
peers accordingly.

Use the dns_tracker_polling_period field in the 9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Exten-
sion) on page 650 to define how often the DNS tracker thread will query the DNS service for updates
(e.g., every 30 seconds). When the period is set to DDS_DURATION_INFINITE (the default value), the
tracker is disabled and changes in hostnames will not be tracked. You can also configure the polling period
after the creation of the DomainParticipant using the DomainParticipant’s set_dns_tracker_polling_
period() operation. This operation can enable or disable the DNS tracker depending on the value of the
DDS_Duration_t provided as parameter.

Connext DDS keeps information regarding the hostnames of peers, whether the hostnames are part of the
initial_peers field in the 9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646 or the peers were
added through the DomainParticipant’s add_peer() API. When the DNS tracker is enabled, it builds the
list of names to track from the DomainParticipant’s current peers. Removing peers from the DomainPar-
ticipant (using the remove_peer() API) will also affect the DNS tracker. If all the peers with a specific
name are removed, the DNS tracker will stop tracking that name.

Enabling the DNS tracker changes the behavior of the DomainParticipant’s add_peer() API. If the DNS
tracker has not been enabled, the API will fail to add a peer with a hostname that cannot be resolved into
an IP address. If the DNS tracker has been enabled, the DomainParticipant’s add_peer() API will suc-
cessfully add a peer with a hostname that cannot be resolved into an IP address. Although the hostname or
the DNS service may not be available when the add_peer() API is called, the enabled DNS tracker will
be able to resolve the name and update the locator once the hostname can be resolved.

Once the DNS tracker has been enabled, the change in the behavior of the DomainParticipant’s add_
peer() API remains until the DomainParticipant is destroyed. Adding a peer with a hostname that cannot
be resolved will not produce an error even if the DNS tracker is disabled. Connext DDS assumes that if the
DNS tracker has been enabled once, all hostnames should be considered as valid peers independently of
the status of the DNS tracker at the moment of adding the peer.

Chapter 18 Built-In Topics
This chapter discusses how to use Built-in Topics.

Connext DDS must discover and keep track of remote entities, such as new participants in the
DDS domain. This information may also be important to the application itself, which may want to
react to this discovery or access it on demand. To support these needs, Connext DDS provides
built-in Topics (“DCPSParticipant”, “DCPSPublication”, “DCPSSubscription” in Figure 15.2:
Built-in Writers and Readers for Discovery on page 779) and the corresponding built-in
DataReaders that you can use to access this discovery information.

The discovery information is accessed just as if it is normal application data. This allows the applic-
ation to know (either via listeners or by polling) when there are any changes in those values. Note
that only entities that belong to a different DomainParticipant are being discovered and can be
accessed through the built-in readers. Entities that are created within the local DomainParticipant
are not included as part of the data that can be accessed by the built-in readers.

Built-in topics contain information about the remote entities, including their QoS policies. These
QoS policies appear as normal fields inside the topic’s data, which can be read by means of the
built-in Topic. Additional information is provided to identify the entity and facilitate the application
logic.

18.1 Listeners for Built-in Entities

Built-in entities have default listener settings:

l The built-in Subscriber and its built-in topics have 'nil' listeners—all status bits are set in the
listener masks, but the listener is NULL. This effectively creates a NO-OP listener that does
not reset communication status.

l Built-in DataReaders have null listeners with no status bits set in their masks.

This approach prevents callbacks to the built-in DataReader listeners from invoking your
DomainParticipant’s listeners, and at the same time ensures that the status changed flag is not

837

18.2 Built-in DataReaders

838

reset. For more information, see Table 4.4 Effect of Different Combinations of Listeners and Status Bit
Masks and 4.4.5 Hierarchical Processing of Listeners on page 194.

18.2 Built-in DataReaders

Built-in DataReaders belong to a built-in Subscriber, which can be retrieved by using the DomainPar-
ticipant’s get_builtin_subscriber() operation. You can retrieve the built-in DataReaders by using the Sub-
scriber’s lookup_datareader() operation, which takes the Topic name as a parameter. The built-in
DataReader is created when lookup_datareader() is called on a built-in topic for the first time.

To conserve memory, built-in Subscribers and DataReaders are created only if and when you look them
up. Therefore, if you do not want to miss any built-in data, you should look up the built-in readers before
the DomainParticipant is enabled.

The following tables describe the built-in topics and their data types. The 7.5.30 USER_DATA
QosPolicy on page 470, 5.2.1 TOPIC_DATA QosPolicy on page 225 and 7.4.4 GROUP_DATA
QosPolicy on page 354 are included as part of the built-in data type and are not used by Connext DDS.
Therefore, you can use them to send application-specific information.

Built-in topics can be used in conjunction with the ignore_*() operations to ignore certain entities (see
18.4 Restricting Communication—Ignoring Entities on page 847).

Type Field Description

DDS_BuiltinTopicKey key Key to distinguish the discovered DomainParticipant

DDS_User-
DataQosPolicy

user_data
Data that can be set when the related DomainParticipant is created (via the 7.5.30 USER_DATAQosPolicy
on page 470) and that the application may use as it wishes (e.g., to performsome security checking).

DDS_Prop-
ertyQosPolicy

property
Pairs of names/values to be stored with the DomainParticipant. See 7.5.19 PROPERTYQosPolicy (DDS
Extension) on page 440. The usage is strictly application-dependent.

DDS_Pro-
tocolVersion_t

rtps_pro-
tocol_
version

Version number of the RTPS wire protocol used.

DDS_VendorId_t
rtps_
vendor_id

ID of vendor implementing the RTPS wire protocol.

DDS_UnsignedLong
dds_
builtin_
endpoints

Bitmap set by the discovery plugins.

Each bit in this field indicates a built-in endpoint present for discovery.

DDS_LocatorSeq
default_uni-
cast_
locators

If the TransportUnicastQosPolicy is not specified when a DataWriter/DataReader is created, the unicast_loc-
ators in the corresponding Publication/Subscription built-in topic data will be empty. When the unicast_loc-
ators in the Publication/SubscriptionBuiltinTopicData is empty, the default_unicast_locators in the
corresponding Participant Builtin Topic Data is assumed.

If default_unicast_locators is empty, it defaults to DomainParticipantQos.default_unicast.

Table 18.1 Participant Built-in Topic’s Data Type (DDS_ParticipantBuiltinTopicData)

18.2 Built-in DataReaders

Type Field Description

DDS_Pro-
ductVersion_t

product_
version

Vendor-specific parameter. The current version ofConnext DDS.

DDS_
EntityNameQosPolicy

participant_
name

Name and role_name assigned to the DomainParticipant. See 7.5.11 ENTITY_NAMEQosPolicy (DDSEx-
tension) on page 419.

DDS_DomainId_t domain_id Domain ID associated with the discovered participant.

DDS_Trans-
portInfoSeq

transport_
info

A sequence of DDS_TransportInfo_t containing information about each of the installed transports of the dis-
covered DomainParticipant.

A DDS_TransportInfo_t structure contains the class_id and message_size_max for a single transport.

The maximum length of this sequence is controlled by the 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_
LIMITSQosPolicy (DDSExtension) on page 660 transport_info_list_max_length (see Table 9.13 DDS_Do-
mainParticipantResourceLimitsQosPolicy).

Connext DDS uses the transport information propagated via discovery to detect potentialmisconfigurations
in a Connext DDS distributed system. If two DomainParticipants that discover each other have one common
transport with different values formessage_size_max, Connext DDS prints a warning message about that
condition.

DDS_Ser-
viceQosPolicy

service Service associated with the discovered DomainParticipant.

Table 18.1 Participant Built-in Topic’s Data Type (DDS_ParticipantBuiltinTopicData)

Type Field Description

DDS_BuiltinTopicKey_t key Key to distinguish the discovered DataWriter

DDS_BuiltinTopicKey_t
participant_
key

Key to distinguish the participant to which the discovered DataWriter belongs

DDS_String topic_name Topic name of the discovered DataWriter

DDS_String type_name Type name attached to the topic of the discovered DataWriter

Table 18.2 Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)

839

18.2 Built-in DataReaders

840

Type Field Description

DDS_DurabilityQosPolicy durability

QosPolicies of the discovered DataWriter

DDS_DurabilityService-
QosPolicy

durability_
service

DDS_DeadlineQosPolicy deadline

DDS_DestinationOrder-
QosPolicy

destination_
order

DDS_LatencyBudget-
QosPolicy

latency_
budget

DDS_LivelinessQosPolicy liveliness

DDS_ReliabilityQosPolicy reliability

DDS_LifespanQosPolicy lifespan

DDS_UserDataQosPolicy user_data
Data that can be set when the DataWriter is created (via the 7.5.30 USER_DATAQosPolicy on
page 470) and that the application may use as it wishes.

DDS_OwnershipQosPolicy ownership

QosPolicies of the discovered DataWriter

DDS_OwnershipStrength-
QosPolicy

ownership_
strength

DDS_DestinationOrder-
QosPolicy

destination_
order

DDS_PresentationQosPolicy presentation

DDS_PartitionQosPolicy partition
Name of the partition, set in the 7.4.5 PARTITIONQosPolicy on page 357 for the publisher to
which the discovered DataWriter belongs

DDS_TopicDataQosPolicy topic_data
Data that can be set when the Topic (with which the discovered DataWriter is associated) is cre-
ated (via the 5.2.1 TOPIC_DATAQosPolicy on page 225) and that the application may use as it
wishes.

DDS_GroupDataQosPolicy group_data
Data that can be set when the Publisher to which the discovered DataWriter belongs is created
(via the 7.4.4 GROUP_DATAQosPolicy on page 354) and that the application may use as it
wishes.

DDS_TypeObject * type
Describes the type of the remote DataReader.

See the API Reference HTML documentation.

DDS_DataRe-
presentationQosPolicy

representation
Data representations that the DataWriter offers. See 7.5.3 DATA_REPRESENTATION
QosPolicy on page 381.

DDS_DataTagQosPolicy data_tags
Data tags (pairs of names/values) assigned to the corresponding DataWriter. Usage is strictly ap-
plication-dependent. See 7.5.4 DATATAGQosPolicy on page 389.

Table 18.2 Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)

18.2 Built-in DataReaders

Type Field Description

DDS_TypeCode * type_code
Type code information about this Topic. See 3.7 UsingGenerated Typeswithout Connext DDS
(Standalone) on page 152.

DDS_BuiltinTopicKey_t publisher_key The key of the Publisher to which the DataWriter belongs.

DDS_PropertyQosPolicy property
Properties (pairs of names/values) assigned to the corresponding DataWriter. Usage is strictly ap-
plication-dependent. See 7.5.19 PROPERTYQosPolicy (DDSExtension) on page 440.

DDS_LocatorSeq
unicast_
locators

If the TransportUnicastQosPolicy is not specified when a DataWriter/DataReader is created, the
unicast_locators in the corresponding Publication/Subscription built-in topic data will be empty.
When the unicast_locators in the Publication/SubscriptionBuiltinTopicData is empty, the default_
unicast_locators in the corresponding Participant Builtin Topic Data is assumed.

DDS_GUID_t virtual_guid
Virtual GUID for the corresponding DataWriter. Formore information, see 13.2 Durability and
Persistence Based on VirtualGUIDson page 743.

DDS_ServiceQosPolicy service Service associated with the discovered DataWriter.

DDS_ProtocolVersion_t
rtps_protocol_
version

Version number of the RTPS wire protocol in use.

DDS_VendorId_t
rtps_vendor_
id

ID of the vendor implementing the RTPS wire protocol.

DDS_Product_Version_t
product_ver-
sion

Vendor-specific value. ForRTI, this is the current version ofConnext DDS.

DDS_LocatorFilterQosPolicy locator_filter

When the 7.5.16 MULTI_CHANNELQosPolicy (DDSExtension) on page 433 is used on the
discovered DataWriter, the locator_filter contains the sequence of LocatorFilters in that policy.

There is one LocatorFilter perDataWriter channel. A channel is defined by a filter expression and
a sequence of multicast locators.

See 18.2.1 LOCATOR_FILTERQoSPolicy (DDSExtension) on page 846.

DDS_Boolean
disable_pos-
itive_
acks

Vendor specific parameter. Determines whethermatching DataReaders send positive ac-
knowledgements for reliability.

DDS_EntityNameQosPolicy
publication_
name

Name and role_name assigned to the DataWriter. See 7.5.11 ENTITY_NAMEQosPolicy
(DDSExtension) on page 419.

Table 18.2 Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)

Type Field Description

DDS_BuiltinTopicKey_t key Key to distinguish the discovered DataReader.

DDS_BuiltinTopicKey_t
participant_
key

Key to distinguish the participant to which the discovered DataReader belongs.

Table 18.3 Subscription Built-in Topic’s Data Type (DDS_SubscriptionBuiltinTopicData)

841

18.2 Built-in DataReaders

842

Type Field Description

char * topic_name Topic name of the discovered DataReader.

char * type_name Type name attached to the Topicof the discovered DataReader.

DDS_DurabilityQosPolicy durability

QosPolicies of the discovered DataReader

DDS_DeadlineQosPolicy deadline

DDS_LatencyBudget-QosPolicy
latency_
budget

DDS_LivelinessQosPolicy liveliness

DDS_ReliabilityQosPolicy reliability

DDS_OwnershipQosPolicy ownership

DDS_
DestinationOrderQosPolicy

destination_
order

DDS_UserDataQosPolicy user_data
Data that can be set when the DataReader is created (via the 7.5.30 USER_DATA
QosPolicy on page 470) and that the application may use as it wishes.

DDS_
TimeBasedFilterQosPolicy

time_based_
filter

QosPolicies of the discovered DataReader

DDS_PresentationQosPolicy presentation

DDS_PartitionQosPolicy partition
Name of the partition, set in the 7.4.5 PARTITIONQosPolicy on page 357 for the Sub-
scriber to which the discovered DataReader belongs.

DDS_TopicDataQosPolicy topic_data
Data that can be set when the Topic to which the discovered DataReader belongs is
created (via the 5.2.1 TOPIC_DATAQosPolicy on page 225) and that the application
may use as it wishes.

DDS_GroupDataQosPolicy group_data
Data that can be set when the Publisher to which the discovered DataReader belongs
is created (via the 7.4.4 GROUP_DATAQosPolicy on page 354) and that the ap-
plication may use as it wishes.

DDS_TypeObject * type
Describes the type of the remote DataReader.

See the API Reference HTML documentation.

DDS_TypeCon-
sistencyEnforcementQosPolicy

type_
consistency

Indicates the type-consistency requirements of the remote DataReader. See 8.6.6
TYPE_CONSISTENCY_ENFORCEMENT QosPolicy on page 599 and the RTI Con-
next DDSCore LibrariesExtensible TypesGuide.

DDS_DataRepresentationQosPolicy representation
Data representations that the DataReader requests. See7.5.3 DATA_
REPRESENTATIONQosPolicy on page 381.

DDS_DataTagQosPolicy data_tags
Data tags (pairs of names/values) assigned to the corresponding DataReader. Usage
is strictly application-dependent. See 7.5.4 DATATAGQosPolicy on page 389.

Table 18.3 Subscription Built-in Topic’s Data Type (DDS_SubscriptionBuiltinTopicData)

18.2 Built-in DataReaders

Type Field Description

DDS_TypeCode * type_code
Type code information about this Topic. See 3.7 UsingGenerated Typeswithout Con-
next DDS (Standalone) on page 152.

DDS_BuiltinTopicKey_t
subscriber_
key

Key of the Subscriber to which the DataReader belongs.

DDS_PropertyQosPolicy property
Properties (pairs of names/values) assigned to the corresponding DataReader. Usage
is strictly application-dependent. See 7.5.19 PROPERTYQosPolicy (DDSExtension)
on page 440.

DDS_LocatorSeq
unicast_
locators

If the TransportUnicastQosPolicy is not specified when a DataWriter/DataReader is
created, the unicast_locators in the corresponding Publication/Subscription builtin
topic data will be empty. When the unicast_locators in the Public-
ation/SubscriptionBuiltinTopicData is empty, the default_unicast_locators in the cor-
responding Participant Builtin Topic Data is assumed.

DDS_LocatorSeq
multicast_
locators

Custommulticast locators that the endpoint can specify.

DDS_ContentFilter-Property_t
content_filter_
property

Provides all the required information to enable content filtering on the writer side.

DDS_GUID_t virtual_guid
Virtual GUID for the corresponding DataReader. Formore information, see 13.2 Dur-
ability and Persistence Based on VirtualGUIDson page 743.

DDS_ServiceQosPolicy service Service associated with the discovered DataReader.

DDS_ProtocolVersion_t
rtps_protocol_
version

Version number of the RTPS wire protocol in use.

DDS_VendorId_t
rtps_vendor_
id

ID of the vendor implementing the RTPS wire protocol.

DDS_Product_Version_t
product_
version

Vendor-specific value. ForRTI, this is the current version ofConnext DDS.

DDS_Boolean
disable_pos-
itive_
acks

Vendor specific parameter. Determines whethermatching DataReaders send positive
acknowledgements for reliability.

DDS_EntityNameQosPolicy
subscription_
name

Name and role_name assigned to the DataReader. See 7.5.11 ENTITY_NAME
QosPolicy (DDSExtension) on page 419.

Table 18.3 Subscription Built-in Topic’s Data Type (DDS_SubscriptionBuiltinTopicData)

Type Field Description

DDS_BuiltinTopicKey_t key Key to distinguish the discovered Topic

Table 18.4 Topic Built-in Topic’s Data Type (DDS_TopicBuiltinTopicData)

843

18.2 Built-in DataReaders

844

Type Field Description

DDS_String name Topicname

DDS_String type_name type name attached to the Topic

DDS_DurabilityQosPolicy durability

QosPolicy of the discovered Topic

DDS_Dur-
abilityServiceQosPolicy

durability_
service

DDS_DeadlineQosPolicy deadline

DDS_
LatencyBudgetQosPolicy

latency_
budget

DDS_LivelinessQosPolicy liveliness

DDS_ReliabilityQosPolicy reliability

DDS_Trans-
portPriorityQosPolicy

transport_
priority

DDS_LifespanQosPolicy lifespan

DDS_Destin-
ationOrderQosPolicy

destination_
order

DDS_HistoryQosPolicy history

DDS_Re-
sourceLimitsQosPolicy

resource_
limits

DDS_OwnershipQosPolicy ownership

DDS_TopicDataQosPolicy topic_data
Data that can be set when the Topic to which the discovered DataReader belongs is created (via the
5.2.1 TOPIC_DATAQosPolicy on page 225) and that the application may use as it wishes.

Table 18.4 Topic Built-in Topic’s Data Type (DDS_TopicBuiltinTopicData)

Table 18.5 QoS of Built-in Subscriber and DataReader lists the QoS of the built-in Subscriber and
DataReader created for accessing discovery data. These are provided for your reference only; they cannot
be changed.

QosPolicy Value

Deadline period = infinite

DestinationOrder kind = BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

Durability kind = TRANSIENT_LOCAL_DURABILITY_QOS

Table 18.5 QoS of Built-in Subscriber and DataReader

18.2 Built-in DataReaders

QosPolicy Value

EntityFactory autoenable_created_entities = TRUE

GroupData value = empty sequence

History
kind = KEEP_LAST_HISTORY_QOS

depth = 1

LatencyBudget duration = 0

Liveliness
kind = AUTOMATIC_LIVELINESS_QOS

lease_duration = infinite

Ownership kind = SHARED_OWNERSHIP_QOS

Ownership Strength value = 0

Presentation

access_scope = TOPIC_PRESENTATION_QOS

coherent_access = FALSE

ordered_access = FALSE

Partition name = empty sequence

ReaderDataLifecycle autopurge_nowriter_samples_delay = infinite

Reliability
kind = RELIABLE_RELIABILITY_QOS

max_blocking_time is irrelevant for the DataReader

ResourceLimits

Depends on setting of DomainParticipantResourceLimitsQosPolicy and DiscoveryConfigQosPolicy in Do-
mainParticipantQos:

max_samples = domainParticipantQos.discovery_config.
[participant/publication/subscription]_reader_resource_limits.max_samples

max_instances = domainParticipantQos.resource_limits.
[remote_writer/reader/participant]_allocation.max_count

max_samples_per_instance = 1

TimeBasedFilter minimum_separation = 0

TopicData value = empty sequence

UserData value = empty sequence

Table 18.5 QoS of Built-in Subscriber and DataReader

Note:

The DDS_TopicBuiltinTopicData built-in topic (described in Table 18.4 Topic Built-in Topic’s Data
Type (DDS_TopicBuiltinTopicData)) is meant to convey information about discovered Topics. However,
this topic's data is not sent separately and therefore a DataReader for DDS_TopicBuiltinTopicData will
not receive any data. Instead, DDS_TopicBuiltinTopicData data is included in the information carried by
the built-in topics for Publications and Subscriptions (DDS_PublicationBuiltinTopicData and DDS_Sub-
scriptionBuiltinTopicData) and can be accessed with their built-in DataReaders.

845

18.2.1 LOCATOR_FILTER QoS Policy (DDS Extension)

846

18.2.1 LOCATOR_FILTER QoS Policy (DDS Extension)

The LocatorFilter QoS Policy is only applicable to the built-in topic for a Publication (see Table 18.2
Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)).

Type Field
Name Description

DDS_
LocatorFilterSeq

locator_
filters

A sequence of locator filters, described in Table 18.7 DDS_LocatorFilter_t. There is one locator filter perDataWriter
channel. If the length of the sequence is zero, the DataWriter is not using multi-channel.

char *
filter_
name

Name of the filter class used to describe the locator filter expressions. The following two values are supported:

l DDS_SQLFILTER_NAME

l DDS_STRINGMATCHFILTER_NAME

Table 18.6 DDS_LocatorFilterQosPolicy

Type Field
Name Description

DDS_
LocatorSeq

locators A sequence of multicast address locators for the locator filter. See Table 18.8 DDS_Locator_t.

char *
filter_
expression

A logical expression used to determine if the data will be published in the channel associated with this locator filter. See
5.4.6 SQL Filter Expression Notation on page 237 and 5.4.7 STRINGMATCH Filter Expression Notation on
page 246 for information about the expression syntax.

Table 18.7 DDS_LocatorFilter_t

Type Field
Name Description

DDS_Long kind

If the locator kind is DDS_LOCATOR_KIND_UDPv4, the address contains an IPv4 address. The leading 12 octets of
the address must be zero. The last 4 octets store the IPv4 address.

If the locator kind is DDS_LOCATOR_KIND_UDPv6, the address contains an IPv6 address. IPv6 addresses typically
use a shorthand hexadecimal notation that maps one-to-one to the 16 octets of the address.

In C#, the locator kinds forUDPv4 and UDPv6 addresses are Locator_t.LOCATOR_KIND_UDPv4 and Locator_
t.LOCATOR_KIND_UDPv6.

DDS_Octet
[16]

address The locator address.

DDS_
UnsignedLong

port The locator port number.

Table 18.8 DDS_Locator_t

18.3 Accessing the Built-in Subscriber

18.3 Accessing the Built-in Subscriber

Getting the built-in subscriber allows you to retrieve the built-in readers of the built-in topics through the
Subscriber’s lookup_datareader()operation. By accessing the built-in reader, you can access discovery
information about remote entities.
// Lookup built-in reader
DDSDataReader *builtin_reader =
builtin_subscriber->lookup_datareader(DDS_PUBLICATION_TOPIC_NAME);

if (builtin_reader == NULL) {
// ... error

}
// Register listener to built-in reader
MyPublicationBuiltinTopicDataListener builtin_reader_listener =
new MyPublicationBuiltinTopicDataListener();

if (builtin_reader->set_listener(builtin_reader_listener,
DDS_DATA_AVAILABLE_STATUS) != DDS_RETCODE_OK) {

// ... error
}
// enable DomainParticipant
if (participant->enable() != DDS_RETCODE_OK) {

// ... error
}

For example, you can call the DomainParticipant’s get_builtin_subscriber() operation, which will provide
you with a built-in Subscriber. Then you can use that built-in Subscriber to call the Subscriber’s lookup_
datareader() operation; this will retrieve the built-in reader. Another option is to register a Listener on the
built-in subscriber instead, or poll for the status of the built-in subscriber to see if any of the built-in data
readers have received data.

18.4 Restricting Communication—Ignoring Entities

The ignore_participant() operation allows an application to ignore all communication from a specific
DomainParticipant. Or for even finer control you can use the ignore_publication(), ignore_subscription(),
and ignore_topic() operations. These operations are described below.
DDS_ReturnCode_t ignore_participant (const DDS_InstanceHandle_t &handle)
DDS_ReturnCode_t ignore_publication (const DDS_InstanceHandle_t &handle)
DDS_ReturnCode_t ignore_subscription (const DDS_InstanceHandle_t &handle)
DDS_ReturnCode_t ignore_topic (const DDS_InstanceHandle_t &handle)

The entity to ignore is identified by the handle argument. It may be a local or remote entity. For ignore_
publication(), the handle will be that of a local DataWriter or a discovered remote DataWriter. For
ignore_subscription(), that handle will be that of a local DataReader or a discovered remote DataReader.

The safest approach for ignoring an entity is to call the ignore operation within the Listener callback of the
built-in reader, or before any local entities are enabled. This will guarantee that the local entities (entities
that are created by the local DomainParticipant) will never have a chance to establish communication with the
remote entities (entities that are created by another DomainParticipant) that are going to be ignored.

847

18.4.1 Ignoring Specific Remote DomainParticipants

848

If the above is not possible and a remote entity is to be ignored after the communication channel has been
established, the remote entity will still be removed from the database of the local application as if it never
existed. However, since the remote application is not aware that the entity is being ignored, it may poten-
tially be expecting to receive messages or continuing to send messages. Depending on the QoS of the
remote entity, this may affect the behavior of the remote application and may potentially stop the remote
application from communicating with other entities.

You can use this operation in conjunction with the ParticipantBuiltinTopicData to implement access con-
trol. You can pass application data associated with a DomainParticipant in the 7.5.30 USER_DATA
QosPolicy on page 470. This application data is propagated as a field in the built-in topic. Your application
can use the data to implement an access control policy.

Ignore operations, in conjunction with the Built-in Topic Data, can be used to implement access control.
You can pass data associated with an entity in the 7.5.30 USER_DATA QosPolicy on page 470, 7.4.4
GROUP_DATA QosPolicy on page 354 or 5.2.1 TOPIC_DATA QosPolicy on page 225. This data is
propagated as a field in the built-in topic. When data for a built-in topic is received, the application can
check the user_data, group_data or topic_data field of the remote entity, determine if it meets the security
requirement, and ignore the remote entity if necessary.

See also: Discovery (Chapter 15 on page 770).

18.4.1 Ignoring Specific Remote DomainParticipants

The ignore_participant() operation is used to instruct Connext DDS to locally ignore a remote
DomainParticipant. It causes Connext DDS to locally behave as if the remote DomainParticipant does
not exist.
DDS_ReturnCode_t ignore_participant (const DDS_InstanceHandle_t & handle)

After invoking this operation, Connext DDS will locally ignore any Topic, publication, or subscription that
originates on that DomainParticipant. (If you only want to ignore specific publications or subscriptions,
see 18.4.2 Ignoring Publications and Subscriptions on the next page instead.) Figure 18.1: Ignoring Par-
ticipants below provides an example.

By default, the maximum number of participants that can be ignored is limited by ignored_entity_alloc-
ation.max_count in the 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS
Extension) on page 660. However, that behavior can be changed by using ignore_entity_replacement_
kind in the same QoS policy.

See also: 18.4.4 Resource Limits Considerations for Ignored Entities on page 851.

Caution: There is no way to reverse this operation. You can add to the peer list, however—see 9.5.2.3
Adding and Removing Peers List Entries on page 647.
Figure 18.1: Ignoring Participants

class MyParticipantBuiltinTopicDataListener :
public DDSDataReaderListener {

public:

18.4.2 Ignoring Publications and Subscriptions

virtual void on_data_available(DDSDataReader *reader);
//

};
void MyParticipantBuiltinTopicdataListener::on_data_available(

DDSDataReader *reader) {
DDSParticipantBuiltinTopicDataDataReader

*builtinTopicDataReader =
DDSParticipantBuiltinTopicDataDataReader *) reader;

DDS_ParticipantBuiltinTopicDataSeq data_seq;
DDS_SampleInfoSeq info_seq;
int = 0;
if (builtinTopicDataReader->take(data_seq, info_seq,

DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE) !=
DDS_RETCODE_OK){
// ... error

}
for (i = 0; i < data_seq.length(); ++i) {

if (info_seq[i].valid_data) {
// check user_data for access control
if (data_seq[i].user_data[0] != 0x9) {

if (builtinTopicDataReader->get_subscriber()
->get_participant()
->ignore_participant(
info_seq[i].instance_handle)
!= DDS_RETCODE_OK) {
// ... error

}
}

}
}
if (builtinTopicDataReader->return_loan(

data_seq, info_seq) != DDS_RETCODE_OK) {
// ... error

}
}

18.4.2 Ignoring Publications and Subscriptions

You can instruct Connext DDS to locally ignore a publication or subscription. A publication/subscription
is defined by the association of a Topic name, user data and partition set on the Publisher/Subscriber. After
this call, any data written related to associated DataWriter/DataReader will be ignored.

The entity to ignore is identified by the handle argument. For ignore_publication(), the handle will be
that of a DataWriter. For ignore_subscription(), that handle will be that of a DataReader.

This operation can be used to ignore local and remote entities:

l For local entities, you can obtain the handle argument by calling the get_instance_handle() oper-
ation for that particular entity.

l For remote entities, you can obtain the handle argument from the DDS_SampleInfo structure
retrieved when reading DDS data samples available for the entity’s built-in DataReader.

849

18.4.3 Ignoring Topics

850

DDS_ReturnCode_t ignore_publication (const DDS_InstanceHandle_t & handle)
DDS_ReturnCode_t ignore_subscription (const DDS_InstanceHandle_t & handle)

Caution: There is no way to reverse these operations.

Figure 18.2: Ignoring Publications below provides an example.
Figure 18.2: Ignoring Publications

class MyPublicationBuiltinTopicDataListener : public DDSDataReaderListener
{

public:
virtual void on_data_available(DDSDataReader *reader);
//

};
void MyPublicationBuiltinTopicdataListener::on_data_available(

DDSDataReader *reader) {
DDSPublicationBuiltinTopicDataReader *builtinTopicDataReader =

(DDS_PublicationBuiltinTopicDataReader *)reader;
DDS_PublicationBuiltinTopicDataSeq data_seq;
DDS_SampleInfoSeq info_seq;
int = 0;
if (builtinTopicDataReader->take(data_seq, info_seq,

DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE)
!= DDS_RETCODE_OK)

{
// ... error
}
for (i = 0; i < data_seq.length(); ++i) {

if (info_seq[i].valid_data) {
// check user_data for access control
if (data_seq[i].user_data[0] != 0x9) {

if (builtinTopicDataReader->get_subscriber()
->get_participant()
->ignore_publication(
info_seq[i].instance_handle)

!= DDS_RETCODE_OK) {
// ... error

}
}

}
}

if (builtinTopicDataReader->return_loan(data_seq, info_seq) !=
DDS_RETCODE_OK) {

...

18.4.3 Ignoring Topics

The ignore_topic() operation instructs Connext DDS to locally ignore a Topic. This means it will locally
ignore any publication or subscription to the Topic.
DDS_ReturnCode_t ignore_topic (const DDS_InstanceHandle_t & handle)

18.4.4 Resource Limits Considerations for Ignored Entities

Caution: There is no way to reverse this operation.

If you know that your application will never publish or subscribe to data under certain topics, you can use
this operation to save local resources.

The Topic to ignore is identified by the handle argument. This handle is the one that appears in the DDS_
SampleInfo retrieved when reading the DDS data samples from the built-in DataReader to the Topic.

18.4.4 Resource Limits Considerations for Ignored Entities

When an entity is ignored, Connext DDS adds it to an internal ‘ignore’ table whose resource limits are con-
figured using the ignored_entity_allocation.max_count in the 9.5.4 DOMAIN_PARTICIPANT_
RESOURCE_LIMITS QosPolicy (DDS Extension) on page 660. The behavior of Connext DDS when
this limit is exceeded can be modified by using the ignored_entity_replacement_kind in the same QoS
policy.

The default value for ignored_entity_replacement_kind is DDS_NO_REPLACEMENT_
IGNORED_ENTITY_REPLACEMENT, meaning that a call to the DomainParticipant’s ignore_
participant(), ignore_publication(), or ignore_subscription() will fail if the DomainParticipant has
ignored more entities than the limit set in ignored_entity_allocation.max_count entities.

When ignored_entity_replacement_kind is set to DDS_NOT_ALIVE_FIRST_IGNORED_
ENTITY_REPLACEMENT, a call to ignore_participant() will not fail when ignored_entity_alloc-
ation.max_count is exceeded, as long as there is one DomainParticipant already ignored. Instead, the call
will replace one of the existing DomainParticipants in the internal table. The remote DomainParticipant
that will be replaced is the one for which the local DomainParticipant had not received any message for
the longest time.

When a remote DomainParticipant is replaced in the ‘ignore’ table, it becomes un-ignored. Thus, the local
DomainParticipant would have to call ignore_participant() again to re-ignore the replaced entity.

Note: In this release, ignored publications and subscriptions are never replaced in the ‘ignore’ table. Since
this table also contains the ignored DomainParticipants, a call to ignore_participant() will fail if
ignored_entity_allocation.max_count is reached and none of the ignored entities is a DomainParticipant.

18.4.5 Supervising Endpoint Discovery

It is possible to control for which DomainParticipants endpoint discovery may occur. You can configure
this behavior with the enable_endpoint_discovery field in the 9.5.2 DISCOVERY QosPolicy (DDS
Extension) on page 646:

l When set to TRUE (the default value), endpoint discovery will automatically occur for every dis-
covered DomainParticipant. This is the normal operation of the discovery process.

851

18.4.5 Supervising Endpoint Discovery

852

l When set to FALSE, endpoint discovery will be disabled for every discovered DomainParticipant.
Then applications will have to manually enable endpoint discovery (described below) for the
DomainParticipants they are interested in communicating with. By disabling endpoint discovery,
the DomainParticipant will not store any state about remote endpoints and will not send local end-
point information to remote DomainParticipants.

When enable_endpoint_discovery is set to FALSE, you have two options after a remote DomainPar-
ticipant is discovered:

l Call the DomainParticipant’s resume_endpoint_discovery() operation to enable endpoint dis-
covery. After invoking this operation, the DomainParticipant will start to exchange endpoint inform-
ation so that matching and communication can occur with the remote DomainParticipant.

DDS_ReturnCode_t resume_endpoint_discovery(
const DDS_InstanceHandle_t & remote_participant_handle)

Or

l Call the DomainParticipant’s ignore_participant() operation to permanently ignore endpoint dis-
covery with the remote DomainParticipant.

Setting enable_endpoint_discovery to FALSE enables application-level authentication use cases, in
which a DomainParticipant will resume endpoint discovery with a remote DomainParticipant after suc-
cessful authentication at the application level. The following example shows how to provide access control
using this feature:
class MyParticipantBuiltinTopicDataListener :

public DDSDataReaderListener {
public:
virtual void on_data_available(DDSDataReader *reader);
// ...

};
void MyParticipantBuiltinTopicdataListener::on_data_available(

DDSDataReader *reader) {
DDSParticipantBuiltinTopicDataDataReader
*builtinTopicDataReader =

DDSParticipantBuiltinTopicDataDataReader *) reader;
DDS_ParticipantBuiltinTopicDataSeq data_seq;
DDS_SampleInfoSeq info_seq;
int = 0;
if (builtinTopicDataReader->take(

data_seq, info_seq,
DDS_LENGTH_UNLIMITED,
DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE)!= DDS_RETCODE_OK){
// ... error

}
for (i = 0; i < data_seq.length(); ++i) {

if (info_seq[i].valid_data) {

18.4.5 Supervising Endpoint Discovery

DDSDomainParticipant * localParticipant =
builtinTopicDataReader->

get_subscriber()->get_participant();
DDS_ReturnCode_t retCode;
// check user_data for access control
if (data_seq[i].user_data[0] != 0x9) {

retCode = localParticipant->
ignore_participant(

info_seq[i].instance_handle);
}else {

retCode = localParticipant->
resume_endpoint_discovery(

info_seq[i].instance_handle)
}

}
}
if (builtinTopicDataReader->return_loan(

data_seq, info_seq)
!= DDS_RETCODE_OK) {
// ... error }

}

853

Chapter 19 Configuring QoS with XML
Connext DDS entities are configured by means of Quality of Service (QoS) policies, which may be
set programmatically in one of the following ways:

l Directly when the entity is created as an additional argument to the create_<entity>() oper-
ation (or the Entity's constructor in the Modern C++ API).

l Directly via the set_qos() operation on the entity.

l Indirectly as a default QoS on the factory for the entity (set_default_<entity>_qos() oper-
ations on Publisher, Subscriber, DomainParticipant, DomainParticipantFactory)

Entities can also be configured from an XML file or XML string. With this feature, you can
change QoS configurations simply by changing the XML file or string—you do not have to recom-
pile the application. This chapter describes how to configure Connext DDS entities using XML.

19.1 Example XML File

The QoS configuration of a Entity can be loaded from an XML file or string.

The file contents must follow an important hierarchy: the file contains one or more libraries; each
library contains one or more profiles; each profile contains QoS settings.

Let's look at a very basic configuration file, just to get an idea of its contents. You will learn the
meaning of each line as you read the rest of this chapter:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- A XML configuration file -->
<dds version = 5.0.0>
<qos_library name="RTILibrary">

<!-- A QoS Profile is a set of related QoS -->
<qos_profile name="StrictReliableCommunicationProfile">

<datawriter_qos>
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

854

19.2 QoS Libraries

855

<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>

</reliability>
</datawriter_qos>
<datareader_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>
</qos_profile>
<!--Individual QoS are shortcuts for QoS Profiles with 1 QoS->
<datawriter_qos name="KeepAllWriter">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
</datawriter_qos>

</qos_library>
</dds>

See <NDDSHOME>/resource/xml/NDDS_QOS_PROFILES.example.xml for another example; this
file contains the default QoS values for all entity kinds.

19.2 QoS Libraries

A QoS Library is a named set of QoS profiles.

One configuration file may have several QoS libraries, each one defining its own QoS profiles.

All QoS libraries must be declared within <dds> and </dds> tags. For example:
<dds>

<qos_library name="RTILibrary">
<!-- Individual QoSs are shortcuts

for QoS Profiles with 1 QoS -->
<datawriter_qos name="KeepAllWriter">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
</datawriter_qos>
<!-- Qos Profile -->

<qos_profile name=
"StrictReliableCommunicationProfile">

<datawriter_qos>
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>
<datareader_qos>

<history>

19.3 QoS Profiles

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>
</qos_profile>

</qos_library>
</dds>

A QoS library can be reopened within the same configuration file or across different configuration files.
For example:
<dds>

<qos_library name="RTILibrary">
...

</qos_library>
...

<qos_library name="RTILibrary">
...

</qos_library>
</dds>

19.3 QoS Profiles

A QoS Profile groups a set of related QoS policies, by entity (e.g., <datawriter_qos>), identified by a
name. For example:
<qos_profile name="StrictReliableCommunicationProfile">

<datawriter_qos>
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>
<datareader_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>
</qos_profile>

Duplicate QoS profiles are not allowed. To overwrite a QoS profile, use 19.3.3 QoS Profile Inheritance
and Composition on page 860.

There are functions that allow you to create Entities using profiles, such as create_participant_with_pro-
file() (9.3.1 Creating a DomainParticipant on page 621), create_topic_with_profile() (5.1.1 Creating
Topics on page 218), etc.

856

19.3.1 Built-in QoS Profiles

857

If you create an entity using a profile without a QoS definition or an inherited QoS definition (see 19.3.3
QoS Profile Inheritance and Composition on page 860) for that class of entity, Connext DDS uses the
default QoS.

Example 1:
<qos_profile name=
"BatchStrictReliableCommunicationProfile"
base_name="StrictReliableCommunicationProfile">

<datawriter_qos>
<batch>

<enable>true</enable>
</batch>

</datawriter_qos>
</qos_profile>

The DataReader QoS value in the profile BatchStrictReliableCommunicationProfile is inherited from
the profile StrictReliableCommunicationProfile.

Example 2:
<qos_profile name="BatchProfile">

<datawriter_qos>
<batch>

<enable>true</enable>
</batch>

</datawriter_qos>
</qos_profile>

The DataReader QoS value in the profile BatchProfile is the default Connext DDS QoS.

19.3.1 Built-in QoS Profiles

Several QoS Profiles are built into the Connext DDS core libraries and can be used as starting points when
configuring QoS for your Connext DDS applications. There are two provided libraries, BuiltinQosLib
and BuiltinQosLibExp, which contain different profiles. You can use any of these profiles as base pro-
files when creating your own XML configurations or simply use these profiles directly in the DDS_*_cre-
ate_*_with_profile() APIs. There is also a BuiltinQosSnippetLib library, which contains profile
"snippets" that can be overlaid upon the profiles to provide additional modifications to your QoS. See
19.3.3.2 QoS Profile Composition on page 864 for more information.

There are three types of built-in profiles:

l Baseline.X.X.X profiles represent the QoS defaults for Connext DDS version X.X.X. The defaults
for the latest Connext DDS version can be accessed using the BuiltinQosLib::Baseline profile.

l Generic.X profiles allow you to easily configure different features and communication use-cases
with Connext DDS. For example, there is a Generic.StrictReliable profile for use when your applic-
ation has a requirement for no data loss, regardless of the application domain.

19.3.1 Built-in QoS Profiles

l Pattern.X profiles inherit fromGeneric.X profiles and allow you to configure various domain-spe-
cific communication use cases. For example, there is a Pattern.Alarm profile that can be used to
manage the generation and consumption of alarm events.

The USER_QOS_PROFILES.xml file generated by RTI Code Generator contains a profile that inherits
from the BuiltinQosLibExp::Generic.StrictReliable profile as an example of how to use these profiles in
your own application.

Example use-cases for these profiles:

l To quickly enable RTI Monitoring Library by inheriting from the Built-
inQosLib::Generic.Monitoring.Common profile. (See note below.)

l To easily revert to the default QoS values from a previous Connext DDS version by inheriting from
the correct BuiltinQosLib::Baseline.X.X.X profile.

l To set up common use-case configurations and patterns such as strict reliability or large data com-
munication by inheriting from one of the BuiltinQosLibExp::Generic.X or Pattern.X profiles.

To see the contents of the built-in QoS profiles:

In <NDDSHOME>/resource/xml, you will find:

l BaselineRoot.documentationONLY.xml—This file contains the root baseline QoS profile cor-
responding to the default values of Connext DDS 5.0.0.

l BuiltinProfiles.documentationONLY.xml—This file contains the rest of the built-in QoS profiles.

Notes:

l The built-in QoS profiles that enable RTI Monitoring Library set the property rti.monitor.create_
function. Consequently, they only work in Connext DDS applications in which the monitoring lib-
rary can be loaded dynamically. Specifically, the built-in monitoring profiles will not work in these
situations:

l When the Connext DDS application links the monitoring libraries statically

l When using a VxWorks platform with Java1

For more information, see Part 9: RTI Monitoring Library on page 1227.

1VxWorks Java platforms require custom supported libraries. To see whether a VxWorks platform with Java is supported,
consult the RTI Connext DDS Core Libraries Platform Notes.

858

19.3.2 Overwriting Default QoS Values

859

l Some of the built-in profiles are experimental. All the experimental profiles are contained within the
library BuiltinQosLibExp.

19.3.2 Overwriting Default QoS Values

There are two ways to overwrite the default QoS used for new entities with values from a profile: pro-
grammatically and with an XML attribute.

l You can overwrite the default QoS programmatically with set_default_<entity>_qos_with_profile
() (where <entity> is participant, topic, publisher, subscriber, datawriter, or datareader)

l You can overwrite the default QoS using the XML attribute is_default_qos with the <qos_profile>
tag

l Only for the DomainParticipantFactory: You can overwrite the default QoS using the XML attribute
is_default_participant_factory_profile. This attribute has precedence over is_default_qos if both
are set.

In the following example, the DataWriter and DataReader default QoS will be overwritten with the values
specified in a profile named ‘StrictReliableCommunicationProfile’:
<qos_profile name="StrictReliableCommunicationProfile"

is_default_qos="true">
<datawriter_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>
<datareader_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>
</qos_profile>

If multiple profiles are configured to overwrite the default QoS, only the last one parsed applies.

Example:

In this example, the profile used to configure the default QoSs will be StrictReli-
ableCommunicationProfile.
<qos_profile name="BestEffortCommunicationProfile"

is_default_qos="true">
...

</qos_profile>

19.3.3 QoS Profile Inheritance and Composition

<qos_profile name="StrictReliableCommunicationProfile"
is_default_qos="true">

...
</qos_profile>

19.3.3 QoS Profile Inheritance and Composition

An individual QoS Profile or Entity QoS (e.g., <datawriter_qos>) can inherit values from other QoS Pro-
files, and/or be composed out of QoS Snippets. In inheritance, a base_name attribute is used to inherit
from a single, previously loaded QoS Profile. With composition, a <base_name> tag is used to specify a
list of one or more QoS Snippets to overlay upon the base profile, creating a new composed profile. The
following sections describe how these methods can be used, including best practices. See also 19.6 XML
File Syntax on page 891.

19.3.3.1 QoS Profile Inheritance

An individual QoS Profile can inherit values from other QoS Profiles described in the XML file by using
the attribute base_name.

A QoS Profile may also inherit values from other QoS Profiles described in different XML files. A QoS
Profile can only inherit from other QoS Profiles that have already been loaded. The order in which XML
resources are loaded is described in 19.5 How to Load XML-Specified QoS Settings on page 888.

The following examples show how to inherit from other profiles:

Inheritance Example 1:
<qos_library name=”Library”>

<qos_profile name="BaseProfile">
<datawriter_qos>

...
</datawriter_qos>
<datareader_qos>

...
</datareader_qos>

</qos_profile>

<!-- use the base_name attribute to inherit from another profile -->
<qos_profile name="DerivedProfile" base_name="BaseProfile">

<datawriter_qos>
<batch>

<enable>true</enable>
<max_samples>100</max_samples>
<max_data_bytes>LENGTH_UNLIMITED</max_data_bytes>

</batch>
</datawriter_qos>
<datareader_qos>

...
</datareader_qos>

</qos_profile>
</qos_library>

860

19.3.3 QoS Profile Inheritance and Composition

861

In this example, the QoS Profile called DerivedProfile is constructed via inheritance from the QoS Profile
BaseProfile. The profile DerivedProfile inherits BaseProfile by referencing the base profile in the qos_pro-
file attribute base_name="BaseProfile". This means that the datawriter_qos and datareader_qos in
DerivedProfile inherit their values from the corresponding datawriter_qos and datareader_qos in BasePro-
file. The QoS Profile DerivedProfile first initializes all its QoS policies with the values obtained from
BaseProfile. Then it applies any QoS policies explicitly listed in its own definition to override the ini-
tialized values. In this example, MyDerivedProfile only modifies the BatchQos policy on the DataWriter
QoS.

If a QoS Profile definition does not specify the base_name attribute, then it is initialized from the builtin
defaults provided by Connext DDS. See 19.3.1 Built-in QoS Profiles on page 857.

Inheritance Example 2:
<qos_library name=”Library”>

<datareader_qos name="BaseProfile">
...

</datareader_qos>
<datareader_qos name="DerivedProfile" base_name="BaseProfile"

...
</datareader_qos>

</qos_library>

The datareader_qos in DerivedProfile inherits its values from the datareader_qos of BaseProfile. In this
example, the datareader_qos definition is a shortcut for a QoS Profile definition with a single QoS.

Inheritance Example 3:
<qos_library name=”Library”>

<qos_profile name="Profile1">
<datawriter_qos name="BaseWriterQoS">

...
</datawriter_qos>
<datareader_qos>

...
</datareader_qos>

</qos_profile>
<qos_profile name="Profile2">

<datawriter_qos name="DerivedWriterQos" base_name="Profile1::BaseWriterQos">
...

</datawriter_qos>
<datareader_qos>

...
</datareader_qos>

</qos_profile>
</qos_library>

The datawriter_qos in Profile2 inherits its values from the datawriter_qos in Profile1. The datareader_qos
in Profile2 will not inherit the values from the corresponding QoS in Profile1. Since Profile2 doesn’t
inherit from any other QoS Profile, the datareader_qos values will be taken from the builtin defaults. See
19.3.1 Built-in QoS Profiles on page 857.

19.3.3 QoS Profile Inheritance and Composition

Inheritance Example 4:
<qos_library name=”Library”>

<qos_profile name="Profile1">
<datawriter_qos>

...
</datawriter_qos>
<datareader_qos>

...
</datareader_qos>

</qos_profile>
<qos_profile name="Profile2">

<datawriter_qos name="BaseWriterQoS">
...

</datawriter_qos>
<datareader_qos>

...
</datareader_qos>

</qos_profile>
<qos_profile name="Profile3" base_name="Profile1">

<datawriter_qos name="DerivedWriterQos" base_name="Profile2::BaseWriterQos">
...

</datawriter_qos>
<datareader_qos>

...
</datareader_qos>

</qos_profile>
</qos_library>

The datawriter_qos in Profile3 inherits its values from the datawriter_qos in Profile2. The datareader_qos
in Profile3 inherits its values from the datareader_qos in Profile1.

Inheritance Example 5:
<qos_library name=”Library”>

<datareader_qos name="BaseProfile">
...

</datareader_qos>
<profile name="DerivedProfile" base_name="BaseProfile">

<datareader_qos>
...

</datareader_qos>
</profile>

</qos_library>

The datareader_qos in DerivedProfile inherits its values from the datareader_qos in BaseProfile.

Inheritance Example 6:

Global_QoS.xml
<qos_library name="GlobalLibrary">

<qos_profile name="GlobalProfileA">
</qos_profile

</qos_library>

Component_QoS.xml

862

19.3.3 QoS Profile Inheritance and Composition

863

<qos_library name="ComponentLibrary">
<qos_profile name="ComponentProfileA" basename="GlobalLibrary::GlobalProfileA">
</qos_profile

</qos_library>

Previous examples show that a QoS Profile or QoS can inherit values from other QoS Profiles or QoSes,
which should already be loaded. In this example, a QoS Profile inherits values from another QoS Profile
defined in a separate QoS Library, in another file. This is a typical use case where QoSes are constructed
by separating them into multiple files. In this example, Global_QoS.xml has to be loaded before Com-
ponent_QoS.xml.

To learn more about how to load multiple files in your application, see 19.5 How to Load XML-Specified
QoS Settings on page 888.

19.3.3.1.1 Limitations of QoS Profile Inheritance

While useful, initializing a QoS Profile from a single base QoS Profile can also be limiting. For example,
assume you have the configuration shown in Figure 19.1: Single Inheritance Example below
Figure 19.1: Single Inheritance Example

If you wanted to incorporate monitoring into the QoS Profiles app_1 and app_2, the only option with inher-
itance would be to create two new QoS Profiles, each inheriting from app_1 and app_2 respectively, and
to copy the monitoring XML configuration into each of the two new QoS Profiles as shown in Figure
19.2: Duplication of Configuration in Inheritance on the next page. This results in significant XML code
duplication and leads to maintainability issues.

19.3.3 QoS Profile Inheritance and Composition

Figure 19.2: Duplication of Configuration in Inheritance

The following section describes how to handle the above scenario using QoS Profile composition.

19.3.3.2 QoS Profile Composition

QoS Profile composition uses QoS Snippets to more easily update profiles that you use or inherit. QoS
Snippets are small pieces of well-formed, reusable XML QoS that configure a single aspect of QoS, such
as enabling monitoring or security.

In the previous example, you could add the monitoring configuration to the new QoS Profiles app_mon_1
and app_mon_2 by referring to a QoS Snippet that configures monitoring.

864

19.3.3 QoS Profile Inheritance and Composition

865

Figure 19.3: One Reusable Configuration Snippet

QoS Snippets are intended to be composed into other QoS Snippets and QoS Profiles. As shown in the
example below, the syntax used to define a QoS Snippet is the same as that of a QoS Profile, but the intent
and usage are different.

The following is an example of the syntax used to define and use QoS Snippets.

Composition Example 1:
<!-- This is a QoS Snippet -->

<qos_profile name="Snippet1">
<datareader_qos>

<reliability>
<kind>RELIABLE_RELIABILITY</kind>

</reliability>
</datareader_qos>

</qos_profile>

<!-- This is a QoS Snippet -->
<qos_profile name="Snippet2">

<datareader_qos>
<durability>

<kind>TRANSIENT_LOCAL_DURABILITY</kind>
</durability>

</datareader_qos>
</qos_profile>

<qos_profile name="Profile1">

19.3.3 QoS Profile Inheritance and Composition

<datawriter_qos>
<publication_name>

<name>SampleDataWriter_A</name>
</publication_name>

</datawriter_qos>
</qos_profile>

<!-- This QoS Profile definition uses the Snippets -->
<qos_profile name="MyDerivedAndComposedProfile" base_name="Profile1">

<base_name>
<element>Snippet1</element>
<element>Snippet2</element>

</base_name>
<datareader_qos>

<history>
<kind>KEEP_LAST_HISTORY_QOS</kind>
<depth>6</depth>

</history>
</datareader_qos>

</qos_profile>

In this example, a QoS Profile inherits from another QoS Profile and uses composition to weave in policies
from two QoS Snippets. Specifically, MyDerivedAndComposedProfile is constructed by inheriting from
Profile1, then by overlaying Snippet1 and Snippet2. Finally, MyDerivedAndComposedProfile applies its
own QoS policies, which overwrite any others. See also 19.3.3.2.2 Order and Precedence of Inheritance
on the next page.

It is recommended to use fully qualified names in the element tag if there is ambiguity in the QoS Profile or
QoS Snippet names you have loaded in your application.

19.3.3.2.1 How Inheritance and Composition Work Together

The process of inheriting QoS Profiles and composing from QoS Snippets works as follows:

1. The QoS policies are initialized from those in the base profile, using the base_name attribute of the
<qos_profile> tag. If the base_name attribute is not present, then the policies are initialized from
the builtin defaults defined by Connext DDS.

2. The policies are overridden with those defined in the QoS Snippets listed inside the <base_name>
XML tag. The QoS Snippets are applied in the order in which they appear. So the first QoS Snippet
(Snippet1 in the example above) overrides the policies that were set from the inherited base QoS Pro-
file (Profile1 in the example), the second QoS Snippet (Snippet2 in the example) overrides whatever
was the result of applying Snippet1, and so on.

3. The policies that appear explicitly as elements in the QoS Profile are applied. These override the
policies set by the base QoS Profile and the QoS Snippets. In this example, a KEEP_LAST_
HISTORY_DEPTH of 6 overrides whatever was set by the base QoS Profile and the QoS Snip-
pets.

866

19.3.3 QoS Profile Inheritance and Composition

867

You inherit a QoS Profile, but overlay one or more Qos Snippets. Inherit a QoS Profile because
you want to subsume the complete definition of the QoS policies for a particular use case. Overlay
QoS Snippets onto a QoS Profile so that you override only a single aspect of QoS: for instance,
only what is logically associated with monitoring.

19.3.3.2.2 Order and Precedence of Inheritance

Values are inherited from the specified elements in the <base_name> tag, in order from top to bottom. Val-
ues inherited from elements lower in the order (Snippet2 in the examples) will overwrite the same values
(if present) from elements higher up (Snippet1 in the examples). Remember that the QoS, QoS Profile, or
QoS Snippet should already be loaded as a part of your XML file. (See 19.5 How to Load XML-Spe-
cified QoS Settings on page 888.)

In the following example, MyDerivedAndComposedProfile inherits from Profile1, keeping Profile1's
SampleDataWriter_A but getting <durability> and <reliability> from the Snippets rather than from Pro-
file1. Finally, MyDerivedAndComposedProfile applies its own local <history> policies.

Composition Example 2:
<!-- This is a QoS Snippet -->

<qos_profile name="Snippet1">
<datareader_qos>

<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>

</reliability>
</datareader_qos>

</qos_profile>

<!-- This is a QoS Snippet -->
<qos_profile name="Snippet2">

<datareader_qos>
<durability>

<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>
</durability>

</datareader_qos>
</qos_profile>

<qos_profile name="Profile1">
<datawriter_qos>

<publication_name>
<name>SampleDataWriter_A</name>

</publication_name>
</datawriter_qos>
<datareader_qos>

<durability>
<kind>VOLATILE_DURABILITY_QOS</kind>

</durability>
<reliability>

<kind>BEST_EFFORT_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>

19.3.3 QoS Profile Inheritance and Composition

</qos_profile>

<!-- This QoS Profile definition uses the Snippets -->
<qos_profile name="MyDerivedAndComposedProfile" base_name="Profile1">

<base_name>
<element>Snippet1</element>
<element>Snippet2</element>

</base_name>
<datareader_qos>

<history>
<kind>KEEP_LAST_HISTORY_QOS</kind>
<depth>6</depth>

</history>
</datareader_qos>

</qos_profile>

The final values in MyDerivedAndComposedProfile will be as follows (map the colors in the example to
what actually gets used), as shown here:

<qos_profile name="MyDerivedAndComposedProfile">
<datareader_qos>

<reliability>
<kind>RELIABLE_RELIABILITY</kind>

</reliability>
<history>

<kind>KEEP_LAST_HISTORY_QOS</kind>
<depth>6</depth>

</history>
<durability>

<kind>TRANSIENT_LOCAL_DURABILITY</kind>
</durability>

</datareader_qos>
<datawriter_qos>

<publication_name>
<name>SampleDataWriter_A</name>

</publication_name>
</datawriter_qos>

</qos_profile>

Composition Example 3

Imagine that Example 2 had the following Snippets instead:
<!-- This is a QoS Snippet -->

<qos_profile name="Snippet1">
<datawriter_qos>

<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>
<max_blocking_time>

<sec>5</sec>
<nanosec>0</nanosec>

</max_blocking_time>
</reliability>

</datawriter_qos>

868

19.3.3 QoS Profile Inheritance and Composition

869

</qos_profile>

<!-- This is a QoS Snippet -->
<qos_profile name="Snippet2">

<datawriter_qos>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
<max_blocking_time>

<nanosec>1000000</nanosec>
</max_blocking_time>

</reliability>
</datawriter_qos>

</qos_profile>

<!-- This QoS Profile definition uses the Snippets -->
<qos_profile name="MyDerivedAndComposedProfile" base_name="Profile1">

<base_name>
<element>Snippet1</element>
<element>Snippet2</element>

</base_name>
</qos_profile>

In this example, Snippet2's nanosec overwrites Snippet1's. But since Snippet2 does not specify a sec, Snip-
pet1's sec is used. The resultant QoS is a combination of the two reliability policies:
<!-- The above example combines the reliability settings because one QoS Snippet is overlaid on
the other -->

<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>
<max_blocking_time>

<sec>5</sec>
<nanosec>1000000</nanosec>

</max_blocking_time>
</reliability>

Imagine now that the QoS Snippets in the above example were reversed, and Snippet2 was listed first in
the file. Snippet2 would apply a nanosec of 1000000; then Snippet1 would overwrite that with 0 and
apply its sec of 5. The result would be amax_blocking_time of 5 seconds and 0 nanoseconds.

You can use the rtixmloutpututility utility to see what the final QoS values will be in your system when
composition and inheritance complete their derivations. See 19.3.3.5 Viewing Resolved QoS Values on
page 875.

Composition Example 4:

If you specify <base_name> for a QoS Profile and also specify <base_name> for a QoS within it, the
<base_name> tag or attribute in the QoS will take precedence. That is, <base_name> from the QoS Pro-
file will be ignored for the QoS specifying its own <base_name>.

The following example illustrates this concept:
<dds>

<qos_library>

19.3.3 QoS Profile Inheritance and Composition

<qos_profile name=”ParentProfile”>
<base_name>

<element>A</element>
<element>B</element>

</base_name>
...
<datawriter_qos name=”DW_QoS”>

<base_name>
<element>C</element>
<element>D</element>

</base_name>
</datawriter_qos>

</qos_profile>
</qos_library>

</dds>

In this example, since DW_QoS has its own list for the <base_name> tag, DW_QoS will only inherit val-
ues from C and D. It will NOT inherit anything from A and B specified as a part of ParentProfile, since its
own <base_name> tag overrides it.

19.3.3.3 Best Practices for Inheritance and Composition

XML QoS Profile inheritance and composition provide a powerful way to define configurations, allowing
flexibility and reusability. It is important to understand the underlying mechanics and follow the best prac-
tices described below to maximize usability and avoid unexpected results.

l Differentiate between QoS Profiles and QoS Snippets.

l Think of QoS Profiles as complete definitions of all QoS policies for a particular use case.
Construct QoS Profiles so that all aspects of the use case are covered.

l Think of QoS Snippets as small, generic, orthogonal chunks of QoS policies. Construct QoS
Snippets to configure a single aspect of a configuration, such as monitoring or security.

l Use QoS Profiles for inheritance only, never composition. Use a QoS Profile in a base_name attrib-
ute, never inside a <base_name> element.

l Use QoS Snippets for composition, never inheritance. Use a QoS Snippet inside a <base_name>
element, never in a base_name attribute.

l Use QoS Profiles, not QoS Snippets, to create DDS Entities. Do not pass a QoS Snippet name to
the DDS operations create_<entity>_with_profile(), get_<entity>_qos_from_profile(), set_qos_
with_profile(), or set_default_profile().

l Keep QoS Snippets generic and reusable. Never use the <topic_filter> element in a QoS Snippet.

These best practices are illustrated in the following figure and further described in the sections that follow.

870

19.3.3 QoS Profile Inheritance and Composition

871

Figure 19.4: Best Practices for Inheritance and Composition

In Figure 19.4: Best Practices for Inheritance and Composition above, imagine the results produced by the
dotted box, as already illustrated in the previous examples. These results are inherited by QoS Profile 3.
QoS Profile 3's snippets are then applied. (QoS Snippet 5 inherits from two other snippets first.) Finally,
any policies in QoS Profile 3 that differ from the results produced by the inheritance from profiles 1 and 2
are applied.

Another way to look at Figure 19.4: Best Practices for Inheritance and Composition above is as a tree
whose nodes are applied in this order, where "QP" refers to the QoS Profiles in the figure and "QS" refers
to the QoS Snippets in the figure:

1. QP1 (because inheritance says we start all the way back at the first inherited profile)

2. QS1, then QS2 (because snippets are overlaid next)

3. QP2 (because it may have deltas that overwrite what has been composed so far)

4. QS3, then QS4 (because QS5 inherits from QS3 and QS4 first)

5. QS5 (because it may have deltas that overwrite QS3 and QS4)

6. QP3 (because it may have deltas that overwrite everything composed so far)

19.3.3 QoS Profile Inheritance and Composition

19.3.3.3.1 Differentiate between QoS Profiles and QoS Snippets

When defining a QoS Profile, decide whether you are:

l Creating a QoS Profile intended to create DDS Entities and/or fully define their QoS.

l Creating a QoS Snippet intended as a reusable block to be composed in the definition of QoS Pro-
files and other QoS Snippets.

These two options are fundamentally different.

A QoS Profile is intended to define the QoS policies used to create a DDS Entity. Therefore, it should
match a specific application use case (e.g., sending alarms or streaming periodic data). Moreover, because
the QoS Profile will be used to create a DDS Entity, it implicitly defines values for all the QoS Policies
that apply to the entity.

When defining a QoS Profile, choose the builtin QoS Profile that most closely matches your use case. Use
that builtin QoS Profile as a base profile. For example:
<qos_profile name="MyProfile" base_name="BuiltinQosLibExp::Pattern.AlarmEvent">

<!-- modify the profile by composing with QoS Snippets -->
<!-- modify the profile by overriding the QoS policies explicitly -->
</qos_profile>

Give the QoS Profile a name that makes clear its intended use, as well as the fact that it is a QoS Profile
(instead of a QoS Snippet). For example, use “Profile” as a suffix in the name of the QoS Profile or some
other consistent naming convention.

A QoS Snippet is intended as a generic block of QoS policies for composition into QoS Profiles and other
QoS Snippets. For example, configuring monitoring, configuring Security, and configuring a FlowCon-
troller are good uses for QoS Snippets.

QoS Snippets should focus on a single aspect of QoS policy and try not to set unrelated policies. This max-
imizes composability, avoiding interfering with policies set by other QoS Snippets.

QoS Snippets should be generic and reusable across systems and deployments. Therefore, it does not
make sense to constrain their applicability using the <topic_filter> element within their definition. Doing
so may also result in conflict with topic filters set on QoS Profiles that use those QoS Snippets.

Give the QoS Snippet a name that makes clear its intended use, as well as the fact that it is a QoS Snippet
(not a regular QoS Profile). For example, use “Snippet” as a suffix in the name of the QoS Snippet or
some other consistent naming convention.

19.3.3.3.2 Use QoS Profiles for inheritance only, never composition

Aside from its use for creating DDS Entities, a QoS Profile may be used as the base definition of another
QoS Profile. For example:
<qos_profile name="MyDerivedProfile" base_name="MyBaseProfile">

...

872

19.3.3 QoS Profile Inheritance and Composition

873

</qos_profile>

When used for inheritance, the derived profile is initialized with the policies of the base profile.

A profile should never be used for composition. That is, it should not be referenced within the <base_
name> element:
<qos_profile name="MyDerivedProfile">

<base_name>
<element>MyBaseProfile</element> <!-- never do this -->

</base_name>
</qos_profile>

Because a QoS Profile implicitly defines all the QoS policies, using it for composition would have the unin-
tended effect of potentially overriding all the policies.

19.3.3.3.3 Use QoS Snippets for composition, never inheritance

QoS Snippets are small pieces of well-formed XML QoS intended to configure a single aspect of a QoS.
The proper way to use them is for the composition of other QoS Profiles and QoS Snippets. Therefore,
they must only appear within the <base_name> tag "element." For example:
<qos_profile name="MyComposedProfile" base_name="MyBaseProfile">

<base_name>
<element>Snippet1</element>
<element>Snippet2</element>
<element>Snippet3</element>

</base_name>
...
</qos_profile>

<qos_profile name="MyComposedSnippet">
<base_name>

<element>Snippet1</element>
<element>Snippet2</element>
<element>Snippet3</element>

</base_name>
...

</qos_profile>

Do not use a QoS Snippet for inheritance. For example
<!-- do not do this -->

<qos_profile name="MyComposedProfile" base_name="Snippet1">
<base_name>

<element>Snippet2</element>
<element>Snippet3</element>

</base_name>
...

</qos_profile>

19.3.3 QoS Profile Inheritance and Composition

If you use a QoS Snippet for inheritance (i.e., for initializing another Qos Profile), you are using something
that was not intended to be a full definition; thus, it may overlook the proper configuration of certain
policies for your system.

19.3.3.3.4 Use QoS Profiles, not QoS Snippets, to create DDS Entities

The QoS configuration of DDS Entities can be specified using QoS Profiles. This is a convenient mech-
anism that allows separation of configuration from the functional logic of your application.

The Connext DDS API contains several operations that reference QoS Profiles by name, such as create_
participant_with_profile() and create_topic_with_profile(). These operations are used to either create
DDS Entities with the QoS policies referenced by the profile name, or to initialize the Entity QoS structure
with the QoS policies referenced by the profile. Either way, these operations should not be called using a
QoS Snippet name as the reference.

19.3.3.3.5 Keep QoS Snippets generic and reusable

QoS Snippets should be developed with reuse in mind and should not use the <topic_filter> element
within the definition of the QoS Snippet.
<!-- do not do this -->

<qos_profile name="MySnippet">
<datawriter_qos topic_filter="Alarm">

<reliability>
<kind>RELIABLE_RELIABILITY</kind>

</reliability>
</datawriter_qos>
<datawriter_qos topic_filter="SensorUpdate">

<reliability>
<kind>BEST_EFFORTS_RELIABILITY</kind>

</reliability>
</datawriter_qos>
...

</qos_profile>

The <topic_filter> element conditionally defines the QoS Profile depending on the Topic name associated
with the Entity being created or configured. Since the QoS Snippet is not intended to create or configure
DDS Entities directly, it does not make sense to use the <topic_filter> element in its definition.

19.3.3.4 Enforcement of QoS Profile and QoS Snippet Conventions

Connext DDS uses the same syntax for the creation of QoS Profiles and QoS Snippets. Therefore, it does
not enforce the conventions described here. Although Connext DDS will not detect or prevent violation of
these conventions (e.g., if you use a QoS Profile for composition), following these conventions is strongly
encouraged to avoid unexpected results. Furthermore, future versions of Connext DDS may introduce dif-
ferent syntax that allows differentiating QoS Profiles from QoS Snippets and enforces the conventions. If
you follow these conventions now, you can continue using them without violating future syntax.

874

19.3.3 QoS Profile Inheritance and Composition

875

19.3.3.5 Viewing Resolved QoS Values

The final value for a QoS configuration, especially when using inheritance and QoS Snippet composition,
can be visualized at runtime in a variety of ways:

l Locally in your application, the QoS to_string functions allow Entity QoS objects to be converted
into strings and printed, so that you can see the current QoS being used. Entity QoS types are
DataReaderQos, DataWriterQos, PublisherQos, SubscriberQos, TopicQos, DomainParticipantQos
and DomainParticipantFactoryQos.

l Additionally, when an entity is created, or when the set_qos operation is called on an entity, the
QoS settings it is using are output to the log, if logging is configured with a verbosity of NDDS_
CONFIG_LOG_VERBOSITY_STATUS_LOCAL and category of NDDS_CONFIG_LOG_
CATEGORY_API. (See 25.2 Controlling Messages from Connext DDS on page 990.) If the
DDS_EntityNameQosPolicy is set, the names will be printed as part of a header to help associate
logged QoS settings with the appropriate entities. Connext DDS automatically prints the QoSes of
these entities to the log in XML format. Note it is not required that your QoS was configured in
XML, it will always be logged in XML format to the log.

The logged QoS when using logging, or the to_string functions, will show only the QoS settings
that are different from the documented default (several to_string overloads can override this beha-
vior). The documented default refers to the default value of a policy as specified by the API ref-
erence HTML documentation.

l Remotely, using RTI Monitor.

l Remotely, using RTI Admin Console. Note that when visualizing the QoS using Admin Console,
only a subset of the QoS are shown. Only QoS policies that are required for matching are propag-
ated to Admin Console.

Here is an example of a to_string function in the Modern C++ API:
using namespace rti::all;

DataWriterQos the_qos = writer.qos();

// Obtain a string representation of the DataWriterQos object
// Only differences with respect to the documented default will be included
std::string the_string = to_string(the_qos);

// Create another DataWriterQos object and change some policies
DataWriterQos other_qos;
other_qos << Reliability::BestEffort();
// The differences with respect to the other_qos object will now be stored to the string
the_string = to_string(the_qos, other_qos);

// Finally, we can print the entire QoS object (not just differences)
the_string = to_string(the_qos, rti::core::qos_print_all);

19.3.4 Topic Filters

For older releases, or where code change/recompilation isn't possible, you can use rtixmloutpututility to
visualize the end result of your QoS settings at entity creation time.

rtixmloutpututility allows you to see the final QoS values your entities will receive after inheritance and
composition are resolved. Here is an example usage of this utility:
$./rtixmloutpututility

-qosFile '/home/xxx/Documents/Tests/CORE-9446/USER_QOS_
PROFILES.xml;/home/xxx/Documents/Tests/CORE-1375/USER_QOS_PROFILES.xml'

-profilePath Data_Library::Data_Profile
-outputFile Dummy.txt
-qosTag domain_participant_qos/property

To get this utility, including more information about its options and usage, please see: https://-
github.com/rticommunity/rticonnextdds-xml-output-utility.

19.3.4 Topic Filters

A QoS profile may contain several writer, reader and topic QoSs. Connext DDS will select a QoS based
on the evaluation of a filter expression (as defined in the POSIX fnmatch API (1003.2-1992 Section B.6))
on the topic name. The filter expression is specified as an attribute in the XML QoS definition. For
example:
<qos_profile name="StrictReliableCommunicationProfile">
<datawriter_qos topic_filter="A*">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>
<datawriter_qos topic_filter="B*">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
<resource_limits>

<max_samples>128</max_samples>
<max_samples_per_instance>128
</max_samples_per_instance>
<initial_samples>128</initial_samples>
<max_instances>1</max_instances>
<initial_instances>1</initial_instances>

</resource_limits>
</datawriter_qos>
...

</qos_profile>

If topic_filter is not specified in a QoS, Connext DDS will assume the filter '*'. The QoSs with an explicit
topic_filter attribute definition will be evaluated in order; they have precedence over a QoS without a

876

https://github.com/rticommunity/rticonnextdds-xml-output-utility
https://github.com/rticommunity/rticonnextdds-xml-output-utility

19.3.4 Topic Filters

877

topic_filter expression.

The topic_filter attribute is only used with the following APIs:

DomainParticipantFactory:

l get_<entity>_qos_from_profile_w_topic_name() (where <entity> may be topic, datareader, or
datareader; see 9.2.5 Getting QoS Values from a QoS Profile on page 614)

DomainParticipant:

l create_datawriter_with_profile() (see 7.3.1 Creating DataWriters on page 293)

l create_datareader_with_profile() (see 8.3.1 Creating DataReaders on page 515

l create_topic_with_profile() (see 5.1.1 Creating Topics on page 218)

Publisher:

l create_datawriter_with_profile() (see 7.3.1 Creating DataWriters on page 293)

Subscriber:

l create_datareader_with_profile() (see 8.3.1 Creating DataReaders on page 515)

Topic:

l set_qos_with_profile() (see 5.1.3 Setting Topic QosPolicies on page 220)

DataWriter:

l set_qos_with_profile() (see 7.2.4.3 Changing QoS Settings After the Publisher Has Been Created
on page 282)

DataReader:

l set_qos_with_profile() (see 8.3.9 Setting DataReader QosPolicies on page 548)

Note: in the Modern C++ API, use dds::core::QosProvider::<entity>_qos_w_topic_name() to obtain
the Qos associated with a topic. For example:
auto reader_qos = qos_provider.extensions().datareader_qos_w_topic_name("Example Topic");
dds::sub::DataReader<Foo> reader(subscriber, topic, reader_qos);

19.3.4 Topic Filters

Other APIs will ignore QoSs with a topic_filter value different than "*". A QoS Profile with QoSs using
topic_filter can also inherit from other QoS Profiles. In this case, inheritance will consider the value of the
topic_filter expression.

Example 1:
<qos_library name=”Library”>

<qos_profile name="BaseProfile">
<datawriter_qos>

...
</datawriter_qos>
<datawriter_qos topic_filter="T1*">

...
</datawriter_qos>
<datawriter_qos topic_filter="T2*">

...
</datawriter_qos>

</qos_profile>
<qos_profile name="DerivedProfile" base_name="BaseProfile">

<datawriter_qos topic_filter="T11">
...

</datawriter_qos>
<datawriter_qos topic_filter="T21">

...
</datawriter_qos>
<datawriter_qos topic_filter="T31">

...
</datawriter_qos>

</qos_profile>
</qos_library>

The datawriter_qos with topic_filter T11 in DerivedProfile will inherit its values from the datawriter_
qos with topic_filter T1* in BaseProfile. The datawriter_qos with topic_filter T21 in DerivedProfile
will inherit its values from the datawriter_qos with topic_filter T2* in BaseProfile. The datawriter_qos
with topic_filter T31 in DerivedProfile will inherit its values from the datawriter_qos without topic_fil-
ter in BaseProfile.

878

19.3.4 Topic Filters

879

Example 2:
<qos_library name=”Library”>

<qos_profile name="BaseProfile">
<datawriter_qos topic_filter="T1*">

...
</datawriter_qos>
<datawriter_qos name="T2DataWriterQoS" topic_filter="T2*">

...
</datawriter_qos>

</qos_profile>
<qos_profile name="DerivedProfile" base_name="BaseProfile">

<datawriter_qos topic_filter="T11"
base_name="BaseProfile::T2DataWriterQoS">
...

</datawriter_qos>
<datawriter_qos topic_filter="T21">

...
</datawriter_qos>

</qos_profile>
</qos_library>

Although the topic_filter expressions do not match, the datawriter_qos with topic_filter T11 in
DerivedProfile will inherit its values from the datawriter_qos with topic_filter T2* in BaseProfile. topic_
filter is not used with inheritance from QoS to QoS. The datawriter_qos with topic_filter T21 in
DerivedProfile will inherit its values from the datawriter_qos with topic_filter T2* in BaseProfile.

Example 3:
<qos_library name=”Library”>

<datawriter_qos name="BaseQos" topic_filter="T1">
...

</datawriter_qos>
<datawriter_qos name="DerivedQos" base_name="BaseQos" topic_filter="T2">

...
</datawriter_qos>

</qos_library>

In the case of a single QoS profile, although the topic_filter expressions do not match, the datawriter_qos
named DerivedQos with topic_filter T2 will inherit its values from the datawriter_qos named BaseQos
with topic_filter T1.

Important Note About Topic Filters

Use the topic_filter attribute with caution. In most cases, governance of QoS is improved by using dis-
crete, named QoS profiles with no more than one of each kind of entity QoS section (datareader_qos,
datawriter_qos, etc.) in each profile. If the topic_filter attribute contains a typographical error or omission,
it is possible for a topic not to match the intended filter expression. This can result in, for example, the
entity being silently assigned the default QoS. The topic_filter attribute may be preferred in cases where
wildcards are used extensively to reduce duplication in the XML. In these cases, the resulting QoS of each
entity should be independently and empirically confirmed. Tools that can help confirm an entity’s QoS are

19.3.5 QoS Profiles with a Single QoS

RTI Monitor and (as described in 19.3.3.5 Viewing Resolved QoS Values on page 875) the rtixm-
loutpututility.

19.3.5 QoS Profiles with a Single QoS

The definition of an individual QoS outside a profile is a shortcut for defining a QoS profile with a single
QoS. For example:
<datawriter_qos name="KeepAllWriter">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
</datawriter_qos>

is equivalent to:
<qos_profile name="KeepAllWriter">

<datawriter_qos>
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

</datawriter_qos>
</qos_profile>

19.4 Tags for Configuring QoS with XML

To configure the QoS for an Entity using XML, use the following tags:

l <participant_factory_qos>

Note: The only QoS policies that can be configured for the DomainParticipantFactory are <entity_
factory> and <logging>.

l <domain_participant_qos>

l <publisher_qos>

l <subscriber_qos>

l <topic_qos>

l <datawriter_qos> or <writer_qos> (writer_qos is valid only with DTD validation)

l <datareader_qos> or <reader_qos> (reader_qos is valid only with DTD validation)

Each QoS can be identified by a name. The QoS can inherit its values from other QoSs described in the
XML file. For example:
<datawriter_qos name="DerivedWriterQos" base_name="Lib::BaseWriterQos">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

880

19.4.1 QosPolicies

881

</history>
</datawriter_qos>

In the above example, the datawriter_qos named 'DerivedWriterQos' inherits the values from 'BaseWriter-
Qos' in the library 'Lib'. The HistoryQosPolicy kind is set to KEEP_ALL_HISTORY_QOS.

Each XML tag with an associated name can be uniquely identified by its fully qualified name in C++
style.

The writer, reader and topic QoSs can also contain an attribute called topic_filter that will be used to asso-
ciate a set of topics to a specific QoS when that QoS is part of a QoS profile. See 19.3.4 Topic Filters on
page 876 and 19.3 QoS Profiles on page 856.

19.4.1 QosPolicies

The fields in a QosPolicy are described in XML using a 1-to-1 mapping with the equivalent C rep-
resentation. For example, the Reliability QosPolicy is represented with the following C structures:
struct DDS_Duration_t {

DDS_Long sec;
DDS_UnsignedLong nanosec;

}
struct DDS_ReliabilityQosPolicy {

DDS_ReliabilityQosPolicyKind kind;
DDS_Duration_t max_blocking_time;

}

The equivalent representation in XML is as follows:
<reliability>

<kind></kind>
<max_blocking_time>

<sec></sec>
<nanosec></nanosec>

</max_blocking_time>
</reliability>

19.4.2 Sequences

In general, sequences in QosPolicies are described with the following XML format:
<a_sequence_member_name>

<element>...</element>
<element>...</element>
...

</a_sequence_member_name>

Each element of the sequence is enclosed in an <element> tag. For example:
<property>

<value>
<element>

<name>my name</name>
<value>my value</value>

19.4.2 Sequences

</element>
<element>

<name>my name2</name>
<value>my value2</value>

</element>
</value>

</property>

A sequence without elements represents a sequence of length 0. For example:
<discovery>

<!-- initial_peers sequence contains zero elements -->
<initial_peers/>

</discovery>

For sequences that may have a default initialization that is not empty (such as the initial_peers field in the
9.5.2 DISCOVERY QosPolicy (DDS Extension) on page 646), using the above construct would result in
an empty list and not the default value. So to simply show a sequence for the sake of completeness, but not
change its default value, comment it out, as follows:
<discovery>

<!-- initial_peers sequence contains the default value -->
<!-- <initial_peers/> -->

</discovery>

As a general rule, sequences defined in a derived QoS will replace the corresponding sequences in the
base QoS. (The concepts of derived and base QoS are described in 19.3.3 QoS Profile Inheritance and
Composition on page 860.) For example, consider the following:
<qos_profile name="MyBaseProfile">
<domain_participant_qos>
<discovery>

<initial_peers>
<element>192.168.1.1</element>
<element>192.168.1.2</element>

</initial_peers>
</discovery>

</domain_participant_qos>
</qos_profile>
<qos_profile name="MyDerivedProfile" base_name="MyBaseProfile">
<domain_participant_qos>
<discovery>

<initial_peers>
<element>192.168.1.3</element>

</initial_peers>
</discovery>

</domain_participant_qos>
</qos_profile>

The initial peers sequence defined above in the participant QoS of MyDerivedProfile will contain a single
element with a value 192.168.1.3. The elements 192.168.1.1 and 192.168.1.2 will not be inherited.
However, there is one exception to this behavior.

The <property> and <data_tags> tags provide an attribute called inherit that allows you to choose the
inheritance behavior for the sequence defined within the tag.

882

19.4.2 Sequences

883

By default, the value of the attribute inherit is true. Therefore, the <property> tag defined within a derived
QoS profile will inherit its elements from the <property> tag defined within a base QoS profile.

In the following example, the property sequence defined in the participant QoS of MyDerivedProfile will
contain two properties:

l dds.transport.UDPv4.builtin.send_socket_buffer_size will be inherited from the base profile and
have the value 524288.

l dds.transport.UDPv4.builtin.recv_socket_buffer_size will overwrite the value defined in the
base QoS profile with 1048576.

<qos_profile name="MyBaseProfile">
<domain_participant_qos>
<property>
<value>
<element>

<name>
dds.transport.UDPv4.builtin.send_socket_buffer_size

</name>
<value>524288</value>

</element>
<element>

<name>
dds.transport.UDPv4.builtin.recv_socket_buffer_size

</name>
<value>2097152</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>
<qos_profile name="MyDerivedProfile" base_name="MyBaseProfile">
<domain_participant_qos>
<property>
<value>
<element>

<name>
dds.transport.UDPv4.builtin.recv_socket_buffer_size

</name>
<value>1048576</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>

To discard all the properties defined in the base QoS profile, set inherit to false.

In the following example, the property sequence defined in the participant QoS of MyDerivedProfile will
contain a single property named dds.transport.UDPv4.builtin.recv_socket_buffer_size, with a value of
1048576. The property dds.transport.UDPv4.builtin.send_socket_buffer_size will not be inherited.

19.4.3 Arrays

<qos_profile name="MyBaseProfile">
<participant_qos>
<property>
<value>
<element>

<name>
dds.transport.UDPv4.builtin.send_socket_buffer_size

</name>
<value>524288</value>

</element>
<element>

<name>
dds.transport.UDPv4.builtin.recv_socket_buffer_size

</name>
<value>2097152</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>
<qos_profile name="MyDerivedProfile" base_name="MyBaseProfile"

<participant_qos>
<property inherit="false">

<value>
<element>

<name>
dds.transport.UDPv4.builtin.recv_socket_buffer_size

</name>
<value>1048576</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>

19.4.3 Arrays

In general, the arrays contained in the QosPolicies are described with the following XML format:
<an_array_member_name>

<element>...</element>
<element>...</element>
...

</an_array_member_name>

Each element of the array is enclosed in an <element> tag.

As a special case, arrays of octets are represented with a single XML tag enclosing an array of decim-
al/hexadecimal values between 0..255 separated with commas.

For example:
<reader_qos>

...
<protocol>

<virtual_guid>

884

19.4.4 Enumeration Values

885

<value>
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

</value>
</virtual_guid>

</protocol>
</reader_qos>

19.4.4 Enumeration Values

Enumeration values are usually represented using the programming language name without the DDS_ or
NDDS_ prefix. For example:
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

You can get the actual enumeration values by using the XSD file distributed with Connext DDS. See
19.9.2 XML File Validation During Editing on page 896. (Note: the XSD file provides stricter validation
and better auto-completion than the corresponding DTD file.)

19.4.5 Time Values (Durations)

You can use the following special values for fields that require seconds or nanoseconds:

l DURATION_INFINITE_SEC

l DURATION_ZERO_SEC

l DURATION_INFINITE_NSEC

l DURATION_ZERO_NSEC

l DURATION_AUTO_SEC

l DURATION_AUTO_NSEC

For example:
<deadline>

<period>
<sec>DURATION_INFINITE_SEC</sec>

<nanosec>DURATION_INFINITE_NSEC</nanosec>
</period>

</deadline>

These values are the same as the programming language names without the DDS_ or NDDS_ prefix. You
can find these special values by using the XSD file distributed with Connext DDS. See 19.9.2 XML File
Validation During Editing on page 896. (Note: the XSD file provides stricter validation and better auto-
completion than the corresponding DTD file.)

19.4.6 Transport Properties

19.4.6 Transport Properties

You can configure transport plugins using the DomainParticipant’s 7.5.19 PROPERTY QosPolicy
(DDS Extension) on page 440.

l Properties for the builtin transports are described in 16.6 Setting Builtin Transport Properties with
the PropertyQosPolicy on page 807. You can also set these properties in XML using the <transport_
builtin> tag.

l Properties for other transport plugins such as RTI TCP Transport1are described in their respective
chapters in this manual.

This example configures the builtin UDPv4 transport using the <transport_builtin> tags:
<domain_participant_qos>

<transport_builtin>
<udpv4>

<message_size_max>1024</message_size_max>
</udpv4>

</transport_builtin>
</domain_participant_qos>

You can do the same thing with the UDPv6 (<udpv6>) and SHMEM (<shmem>) transports (and, if RTI
Real-Time WAN Transport is installed, with UDPv4_WAN (<udp4_wan>)). For example:
<domain_participant_qos>

<transport_builtin>
<udpv6>

<message_size_max>1024</message_size_max>
</udpv6>

</transport_builtin>
</domain_participant_qos>

You cannot use the <transport_builtin> tag for the other transport plugins, like TCP, DTLS, WAN,
LBRTPS, and ZRTPS. (You must use the 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440
properties for those.)

The following example configures the builtin UDPv4 transport using the legacy approach, via regular
XML tags; you can find the names of these 7.5.19 PROPERTY QosPolicy (DDS Extension) on
page 440 properties in the Property Reference Guide:
<domain_participant_qos>

<property>
<value>

<element>
<name>dds.transport.UDPv4.builtin.parent.message_size_max</name>
<value>65507</value>

</element>

1RTI TCP Transport is included with Connext DDS, but is not enabled by default.

886

19.4.6 Transport Properties

887

<element>
<name>dds.transport.UDPv4.builtin.send_socket_buffer_size</name>
<value>131072</value>

</element>
<element>

<name>dds.transport.UDPv4.builtin.recv_socket_buffer_size</name>
<value>131072</value>

</element>
</value>

</property>
</domain_participant_qos>

Some of the properties in the Property Reference Guide are described as "promoted" to <transport_
builtin> tag usage. For example, dds.transport.UDPv4.builtin.send_socket_buffer_size can be entered
either in a <name> element as shown above or via the <transport_builtin> tag as shown here:
<domain_participant_qos>

<transport_builtin>
<udpv4>

<send_socket_buffer_size>131072</send_socket_buffer_size>
</udpv4>

</transport_builtin>
</domain_participant_qos>

All of the UDPv4, UDPv4_WAN (if installed), UDPv6, and SHMEM transport properties (except those
that are private or deprecated) have been "promoted" for use in a <transport_builtin> tag, if desired; how-
ever, the legacy way of using the 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440 prop-
erties (as described in the Property Reference Guide) is still supported. The <transport_builtin> tag is
simply an easier way to configure your transports when using XML, for those properties that support it.

Note that programmatically, you must use the properties. For example:
retCode = DDS_PropertyQosPolicyHelper_add_property(

&participantQos.property,
"dds.transport.UDPv4.builtin.parent.message_size_max",
"5000",
DDS_BOOLEAN_FALSE);

If you happen to set a transport property both ways—via the PROPERTY QoS <name> and via the
<transport_builtin> tag—the <transport_builtin> method takes precedence. For example:
<qos_profile name="Precedence_Test_Tag_Properties">

<participant_qos>
<transport_builtin>

<mask>SHMEM</mask>
<shmem>

<address_bit_count>0</address_bit_count>
</shmem>

</transport_builtin>
<property>

<value>
<!-- SHMEM -->
<element>

<name>dds.transport.shmem.builtin.parent.address_bit_count</name>

19.4.7 Thread Settings

<value>1111</value>
<propagate>true</propagate>

</element>
</value>

</property>
</participant_qos>

</qos_profile>

In this example, the address_bit_count will be 0.

Deprecated or private properties have no XML QoS representation via the <transport_builtin> tag. For
example, dds.transport.UDPv4.builtin.ignore_nonup_interfaces, although it is a UDPv4 transport plu-
gin property, cannot be specified via the <transport_builtin> tag, because it has been deprecated.

19.4.7 Thread Settings

See Table 21.1 XML Tags for ThreadSettings_t.

19.4.8 Entity Names

The name and role_name fields in the 7.5.11 ENTITY_NAME QosPolicy (DDS Extension) on
page 419 have three distinct possible values: NULL, an empty string, and a non-empty string. Each of
these three states are specified in XML in a different way.

To specify that the name or role_name of an entity is NULL, use the xsi:nil attribute. The xsi:nil attribute
can be set to either "true" or "false". For example, to set the participant name to NULL:
<participant_name>

<name xsi:nil="true">
</participant_name>

To specify the empty string, leave the XML element empty:
<participant_name>

<name/>
</participant_name>

To specify a non-empty string:
<participant_name>

<name>"My Participant's Name"</name>
</participant_name>

19.5 How to Load XML-Specified QoS Settings

There are several ways to load XML QoS profiles into your application. In C, Traditional C++, Java and
.NET, it's the singleton DomainParticipantFactory that loads these profiles. Applications using the Modern
C++ API can create any number of instances of dds::core::QosProvider with different parameters to load
different QoS profiles or, they can use the singleton QosProvider::Default().

Here are the various approaches, listed in load order:

888

19.5 How to Load XML-Specified QoS Settings

889

l <NDDSHOME>/resource/xml/NDDS_QOS_PROFILES.xml
This file is loaded automatically if it exists (not the default) and ignore_resource_profile in the
9.4.2 PROFILE QosPolicy (DDS Extension) on page 639 is FALSE (the default). (First to be
loaded)

Note: NDDS_QOS_PROFILES.xml does not exist by default. However, NDDS_QOS_
PROFILES.example.xml is shipped with the host bundle of the product; you can copy it to
NDDS_QOS_PROFILES.xml and modify it for your own use. The file contains the default QoS
values that will be used for all entity kinds.

l XML files in NDDS_QOS_PROFILES
One or more XML files separated by semicolons referenced by the environment variable NDDS_
QOS_PROFILES are loaded automatically if they exist and ignore_environment_profile in 9.4.2
PROFILE QosPolicy (DDS Extension) on page 639 is FALSE (the default).

Semicolons indicate to Connext DDS to load multiple files or strings all at once. For example:

On Linux and macOS systems, with bash:
export NDDS_QOS_PROFILES='file:///usr/local/default_dds_1.xml; file:///usr/local/default_
dds_2.xml'

From a Windows command prompt:
set NDDS_QOS_PROFILES=file://D:/Data/ConnextDDSExample/default_dds_1.xml;
file://D:/Data/ConnextDDSExample/default_dds_2.xml

l <working directory>/NDDS_QOS_PROFILES.xml
This file is loaded automatically if it exists and ignore_user_profile in 9.4.2 PROFILE QosPolicy
(DDS Extension) on page 639 is FALSE (the default).

l <working directory>/USER_QOS_PROFILES.xml
This file is loaded automatically if it exists and ignore_user_profile in 9.4.2 PROFILE QosPolicy
(DDS Extension) on page 639 is FALSE (the default).

l XML files in url_profile
One or more XML files referenced by url_profile (in 9.4.2 PROFILE QosPolicy (DDS Extension)
on page 639) will be loaded automatically if specified.

l XML strings in string_profile
The sequence of XML strings referenced by string_profile (in 9.4.2 PROFILE QosPolicy (DDS
Extension) on page 639) will be loaded automatically if specified. See 19.7 XML String Syntax on
page 894. (Last to be loaded)

Note: The url_profile and string_profile fields are useful for adding profiles programmatically,
when you do not want to use an environment variable.

You may use a combination of the above approaches.

19.5.1 Loading, Reloading and Unloading Profiles

The location of the XML documents (only files and strings are supported) is specified using URL (Uni-
form Resource Locator) format. See 19.8 URL Groups (Loading Redundant Locations) on page 895. For
example:

l File Specification: file:///usr/local/default_dds.xml

l String Specification: str://"<dds><qos_library>…</qos_library></dds>"

If you omit the URL schema name, Connext DDS will assume a file name. For example:

l File Specification: /usr/local/default_dds.xml

Note: The path you specify can be absolute or relative. If you specify a relative path, it should be a path to
a file that is lower down in the file hierarchy, not higher up.

Duplicate QoS profiles are not allowed. Connext DDS will report an error message in these scenarios. To
overwrite a QoS profile, use 19.3.3 QoS Profile Inheritance and Composition on page 860.

Several QoS profiles are built into the Connext DDS core libraries and can be used as starting points when
configuring QoS for your Connext DDS applications. For details, see 19.4 Tags for Configuring QoS with
XML on page 880.

To load redundant locations for a single XML file, see 19.8 URL Groups (Loading Redundant Locations)
on page 895.

19.5.1 Loading, Reloading and Unloading Profiles

You do not have to explicitly call load_profiles(). QoS profiles are loaded when any of these DomainPar-
ticipantFactory operations are called:

l create_participant() (see 9.3.1 Creating a DomainParticipant on page 621)

l create_participant_with_profile() (see 9.3.1 Creating a DomainParticipant on page 621)

l get_<entity>_qos_from_profile() (where <entity> is participant, topic, publisher, subscriber,
datawriter, or datareader) (see 9.2.5 Getting QoS Values from a QoS Profile on page 614)

l get_<entity>_qos_from_profile_w_topic_name() (where <entity> is topic, datawriter, or
datareader) (see 9.2.5 Getting QoS Values from a QoS Profile on page 614)

l get_default_participant_qos() (see 9.2.2 Getting and Setting Default QoS for DomainParticipants
on page 613)

l get_qos_profile_libraries() (See 19.10.1 Retrieving a List of Available Libraries on page 900)

l get_qos_profiles() (See 19.4 Tags for Configuring QoS with XML on page 880)

l load_profiles()

890

19.6 XML File Syntax

891

l set_default_participant_qos_with_profile() (see 9.2.2 Getting and Setting Default QoS for
DomainParticipants on page 613)

l set_default_library() (see 7.2.4.4 Getting and Setting the Publisher’s Default QoS Profile and
Library on page 283)

l set_default_profile() (see 7.2.4.4 Getting and Setting the Publisher’s Default QoS Profile and
Library on page 283)

In the Modern C++ API, the previous operations cause the default QosProvider (QosProvider::Default())
to load the QoS profiles. Any other QosProvider that an application instantiates will load the QoS Profiles
it is configured to load in its constructor.

QoS profiles are reloaded when either of these DomainParticipantFactory operations are called:

l reload_profiles()

l set_qos() (see 4.1.7 Getting, Setting, and Comparing QosPolicies on page 172)

It is important to distinguish between loading and reloading:

l Loading only happens when there are no previously loaded profiles. This could be when the profiles
are loaded the first time or after a call to unload_profiles().

l Reloading replaces all previously loaded profiles. Reloading a profile does not change the QoS of
entities that have already been created with previously loaded profiles.

The DomainParticipantFactory also has an unload_profiles() operation that frees the resources associated
with the XML QoS profiles.
DDS_ReturnCode_t unload_profiles()

19.6 XML File Syntax

The contents of the XML configuration file must follow an important hierarchy: the file contains one or
more libraries; each library contains one or more profiles; each profile contains QoS settings.

In addition, the file must follow these syntax rules:

l The syntax is XML and the character encoding is UTF-8.

l Opening tags are enclosed in <>; closing tags are enclosed in </>.

19.6.1 Using Environment Variables in XML

l A tag value is a UTF-8 encoded string. Legal values are alphanumeric characters. The middleware’s
parser will remove all leading and trailing spacesa from the string before it is processed.

l For example, <tag> value </tag> is the same as <tag>value</tag>.

l All values are case-sensitive unless otherwise stated.

l Comments are enclosed as follows: <!-- comment -->.

l The root tag of the configuration file must be <dds> and end with </dds>.

l The primitive types for tag values are specified in Table 19.1 Supported Tag Values.

Type Format Notes

DDS_Boolean true, false Not case-sensitive

DDS_Enum
A string. Legal values are those listed in the API Reference HTML doc-
umentation for the C or Java API.

Must be specified as a string. (Do not use nu-
meric values.)

DDS_Long

-2147483648 to 2147483647

or 0x80000000 to 0x7fffffff

or LENGTH_UNLIMITED

orDDS_LENGTH_UNLIMITED

A 32-bit signed integer

DDS_
UnsignedLong

0 to 4294967296

or

0 to 0xffffffff

A 32-bit unsigned integer

String UTF-8 character string
All leading and trailing spaces are ignored
between two tags

Table 19.1 Supported Tag Values

See also:

l 19.6.1 Using Environment Variables in XML below

l 19.6.2 Using Special Characters in XML on the next page

l 19.6.3 Specifying Fully Qualified Names in XML on page 894

19.6.1 Using Environment Variables in XML

The text within an XML tag and attribute can refer to environment variable. To do so, use the following
notation:

aLeading and trailing spaces in enumeration fields will not be considered valid if you use the distributed XSD document to
do validation at run-time with a code editor.

892

19.6.2 Using Special Characters in XML

893

$(MY_VARIABLE)

For example:
<element attr="The attribute is $(MY_ATTRIBUTE)">

<name>The name is $(MY_NAME)</name>
<value>The value is $(MY_VALUE)</value>

</element>

When the Connext DDS XML parser parses the above tags, it will replace the references to environment
variables with their actual values.

19.6.2 Using Special Characters in XML

In the XML QoS configuration file, you may sometimes want to use special characters for the name of an
element. If so, escape them by surrounding the attribute value with " symbols in XML. The"
symbol is a special escape character within the XML standard that represents double quotes (").

For example:
<qos_profile name=""<MySpecial::NameProfile>"">
</qos_profile>

The name of this profile is <MySpecial::NameProfile>. It contains special characters like <, > and :
within its name. When not escaped, "::" is often used as a name separator when referring to an element in
the XML hierarchy. (See 19.6.3 Specifying Fully Qualified Names in XML on the next page.)

You can use the same scheme when inheriting from the QoS profile in the base_name attribute or the
<base_name> tag.

For example:
<qos_profile name="SpecialNameDerived"

is_default_qos="true">
<base_name>

<element>Data_Library::"<MySpecial::NameProfile>"</element>
</base_name>

</qos_profile>

<qos_profile name="SpecialNameDerived"
base_name="Data_Library::"<MySpecial::NameProfile>""
is_default_qos="true">

</qos_profile>

In this example, the profile is contained within the Data_Library QoS Library.

This idea is applicable to all tags that can perform inheritance (any tag that has a base_name attribute or
can contain the <base_name> tag).

19.6.3 Specifying Fully Qualified Names in XML

19.6.3 Specifying Fully Qualified Names in XML

When specifying a parent to inherit from in the base_name attribute or the <base_name> tag of a QoS
policy in an XML file, you can refer to elements using a fully qualified naming scheme. This causes the
search to begin from the root of the XML Document Object Model (DOM) tree parsed by the XML
parser.

For that you need to follow this scheme:
<parent_tag_name>::<child_tag_name>::<grandchild_tag_name> . . .

The resulting name should match the declaration hierarchy. The declaration hierarchy represents the order-
ing of the tags as described in the XML schema. For QoS configuration, the hierarchy is as follows:
<qos_library_name>::<qos_profile_name>

Here "::" is the path separator in the XML DOM tree. Specifying a fully qualified name is useful when
you want to refer to elements within another <qos_library> tag.

For example:
<qos_library name="Data_Library">

<qos_profile name="Data_Profile" base_name="BuiltinQosLib::Generic.StrictReliable">
. . .

</qos_profile>
</qos_library>

19.7 XML String Syntax

XML profiles can be described using strings. This configuration is useful for architectures without a file
system.

There are two different ways to configure Entities via XML strings:

l String URLs are prefixed by the URI schema str:// and enclosed in double quotes. For example:

str://"<dds><qos_library>...</qos_library></dds>"

The string URLs can be specified in the environment variable NDDS_QOS_PROFILES as well as
in the field url_profile in 9.4.2 PROFILE QosPolicy (DDS Extension) on page 639. Each string
URL must contain a whole XML document.

l The string_profile field in the 9.4.2 PROFILE QosPolicy (DDS Extension) on page 639 allows
you to split an XML document into multiple strings. For example:

894

19.8 URL Groups (Loading Redundant Locations)

895

const char * MyXML[4] =
{

"<dds>",
"<qos_library name=\"MyLibrary\">",
"</qos_library>",

"</dds>"
};
factoryQos.profile.string_profile.from_array(MyXML,4);

Only one XML document can be specified with the string_profile field.

19.8 URL Groups (Loading Redundant Locations)

Use URL groups to specify multiple locations for a single XML file, to provide redundancy and fault tol-
erance. Specify the locations by enclosing them in square brackets. The syntax of a URL group is:
[URL1 | URL2 | URL2 | ... | URLn]

You can specify either an XML file or an XML string. For example:
[file:///usr/local/default_dds.xml | file:///usr/local/alternative_default_dds.xml |
str://"<dds><qos_library name="Data_Library"><qos_profile name="Data_Profile" base_
name="BuiltinQosLibExp::Generic.StrictReliable" is_default_qos="true" /></qos_library></dds>"]

The OR operand (|) tells Connext DDS to load one file/string at a time, starting from the left. If the first
file/string is not available, Connext DDS tries loading the next one, and so on. For example, if the first loc-
ation loaded successfully, Connext DDS does not load the subsequent locations. Brackets are not required
for URL groups with a single file/string. In fact, single XML files separated by semicolons are URL
groups without brackets.

Here’s an example (on a Linux system with bash) that loads multiple files, including one bracketed URL
group with redundant file locations:
export NDDS_QOS_PROFILES='[file:///usr/local/default_dds.xml | file:///usr/local/alternative_
default_dds.xml]; file:///usr/local/default_dds_2.xml'

See also 19.5 How to Load XML-Specified QoS Settings on page 888 for information on loading multiple
XML files.

19.9 How the XML is Validated

19.9.1 Validation at Run-Time

Connext DDS validates the input XML files using a builtin Document Type Definition (DTD).

You can find a copy of the builtin DTD in <NDDSHOME>/resource/schema/rti_dds_qos_profiles.dtd.
(This is only a copy of what the Connext DDS core uses. Changing this file has no effect unless you spe-
cify its path with the <!DOCTYPE> tag, described below.)

You can overwrite the builtin DTD by using the XML tag, <!DOCTYPE>. For example, the following
indicates that Connext DDS must use a DTD file from a user’s directory to perform validation:

19.9.2 XML File Validation During Editing

<!DOCTYPE dds SYSTEM "/local/joe/rti/dds/mydds.dtd">

l The DTD path can be absolute, or relative to the application's current working directory.

l If the specified file does not exist, you will see the following error:

RTIXMLDtdParser_parse:!open DTD file

l If you do not specify the DOCTYPE tag in the XML file, the builtin DTD is used.

l The XML files used by Connext DDS can be versioned using the attribute version in the <dds> tag.
For example:

<dds version="6.1.2">
...

</dds>

Although the attribute version is not required during the validation process, it helps to detect DTD
incompatibility scenarios by providing better error messages.

For example, if an application using Connext DDS 6.1.2 tries to load an XML file from Connext
DDS 4.5z and there is some incompatibility in the XML content, the following parsing error will be
printed:
ATTENTION: The version declared in this file (4.5z) is different from the version of
Connext DDS (6.1.2).
If these versions are not compatible, that incompatibility could be the cause of this
error.

19.9.2 XML File Validation During Editing

Connext DDS provides DTD and XSD files that describe the format of the XML content. We recommend
including a reference to one of these documents in the XML file that contains the QoS profiles—this
provides helpful features in code editors such as Visual Studio and Eclipse, including validation and auto-
completion while you are editing the XML file.

The DTD and XSD definitions of the XML elements are in
<NDDSHOME>/resource/schema/rti_dds_qos_profiles.dtd and <NDDSHOME>/re-
source/schema/rti_dds_qos_profiles.xsd, respectively. (<NDDSHOME> is described in Paths Men-
tioned in Documentation on page 1.)

To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <dds> tag. For example:
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=
"<NDDSHOME>/resource/schema/rti_dds_qos_profiles.xsd">

...
</dds>

To include a reference to the DTD document in your XML file use the <!DOCTYPE> tag. For example:

896

19.10 Using QoS Profiles in Your Connext DDS Application

897

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dds SYSTEM
"<NDDSHOME>/resource/schema/rti_dds_qos_profiles.dtd">
<dds>

...
</dds>

We recommend including a reference to the XSD file in the XML documents because it provides stricter
validation and better auto-completion than the corresponding DTD file.

19.10 Using QoS Profiles in Your Connext DDS Application

You can use the operations listed in Table 19.2 Operations for Working with QoS Profiles to refer to and
use QoS profiles (see 19.3 QoS Profiles on page 856) described in XML files and XML strings.

Working With ... Profile-Related Operations Reference

DataReaders set_qos_with_profile
8.3.9.3 ChangingQoSSettingsAfter the DataReader hasbeen Created on
page 553

DataWriters set_qos_with_profile
7.3.15.3 ChangingQoSSettingsAfter the DataWriter HasBeen Created on
page 339

Table 19.2 Operations for Working with QoS Profiles

19.10 Using QoS Profiles in Your Connext DDS Application

Working With ... Profile-Related Operations Reference

DomainParticipants

create_datareader_with_profile 8.3.1 Creating DataReaderson page 515

create_datawriter_with_profile 7.3.1 Creating DataWriters on page 293

create_publisher_with_profile 7.2.2 Creating Publishers on page 277

create_subscriber_with_profile 8.2.2 Creating Subscribers on page 496

create_topic_with_profile 5.1.1 Creating Topics on page 218

get_default_library

9.3.7.4 Getting and Setting DomainParticipant’sDefault QoSProfile and
Library on page 632

get_default_profile

get_default_profile_library

set_default_datareader_qos_with_
profile

9.3.7.5 Getting and Setting Default QoS for Child Entities on page 633
set_default_datawriter_qos_with_
profile

set_default_library
9.3.7.4 Getting and Setting DomainParticipant’sDefault QoSProfile and
Library on page 632

set_default_profile

set_default_publisher_qos_with_
profile

9.3.7.5 Getting and Setting Default QoS for Child Entities on page 633set_default_subscriber_qos_with_
profile

set_default_topic_qos_with_profile

set_qos_with_profile
9.3.7.3 ChangingQoSSettingsAfter DomainParticipant HasBeen Created
on page 631

Table 19.2 Operations for Working with QoS Profiles

898

19.10 Using QoS Profiles in Your Connext DDS Application

899

Working With ... Profile-Related Operations Reference

DomainParticipantFactory

create_participant_with_profile 9.3.1 Creating a DomainParticipant on page 621

get_datareader_qos_from_profile

9.2.5 Getting QoSValues from aQoSProfile on page 614

get_datawriter_qos_from_profile

get_datawriter_qos_from_profile_w_
topic_name

get_datareader_qos_from_profile_
w_topic_name

get_default_library

9.2.1.1 Getting and Setting the DomainParticipantFactory’sDefault QoSPro-
file and Library on page 612

get_default_profile

get_default_profile_library

get_participant_qos_from_profile

9.2.5 Getting QoSValues from aQoSProfile on page 614

get_publisher_qos_from_profile

get_subscriber_qos_from_profile

get_topic_qos_from_profile

get_topic_qos_from_profile_w_
topic_name

get_qos_profiles 19.10.2 Retrieving a List of Available QoSProfiles on page 901

get_qos_profile_libraries 19.10.1 Retrieving a List of Available Libraries on the next page

load_profiles
19.5.1 Loading, Reloading and Unloading Profiles on page 890

reload_profiles

set_default_participant_qos_with_
profile

9.2.2 Getting and Setting Default QoS for DomainParticipants on page 613

set_default_library
9.2.1.1 Getting and Setting the DomainParticipantFactory’sDefault QoSPro-
file and Library on page 612

set_default_profile

unload_profiles 19.5.1 Loading, Reloading and Unloading Profiles on page 890

Table 19.2 Operations for Working with QoS Profiles

19.10.1 Retrieving a List of Available Libraries

Working With ... Profile-Related Operations Reference

Publishers

create_datawriter_with_profile 7.2.2 Creating Publishers on page 277

get_default_library

7.2.4.4 Getting and Setting the Publisher’sDefault QoSProfile and Library on
page 283

get_default_profile

get_default_profile_library

set_default_datawriter_qos_with_
profile

7.2.4.5 Getting and Setting Default QoS for DataWriters on page 283

set_default_library
7.2.4.4 Getting and Setting the Publisher’sDefault QoSProfile and Library on
page 283

set_default_profile

set_qos_with_profile
7.2.4.3 ChangingQoSSettingsAfter the Publisher HasBeen Created on
page 282

Subscribers

create_datareader_with_profile 8.3.1 Creating DataReaderson page 515

get_default_library

8.2.4.4 Getting and SettingsSubscriber’sDefault QoSProfile and Library on
page 502

get_default_profile

get_default_profile_library

set_default_datareader_qos_with_
profile

8.2.4.5 Getting and Setting Default QoS for DataReaderson page 503

set_default_library
8.2.4.4 Getting and SettingsSubscriber’sDefault QoSProfile and Library on
page 502

set_default_profile

set_qos_with_profile
8.2.4.3 ChangingQoSSettingsAfter Subscriber HasBeen Created on
page 501

Topics set_qos_with_profile 5.1.3 Setting TopicQosPolicies on page 220

Table 19.2 Operations for Working with QoS Profiles

Note: For the Modern C++ API, please refer to the RTI Connext DDS API Reference
HTML documentation, Configuring QoS Profiles with XML.

19.10.1 Retrieving a List of Available Libraries

To get a list of available QoS libraries, call the DomainParticipantFactory’s get_qos_profile_libraries()
operation, which returns the names of all QoS libraries that have been loaded by Connext DDS.

900

19.10.2 Retrieving a List of Available QoS Profiles

901

DDS_ReturnCode_t get_qos_profile_libraries (struct DDS_StringSeq *profile_names)

19.10.2 Retrieving a List of Available QoS Profiles

To get a list of available QoS profiles, call the DomainParticipantFactory’s get_qos_profiles() operation,
which returns the names of all profiles within a specified QoS library. Either the input QoS library name
must be specified or the default profile library must have been set prior to calling this function.
DDS_ReturnCode_t get_qos_profiles (struct DDS_StringSeq *profile_names,

const char *library_name)

19.11 Configuring Logging Via XML

Logging can be configured via XML using the DomainParticipantFactory’s LoggingQosPolicy. See
25.2.2 Configuring Logging via XML on page 998 for additional details.

Chapter 20 Multi-channel DataWriters
In Connext DDS, producers publish data to a Topic, identified by a topic name; consumers sub-
scribe to a Topic and optionally to specific content by means of a content-filter expression.

A Market Data Example:

A producer can publish data on the Topic "MarketData" which can be defined as a structured
record containing fields that identify the exchange (e.g., "NYSE" or "NASDAQ"), the stock sym-
bol (e.g., "APPL" or "JPM"), volume, bid and ask prices, etc.

Similarly, a consumer may want to subscribe to data on the "MarketData" Topic, but only if the
exchange is "NYSE" or the symbol starts with the letter "M." Or the consumer may want all the
data from the "NYSE" whose volume exceeds a certain threshold, or may want MarketData for a
specific stock symbol, regardless of the exchange, and so on.

The middleware’s efficient implementation of content-filtering is critical for scenarios such as the
above "Market Data" example, where there are large numbers of consumers, large volumes of
data, or Topics that transmit information about many data-objects or subjects (e.g., individual
stocks).

Traditionally, middleware products use four approaches to implement content filtering: Producer-
based, Consumer-based, Server-based, and Network Switch-based.

l Producer-based approaches push the burden of filtering to the producer side. The pro-
ducer knows what each consumer wants and delivers to the consumer only the data that
matches the consumer's filter. This approach is suitable when using point-to-point protocols
such as TCP—it saves bandwidth and lowers the load on the consumer—but it does not
work if data is distributed via multicast. Also, this approach does not scale to large numbers
of consumers, because the producer would be overburdened by the need to filter for each
individual consumer.

902

20.1 What is a Multi-channel DataWriter?

903

l Consumer-based approaches push the burden of filtering to the consumer side. The producer
sends all the data to every consumer and the middleware on the consumer side decides whether the
application wants it or not, automatically filtering the unwanted data. This approach is simple and
fits well in systems that use multicast protocols as a transport. But the approach is not efficient for
consumers that want small subsets of the data, since the consumers have to spend a lot of time fil-
tering unwanted data. This approach is also unsuitable for systems with large volumes of data, such
as the above Market Data system.

l Server-based approaches push the burden of filtering to a third component: a server or broker.
This approach has some scalability advantages—the server can be run on a more powerful computer
and can be federated to handle a large number of consumers. Some providers also provide hard-
ware-assisted filtering in the server. However, the server-based approach significantly increases
latency and jitter. It is also far more expensive to deploy and manage.

l Network Switch-based approaches leverage the network hardware, specifically advanced (IGMP
snooping) network switches, to offload most of the burden of filtering from the producers and con-
sumers without introducing additional hardware, servers or proxies. This approach preserves the low
latency and ease of deployment of the brokerless approaches while still providing most of the off-
loading and scalability benefits of the broker.

RTI supports the producer-based, consumer-based and network-switch approaches to content filtering:

l RTI automatically uses the producer-based and consumer-based approaches as soon as it detects a
consumer that specifies a content filter. The producer-based (publishing side) approach only occurs
under the conditions described in 5.4.2 Where Filtering is Applied—Publishing vs. Subscribing
Side on page 229.

l To use the more scalable network-switched based approach, an application must configure the
DataWriter as aMulti-channel DataWriter. This concept is described in the following section.

20.1 What is a Multi-channel DataWriter?

A Multi-channel DataWriter is a DataWriter that is configured to send data over multiple multicast
addresses, according to some filtering criteria applied to the data.

To determine which multicast addresses will be used to send the data, the middleware evaluates a set of fil-
ters that are configured for the DataWriter. Each filter "guards" a channel—a set of multicast addresses.
Each time a multi-channel DataWriter writes data, the filters are applied. If a filter evaluates to true, the
data is sent over that filter’s associated channel (set of multicast addresses). We refer to this type of filter as
a Channel Guard filter.

20.1 What is a Multi-channel DataWriter?

Figure 20.1: Multi-channel Data Flow

904

20.1 What is a Multi-channel DataWriter?

905

Figure 20.2: Multi-Channel Evaluation

Multi-channel DataWriters can be used to trade off network bandwidth with the unnecessary processing of
unwanted data for situations where there are multiple DataReaders who are interested in different subsets
of data that come from the same data stream (Topic). For example, in Financial applications, the data
stream may be quotes for different stocks at an exchange. Applications usually only want to receive data
(quotes) for only a subset of the stocks being traded. In tracking applications, a data stream may carry
information on hundreds or thousands of objects being tracked, but again, applications may only be inter-
ested in a subset.

The problem is that the most efficient way to deliver data to multiple applications is to use multicast so that
a data value is only sent once on the network for any number of subscribers to the data. However, using
multicast, an application will receive all of the data sent and not just the data in which it is interested, thus
extra CPU time is wasted to throw away unwanted data. With this QoS, you can analyze the data-usage
patterns of your applications and optimize network vs. CPU usage by partitioning the data into multiple
multicast streams. While network bandwidth is still being conserved by sending data only once using mul-
ticast, most applications will only need to listen to a subset of the multicast addresses and receive a reduced
amount of unwanted data.

Note:Your system can gain more of the benefits of using multiple multicast groups if your network uses
Layer 2 Ethernet switches. Layer 2 switches can be configured to only route multicast packets to those
ports that have added membership to specific multicast groups. Using those switches will ensure that only
the multicast packets used by applications on a node are routed to the node; all others are filtered-out by
the switch.

20.2 How to Configure a Multi-channel DataWriter

20.2 How to Configure a Multi-channel DataWriter

To configure a multi-channel DataWriter, simply define a list of all its channels in the DataWriter’s 7.5.16
MULTI_CHANNEL QosPolicy (DDS Extension) on page 433.

Each channel consists of filter criterion to apply to the data and a set of multicast destinations (transport,
address, port) that will be used for sending data that matches the filter. You can think of this sequence of
channels as a table like the one shown below:

If the Data Matches this Filter... Send the Data to these Multicast Destinations

SymbolMATCH '[A-K]* UDPv4:225.0.0.1:9000

SymbolMATCH '[L-Q]* UDPv4:225.0.0.2:9001

SymbolMATCH '[P-Z]* UDPv4:225.0.0.3:9002; 225.0.0.4:9003;

The example C++ code in Figure 20.3: Using the MULTI_CHANNEL QosPolicy below shows how to
configure the channels.
Figure 20.3: Using the MULTI_CHANNEL QosPolicy

// initialize writer_qos with default values
publisher->get_default_datawriter_qos(writer_qos);
// Initialize MULTI_CHANNEL Qos Policy
// Assign the filter name
// Possible options: DDS_STRINGMATCHFILTER_NAME, DDS_SQLFILTER_NAME
writer_qos.multi_channel.filter_name =

(char*) DDS_STRINGMATCHFILTER_NAME;
// Create two channels
writer_qos.multi_channel.channels.ensure_length(2,2);
// First channel
writer_qos.multi_channel.channels[0].filter_expression =

DDS_String_dup("Symbol MATCH '[A-M]*'");
writer_qos.multi_channel.channels[0].

multicast_settings.ensure_length(1,1);
writer_qos.multi_channel.channels[0].

multicast_settings[0].receive_port = 8700;
writer_qos.multi_channel.channels[0].

multicast_settings[0].receive_address =
DDS_String_dup("239.255.1.1");

// Second channel
writer_qos.multi_channel.channels[1].

multicast_settings.ensure_length(1,1);
writer_qos.multi_channel.channels[1].

multicast_settings[0].receive_port = 8800;
writer_qos.multi_channel.channels[1].

multicast_settings[0].receive_address =
DDS_String_dup("239.255.1.2");

writer_qos.multi_channel.channels[1].filter_expression =
DDS_String_dup("Symbol MATCH '[N-Z]*'");

// Create writer

906

20.2.1 Limitations

907

writer = publisher->create_datawriter(
topic, writer_qos, NULL, DDS_STATUS_MASK_NONE);

The MULTI_CHANNEL QosPolicy is propagated along with discovery traffic. The value of this policy
is available in the builtin topic for the publication (see the locator_filter field in Table 18.2 Publication
Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)).

20.2.1 Limitations

When considering use of a multi-channel DataWriter, please be aware of the following limitations:

l A DataWriter that uses the MULTI_CHANNEL QosPolicy will ignore multicast and unicast
addresses specified on the reader side through the 8.6.5 TRANSPORT_MULTICAST QosPolicy
(DDS Extension) on page 596 and 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension)
on page 465. The DataWriter will not publish DDS samples on these locators.

l Multi-channel DataWriters cannot be configured to use the Durable Writer History feature
(described in 13.3 Durable Writer History on page 745).

l Multi-channel DataWriters rely on the rtps_object_id in the 7.5.5 DATA_WRITER_
PROTOCOL QosPolicy (DDS Extension) on page 390 to be DDS_RTPS_AUTO_ID (which
causes automatic assignment of object IDs to channels).

l To guarantee reliable delivery, a DataReader's 7.4.6 PRESENTATION QosPolicy on page 363
must be set to per-instance ordering (DDS_INSTANCE_PRESENTATION_QOS, the default
value), instead of per-topic ordering (DDS_TOPIC_PRESENTATION_QOS), and the matching
DataWriter's 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on page 433 must use
expressions that only refer to key fields.

20.3 Multi-Channel Configuration on the Reader Side

No special changes are required in a subscribing application to get data from a multi-channel
DataWriter.

If you want the DataReader to subscribe to only a subset of the channels, use a ContentFilteredTopic, as
described in 5.4 ContentFilteredTopics on page 228. For example:
// Create a content filtered topic
contentFilter =

participant->create_contentfilteredtopic_with_filter(
"FilteredTopic",
topic,
"symbol MATCH 'NYE/BAC,NASDAQ/MSFT,NASDAQ/GOOG",
parameters,
DDS_STRINGMATCHFILTER_NAME);

// Create a DataReader that uses the content filtered topic
reader = subscriber->create_datareader(contentFilter,

DDS_DATAREADER_QOS_DEFAULT,
NULL,0);

20.3 Multi-Channel Configuration on the Reader Side

From there, Connext DDS takes care of all the necessary steps:

l The DataReader automatically discovers all the DataWriters—including multi-channel
DataWriters—for the Topic it subscribes to.

l When the DataReader discovers a multi-channel DataWriter, it also discovers the list of channels
used by that DataWriter.

l When the multi-channel DataWriter discovers a DataReader, it also discovers the content filters spe-
cified by that DataReader, if any.

With all this information, Connext DDS automatically determines which channels are of "interest" to the
DataReader.

A DataReader is interested in a channel if and only if the set of data values for which the channel guard fil-
ter evaluates to TRUE intersects the set of data values for which the DataReader's content filter evaluates
to TRUE. If a DataReader does not use a content filter, then it is interested in all the channels.
Figure 20.4: Filter Intersection

In this scenario, the DataReader is interested in Channel1 and Channel2, but not Channel3.

908

20.4 Where Does the Filtering Occur?

909

Market Data Example, continued:

If the channel guard filter for Channel 1 is 'Symbol MATCH '[A-K]*' then the channel will only transfer
data for stocks whose symbol starts with a letter in the A to K range.

That is, it will transfer data on 'APPL', "GOOG', and 'IBM', but not on 'MSFT', 'ORCL', or 'YHOO'.
Channel 1 will be of interest to DataReaders whose content filter includes at least one stock whose symbol
starts with a letter in the A to K range.

A DataReader that specifies a content filter such as "Symbol MATCH 'IBM, YHOO' " will be interested
in Channel1.

A DataReader that specifies a content filter such as "Symbol MATCH '[G-M]*'" will also be interested in
Channel1.

A DataReader that specifies a content filter such as "Symbol MATCH '[M-T]*' " will not be interested in
Channel1.

20.4 Where Does the Filtering Occur?

If multi-channel DataWriters are used, the filtering can occur in three places:

l 20.4.1 Filtering at the DataWriter below

l 20.4.2 Filtering at the DataReader below

l 20.4.3 Filtering on the Network Hardware on the next page

20.4.1 Filtering at the DataWriter

Each time data is written, the DataWriter evaluates each of the channel guard filters to determine which
channels will transmit the data. This filtering occurs on the DataWriter.

Filtering on the DataWriter side is scalable because the number of filter evaluations depends only on the
number of channels, not on the number of DataReaders. Usually, the number of channels is smaller than
the number of possible DataReaders.

As explained in 20.7 Performance Considerations on page 912, if the channel guard filters are configured
to only look at the "key" fields in the data, the channel filtering becomes a very efficient lookup operation.

20.4.2 Filtering at the DataReader

The DataReader will listen on the multicast addresses that correspond to the channels of interest (see Fig-
ure 20.3: Using the MULTI_CHANNEL QosPolicy on page 906). When a channel is 'of interest', it
means that it is possible for the channel to transmit data that meets the content filter of the DataReader,
however the channel may also transmit data that does not pass the DataReader's content filter. Therefore,
the DataReader has to filter all incoming data on that channel to determine if it passes its content filter.

20.4.3 Filtering on the Network Hardware

Market Data Example, continued:

Channel 1, identified by guard filter "Symbol MATCH '[A-M]*'", will be of interest to DataReaders
whose content filter includes at least one stock whose symbol starts with a letter in the A to K range.

A DataReader with content filter "Symbol MATCH 'GOOG'" will listen on Channel1.

In addition to 'GOOG', the DataReader will also receive DDS samples corresponding to stock symbols
such as 'MSFT' and 'APPL'. The DataReader must filter these DDS samples out.

As explained in 20.7 Performance Considerations on page 912, if the DataReader’s content filters are con-
figured to only look at the "key" fields in the data, the DataReader filtering becomes a very efficient
lookup operation.

20.4.3 Filtering on the Network Hardware

DataReaders will only listen to multicast addresses that correspond to the channels of interest. The mul-
ticast traffic generated in other channels will be filtered out by the network hardware (routers, switches).

Layer 3 routers will only forward multicast traffic to the actual destination ports. However, by default,
layer 2 switches treat multicast traffic as broadcast traffic. To take advantage of network filtering with layer
2 devices, they must be configured with IGMP snooping enabled (see 20.7.1 Network-Switch Filtering
on page 912).

20.5 Fault Tolerance and Redundancy

To achieve fault tolerance and redundancy, configure the DataWriter’s 7.5.16 MULTI_CHANNEL
QosPolicy (DDS Extension) on page 433 to publish a DDS sample over multiple channels or over dif-
ferent multicast addresses within a single channel. Figure 20.5: Using the MULTI_CHANNEL QosPolicy
with Overlapping Channels below shows how to use overlapping channels.

If a DDS sample is published to multiple multicast addresses, a DataReader may receive multiple copies
of the DDS sample. By default, duplicates are discarded by the DataReader and not provided to the applic-
ation. To change this default behavior, use the Durable Reader State property, dds.data_read-
er.state.filter_redundant_samples (see 13.4.4 How To Configure a DataReader for Durable Reader
State on page 753).
Figure 20.5: Using the MULTI_CHANNEL QosPolicy with Overlapping Channels

// initialize writer_qos with default values
publisher->get_default_datawriter_qos(writer_qos);
// Initialize MULTI_CHANNEL Qos Policy
// Assign the filter name
// Possible options: DDS_STRINGMATCHFILTER_NAME and DDS_SQLFILTER_NAME
writer_qos.multi_channel.filter_name = (char*) DDS_STRINGMATCHFILTER_NAME;
// Create two channels
writer_qos.multi_channel.channels.ensure_length(2,2);
// First channel

910

20.6 Reliability with Multi-Channel DataWriters

911

writer_qos.multi_channel.channels[0].filter_expression =
DDS_String_dup("Symbol MATCH '[A-M]*'");

writer_qos.multi_channel.channels[0].multicast_settings.ensure_length(2,2);
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_port = 8700;
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.1");
// Second channel
writer_qos.multi_channel.channels[1].multicast_settings.ensure_length(1,1);
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_port = 8800;
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.2");
writer_qos.multi_channel.channels[1].filter_expression =

DDS_String_dup("Symbol MATCH '[C-Z]*'");
// Symbols starting with [C-M] will be published in two different channels
// Create writer
writer = publisher->create_datawriter(

topic, writer_qos, NULL, DDS_STATUS_MASK_NONE);

20.6 Reliability with Multi-Channel DataWriters

20.6.1 Reliable Delivery

Reliable delivery is only guaranteed when the access_scope in the Subscriber's 7.4.6 PRESENTATION
QosPolicy on page 363 is set to DDS_INSTANCE_PRESENTATION_QOS (default value) and the fil-
ters in the DataWriter's 7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension) on page 433) are
keyed-only based.

Market Data Example, continued:

Given the following IDL description for our MarketData topic type:
Struct MarketData {

@key string<255> Symbol;
double Price;

}

A guard filter "Symbol MATCH 'APPL'" is keyed-only based.

A guard filter "Symbol MATCH 'APPL' and Price < 100" is not keyed-only based.

If any of the guard filters are based on non-key fields, Connext DDS only guarantees reception of the
most recent data from the multi-channel DataWriter.

20.6.2 Reliable Protocol Considerations

Reliability is maintained on a per-channel basis. Each channel has its own reliability channel send win-
dow:

l low_watermark and high_watermark: The low and high watermarks control the send-window
levels (when not using batching, this is a number of DDS samples; when using batching, this is a

20.7 Performance Considerations

number of batches) that determine when to switch between regular and fast heartbeat rates (see
7.5.5.1 High and Low Watermarks on page 396). With multi-channel DataWriters, high_water-
mark and low_watermark are computed from the channel with the smaller send-window size and
they apply to all the channels. Therefore, because the watermark is determined by the channel with
the smallest send-window, periodic heartbeating cannot be controlled on a per-channel basis.

l heartbeats_per_max_samples: This field defines the number of piggyback heartbeats per current
send-window. For multi-channel DataWriters, piggyback heartbeats are sent per channel. The send-
window size that is used to calculate the piggyback heartbeat rate is the smallest across all channels..

20.7 Performance Considerations

20.7.1 Network-Switch Filtering

By default, multicast traffic is treated as broadcast traffic by layer 2 switches. To avoid flooding the net-
work with broadcast traffic and take full advantage of network filtering, the layer 2 switches should be con-
figured to use IGMP snooping. Refer to your switch’s manual for specific instructions.

When IGMP snooping is enabled, a switch can route a multicast packet to just those ports that subscribe to
it, as seen in Figure 20.6: IGMP Snooping below.
Figure 20.6: IGMP Snooping

20.7.2 DataWriter and DataReader Filtering

20.4 Where Does the Filtering Occur? on page 909 describes the three places where filtering can occur
with Multi-channel DataWriters. To improve performance when filtering occurs on the reader and/or

912

20.7.2 DataWriter and DataReader Filtering

913

writer sides, use filter expressions that are only based on keys (see 2.4 DDS Samples, Instances, and Keys
on page 18). Then the results of the filter are cached in a hash table on a per-key basis.

Market Data Example, continued:

The filter expressions in the Market Data example are based on the value of the field, Symbol. To make
filter operations on this field more efficient, declare Symbol as a key. For example:
struct {

@key string<MAX_SYMBOL_SIZE> Symbol;
}

You can also improve performance by increasing the number of buckets associated with the hash table. To
do so, use the instance_hash_buckets field in the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452
on both the writer and reader sides. A higher number of buckets will provide better performance, but
requires more resources.

Chapter 21 Connext DDS Threading Model
This chapter describes the internal threads that Connext DDS uses for sending and receiving data,
maintaining internal state, and calling user code when events occur such as the arrival of new DDS
data samples. It may be important for you to understand how these threads may interact with your
application.

A DomainParticipant uses three main types of threads:

l Database Thread maintains the database of DDS Entities stored in the DomainParticipant.
It is responsible for purging the objects marked for deletion when they are no longer needed.
See 21.1 Database Thread on the next page.

l Event Thread detects triggered events and acts accordingly, invoking user functions when
needed (e.g., when a callback was specified for that specific event). See 21.2 Event Thread
on page 916.

l Receive Threads get bytes from transport plugins, then deserialize and store the (meta)data
in the receive queue of a DataReader and invoke the on_data_available() callback.
Receive threads are also responsible for processing metadata (e.g., discovery traffic, ACKs,
NACKs). See 21.3 Receive Threads on page 917.

The actual number of threads depends on the configuration of various QoS policies as well as the
implementation of the transports used by the DomainParticipant to send and receive data. In addi-
tion, other threads might be created for specific purposes:

l Interface Tracking Thread retrieves new interface data and compares it with the previous
value. The thread detects interface changes and notifies the user/application of the changes.
It is used in the IP Mobility feature to detect interface changes. You can disable this thread.
See 17.1.1.3 Disabling IP Locator Change Propagation on page 834.

l Transport-Specific Threads handle the tasks that are specific to a transport (e.g., the TCP
Transport plugin creates two threads, one for control and one for events).

914

21.1 Database Thread

915

l Asynchronous Publishing Threads handle the data transmission for Asynchronous Publishers (see
7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) on page 346).

l Asynchronous Batch Flushing Threads handle batches of data samples, flushing them when
needed. These threads are only created when batching is enabled (see 7.5.2 BATCH QosPolicy
(DDS Extension) on page 375) and max_flush_delay is not DURATION_INFINITE.

l Topic Query Publication Threads publish historical samples in response to a TopicQuery. These
threads are only created when topic query dispatch is enabled (see 7.5.24 TOPIC_QUERY_
DISPATCH_QosPolicy (DDS Extension) on page 456).

l User Threads: in addition, your application may present threads that are not part of Connext DDS.
If those threads call a DDS API, Connext DDS will automatically register them (i.e., allocate some
resources to keep statistics and to handle concurrent access to DDS Entities). To free up all the alloc-
ated resources, you may need to unregister these threads, as explained in 21.8 Unregistering Threads
on page 922.

Through various QosPolicies, the user application can configure the priorities and other properties of the
threads created by Connext DDS. In real-time systems, the user often needs to set the priorities of all
threads in an application relative to each other for the proper operation of the system.

For information on checking thread names, see 21.9 Identifying Threads Used by Connext DDS on
page 922.

21.1 Database Thread

Connext DDS uses internal data structures to store information about locally-created and remotely-dis-
covered Entities. In addition, it will store various objects and data used by Connext DDS for maintaining
proper communications between applications. This “database” is created for each DomainParticipant.

As Entities and objects are created and deleted during the normal operation of the user application, dif-
ferent entries in the database may be created and deleted as well. Because multiple threads may access
objects stored in the database simultaneously, the deletion and removal of an object from the database hap-
pens in two phases to support thread safety.

When an entry/object in the database is deleted either through the actions of user code or as a result of a
change in system state, it is only marked for deletion. It cannot be actually deleted and removed from the
database until Connext DDS can be sure that no threads are still accessing the object. Instead, the actual
removal of the object is delegated to an internal thread that Connext DDS spawns to periodically wake up
and purge the database of deleted objects.

This thread is known as the Database thread (also referred to as the database cleanup thread).

l Only one Database thread is created for each DomainParticipant.

21.2 Event Thread

The 9.5.1 DATABASE QosPolicy (DDS Extension) on page 643 of the DomainParticipant configures
both the resources used by the database as well as the properties of the cleanup thread. Specifically, the
user may want to use this QosPolicy to set the priority, stack size and thread options of the cleanup thread.
You must set these options before the DomainParticipant is created, because once the cleanup thread is
started as a part of participant creation, these properties cannot be changed.

The period at which the database-cleanup thread wakes up to purge deleted objects is also set in the
DATABASE QosPolicy. Typically, this period is set to a long time (on the order of a minute) since there
is no need to waste CPU cycles to wake up a thread only to find nothing to do.

However, when a DomainParticipant is destroyed, all of the objects created by the DomainParticipant
will be destroyed as well. Many of these objects are stored in the database, and thus must be destroyed by
the cleanup thread. The DomainParticipant cannot be destroyed until the database is empty and is des-
troyed itself. Thus, there is a different parameter in the DATABASE QosPolicy, shutdown_cleanup_
period, that is used by the database cleanup thread when the DomainParticipant is being destroyed. Typ-
ically set to be on the order of a second, this parameter reduces the additional time needed to destroy a
DomainParticipant simply due to waiting for the cleanup thread to wake up and purge the database.

21.2 Event Thread

During operation, Connext DDS must wake up at different intervals to check the condition of many dif-
ferent time-triggered or periodic events. These events are usually to determine if something happened or
did not happen within a specified time. Often the condition must be checked periodically as long as the
Entity for which the condition applies still exists. Also, the DomainParticipantmay need to do something
periodically to maintain connections with remote Entities.

For example, the 7.5.7 DEADLINE QosPolicy on page 407 is used to ensure that DataWriters have pub-
lished data or DataReaders have received data within a specified time period. Similarly, the 7.5.15
LIVELINESS QosPolicy on page 428 configures Connext DDS both to check periodically to see if a
DataWriter has sent a liveliness message and to send liveliness messages periodically on the behalf of a
DataWriter. As a last example, for reliable connections, heartbeats must be sent periodically from the
DataWriter to the DataReader so that the DataReader can acknowledge the data that it has received, see
Reliable Communications (Chapter 11 on page 694).

Connext DDS uses an internal thread, known as the Event thread, to do the following:

l Check whether or not deadlines have been missed

l Invoke user-installed Listener callbacks to notify the application of missed deadlines

l Send heartbeats to maintain reliable connections

Note: Only one Event thread is created per DomainParticipant.

The 9.5.5 EVENT QosPolicy (DDS Extension) on page 668 of the DomainParticipant configures both
the properties and resources of the Event thread. Specifically, the user may want to use this QosPolicy to

916

21.3 Receive Threads

917

set the priority, stack size and thread options of the Event thread. You must set these options before the
DomainParticipant is created, because once the Event thread is started as a part of participant creation,
these properties cannot be changed.

The EVENT QosPolicy also configures the maximum number of events that can be handled by the Event
thread. While the Event thread can only service a single event at a time, it must maintain a queue to hold
events that are pending. The initial_count and max_count parameters of the QosPolicy set the initial and
maximum size of the queue.

The priority of the Event thread should be carefully set with respect to the priorities of the other threads in
a system. While many events can tolerate some amount of latency between the time that the event expires
and the time that the Event thread services the event, there may be application-specific events that must be
handled as soon as possible.

For example, if an application uses the liveliness of a remote DataWriter to infer the correct operation of a
remote application, it may be critical for the user code in the DataReader Listener callback, on_liveliness_
changed(), to be called by the Event thread as soon as it can be determined that the remote application has
died. The operating system uses the priority of the Event thread to schedule this action.

21.3 Receive Threads

Connext DDS uses internal threads, known as Receive threads, to process the data packets received via
underlying network transports. These data packets may contain meta-traffic exchanged by DomainPar-
ticipants for discovery, or user data (and meta-data to support reliable connections) destined for local
DataReaders.

As a result of processing packets received by a transport, a Receive thread may respond by sending pack-
ets on the network. Discovery packets may be sent to other DomainParticipants in response to ones
received. ACK/NACK packets are sent in response to heartbeats to support a reliable connection.

When a DDS sample arrives, the Receive thread is responsible for deserializing and storing the data in the
receive queue of a DataReader as well as invoking the on_data_available() DataReaderListener callback
(see 8.3.4 Setting Up DataReaderListeners on page 517).

The number of Receive threads that Connext DDS will create for a DomainParticipant depends on how
you have configured the QosPolicies of DomainParticipants, DataWriters and DataReaders as well as on
the implementation of a particular transport. The behavior of the builtin transports is well specified.
However, if a custom transport is installed for a DomainParticipant, you will have to understand how the
custom transport works to predict how many Receive threads will be created.

The following discussion applies on a per-transport basis. A single Receive thread will only service a
single transport.

21.3 Receive Threads

Connext DDS will try to create receive resources1 for every port of every transport on which it is con-
figured to receive messages. The 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension) on
page 465 for DomainParticipant, DataWriters, and DataReaders, the 8.6.5 TRANSPORT_
MULTICAST QosPolicy (DDS Extension) on page 596 for DataReaders and the 9.5.2 DISCOVERY
QosPolicy (DDS Extension) on page 646 for DomainParticipants all configure the number of ports and
the number of transports that Connext DDS will try to use for receiving messages.

Generally, transports will require Connext DDS to create a new receive resource for every unique port
number. However, this is both dependent on how the underlying physical transport works and the imple-
mentation of the transport plug-in used by Connext DDS. Sometimes Connext DDS only needs to create a
single receive resource for any number of ports.

When Connext DDS finds that it is configured to receive data on a port for a transport for which it has not
already created a receive resource, it will ask the transport if any of the existing receive resources created
for the transport can be shared. If so, then Connext DDS will not have to create a new receive resource. If
not, then Connext DDS will.

The TRANSPORT_UNICAST, TRANSPORT_MULTICAST, and DISCOVERY QosPolicies allow
you customize ports for receiving user data (on a per-DataReader basis) and meta-traffic (DataWriters and
DomainParticipants); ports can be also set differently for unicast and multicast.

How do receive resources relate to Receive threads? Connext DDS will create a Receive thread to service
every receive resource that is created. If you use a socket analogy, then for every socket created, Connext
DDS will use a separate thread to process the data received on that socket.

So how many threads will Connext DDS create by default–using only the builtin UDPv4 and shared
memory transports and without modifying any QosPolicies?

Three Receive threads are created for meta-traffic2:

l 2 for unicast (one for UDPv4, one for shared memory)

l 1 for multicast (for UDPv4)3

Two Receive threads created for user data:

l 2 for unicast (UDPv4, shared memory)

l 0 for multicast (because user data is not sent via multicast by default)

1If UDPv4 was the only transport that Connext DDS supports, we would call these receive resources ‘sockets.’

2Meta-traffic refers to traffic internal to Connext DDS related to dynamic discovery (see Discovery (Chapter 15 on
page 770).

3Multicast is not supported by shared memory transports.

918

21.4 Exclusive Areas, RTI Connext DDS Threads, and User Listeners

919

Therefore, by default, you will have a total of five Receive threads per DomainParticipant. By using only
a single transport and disabling multicast, a DomainParticipant can have as few as 2 Receive threads.

Similar to the Database and Event threads, a Receive thread is configured by the 9.5.6 RECEIVER_
POOL QosPolicy (DDS Extension) on page 670. However, note that the thread properties in the
RECEIVER_POOL QosPolicy apply to all Receive threads created for the DomainParticipant.

21.4 Exclusive Areas, RTI Connext DDS Threads, and User Listeners

Connext DDS Event and Receive threads may invoke user code through the Listener callbacks installed on
different Entities while executing internal Connext DDS code. In turn, user code inside the callbacks may
invoke Connext DDS APIs that reenter the internal code space of Connext DDS. For thread safety, Con-
next DDS allocates and uses mutual exclusion semaphores (mutexes).

As discussed in 4.5 Exclusive Areas (EAs) on page 197, when multiple threads and multiple mutexes are
mixed together, deadlock may result. To prevent deadlock from occurring, Connext DDS is designed
using careful analysis and following rules that force mutexes to be taken in a certain order when a thread
must take multiple mutexes simultaneously.

However, because the Event and Receive threads already hold mutexes when invoking user callbacks, and
because the Connext DDS APIs that the user code can invoke may try to take other mutexes, deadlock
may still result. Thus, to prevent user code to cause internal Connext DDS threads to deadlock, we have
created a concept called Exclusive Areas (EA) that follow rules that prevent deadlock. The more EAs that
exist in a system, the more concurrency is allowed through Connext DDS code. However, the more EAs
that exist, the more restrictions on the Connext DDS APIs that are allowed to be invoked in Entity Listener
callbacks.

The 7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension) on page 351 control how many EAs will
be created by Connext DDS. For a more detailed discussion on EAs and the restrictions on the use of Con-
next DDS APIs within Entity Listener methods, please see 4.5 Exclusive Areas (EAs) on page 197.

21.5 Controlling CPU Core Affinity for RTI Threads

Two fields in the DDS_ThreadSettings_t structure (see 19.4.7 Thread Settings on page 888) are related to
CPU core affinity: cpu_list and cpu_rotation.

Note: Although DDS_ThreadSettings_t is used in the Event, Database, ReceiverPool, and Asyn-
chronousPublisher QoS policies, cpu_list and cpu_rotation are only relevant in the 9.5.6 RECEIVER_
POOL QosPolicy (DDS Extension) on page 670.

While most thread-related QoS settings apply to a single thread, the ReceiverPool QoS policy’s thread-set-
tings control every receive thread created. In this case, there are several schemes to map M threads to N pro-
cessors; cpu_rotation controls which scheme is used.

The cpu_rotation determines how cpu_list affects processor affinity for thread-related QoS policies that
apply to multiple threads. If cpu_list is empty, cpu_rotation is irrelevant since no affinity adjustment will

21.6 Configuring Thread Settings with XML

occur. Suppose instead that cpu_list ={0,1} and that the middleware creates three receive threads: {A, B,
C}. If cpu_rotation is set to CPU_NO_ROTATION, threads A, B and C will have the same processor
affinities (0-1), and the OS will control thread scheduling within this bound.

CPU affinities are commonly denoted with a bitmask, where set bits represent allowed processors to run
on. This mask is printed in hex, so a CPU affinity of 0-1 can be represented by the mask 0x3.

If cpu_rotation is CPU_RR_ROTATION, each thread will be assigned in round-robin fashion to one of
the processors in cpu_list; perhaps thread A to 0, B to 1, and C to 0. Note that the order in which internal
middleware threads spawn is unspecified.

The RTI Connext DDS Core Libraries Platform Notes describe which architectures support this feature.

21.6 Configuring Thread Settings with XML

Table 21.1 XML Tags for ThreadSettings_t describes the XML tags that you can use to configure thread
settings. For more information on thread settings, see:

l 19.4.7 Thread Settings on page 888

l The RTI Connext DDS Core Libraries Platform Notes

l The API Reference HTML documentation (selectModules, RTI Connext DDS API
Reference,Infrastructure Module, QoS Policies, Extended QoS Support, Thread Settings)

Tags
within
<thread>

Description
Number of
Tags
Allowed

<cpu_list>

Each <element> specifies a processor on which the thread may run.

<cpu_list>
<element>value</element>

</cpu_list>

Only applies to platforms that support controlling CPU core affinity (see 21.5 Controlling CPU Core Affinity for
RTI Threadson the previouspage and the RTI Connext DDSCore LibrariesPlatformNotes).

0 or 1

<cpu_
rotation>

Determines how the CPUs in <cpu_list> will be used by the thread. The value can be either:

l THREAD_SETTINGS_CPU_NO_ROTATION

The thread can run on any listed processor, as determined by OS scheduling.

l THREAD_SETTINGS_CPU_RR_ROTATION

The thread will be assigned a CPU from the list in round-robin order.

Only applies to platforms that support controlling CPU core affinity (see the RTI Connext DDSCore
LibrariesPlatformNotes).

0 or 1

Table 21.1 XML Tags for ThreadSettings_t

920

21.7 User-Managed Threads

921

Tags
within
<thread>

Description
Number of
Tags
Allowed

<mask>

A collection of flags used to configure threads of execution. Not all of these options may be relevant for all op-
erating systems. May include these bits:

l STDIO

l FLOATING_POINT

l REALTIME_PRIORITY

l PRIORITY_ENFORCE

It can also be set to a combination of the above bits by using the “or” symbol (|), such as STDIO|FLOATING_
POINT.

Default: MASK_DEFAULT

0 or 1

<priority>

Thread priority. The value can be specified as an unsigned integer or one of the following strings.

l THREAD_PRIORITY_DEFAULT

l THREAD_PRIORITY_HIGH

l THREAD_PRIORITY_ABOVE_NORMAL

l THREAD_PRIORITY_NORMAL

l THREAD_PRIORITY_BELOW_NORMAL

l THREAD_PRIORITY_LOW

When using an unsigned integer, the allowed range is platform-dependent.

When thread priorities are configured using XML, the values are considered native priorities.

Example:

<thread>
<mask>STDIO|FLOATING_POINT</mask>

<priority>10</priority>
<stack_size>THREAD_STACK_SIZE_DEFAULT</stack_size>

</thread>

When the XML file is loaded using the Java API, the priority is a native priority, not a Java thread priority.

0 or 1

<stack_
size>

Thread stack size, specified as an unsigned integer or set to the string THREAD_STACK_SIZE_DEFAULT. The
allowed range is platform-dependent.

0 or 1

Table 21.1 XML Tags for ThreadSettings_t

21.7 User-Managed Threads

In certain scenarios, you may want full control over the internal threads created by your Connext DDS
applications. For instance, in memory-constrained systems, applications may want to manage the resources
required by internal Connext DDS threads. Also, you may want to use a different thread technology than
the one Connext DDS incorporates by default (i.e., pthread on POSIX platforms).

21.8 Unregistering Threads

Connext DDS can create the internal threads from the application layer via the abstract factory pattern.
You can provide a Connext DDS application with a ThreadFactory implementation that DomainPar-
ticipants will use to create and delete all the threads.

The ThreadFactory interface exposes operations for creating and deleting threads. These operations are
called on demand as DomainParticipants require new threads or need to delete existing ones.

The same ThreadFactory instance can be used by multiple DomainParticipants. To select which
ThreadFactory to use, use the set_thread_factory() operation in the DomainParticipantFactory:
MyThreadFactory myThreadFactory; // Implements DDSThreadFactory
retcode = DDSTheParticipantFactory->set_thread_factory(&myThreadFactory);

Then you can create DomainParticipants using any of the available APIs (i.e. create_participant(), cre-
ate_participant_from_config(), etc). A DomainParticipant will use the ThreadFactory object that is set
in the DomainParticipantFactory at the time it is created and throughout its entire lifecycle. If a new
ThreadFactory is set, existing DomainParticipants will not be affected; they will still use the same
ThreadFactory with which they were created.

This feature is only available for the C/C++ APIs. For further information, please see the API Reference
HTML documentation.

21.8 Unregistering Threads

If the logic of your application requires spawning new threads, and in those threads you are calling a Con-
next DDS API such as write(), you may notice a memory growth.

To ensure that all the resources allocated in that thread are correctly released, remember to call unregister_
thread() right before exiting the thread.

Here is what the full API looks like:
DDS_ReturnCode_t DDS_DomainParticipantFactory_unregister_thread(DDS_DomainParticipantFactory *
self);

For more information, search for DDS_DomainParticipantFactory_unregister_thread in the
API Reference HTML documentation.

21.9 Identifying Threads Used by Connext DDS

Connext DDS uses multiple internal threads for sending and receiving data, maintaining internal state, and
calling user code when events occur. Further details regarding Connext DDS’s threading model can be
found in Chapter 21 Connext DDS Threading Model on page 914. This section explains how these
threads can be identified in your system.

922

21.9.1 Checking Thread Names at the OS Level

923

21.9.1 Checking Thread Names at the OS Level

On some systems, it is possible to check the internal name of RTI threads directly at the operating system
level. Threads created by Connext DDS will have RTI-specific thread names, unless otherwise stated in
the RTI Connext DDS Core Libraries Platform Notes, which lists architectures that do not support setting
thread names.

In general, thread names follow this pattern:
r<Module>[<Participant identifier>][<Thread index>][Transport name>]<Task type>

Where:

l The maximum length for a thread name is 16, including the '\0'.

l r indicates this is a thread from RTI.

l The second and third characters identify the <Module>:

Table 21.2 Module in the Thread Representation

Module Thread Representation

Core Co

Transport Tr

Security Se

Distributed Logger DI

Persistence Service Ps

Database Integration Service Ds

Web Integration Service Ws

Monitor Mo

Recording Service Re

Routing Service Rs

l <Participant identifier> is represented with five characters, as follows:

l If participant_name is set: the participant identifier will be the first three characters and the
last two characters of the participant_name.

l If participant_name is not set: the identifier is computed as domain_id (three characters),
participant_id (two characters).

21.9.1 Checking Thread Names at the OS Level

l If participant_name is not set and the participant_id is set to -1 (default value): the par-
ticipant identifier is computed as the last five digits of the rtps_instance_id in the participant
GUID.

l <Thread index> - index used to distinguish among threads with the same name.

For example, there are several instantiations of the receive thread; the thread index is used to dif-
ferentiate them:

rCo32265##00Rcv
rCo32265##01Rcv
rCo32265##02Rcv
rCo32265##03Rcv
rCo32265##04Rcv

l <Transport name> is represented with four characters:

Table 21.3 Transport Name in the Thread Representation

Transport Name Thread Representation

Transmission Control Protocol version 4 (TCPv4) TCP4

DatagramTransport Layer Security (DTLS) DTLS

Transport Layer Security (TLS) TLS

Wide Area Network (WAN) WAN

UserDatagramProtocol version 4 (UDPv4) UDP4

UserDatagramProtocol version 6 (UDPv6) UDP6

l <taskType> - the type of thread is represented with three characters:

Table 21.4 Task Type in the Thread Representation

Transport Name Thread Representation

Event Evt

Receive Rcv

Database Dtb

Asynchronous waitSet AWs

Dispatcher Dsp

924

21.9.1 Checking Thread Names at the OS Level

925

Transport Name Thread Representation

Asynchronous batch flushing ABF

Topic query publication TQP

DNS tracker DNS

Writer Wri

Logger Log

Control Ctr

Server Svr

Interface tracker Itr

Discovery Dis

Publication Pub

Timer Tim

Connection Con

The details on checking the thread names depend on the operating system. The following is an example
output from a publisher application running on VxWorks 6.9.4:
-> taskSpawn "test", 255, <floating_point_option>, 150000, publisher_main, 1, 100
value = 83748528 = 0x4fde6b0
-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO CPU #
---------- ------------ -------- --- ---------- -------- -------- ------- -----
[...]
rCoHelnt##> RTIOsapiThr> 444a010 71 PEND 37b218 53f7c00 0 -
rCoHelnt##> RTIOsapiThr> 540b2b0 71 PEND 37b218 542ac00 0 -
rCoHelnt##> RTIOsapiThr> 543e080 71 PEND 37b218 545dc90 0 -
rCoHelnt##> RTIOsapiThr> 543ea78 71 PEND 37b218 5490c00 0 -
rCoHelnt##> RTIOsapiThr> 5471860 71 PEND 37b218 54c5c90 0 -
Test REDATester_> 456c010 100 STOP 2cf594 501cc94 0 -
rCoHelnt##> RTIOsapiThr> 44d4358 110 PEND+T 37b218 735fda0 3d0010 -
rCoHelnt##> RTIOsapiThr> 44dea68 120 PEND+T 37b218 730fe04 0 -
rTrHelntUD> RTIOsapiThr> 53bbcb0 120 PEND+T 37b218 53c4e2c 0 -
tZynq7Task 2c8e9c 43f0228 240 DELAY 384288 4df5fa4 0 -
miiBusMoni> 2c9974 464bb60 252 DELAY 384288 4654fb8 0 -
test publisher_m> 4fde6b0 255 DELAY 384288 7231ee8 3d0010 -
tIdleTask0 idleTaskEnt> 43d5418 287 READY 37a918 43d53ec 0 -
tIdleTask1 idleTaskEnt> 43d9670 287 READY 37a918 43d9644 0 -
value = 0 = 0x0
-> ti 0x444a010
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
---------- ------------ -------- --- ---------- -------- -------- ------- -----
rCoHelnt##> RTIOsapiThr> 444a010 71 PEND 37b218 53f7c00 0 0
full task name : rCoHelnt##00Rcv

21.9.1 Checking Thread Names at the OS Level

task entry : RTIOsapiThreadChild_onSpawned
task affinity : 0x00000000
[...]

Where <floating_point_option> is a numeric value that varies depending on the hardware. See Enabling
Floating Point Coprocessor in Kernel Tasks, in the VxWorks chapter of the RTI Connext DDS Core
Libraries Platform Notes.

In this example, the i command in VxWorks retrieves information about the running threads. The > at the
end of the name (rCoHelnt##>) indicates that the full thread name could not be displayed, because it
exceeds 10 characters. You can use the ti command in VxWorks (shown above), followed by the
thread ID (TID), to retrieve information about a specific thread, including its full name (in this case,
rCoHelnt##00Rcv).

The following is an example from running a subscriber on a Linux machine:
$./objs/x64Linux3gcc5.4.0/HelloWorld_subscriber
HelloWorld subscriber sleeping for 4 sec...
HelloWorld subscriber sleeping for 4 sec...
HelloWorld subscriber sleeping for 4 sec...
[...]
$ ps -eT | grep rC
22966 22967 pts/19 00:00:00 rCo32265####Dtb
22966 22968 pts/19 00:00:00 rCo32265####Evt
22966 22970 pts/19 00:00:00 rCo32265##00Rcv
22966 22971 pts/19 00:00:00 rCo32265##01Rcv
22966 22972 pts/19 00:00:00 rCo32265##02Rcv
22966 22973 pts/19 00:00:00 rCo32265##03Rcv
22966 22974 pts/19 00:00:00 rCo32265##04Rcv

Note: For transport threads, you have the option of setting your own thread name prefix, which sub-
stitutes the first three components (r<Module>[<Participant identifier>]) of the thread name with
your own prefix. Setting your own thread name prefix allows you to add extra information to the trans-
port thread, such as your own identifier for the threads or the Topic used. You can optionally set this
prefix using the thread_name_prefix field in the transport (for example, in the 44.7 TCP/TLS Trans-
port Properties on page 1163).

Table 21.5 Example Thread Names shows names for the majority of threads created by Connext DDS:

926

21.9.1 Checking Thread Names at the OS Level

927

Table 21.5 Example Thread Names

Thread Information Name Fields

Example:

Domain: 111
Participant Id : 22
ThreadIndex: 33
Topic: HelloWorld
DataBase: Test
Application Name:
TestPersistence

Receive thread rCo%5s##%02dRcv Participant identifier, thread index rCo11122##33Rcv

Asynchronous waitset thread rCo%5s##%02dAWs Participant identifier, thread index rCo11122##33AWs

Database thread rCo%5s####Dtb Participant identifier rCo11122####Dtb

Dispatcher (i.e., asynchronous publishing)
thread

rCo%5s##%02dDsp Participant identifier, thread index rCo11122##33Dsp

Asynchronous batch flushing thread rCo%5s####ABF Participant identifier rCo11122####ABF

Topic query publication thread rCo%5s####TQP Participant identifier rCo11122####TQP

Event thread rCo%5s####Evt Participant identifier rCo11122####Evt

DNS tracker thread rCo%5s####DNS Participant identifier rCo11122####DNS

Distributed loggerwriter thread rDl#########Wri rDl#########Wri

Secure distributed logger thread rSe%5s####Log Participant identifier rSe11122####Log

TCP control thread rTr%5s%04sCtr
Participant identification, transportName
(TCP4)

rTr11122TCP4Ctr

TCP event thread rTr%5s%04sEvt
Participant identification, transportName
(TCP4)

rTr11122TCP4Evt

DTLS event thread rTr%5s%04sEvt
Participant identification, transportName
(DTLS)

rTr11122DTLSEvt

TLS receive thread rTr%5s%04sRcv
Participant identification, transportName
(TLS)

rTr11122#TLSRcv

WAN receive thread rTr%5s%04sRcv
Participant identification, transportName
(WAN)

rTr11122#WANRcv

WANserver thread rTr%5s%04sSvr
Participant identification, transportName
(WAN)

rTr11122#WANCtr

Interface tracking thread rTr%5s%04sITr
Participant identification, transportName
(UDP4, UDP6, TCP4)

rTr11122UDP4ITr

Persistence Service receive administration com-
mand request thread

rPs%03d######RAC domainId rPs111######RAC

21.9.1 Checking Thread Names at the OS Level

Thread Information Name Fields

Example:

Domain: 111
Participant Id : 22
ThreadIndex: 33
Topic: HelloWorld
DataBase: Test
Application Name:
TestPersistence

Persistence Service discovery thread rPs%09sDis Application name rPsTestPersiDis

Persistence Service reception thread (topic) rPs%07s%02dRcv topic name, thread index rPsHello##33Rea

Persistence Service publication thread rPs%07s%02dPub topic name, thread index rPsHello##33Pub

Persistence Service reception thread (Top-
icSet)

rPsTopic##%02dRcv thread index rPsHello##33Rea

Persistence Service event thread rPs#########Evt rPsHello##33Rea

Recording Service timer thread rRe#########Tim rRe#########Tim

Monitor event thread rMo%5s####Evt Participant identifier rREHelloWorlPub

Routing Service polling timer thread rRs#########Tim rRs#########Tim

Routing Service filter tracker event thread rRsFilterTr#Evt rRsFilterTr#Evt

Routing Service monitor statistics event thread rRsMoSta####Evt rRsMoSta####Evt

Routing Service monitor publication event
thread

rRsMoPub####Evt rRsMoPub####Evt

Routing Service discovery event thread rRsDisc#####Evt rRsDisc#####Evt

Routing Service aysnchronous admin thread
rRsAdmin##%02dAWs

thread index rRsAdmin##33AWs

Routing Service aysnchronous discovery
thread

rRsDisc###%02dAWs thread index rRsDisc###33dAWs

Database Integrated Service discovery thread rDs#########Dis rDs#########Dis

Database Integrated Service connection
thread

rDs%.9sCon Database name rDsTestsCon

Database Integrated Service refresh thread rDs%.9sRef Database name rDsTestsRef

Database Integrated Service finalization
Library thread

rDsFinalizeLib# rDsFinalizeLib#

Database Integrated Service event manager
thread

rDsManager##Evt rDsManager##Evt

Web Integrated Service access control list
dataBase thread

rWsACL######Dtb rWsACL######Dtb

928

21.9.2 Checking Thread Names from the Call Stack

929

21.9.2 Checking Thread Names from the Call Stack

Thread names are only available in a subset of architectures. See the RTI Connext DDS Core Libraries
Platform Notes for which architectures support checking thread names at the OS level. This section lists
the correspondence between Connext DDS threads and the functions they run. You can use this inform-
ation to identify Connext DDS threads from the call stack, independently of your architecture. If you are
using VxWorks or Integrity, see 21.9.1 Checking Thread Names at the OS Level on page 923.

This is the correspondence between threads and the functions they run:

l Database Thread: RTIEventActiveDatabaseThread_loop()

l (Main) Event Thread: RTIEventActiveGeneratorThread_loop(). Note that this function is generic
to all the event threads. That is, all of the event threads run RTIEventActiveGeneratorThread_loop
(), which detects and handles events. For this reason, it can be difficult to distinguish the Main Event
Thread from other event threads (such as the Topic Query Publication Event Thread); however, to
better make this distinction, you can check whether some (sub)functions are called (for example, the
subfunctions related to the Asynchronous Batch Flushing Event Thread and Topic Query Public-
ation Event Thread below).

l Receive Thread: COMMENDActiveFacadeReceiver_loop(), which calls to a different function
depending on what transport is being used to get the (meta)data:

l Shared Memory: NDDS_Transport_Shmem_receive_rEA()

l UDP: NDDS_Transport_UDP_receive_rEA()

l TCP: NDDS_Transport_TCP_receive_rEA()

l Interface Tracking Thread: RTIOsapiInterfaceTracker_()

l Transport-Specific Threads:

l TCP Control Thread: NDDS_Transport_TCPv4_Plugin_threadLoop()

l TCP Event Thread: RTIEventActiveGeneratorThread_loop() and NDDS_Transport_
TCPv4_Plugin_clientOn<event_name>()

l Asynchronous Publishing Thread: RTIEventJobDispatcherThread_spawnedFnc()

l Asynchronous Batch Flushing Event Thread: RTIEventActiveGeneratorThread_loop() and
PRESPsWriter_onFlushBatch()

l Topic Query Publication Event Thread: RTIEventActiveGeneratorThread_loop() and
PRESPsService_onWriterServiceDispatchActiveTopicQueriesEvent()

For example, if you are on GNU/Linux, you can run the following command on gdb to get the call stack:

21.9.3 Checking Thread Names Using the Worker’s Name

(gdb) thread apply all backtrace

The same information can be seen with Visual Studio. To see this information in Visual Studio, select
Debug > Windows > Threads, then do Ctrl+D, T. You will need to add a breakpoint and start the applic-
ation in debug mode.

21.9.3 Checking Thread Names Using the Worker’s Name

Connext DDS uses the concept of a worker as an abstraction for threads. Workers are RTI-specific entities
used internally to manage critical sections and to provide access to thread-specific storage. Most of the
threads created by Connext DDS have an associated worker. In addition, user threads calling certain APIs
from Connext DDS will have a worker associated with them. Workers are given a name when they are cre-
ated. If you have the proper debug symbols, you can use the worker’s name to identify the thread (on a
debugger, for instance).

To check the workers’ names, first locate these workers in the threads. You can do that by selecting a
thread and printing its full backtrace. Another option is moving up and down through the frames on the
thread’s stack. The worker will be either a local variable or the last argument to one of the RTI functions.
Here is an example using gdb on GNU/Linux to identify a thread with the method just described:
(gdb) info thread
Id Target Id Frame

* 1 Thread 0x7ffff7fce700 (LWP 6801) "HelloWorld_publ" __clock_nanosleep (clock_
id=<optimized out>, flags=0, req=0x7fffffffcb20, rem=0x7fffffffcb30) at
../sysdeps/unix/sysv/linux/clock_nanosleep.c:48
2 Thread 0x7ffff6ec1700 (LWP 6805) "HelloWorld_publ" pthread_cond_timedwait@@GLIBC_2.3.2

() at ../sysdeps/unix/sysv/linux/x86_64/pthread_cond_timedwait.S:225
3 Thread 0x7ffff66c0700 (LWP 6806) "HelloWorld_publ" pthread_cond_timedwait@@GLIBC_2.3.2

() at ../sysdeps/unix/sysv/linux/x86_64/pthread_cond_timedwait.S:225
[...]

(gdb) thread 2
[Switching to thread 2 (Thread 0x7ffff6ec1700 (LWP 6805))]

(gdb) backtrace full
[...]
#3 0x0000000000c6095b in RTIEventActiveDatabaseThread_loop (param=0x13fc8c0) at
ActiveDatabase.c:156

timeStr = 0x7ffff6ec0dc0 "{0000003d,00000000}"
t = 0x13fc8c0
canBeDeleted = 0
timeBuf = "{0000003d,00000000}"
workerName = 0x1351cb0 "rDtb2081a9101"
METHOD_NAME = 0x100a0d0 "RTIEventActiveDatabaseThread_loop"

[...]

As you can see in the example, workers follow the same naming convention as threads (in some cases, a
shortened version of it). Workers associated with user threads use the following convention:
U<threadId>, where:

930

21.9.3 Checking Thread Names Using the Worker’s Name

931

l U - indicator that this is a User Thread

l <threadId> - ID given to the thread by the OS

Chapter 22 DDS Sample and Instance
Memory Management

This chapter describes how Connext DDS manages the memory for the DDS data samples that are
sent by DataWriters and received by DataReaders.

22.1 DDS Sample Memory Management for DataWriters

To configure DDS sample memory management on the writer side, use the 7.5.19 PROPERTY
QosPolicy (DDS Extension) on page 440. Table 22.1 DDS Sample Memory Management Prop-
erties for DataWriters lists the supported memory-management properties for DataWriters. This sec-
tion applies to DataWriters that use IDL-generated type-plugins as well as DynamicDataWriters.

Property Description

dds.data_writer.
history.memory_
manager.
fast_pool.pool_
buffer_max_
size

If the serialized size of the DDS sample is <= pool_buffer_max_size:
The buffer is obtained froma pre-allocated pool and released when the DataWriter is deleted.

If the serialized size of the DDS sample is > pool_buffer_max_size:
The buffer is dynamically allocated from the heap and returned to the heap when the DDS sample is removed from the
DataWriter’squeue. The size of the buffer allocated from the heap is the sample serialized size.

Default: -1 (UNLIMITED). All DDS sample buffers are obtained from the pre-allocated pool; the buffer size is the max-
imumserialized size of the DDS samples, as returned by the type plugin get_serialized_sample_max_size() op-
eration.

Notes:

l If you use unbounded sequences or strings, then you should set pool_buffer_max_size to a finite value.
See 3.1.1 Sequenceson page 30.

l The pool_buffer_max_size also controls the memory allocation for the serialized key buffer that is stored
with every instance. See 22.3 InstanceMemoryManagement for DataWriters on page 946.

See 22.1.1 MemoryManagement without Batching on the next page.

Table 22.1 DDS Sample Memory Management Properties for DataWriters

932

22.1.1 Memory Management without Batching

933

Property Description

dds.data_writer.
history.memory_
manager.
java_
stream.min_size

Only supported when using the Java API.

Defines the minimumsize of the buffer that will be used to serialize DDS samples.

When a DataWriter is created, the Java layerwill allocate a buffer of this size and associate it with the DataWriter.

Default: -1 (UNLIMITED). This is a sentinel that refers to the maximumserialized size of a DDS sample, as returned by
the type plugin get_serialized_sample_max_size() operation

See 22.1.3 Writer-SideMemoryManagement when Using Java on page 937.

dds.data_writer.
history.memory_
manager.
java_
stream.trim_to_
size

Only supported when using the Java API.

A boolean value that controls the growth of the serialization buffer.

If set to 0 (default): The bufferwill not be reallocated unless the serialized size of a newDDS sample is greater than the
current buffer size.

If set to 1: The bufferwill be reallocated with each newDDS sample to a smaller size in order to just fit the DDS sample
serialized size. The new size cannot be smaller thanmin_size.

See 22.1.3 Writer-SideMemoryManagement when Using Java on page 937.

Table 22.1 DDS Sample Memory Management Properties for DataWriters

22.1.1 Memory Management without Batching

When the write() operation is called on a DataWriter that does not have batching enabled, the DataWriter
serializes (marshals) the input DDS sample and stores it in the DataWriter’s queue (see Figure 22.1:
DataWriter Actions when Batching is Disabled on the next page). The size of this queue is limited by ini-
tial_samples/max_samples in the 7.5.22 RESOURCE_LIMITS QosPolicy on page 452.

22.1.1 Memory Management without Batching

Figure 22.1: DataWriter Actions when Batching is Disabled

Each DDS sample in the queue has an associated serialization buffer in which the DataWriter will serialize
the DDS sample. This buffer is either obtained from a pre-allocated pool (if the serialized size of the DDS
sample is <= dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size) or the buf-
fer is dynamically allocated from the heap (if the serialized size of the DDS sample is > dds.data_writer-
.history.memory_manager.fast_pool.pool_buffer_max_size). The size of the buffer allocated on the
heap is the sample serialized size. See Table 22.1 DDS Sample Memory Management Properties for
DataWriters.

The default value of pool_buffer_max_size is -1 (UNLIMITED). In this case, all the DDS samples come
from the pre-allocated pool and the size of the buffers is the maximum serialized size of the DDS samples
as returned by the type plugin get_serialized_sample_max_size() operation. The default value is optimum
for real-time applications where determinism and predictability is a must. The trade-off is higher memory
usage, especially in cases where the maximum serialized size of a DDS sample is large. If the maximum

934

22.1.2 Memory Management with Batching

935

serialized size of a DDS sample is large, but bounded, the value can be set to a finite value to save
memory. If the maximum serialized size is unbounded, then the value must be set to a finite value in order
to avoid running out of system memory while allocating the sample pools.

Connext DDS cannot send arbitrarily large samples. For details on serialization limits see 3.10 Data
Sample Serialization Limits on page 164.

22.1.2 Memory Management with Batching

When the write() operation is called on a DataWriter for which batching is enabled (see 7.5.2 BATCH
QosPolicy (DDS Extension) on page 375), the DataWriter serializes (marshals) the input DDS sample into
the current batch buffer (see Figure 22.2: DataWriter Actions when Batching is Enabled on the next page).
When the batch is flushed, it is stored in the DataWriter’s queue along with its DDS samples. The
DataWriter queue can be sized based on:

l The number of DDS samples, using initial_samples/max_samples (both set in the 7.5.22
RESOURCE_LIMITS QosPolicy on page 452)

l The number of batches, using initial_batches/max_batches (both set in the 7.5.6 DATA_
WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402)

l Or a combination ofmax_samples and max_batches

22.1.2 Memory Management with Batching

Figure 22.2: DataWriter Actions when Batching is Enabled

936

22.1.3 Writer-Side Memory Management when Using Java

937

When batching is enabled, the memory associated with the batch buffers always comes from a pre-alloc-
ated pool. The size of the buffers is determined by the QoS valuesmax_samples and max_data_bytes
(both set in the 7.5.2 BATCH QosPolicy (DDS Extension) on page 375) as follows:

l Ifmax_data_bytes is a finite value, the size of the buffer is the maximum of this value and the max-
imum serialized size of a DDS sample (max_sample_serialized_size) as returned by the type-plu-
gin get_serialized_sample_max_size(), since that batch must contain at least one DDS sample.

l Otherwise, the size of the buffer is calculated by
(batch.max_samples * max_sample_serialized_size).

Notice that for variable-size DDS samples (for example, DDS samples containing sequences) it is good
practice to size the buffer based on max_data_bytes, since this leads to more efficient memory usage.

Note: The value of the property dds.data_writer.history.memory_manager.fast_pool.pool_buffer_
max_size is ignored by DataWriters with batching enabled.

22.1.3 Writer-Side Memory Management when Using Java

When the Java API is used, Connext DDS allocates a Java buffer per DataWriter; this buffer is used to seri-
alize the Java DDS samples published by the DataWriters. After a DDS sample is serialized into a Java
buffer, the result is copied into the underlying native buffer described in 22.1.1 Memory Management
without Batching on page 933 and 22.1.2 Memory Management with Batching on page 935.

You can use the following two DataWriter properties to control memory allocation for the Java buffers
that are used for serialization (see Table 22.1 DDS Sample Memory Management Properties for
DataWriters):

l dds.data_writer.history.memory_manager.java_stream.min_size

l dds.data_writer.history.memory_manager.java_stream.trim_to_size

22.1.4 Writer-Side Memory Management when Working with Large Data

Large DDS samples are DDS samples with a large maximum size relative to the memory available to the
application. Notice the use of the word maximum, as opposed to actual size.

As described in 22.1.1 Memory Management without Batching on page 933, by default, the middleware
preallocates the DDS samples in the DataWriter queue to their maximum serialized size. This may lead to
high memory-usage in DataWriters where the maximum serialized size of a DDS sample is large.

For example, let’s consider a video conferencing application:

22.1.4 Writer-Side Memory Management when Working with Large Data

struct VideoFrame {
boolean keyFrame;
sequence<octet,1024000> data;

};

The above IDL definition can be used to work with video streams.

Each frame is transmitted as a sequence of octets with a maximum size of 1 MB. In this example, the video
stream has two types of frames: I-Frames (also called key frames) and P-Frames (also called delta frames).
I-Frames represent full images and do not require information about the preceding frames in order to be
decoded. P-frames require information about the preceding frames in order to be decoded.

A video stream consists of a sequence of frames in which I-Frames are followed by multiple P-frames. The
number of P-frames between I-Frames affects the video quality since, in a non-reliable configuration, los-
ing a P-frame will degrade the image quality until the next I-frame is received.

For our use case, let’s assume that I-frames may require 1 MB, while P-Frames require less than 32 KB.
Also, there are 20 times more P-Frames than I-Frames.

Although the actual size of the frames sent by the Connext DDS application is usually significantly smaller
than 1 MB since they are P-Frames, the default memory management will use 1 MB per frame in the
DataWriter queue. If resource_limits.max_samples is 256, the DataWriter may end up allocating 256
MB.

Using some domain-specific knowledge, such as the fact that most of the P-Frames have a size smaller
than 32 KB, we can optimize memory usage in the DataWriter’s queue while still maintaining determ-
inism and predictability for the majority of the frames sent on the wire.

The following XML file shows how to optimize the memory usage for the previous example (rather than
focusing on efficient usage of the available network bandwidth).
<?xml version="1.0"?>
<!-- XML QoS Profile for large data -->
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- QoS Library containing the QoS profile used for large data -->
<qos_library name="ReliableLargeDataLibrary">

<!-- QoS profile to optimize memory usage in DataWriters sending
large images

-->
<qos_profile name="ReliableLargeDataProfile"

is_default_qos="true">
<!-- QoS used to configure the DataWriter -->
<datawriter_qos>

<resource_limits>
<max_samples>32</max_samples>
<!— No need to pre-allocate 32 images unless needed -->
<initial_samples>1</initial_samples>

</resource_limits>

<property>
<value>
<!-- For frames with size smaller or

938

22.2 DDS Sample Memory Management for DataReaders

939

equal to 33 KB the serialization
buffer is obtained from a
pre-allocated pool. For sizes
greater than 33 KB, the DataWriter
will use dynamic memory allocation.

-->
<element>

<name>
dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size

</name>
<value>33792</value>

</element>
<!-- Java will use a 33 KB buffer to

serialize all frames with a size
smaller than or equal to 33 KB.
When an I-frame is published,
Java will reallocate the
serialization buffer to match
the serialized size of the new frame.

-->
<element>

<name>
dds.data_writer.history.memory_manager.java_stream.min_size

</name>
<value>33792</value>

</element>
<element>

<name>
dds.data_writer.history.memory_manager.java_stream.trim_to_size

</name>
<value>1</value>

</element>
</value>

</property>
</datawriter_qos>

</qos_profile>
</qos_library>

</dds>

Working with large data DDS samples will likely require throttling the network traffic generated by single
DDS samples. For additional information on shaping network traffic, see 7.6 FlowControllers (DDS Exten-
sion) on page 475.

22.2 DDS Sample Memory Management for DataReaders

The DDS data samples received by a DataReader are deserialized (demarshaled) and stored in the
DataReader’s queue (see Figure 22.3: Adding DDS Samples to DataReader’s Queue on the next page).
The size of this queue is limited by initial_samples/max_samples in the 7.5.22 RESOURCE_LIMITS
QosPolicy on page 452.

22.2.1 Memory Management for DataReaders Using Generated Type-Plugins

22.2.1 Memory Management for DataReaders Using Generated Type-
Plugins

Figure 22.3: Adding DDS Samples to DataReader’s Queue below shows how DDS samples are pro-
cessed and added to the DataReader’s queue.
Figure 22.3: Adding DDS Samples to DataReader’s Queue

The RTPS DATA DDS samples received by a DataReader can be either batch DDS samples or indi-
vidual DDS samples. The DataReader queue does not store batches. Therefore, each one of the DDS
samples within a batch will be deserialized and processed individually.

940

22.2.2 Reader-Side Memory Management when Using Java

941

When the DataReader processes a new sample, it will deserialize it into a sample obtained from a pre-alloc-
ated pool. By default, to provide predictability and determinism, the sample obtained from the pool is alloc-
ated to its maximum size. For example, with the following IDL type, each sample in the DataReader
queue will consume 1 MB, even if the actual size is smaller.
struct VideoFrame {

boolean keyFrame;
sequence<octet,1024000> data;

};

In the above example, it is possible to reduce the memory consumption by declaring the data sequence as
unbounded and by generating code for the type with the command-line option -unboundedSupport. In
this case, the middleware will not preallocate 1 MB for the data member. Instead, the generated code will
deserialize incoming samples by dynamically allocating and deallocating memory to accommodate the
actual size of the data sequence.

22.2.2 Reader-Side Memory Management when Using Java

When the Java API is used with DataReaders using generated type-plugins, Connext DDS allocates a
Java buffer per DataReader; this buffer is used to copy the native serialized data, so that the received DDS
samples can be deserialized into the Java objects obtained from the DDS sample pool in Figure 22.3:
Adding DDS Samples to DataReader’s Queue on the previous page.

You can use the DataReader properties in Table 22.2 DDS Sample Memory Management Properties for
DataReaders when Using Java API to control memory allocation for the Java buffer used for deseri-
alization:

Property Description

dds.data_reader.
history.memory_
manager.
java_stream.min_
size

Only supported when using the Java API.

Defines the minimumsize of the buffer used for the serialized data.

When a DataReader is created, the Java layerwill allocate a buffer of this size and associate it with the DataReader.

Default: -1 (UNLIMITED) This is a sentinel to refer to the maximumserialized size of a DDS sample, as returned by the type plu-
gin method get_serialized_sample_max_size().

dds.data_reader.
history.memory_
manager.
java_stream.trim_
to_size

Only supported when using the Java API.

A Boolean value that controls the growth of the deserialization buffer.

If set to 0 (the default), the buffer will not be re-allocated unless the serialized size of a newDDS sample is greater than the cur-
rent buffer size.

If set to 1, the buffer will be re-allocated with each newDDS sample in order to just fit the DDS sample serialized size. The new
size cannot be smaller thanmin_size.

Table 22.2 DDS Sample Memory Management Properties for DataReaders when Using Java
API

22.2.3 Memory Management for DynamicData DataReaders

22.2.3 Memory Management for DynamicData DataReaders

Unlike DataReaders that use generated type-plugin code, DynamicData DataReaders provide con-
figuration mechanisms to control the memory usage for use cases involving large data DDS samples. It is
not required to set any of the following properties in order to support unbounded types in your application.
The default behavior for a DynamicData DataReader is that samples are allocated to the minimum deseri-
alized size and can grow to any size required to store incoming samples.

A DDS DynamicData sample stored in the DataReader’s queue has an associated underlying buffer that
contains the DynamicData-specific representation of the DDS sample. The buffer is allocated according to
the configuration provided in the data and serialization members of the DynamicDataTypeProperty_t
used to create the DynamicDataTypeSupport (see 3.8 Interacting Dynamically with User Data Types on
page 154).
struct DDS_DynamicDataTypeProperty_t {

DDS_DynamicDataProperty_t data;
DDS_DynamicDataTypeSerializationProperty_t serialization;

};

struct DDS_DynamicDataTypeSerializationProperty_t {
DDS_Boolean trim_to_size;

}

struct DDS_DynamicDataProperty_t {
DDS_Long buffer_initial_size;
DDS_Long buffer_max_size;

};

Table 22.3 struct DDS_DynamicDataTypeSerializationProperty_t below describes the member of DDS_
DynamicDataTypeSerializationProperty_t.

Name Description

trim_
to_size

Controls the growth of the serialization buffer in a DynamicData object.

This property only applies to DynamicData samples that are obtained from the sample pool that is created by each DynamicData
DataReader.

If set to 0 (default): The bufferwill not be reallocated unless the deserialized size of the incoming DDS sample is greater than the current
buffer size.

If set to 1: The buffer of a DynamicData object obtained from the DDS sample pool will be re-allocated for each sample to just fit the size of
the deserialized data of the incoming sample. The newly allocated size will not be smaller thanmax(min_deserialized_size, buffer_ini-
tial_size).

Table 22.3 struct DDS_DynamicDataTypeSerializationProperty_t

The following table describes the members of DDS_DynamicDataProperty_t.

942

22.2.3 Memory Management for DynamicData DataReaders

943

Name Description

buffer_
initial_
size

The initial amount of memoryused by the underlying DynamicData buffer, in bytes.

This property is used to configure the DynamicData objects that are created stand-alone aswell as the DynamicData samples that are
obtained from the sample pool that is created byeach DynamicDataDataReader.

If set to 0 (default): The initial buffer size will be set to theminimum amount of space required to hold the overhead required by the
DynamicData internal representation (about 100 bytes) in addition to theminimum deserialized size of a sample. Theminimum deseri-
alized size of a sample assumes that all stringsare allocated to their default values, sequencesare left to length 0, and all optionalmem-
bers are unset.

If set to any value other than 0: The underlying buffer will be allocated to the provided size plus the overhead required by the Dynam-
icData internal representation (about 100 bytes). If the provided size plus the overhead is less than the size used when buffer_initial_
size is left to 0, then the default value is used.

buffer_
max_
size

Themaximum amount of memory that the underlying DynamicData buffer mayuse, in bytes.

This property is used to configure the DynamicData objects that are created stand-alone aswell as the DynamicData samples that are
obtained from the sample pool that is created byeach DynamicDataDataReader. ADynamicData object will grow to this size from the
initial size asneeded. The buffer_max_size includesall overhead that is required for the internalDynamicData representation and
therefore represents a hard upper limit on the size of the underlying DynamicData buffer.

If set to -1 (default): The buffer will grow unbounded to the size required to fit allmembers.

If set to any value other than -1: The buffer will not grow beyond this size. If setting amember's values requires the buffer to grow bey-
ond themaximum, themember will fail to be set. If the buffer is required to grow beyond thismaximum during deserialization, the
sample will fail to be deserialized. The buffer_max_size cannot be smaller than the buffer_initial_size.

Table 22.4 struct DDS_DynamicDataProperty_t

Figure 22.4: Allocation of DDS Samples in DataReader Queue for DynamicData DataReaders below
shows how DDS samples are allocated in the DataReader queue for DynamicData DataReaders.
Figure 22.4: Allocation of DDS Samples in DataReader Queue for DynamicData

DataReaders

22.2.4 Memory Management for Fragmented DDS Samples

22.2.4 Memory Management for Fragmented DDS Samples

When a DataWriter writes DDS samples with a serialized size greater than the minimum of the largest
transport message sizes across all transports installed with the DataWriter, the DDS samples are frag-
mented into multiple RTPS fragment messages.

The different fragments associated with a DDS sample are assembled in the DataReader side into a single
buffer that will contain the DDS sample serialized data after the last fragment is received.

By default, the DataReader keeps a pool of pre-allocated serialization buffers that will be used to recon-
struct the serialized data of a DDS sample from the different fragments. Each buffer hold one individual
DDS sample and it has a size equal to the maximum serialized size of a DDS sample. The pool size can be
configured using the QoS values initial_fragmented_samples and max_fragmented_samples in 8.6.2
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581.

The main disadvantage in pre-allocating the serialization buffers is an increase in memory usage, especially
when the maximum serialized of a DDS sample is quite large. Connext DDS offers a setting that allows
memory for a DDS sample to be allocated from the heap the first time a fragment is received. The amount
of memory allocated equals the amount of memory needed to store all fragments in the DDS sample.

22.2.5 Reader-Side Memory Management when Working with Large Data

This section describes how to configure the DataReader side of the videoconferencing application intro-
duced in 22.1.4 Writer-Side Memory Management when Working with Large Data on page 937 to optim-
ize memory usage.

The following XML file can be used to optimize the memory usage in the previous example:
<?xml version="1.0"?>
<!-- XML QoS Profile for large data -->
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- QoS Library containing the QoS profile used for large data -->
<qos_library name="ReliableLargeDataLibrary">

<!-- QoS profile used to optimize the memory usage in a
DataWriter sending large data images

-->
<qos_profile name="ReliableLargeDataProfile"
is_default_qos="true">

<!-- QoS used to configure the DataWriter -->
<datareader_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<resource_limits>

<max_samples>32</max_samples>
<!— No need to pre-allocate 32 frames unless

needed -->
<initial_samples>1</initial_samples>

</resource_limits>
<reader_resource_limits>
<!-- Since the video frame samples have a

944

22.2.5 Reader-Side Memory Management when Working with Large Data

945

large maximum serialized size we can configure
the fragmented samples pool to use dynamic
memory allocation. As an alternative,
reduce max_fragmented_samples. However, that
may cause fragment retransmission.

-->
<dynamically_allocate_fragmented_samples>

1
</dynamically_allocate_fragmented_samples>

</reader_resource_limits>
<property>

<value>
<!-- Java will use a buffer of 33KB to

deserialize all frames with a
serialized size smaller or equal than
33KB. When an I-frame is received,
Java will re-allocate the
deserialization buffer to match the
serialized size of the new frame.

-->
<element>

<name>
dds.data_reader.history.memory_manager.java_stream.min_size

</name>
<value>33792</value>

</element>
<element>

<name>
dds.data_reader.history.memory_manager.java_stream.trim_to_size

</name>
<value>1</value>

</element>
</value>

</property>
</qos_profile>

</qos_library>
</dds>

To avoid preallocation of the samples in the DataReader's queue to their maximum size for Type-Plugin
generated code in C, C++, Java, and .NET, replace the bounded sequence in VideoFrame with an unboun-
ded sequence and generate code using the -unboundedSupport command-line option:
struct VideoFrame {

boolean keyFrame;
sequence<octet> data;

};

See 22.2.1 Memory Management for DataReaders Using Generated Type-Plugins on page 940 for more
details.

To avoid preallocation of the samples in the DataReader's queue to their maximum size for DynamicData,
set themin_size_serialized property to avoid the allocation of 1MB buffers for the DataReader queue
samples (See 22.2.3 Memory Management for DynamicData DataReaders on page 942.

22.3 Instance Memory Management for DataWriters

22.3 Instance Memory Management for DataWriters

When an instance is registered with a DataWriter, the DataWriter serializes the key value and stores it
with the instance.

Each instance maintained by the DataWriter has an associated buffer in which the DataWriter serializes
the key. This buffer is either:

l Obtained from a pre-allocated pool (if the key’s serialized size is <= dds.data_writer-
.history.memory_manager.fast_pool.pool_buffer_max_size).

l Dynamically allocated from the heap (if the key’s serialized size is > dds.data_writer-
.history.memory_manager.fast_pool.pool_buffer_max_size).

See Table 22.5 Instance Memory Management Properties for DataWriters.

Property Description

dds.data_writer.
history.memory_
manager.
fast_pool.pool_
buffer_max_size

Controls the memory allocation for the serialized key buffer that is stored with every instance.

Default: -1 (UNLIMITED). All DDS sample buffers are obtained from the pre-allocated pool. The buffer size is the maximum
serialized size of the DDS samples, as returned by the type plugin get_serialized_sample_max_size() operation.

Notes:

l If you use unbounded sequences or strings as part of your key, then you should set pool_buffer_max_size to a finite
value. See 3.1.1 Sequenceson page 30.

l The pool_buffer_max_size also controls DDS sample memory management. See 22.1 DDSSampleMemoryMan-
agement for DataWriters on page 932.

Table 22.5 Instance Memory Management Properties for DataWriters

22.4 Instance Memory Management for DataReaders

There are a number of features that require DataReaders to allocate a buffer to store an intermediate, seri-
alized representation of a sample. The size of these buffers is controlled with the property dds.data_read-
er.history.memory_ manager.fast_pool.pool_buffer_max_size.

When a buffer is needed:

l If the required size is <= dds.data_reader.history.memory_ manager.fast_pool.pool_buffer_
max_size, a preallocated buffer will be used. This buffer will not be freed until the DataReader is
deleted and is therefore reused whenever a buffer is needed for a sample that matches this condition.

l If the required size is > dds.data_reader.history.memory_manager.fast_pool.pool_buffer_max_
size, the buffer will be dynamically allocated from the heap and then freed once it is no longer
needed.

946

22.4 Instance Memory Management for DataReaders

947

This property must be set if you are using any of the following features:

l Keyed data types

l Query conditions (only required if also using DynamicData, or the Java, .NET, or Modern C++ lan-
guage APIs)

l Data encryption using RTI Security Plugins

l User-data payload compression (see 7.5.3.2 Data Compression on page 384)

In the case of keyed data types, a buffer is used per-instance to store the serialized representation of the key
value for that instance.

In the case of query conditions, when a query condition is created, all samples that are in the DataReader's
queue need to be temporarily re-serialized in order to be evaluated against the query condition. A buffer
that is allocated based on the value of this property is used for that serialization.

In the case of data encryption and compression, a buffer is needed when a sample is first received in order
to decode or uncompress the sample into. If data encryption and compression are both being used, then
two buffers will be allocated (because the sample must first be decoded into one buffer and then uncom-
pressed into another buffer).

Setting this property to a finite value

The key buffers, used to store the serialized key per-instance, come from a pre-allocated pool with
ResourceLimits::initial_instances initial buffers. Setting this property to a finite value will cause the buf-
fers in the key buffer pool to be allocated to that size. If a larger buffer is needed when a new instance is
received by the DataReader, a buffer of the correct size will be allocated at that time. If you use unboun-
ded sequences or strings as part of your key, then you should set this property to a finite value. See 3.1.1
Sequences on page 30.

The buffers that are needed for samples are shared and are allocated once they are needed for the first time.
When a buffer is needed, the required size will be checked against the value of this property. If the
required size is less than or equal to this property's value and a buffer has not been allocated before, a buf-
fer will be allocated with the property's size. This buffer will not be deallocated until the DataReader is
deleted and will be reused every time a buffer with this size or smaller is needed. If a buffer is needed that
is larger than the value configured by this property, it will be dynamically allocated to the correct size and
then freed as soon as it is not needed anymore (once the sample has been deserialized). There will be at
most two buffers allocated to the configured size. This will only happen if both data encryption and user-
data payload compression are being used at the same time.

Setting this property to unlimited (DEFAULT)

If this property is set to -1 (UNLIMITED), the size of the key buffers is the maximum serialized size of the
key as returned by the type plugin get_serialized_key_max_size() operation. These buffers still come
from a pre-allocated pool. The size of the buffers used for samples will be allocated, when needed, to the

22.4 Instance Memory Management for DataReaders

maximum serialized size of a sample as returned by the type plugin get_serialized_sample_max_size()
operation. They are not deallocated until the DataReader is deleted so that they can be reused whenever
needed.

948

Chapter 23 Sending Large Data
This section describes the capabilities offered by Connext DDS to allow sending and receiving
large data samples. In this section, “large data” refers to samples with a large serialized size, usually
on the order of MBs, such as video frame samples.

The definition of “large data” in this chapter contrasts with other definitions of large data in this
manual:

l In 7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) on page 346,
“large data” is defined as data that cannot be sent as a single packet by a transport. The
concept of large data in this section is decoupled from the maximum message size of the
underlying transport, although these two things are related: samples with a size in the order
of MBs will usually be greater than the underlying transport’s maximum message size.

l In Chapter 22 DDS Sample and Instance Memory Management on page 932, “large data”
refers to types whose samples have a large maximum serialized size independently of the
actual serialized size of the samples sent on the wire. This contrasts with the definition of
“large data” in this section, which refers to samples with a large serialized size.

Connext DDS offers the following solutions to optimize the sending and receiving of large data:

l Reducing latency using either or both of the following to reduce the number of copies pro-
duced by the middleware; see 23.1 Reducing Latency on the next page:

l RTI FlatData™ language binding; see 23.1.4 FlatData Language Binding on
page 955

l Zero Copy transfer over shared memory; see 23.1.5 Zero Copy Transfer Over Shared
Memory on page 968

l Reducing bandwidth usage by compressing samples with a set of standard compression
algorithms; see 7.5.3 DATA_REPRESENTATION QosPolicy on page 381

949

23.1 Reducing Latency

950

23.1 Reducing Latency

One of the main considerations when sending large samples is latency. When using Connext DDS, and in
general any connectivity framework, sample latency has three components: middleware, copy, and trans-
port (see Figure 23.1: Basic Components of Latency below).
Figure 23.1: Basic Components of Latency

When Connext DDS is used to send small data samples, such as temperature readings, the weight of the
copy component in the total sample latency is small. But when samples are large, the weight of the copy
component becomes considerable. (See Figure 23.2: Copy Components Compared on the next page.)

23.1.1 Use Cases

Figure 23.2: Copy Components Compared

Therefore, reducing the number of copies made by the middleware or network infrastructure when pub-
lishing and receiving large samples becomes critical. Two features allow reducing the number of sample
copies and consequently the transmission latency: Zero Copy transfer over shared memory and FlatData
language binding. These two features can be used individually or in combination.

Important: “Large samples” in this context refers to samples with a large serialized size, usually on
the order of MBs, such as video frame samples. If you implement FlatData language binding or Zero
Copy transfer over shared memory with data smaller than this, you may not see significant difference
in latency or even pay a penalty in latency.

23.1.1 Use Cases

Zero Copy transfer over shared memory and FlatData language binding are recommended when your
strict latency requirements cannot be met by regular C/C++ language binding (which defines the in-
memory representation of a type), and the UDP and shared memory transports. For example, video applic-
ations such as video conferencing, video surveillance, or computer vision usually have strict latency
requirements, especially if the video signal is used to do control. Consider, for instance, a latency require-
ment of less than 100 milliseconds. This latency must account for different components such as:

l Video compression

l Video decoding

l Transmission

951

23.1.2 Copies in the Middleware Memory Space

952

l Image scaling

l Application processing logic

To keep latency to a minimum for large data samples, reduce the number of copies made by the mid-
dleware or network infrastructure by using FlatData language binding, Zero Copy transfer over shared
memory, or both.

23.1.2 Copies in the Middleware Memory Space

Figure 23.3: Number of Copies Out-of-the-Box on the next page shows how many times Connext DDS
may copy a large sample sent over UDP or shared memory. The diagram assumes that the samples have to
be fragmented by the middleware (via DDS fragmentation) because their serialized size is greater than the
underlying transport MTU (maximum transmission unit), which can be configured by setting message_
size_max in the transport properties (see Chapter 16 Transport Plugins on page 802). Note that these are
copies in the middleware memory space—the operating system network stack may make additional copies.

23.1.2 Copies in the Middleware Memory Space

Figure 23.3: Number of Copies Out-of-the-Box

For both UDP and shared memory (SHMEM), the copies are as follows, out of the box:

1. Copy 1 is the serialization copy. Connext DDS calls TypePlugin::serialize to convert the in-
memory representation of a sample, such as a C++ object, into a data representation, called a wire
representation, with a format suitable for storage or transmission.

After a sample is serialized, it is sent to the subscribing application using one or more of the avail-
able transports. When the underlying transport maximum message size is smaller than the serialized
size of the sample, the sample must be fragmented. The fragmentation process does not require any
extra copy. Fragments refer directly to offsets in the serialization buffer.

Note: The transport maximum message size can be configured using the property dds.trans-
port.UDPv4.builtin.parent.message_size_max for UDPv4 and dds.trans-
port.shmem.builtin.parent.message_size_max for SHMEM. There are equivalent properties for
other transports, such as TCPv4 and UDPv6.

953

23.1.2 Copies in the Middleware Memory Space

954

2. Copy 2: For SHMEM, the sample fragments that live in the local memory space of the publishing
process have to be copied into the shared memory segment from which the subscribing application
will read them. For UDP, the call to the socket receive operation copies the fragments.

3. Copy 3: After they are received, the sample fragments are reassembled into a single buffer.

4. Copy 4 is the deserialization copy. Connext DDS calls TypePlugin::deserialize to convert the wire
memory representation of a sample into its in-memory representation, such as a C++ object.

Figure 23.4: Number of Copies Using FlatData Language Binding

FlatData is a language binding in which the in-memory representation of a sample matches the wire rep-
resentation. Therefore, the cost of serialization/deserialization is zero. You can directly access the serialized
data without deserializing it first. When using FlatData language binding, Copy 1 and Copy 4 in Figure
23.3: Number of Copies Out-of-the-Box on the previous page are removed for both UDP and SHMEM
communications. See Figure 23.4: Number of Copies Using FlatData Language Binding above.

23.1.3 Choosing between FlatData Language Binding and Zero Copy Transfer over Shared Memory

23.1.3 Choosing between FlatData Language Binding and Zero Copy
Transfer over Shared Memory

Whether to use Zero Copy transfer over shared memory or FlatData language binding, or both, depends
on whether the DataReaders run on the same host as the DataWriters, on different hosts, or a combination
of both. It also depends on the definition of the type. Zero Copy transfer over shared memory requires the
FlatData language binding when the type is variable-size. The following table summarizes how to choose
between these features:

Table 23.1 Zero Copy Transfer Over Shared Memory vs. FlatData Language Binding

Readers and writers run
on same host

Readers and writers run on
different hosts

Some readers/writers run on same host,
some on different hosts

Fixed-size
types

Use Zero Copy Use FlatData Use both Zero Copy and FlatData

Variable-
size types

Use both Zero Copy and
FlatData

Use FlatData Use both Zero Copy and FlatData

In summary, for DataReaders running on the same host as the DataWriter, the DataWriter can take advant-
age of Zero Copy transfer over shared memory. For DataReaders running on a different host, the
DataWriter won’t use Zero Copy transfer over shared memory, but can benefit from FlatData language
binding. Therefore, when you have writers and readers running on the same and different hosts, it is recom-
mended to use both Zero Copy transfer over shared memory and FlatData language binding, and let the
DataWriter use the correct option for each DataReader.

For more information, see 23.1.4 FlatData Language Binding below and 23.1.5 Zero Copy Transfer
Over Shared Memory on page 968.

23.1.4 FlatData Language Binding

FlatData language binding offers the following benefits:

l Reduced number of copies: from four to two for both SHMEM and UDP transports (see Figure
23.4: Number of Copies Using FlatData Language Binding on the previous page), because there is
no need to serialize and deserialize a sample.

l Reduced memory consumption and CPU load, due to reduced data copying.

l Improved latency for large data samples.

23.1.4.1 FlatData Representation

When you create a FlatData sample (see 23.1.4.2.2 Programming with FlatData Language Binding on
page 958), the in-memory representation for the sample buffer is XCDR encoding version 2 (XCDR2),
using the endianness of the host where the sample is created to populate the buffer. The use of the host

955

23.1.4 FlatData Language Binding

956

platform endianness allows fast access to the sample content, because the setters and getters do not have to
change the endianness.

If you use a DataReader to read a FlatData sample that was received from a DataWriter running on a plat-
form with a different endianness, however, direct access to the sample content is not possible, making the
subscribing application less performant.

Note: Because the in-memory representation of a FlatData sample is XCDR2 and older versions of Con-
next DDS use encoding version 1 (XCDR), applications using the FlatData language binding will not com-
municate with older versions of Connext DDS. See Choosing the Right Data Representation, in the Data
Representation chapter of the RTI Connext DDS Core Libraries Extensible Types Guide.

23.1.4.2 Using FlatData Language Binding

The following sections contain more information about using FlatData language binding:

l 23.1.4.2.1 Selecting FlatData Language Binding below

l 23.1.4.2.2 Programming with FlatData Language Binding on page 958

l 23.1.4.3 Languages Supported by FlatData Language Binding on page 967

l 23.1.4.3.1 Interactions with RTI Security Plugins and Compression on page 967

l 23.1.4.3.2 Notes on Batching on page 968

For examples of FlatData language binding and Zero Copy transfer over shared memory, including
example code, see https://community.rti.com/kb/flatdata-and-zerocopy-examples.

23.1.4.2.1 Selecting FlatData Language Binding

To select FlatData as the language binding of a type, annotate it with @language_binding(FLAT_
DATA). (See 3.3.9.9 The @language_binding Annotation on page 120.)

For example, consider a surveillance application in which high-definition (HD) video signal is published
and subscribed to. The application publishes a Topic of the type CameraImage. This is the IDL:
enum Format {

RGB,
HSV,
YUV

};

@final
@language_binding(FLAT_DATA)
struct Resolution {
int32 height;
int32 width;
};

https://community.rti.com/kb/flatdata-and-zerocopy-examples

23.1.4 FlatData Language Binding

@final
@language_binding(FLAT_DATA)
struct Pixel {

octet red;
octet green;
octet blue;

};

const int32 MAX_IMAGE_SIZE = 8294400;

@mutable
@language_binding(FLAT_DATA)
struct CameraImage {
string<128> source;
Format format;
Resolution resolution;
sequence<Pixel, MAX_IMAGE_SIZE> pixels;
};

The language binding annotation supports two values: FLAT_DATA and PLAIN (default). PLAIN refers
to the regular in-memory representation, where an IDL struct maps to a C++ class or C struct.

There are some restrictions regarding the kinds of structures, value types, and unions to which the FlatData
language binding can be applied.

For final types, the FlatData language binding can be applied only to fixed-size types. A fixed-size type is
a type whose wire representation always has the same size. This includes primitive types, arrays of fixed-
size types, and structs containing only members of fix-size types. Unions are not fixed-size types.1

The FlatData language binding can be applied to any mutable type. This enables support for variable-size
types containing bounded sequences, bounded strings, or optional members (unbounded sequences or
strings are not supported with FlatData). It also allows using unions.

FlatData cannot be applied to extensible types.

Final types provide the best performance, while mutable types are the most flexible. Typically, the best
compromise between flexibility and performance comes from a mutable type whose largest member is
either a final type or a sequence of final elements. In the CameraImage example, the top-level type is mut-
able, which allows for type evolution, optional members, and variable-size members (such as the source
string member). On the other hand, its member pixels, which contains the bulk of the data, is defined as a
sequence of the final type Pixel, which allows for an efficient manipulation.

1 These restrictions on final types only apply to the FlatData language binding. Final types with the plain language binding
can be variable-size.

957

23.1.4 FlatData Language Binding

958

23.1.4.2.2 Programming with FlatData Language Binding

When a type is marked with the FlatData language binding, the in-memory representation for samples of
this type is equal to the wire representation (according to XCDR version 21). That is, the data sample is in
its serialized format at all times. To facilitate accessing and setting the sample content, RTI Code Gen-
erator generates helper types that provide the operations to create and access these data samples. These
helper types are Samples, Offsets, and Builders.

A FlatData Sample is a buffer holding the wire representation of the data. In the code generated for the pre-
vious IDL, a sample of the type CameraImage contains this buffer. This is the top-level object that can be
written or read:
typedef rti::flat::Sample<CameraImageOffset> CameraImage;

(Note: These examples show code for the Modern C++ API. See 23.1.4.3 Languages Supported by
FlatData Language Binding on page 967.)

To access this sample, applications use Offset types. An Offset represents the type of a member and its loc-
ation in the buffer. An Offset can be described as an “iterator,” a light-weight object that points to the data,
but doesn’t own it. Copying an Offset copies the “iterator,” not the data it points to.
class NDDSUSERDllExport CameraImageConstOffset : public rti::flat::MutableOffset {
public:
const rti::flat::StringOffset source() const;
Format format() const;
Resolution::ConstOffset resolution() const;
rti::flat::SequenceOffset<Pixel::ConstOffset> pixels() const;

};

class NDDSUSERDllExport CameraImageOffset : public rti::flat::MutableOffset {
public:
typedef CameraImageConstOffset ConstOffset;

// Const accessors
const rti::flat::StringOffset source() const;
Format format() const;
Resolution::ConstOffset resolution() const;
rti::flat::SequenceOffset<Pixel::ConstOffset> pixels() const;

// Modifiers
rti::flat::StringOffset source();
bool format(Format value);
Resolution::Offset resolution();
rti::flat::SequenceOffset<Pixel::Offset> pixels();

};

There are two kinds of Offset types:

1 See Data Representation, in the RTI Connext DDS Core Libraries Extensible Types Guide for more information on
XCDR2.

23.1.4 FlatData Language Binding

l Generated, named Offsets, to access a user-defined struct or union type (CameraImageOffset,
PixelOffset). They provide accessors to directly get or set primitive members, and one getter for
each non-primitive member to retrieve its corresponding Offset.

Each named offset has a corresponding read-only version (CameraImageConstOffset). This is ana-
logous to a read-only iterator (e.g., std::vector<T>::const_iterator and std::vector<T>::iterator).

l Offsets to arrays, sequences, strings, and other IDL types. They provide access to their elements.
Primitive elements can be accessed directly; non-primitive elements are accessed through Offsets for
their types.

For details on all the Offset types and their interface, see the API Reference HTML documentation, under
RTI Connext DDS API Reference > Topic Module > FlatData Topic-Types.

The function CameraImage::root() provides the Offset to the top-level type (CameraImageOffset). If
the sample is const (for example, in a LoanedSamples container), root() returns a read-only offset (Cam-
eraImageConstOffset).

To create variable-size (mutable) data-samples, applications use Builders. A Builder type provides the
interface to create a mutable sample member by member. Once all the desired members for a sample have
been added, the Builder is “finished,” returning the built sample, which can be published.
class NDDSUSERDllExport CameraImageBuilder : public rti::flat::AggregationBuilder {
public:
typedef CameraImageOffset Offset;

Offset finish();
CameraImage * finish_sample();

rti::flat::StringBuilder build_source();
bool add_format(Format value);
Resolution::Offset add_resolution();
rti::flat::FinalSequenceBuilder<Pixel::Offset> build_pixels();

};

Builders provide three kinds of functions:

l add_<member> functions insert a member of a final type, returning an Offset to it.

l build_<member> functions provide another Builder to create a member of a mutable type.

959

23.1.4 FlatData Language Binding

960

l finish and finish_sample end the construction of a member or a sample, respectively.

Similarly to Offsets, Builders can correspond to user-defined struct and union types, or other IDL types
such as sequences, arrays, and strings. For details on all the Builder types see the API Reference HTML
documentation.

The following sections summarize how to use FlatData language binding:

l Creating a FlatData sample below

l Writing a FlatData sample on page 963

l Reading a FlatData sample on page 963

l Working with unmanaged FlatData samples on page 964

l Multi-threading notes on page 965

l Notes on extensible types on page 966

Creating a FlatData sample

The following sections assume you have created a DataWriter for the type Pixel or CameraImage, fol-
lowing the usual process.

To write FlatData, first create a FlatData sample. The way to create a sample varies depending on whether
the type is final or mutable. In both cases, this section shows how to create DataWriter-managed samples.
See also Working with unmanaged FlatData samples on page 964.

Creating a FlatData sample for a final type

In this section we will create a sample for the final type Pixel. To create a sample for the mutable type
CameraImage, see Creating a FlatData sample for a mutable type after this.

Samples for final FlatData types are created directly with a single call to the DataWriter function get_loan.
The DataWriter manages this sample and will return it to a pool at some point after the sample is written.
Pixel *pixel_sample = writer.extensions().get_loan();

pixel_sample contains the buffer that can be written. To set its values, first locate the position of the top-
level type:

23.1.4 FlatData Language Binding

PixelOffset pixel = pixel_sample->root();

The root() function returns PixelOffset, which points to the position where the data begins. To set the val-
ues, use the following setters:
pixel.red(10);
pixel.green(20);
pixel.blue(30);

Creating a FlatData sample for a mutable type

Samples for mutable types are created using Builders. To obtain a CameraImageBuilder to build a Cam-
eraImage sample, use the function build_data:
CameraImageBuilder image_builder = rti::flat::build_data(writer);

This function loans the memory necessary to create a CameraImage sample from the DataWriter and
provides a CameraImageBuilder to populate it.

Use the Builder functions to set the sample’s members in any order. For a FlatData type that is also mut-
able, such as this one, you must call methods ("add" or "build") to set all the members you want to be sent.
If you don't set a member's value, that member won't be sent by Connext DDS. If a member is a key of the
data-type, you must set its value; otherwise the DataWriter's write operation will fail. Effectively, all non-
key members of a FlatData, mutable data type are treated as if they were @optional. (See Optional Mem-
bers, in the Type System Enhancements chapter of the RTI Connext DDS Core Libraries Extensible
Types Guide.)

These Builder functions work on a pre-allocated buffer; they do not allocate any additional memory.

First, we add the member format. As a primitive member, the function add_format directly adds the mem-
ber and sets its value:
image_builder.add_format(Format::RGB);

Next, we add the member resolution. Its type being final, the function add_resolution adds the member
and provides the Offset that allows setting its values:
ResolutionOffset resolution = image_builder.add_resolution();
resolution.height(100);
resolution.width(200);

To build the string member source, the function build_source returns a StringBuilder. We use this
builder (in this case it’s as simple as calling set_string), and then call finish. The function finish (not to be
confused with finish_sample) completes the construction of the member and renders source_builder
invalid.
auto source_builder = image_builder.build_source();
source_builder.set_string(“CAM-1”);
source_builder.finish();

Since this builder is so simple, it is possible to simplify the above code:

961

23.1.4 FlatData Language Binding

962

image_builder.build_source().set_string("CAM-1");

(The Builder destructor takes care of calling finish.)

To create the pixels member, we build a sequence of Pixels:
auto pixels_builder = image_builder.build_pixels();

There are two ways to populate this member.

Method 1: add and initialize each element:
for (int i = 0; i < 20000; i++) {

PixelOffset pixel = pixels_builder.add_next();
pixel.red(i % 256);
pixel.green((i + 1) % 256);
pixel.blue((i + 2) % 256);

}
pixels_builder.finish();

Builders for sequences with elements of a final type provide the function add_next to add the elements.
When the element type is mutable, the sequence (and array) Builder provides the function build_next,
which provides a Builder for each element. See more details in the API Reference HTML documentation.

Method 2: cast the elements in the sequence to the equivalent C++ plain type. This method only works for
types that meet the conditions required by rti::flat::plain_cast, as described in the API Reference HTML
documentation. Basically, the in-memory representation must match the XCDR2 serialized representation.
Pixelmeets these conditions.

Method 2 is more efficient. First, we use the Builder function add_n to add 20000 elements at once, leav-
ing them uninitialized. Then, after finishing the Builder, we obtain the Offset to the member, cast it, and
manipulate the data as a plain C++ type:
pixels_builder.add_n(20000);
auto pixels_offset = pixels_builder.finish();

auto plain_pixels = rti::flat::plain_cast(pixels_offset);
for (int i = 0; i < 20000; i++) {

plain_pixels[i].red(i % 256);
plain_pixels[i].green((i + 1) % 256);
plain_pixels[i].blue((i + 2) % 256);

}

The function rti::flat::plain_cast casts the position in memory that pixels_offset points to into a C-style
array of PixelPlainHelper, a type with the same IDL definition as Pixel, but with@language_binding
(PLAIN). plain_cast can receive an offset to a final struct, or an offset to an array or sequence of final
structs or primitive types. See the API Reference HTML documentation for more information.

Finally, call finish_sample to obtain the complete sample. After this, the Builder instance is invalid and
cannot be further used.

23.1.4 FlatData Language Binding

CameraImage *image_sample = image_builder.finish_sample();

Once the sample has been created, it is still possible to modify its values, as long as these modifications
don’t change the size. For example, it is possible to change the value of an existing pixel, but it’s not pos-
sible to add a new one:
auto pixels_offset = image_sample->root().pixels();
pixels_offset.get_element(100).blue(0);

The next section shows how to write the sample.

Writing a FlatData sample

When you write a sample using a regular DataWriter (for a type with a plain language binding), the
DataWriter copies the sample in its internal queue, so when write() ends, the application still owns the
sample. A DataWriter for a FlatData type, however, doesn’t copy the sample; it keeps a reference. You
yield ownership of the data sample from the moment you call write().
writer.write(*image_sample);

The DataWriter will decide when to return samples created with get_loan or build_data to a pool, where
the sample will be reused.

To write a new sample, don’t use image_sample again, but obtain a new one with get_loan or build a
new one with build_data.

If the sample cannot be written, to return it to the DataWriter pool call:
writer.extensions().discard_loan(*image_sample);

Or, if the sample has not been completely built yet, discard the Builder:
rti::flat::discard_builder(writer, image_builder);

Reading a FlatData sample

The method for reading data for a FlatData type is the same regardless of whether the type is final or mut-
able.

Create a DataReader as you normally would; see 8.3.1 Creating DataReaders on page 515.

Read the data samples:
dds::sub::LoanedSamples<CameraImage> samples = camera_reader.take();

Let’s work with the first sample (assuming samples.length() > 0 and samples[0].info().valid()):
const CameraImage& image_sample = samples[0].data();

Using the root Offset and the Offset to the members, the following code prints the sample values. Note
that in this example, image_sample is const, so camera_image is a CameraImageConstOffset, which
only allows reading the buffer, not modifying it.

963

23.1.4 FlatData Language Binding

964

auto camera_image = image_sample->root();

std::cout << "Source: " << camera_image.source().get_string() << std::endl;
std::cout << "Timestamp: " << camera_image.timestamp() << std::endl;
std::cout << "Format: " << camera_image.format() << std::endl;

auto resolution = camera_image.resolution();
std::cout << "Resolution (height: " << resolution.height()

<< ", width: " << resolution.width() << ")\n";

Some members of image_sample may not exist. For example, if the field resolution wasn't received, then
resolution.is_null() is true; if timestamp is not received, camera_image.timestamp() returns 0.

To access the sequence of pixels, the same two methods that allowed building it (element by element or
plain cast) are available:

Method 1 (access each element offset):
for (auto pixel : camera_image.pixels()) {

std::cout << "Pixel (" << pixel.red() << ", " << pixel.green()
<< ", " << pixel.blue() << ")\n";

}

Method 2 (plain_cast):
auto pixel_count = camera_image.pixels().element_count();
auto plain_pixels = rti::flat::plain_cast(camera_image.pixels());
for (int i = 0; i < pixel_count; i++) {

const auto& pixel = plain_pixels[i];
std::cout << "Pixel (" << pixel.red() << ", " << pixel.green()

<< ", " << pixel.blue() << ")\n";
}

Method 2 is more efficient, provided that the type meets the requirements of plain_cast. Also, the endi-
anness of the publishing application must be the same as the local endianness.

Note that you can directly print the sample:
std::cout << *image_sample << std::endl;

Working with unmanaged FlatData samples

The previous sections describe how to create and write DataWriter-managed samples (via get_loan or
build_data). While this is the recommended and easiest way, sometimes applications may need to use
unmanaged samples. For example, they may need to reuse the same sample after it is written or to obtain
the memory from some other source.

Note that a given DataWriter cannot write both unmanaged and managed samples. The functions get_
loan or build_data will fail if an unmanaged sample has been written. Conversely, the DataWriter will
fail to write an unmanaged sample if get_loan or build_data have been called.

To create a CameraImage using memory from an arbitrary buffer, my_buffer, with a capacity ofmy_buf-
fer_size bytes, use the following constructor:

23.1.4 FlatData Language Binding

unsigned char *my_buffer = ...;
unsigned int my_buffer_size = ...;
CameraImageBuilder image_builder(my_buffer, my_buffer_size);
// use image_builder...
CameraImage *image_sample = image_builder.finish_sample();

image_builder will fail if it runs out of space. The maximum size of a CameraImage can be obtained
from its dynamic type:
unsigned int max_size =
rti::topic::dynamic_type<CameraImage>::get().cdr_serialized_sample_max_size();

After writing image_sample, the DataWriter takes ownership of it. In order to reuse the sample, the applic-
ation needs to monitor the on_sample_removed callback in the DataWriter listener, and correlate the
cookie it receives with the sample. The following is a simple DataWriterListener implementation that does
that:
class FlatDataWriterListener

: public dds::pub::NoOpDataWriterListener<CameraImage> {
public:

void on_sample_removed(
dds::pub::DataWriter<CameraImage>& writer,
const rti::core::Cookie& cookie) override

{
// The cookie identifies the sample being removed
last_removed_sample = cookie.to_pointer<CameraImage>();

}

CameraImage *last_removed_sample = NULL;
};

The application will need to wait until last_removed_sample is equal to image_sample. This indicates
that the DataWriter no longer needs to hold ownership of image_sample.

Another way to create an unmanaged sample is CameraImage::create_data() or Pixel::create_data()
(the result of CameraImage::create_data()must be passed to the CameraImageBuilder constructor
mentioned before). Samples can be copied with the clone() function. These samples need to be released
with the respective delete_data() functions. See the API Reference HTML documentation for more
information.

Multi-threading notes

l It’s not safe to use the same Offset object in parallel, even for reading. For efficiency, each offset
object contains an internal state that may change when accessing a member.

void my_thread1(CameraImageOffset& camera_image)
{

auto format = camera_image.format();
}

void my_thread2(CameraImageOffset& camera_image)

965

23.1.4 FlatData Language Binding

966

{
auto resolution = camera_image.resolution();

}

// Unsafe:
auto camera_image = camera_image_sample.root();
std::async(my_thread1, camera_image);
std::async(my_thread2, camera_image);

l It is safe to use different Offset objects to read the same member in a sample.

// Safe
auto camera_image1 = camera_image_sample.root();
auto camera_image2 = camera_image_sample.root();
std::async(my_thread1, camera_image1);
std::async(my_thread2, camera_image2);

l It is not safe to build a sample using a Builder in parallel.

Notes on extensible types

There are a few differences in how a plain and a FlatData DataReader behave when they receive samples
of types that are different but compatible.

Before a DataReader and DataWriter can communicate, their types are inspected to determine if they are
compatible. The same is true when using FlatData; however, even after two types have been deemed com-
patible, there may be specific data samples that are not.

DataReaders for plain types verify sample compatibility during data deserialization, but DataReaders for
FlatData types don’t deserialize the data, passing FlatData samples directly to the application. For that
reason, there may be situations where a plain DataReader would lose or reject a data-sample, while a
DataReader for a FlatData type with the same definition will pass the same sample to the application.
Therefore, if you are using FlatData you may need to explicitly check if all the received samples are con-
sistent with your application logic. For more information on the rules that determine the assignability of a
sample, see the RTI Connext DDS Core Libraries Extensible Types Guide (see the section “Verifying
Sample Consistency: Sample Assignability”) or the OMG 'Extensible and Dynamic Topic Types for DDS'
specification, version 1.3.

For example, a FlatData DataReader won’t drop a sample when a sequence (or a string) member exceeds
the bounds in the reader’s type definition, and the application will be able to read this sequence (or string).
This can only happen if ignore_sequence_bounds (or ignore_string_bounds) in TypeCon-
sistencyEnforcement is set to true; otherwise the DataWriter’s type won't match the DataReader’s. The
@min and@max annotations are another example. FlatData DataReaders will not enforce the
@min/@max range set for a member, and applications will be able to access such samples.

Another difference in behavior involves the reception of samples that don’t include some data members.
When a regular DataReader for a mutable (plain) type receives a data sample that doesn’t include one of
its non-optional members, it automatically assigns a default value during the data deserialization. A

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

23.1.4 FlatData Language Binding

FlatData DataReader for a mutable (FlatData) type will not do that. Instead, if the application tries to
access that member, the corresponding member getter will return a null Offset. Only if the member is prim-
itive will it return a default value. This means that, for a FlatData DataReader in this case, all non-prim-
itive members will be treated as if they were optional.

23.1.4.3 Languages Supported by FlatData Language Binding

The FlatData language binding is supported in the Modern and Traditional C++ APIs:

l rtiddsgen -language C++11 generates code for the Modern C++ API.

l rtiddsgen -language C++ generates code for the Traditional C++ API.

The FlatData language binding is basically the same in both APIs, as described in the previous sections,
with a few differences:

l Modern C++ may throw exceptions in Sample, Offset, and Builder operations, such as dds::-
core::PreconditionNotMetError; Traditional C++ doesn’t throw exceptions and in these cases it
would return invalid objects. See the API Reference HTML documentation for each language for
details.

l Modern C++ maps integer types to int32_t, uint16_t, etc; Traditional C++ uses DDS_Long, DDS_
UnsignedShort, etc. This is consistent with these languages’ respective plain language bindings.

l Modern C++ provides an overloaded operator<< to print a sample; Traditional C++ uses
FooTypeSupport::print_data. Both provide a function to transform to a string with format
options. This behavior is also consistent with the plain binding.

23.1.4.3.1 Interactions with RTI Security Plugins and Compression

When the FlatData language binding is used in combination with either payload encryption or com-
pression (see 7.5.3 DATA_REPRESENTATION QosPolicy on page 381), there is no reduction in the
number of copies used to send or receive the samples. There are unavoidable copies that must be made dur-
ing the encryption/decryption and/or compression/decompression processes, resulting in the same number
of copies that would be made if you were using regular data in combination with these features. This is a
known issue that will be addressed in future releases (see "Known Issues" in the RTI Connext DDS Core
Libraries Release Notes).

Therefore, using the FlatData language binding in combination with payload encryption and/or com-
pression is not generally useful. However, when using Zero Copy transfer over shared memory, you will
also need to use FlatData for variable-sized data types. (See 23.1.3 Choosing between FlatData Language
Binding and Zero Copy Transfer over Shared Memory on page 955.) In this case, you may want to con-
figure the DataWriter to use encryption/compression when sending to DataReaders running on different
hosts, even though you are not saving copies. This configuration allows using Zero Copy for DataReaders
running on the same host as the DataWriter, while encrypting/compressing data that is sent to DataRead-
ers on different hosts.

967

23.1.5 Zero Copy Transfer Over Shared Memory

968

23.1.4.3.2 Notes on Batching

A FlatData DataWriter (a DataWriter that sends FlatData samples) cannot batch samples. That is, Connext
DDS will not let you set up a FlatData DataWriter to use batching. Both FlatData and regular DataRead-
ers, however, can receive batched samples from a regular DataWriter as well as all samples from a
FlatData DataWriter.

23.1.5 Zero Copy Transfer Over Shared Memory

For communication within the same node using the built-in shared memory transport, by default Connext
DDS copies a sample four times (see Figure 23.3: Number of Copies Out-of-the-Box on page 953).
FlatData language binding reduces the number of copies to two (see Figure 23.4: Number of Copies Using
FlatData Language Binding on page 954): the copy of the sample into the shared memory segment in the
publishing application and the copy to reassemble the sample in the subscribing application. Two copies,
however, may still be too many depending on the sample size and system requirements.

Zero Copy transfer over shared memory, provided as a separate library called nddsmetp, allows reducing
the number of copies to zero for communications within the same host. The nddsmetp library can be linked
with Connext DDS C or C++ libraries. This feature accomplishes zero copies by using the shared memory
(SHMEM) built-in transport to send 16-byte references to samples within a SHMEM segment owned by
the DataWriter, instead of using the SHMEM built-in transport to send the serialized sample content by
making a copy. See Figure 23.5: Zero Copy Transfer Over Shared Memory below.

With Zero Copy transfer over shared memory, there is no need for the DataWriter to serialize a sample,
and there is no need for the DataReader to deserialize an incoming sample since the sample is accessed dir-
ectly on the SHMEM segment created by the DataWriter.
Figure 23.5: Zero Copy Transfer Over Shared Memory

23.1.5 Zero Copy Transfer Over Shared Memory

This feature offers the following benefits:

l Number of copies is reduced from four to zero (see SHMEM in Figure 23.3: Number of Copies
Out-of-the-Box on page 953). Instead of transferring the entire sample by making multiple copies,
only the location in shared memory is distributed to DataReaders (see Figure 23.5: Zero Copy
Transfer Over Shared Memory on the previous page).

l Because of this reduced data copying, memory consumption and CPU load are also reduced.

l Latency is independent of the size of the sample.

l Fragmentation is not required when using Zero Copy transfer over shared memory because the
DataWriter exchanges SHMEM references (only 16-bytes) with DataReaders and not the full
sample.

l Data can still be sent off-board, simplifying application deployment and configuration. When the
data is sent off-board, the middleware is still making the same copies described in Figure 23.3: Num-
ber of Copies Out-of-the-Box on page 953. To reduce the number of copies for sending off-board,
use FlatData language binding in conjunction with Zero Copy transfer over shared memory.

Note: A Zero Copy DataWriter is defined as any DataWriter with the ability to send a sample reference.
You can have a DataWriter that does both: sends sample references to Zero Copy DataReaders, and
sends serialized samples to non-Zero Copy DataReaders. In this case, the DataWriter is still considered a
Zero Copy DataWriter in this documentation.

23.1.5.1 Using Zero Copy Transfer Over Shared Memory

To use Zero Copy transfer over shared memory, perform the following basic steps:

l Identify types that require Zero Copy transfer over shared memory and annotate them with@trans-
fer_mode(SHMEM_REF) in the IDL files. (See: 3.3.9.8 The @transfer_mode annotation on
page 119.)

Note: Zero Copy transfer over shared memory requires the FlatData language binding when the
type is variable-size.

l Use the DataWriter’s get_loan() API to get a loaned sample for writing with Zero Copy. (You
would use this API to create the sample rather than creating the sample using the TypeSupport. See
the example in the following sections and the API Reference HTML documentation for more
information on get_loan().)

l Link the publisher and subscriber application with the additional Zero Copy library, nddsmetp. (RTI
Code Generator (rtiddsgen) generates examples that link nddsmetp for you automatically. If you are
using a custom build system, make sure you link with nddsmetp.)

969

23.1.5 Zero Copy Transfer Over Shared Memory

970

RTI Code Generator generates additional TypePlugin code when a type is annotated with@transfer_
mode(SHMEM_REF) in the IDL files. This code allows a DataWriter and a DataReader to com-
municate using a reference to the sample in shared memory (see Figure 23.5: Zero Copy Transfer Over
Shared Memory on page 968). In addition to sending a sample reference, the DataWriter can also send the
serialized sample to a DataReader that doesn’t support Zero Copy transfer over shared memory.

The following sections contain more information about using Zero Copy transfer over shared memory:

l 23.1.5.1.1 Sending data with Zero Copy transfer over shared memory below

l 23.1.5.1.2 Receiving data with Zero Copy transfer over shared memory on page 972

l 23.1.5.1.3 Checking data consistency with Zero Copy transfer over shared memory on page 972

l 23.1.5.1.4 Languages Supported by Zero Copy Transfer Over Shared Memory on page 973

l 23.1.5.1.5 Interactions with RTI Security Plugins and Compression on page 974

l 23.1.5.1.6 Notes on Batching on page 974

For examples of FlatData language binding and Zero Copy transfer over shared memory, including
example code, see https://community.rti.com/kb/flatdata-and-zerocopy-examples.

23.1.5.1.1 Sending data with Zero Copy transfer over shared memory

The following example shows how to use Zero Copy transfer mode for a surveillance application in which
high-definition (HD) video signal is published and subscribed to. The application publishes a Topic of the
type CameraImage. This is the IDL:
enum Format {

RGB,
HSV,
YUV

};

struct Resolution {
int32 height;
int32 width;

};

const long IMAGE_SIZE = 8294400 * 3;

@transfer_mode(SHMEM_REF)
struct CameraImage {
int64 timestamp;
Format format;
Resolution resolution;
octet data[IMAGE_SIZE];

};

https://community.rti.com/kb/flatdata-and-zerocopy-examples

23.1.5 Zero Copy Transfer Over Shared Memory

The CameraImage type is annotated with @transfer_mode(SHMEM_REF) to allow Zero Copy com-
munication. Note that it is sufficient to annotate only top-level types with this annotation.

Any final or appendable type annotated with @transfer_mode(SHMEM_REF) should be a fixed-size
type. This means the type can include primitive members, arrays of fixed-size types, and structs containing
only members of fixed-size types. To use a variable-sized type, the type should be annotated with @lan-
guage_binding(FLAT_DATA) and @mutable in combination with @transfer_mode(SHMEM_REF).

With Zero Copy transfer mode, an application writes samples coming from a shared memory sample pool
created by a Zero Copy DataWriter. Therefore, create a DataWriter before creating a sample. The steps
for creating a Zero Copy DataWriter are the same as for a regular DataWriter.
const int MY_DOMAIN_ID = 0;
dds::domain::DomainParticipant participant(MY_DOMAIN_ID);
dds::topic::Topic<CameraImage> camera_topic(participant, "Camera");
dds::pub::DataWriter<CameraImage> camera_writer(

rti::pub::implicit_publisher(participant),
camera_topic);

To get a sample from shared memory, use the DataWriter’s get_loan() API:
CameraImage *camera_image = camera_writer->get_loan();

The sample returned by get_loan() is uninitialized by default (the members are not set to default values). If
you would like to allow the DataWriter to return an initialized sample from get_loan(), set initialize_
writer_loaned_sample to true in the 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS
Extension) on page 402.

Populate the fields of the sample as you would a regular sample:
camera_image->timestamp(12345678);
camera_image->format(Format::HSV);
camera_image->resolution().height(1024);
camera_image->resolution().width(2048);
// populate the image data

The example above, showing the population of the fields, assumes regular PLAIN language binding. Zero
Copy transfer over shared memory also works with types using FLAT_DATA language binding. In this
case, you must use the FlatData API described in 23.1.4 FlatData Language Binding on page 955 to pop-
ulate the sample.

The number of samples in the shared memory sample pool created by the DataWriter can be configured
using the writer_loaned_sample_allocation settings in the 7.5.6 DATA_WRITER_RESOURCE_
LIMITS QosPolicy (DDS Extension) on page 402.

Initially all the samples are in a free state. When you call the DataWriter’s get_loan(), the DataWriter
provides a sample from this pool, and its state changes to allocated. The samples are provided using an
LRU (Least Recently Used) policy.

Write the sample with the regular write operation:

971

23.1.5 Zero Copy Transfer Over Shared Memory

972

camera_writer.write(*camera_image);

When a sample is written, its state transitions from allocated to enqueued, and the DataWriter takes
responsibility for returning the sample back to the shared memory pool. The sample remains in the
enqueued state until it is removed from the DataWriter queue. When this happens, the sample is put back
into the shared memory sample pool, and its state transitions from enqueued to removed. At this time, a
new call to the DataWriter’s get_loan()may return the same sample.

You should not try to reuse a sample that has been written with a DataWriter to publish a new value.
Instead, get a new sample using the DataWriter’s get_loan() and populate its content with the new value.

A sample that has not been written can be returned to the shared memory pool by using the DataWriter’s
discard_loan():
camera_writer->discard_loan(camera_image)

The shared memory sample pool is destroyed when the DataWriter is deleted.

See the API Reference HTML documentation for more information on get_loan().

23.1.5.1.2 Receiving data with Zero Copy transfer over shared memory

Create a DataReader as you normally would; see 8.3.1 Creating DataReaders on page 515.

Read the data samples:
dds::sub::LoanedSamples<CameraImage> samples = camera_reader.take();

Let’s work with the first sample (assuming samples.length() > 0 and samples[0].info().valid()):
const CameraImage& camera_image_sample = samples[0].data();
// Process the sample
process_data(camera_image_sample);
if (!camera_reader->is_data_consistent(camera_image_sample)) {

// Sample was overwritten, ignore this sample
rollback(camera_image_sample);

}

For more information on the DataReader’s is_data_consistent() API, see 23.1.5.1.3 Checking data con-
sistency with Zero Copy transfer over shared memory below.

23.1.5.1.3 Checking data consistency with Zero Copy transfer over shared memory

Zero Copy transfer over shared memory makes no copies. This means the sample being processed in the
subscribing application actually resides in the DataWriter's send queue. The DataWriter in the publishing
application can decide to reuse this memory to send a different sample before or while the original sample
is being processed by a DataReader, which can lead to data consistency problems. There are several ways
to prevent and detect these inconsistencies.

A reliable DataWriter will not attempt to reuse sample memory if the sample has not been acknowledged.
With reliable communication and application-level acknowledgments (see 7.3.12 Application Acknow-

23.1.5 Zero Copy Transfer Over Shared Memory

ledgment on page 318), the subscribing application can prevent the writer from reusing the sample by
delaying the acknowledgment until after the sample has been processed.

Note: Application Acknowledgment is not currently available with RTI Connext DDS Micro.

Applications can also use other, custom, application-level mechanisms to guarantee data consistency
between the publisher and the subscriber.

Without an application-level synchronization mechansim, when the application's DataWriter and
DataReader are not synchronized, the subscribing application can use the DataReader's is_data_con-
sistent() API to detect data inconsistencies, as long as the type is not annotated with @language_binding
(FLAT_DATA). If the type is FlatData, reading a data sample while the DataWriter is reusing it is
undefined behavior.

If the type is not FlatData, for is_data_consistent() to work, configure the DataWriter’s 7.5.25
TRANSFER_MODE QosPolicy on page 458 setting writer_qos.transfer_mode.shmem_ref_set-
tings.enable_data_consistency_check to true (the default). A DataWriter with this setting sends a special
sequence number associated with each sample as an inline QoS (metadata), which can be used to check
the sample's validity at the DataReader with the DataReader’s is_data_consistent() API. Simply, the API
checks if the shared memory space has been reused for that sample. If it has, the data is inconsistent.

If data consistency checks are disabled, is_data_consistent() will return a PRECONDITION_NOT_MET
error.

The is_data_consistent() API helps detect a data inconsistency, not prevent it. Therefore, the recom-
mended way of using the API is to follow this general scheme:

process(data);
if (! reader->is_data_consistent(data, sample_info))

discard(processed_data);

When is_data_consistent() returns true after the sample has been processed, subscribers can be sure pro-
cessed data was not inconsistent and can be trusted (e.g., by committing it to a database). When is_data_
consistent() returns false, processed data should be discarded. If is_data_consistent() is only called before
processing data, it could return true at that point but the sample could be modified while being processed,
leading to a race condition. Therefore, if you want to call is_data_consistent() before processing the data
(for instance, because the processing is expensive), that is fine, but be sure to also call it after processing
the data.

If the publisher sends data in best-effort mode and the expected send frequency is known in advance, the
DataWriter's resource limits can be configured with an appropriate writer_loaned_sample_allocation
max count (see the API Reference HTML documentation) to minimize the chances of sample reuse and of
is_data_consistent() returning false.

23.1.5.1.4 Languages Supported by Zero Copy Transfer Over Shared Memory

Zero Copy transfer over shared memory is supported in the C, Modern C++, and Traditional C++ APIs.

973

23.1.5 Zero Copy Transfer Over Shared Memory

974

23.1.5.1.5 Interactions with RTI Security Plugins and Compression

When you use security in combination with Zero Copy transfer over shared memory, the samples in the
shared memory segment are not serialized and are therefore not protected, regardless of the selected pro-
tection kind. With Zero Copy, Security Plugins only protects the 16-byte references sent to DataReaders.
You can use any protection kind to protect the reference (see "Securing DDS Messages on the Wire" and
"Understanding ProtectionKinds" in the RTI Security Plugins User's Manual).

If a DataWriter is using Zero Copy transfer over shared memory, the samples sent to DataReaders over
non-shared memory transports will be serialized and protected according to the configured protection kinds
(see "Related Governance Rules" in the RTI Security Plugins User's Manual).

Likewise, with compression (see 7.5.3 DATA_REPRESENTATION QosPolicy on page 381), the
samples in the shared memory segment are not serialized and are therefore not compressed, regardless of
the compression setting. However, the shared memory reference (see 23.1.5 Zero Copy Transfer Over
Shared Memory on page 968) will be compressed if the writer_compression_threshold is set to a value
less than or equal to 16 bytes. To avoid this compression when using Zero Copy, it is recommended to set
the writer_compression_threshold to a value greater than 16.

If a DataWriter is using Zero Copy transfer over shared memory, the samples sent to DataReaders over
non-shared memory transports will be serialized and compressed according to the compression settings.

23.1.5.1.6 Notes on Batching

A Zero Copy DataWriter (a DataWriter that sends sample references) cannot batch samples. That is, Con-
next DDS will not let you set up a Zero Copy DataWriter to use batching. A Zero Copy DataReader, how-
ever, can receive batched samples from a regular DataWriter as well as all samples from a Zero Copy
DataWriter.

23.1.5.2 Other Considerations

23.1.5.2.1 Type Matching for Zero Copy Transfer Over Shared Memory

The default value for TypeConsistencyEnforcementQosPolicy kind is AUTO_TYPE_COERCION.

For a regular DataReader, AUTO_TYPE_COERCION is translated to ALLOW_TYPE_COERCION.
A Zero Copy DataReader, however, should use a topic type that is identical to its matched Zero Copy
DataWriter’s topic type, because it accesses the sample directly in the DataWriter queue. Therefore,
AUTO_TYPE_COERCION for a Zero Copy DataReader is translated to DISALLOW_TYPE_
COERCION. The creation of a Zero Copy DataReader with ALLOW_TYPE_COERCION will return
an error.

See 8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy on page 599.

23.1.5.2.2 Resource Limits Related to Zero Copy Transfer Over Shared Memory

There are resource limits on the DataWriter, DataReader, and DomainParticipant that configure different
aspects of Zero Copy transfer over shared memory.

23.2 Reducing Bandwidth Usage

DataWriter Resource Limits

The writer_loaned_sample_allocation setting configures the initial and maximum number of loaned
samples managed by the DataWriter. It also configures the growth policy.

By default this setting is derived from the DDS_ResourceLimitsQosPolicy: the initial and maximum
counts are equal to initial_samples + 1 and max_samples + 1. The incremental_count defaults to initial_
count if the initial_count is not the same as max_count. If these are the same, then incremental_count
defaults to 0.

If you want to extend the time to reuse a sample, use a large sample pool by increasing the initial_count of
the writer_loaned_sample_allocation.

See 7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402.

DataReader Resource Limits

The shmem_ref_transfer_mode_attached_segment_allocation setting configures the initial and max-
imum shared memory segments to which a DataReader can attach.

By default this setting is derived from other fields in the DDS_DataReaderResourceLimitsQosPolicy: the
initial and maximum counts of shared memory segments are equal to initial_remote_writers and max_
remote_writers. The incremental_count defaults to -1 (doubling of resources) if the initial_count is not the
same as max_count. If these are the same, then incremental_count defaults to 0.

Themax_count controls the maximum number of shared memory segments that a DataReader can attach
at a time. Once this limit is hit, if there is a need to attach to a new segment, the DataReader will try to
detach from a segment that doesn’t contain any loaned samples and attach to the new segment.

If there are samples loaned in all the attached segments, then the new segment will not be attached and this
will result in losing the sample.

See 8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) on page 581.

DomainParticipant Resource Limits

The shmem_ref_transfer_mode_max_segments setting sets the maximum number of shared memory
segments that can be created by all DataWriters belonging to the participant. The default value of this set-
ting is 500. The maximum value of this setting will be limited by the operating system setting that controls
the system wide maximum number of shared memory segments.

See 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660.

23.2 Reducing Bandwidth Usage

Another important consideration when sending large samples (besides 23.1 Reducing Latency on
page 950) is bandwidth usage. Connext DDS allows you to compress samples using different builtin

975

23.3 Large Data Fragmentation

976

algorithms described in 7.5.3 DATA_REPRESENTATION QosPolicy on page 381.

23.3 Large Data Fragmentation

There are two types of fragmentation: IP-level fragmentation and DDS-level fragmentation.

IP-level fragmentation occurs when the payload provided from the transport layer (typically UDP or TCP)
exceeds the maximum payload size that fits in a link frame (also known as the link maximum transmission
unit, or link MTU). If the network is an Ethernet network, then the link MTU is the maximum size of an
Ethernet frame. When the receiver NIC gets IP fragments, it stores them in a buffer until all the fragments
are received and can be reassembled to form UDP datagrams or TCP segments. When all the fragments
are received, the reassembly is performed and the message is provided to the application layer.

If you try to send a DDS sample whose size is bigger than the MTU and you have not set up DDS-level
fragmentation, you will see IP-level fragmentation. IP-level fragmentation is known to be fragile and can
lead to communication issues if your system is not configured properly. For example, when your applic-
ation relies on the transport to fragment the data and one fragment is lost, then all of the fragments need to
be resent to repair the missing fragment—whereas if you use Reliable reliability (see 7.5.21
RELIABILITY QosPolicy on page 448), Connext DDS can repair a single lost DDS fragment.

The following diagrams show the differences between IP-level fragmentation and DDS-level frag-
mentation. RTPS, UDP, and IP headers are not shown in the diagrams, for simplification purposes.

23.3 Large Data Fragmentation

977

23.3 Large Data Fragmentation

978

The main advantages of letting DDS do the fragmentation instead of letting the IP layer do it are as fol-
lows:

l IP packets containing DATA_FRAG messages (DDS fragments) are automatically provided from
the NIC’s buffer to the DDS application without having to wait for reassembly. This helps prevent
overflow of the NIC’s buffer due to many fragments.

l The middleware handles fragmentation and reassembly of fragments. As a result, when using the
Reliable 7.5.21 RELIABILITY QosPolicy on page 448, if an IP packet containing a DATA_
FRAG is not received, Connext DDS's reliable protocol will try to repair the missing DATA_
FRAG instead of the entire DDS packet. This may help reduce network traffic in scenarios with reli-
able communication. It is highly recommended to use Reliable reliability in combination with frag-
mentation; otherwise a single lost fragment will cause the entire sample to be dropped, leading to
excessive sample losses.

The main cost of using DDS-level fragmentation is that having Connext DDS handle fragmentation may
introduce a performance degradation compared to an ideal case where there are no IP-level fragmentation
issues. However, if there are IP-level fragmentation issues in your system, DDS-level fragmentation is a
good way to avoid them. There are many different types of IP-level fragmentation issues, including, but

23.3.1 Avoiding IP-Level Fragmentation

not limited to, mismatched MTU sizes across your network path, OS-specific implementation limitations,
and hardware that simply does not allow IP fragment forwarding.

Note: Batching does not currently support DDS-level fragmentation (also known as RTPS frag-
mentation). If you use batching, you will currently not be able to take advantage of Connext DDS-
level fragmentation. This means that your batch size has to be set to a value smaller than the minimum
transport MTU across all the installed Connext DDS transports. (You configure the MTU by setting
message_size_max in the transport properties. See the next section, 23.3.1 Avoiding IP-Level Frag-
mentation below.)

You can configure the batch size for user data using either themax_data_bytes ormax_samples QoS
values in the 7.5.2 BATCH QosPolicy (DDS Extension) on page 375. In either case, you need to
take into account that there is some overhead of metadata per sample in a batch that can be as big as
120 bytes per sample depending on what DDS features you use. A common value when using keyed
topics is 40 bytes of metadata per sample and 12 for unkeyed topics.

23.3.1 Avoiding IP-Level Fragmentation

IP-level fragmentation can be avoided if the DDS payload (plus UDP headers) size is shorter than the Eth-
ernet MTU. The most common Ethernet MTU size is 1500 bytes (although this size should not be
assumed, since there are many cases in which it is set to a value other than 1500). The maximum UDP pay-
load that fits on a 1500-byte Ethernet MTU is 1472 bytes. This is because, out of the 1500 bytes in the Eth-
ernet MTU, 20 bytes are used by the IP header and 8 more by the UDP header. You can easily know the
size of your NIC’s MTU in Linux systems with the following command:
> ifconfig

In Windows systems, the MTU for your NICs is shown by this command:
> netsh interface ipv4 show subinterface

Connext DDS provides a property, message_size_max, to set the maximum size of an RTPS packet. See
16.6 Setting Builtin Transport Properties with the PropertyQosPolicy on page 807 for information on how
to set transport properties. Samples that have a serialized size larger than themessage_size_max will be
fragmented by DDS. Therefore, setting this property to a value less than or equal to the maximum UDP
payload that fits in the Ethernet MTU (that is, smaller than 1472 bytes in the common case) makes DDS
fragment the data packets so that each RTPS message can fit in a single Ethernet frame. These DDS frag-
ments are referred to as DATA_FRAG messages.

Note:MTU sizes are not necessarily uniform across an entire network path from source to destination.
In these cases, it is important to understand the MTU sizes throughout your network and to set the
DDS message_size_max to a value smaller than the smallest payload that fits in the MTU size in your
network. TCP avoids IP-level fragmentation and automatically detects MTU sizes across a network
path through a process called Path MTU Discovery. If you’re using UDP, then it is currently up to you
to know and understand the MTU sizes in your network if you want to avoid IP-level fragmentation.

979

23.3.2 Reliable Reliability

980

A more granular configuration of DDS-level fragment management can be controlled with properties such
asmax_fragments_per_sample (see 8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS
Extension) on page 581).

While Connext DDS supports unbounded types and data fragmentation, there are practical serialization lim-
its for any given sample. These limits are described in 3.10 Data Sample Serialization Limits on page 164.

Note: Features that are targeted at applications that handle large data, like the FlatData language binding
and Zero Copy over shared memory features (see Chapter 23 Sending Large Data on page 949), have no
effect on how data is fragmented by DDS.

23.3.2 Reliable Reliability

If you use Best Effort reliability (see 7.5.21 RELIABILITY QosPolicy on page 448), the application is
not going to try to recover any lost DDS-level fragments, so if any fragments are lost, the DataReader will
discard the entire sample. Depending on its size, the sample could have a lot of fragments, in which case
the DataReader is more likely to lose a fragment (and therefore, the entire sample). By using Reliable
7.5.21 RELIABILITY QosPolicy on page 448, if a fragment is lost, Connext DDS will try to recover it.
This is why it's usually recommended to use Reliable reliability if you are using DDS-level fragmentation.

For more information, see the 7.5.21 RELIABILITY QosPolicy on page 448.

23.3.3 Asynchronous Publishing

DDS-level fragmentation requires asynchronous publication if you are using Reliable 7.5.21
RELIABILITY QosPolicy on page 448. Sending reliable samples larger than the transport'smessage_
size_max requires asynchronous publication so that the fragmentation process can take place outside of the
context of the thread that wrote the sample.

If you're using Best Effort reliability, samples larger than themessage_size_max will be fragmented; how-
ever, this configuration (Best Effort, plus fragmentation) is not recommended because you're more likely to
drop samples. The error "COMMENDSrWriterService_on_Submessage:!write resend. Reliable
large data requires asynchronous write" comes from having a serialized sample that is greater than the
transport'smessage_size_max while the 7.5.21 RELIABILITY QosPolicy on page 448 is set to
RELIABLE_RELIABILITY_QOS without asynchronous publishing being enabled.

To fragment DDS packets while using Reliable reliability, set kind in the 7.5.20 PUBLISH_MODE
QosPolicy (DDS Extension) on page 445 to ASYNCHRONOUS_PUBLISH_MODE_QOS. With these
settings, Connext DDS will use a separate thread to send the fragments. This will relieve your application
thread from doing the fragmentation and sending work. For more information about the asynchronous pub-
lisher, see 7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) on page 346.

It may also be necessary to set the builtin PublicationBuiltinTopicData and SubscriptionBuiltinTopicData
DataWriters’ publish mode to be asynchronous. This is done through the 9.5.3 DISCOVERY_CONFIG
QosPolicy (DDS Extension) on page 650 (see details in 23.3.5 Example on the next page). The most

23.3.4 Flow Controllers

common cause of a large PublicationBuiltinTopicData or SubscriptionBuiltinTopicData sample is the seri-
alized TypeCode or TypeObject, but you may also be sending a lot of properties (via the 7.5.19
PROPERTY QosPolicy (DDS Extension) on page 440) or have a large ContentFilteredTopic filter expres-
sion, among other variably sized fields, which could be leading to larger sample sizes. It may also be the
case that the samples are not particularly large, but if you have set themessage_size_max to be a small
value to force DDS-level fragmentation, the samples sent by the builtin DataWriters may exceed this size
and require fragmentation.

For more information on TypeObjects, see the following:

l 3.1.3.1 Sending Type Information on the Network on page 38

l Type Representation, in the RTI Connext DDS Core Libraries Extensible Types Guide

l 9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) on
page 660

23.3.4 Flow Controllers

The asynchronous publish mode requires a FlowController. If no FlowController is defined, the default
FlowController will be used. With the default FlowController, the DATA_FRAGs will be written as fast
as the DataWriter can write them, which might overload the network or the DataReaders. See 7.6
FlowControllers (DDS Extension) on page 475.

An example on how to set the DataWriter to be asynchronous is shown below.

23.3.5 Example

The following example shows the QoS settings that do the following:

l Set the DataWriter to be asynchronous.

l Set the builtin DataWriters to be asynchronous.

l Enable Reliable 7.5.21 RELIABILITY QosPolicy on page 448 on the DataWriter and
DataReader. DataWriters are configured as reliable by default, so this is technically not required.
DataReaders are configured for best effort communication by default, so enabling reliability on the
DataReader is a required step in order for the DataWriter and DataReader to communicate reliably
with each other. See 7.5.21 RELIABILITY QosPolicy on page 448.

l Disable the shared memory transport (since our discussion thus far has focused on IP transports and
the relationship between IP-layer fragmentation and DDS-layer fragmentation, not shared memory
fragmentation).

l Set the maximum payload size for RTPS packets by configuring message_size_max.

<!-- Set the DataWriter to be asynchronous and reliable -->
<datawriter_qos>

<publish_mode>

981

23.3.6 Fragmentation Statistics

982

<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>
<flow_controller_name>DEFAULT_FLOW_CONTROLLER_NAME</flow_controller_name>

</publish_mode>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>

<!-- Set the DataReader to be reliable -->
<datareader_qos>

<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>

</reliability>
</datareader_qos>
<domain_participant_qos>

<transport_builtin>
<mask>UDPv4</mask>

</transport_builtin>

<!-- Set the builtin DataWriters to be asynchronous if the TypeCode/TypeObject
or other configuration parameters are larger than the MTU -->
<discovery_config>

<publication_writer_publish_mode>
<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>

</publication_writer_publish_mode>
<subscription_writer_publish_mode>

<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>
</subscription_writer_publish_mode>

</discovery_config>

<!-- Set this property to something lower than the MTU.
For this example, the MTU is 1500 bytes -->
<property>

<value>
<element>

<name>dds.transport.UDPv4.builtin.parent.message_size_max</name>
<value>1450</value>

</element>
</value>

</property>
</domain_participant_qos>

23.3.6 Fragmentation Statistics

You can monitor fragmented (DATA_FRAG) messages via the 7.3.6.3 DATA_WRITER_
PROTOCOL_STATUS on page 299 and 8.3.7.3 DATA_READER_PROTOCOL_STATUS on
page 525, which are also visible through RTI Monitor (see Part 9: RTI Monitoring Library on
page 1227).

Chapter 24 Topic Queries
TopicQueries allow a DataReader to query the sample cache of its matching DataWriters. You
can create a TopicQuery with the DataReader's create_topic_query() API. When a DataReader
creates a TopicQuery, DDS will propagate TopicQueries to other DomainParticipants and their
DataWriters. When a DataWriter matching with the DataReader that created the TopicQuery
receives it, it will send the cached samples that pass the TopicQuery's filter.

Only samples that fall within the writer_depth (in the 7.5.9 DURABILITY QosPolicy on
page 412) for an instance are evaluated against the TopicQuery filter. While the DataWriter is wait-
ing for acknowledgements from one or more DataReaders, there may temporarily be more than
writer_depth samples per instance in the DataWriter's queue if the 7.5.12 HISTORY QosPolicy
on page 421 depth is set to a higher value than writer_depth. Those additional samples past
writer_depth are not eligible to be sent in response to the TopicQuery.

To configure how to dispatch a TopicQuery, use the DataWriter's 7.5.24 TOPIC_QUERY_
DISPATCH_QosPolicy (DDS Extension) on page 456. By default, a DataWriter ignores Top-
icQueries unless they are explicitly enabled using this policy.

The delivery of TopicQuery samples occurs in a separate RTPS channel. This allows DataReaders
to receive TopicQuery samples and live samples in parallel. This is a key difference with respect to
the 7.5.9 DURABILITY QosPolicy on page 412.

Late-joining DataWriters will also discover existing TopicQueries. To delete a TopicQuery you
must use the DataReader's delete_topic_query().

After deleting a TopicQuery, new DataWriters will not discover it and existing DataWriters cur-
rently publishing cached samples may stop before delivering all of them.

By default, a TopicQuery queries the samples that were in the DataWriter's queue at the time the
DataWriter received the TopicQuery. However, a TopicQuery can be created in “continuous”
mode; in this case, a DataWriter will continue delivering samples that pass a continuous Top-
icQuery filter until the DataReader application explicitly deletes it.

983

24.1 Reading TopicQuery Samples

984

The samples received in response to a TopicQuery are stored in the associated DataReader's cache. Any
of the read/take operations can retrieve TopicQuery samples. The field DDS_SampleInfo::topic_query_
guid associates each sample with its TopicQuery. If the read sample is not in response to a TopicQuery,
this field will be DDS_GUID_UNKNOWN.

You can choose to read or take only TopicQuery samples, only live samples, or both. To support this,
ReadConditions and QueryConditions provide the DataReader's create_querycondition_w_params()
and create_readcondition_w_params() APIs.

Each TopicQuery is identified by a GUID that can be accessed using the TopicQuery's get_guid()
method.

24.1 Reading TopicQuery Samples

Data samples that are received by a DataReader in response to a TopicQuery can be identified with two
pieces of information from the corresponding DDS_SampleInfo to the sample. First, if the DDS_
SampleInfo::topic_query_guid is not equal to DDS_GUID_UNKNOWN, then the sample is in
response to the TopicQuery with that GUID. Second, if the sample is in response to a TopicQuery and the
DDS_SampleInfo::flag DDS_INTERMEDIATE_TOPIC_QUERY_SAMPLE flag is set, then this is not
the last sample in response to the TopicQuery for a DataWriter identified by DDS_SampleInfo::original_
publication_virtual_guid. If that flag is not set, then there will be no more samples corresponding to that
TopicQuery coming from the DataWriter.

24.2 Debugging Topic Queries

There are a number of ways in which to gain more insight into what is happening in an application that is
creating Topic Queries.

24.2.1 The Built-in ServiceRequest DataReader

TopicQueries are communicated to publishing applications through a built-in ServiceRequest channel. The
ServiceRequest channel is designed to be generic so that it can be used for many different purposes, one of
which is TopicQueries.

When a DataReader creates a TopicQuery, a ServiceRequest message is sent containing the TopicQuery
information. Just as there are built-in DataReaders for ParticipantBuiltinTopicData, Sub-
scriptionBuiltinTopicData, and PublicationBuiltinTopicData, there is a fourth built-in DataReader for Ser-
viceRequests. This built-in DataReader can be retrieved using the built-in Subscriber and its lookup_
datareader(). The topic name is DDS_SERVICE_REQUEST_TOPIC_NAME. Installing a listener with
the DataReaderListener's on_data_available callback() implemented will allow a publishing application
to be notified whenever a TopicQuery has been received from a subscribing application.

The service_id of a ServiceRequest corresponding to a TopicQuery will be DDS_TOPIC_QUERY_
SERVICE_REQUEST_ID and the instance_id will be equal to the GUID of the TopicQuery.

24.2.2 The on_service_request_accepted() DataWriter Listener Callback

The request_body is a sequence of bytes containing more information about the TopicQuery. This inform-
ation can be retrieved using the DDS_TopicQueryHelper_topic_query_data_from_service_request()
function. The resulting TopicQueryData contains the TopicQuerySelection that the TopicQuery was cre-
ated with, the GUID of the original DataReader that created the TopicQuery, and the topic name of that
DataReader.

Note:When TopicQueries are propagated through one or more instances of Routing Service, the last
DataReader that issued the TopicQuery will be a Routing Service DataReader. The DDS_Top-
icQueryData::original_related_reader_guid, however, will be that of the first DataReader to have cre-
ated the TopicQuery.

24.2.2 The on_service_request_accepted() DataWriter Listener Callback

It is possible that a ServiceRequest for a TopicQuery is received but is not immediately dispatched to a
DataWriter. This can happen, for example, if a DataWriter was not matching with a DataReader at the
time that the TopicQuery was received by the publishing application. The DDS_DataWriterListener's on_
service_request_accepted() callback notifies a DataWriter when a ServiceRequest has been dispatched to
that DataWriter. The DDS_ServiceRequestAcceptedStatus provides information about how many Ser-
viceRequests have been accepted by the DataWriter since the last time that the status was read. The status
also includes the DDS_ServiceRequestAcceptedStatus::last_request_handle, which is the
InstanceHandle of the last ServiceRequest that was accepted. This instance handle can be used to read
samples per instance from the built-in ServiceRequest DataReader and correlate which ServiceRequests
have been dispatched to which DataWriters.

24.3 System Resource Considerations

24.3.1 Publishing Application

On the publishing side, the resource allocation associated with TopicQueries can be controlled using
remote_topic_query_allocation (in the9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS
QosPolicy (DDS Extension) on page 660 at the DomainParticipant level.

At the DataWriter level, you can control how many TopicQueries can be served in parallel by the
DataWriter by setting the resource limitmax_active_topic_queries in the 7.5.6 DATA_WRITER_
RESOURCE_LIMITS QosPolicy (DDS Extension) on page 402).

24.3.2 Subscribing Application

On the DataReader side, each TopicQuery will get its own resources. These resources will not interfere
with the resource limits associated with live data samples or other TopicQueries. For example, ifmax_
samples (see 7.5.22 RESOURCE_LIMITS QosPolicy on page 452) is set to 10 and the DataReader cre-
ates one TopicQuery, then the DataReader will be able to store 10 samples for that TopicQuery and 10
samples for live data.

985

24.3.2 Subscribing Application

986

The maximum number of active TopicQueries that can be associated with a DataReader is configured
using the resource limitmax_topic_queries (see 8.6.2 DATA_READER_RESOURCE_LIMITS
QosPolicy (DDS Extension) on page 581).

Chapter 25 Troubleshooting
This chapter contains tips on troubleshooting Connext DDS applications. For an up-to-date list of
frequently asked questions, see the Knowledge Base on the RTI Community Portal: https://-
community.rti.com/kb. There you can find example code, general information on Connext DDS,
performance information, troubleshooting tips, and technical details.

25.1 What Version am I Running?

There are three ways to obtain version information:

l By looking at the revision files, as described in 25.1.1 Finding Version Information in Revi-
sion Files below.

l By using Visual Studio or the command line, as described in 25.1.2 Finding Version Inform-
ation on Windows or Linux Systems on the next page.

l Programmatically at run time, as described in 25.1.3 Finding Version Information Pro-
grammatically on the next page.

25.1.1 Finding Version Information in Revision Files

In the top-level directory of your Connext DDS installation (${NDDSHOME}), you will find text
files that include revision information. The files are named rev_<product>_rtidds.<version>. For
example, you might see files called rev_host_rtidds.6.x.y and rev_persistence_rtidds.6.x.y
(where x and y stand for the version numbers of the current release). Each file contains more
details, such as a patch level and if the product is license managed.

For example:
Host Build 6.x.y rev 04 (0x04050200)

The revision files for Connext DDS target libraries are in the same directory as the libraries
(${NDDSHOME}/lib/<architecture>).

987

https://community.rti.com/kb
https://community.rti.com/kb

25.1.2 Finding Version Information on Windows or Linux Systems

988

25.1.2 Finding Version Information on Windows or Linux Systems

Another way to find the version is with these commands:

l On Windows platforms, run the DUMPBIN utility that comes with Visual Studio®. (You could
also use any other COFF dumper application.) For example:

DUMPBIN/HEADERS nddscore.dll

You will find the version number encoded in the 'image version' line in the ' OPTIONAL
HEADER VALUES ' section:
OPTIONAL HEADER VALUES
<snip>
50200.00 image version
<snip>

The format is <major_version><minor_version><terciary_version>.<patch_version>. For example,
version 5.2.6.3 would appear as image version 50206.03.

l On Linux platforms, run the command strings on the library in question and filter for 'BUILD'. For
example:

strings libnddsc.so | grep BUILD

You will see a string similar to
NDDSCORE_VERSION_5.2.6.0_BUILD_2017-01-27T15:43:23-08:00_RTI_RELEASE

25.1.3 Finding Version Information Programmatically

The methods in the NDDSConfigVersion class can be used to retrieve version information for the Connext
DDS product, the core library, and the C, C++ or Java libraries.

The version information includes four fields:

l A major version number

l A minor version number

l A release number

l A build number

Table 25.1 NDDSConfigVersion Operations lists the available operations (they will vary somewhat
depending on the programming language you are using; consult the API Reference HTML documentation
for more information).

25.1.3 Finding Version Information Programmatically

Purpose Operation Description

To retrieve version information in a
structured format

get_product_
version

Gets version information for the Connext DDS product.

get_core_ver-
sion

Gets version information for the Connext DDS core library.

get_c_api_ver-
sion

Gets version information for the Connext DDSC library.

get_cpp_api_
version

Gets version information for the Connext DDSC++ library.

To retrieve version information in
string format

to_string
Converts the version information for each library into a string. The strings for each library are
put in a single hyphen-delimited list.

Table 25.1 NDDSConfigVersion Operations

The get_product_version() operation returns a reference to a structure of type DDS_ProductVersion_t:
struct NDDS_Config_ProductVersion_t {

DDS_Char major;
DDS_Char minor;
DDS_Char release;
DDS_Char revision;

};

The other get_*_version() operations return a reference to a structure of type NDDS_Config_LibraryVer-
sion_t:
struct NDDS_Config_LibraryVersion_t {

DDS_Long major;
DDS_Long minor;
char release;
DDS_Long build;

};

The to_string() operation returns version information for the Connext DDS core, followed by the C and
C++ API libraries, separated by hyphens. For example:

989

25.2 Controlling Messages from Connext DDS

990

25.2 Controlling Messages from Connext DDS

Connext DDS's builtin logging system provides several types of messages to help you debug your system
and alert you to errors during run time. You can control how much information is reported and where it is
logged. By default, the builtin logging system writes to the standard output, but you can configure it to use
a logging file or an output device such as a custom logging device or the Distributed Logger. (See Part 10:
RTI Distributed Logger on page 1243.) See also Table 25.4 NDDSConfigLogger Operations and 25.2.2
Configuring Logging via XML on page 998 for information on configuring the builtin logging system.

How much information is logged is known as the verbosity setting. Table 25.2 Message Logging Verb-
osity Levels describes the increasing verbosity levels. Note that the verbosities are cumulative: logging at a
high verbosity means also logging all lower verbosity messages. If you change nothing, the default verb-
osity will be set to NDDS_CONFIG_LOG_VERBOSITY_ERROR.

Logging at high verbosities can be detrimental to your application's performance. You should
generally not set the verbosity above NDDS_CONFIG_LOG_VERBOSITY_WARNING, unless
you are debugging a specific problem.

Verbosity
(NDDS_
CONFIG_
LOG_

VERBOSITY_
*)

Description
Log level values corresponding
to this verbosity (NDDS_
CONFIG_LOG_LEVEL_*)

SILENT No messages will be logged. (lowest verbosity) -

Table 25.2 Message Logging Verbosity Levels

25.2 Controlling Messages from Connext DDS

Verbosity
(NDDS_
CONFIG_
LOG_

VERBOSITY_
*)

Description
Log level values corresponding
to this verbosity (NDDS_
CONFIG_LOG_LEVEL_*)

ERROR (default
level for all cat-
egories)

Log only high-priority errormessages. An error indicates something is wrong with
howConnext DDS is functioning. The most common cause of this type of error is
an incorrect configuration.

ERROR, FATAL_ERROR

WARNING
Additionally log warning messages. A warning indicates thatConnext DDS is tak-
ing an action that may ormay not be what you intended. Some configuration in-
formation is also logged at this verbosity to aid in debugging.

WARNING, ERROR, FATAL_ERROR

STATUS_LOCAL
Additionally log verbose information about the lifecycles of localConnext DDS ob-
jects.

STATUS_LOCAL, WARNING, ERROR,
FATAL_ERROR

STATUS_
REMOTE

Additionally log verbose information about the lifecycles of remote Connext DDS
objects.

STATUS_REMOTE, STATUS_LOCAL,
WARNING, ERROR, FATAL_ERROR

STATUS_ALL
Additionally log verbose information about periodic activities and Connext DDS
threads. (highest verbosity)

DEBUG, STATUS_REMOTE, STATUS_
LOCAL, WARNING, ERROR, FATAL_
ERROR

Table 25.2 Message Logging Verbosity Levels

You will typically change the verbosity of all of Connext DDS at once. However, in the event that such a
strategy produces too much output, you can further discriminate among the messages you would like to
see. The types of messages logged by Connext DDS fall into the categories listed in Table 25.3 Message
Logging Categories; each category can be set to a different verbosity level.

Category
(NDDS_
CONFIG_
LOG_

CATEGORY_*)

Description

PLATFORM Messages about the underlying platform (hardware and OS).

COMMUNICATION Messages about data serialization and deserialization and network traffic.

DATABASE Messages about the internal database ofConnext DDS objects.

ENTITIES Messages about local and remote entities and the discovery process.

API
Messages aboutConnext DDS’s API layer, such asmethod argument validation and what QoS is being used (for details
on QoS information, see 19.3.3.5 Viewing ResolvedQoSValueson page 875).

ALL Messages about all of the categories (default value)

Table 25.3 Message Logging Categories

991

25.2 Controlling Messages from Connext DDS

992

The methods in the NDDSConfigLogger class can be used to change verbosity settings, as well as the des-
tination and format of the logged messages. Table 25.4 NDDSConfigLogger Operations lists the available
operations; consult the API Reference HTML documentation for more information.

Purpose Operation Description

Change
Verbosity
for all Cat-
egories

get_verb-
osity

Gets the current verbosity.

If per-category verbosities are used, returns the highest verbosity of any
category.

set_verb-
osity

Sets the verbosity of all categories.

Change
Verbosity
for a Spe-
cific Cat-
egory

get_verb-
osity_by_
category

Gets/Sets the verbosity for a specific category.
set_verb-
osity_by_
category

Change
Destination
of Logged
Messages

get_out-
put_file

Returns the file to which messages are being logged, orNULL for the default destination (standard output on most plat-
forms).

set_output_
file

Redirects future logged messages to a set of files.

For better performance when log messages are generated frequently, the log messages are not flushed into a file im-
mediately after they are generated. In otherwords, while writing a log message,Connext DDS only calls the function
fwrite(); it does not call the function fflush(). If your application requires a different flushing behavior, you may configure
a custom logging device (see 25.2.3 Customizing the Handling of Generated LogMessageson page 999).

get_out-
put_device

Returns the logging device installed with the logger.

set_output_
device

Registers a specified logging device with the logger. See 25.2.3 Customizing the Handling of Generated LogMes-
sageson page 999

Change
Message
Format

get_print_
format

Gets/Sets the current message format for the log level NDDS_CONFIG_LOG_LEVEL_ERROR. See 25.2.1 Format of
LoggedMessageson the next page.

Use get_print_format_by_log_level and set_print_format_by_log_level to retrieve/set the format for other log
levels.

set_print_
format

get_print_
format_by_
log_level

Gets/Sets the current message format, by log level, thatConnext DDS is using to log diagnostic information.
set_print_
format_by_
log_level

Table 25.4 NDDSConfigLogger Operations

https://pubs.opengroup.org/onlinepubs/009695399/functions/fwrite.html
https://pubs.opengroup.org/onlinepubs/009695399/functions/fflush.html

25.2.1 Format of Logged Messages

25.2.1 Format of Logged Messages

You can control the amount of information in each message with the set_print_format() or set_print_
format_by_log_level() operation (see Table 25.4 NDDSConfigLogger Operations). The format options
are listed in Table 25.5 Message Formats.

Message Format
(NDDS_CONFIG_LOG_
PRINT_FORMAT_*)

Description

DEFAULT (default)Message, method name, and activity context (what was happening when the event occurred).

TIMESTAMPED Message, method name, activity context, and timestamp.

VERBOSE Message with all available context information (includes thread identifier, activity context).

VERBOSE_TIMESTAMPED Message with all available context information and timestamp.

DEBUG Information (including activity context and backtrace information) for internal debugging by RTI personnel.

MINIMAL Message number, method name.

MAXIMAL All available fields (including backtrace information).

Table 25.5 Message Formats

See also 25.2.1.3 Activity Context on the next page and 25.5 Logging a Backtrace for Failures on
page 1002.

By default, NDDS_CONFIG_LOG_PRINT_FORMAT_DEFAULT is assigned to all log levels except
FATAL_ERROR. By default, FATAL_ERROR is assigned to NDDS_CONFIG_LOG_PRINT_
FORMAT_DEBUG, which prints the backtrace information. See Table 25.2 Message Logging Verbosity
Levels.

You could use a less verbose print_format, such as NDDS_CONFIG_LOG_PRINT_FORMAT_
MINIMAL, for warnings, as follows:
NDDS_Config_Logger *logger = NDDS_Config_Logger_get_instance();
NDDS_Config_Logger_set_print_format_by_log_level(

logger,
NDDS_CONFIG_LOG_PRINT_FORMAT_MINIMAL,
NDDS_CONFIG_LOG_LEVEL_WARNING));

You could use a more verbose print_format, such as NDDS_CONFIG_LOG_PRINT_FORMAT_
DEBUG (which contains the backtrace) when you are troubleshooting errors, as follows:
NDDS_Config_Logger *logger = NDDS_Config_Logger_get_instance();
NDDS_Config_Logger_set_print_format_by_log_level(

logger,
NDDS_CONFIG_LOG_PRINT_FORMAT_DEBUG,
NDDS_CONFIG_LOG_LEVEL_ERROR));

993

25.2.1 Format of Logged Messages

994

This way, you will reduce the amount of logging on warnings, and errors will contain more information.
This configuration is key to understanding and solving issues when needed.

Of course, you are not likely to recognize all of the method names; many of the operations that perform log-
ging are deep within the implementation of Connext DDS. However, in case of errors, logging will typ-
ically take place at several points within the call stack; the output thus implies the stack trace at the time the
error occurred. You may only recognize the name of the operation that was the last to log its message (i.e.,
the function that called all the others); however, the entire stack trace is extremely useful to RTI support
personnel in the event that you require assistance.

You may notice that many of the logged messages begin with an exclamation point character. This con-
vention indicates an error and is intended to be reminiscent of the negation operator in many programming
languages. For example, the message “!create socket” means “cannot create socket.”

25.2.1.1 Timestamps

Reported times are in seconds from a system-dependent starting time; these are equivalent to the output
format from Connext DDS. The timestamp is in the form YYYY-MM-DD HH:MM::SS.<microseconds>,
where SS is the number of seconds and <microseconds> is a fraction of that second expressed in micro-
seconds. Enabling timestamps will result in some additional overhead for clock access for every message
that is logged.

Logging of timestamps is not enabled by default. To enable it, use NDDS_Config_Logger method set_
print_format().

25.2.1.2 Thread identification

Thread identification strings uniquely identify active threads when a message is output to the console. A
thread may be a user (application) thread or one of several types of internal threads. See Chapter 21 Con-
next DDS Threading Model on page 914.

Logging of thread IDs is not enabled by default. To enable it, use NDDS_Config_Logger method set_
print_format(). It adds the thread name to the log message, so you know which thread is responsible for
the message. See 21.9 Identifying Threads Used by Connext DDS on page 922.

25.2.1.3 Activity Context

Many middleware APIs now store information in thread-specific storage about the activity context oper-
ation.

Activity Context provides more context about a logging message. It is a group of resources and activities
associated with an action, such as the creation of an entity:

l A resource is an abstraction of an entity. It can contain attributes such as Topic or Domain ID.

l An activity is a general task that a resource is doing, such as "Getting QoS."

25.2.1 Format of Logged Messages

The activity context is one of the NDDS_Config_LogPrintFormat DDS logging infrastructure formats.
If a format that prints activity context is selected (see Table 25.5 Message Formats), then every time Con-
next DDS logs a message, it will contain the contextual information.

For example, in the creation of a DataWriter, the activity context will provide information about:

l Resource: the Publisher creating the DataWriter. The attributes of the publisher will be GUID,
Entity kind, name, and Domain ID.

l Activity: entity creation. It will have two parameters, the Entity kind and the Topic—in the example
below, "Writer" and "TestTopic."

The string representation of the above activity context would be:
[0X101A76B,0X79E5D71,0X50EE914:0X80000088{E=Pu,N=TestPublisher,D=1}|CREATE Writer WITH TOPIC
TestTopic]

In this example, the activity context fields are as follows:

l GUID is 0X101A76B,0X79E5D71,0X50EE914:0X80000003

[0X101A76B,0X79E5D71,0X50EE914:0X80000003{E=Pu,N=TestPublisher,D=1}|CREATE Writer WITH
TOPIC TestTopic]

l Entity name is N=TestPublisher

[0X101A76B,0X79E5D71,0X50EE914:0X80000003 {E=Pu,N=TestPublisher,D=1}|CREATE Writer WITH
TOPIC TestTopic]

l Entity kind is E=Pu (for Publisher)

[0X101A76B,0X79E5D71,0X50EE914:0X80000003 {E=Pu,N=TestPublisher,D=1}|CREATE Writer WITH
TOPIC TestTopic]

l Domain ID is D=1

[0X101A76B,0X79E5D71,0X50EE914:0X80000003 {E=Pu,N=TestPublisher,D=1}|CREATE Writer WITH
TOPIC TestTopic]

l Activity is CREATE Writer WITH TOPIC TestTopic

[0X101A76B,0X79E5D71,0X50EE914:0X80000003 {E=Pu,N=TestPublisher,D=1}|CREATE Writer WITH
TOPIC TestTopic]

When a DataWriter writes a sample, the activity context will provide information about:

l Resource: the DataWriter writing the sample. The attributes of the DataWriter will be GUID, name,
Entity kind, Topic, data type, and Domain ID.

l Activity: the writing of a sample.

The string representation of this activity context would be:

995

25.2.1 Format of Logged Messages

996

[0X101A76B,0X79E5D71,0X50EE914:0X1C1:0X80000003{N=TestDataWriter,E=DW,T=test,C=Foo,D=1}|Write]

In this example, the additional activity context fields are as follows:

l Topic is T=test

[0X101A76B,0X79E5D71,0X50EE914:0X80000003
{N=testDataWriterName,E=DW,T=test,Y=Foo,D=1}|Write]

l Data type is C=Foo

[0X101A76B,0X79E5D71,0X50EE914:0X80000003
{N=testDataWriterName,E=DW,T=test,C=Foo,D=1}|Write]

25.2.1.4 Activity Context Strings and Attributes

The resources of the activity context can have multiple associated attributes. Those attributes provide extra
information about the entity such as GUID prefix, Topic, data type (class), Entity kind, Entity name, and
Domain ID. The following tables describe how those attributes are represented.

Table 25.6 Activity Context Attributes

Attribute Description

GUID (given at the beginning of the context, such as: 0X101A76B,0X79E5D71,0X50EE914:0X1C1:0X80000003)

N Name of the entity, such as TestPublisher

E Entity kind, such asPu for Publisher

D Domain ID

T Topicname

C Data type

Table 25.7 Activity Context Resources and Entities

Entity Kind Entity Type

DP DDS_DomainParticipant

Pu DDS_Publisher

Su DDS_Subscriber

To DDS_Topic

DW DDS_<*>DataWriter

DR DDS_<*>DataReader

25.2.1 Format of Logged Messages

Table 25.8 Activity Context Activities

String Operation

Entity operations:

ENABLE Entity::enable

GET_QOS Entity::get_qos

SET_QOS Entity::set_qos

GET_LISTENER Entity::get_listener

SET_LISTENER Entity::set_listener

Factory operations (DomainParticipantFactory, DomainParticipant, Publish/Subscribe):

CREATE <Entity> Factory::create_<entity>

DELETE <Entity> Factory::delete_<entity>

GET_DEFAULT_QOS <Entity> Factory::get_default_<entity>_qos

SET_DEFAULT_QOS <Entity> Factory::set_default_<entity>_qos

Participant-specific operations:

GET_PUBS Participant::get_publishers

GET_SUBS Participant::get_subscribers

LOOKUP Topic(<name>) Participant::lookup_topicdescription

LOOKUP FlowController(<name>) Participant::lookup_flowcontroller

IGNORE <Entity>(<host ID>) Participant::ignore_<entity>

25.2.1.5 Configuring Activity Context Attributes

The attributes that NDDS_Config_ActivityContextAttribute uses in the string representation of the activ-
ity context can be configured through a mask. This mask indicates what resource attributes are used when
Connext DDS logs a message or when the Heap Monitoring utility saves statistics for a memory allocation.
void NDDS_Config_ActivityContext_set_attribute_mask(

NDDS_Config_ActivityContextAttributeKindMask attribute_mask);

enum NDDS_Config_ActivityContextAttributeKind {
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_GUID_PREFIX,
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_TOPIC,
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_TYPE,
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_ENTITY_KIND,
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_DOMAIN_ID,
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_ENTITY_NAME

997

25.2.2 Configuring Logging via XML

998

}
#define NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_MASK_DEFAULT
#define NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_MASK_NONE

25.2.2 Configuring Logging via XML

Logging can also be configured using the DomainParticipantFactory’s 9.4.1 LOGGING QosPolicy
(DDS Extension) on page 638 with the tags, <participant_factory_qos><logging>. The fields in the Log-
gingQosPolicy are described in XML using a 1-to-1 mapping with the equivalent C representation shown
below:
struct DDS_LoggingQosPolicy {

NDDS_Config_LogVerbosity verbosity;
NDDS_Config_LogCategory category;
NDDS_Config_LogPrintFormat print_format;
char * output_file;

};

The equivalent representation in XML:
<participant_factory_qos>

<logging>
<verbosity></verbosity>
<category></category>
<print_format></print_format>
<output_file></output_file>

</logging>
</participant_factory_qos>

The attribute <is_default_participant_factory_profile> can be set to true for the <qos_profile> tag to
indicate from which profile to use <participant_factory_qos>. If multiple QoS profiles have <is_
default_participant_factory_profile> set to true, the last profile with <is_default_participant_factory_
profile> set to true will be used.

If none of the profiles have set <is_default_participant_factory_profile> to true, the profile with <is_
default_qos> set to true will be used.

In the following example, DefaultProfile2 will be used:
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../xsd/rti_dds_qos_profiles.xsd">
<!-- Qos Library -->
<qos_library name="DefaultLibrary">

<qos_profile name="DefaultProfile1"
is_default_participant_factory_profile ="true">

<participant_factory_qos>
<logging>

<verbosity>ALL</verbosity>
<category>ENTITIES</category>
<print_format>MAXIMAL</print_format>
<output_file>LoggerOutput1.txt</output_file>

</logging>
</participant_factory_qos>

25.2.3 Customizing the Handling of Generated Log Messages

</qos_profile>
<qos_profile name=
"DefaultProfile2"
is_default_participant_factory_profile ="true">

<participant_factory_qos>
<logging>

<verbosity>WARNING</verbosity>
<category>API</category>
<print_format>VERBOSE_TIMESTAMPED</print_format>
<output_file>LoggerOutput2.txt</output_file>

</logging>
</participant_factory_qos>

</qos_profile>
<qos_profile name="DefaultProfile3" is_default_qos="true">

<participant_factory_qos>
<logging>

<verbosity>ERROR</verbosity>
<category>DATABASE</category>
<print_format>VERBOSE</print_format>
<output_file>LoggerOutput3.txt</output_file>

</logging>
</participant_factory_qos>

</qos_profile>
</qos_library>

</dds>

Note: The LoggingQosPolicy is currently the only QoS policy that can be configured using the <par-
ticipant_factory_qos> tag.

25.2.3 Customizing the Handling of Generated Log Messages

By default, the log messages generated by Connext DDS are sent to the standard output. You can redirect
the log messages to a file by using the set_output_file() operation,

To further customize the management of the generated log messages, you can use the Logger’s set_out-
put_device() operation to install a user-defined logging device. The logging device must implement an
interface with two operations: write() and close().

Connext DDS will call the write() operation to write a new log message to the input device. The log mes-
sage provides the text and the verbosity corresponding to the message.

Connext DDS will call the close() operation when the logging device is uninstalled.

Note: It is not safe to make any calls to the Connext DDS core library including calls to DDS_
DomainParticipant_get_current_time() from any of the logging device operations.

For additional details on user-defined logging devices, see the API Reference HTML documentation
(underModules, RTI Connext DDS API Reference, Configuration Utilities).

999

25.3 Monitoring Native Heap Memory Usage

1000

25.3 Monitoring Native Heap Memory Usage

Connext DDS allows you to monitor the memory allocations done by the middleware on the native heap.
This feature can be used to analyze and debug unexpected memory growth.

This feature includes the following APIs (available in all languages):

l NDDSUtilityHeapMonitoring::enable

l NDDSUtilityHeapMonitoring::disable

l NDDSUtilityHeapMonitoring::pause

l NDDSUtilityHeapMonitoring::resume

l NDDSUtilityHeapMonitoring::take_heap_snapshot

After NDDSUtilityHeapMonitoring::enable is called, you may invoke NDDSUtil-
ityHeapMonitoring::take_heap_snapshot to save the current heap memory usage to a file. By com-
paring two snapshots, you can tell if new memory has been allocated and, in many cases, where.

For more information, see the API Reference HTML documentation.

25.4 Network Capture

Connext DDS allows you to capture network traffic that one or more DomainParticipants send or receive.
This feature can be used to analyze and debug communication problems between your DDS applications.
When network capture is enabled, each DomainParticipant will generate a pcap-based file that can then
be opened by a packet analyzer like Wireshark, provided the right dissectors are installed.

To some extent, network capture can be used as an alternative to existing pcap-based network capture soft-
ware (such as Wireshark). This will be the case when you are only interested in analyzing the traffic a
DomainParticipant sends/receives. In this scenario, network capture will actually have some advantages
over more general pcap-based network capture applications: RTI's network capture includes additional
information, such as security-related data; it also removes information that is not needed, such as user data,
when you want to reduce the capture size. That said, RTI's network capture is not a replacement for other
pcap-based network capture applications: it only captures the traffic exchanged by the
DomainParticipants, but it does not capture any other traffic exchanged through the system network inter-
faces.

To capture network traffic, NDDSUtilityNetworkCapture::enable must be invoked before creating any
DomainParticipant. Similarly, NDDSUtilityNetworkCapture::disable must be called after deleting all
participants. In between these calls, you may start, stop, pause, or resume capturing traffic for one or all
DomainParticipants.

This feature includes the following APIs (available in all languages):

25.4.1 Capturing Shared Memory Traffic

l NDDSUtilityNetworkCapture::enable

l NDDSUtilityNetworkCapture::disable

l NDDSUtilityNetworkCapture::start

l NDDSUtilityNetworkCapture::stop

l NDDSUtilityNetworkCapture::pause

l NDDSUtilityNetworkCapture::resume

For more information, see the API Reference HTML documentation.

25.4.1 Capturing Shared Memory Traffic

Every RTPS frame in network capture has a source and a destination associated with it. In the case of
shared memory traffic, a process identifier and a port determine the source and destination endpoints.

Access to the process identifier (PID) of the source for inbound traffic requires changes in the shared
memory segments. These changes would break shared memory compatibility with versions of Connext
DDS earlier than 6.1.0. For this reason, by default, network capture will not populate the value of the
source PID for inbound shared memory traffic.

If interoperability with pre-6.1.0 versions of Connext DDS is not necessary, you can generate capture files
containing the source PID for inbound traffic. To do so, configure the value of the dds.trans-
port.minimum_compatibility_version property to 6.1.0. (See 7.5.19 PROPERTY QosPolicy (DDS
Extension) on page 440.)
<domain_participant_qos>

<property>
<value>

<element>
<name>dds.transport.minimum_compatibility_version</name>
<value>6.1.0</value>
<propagate>false</propagate>

</element>
</value>

</property>
</domain_participant_qos>

This property is never propagated, so it must be consistently configured throughout the whole system.

Note: Changing the value of this property affects the type of shared memory segments that Connext
DDS uses. For that reason, you may see the following warning, resulting from leftover shared memory
segments:
[0xC733A001,0xB248F671,0xAEC4A0C1:0x000001C1{D=200}|CREATE DP|ENABLE] NDDS_Transport_Shmem_
is_segment_compatible:incompatible shared memory protocol detected.
Current version 4.0 not compatible with 2.0.

1001

25.5 Logging a Backtrace for Failures

1002

The leftover shared memory segments can be removed using the ipcrm command. See https://-
community.rti.com/kb/what-are-possible-solutions-common-shared-memory-issues for more information.

25.5 Logging a Backtrace for Failures

In some scenarios, it might be desirable to log the backtrace from the code. A backtrace is a list of the func-
tion calls that are currently active in a thread. You can usually inspect a backtrace by using debugging util-
ities like gdb, but sometimes these are not available.

Now, Connext DDS logs the backtrace when a precondition fails in debug mode and when a segmentation
fault occurs, for macOS, Windows, and Linux systems. The backtrace feature is automatically enabled
upon creation of the first DomainParticipant. (That is, you will not see the backtrace log in a failure until
the first DomainParticipant is created.)

l Normally when a precondition fails, the execution continues and there is no information about the
problem, but Connext DDS provides a backtrace with context about where the issue was.

l When a segmentation fault occurs, the processor or operating system does not always provide a core
dump, but Connext DDS provides a backtrace with context about where the issue was.

For Linux systems, the output of the backtrace will look like this:
#1 RTIOsapiProcessTester_testPrintBacktrace
/connextdds/osapi.1.0/srcC/process/test/processTester.c:638 [0x417371]
#2 RTITestSetting_runTestsExt /connextdds/test.1.0/srcC/setting/Setting.c:719 [0x4623B8]
#3 RTITestSetting_runTests /connextdds/test.1.0/srcC/setting/Setting.c:905 [0x462B85]
#4 RTIOsapiProcessTester_run /connextdds/osapi.1.0/srcC/process/test/processTester.c:683
[0x41750C]
#5 RTITestSetting_runTestsExt /connextdds/test.1.0/srcC/setting/Setting.c:719 [0x4623B8]
#6 RTITestSetting_runTests /connextdds/test.1.0/srcC/setting/Setting.c:905 [0x462B85]
#7 RTIOsapiTester_run /connextdds/osapi.1.0/srcC/test/Tester.c:128 [0x4039CB]
#8 main /connextdds/osapi.1.0/srcC/test/Tester.c:213 [0x403A65] #9 ?? ??:0 [0xE8434830] #10 _
start ??:? [0x403759]

See the RTI Connext DDS Core Libraries Platform Notes for further details on enabling this feature on
macOS, Windows, and Linux systems.

The backtrace feature is smart enough to log the backtrace only once for a given error and not for the fol-
lowing errors in the same code path of the caller's functions. For example, in the failure of the creation of
the DDSDomainParticipant, Connext DDS logs the backtrace for just one error instead of logging it for all
of the error messages in the same code path:
U00007f86a87df700 Mx08:Udpv4SocketFactory.c:685:RTI0x2080010:invalid port 5562900
Backtrace:
#3 NDDS_Transport_UDPv4_Socket_bind_with_ip ??:? [0xCB235C]
#4 NDDS_Transport_UDPv4_SocketFactory_create_receive_socket ??:? [0xCB2619]
#5 NDDS_Transport_UDP_create_recvresource_rrEA Udp.c:? [0xCAB170]
#6 RTINetioReceiver_addEntryport ??:? [0xCA33F3]
#7 COMMENDActiveFacade_addEntryport ActiveFacade.c:? [0xC12B56]

https://community.rti.com/kb/what-are-possible-solutions-common-shared-memory-issues
https://community.rti.com/kb/what-are-possible-solutions-common-shared-memory-issues

25.6 Setting Warnings for Operation Delays

#8 DDS_DomainParticipantPresentation_reserve_entryportI DomainParticipantPresentation.c:?
[0x7E4F11]
#9 DDS_DomainParticipantPresentation_reserve_participant_index_entryports ??:? [0x7E8015]
#10 DDS_DomainParticipant_reserve_participant_index_entryports DomainParticipant.c:? [0x7B0B7E]
#11 DDS_DomainParticipant_enableI DomainParticipant.c:? [0x7CC15E]
#12 DDS_Entity_enable ??:? [0x72EC92]
#13 DDS_DomainParticipantFactory_create_participant ??:? [0x7DACF1]
#14 main ??:? [0x40675F]
#15 ?? ??:0 [0xA76F4830]
#16 _start ??:? [0x405EC9]
U00007f86a87df700 Mx0F:DomainParticipant.c:13313:RTI0x20f0c02:Automatic participant index
failed to initialize. PLEASE VERIFY CONSISTENT TRANSPORT / DISCOVERY CONFIGURATION.
U00007f86a87df700 Mx0F:DomainParticipantFactory.c:1314:RTI0x20f000e:ERROR: Failed to auto-
enable entity
U00007f86a87df700 Mx01:DomainParticipantTester.c:9325:RTI0x2000007:!
[DomainParticipantTester.c:9325] pointer is null: participant

By default, the print_format NDDS_CONFIG_LOG_PRINT_FORMAT_DEBUG is set for the log
level NDDS_CONFIG_LOG_LEVEL_FATAL_ERROR. This means that by default the backtrace is
logged for precondition and segmentation faults; however, you can disable the backtrace for NDDS_
CONFIG_LOG_LEVEL_FATAL_ERROR. In the following code, the log level NDDS_CONFIG_
LOG_LEVEL_FATAL_ERROR uses the print_format NDDS_CONFIG_LOG_PRINT_FORMAT_
DEFAULT, which does not contain the backtrace information:
NDDS_Config_Logger *logger = NDDS_Config_Logger_get_instance();
NDDS_Config_Logger_set_print_format_by_log_level(

logger,
NDDS_CONFIG_LOG_PRINT_FORMAT_DEFAULT,
NDDS_CONFIG_LOG_LEVEL_FATAL_ERROR));

See 25.2.1 Format of Logged Messages on page 993 and 25.2 Controlling Messages from Connext DDS
on page 990.

25.6 Setting Warnings for Operation Delays

You can configure logging a warning when a specific operation takes more time than expected. This cap-
ability is useful for discovering problems related to contentions, delays, and blocks. By default, these warn-
ings are not logged. You have to explicitly enter a timeout period for the desired warning to see it. You
can set these timeouts via properties in the 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440.

The operations for which you can set timeouts are:

l Send operation: Print a warning message when the send operation time exceeds the time threshold
configured by the property dds.participant.logging.time_based_logging.send.timeout. The output
message will look like this:

1003

25.6 Setting Warnings for Operation Delays

1004

It took '0.359548' seconds to send '96' bytes to
'shmem://903A:C1C4:91F3:A80F:CA5B:3B82:0000:0000:7661', which exceeds the time threshold
configured in 'dds.participant.logging.time_based_logging.send.timeout'."

l Event operations: Print a warning message when the event start or execution time exceeds the time
threshold configured by the property dds.participant.logging.time_based_logging.event.timeout.
The output message will look like this:

The event thread took '2.502871' seconds waiting to trigger the event, which exceeds the
time threshold configured in 'dds.participant.logging.time_based_logging.event.timeout'.

The event thread took '1.436886' seconds executing the event, which exceeds the time
threshold configured in 'dds.participant.logging.time_based_logging.event.timeout'.

l Process received data operation: Print a warning message when the processing of a received mes-
sage on a specific port exceeds a time threshold set in dds.participant.logging.time_based_log-
ging.process_received_message.timeout.

The tracking ports can be configured using the property dds.participant.logging.time_based_log-
ging.process_received_message.tracked_ports. The ports will be separated by a comma ','. They
can be described using a regular expression, such as, "76*,1234". If ports are not specified, all of the
ports will be tracked.

The output message will look like this:
It took '0.003795' seconds to process the received message of '496' bytes by the port
'7662', which exceeds the threshold configured in 'dds.participant.logging.time_based_
logging.process_received_message.timeout'."

l Authentication process (if using RTI Security Plugins): Print a warning message when the authen-
tication operation time exceeds the time threshold configured by the property dds.-
participant.logging.time_based_logging.authentication.timeout. The output message will look
like this:

[0xC0A87A01,0x00007BFC,0x00000001:0x000201C4{E=DR,I=21}|RECEIVE FROM
0xC0A87A01,0x00007BFC,0x00000002:0x000201C3]PRESParticipant_processHandshake:It took
'1.096696' seconds to authenticate the remote participant
[0xC0A87A01,0x00007BFC,0x00000002], which exceeds the threshold configured in
'dds.participant.logging.time_based_logging.authentication.timeout'.

These and other properties are documented in the Property Reference Guide.

Part 4: Request-Reply and RPC Communication Patterns

Part 4: Request-Reply and RPC
Communication Patterns

As real-time and embedded applications become more complex, and require integration with enterprise
applications, you may need additional communication patterns besides publish-subscribe. Perhaps your
application needs certain information only occasionally—such as changes in temperature over the past
hour, or even just once, such as application configuration data that is required only at startup. To get
information only when needed, Connext DDS supports a request-reply communication pattern, which is
described in the following sections:

l Introduction to the Request-Reply Communication Pattern (Chapter 26 on page 1006)

l Using the Request-Reply Communication Pattern (Chapter 27 on page 1012)

l Remote Procedure Calls (RPC)—Experimental Feature (Chapter 28 on page 1030)

1005

Chapter 26 Introduction to the Request-
Reply Communication Pattern

The fundamental communication pattern provided by Connext DDS is known as DDS data-centric
publish-subscribe. The data-centric publish-subscribe pattern is particularly well-suited in situations
where the same data must flow from one producer to many consumers, or when data is streaming
continuously from producers to consumers. For example, the values produced by a temperature
sensor may be observed by multiple applications, such as control applications, UI applications,
supervisory applications, historians, etc.
Figure 26.1: Publish-Subscribe Overview

1006

26.1 The Request-Reply Pattern

1007

Sending temperature updates using the publish-subscribe pattern

The publish-subscribe pattern supports multicast, which allows efficient distribution from a single source to
multiple applications, devices, or subscribers simultaneously. But even with a single subscriber, the pub-
lish-subscribe pattern is still advantageous, because the publisher can push new updates to a subscriber as
soon as they happen. That way the subscriber always has access to the latest data, with minimum delays,
and without incurring the overhead of periodically polling what may be stale data. This efficient, low-
latency access to the most current information is important for real-time applications.

26.1 The Request-Reply Pattern

As applications become more complex, it often becomes necessary to use other communication patterns in
addition to publish-subscribe. Sometimes an application needs to get a one-time snapshot of information;
for example, to make a query into a database or retrieve configuration parameters that never change. Other
times an application needs to ask a remote application to perform an action on its behalf; for example, to
invoke a remote procedure call or a service.

To support these scenarios, Connext DDS includes support for the request-reply communication pattern.
Figure 26.2: Request-Reply Overview

Request-Reply communication pattern using a Requester and a Replier

The request-reply pattern has two roles: The requester (service consumer or client) sends a request mes-
sage and waits for a reply message. The replier (service provider) receives the request message and
responds with a reply message.

Using the request-reply pattern with a Replier is straightforward. Connext DDS provides two Entities: the
Requester and the Replier manage all the interactions on behalf of the application. The Requester and
Replier automatically discover each other based on an application-specified service name. When the applic-
ation invokes a request, the Requester sends a message (on an automatically-created request Topic) to the
Replier, which notifies the receiving application. The application, in turn, uses the Replier to receive the

26.1.1 Request-Reply Correlation

request and send the reply message. The reply message is sent by Connext DDS back to the original
Requester (using a different automatically created reply Topic).

Connext DDS supports both blocking and non-blocking request-reply interactions:

l In a blocking (a.k.a. synchronous) interaction, the requesting application blocks while waiting for
the reply. This is typical of applications desiring remote-procedure-call or remote-method-invocation
interactions.

l In a non-blocking (a.k.a. asynchronous) interaction, the requesting application can proceed with
other work and gets notified when a reply is available.

27.2 Repliers on page 1021 explains how an application can use the methods provided by the Requester
and the Replier to perform both blocking and non-blocking request-reply interactions.

The implementation of request-reply in Connext DDS is highly scalable. A Replier can receive requests
from thousands of Requesters at the same time. Connext DDS will efficiently deliver each reply only to the
original Requester, allowing the number of Requesters to grow without significantly impacting each other.

26.1.1 Request-Reply Correlation

An application might have multiple outstanding requests, all originating from the same Requester. This can
be as a result of using a non-blocking request-reply interaction, or as a result of having multiple application
threads using the same Requester. Because of this, Connext DDS provides a way for the application to cor-
relate a reply with the request it is associated with. This meta-data is provided as part of a SampleInfo struc-
ture that accompanies the reply.

When using a blocking request operation, Connext DDS provides an easy-to-use API that automatically
does the correlation for you.

26.2 Single-Request, Multiple-Replies

Connext DDS also supports the single-request multiple-reply pattern. This pattern is an extension of the
basic request-reply pattern in which multiple reply messages can flow back as a result of a single request.

The single-request multiple-reply pattern is very useful when getting large amounts of data as a reply, such
as when querying a system for all data that matches a certain criteria. Another common use-case is invok-
ing a service that goes through multiple stages and provides updates on each: service commencement, pro-
gress reports, and final completion.

1008

26.3 Multiple Repliers

1009

Figure 26.3: Single Request, Multiple Replies

Request/Reply communication pattern with multiple replies resulting from a single request

For example, a mobile asset management system may need to locate a particular asset (truck, locomotive,
etc.). The system sends out the request. The first reply that comes back will read “locating.” The service
has not yet determined the position, but it notifies the requester that the search operation has started. The
second reply might provide a status update on the search, perhaps including a rough area of location. The
third and final reply will have the exact location of the asset.

26.3 Multiple Repliers

Connext DDS directly supports applications that obtain results from multiple providers in parallel instead
of in sequence, basically implementing functional parallelism.

To illustrate, consider a system managing a fleet of drones, like unmanned aerial vehicles (UAVs). Using
the single request-multiple reply pattern, the application can use a Requester to send a single ‘DroneInfo’
request to all the drones to query for their current mission and status. Each drone replies with the inform-
ation on its own status and the Requester aggregates all the responses for the application.

As another example, consider a system that would like to locate the best printer to perform a particular job.
The application can use a Requester to query all the printers that are on-line for their characteristics and
load. The Requester receives the replies and accumulates them until an application-specified number of
replies is received (or a timeout elapses). The application can then use the Requester to access all the
replies, examine their contents, and select the best printer for the job.

26.4 Combining Request-Reply and Publish-Subscribe

Figure 26.4: Multiple Repliers

Request/Reply communication pattern with a single Requester and multiple Repliers

26.4 Combining Request-Reply and Publish-Subscribe

Under the hood, Connext DDS implements request-reply using the DDS data-centric publish-subscribe pat-
tern. This has a key benefit in that the two patterns can be combined, and mapped without interference.

1010

26.4 Combining Request-Reply and Publish-Subscribe

1011

Figure 26.5: Combining Patterns

Combining Request-Reply and Publish-Subscribe patterns

For example, a pair of applications may be involved in a two-way conversation using request-reply. For
debugging purposes or regulatory compliance, you want to inspect those request-reply messages, but
without disrupting the conversation.

Since Connext DDS implements requests and replies using DDS data-centric publish subscribe, others can
simply subscribe to the request and reply messages. You can introduce a subscriber to the reply Topic,
without interfering with the two-way conversation between the Requester and the Replier. This pattern is
also known as a Wire Tap. For example, you can use RTI Recording Service to non-intrusively capture
request-reply traffic.

Chapter 27 Using the Request-Reply
Communication Pattern

There are two basic Connext DDS entities used by the Request-Reply communication pattern:
Requester and Replier.

l A Requester publishes a request Topic and subscribes to a reply Topic. See 27.1 Requesters
on the next page.

l A Replier subscribes to the request Topic and publishes the reply Topic. See 27.2 Repliers
on page 1021.

There is an alternate type of replier known as a SimpleReplier:
l A SimpleReplier is useful for cases where there is a single reply to each request and
the reply can be generated quickly, such as looking up some data from memory.

l A SimpleReplier is used in combination with a user-provided SimpleReplierListener.
Requests are passed to a callback in the SimpleReplierListener, which returns the
reply.

l The SimpleReplier is not suitable if the replier needs to generate more than one reply
for a single request or if generating the reply can take significant time or needs to
occur asynchronously. For more information, see 27.3 SimpleRepliers on page 1027.

Additional resources. In addition to the information in this section, you can find more information
and example code here:

l The Connext DDS API Reference HTML documentation1contains example code that will
show you how to use the API: From theModules tab, navigate to Programming How-

1The API Reference HTML documentation is available for all supported programming languages. Open
<NDDSHOME>/README.html.

1012

27.1 Requesters

1013

To’s, Request-Reply Examples.

l The Connext DDS API Reference HTML documentation also contains the full API documentation
for the Requester, Replier, and SimpleReplier. Under theModules tab, navigate to RTI Connext
DDS API Reference, RTI Connext Messaging API Reference, Request-Reply Pattern.

27.1 Requesters

A Requester is an entity with two associated DDS Entities: a DDS DataWriter bound to a request Topic
and a DDS DataReader bound to a reply Topic. A Requester sends requests by publishing samples of the
request Topic, and receives replies for those requests by subscribing to the reply Topic.

Valid types for request and reply Topics can be:

l For the C API:
l DDS types generated by RTI Code Generator

l For all other APIs:
l DDS types generated by RTI Code Generator

l Built-in DDS types, such as, String, KeyedString, Octets, and KeyedOctets

l DDS DynamicData Types

To communicate, a Requester and Replier must use the same request Topic name, the same reply Topic
name, and be associated with the same DDS domain_id.

A Requester has an associated DomainParticipant, which can be shared with other requesters or Connext
DDS entities. All the other entities required for request-reply interaction, including the request and reply
Topics, the DataWriter for writing requests, and a DataReader for reading replies, are automatically cre-
ated when the Requester is constructed.

Connext DDS guarantees that a Requester will only receive replies associated with the requests it sends.

The Requester uses the underlying DataReader not only to receive the replies, but also as a cache that can
hold replies to multiple outstanding requests or even multiple replies to a single request. Depending on the
HistoryQoSPolicy configuration of the DataReader, the Requester may allow replies to replace previous
replies based on the reply data having the same value for the Key fields (see 2.4 DDS Samples, Instances,
and Keys on page 18). The default configuration of the Requester does not allow replacing.

You can configure the QoS for the underlying DataWriter and DataReader in a QoS profile. By default,
the DataWriter and DataReader are created with default values (DDS_DATAWRITER_QOS_
DEFAULT and DDS_DATAREADER_QOS_DEFAULT, respectively) except for the following:

27.1.1 Creating a Requester

l 7.5.21 RELIABILITY QosPolicy on page 448: kind is set to RELIABLE.

l 7.5.12 HISTORY QosPolicy on page 421: kind is set to KEEP_ALL.

l Several other protocol-related settings for Requesters (see the API Reference HTML doc-
umentation: selectModules, Programming How-To’s, Request-Reply Examples; then scroll
down to the section on Configuring Request-Reply QoS profiles).

27.1.1 Creating a Requester

Before you can create a Requester, you need a DomainParticipant and a service name.

Note: The example code snippets in this section use the C++ API. You can find more complete examples
in all the supported programming languages (C, C++, Java, C#) in the Connext DDS API Reference
HTML documentation and in the “example” directory found in your Connext DDS installation.

To create a Requester with the minimum set of parameters, you can use the basic constructor that receives
only an existing DDS DomainParticipant and the name of the service:
Requester <MyRequestType, MyReplyType> *requester =

new Requester <MyRequestType,MyReplyType> (
participant, “ServiceName”);

To create a Requester with specific parameters, you may use a different constructor that receives a
RequesterParams structure (described in 27.1.3 Setting Requester Parameters on the next page):
Requester (const RequesterParams ¶ms)

The ServiceName parameter is used to generate the names of the request and reply Topics that the
Requester and Replier will use to communicate. For example, if the service name is “MyService”, the
topic names for the Requester and Replier will be “MyServiceRequest” and “MyServiceReply”, respect-
ively. Therefore, for communication to occur, you must use the same service name when creating the
Requester and the Replier entities.

If you want to use topic names different from the ones that would be derived from the ServiceName, you
can override the default names by setting the actual request and reply Topic names using the request_
topic_name() and reply_topic_name() accessors to the RequesterParams structure prior to creating the
Requester.

Example: To create a Requester with default QoS and topic names derived from the service name, you
may use the following code:
Requester<Foo, Bar> * requester =

new Requester<Foo, Bar>(
participant,"MyService");

Example: To create a Requester with a specific QoS profile with library name “MyLibrary” and profile
“MyProfile” defined inside USER_QOS_PROFILES.xml in the current working directory, you may use
the following code:

1014

27.1.2 Destroying a Requester

1015

Requester<Foo, Bar> * requester = new Requester<Foo, Bar>(
RequesterParams(participant).
service_name("MyService").qos_profile(
"MyLibrary", "MyProfile"));

Once you have created a Requester, you can use it to perform the operations in Table 27.2 Requester Oper-
ations.

27.1.2 Destroying a Requester

To destroy a Requester and free its underlying entities you may use the destructor:
virtual ~Requester ()

27.1.3 Setting Requester Parameters

To change the RequesterParams that can be used when creating a Requester, you can use the operations lis-
ted in Table 27.1 Operations to Set Requester Parameters.

Operation Description

datareader_
qos

Sets the QoS of the reply DataReader.

datawriter_
qos

Sets the QoS of the request DataWriter.

publisher Sets a specific Publisher.

qos_profile Sets a QoS profile for the DDS entities in this requester.

request_
topic_name

Sets the name of the Topic used for the request. If this parameter is set, then you must also set the reply_topic_name parameter
and you should not set the service_name parameter.

reply_topic_
name

Sets the name of the Topic used for the reply. If this parameter is set, then you must also set the request_topic_name parameter
and you should not set the service_name parameter.

reply_type_
support

Sets the type support for the reply type.

request_type_
support

Sets the type support for the request type.

service_name
Sets the service name. This will automatically set the name of the request Topic and the reply Topic. If this parameter is set you
should not set the request_topic_name or the reply_topic_name.

subscriber Sets a specific Subscriber.

Table 27.1 Operations to Set Requester Parameters

27.1.4 Summary of Requester Operations

There are several kinds of operations an application can perform using the Requester:

27.1.4 Summary of Requester Operations

l Sending requests (i.e., publishing request samples on the request Topic)

l Waiting for replies to be received.

l Taking the reply data. This gets the reply data from the Requester and removes from the Requester
cache.

l Reading the reply data. This gets the reply data from the Requester but leaves it in the Requester
cache so it remain accessible to future operations on the Requester.

l Receiving replies (a convenience operation that is a combination of ‘waiting’ and ‘taking’ the data in
a single operation)

These operations are summarized in Table 27.2 Requester Operations

Operation Description Reference

Sending
Requests

send_
request

Sends a request.
27.1.5 Sending Requests on
the next page

Waiting for
Replies

wait_for_
replies

Waits for replies to any request or to a specific request.
27.1.6.1 Waiting for Replies on
page 1018

Taking
Reply Data

take_reply

Copies a single reply into a Sample container. There are variants that allow getting the
next reply available or the next reply to a specific request.

This operation removes the reply from the Requester cache. So subsequent calls to
take or read replies will not get the same reply again.

27.2 Repliers on page 1021

take_
replies

Returns a LoanedSamples containerwith the collection of replies received by the
Requester. There are variants that allow accessing all the replies available or only the
replies to a specific request.

This operation removes the returned replies from the Requester cache. So sub-
sequent calls to take or read replies will not get the same replies again.

Reading
Reply Data

read_reply

Copies a single reply into a Sample container. There are variants that allow getting the
next reply available or the next reply to a specific request.

This operation leaves the reply on the Requester cache. So subsequent calls to take
or read replies can get the same reply again.

27.2 Repliers on page 1021

read_
replies

Returns a LoanedSamples containerwith the collection of replies received by the
Requester. There are variants that allow accessing all the replies available or only the
replies to a specific request.

This operation leaves the returned replies in the Requester cache. So subsequent
calls to take or read replies can get the same replies again.

Receiving
Replies

receive_
reply

Convenience function that combines a call to wait_for_replies with a call to take_reply.
27.1.6.3 Receiving Replies on
page 1020

receive_
replies

Convenience function that combines a call to wait_for_replies with a call to take_
replies.

Table 27.2 Requester Operations

1016

27.1.5 Sending Requests

1017

Operation Description Reference

Getting Un-
derlying
Entities

get_re-
quest_
datawriter

Retrieves the underlying DataWriter that writes requests. 27.4 Accessing Underlying
DataWriters and DataReaders
on page 1029

get_reply_
datareader

Retrieves the underlying DataReader that reads replies.

Table 27.2 Requester Operations

27.1.5 Sending Requests

To send a request, use the send_request() operation on the Requester. There are three variants of this oper-
ation, depending on the parameters that are passed in:

1. send_request (const TRequest &request)

2. send_request (WriteSample<TRequest> &request)

3. send_request (WriteSampleRef<TRequest> &request)

The first variant simply sends a request.

The second variant sends a request and gets back information about the request in aWriteSample con-
tainer. This information can be used to correlate the request with future replies.

The third variant is just like the second, but puts the information in aWriteSampleRef, which holds ref-
erences to the data and parameters. Both WriteSample and WriteSampleRef provide information about the
request that can be used to correlate the request with future replies.

27.1.6 Processing Incoming Replies with a Requester

The Requester provides several operations that can be used to wait for and access replies:

l wait_for_replies(), see 27.1.6.1 Waiting for Replies on the next page

l take_reply(), take_replies(), read_reply() and read_replies(), see 27.1.6.2 Getting Replies on the
next page

l receive_reply() and receive_replies(), see 27.1.6.3 Receiving Replies on page 1020

The wait_for_replies operations are used to wait until the replies arrive.

The take_reply, take_replies, read_reply, and read_replies() operations access the replies once they
have arrived.

27.1.6 Processing Incoming Replies with a Requester

The receive_reply and receive_replies are convenience functions that combine waiting and accessing the
replies and are equivalent to calling the ‘wait’ operation followed by the corresponding take_reply or
take_replies operations.

Each of these operations has several variants, depending on the parameters that are passed in.

27.1.6.1 Waiting for Replies

Use the wait_for_replies() operation on the Requester to wait for the replies to previously sent requests.
There are three variants of this operation, depending on the parameters that are passed in. All these variants
block the calling thread until either there are replies or a timeout occurs.
1. wait_for_replies (const DDS_Duration_t &max_wait)
2. wait_for_replies (int min_count,

const DDS_Duration_t &max_wait)
3. wait_for_replies (int min_count,

const DDS_Duration_t &max_wait,
const SampleIdentity_t &related_request_id)

The first variant (only passing in max_wait) blocks until a reply is available or untilmax_wait time has
elapsed, whichever comes first. The reply can be to any of the requests made by the Requester.

The second variant (passing in min_count and max_wait) blocks until at leastmin_count replies are avail-
able or untilmax_wait time has elapsed, whichever comes first. These replies may all be to the same
request or to different requests made by the Requester.

The third variant (passing in min_count, max_wait, and related_request_id) blocks until at leastmin_
count replies to the request identified by the related_request_id are available, or untilmax_wait time has
passed, whichever comes first. Note that unlike the previous variants, the replies must all be to the same
single request (identified by the related_request_id) made by the Requester.

Typically after waiting for replies, you will call take_reply, take_replies, read_reply, or read_replies(),
see 27.2 Repliers on page 1021.

If you call wait_for_replies() several times without ‘taking’ the replies (using the take_reply or take_
replies operation), future calls to wait_for_replies() will return immediately and will not wait for new
replies.

27.1.6.2 Getting Replies

You can use the following operations to access replies: take_reply, take_replies, read_reply, and read_
replies().

As mentioned in 27.1.4 Summary of Requester Operations on page 1015, the difference between the
‘take’ operations (take_reply, take_replies) and the ‘read’ operations (read_reply, read_replies) is that
‘take’ operations remove the replies from the Requester cache. This means that future calls to take_reply,
read_reply, read_reply, and read_reply will not get the same reply again.

1018

27.1.6 Processing Incoming Replies with a Requester

1019

The take_reply and read_reply operations access a single reply, whereas the take_replies and read_
replies can access a collection of replies.

There are four variants of the take_reply and read_reply operations, depending on the parameters that are
passed in:
1. take_reply (Sample<TReply> &reply)

read_reply (Sample<TReply> &reply)

2. take_reply (SampleRef<TReply> reply)
read_reply (SampleRef<TReply> reply)

3. take_reply (Sample<TReply> &reply,
const SampleIdentity_t &related_request_id)

read_reply (Sample<TReply> &reply,
const SampleIdentity_t &related_request_id)

4. take_reply (SampleRef<TReply> reply,
const SampleIdentity_t &related_request_id)

read_reply (SampleRef<TReply> reply,
const SampleIdentity_t &related_request_id)

The first two variants provide access to the next reply in the Requester cache. This is the earliest reply to
any previous requests sent by the Requester that has not been ‘taken’ from the Requester cache. The
remaining two variants provide access to the earliest non-previously ‘taken’ reply to the request specified
by the related_request_id.

Notice that some of these variants use a Sample, while other use a SampleRef. A SampleRef can be used
much like a Sample, but it holds references to the reply data and DDS SampleInfo, so there is no additional
copy. In contrast using the Sample obtains a copy of both the data and DDS SampleInfo.

The take_replies and read_replies operations access a collection of (one or more) replies to previously
sent requests. These operations are convenient when you expect multiple replies to a single request, or
when issuing multiple requests concurrently without waiting for intervening replies.

The take_replies and read_replies operations return a LoanedSamples container that holds the replies. To
increase performance, the LoanedSamples does not copy the reply data. Instead it ‘loans’ the necessary
resources from the Requester. The resources loaned by the LoanedSamples container must be eventually
returned, either explicitly calling the return_loan() operation on the LoanedSamples or through the
destructor of the LoanedSamples.

There are three variants of the take_replies and read_replies operations, depending on the parameters that
are passed in:
1. take_replies (int max_count=DDS_LENGTH_UNLIMITED)

read_replies (int max_count=DDS_LENGTH_UNLIMITED)

2. take_replies (int max_count,
const SampleIdentity_t &related_request_id)

read_replies (int max_count,
const SampleIdentity_t &related_request_id)

27.1.6 Processing Incoming Replies with a Requester

3. take_replies (const SampleIdentity_t &related_request_id)
read_replies (const SampleIdentity_t &related_request_id)

The first variant (only passing in max_count) returns a container holding up to max_count replies.

The second variant (passing in max_count and related_request_id) returns a LoanedSamples container
holding up to max_count replies that correspond to the request identified by the related_request_id.

The third variant (only passing in related_request_id) returns a LoanedSamples container holding an
unbounded number of replies that correspond to the request identified by the related_request_id. This is
equivalent to the second variant with max_count = DDS_LENGTH_UNLIMITED.

The resources for the LoanedSamples container must be eventually be returned, either by calling the
return_loan() operation on the LoanedSamples or through the LoanedSamples destructor.

For multi-reply scenarios, in which a Requester receives multiple replies from a Replier for a given
request, the Requester can check if a reply is the last reply in a sequence of replies. To do so, see if the bit
INTERMEDIATE_REPLY_SEQUENCE_SAMPLE is set in DDS_SampleInfo’s flag field (see Table
8.17 DDS_SampleInfo Structure) after receiving each reply. This bit indicates it is NOT the last reply.

27.1.6.3 Receiving Replies

The receive_reply() operation is a shortcut that combines calls to wait_for_replies() and to take_reply().
Similarly the receive_replies() operation combines wait_for_replies() and take_replies().

There is only one variant of the receive_reply() operation:
1. receive_reply (Sample<TReply> &reply, const DDS_Duration_t &timeout)

This operation blocks until either a reply is received or a timeout occurs. The contents of the reply are
copied into the provided sample (reply).

There are two variants of the receive_replies() operation, depending on the parameters that are passed in:
1. receive_replies (const DDS_Duration_t &max_wait)

2. receive_replies (int min_count, int max_count,
const DDS_Duration_t &max_wait)

These two variants block until multiple replies are available or a timeout occurs.

The first variant (only passing in max_wait) blocks until at least one reply is available or untilmax_wait
time has passed, whichever comes first. The operation returns a LoanedSamples container holding the
replies. Note that there could be more than one reply. This can occur if, for example, there were already
replies available in the Requester from previous requests that were not processed. This operation does not
limit the number of replies that can be returned on the LoanedSamples container.

The second variant (passing in min_count, max_count, and max_wait) will block untilmin_count
replies are available or untilmax_wait time has passed, whichever comes first. Up to max_count replies
will be stored into the LoanedSamples container which is returned to the caller.

1020

27.2 Repliers

1021

The resources held in the LoanedSamples container must eventually be returned, either with an explicit
call to return_loan() on the LoanedSamples or through the LoanedSamples destructor.

27.2 Repliers

A Replier is an entity with two associated DDS Entities: a DDS DataReader bound to a request Topic and
a DDS DataWriter bound to a reply Topic. The Replier receives requests by subscribing to the request
Topic and sends replies to those requests by publishing on the reply Topic.

Valid data types for these topics are the same as specified for the Requester, see 27.1 Requesters on
page 1013.

For multi-reply scenarios in which a Replier generates more than one reply for a request, the Replier
should mark all intermediate replies (all but the last reply) with the INTERMEDIATE_REPLY_
SEQUENCE_SAMPLE bit-flag in the WriteParams_t flag field (see Table 7.17 DDS_WriteParams_t).

Much like a Requester, a Replier has an associated DDS DomainParticipant which can be shared with
other Connext DDS entities. All the other entities required for the request-reply interaction, including a
DataWriter for writing replies and a DataReader for reading requests, are automatically created when the
Replier is constructed.

You can configure the QoS for the underlying DataWriter and DataReader in a QoS profile. By default,
the DataWriter and DataReader are created with default QoS values (using DDS_DATAWRITER_
QOS_DEFAULT and DDS_DATAREADER_QOS_DEFAULT, respectively) except for the following:

l 7.5.21 RELIABILITY QosPolicy on page 448: kind is set to RELIABLE

l 7.5.12 HISTORY QosPolicy on page 421: kind is set to KEEP_ALL

The Replier API supports several ways in which the application can be notified of, and process, requests:

l Blocking: The application thread blocks waiting for requests, processes them, and dispatches the
reply. In this situation, if the computation necessary to process the request and produce the reply is
small, you may consider using the SimpleReplier, which offers a simplified API.

l Polling: The application thread checks (polls) for requests periodically but does not block to wait for
them. To check for data without blocking, call take_requests() or read_requests().

l Asynchronous notification: The application installs a ReplierListener to receive notifications
whenever a request is received.

27.2.1 Creating a Replier

To create a Replier with the minimum set of parameters you can use the basic constructor that receives
only an existing DDS DomainParticipant and the name of the service:

27.2.2 Destroying a Replier

Replier (DDSDomainParticipant * participant,
const std::string & service_name)

Example:
Replier<Foo, Bar> * replier =

new Replier<Foo, Bar>(participant, "MyService");

To create a Replier with specific parameters you may use a different constructor that receives a Repli-
erParams structure:
Replier (const ReplierParams<TRequest, TReply> ¶ms)

Example:
Replier<Foo, Bar> * replier = new Replier<Foo, Bar>(

ReplierParams(participant).service_name("MyService")
.qos_profile("MyLibrary", "MyProfile"));

The service_name is used to generate the names of the request and reply Topics that the Requester and
Replier will use to communicate. For example, if the service name is “MyService”, the topic names for the
Requester and Replier will be “MyServiceRequest” and “MyServiceReply”, respectively. Therefore it is
important to use the same service_name when creating the Requester and the Replier.

If you need to specify different Topic names, you can override the default names by setting the actual
request and reply Topic names using request_topic_name() and reply_topic_name() accessors to the
ReplierParams structure prior to creating the Replier.

27.2.2 Destroying a Replier

To destroy a Replier and free its underlying entities:
virtual ~Replier ()

27.2.3 Setting Replier Parameters

To change the ReplierParams that are used to create a Replier, use the operations listed in Table 27.3
Operations to Set Replier Parameters.

Operation Description

datareader_qos Sets the quality of service of the requestDataReader.

datawriter_qos Sets the quality of service of the replyDataWriter.

publisher Sets a specific Publisher.

qos_profile Sets a QoS profile for the entities in this replier.

replier_listener Sets a listener that is called when requests are available.

Table 27.3 Operations to Set Replier Parameters

1022

27.2.4 Summary of Replier Operations

1023

Operation Description

reply_topic_name Sets a specific reply topic name.

reply_type_support Sets the type support for the reply type.

request_topic_name Sets a specific request topic name.

request_type_support Sets the type support for the request type.

service_name Sets the service name the Replier offers and Requesters use to match.

subscriber Sets a specific Subscriber.

Table 27.3 Operations to Set Replier Parameters

27.2.4 Summary of Replier Operations

There are four kinds of operations an application can perform using the Replier:

l Waiting for requests to be received

l Reading/taking the request data and associated information

l Receiving requests (a convenience operation that combines waiting and getting the data into a single
operation)

l Sending a reply for received request (i.e., publishing a reply sample on the reply Topic with special
meta-data so that the original Requester can identify it).

The Replier operations are summarized in Table 27.4 Replier Operations.

Operation Description Reference

Waiting for
Requests

wait_for_re-
quests

Waits for requests.
27.2.5.1 Waiting for Requests on the next
page

Taking
Requests

take_request
Copies the contents of a single request into a Sample and re-
moves it from the Replier cache.

27.2.5.2 Reading and Taking Requests on
page 1025

take_requests
Returns a LoanedSamples to accessmultiple requests and re-
moves the requests from the Replier cache.

Reading
Requests

read_request
Copies the contents of a single request into a Sample, leaving it
in the Replier cache

read_requests
Returns a LoanedSamples to accessmultiple requests, leaving
them in the Replier cache.

Table 27.4 Replier Operations

27.2.5 Processing Incoming Requests with a Replier

Operation Description Reference

Receiving
Requests

receive_re-
quest

Waits for a single request and copies its contents into a Sample
container.

27.2.5.3 Receiving Requests on page 1026
receive_re-
quests

Waits formultiple requests and provides a LoanedSamples con-
tainer to access them.

Sending
Replies

send_reply Sends a reply for a previous request. 27.2.6 Sending Replies on page 1026

Getting Un-
derlying Entities

get_request_
datareader

Retrieves the underlying DataReader.
27.4 Accessing Underlying DataWriters and
DataReaderson page 1029

get_reply_
datawriter

Retrieves the underlying DataWriter.

Table 27.4 Replier Operations

27.2.5 Processing Incoming Requests with a Replier

The Replier provides several operations that can be used to wait for and access the requests:

l wait_for_requests(), see 27.2.5.1 Waiting for Requests below

l take_request(), take_requests(), read_request(), and read_requests(), see 27.2.5.2 Reading and
Taking Requests on the next page

l receive_request() and receive_requests(), see 27.2.5.3 Receiving Requests on page 1026

The wait_for_requests() operations are used to wait until requests arrive.

The take_request(), take_requests(), read_request(), and read_requests() operations access the
requests, once they have arrived.

The receive_request() and receive_requests() operations are convenience functions that combine waiting
for and accessing requests and are equivalent to calling the ‘wait’ operation followed by the corresponding
take_request() or take_requests() operations.

Each of these operations has several variants, depending on the parameters that are passed in.

27.2.5.1 Waiting for Requests

Use the wait_for_requests() operation on the Replier to wait for requests. There are two variants of this
operation, depending on the parameters that are passed in. All these variants block the calling thread until
either there are replies or a timeout occurs.:
1. wait_for_requests (const DDS_Duration_t &max_wait)

2. wait_for_requests (int min_count, const DDS_Duration_t &max_wait)

1024

27.2.5 Processing Incoming Requests with a Replier

1025

The first variant (only passing in max_wait) blocks until one request is available or untilmax_wait time
has passed, whichever comes first.

The second variant blocks untilmin_count number of requests are available or untilmax_wait time has
passed.

Typically after waiting for requests, you will call take_request, take_requests, read_request, or read_
requests, see 27.2.6 Sending Replies on the next page.

27.2.5.2 Reading and Taking Requests

You can use the following four operations to access requests: take_request, take_requests, read_
request, or read_requests.

As mentioned in 27.2.4 Summary of Replier Operations on page 1023, the difference between the ‘take’
operations (take_request, take_requests) and the ‘read’ operations (read_request, read_requests) is
that ‘take’ operations remove the requests from the Replier cache. This means that future calls to take_
request, take_requests, read_request, or read_requests will not get the same request again.

The take_request and read_request operations access a single reply, whereas the take_requests and
read_requests can access a collection of replies.

There are two variants of the take_request and read_request operations, depending on the parameters
that are passed in:
1. take_request (connext::Sample<TRequest> & request)

read_request (connext::Sample<TRequest> & request)

2. take_request (connext::SampleRef<TRequest request)
read_request (connext::SampleRef<TRequest request)

The first variant returns the request using a Sample container. The second variant uses a SampleRef con-
tainer instead. A SampleRef can be used much like a Sample, but it holds references to the request data
and DDS SampleInfo, so there is no additional copy. In contrast, using the Sample makes a copy of both
the data and DDS SampleInfo.

The take_requests and read_requests operations access a collection of (one or more) requests in the
Replier cache. These operations are convenient when you want to batch-process a set of requests.

The take_requests and read_requests operations return a LoanedSamples container that holds the
requests. To increase performance, the LoanedSamples does not copy the request data. Instead it ‘loans’
the necessary resources from the Replier. The resources loaned by the LoanedSamples container must be
eventually returned, either explicitly by calling the return_loan() operation on the LoanedSamples or
through the destructor of the LoanedSamples.

There is only one variant of these operations:
1. take_requests (int max_samples = DDS_LENGTH_UNLIMITED)

read_requests (int max_samples = DDS_LENGTH_UNLIMITED)

27.2.6 Sending Replies

The returned container may contain up to max_samples number of requests.

27.2.5.3 Receiving Requests

The receive_request() operation is a shortcut that combines calls to wait_for_requests() and take_
request(). Similarly, the receive_requests() operation combines wait_for_requests() and take_requests
().

There are two variants of the receive_request() operation:
1. receive_request (connext::Sample<TRequest> & request,

const DDS_Duration_t & max_wait)
2. receive_request (connext::SampleRef<TRequest> request,

const DDS_Duration_t & max_wait)

The receive_request operation blocks until either a request is received or a timeout occurs. The contents
of the request are copied into the provided container (request). The first variant uses a Sample container,
whereas the second variant uses a SamepleRef container. A SampleRef can be used much like a Sample,
but it holds references to the request data and DDS SampleInfo, so there is no additional copy. In contrast,
using the Sample obtains a copy of both the data and the DDS SampleInfo.

There are two variants of the receive_requests() operation, depending on the parameters that are passed
in:
1. receive_requests (const DDS_Duration_t & max_wait)

2. receive_requests (int min_request_count,
int max_request_count,
const DDS_Duration_t & max_wait)

The receive_requests operation blocks until one or more requests are available, or a timeout occurs.

The first variant (only passing in max_wait) blocks until one request is available or untilmax_wait time
has passed, whichever comes first. The contents of the request are copied into a LoanedSamples container
which is returned to the caller. An unlimited number of replies can be copied into the container.

The second variant blocks untilmin_request_count number of requests are available or untilmax_wait
time has passed, whichever comes first. Up to max_request_count number of requests will be copied into
a LoanedSamples container which is returned to the caller.

The resources for the LoanedSamples container must eventually be returned, either with return_loan() or
through the LoanedSamples destructor.

27.2.6 Sending Replies

There are three variants for send_reply(), depending on the parameters that are passed in:

1026

27.3 SimpleRepliers

1027

1. send_reply (const TReply & reply,
const SampleIdentity_t & related_request_id)

2. send_reply (WriteSample<TReply> & reply,
const SampleIdentity_t & related_request_id)

3. send_reply (WriteSampleRef<TReply> & reply,
const SampleIdentity_t & related_request_id)

This operation sends a reply for a previous request. The related request ID can be retrieved from an exist-
ing request Sample.

The first variant is recommended if you do not need to change any of the default write parameters.

The other two variants allow you to set custom parameters for writing a reply. Unlike the Requester,
where retrieving the sample ID for correlation is common, on the Replier side using a WriteSample or
WriteSampleRef is only necessary when you need to overwrite the default write parameters. If that’s not
the case, use the first variant.

One reason to override the default write parameters is a multi-reply scenario in which a Replier generates
more than one reply for a request. In this case, all the intermediate replies (all but the last reply) should be
marked with the INTERMEDIATE_REPLY_SEQUENCE_SAMPLE bit-flag in the flag field within
WriteSample::info orWriteSampleRef::info.

A Requester can detect if a reply is the last reply in a sequence of replies by seeing if INTERMEDIATE_
REPLY_SEQUENCE_SAMPLE is NOT set in the flag field of Sample::info after receiving each reply.

27.3 SimpleRepliers

The SimpleReplier offers a simplified API to receive and process requests. The API is based on a user-
provided object that implements the SimpleReplierListener interface. Requests are passed to the listener
operation implemented by the user-provided object, which processes the request and returns a reply.

The SimpleReplier is recommended if each request generates a single reply and computing the reply can
be done quickly with very little CPU resources and without calling any operations that may block the pro-
cessing thread. For example, looking something up in an internal memory-based data structure would be a
good use case for using a SimpleReplier.

27.3.1 Creating a SimpleReplier

To create a SimpleReplier with the minimum set of parameters, you can use the basic constructor:
SimpleReplier (DDSDomainParticipant *participant,

const std::string &service_name,
SimpleReplierListener<TRequest, TReply> &listener)

To create a SimpleReplier with specific parameters, you may use a different constructor that receives a Sim-
pleReplierParams structure:

27.3.2 Destroying a SimpleReplier

SimpleReplier (const SimpleReplierParams<TRequest, TReply> ¶ms)

27.3.2 Destroying a SimpleReplier

To destroy a SimpleReplier and free its resources use the destructor:
virtual ~SimpleReplier ()

27.3.3 Setting SimpleReplier Parameters

To change the SimpleReplierParams used to create a SimpleReplier, use the operations in Table 27.5 Oper-
ations to Set SimpleReplier Parameters.

Operation Description

datareader_qos Sets the quality of service of the reply DataReader.

datawriter_qos Sets the quality of service of the reply DataWriter.

publisher Sets a specific Publisher.

qos_profile Sets a QoS profile for the entities in this replier.

reply_topic_name Sets a specific reply topic name.

reply_type_support Sets the type support for the reply type.

request_topic_name Sets a specific request topic name.

request_type_support Sets the type support for the request type.

service_name Sets the service name the Replier offers and Requesters use to match.

subscriber Sets a specific Subscriber.

Table 27.5 Operations to Set SimpleReplier Parameters

27.3.4 Getting Requests and Sending Replies with a SimpleReplierListener

The on_request_available() operation on the SimpleReplierListener receives a request and returns a reply.
on_request_available(TRequest &request)

This operation gets called when a request is available. It should immediately return a reply. After calling
on_request_available(), Connext DDS will call the operation return_loan() on the Sim-
pleReplierListener; this gives the application-defined listener an opportunity to release any resources
related to computing the previous reply.

1028

27.4 Accessing Underlying DataWriters and DataReaders

1029

retun_loan(TReply &reply)

27.4 Accessing Underlying DataWriters and DataReaders

Both Requester and Replier entities have underlying DDS DataWriter and DataReader entities. These are
created automatically when the Requester and Replier are constructed.

Accessing the DataWriter used by a Requester may be useful for a number of advanced use cases, such
as:

l Finding matching subscriptions (e.g., Replier entities), see 7.3.16.1 Finding Matching Subscriptions
on page 343

l Setting a DataWriterListener, see 7.3.4 Setting Up DataWriterListeners on page 295

l Getting DataWriter protocol or cache statuses, see 7.3.6 Statuses for DataWriters on page 297

l Flushing a data batch after sending a number of request samples, see 7.3.9 Flushing Batches of
DDS Data Samples on page 316

l Modifying the QoS

Accessing the reply DataReader may be useful for a number of advanced use cases, such as:

l Finding matching publications (e.g., Requester entities), see 8.3.10 Navigating Relationships
Among Entities on page 556

l Getting DataReader protocol or cache statuses, see 8.3.5 Checking DataReader Status and
StatusConditions on page 519 and 8.3.7 Statuses for DataReaders on page 521.

l Modifying the QoS

To access these underlying objects:

l RequestDataWriter * get_request_datawriter()

l RequestDataReader * get_request_datareader()

l ReplyDataWriter * get_reply_datawriter()

l ReplyDataReader * get_reply_datareader()

Chapter 28 Remote Procedure Calls
(RPC)—Experimental Feature

Remote Procedure Calls, or RPC, is an inter-process communication that allows a computer pro-
gram to cause a subroutine or procedure to execute in another address space.

Note: RPC is an experimental feature available only on C++11, for certain platforms. See the
RTI Connext DDS Core Libraries Platform Notes for the supported architectures. See also
Experimental Features in the RTI Connext DDS Core Libraries Release Notes.

RPC has two participants: a client and a service. Under the hood, the client uses a Requester to
send requests and receive replies; the service uses a Replier to receive the requests and send the
replies.

RPC over DDS uses a function-call style where the client/Requester directly calls the ser-
vice/Replier by calling the service's functions, abstracting sending the request and receiving the cor-
responding reply on the client side.
Figure 28.1: RPC Overview

1030

28.1 RPC Service

1031

Connext DDS supports both blocking and non-blocking interactions:

l In a blocking (or synchronous) interaction, the client application blocks while waiting for the ser-
vice’s answer.

l In a non-blocking (or asynchronous) interaction, the client application can proceed with other work,
ask if the service’s answer is already available, or wait for the service’s answer.

It is possible for a client to call more than one function at a time, particularly when asynchronous invoc-
ations are used.

28.2 RPC Client on page 1035 explains how a client application can use the method provided by the inter-
face to perform both blocking and non-blocking interactions with the service.

Additional resources. In addition to the information in this section, you can find more information and
example code here:

l The Connext DDS API Reference HTML documentation contains example code that will show you
how to use the API: From theModules tab, navigate to Programming How-To’s, RPC Tutorial.

l The Connext DDS API Reference HTML documentation also contains the full API documentation
for the client-side and server-side APIs. Under theModules tab, navigate to RTI Connext DDS
API Reference, RTI Connext Messaging API Reference, Remote Procedure Call.

28.1 RPC Service

A service/Replier receives requests from those clients/Requesters that are subscribed to it, and sends replies
to those clients. To communicate, a service and a clientmust use the same service name, and be associated
with the same DDS domain_id.

A service has an associated Replier. All the entities required by the Replier—including the DomainPar-
ticipant, the request and reply Topics, the DataWriter for writing replies, and a DataReader for reading the
requests—are automatically created when the service is created.

You can configure the QoS policies for the underlying DataWriter and DataReader by setting them either
in the DomainParticipant that the service is using or in a QoS Profile.

A service definition in IDL is represented as an interface with the annotation @DDSService or @service1.
An interface may define as many operations and attributes as you like. Exceptions are also supported by an
interface and can be thrown by operations and attributes.

1The @service annotation receives the type of service as an argument. Connext DDS accepts only “DDS” or “*”. If no
parameter is passed to the annotation, “*” is assumed.

28.1.1 Creating a Service

Attributes are defined by using 'attribute' before the type of the attribute. For example: attribute float
speed. Other elements inside an interface are considered operations. See 28.2.3 Summary of Client Oper-
ations on page 1036.
module robot {

exception TooFast {};
enum Command { START_COMMAND, STOP_COMMAND };
struct Status {

string msg;
};

@DDSService
interface RobotControl {

void command(Command com);
float setSpeed(float speed) raises (TooFast);
float getSpeed();
void getStatus(out Status status);

};
}; //module robot

28.1.1 Creating a Service

Before you can create a service/Replier, you need a DomainParticipant, a Server, a ServiceParams, and
an instance of the service interface.

A Server defines the execution context for one or more services. A Server is created with ServerParams,
which allow configuring a thread pool that executes the services.
dds::rpc::ServerParams server_params;
server_params.extensions().thread_pool_size(4);
dds::rpc::Server server(server_params);

A service requires a DomainParticipant and an identifier, which are specified (among other optional con-
figuration parameters) using ServiceParams:
dds::domain::DomainParticipant client_participant(domain_id);
dds::rpc::ServiceParams params(participant);
params.service_name("Example RobotControl Service");

The service_name function is used to generate the names of the request and reply Topics that the internal
Requester (client) and Replier (service) will use to communicate. For example, if the service name is
“MyService”, the Topic names for the Requester and Replier will be “MyServiceRequest” and “MySer-
viceReply”, respectively. Therefore, for communication to occur, you must use the same service name
when creating the Requester and the Replier entities. If you want to use Topic names different from the
ones that would be derived from the ServiceName, you can override the default names by setting the
actual request and reply Topic names using the request_topic_name() and reply_topic_name() accessors
to the RequesterParams structure before creating the Requester.

Next, create an instance of the interface implementation:

1032

28.1.2 Setting the Server Parameters

1033

auto service_impl = std::make_shared<RobotControlExample>();

The service implementation contains the definition of each operation defined inside the interface in IDL.
The service/Replier will call these methods upon receiving the request from the client/Requester.

Finally, create a service for the interface implementation, attached to the server and using the parameters
specified before:
RobotControlService service(service_impl, server, params);

The service is ready to receive function calls as soon as it is created.

You can create additional services and attach them to the same Server.

Note that just like DomainParticipant, 'RobotControlService' and 'server' are reference types and behave
like shared pointers. You need to keep one or more references to them to avoid their destruction. You can
also use the run() operation on the Server to block the current thread, and explicitly call close() to unblock
it and destroy the Server (see Table 28.2 Server Operations).

28.1.2 Setting the Server Parameters

To change the ServerParameters that can be used when creating a Server (for the service/Replier), you can
use the operations listed in Table 28.1 Operations to Set Server Parameters.

Table 28.1 Operations to Set Server Parameters

Operation Description

thread_pool_size Configures the number of threads of a Server thread pool.

async_waitset_property Allows fine-tuning the internal AsyncWaitSet used to process function calls.

Note: These operations are extensions, they must be called via this->extensions().

28.1.3 Summary of Server Operations

There are two kinds of operations an application can perform using the Server:

l Running the service

l Closing the service

The Server operations are summarized in Table 28.2 Server Operations.

28.1.4 Run the Server

Table 28.2 Server Operations

Operation Description Reference

Run the
Server

run Holds the execution of the current thread.

28.1.4 Run the
Server belowClose

the
Server

close
Unblocks run() and forces the destruction of this entity. Note that calling close() is not necessary since
Server is a reference type and is destroyed automatically when no longer referenced.

28.1.4 Run the Server

The Server is ready to run as soon as it is created and one or more services/Repliers are attached to it. It
doesn’t require any specific call to start running. However, Connext DDS provides two optional run()
operations that simply hold the execution of the current thread:

l run (const dds::core::Duration &maxWait)

l run ()

The first operation holds the execution of the current thread for the specified amount of time. The second
operation holds the execution of the current thread for an unlimited period of time.

To close the Server, the Server provides a close() operation, which unblocks run() and then releases all
resources.

28.1.5 Setting the Service Parameters

To change the ServiceParams that can be used when creating a service/Replier, you can use the operations
listed in Table 28.3 Operations to Set Service Parameters.

Table 28.3 Operations to Set Service Parameters

Operation Description

service_name The service name the Replier offers and Requestersuse to match.

request_topic_name Sets a specific request Topicname.

reply_topic_name Sets a specific reply Topicname.

datawriter_qos Sets the Quality of Service of the replyDataWriter.

datareader_qos Sets the Quality of Service of the replyDataReader.

publisher Sets a specificPublisher.

subscriber Sets a specificSubscriber.

1034

28.2 RPC Client

1035

Operation Description

request_type The request type, when DynamicData is used.

reply_type The reply type, when DynamicData is used.

28.2 RPC Client

A client allows making remote function calls to the services that it is subscribed to, and receives the results
to those calls from those services. To communicate, a client and a service must use the same service name,
and be associated with the same DDS domain_id.

A client has an associated Requester. All the entities required by the Requester—including the DomainPar-
ticipant, the request and reply Topics, the DataWriter for writing the requests, and a DataReader for read-
ing replies—are automatically created when the client is created.

You can configure the QoS for the underlying DataWriter and DataReader by setting them either in the
DomainParticipant that the client is using or in a QoS Profile.

A client is also defined as an interface in IDL with the annotation @DDSService or @service.

28.2.1 Creating a Client

To create a client/Requester, you need a ClientParams, a DomainParticipant, and a service name:
dds::domain::DomainParticipant client_participant(domain_id);
dds::rpc::ClientParams client_params(client_participant);
client_params.service_name("Example RobotControl Service");

The service_name function is used to generate the names of the request and reply Topics that the internal
Requester and Replier will use to communicate. For example, if the service name is “MyService”, the
Topic names for the Requester and Replier will be “MyServiceRequest” and “MyServiceReply”, respect-
ively. Therefore, for communication to occur, you must use the same service name when creating the
Requester and the Replier entities. If you want to use Topic names different from the ones that would be
derived from the ServiceName, you can override the default names by setting the actual request and reply
Topic names using the request_topic_name() and reply_topic_name() accessors to the RequesterParams
structure prior to creating the Requester.

To create a client, use the constructor that receives the ClientParams:
RobotControlClient client(client_params);

Once you have created a client, you can use it to perform the operations in Table 28.5 Client Operations.

28.2.2 Setting the Client Parameters

To change the ClientParams that can be used when creating a client/Requester, you can use the operations
listed in Table 28.4 Operations to Set Client Parameters.

28.2.3 Summary of Client Operations

Table 28.4 Operations to Set Client Parameters

Operation Description

function_call_max_wait Specifies the maximumwait time for all the remote calls.

service_name The service name thatReplier and Requestersuse to match and communicate.

request_topic_name Sets a specific request Topicname.

reply_topic_name Sets a specific reply Topicname.

datawriter_qos Sets the Quality of Service of the requestDataWriter.

datareader_qos Sets the Quality of Service of the requestDataReader.

publisher Sets a specificPublisher.

subscriber Sets a specificSubscriber.

request_type The request type, when DynamicData is used.

reply_type The reply type, when DynamicData is used.

28.2.3 Summary of Client Operations

There are several kinds of operations an application can perform using the client/Requester:

l Waiting for service to be discovered

l Making remote function calls (synchronous or asynchronous)

The Client operations are summarized in Table 28.5 Client Operations.

The <operation_name> comes from the IDL file. In the example IDL file in 28.1 RPC Service on
page 1031, the client will have an operation with the same name as void command(Command com). In
the case of an attribute, such as attribute long test, the client in C++ will have two operations, named
long get_operation_test(); and void set_operation_test(long test);. The <attribute_name> is defined by
adding 'attribute' before its type: attribute <type> <name>, such as attribute long test.

Table 28.5 Client Operations

Operation Description Reference

Waiting for Ser-
vice

wait_for_service Waits for services. 28.2.3.1 Waiting for Serviceson the next page

1036

28.2.3 Summary of Client Operations

1037

Operation Description Reference

Sending
Request

<operation_name>
Makes a synchronous remote function
call.

28.2.3.2 Making Remote Function Calls below

<get/set>_attribute_<at-
tribute_name>

<operation_name>_async
Makes an asynchronous remote function
call.<get/set>_attribute_<at-

tribute_name>_async

Getting Un-
derlying Entities

request_datawriter
Retrieves the underlying DataWriter that
sends the request.

28.3 Accessing Underlying DataWriters and
DataReaderson the next pagereply_datareader

Retrieves the underlying DataReader
that receives the replies.

28.2.3.1 Waiting for Services

The client/Requester provides two operations that can be used to wait for services:

l wait_for_service (const dds::core::Duration &maxWait)

l wait_for_service ()

The first operation blocks until one service is available or untilmaxWait time has passed, whichever
comes first. The second operation blocks until one service is available for an unlimited period of time.

28.2.3.2 Making Remote Function Calls

To send a request, use the operations and attributes defined in the interface:

l <operation_name>(<args>)

l get_attribute_<attribute_name>(<args>)

l set_attribute_<attribute_name>(<args>)

These functions block the client until the service sends a reply.

The client also provides asynchronous functions that don’t block the client:

l <operation_name>_async(<args>)

l get_attribute_<attribute_name>_async(<args>)

l set_attribute_<attribute_name>_async(<args>)

Asynchronous functions return a std::future that will contain the result when it’s received:

28.3 Accessing Underlying DataWriters and DataReaders

std::future<float> future_speed = client.getSpeed_async();
...
std::cout << "Current speed is " << future_speed.get() << std::endl;

The call to std::future::get() provides the result if it’s already available or blocks until it is.

28.3 Accessing Underlying DataWriters and DataReaders

Both client and service entities have underlying DDS DataWriter and DataReader entities. These are cre-
ated automatically when the client and service are constructed.

Accessing the DataWriter used by a clientmay be useful for a number of advanced use cases, such as:

l Finding matching subscriptions (i.e., service entities), see 7.3.16.1 Finding Matching Subscriptions
on page 343.

l Setting a DataWriterListener, see 7.3.4 Setting Up DataWriterListeners on page 295.

l Getting DataWriter protocol or cache statuses, see 7.3.6 Statuses for DataWriters on page 297.

l Flushing a data batch after sending a number of request samples, see 7.3.9 Flushing Batches of
DDS Data Samples on page 316.

l Modifying the QoS.

Accessing the service DataReader may be useful for a number of advanced use cases, such as:

l Finding matching publications (i.e., client entities), see 8.3.10.1 Finding Matching Publications on
page 556.

l Getting DataReader protocol or cache statuses, see 8.3.5 Checking DataReader Status and
StatusConditions on page 519 and 8.3.7 Statuses for DataReaders on page 521.

l Modifying the QoS.

To access these underlying objects:

l dds::pub::DataWriter<RequestType> request_datawriter()

l dds::sub::DataReader<ReplyType> reply_datareader()

l dds::pub::DataWriter<ReplyType> reply_datawriter()

l dds::sub::DataReader<RequestType> request_datareader()

28.4 Generating RPC Code from IDL using RTI Code Generator

To use RPC, add the @DDSService or @service annotation to an interface in an IDL file. For example:
module robot {

exception TooFast {};

1038

28.4 Generating RPC Code from IDL using RTI Code Generator

1039

enum Command { START_COMMAND, STOP_COMMAND };
struct Status {

string msg;
};

@DDSService
interface RobotControl {

void command(Command com);
float setSpeed(float speed) raises (TooFast);
float getSpeed();
void getStatus(out Status status);

};
}; //module robot

This IDL file defines an interface with four methods:

l command receives one argument and returns nothing.

l setSpeed receives one argument, returns a float, and can throw a TooFast exception.

l getSpeed receives no argument and returns a float.

l getStatus receives one output argument and returns nothing.

To generate the supporting code and example client and service applications, run RTI Code Generator as
follows:
rtiddsgen -language C++11 -example <architecture> <IDL file name>.idl

This will generate:

l <IDL file name>.hpp, <IDL file name>.cxx, <IDL file name>Plugin.hpp, <IDL file name>Plu-
gin.cxx. These files contain the support code for the type defined in the IDL.

l <IDL file name>_service.cxx contains the example service application, and the service imple-
mentation.

l <IDL file name>_client.cxx contains the example client application.

For more information and an example, see the RPC Tutorial in the RTI Connext Modern C++ API Refer-
ence HTML documentation.

Part 5: RTI Real-Time WAN Transport

Part 5: RTI Real-Time WAN Transport
Real-Time WAN Transport is a Connext DDS transport plugin that enables communication over wide area
networks (WANs) using UDP as the underlying IP transport-layer protocol.

The material in this part of the manual is only relevant if you have installed Real-Time WAN
Transport. This feature is not installed as part of a Connext DDS package; it must be downloaded
and installed separately. See the RTI Real-Time WAN Transport Installation Guide for details. See
also the RTI Real-Time WAN Transport Release Notes.

All new applications that communicate over wide area networks using UDP should use Real-Time
WAN Transport. This release includes RTI Secure WAN Transport (described in Part 6: RTI
Secure WAN Transport on page 1114) only for compatibility with existing applications, which
should upgrade to Real-Time WAN Transport. Secure WAN Transport is deprecated starting with
release 6.1.1, and RTI no longer provides it to new customers.

This section includes:

l Introduction to Real-Time WAN Transport (Chapter 29 on page 1041)

l Transport Capabilities (Chapter 30 on page 1044)

l Communication Scenarios (Chapter 31 on page 1051)

l Deployment Scenarios (Chapter 32 on page 1058)

l Enabling Real-Time WAN Transport (Chapter 33 on page 1070)

l Transport Initial Peers (Chapter 34 on page 1072)

l Transport Configuration (Chapter 35 on page 1074)

l Security (Chapter 36 on page 1092)

l Advanced Concepts (Chapter 37 on page 1093)

l Transport Debugging (Chapter 38 on page 1101)

l Troubleshooting (Chapter 40 on page 1110)

1040

https://community.rti.com/static/documentation/connext-dds/6.1.2/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf
https://community.rti.com/static/documentation/connext-dds/6.1.2/doc/manuals/addon_products/realtime_wan_transport/release_notes/RTI_RealTime_WAN_Transport_ReleaseNotes.pdf

Chapter 29 Introduction to Real-Time WAN
Transport

Real-Time WAN Transport is a smart transport that enables secure, scalable, and high-performance
communication over wide area networks (WANs), including public networks. It extends Connext
DDS capabilities to WAN environments. Real-Time WAN Transport uses UDP as the underlying
IP transport-layer protocol to better anticipate and adapt to the challenges of diverse network con-
ditions, device mobility, and the dynamic nature of WAN system architectures.

Real-Time WAN Transport, in combination with RTI Cloud Discovery Service, provides a com-
plete, seamless solution out of the box for WAN connectivity. This WAN connectivity solution,
including Real-Time WAN Transport and Cloud Discovery Service, is available as an optional add-
on.

Real-Time WAN Transport replaces the transport capabilities of the Secure WAN Transport option-
ally available with previous Connext DDS releases, and provides the following capabilities:

l NAT (Network Address Translator) traversal: Ability to communicate between
DomainParticipants running in a Local Area Network (LAN) that is behind a NAT-enabled
router, and DomainParticipants on the outside of the NAT across a WAN. This func-
tionality is provided in combination with Cloud Discovery Service (see 30.1 NAT Traversal
on page 1044).

l IP mobility: Support for network transitions and changes in IP addresses in any of the
DomainParticipants participating in the communication (see 30.2 IP Mobility on
page 1049).

l Security: Secure communications between DomainParticipants using Security Plugins (see
Chapter 36 Security on page 1092).

Real-Time WAN Transport does not require third-party components, such as STUN servers, or pro-
tocols like SIP to handle session establishment. Using a single API and security model, you can
leverage the extensive capabilities of the Connext DDS framework and ecosystem, including tools

1041

29.1 Key Terms

1042

and infrastructure services, even for real-time connectivity from edge to cloud and back in highly dis-
tributed systems that communicate across wide area networks.

For Real-Time WAN Transport example code, see https://github.com/rticommunity/rticonnextdds-
examples/tree/develop/examples/connext_dds/real_time_wan_transport.

29.1 Key Terms

29.1.1 Basic Terms

Wide Area Network (WAN): A wide area network (WAN) is a collection of local area networks
(LANs) or other networks that communicate with one another. A WAN is essentially a network of net-
works, with the Internet being the world's largest WAN.

Cellular Network (or Cellular WAN): A cellular network is a wide area network for voice and data that
is typically provided by the cellular carriers to transmit a wireless signal over a range of several miles to a
mobile device.

External DomainParticipant: A DomainParticipant using a Real-Time WAN Transport that is publicly
reachable at a public address. Being reachable at a public IP address does not mean that the DomainPar-
ticipant is not behind a NAT-enabled router. It is possible that an external DomainParticipant is behind a
NAT-enabled router if the network administrator configures a static NAT mapping between the
DomainParticipant private address and a public address.

29.1.2 IP Address Types

IP Transport Address (or Address): The combination of the IPv4 address and the UDP Port where an
application accepts incoming traffic. Sometimes you will also see the term "address" being used to refer to
an IP transport address when the context is clear.

External IP Transport Address (or External Address or Public Address): An IP transport address
that is routable on a WAN. When the WAN is the Internet, the term "Internet-routable address" can be
used instead.

Private IP Transport Address (or Private Address or Internal Address): The IP transport address of
an application that sits behind a NAT. This address is not reachable from external applications running out-
side the NAT.

Service Reflexive Address: The public IP transport address that Cloud Discovery Service obtains for a
UUID locator contained in the participant announcement sent by a DomainParticipant.

29.1.3 Locators

RTPS Locator (or Locator): A Connext DDS endpoint (DataWriter or DataReader) address unit that
consists of a transport class, RTPS port, and locator transport address (128-bit).

https://github.com/rticommunity/rticonnextdds-examples/tree/develop/examples/connext_dds/real_time_wan_transport
https://github.com/rticommunity/rticonnextdds-examples/tree/develop/examples/connext_dds/real_time_wan_transport

29.1.4 WAN Ecosystem

Reachable Locator: Locator associated with a DDS endpoint (DataWriter or DataReader) to which
another DDS endpoint can send data.

RTPS UUID WAN Locator (or UUID Locator): A WAN locator for a Real-Time WAN Transport that
is not reachable. UUID locators are transformed into UUID+PUBLIC locators by associating a public IP
transport address to the UUID.

RTPS UUID+PUBLIC WAN Locator (or UUID+PUBLIC Locator): A WAN locator for a Real-
Time WAN Transport that is reachable. The locator encapsulates a public IP transport address as part of the
locator address.

29.1.4 WAN Ecosystem

Session Traversal Utilities for NAT (STUN): Standardized set of methods, including a network pro-
tocol, for traversal of network address translator gateways in applications of real-time voice, video, mes-
saging, and other interactive communications.

STUN Server: A STUN server enables clients to find out their public IP transport address and NAT type.

Interactive Connectivity Establishment (ICE): ICE is a protocol used for NAT traversal. ICE uses a
combination of methods including STUN and Traversal Using Relay NAT (TURN) to traverse NATs.

1043

Chapter 30 Transport Capabilities
30.1 NAT Traversal

In WAN environments, applications running behind a NAT-enabled router typically need to com-
municate with applications running behind a different NAT-enabled router. NAT (Network
Address Translation) is a method of remapping one private IP address and port into a public IP
address and port by modifying the IP address and port information in the IP header of the packets
while they are in transit across a NAT-enabled router. The technique has become a popular and
essential tool in conserving the IPv4 global address space in the face of IPv4 address exhaustion.
Many applications with individual private IP addresses can utilize a NAT-enabled router to com-
municate with external applications using a single public IP address.
Figure 30.1: NAT Traversal

1044

30.1.1 NAT Kinds

1045

Real-Time WAN Transport in combination with Cloud Discovery Service will enable
communications between Connext DDS applications running between different kinds of NATs.
For information on the various NAT kinds, please see the following sections.

30.1.1 NAT Kinds

There are four kinds of NATs:

30.1.1.1 Full-Cone NAT (or One-to-One NAT)

A full-cone NAT, also known as a one-to-one NAT, has the following characteristics:

l Once an internal address (iAddr:iPort) is mapped to an external address (eAddr:ePort) by the NAT
router, any packets from (iAddr:iPort) are sent through (eAddr:ePort).

l Any external host can send packets to (iAddr:iPort) by sending packets to (eAddr:ePort), regardless
of the external host address/port (dAddr:dPort) used to send the packets.

Figure 30.2: Full-Cone NAT

30.1.1 NAT Kinds

30.1.1.2 Address-Restricted-Cone NAT

l Once an internal address (iAddr:iPort) is mapped to an external address (eAddr:ePort) by the NAT
router, any packets from (iAddr:iPort) are sent through eAddr:ePort.

l An external host (dAddr:any) can send packets to (iAddr:iPort) by sending packets to (eAddr:ePort)
only if (iAddr:iPort) has previously sent a packet to (dAddr:any). "Any" means the port number
doesn't matter.

30.1.1.3 Port-Restricted Cone NAT

This NAT is similar to an address-restricted cone NAT, but the restriction also includes port numbers.

l Once an internal address (iAddr:iPort) is mapped to an external address (eAddr:ePort) by the NAT
router, any packets from (iAddr:iPort) are sent through (eAddr:ePort).

l An external host (dAddr:dPort) can send packets to (iAddr:iPort) by sending packets to (eAd-
dr:ePort) only if (iAddr:iPort) has previously sent a packet to (dAddr:dPort).

30.1.1.4 Symmetric NAT

l Each request from the same internal IP address and port (iAddr:iPort) to a specific destination IP
address and port (dAddr:dPort) is mapped by the NAT router to a unique external source IP address
and port (eAddr:ePort). If the same internal host sends a packet even with the same source address
and port but to a different destination, a different mapping is used.

l Only an external host that receives a packet from an internal host can send a packet back.

1046

30.1.2 Identifying the NAT Type

1047

Figure 30.3: Symmetric NAT

30.1.2 Identifying the NAT Type

There are multiple third-party utilities that you can download to find out the NAT type. One example is
natat (https://github.com/songjiayang/natat).
> ./natat
2020/11/21 11:10:52 start stun server ping...
2020/11/21 11:10:53 stun.l.google.com:19302 mapped: 0.0.0.0:3489 -> 99.35.17.233:3489
2020/11/21 11:10:53 stun1.l.google.com:19302 mapped: 0.0.0.0:3489 -> 99.35.17.233:3489
2020/11/21 11:10:53 start NAT type assert...
2020/11/21 11:10:53 It's Cone NAT

30.1.3 NAT Bindings

Applications behind a NAT cannot receive data from applications outside the NAT unless they open a
UDP NAT binding (or UDP hole) with each one of the public IP transport addresses associated with the
applications running outside the NAT.

A NAT binding creates a mapping between a private IP transport address (iAddr:iPort) and a public IP
transport address (eAddr:ePort) for a given set of destination IP transport addresses. There are two kinds of
bindings:

https://github.com/songjiayang/natat

30.1.4 NAT Bindings Expiration

l Static bindings (also known as port forwarding): You can set the configuration of a NAT-
enabled router to map (iAddr:iPort) to (eAddr:ePort) (see Figure 30.4: Open a Static Binding in a
NAT-Enabled Router below) for all destination addresses. These bindings allow incoming traffic
from any external IP transport address.

l Dynamic bindings: The bindings are opened dynamically when the application running inside the
NAT sends a message to a destination IP transport address outside the NAT. The behavior of the
dynamic bindings depends on the type of NAT (see 30.1.1 NAT Kinds on page 1045). Unlike
static bindings, dynamic bindings can expire if there is no outgoing traffic (see 30.1.4 NAT Bind-
ings Expiration below).

Figure 30.4: Open a Static Binding in a NAT-Enabled Router

30.1.4 NAT Bindings Expiration

Real-Time WAN Transport will be able to establish new NAT bindings if the old bindings are
closed by the NAT-enabled router without any user intervention. In addition, Real-Time WAN
Transport provides a builtin Ping mechanism to keep the NAT bindings open at all times. This

1048

30.1.5 NAT Hairpinning

1049

capability eliminates the latency penalty that is introduced during the process of establishing a new
NAT binding.

For security purposes, in the absence of outbound traffic, the NAT binding from an internal address (iAd-
dr:iPort) to an external address (eAddr:ePort) usually expires after periods of time in the range of tens of
seconds to a few minutes. When it expires, the NAT binding is removed and it closes. The expiration time
can usually be configured (see Figure 30.5: Session Timeout below).
Figure 30.5: Session Timeout

30.1.5 NAT Hairpinning

Real-Time WAN Transport does not require support for NAT hairpinning and can be used in
combination with the builtin UDPv4 transport in a DomainParticipant to support both
communication with DomainParticipants within the same LAN and communication with
DomainParticipants in a WAN simultaneously.

In network computing, hairpinning (or NAT loopback) refers to communication between two hosts behind
the same NAT router using their mapped external address (eAddr:ePort). Because not all NAT routers sup-
port this communication configuration, usually applications must be designed to be aware of it.

30.2 IP Mobility

Real-Time WAN Transport automatically and transparently handles the IP address changes in the applic-
ations communicating over the WAN, without any application intervention.

In WAN communication scenarios, it is common for applications to roam among different networks, chan-
ging their IP addresses. For example, assume the following scenario:

30.2 IP Mobility

Figure 30.6: Network Transition

Connectivity continues with the vehicle while it transitions between different networks as it drives from one point to
another in the city

1050

Chapter 31 Communication Scenarios
Real-Time WAN Transport can be used to address two basic communication scenarios between
Connext DDS DomainParticipants.

31.1 Peer-to-Peer Communication with a Participant that has a
Public Address

In this scenario, one or more DomainParticipants behind any kind of NAT (including symmetric
NATs) communicate with a DomainParticipant with a well-known public IP transport address
(see Figure 31.1: Peer-to-Peer between a Participant behind Any Kind of NAT and an External
Participant on the next page).

1051

31.1 Peer-to-Peer Communication with a Participant that has a Public Address

1052

Figure 31.1: Peer-to-Peer between a Participant behind Any Kind of NAT and an External
Participant

Note that Cloud Discovery Service (CDS) is not needed to facilitate NAT traversal in this scenario because
the external DomainParticipant can figure out the public IP transport addresses at which the Internal Par-
ticipant is reachable by looking at the UDP packets coming from the Internal Participant.

The external DomainParticipantmust be reachable at a well-known public address (50.10.23.45:2345 in
this example). What this means is that the address must be routable on the WAN.

There are two configurations that allow the association of External Participant with a well-known public
address:

l Sub-Scenario 1: The DomainParticipant is associated directly with the public address
50.10.23.45:2345, or

l Sub-Scenario 2: The DomainParticipant is behind a NAT-enabled router in which you have cre-
ated a static NAT mapping from the DomainParticipant private IP transport address
192.168.1.1:1234 to the public IP transport address 50.10.23.45:2345.

31.1.1 External Participant Configuration: Sub-Scenario 1

For a detailed description of how the communication establishment protocol works in this scenario, see
37.4 Communication Establishment Protocol for Peer-to-Peer Communication with a Participant that has a
Public Address on page 1098.

The following section provides an example configuration for the scenario described in Figure 31.1: Peer-
to-Peer between a Participant behind Any Kind of NAT and an External Participant on the previous page.

31.1.1 External Participant Configuration: Sub-Scenario 1
<dds>

<qos_profile name="ExternalParticipant">
<domain_participant_qos>

<transport_builtin>
<mask>UDPv4_WAN</mask>
<udpv4_wan>

<public_address>50.10.23.45</public_address>
<comm_ports>

<default>
<host>2345</host>

</default>
</comm_ports>

</udpv4_wan>
</transport_builtin>

</domain_participant_qos>
</qos_profile>

</dds>

l To enable Real-Time WAN Transport, <mask> within <transport_builtin> must contain UDPv4_
WAN.

l <public_address> contains the IP address of the host where the external DomainParticipant is run-
ning.

l <comm_ports> defines the port (<host>) in which the external DomainParticipant receives/sends
data.

31.1.2 External Participant Configuration: Sub-Scenario 2
<dds>

<qos_profile name="ExternalParticipant">
<domain_participant_qos>

<transport_builtin>
<mask>UDPv4_WAN</mask>
<udpv4_wan>

<public_address>50.10.23.45</public_address>
<comm_ports>

<default>
<host>1234</host>
<public>2345</public>

</default>
</comm_ports>

</udpv4_wan>

1053

31.1.3 Internal Participants Configuration

1054

</transport_builtin>
</domain_participant_qos>

</qos_profile>
</dds>

l To enable Real-Time WAN Transport, <mask> within <transport_builtin> must contain UDPv4_
WAN.

l <public_address> contains the public IP address in the NAT-enabled router to which the private IP
address is mapped.

l <comm_ports> defines the mapping between the following ports:

l <host>: local UDP port in which the external DomainParticipant receives/sends data in the
machine where it is running.

l <public>: public port to which the local UDP port is mapped in the NAT-enabled router.

31.1.3 Internal Participants Configuration
<dds>

<qos_profile name="InternalParticipant">
<domain_participant_qos>

<transport_builtin>
<mask>UDPv4_WAN</mask>

</transport_builtin>
<discovery>

<initial_peers>
<element>0@udpv4_wan://50.10.23.45:2345</element>

</initial_peers>
</discovery>

</domain_participant_qos>
</qos_profile>

</dds>

l To enable Real-Time WAN Transport, <mask> within <transport_builtin> must contain UDPv4_
WAN.

l In addition, the InternalParticipant must set its initial peers to point to the external DomainPar-
ticipant public address.

31.2 Peer-to-Peer Communication with Participants behind Cone NATs
Using Cloud Discovery Service

In this communication scenario, all the DomainParticipants communicating over a WAN are behind cone
NATs (see Figure 31.2: Peer-to-Peer between Participants behind Cone NATs on the next page).

This scenario requires Cloud Discovery Service (CDS) to map the private addresses of a DomainPar-
ticipant into public addresses (called service reflexive addresses) and to provide these public addresses to
other DomainParticipants so that they can start communicating with the DomainParticipant peer-to-peer.

31.2 Peer-to-Peer Communication with Participants behind Cone NATs Using Cloud Discovery Service

In this scenario, CDS must be reachable at a well-known public address, and the DomainParticipants par-
ticipating in the communication must include the CDS address in their initial peers.
Figure 31.2: Peer-to-Peer between Participants behind Cone NATs

The service reflexive addresses obtained by CDS are provided as part of the WAN locators contained in
the participant announcement sent from CDS to the application DomainParticipants.

In Figure 31.2: Peer-to-Peer between Participants behind Cone NATs above, eAddr2:ePort2 is the service
reflexive address that CDS obtains for Internal Participant 2, and eAddr1:ePort1 is the service reflexive
address that CDS obtains for Internal Participant 1. CDS provides eAddr2:ePort2 to the Internal Par-
ticipant 1 so that it can reach the Internal Participant 2; it provides eAddr1:ePort1 to the Internal Participant
2 so that it can reach the Internal Participant 1.

For a detailed description of how the communication establishment protocol works in this scenario, see
37.3 Communication Establishment Protocol for Peer-to-Peer Communication with Participants behind
Cone NATs on page 1095.

The following section provides an example configuration for the scenario described in Figure 31.2: Peer-
to-Peer between Participants behind Cone NATs above.

1055

31.2.1 Internal Participants Configuration

1056

31.2.1 Internal Participants Configuration
<dds>

<qos_profile name="InternalParticipant">
<domain_participant_qos>

<transport_builtin>
<mask>UDPv4_WAN</mask>

</transport_builtin>
<discovery>

<initial_peers>
<element>rtps@udpv4_wan://60.10.23.45:2345</element>

</initial_peers>
</discovery>

</domain_participant_qos>
</qos_profile>

</dds>

l To enable the Real-Time WAN Transport, specify the transport in <transport_builtin>/<mask> as
UDPv4_WAN.

l When you specify the initial peers of the InternalParticipant in <initial peers>/<element>, use the
public address of the Cloud Discovery Service.

31.2.2 Cloud Discovery Service Configuration
<dds>

<cloud_discovery_service name="CDS">
<transport>

<element>
<alias>builtin.udpv4_wan</alias>
<receive_port>2345</receive_port>
<property>

<element>
<name>dds.transport.UDPv4_WAN.builtin.public_address</name>
<value>60.10.23.45</value>

</element>
</property>

</element>
</transport>

</cloud_discovery_service>
</dds>

l To enable Real-Time WAN Transport in CDS, set <alias> to builtin.udpv4_wan.

l <receive_port> contains the public UDP port in which CDS is reachable by the DomainPar-
ticipants.

l dds.transport.UDPv4.builtin.public_address contains the public IP address in which CDS is reach-
able by the DomainParticipants.

For additional details on each one of the parameters of the CDS instance configuration, see the RTI Cloud
Discovery Service documentation.

31.2.2 Cloud Discovery Service Configuration

As described above, CDS must be reachable in a well-known public address, in this example
60.10.23.45:2345. A "well-known" public address is an address that is routable on the WAN.

There are two configurations that allow the association of CDS with a well-known public address:

1. The CDS network interface card (NIC) is associated directly with the public address.

2. CDS is behind a NAT-enabled router, and you have created a static NAT mapping from the CDS
private address iAddr:iPort to the public address 60.10.23.45:2345.

If CDS is behind a NAT-enabled router, the host port (iPort) must be the same as the <receive_port>
(2345). If you want to use a different host port, it will be necessary to configure the property dds.trans-
port.UDPv4_WAN.builtin.comm_ports (35.2.1.1 Changing the UDP Port Mapping on page 1085).

As described above, this communication scenario requires that all the DomainParticipants participating in
the communication are behind cone NATs. Communication is not possible if any of them is behind a sym-
metric NAT. Therefore, it is mandatory that you verify the type of NAT in which the applications run. See
30.1.2 Identifying the NAT Type on page 1047.

1057

Chapter 32 Deployment Scenarios
The communication scenarios described in Chapter 31 Communication Scenarios on page 1051
provide the building blocks for WAN communication using Real-Time WAN Transport. However,
they do not take into consideration important communication aspects such as scalability.

The intent of this section is to describe some of the most common deployment scenarios for Real-
Time WAN Transport.

32.1 Edge-to-Data Center Deployment Scenario

In traditional Connext DDS applications, most of the data processing is done on the edge devices.
However, as these applications are distributed across the WAN, it becomes necessary to move
some computation and storage to data centers or clouds.

Consider the use case of autonomous driving technology. In this scenario, each vehicle has one or
more internal Connext databuses in which different applications run to provide capabilities such as
sensor fusion, path planning, vehicle control, and so on.

1058

32.1 Edge-to-Data Center Deployment Scenario

1059

Figure 32.1: In-Vehicle Edge Connext Databus

Some of the information generated in the Edge Connext Databus may have to be sent outside the vehicle
to different data centers and/or clouds to support use cases such as data storage, data analytics, and others.
Likewise, the vehicle may have to receive information from the data centers and/or cloud such as over-the-
air (OTA) updates.

Instead of configuring a large number of DomainParticipants running inside the vehicle to use Real-Time
WAN Transport, it is more scalable and secure to provide a gateway component within the vehicle whose
main purpose is to send and receive the necessary information from the data centers. This gateway com-
ponent is provided by RTI Routing Service.

There is also a gateway Routing Service instance running in the data center in order to send and receive
information from the vehicles. That way it is not necessary to configure every DomainParticipant running
in the data center to use Real-Time WAN Transport.

Figure 32.2: Edge-to-Data Center Communication on the next page shows the deployment scenario for a
fleet of vehicles using a Routing Service in the vehicles and in the data center.

32.1.1 Data Center Routing Service Configuration

Figure 32.2: Edge-to-Data Center Communication

The following sections provide an example configuration for the scenario described in Figure 32.2: Edge-
to-Data Center Communication above. The Routing Service instances are configured to propagate every
Topic. However, in a real scenario only a subset of the Topics would be propagated.

32.1.1 Data Center Routing Service Configuration
<dds>

<routing_service name="RS">
<domain_route name="TwoWayDomainRoute">

<participant name="0">
<participant_qos>

<transport_builtin>
<mask>UDPv4</mask>

</transport_builtin>
</participant_qos>

</participant>

<participant name="1">
<participant_qos>

1060

32.1.1 Data Center Routing Service Configuration

1061

<transport_builtin>
<mask>UDPv4_WAN</mask>
<udpv4_wan>

<public_address>40.20.23.56</public_address>
<comm_ports>

<default>
<host>4500</host>
<public>5678</public>

</default>
</comm_ports>

</udpv4_wan>
</transport_builtin>

</participant_qos>
</participant>

<session name="Session1">
<auto_topic_route name="AllForward">

<input participant="0">
<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</input>
<output participant="1">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</output>
</auto_topic_route>

</session>

<session name="Session2">
<auto_topic_route name="AllBackward">

<input participant="1">
<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</input>
<output participant="0">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</output>
</auto_topic_route>

</session>

</domain_route>
</routing_service>

</dds>

Participant 0 in the domain route is the DomainParticipant that will be used to send/receive data from the
internal Connext databus running in the data center network. The DomainParticipant is configured to use
the builtin UDPv4 transport.

32.1.2 In-Vehicle Routing Service Configuration

Participant 1 is used to send/receive data to/from the WAN, and it has the role of the External Participant
described in Sub-scenario 2 in 31.1 Peer-to-Peer Communication with a Participant that has a Public
Address on page 1051.

Note: By making Participant 1 reachable at a well-known public address 40.20.23.56:5678 (by
configuring the data center’s NAT router to do port forwarding), the system doesn't depend on
the kinds of NATs in the vehicles and the rest of the components in the system.
Communication is always allowed.

32.1.2 In-Vehicle Routing Service Configuration
<dds>

<routing_service name="RS">
<domain_route name="TwoWayDomainRoute">

<participant name="0">
<participant_qos>

<transport_builtin>
<mask>UDPv4</mask>

</transport_builtin>
</participant_qos>

</participant>

<participant name="1">
<participant_qos>

<transport_builtin>
<mask>UDPv4_WAN</mask>

</transport_builtin>
<discovery>

<initial_peers>
<element>0@udpv4_wan://40.20.23.56:5678</element>

</initial_peers>
</discovery>

</participant_qos>
</participant>

<session name="Session1">
<auto_topic_route name="AllForward">

<input participant="0">
<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</input>
<output participant="1">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</output>
</auto_topic_route>

</session>

<session name="Session2">

1062

32.2 Relayed Edge-to-Edge Deployment Scenario

1063

<auto_topic_route name="AllBackward">
<input participant="1">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</input>
<output participant="0">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</output>
</auto_topic_route>

</session>

</domain_route>
</routing_service>

</dds>

Participant 0 in the domain route is the DomainParticipant that will be used to send/receive data from the
internal Connext databus running in the in-vehicle network. The DomainParticipant is configured to use
the builtin UDPv4 transport.

Participant 1 is used to send/receive data to/from the WAN and it has the role of the Internal Participant
described in Sub-scenario 2 in 31.1 Peer-to-Peer Communication with a Participant that has a Public
Address on page 1051.

Notice the use of the ‘0@’ as the participant ID limit in the <initial_peers> for Participant 1. This is done
to minimize the amount of discovery traffic sent to the Routing Service running in the data center. There is
no need to use a number different than 0 when using Real-Time WAN Transport. (You can, but there will
be more traffic.) See 15.2.1 Peer Descriptor Format on page 775 for additional information on the par-
ticipant ID limit.

32.2 Relayed Edge-to-Edge Deployment Scenario

For this deployment scenario, consider a webinar platform built using Connext DDS. In this use case, the
platform provider does not have any control over the attendees or the presenter network environment,
including the NAT configuration. Communication cannot be peer-to-peer for two main reasons:

l The NATs environment is not known in advance.

l Communication is one-to-many. The presenter computer may not have enough resources (CPU and
bandwidth) to broadcast the webinar content to all attendees.

To implement this use case, the Connext DDS application running in the presenter’s computer will dis-
tribute the webinar content to a Routing Service instance running in a data center or the cloud. Unlike in
the edge-to-data center scenario, where Routing Service is used as a gateway distributing information to
components that are running inside the cloud, in this scenario Routing Service is used as a relay service.

32.2 Relayed Edge-to-Edge Deployment Scenario

The edge applications cannot communicate with each other directly, so in order to exchange messages, an
application sends the message to Routing Service, which relays this message to the other applications.

In this case, the Routing Service instance will be in charge of relaying the content to the different attendees.
Note that, for the sake of simplicity, we only have one Routing Service in this example. In a real use case,
there may be multiple Routing Services organized in a hierarchical manner relaying the signal to different
sets of attendees.

1064

32.2 Relayed Edge-to-Edge Deployment Scenario

1065

Figure 32.3: Relayed Edge-to-Edge Communication

32.2.1 Data Center Routing Service Configuration

The following sections provide an example configuration for the scenario described in Figure 32.3:
Relayed Edge-to-Edge Communication on the previous page. The Routing Service instance is configured
to propagate every Topic using an AutoTopicRoute.

32.2.1 Data Center Routing Service Configuration
<dds>

<routing_service name="RS">
<domain_route name="TwoWayDomainRoute">

<participant name="1">
<participant_qos>

<transport_builtin>
<mask>UDPv4_WAN</mask>
<udpv4_wan>

<public_address>40.20.23.56</public_address>
<comm_ports>

<default>
<host>4500</host>
<public>5678</public>

</default>
</comm_ports>

</udpv4_wan>
</transport_builtin>

</participant_qos>
</participant>

<session name="Session1">
<auto_topic_route name="AllForward">

<input participant="1">
<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</input>
<output participant="1">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</output>
</auto_topic_route>

</session>

<session name="Session2">
<auto_topic_route name="AllBackward">

<input participant="1">
<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

</input>
<output participant="1">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>

1066

32.2.2 Webinar Application Configuration

1067

</output>
</auto_topic_route>

</session>

</domain_route>
</routing_service>

</dds>

The domain route in Routing Service only creates one Participant that is used to relay the webinar content
and that has the role of the External Participant described in Sub-Scenario 2 in 31.1 Peer-to-Peer Com-
munication with a Participant that has a Public Address on page 1051. The Routing Service Participant is
reachable at a well-known public IP transport address, 40.20.23.56:5678.

32.2.2 Webinar Application Configuration
<dds>

<qos_profile name="WebinarParticipant">
<domain_participant_qos>

<transport_builtin>
<mask>UDPv4_WAN</mask>

</transport_builtin>
<discovery>

<initial_peers>
<element>0@udpv4_wan://40.20.23.56:5678</element>

</initial_peers>
</discovery>

</domain_participant_qos>
</qos_profile>

</dds>

The Participant in the webinar application is used to send/receive webinar data to/from the WAN. This
WebinarParticipant has the role of the Internal Participant described in Sub-scenario 2 in 31.1 Peer-to-Peer
Communication with a Participant that has a Public Address on page 1051.

Notice the use of the ‘0@’ participant index in the <initial_peers>. This is done to minimize the amount of
discovery traffic sent to the Routing Service running in the data center. There is no need to use a number
different than 0 when using Real-Time WAN Transport. (You can, but there will be more traffic.) See
15.2.1 Peer Descriptor Format on page 775 for additional information on the participant ID limit.

32.3 Peer-to-Peer, Edge-to-Edge Deployment Scenario

Currently, this scenario is only supported in environments in which the NATs involved in the com-
munication are cone NATs. Consider a videoconferencing system in which users establish 1-1 calls with
each other. Users communicate with other users within their own LAN and in different LANs across a
WAN.

32.3 Peer-to-Peer, Edge-to-Edge Deployment Scenario

Figure 32.4: Peer-to-Peer and Edge-to-Edge Communication

Because each user is behind a cone NAT, the users can communicate peer-to-peer with other users across
the WAN with the help of Cloud Discovery Service to facilitate both the NAT traversal process and the dis-
covery of DomainParticipants as described in 31.2 Peer-to-Peer Communication with Participants behind
Cone NATs Using Cloud Discovery Service on page 1054.

In addition, some users will be running in the same LAN. Because NAT loopback (see 30.1.5 NAT Hair-
pinning on page 1049) is not allowed by NAT routers in most cases, it is necessary to use the builtin
UDPv4 transport in combination with the Real-Time WAN Transport to enable communications within the
LAN.

1068

32.3.1 Video Connext Application Configuration

1069

The following sections provide an example configuration for the scenario described in Figure 32.4: Peer-
to-Peer and Edge-to-Edge Communication on the previous page.

32.3.1 Video Connext Application Configuration
<dds>

<qos_profile name="VideoAppParticipant">
<domain_participant_qos>

<transport_builtin>
<mask>UDPv4|UDPv4_WAN</mask>

</transport_builtin>
<discovery>

<initial_peers>
<element>udpv4://239.255.0.1</element>
<element>rtps@udpv4_wan://40.20.23.56:5678</element>

</initial_peers>
</discovery>
<discovery_config>

<locator_reachability_assert_period>
<sec>15</sec>
<nanosec>0</nanosec>

</locator_reachability_assert_period>
<locator_reachability_lease_duration>

<sec>60</sec>
<nanosec>0</nanosec>

</locator_reachability_lease_duration>
</discovery_config>

</domain_participant_qos>
</qos_profile>

</dds>

Within the LAN, discovery is configured to be done over multicast by setting <initial_peers> to
udpv4://239.255.0.1. Over the WAN, discovery will occur using Cloud Discovery Service.

32.3.2 Cloud Discovery Service Configuration
<dds>

<cloud_discovery_service name="CDS">
<transport>

<element>
<alias>builtin.udpv4_wan</alias>
<receive_port>5678</receive_port>
<property>

<element>
<name>dds.transport.UDPv4.builtin.public_address</name>
<value>50.10.23.45</value>

</element>
</property>

</element>
</transport>

</cloud_discovery_service>
</dds>

Chapter 33 Enabling Real-Time WAN
Transport

To use Real-Time WAN Transport, you have two options:

l (Recommended for all platforms that support dynamic library loading) Automatic
dynamic load of the transport library. This approach only requires you to make sure the
Real-Time WAN Transport dynamic Release or Debug library is available in your library
path. See the RTI Connext DDS Core Libraries Platform Notes for the platforms that sup-
port dynamic Real-Time WAN Transport libraries. See 33.1 Dynamically Loading the Real-
Time WAN Transport below.

l Manual link against the applicable transport library. See the RTI Connext DDS Core Librar-
ies Platform Notes for a list of the Real-Time WAN Transport libraries available for your plat-
form. See 33.2 Linking the Real-Time WAN Transport against your Application on the next
page for details.

Note: Normally, you cannot mix static and dynamic libraries. (See 10.3.2 Mixing Static and
Dynamic Libraries not Supported on page 688.) For Real-Time WAN Transport, however, it is
recommended that you load the library dynamically, regardless of how you load your core lib-
raries. There is one exception: if your platform does not support dynamic loading, follow the
instructions in 33.2 Linking the Real-Time WAN Transport against your Application on the next
page for more information on how to link your application against the corresponding Real-Time
WAN Transport library.

33.1 Dynamically Loading the Real-Time WAN Transport

The recommended way to use the transport is to let Connext DDS automatically load the Real-
Time WAN Transport dynamic library. (Not all platforms support dynamic loading. See the RTI
Connext DDS Core Libraries Platform Notes for details.)

1070

33.2 Linking the Real-Time WAN Transport against your Application

1071

To allow Connext DDS to load the Real-Time WAN Transport dynamic library, simply make sure that the
applicable Real-Time WAN Transport dynamic Release or Debug library is available in your system lib-
rary search path (e.g., LD_LIBRARY_PATH in Linux systems, PATH on Windows systems, DYLD_
LIBRARY_PATH on macOS systems).

33.2 Linking the Real-Time WAN Transport against your Application

If the method described in 33.1 Dynamically Loading the Real-Time WAN Transport on the previous
page is not available in your system (because your architecture does not support dynamic library loading),
you can still use the Real-Time WAN Transport by linking your application against the transport library.

Compared with dynamic loading, you need to pay attention to two things.

First, include the Real-Time WAN Transport library in the list of libraries used during your application link-
ing. See the RTI Connext DDS Core Libraries Platform Notes for the specific library to link for your tar-
get platform.

Second, manually tell Connext DDS the pointer to the function of the entry point of the Real-Time WAN
Transport library before you create the DomainParticipant. Setting this pointer requires setting the
dds.transport.UDPv4_WAN.builtin.plugin_enabled_function_ptr property. (See 35.1 Setting Real-
Time WAN Transport Properties on page 1074.) Here is an example of how to set this pointer in code:
/* Include the symbol for NDDS_Transport_UDP_WAN_Library_is_plugin_enabled */
#include "transport/transport_udp_wan_library.h"

/* The property name "dds.transport.UDPv4_WAN.builtin.plugin_enabled_function_ptr"
* indicates the entry point for the Real-Time WAN Transport library.
* The value MUST be the stringified value of the function pointer of
* NDDS_Transport_UDP_WAN_Library_is_plugin_enabled. Note that
* add_pointer_property() API will automatically convert the
* function pointer to a string.
*/

if (DDS_PropertyQosPolicyHelper_add_pointer_property(
&participantQos.property,
"dds.transport.UDPv4_WAN.builtin.plugin_enabled_function_ptr",
(void *) NDDS_Transport_UDP_WAN_Library_is_plugin_enabled)

!= DDS_RETCODE_OK) {
/* error */

}

Chapter 34 Transport Initial Peers
The initial peers (see 9.5.2.2 Setting the ‘Initial Peers’ List on page 646) for Real-Time WAN
Transport have the following form:

Notice that the participant ID limit should always be ‘0@’, since there can be only one DomainPar-
ticipant associated with the public IP transport address <peer_public_IP_address>:<peer_public_
port>. Note that a participant ID limit different than 0 will be accepted, but it will generate more dis-
covery traffic than necessary.

<peer_public_IP_address>:<peer_public_port> defines the public IP transport address at which the
remote DomainParticipant is reachable. For example, assume the following configuration for a
remote DomainParticipant:
<dds>

<qos_profile name="ExternalParticipant">
<domain_participant_qos>

<transport_builtin>
<mask>UDPv4_WAN</mask>
<udpv4_wan>

<public_address>50.10.23.45</public_address>
<comm_ports>

<default>
<host>1234</host>
<public>2345</public>

</default>
</comm_ports>

</udpv4_wan>
</transport_builtin>

</domain_participant_qos>
</qos_profile>

</dds>

The initial peer that can be used to establish communication with the remote DomainParticipant is:

1072

Chapter 34 Transport Initial Peers

1073

For scenarios in which Cloud Discovery Service (CDS) is involved, the initial peers have the following
form:

<CDS_public_IP_address>:<CDS_public_port> defines the public IP transport address at which CDS is
reachable. For example, assume the following CDS configuration:
<dds>

<cloud_discovery_service name="CDS">
<transport>

<element>
<alias>builtin.udpv4_wan</alias>
<receive_port>5678</receive_port>
<property>

<element>
<name>dds.transport.UDPv4.builtin.public_address</name>
<value>50.10.23.45</value>

</element>
</property>

</element>
</transport>

</cloud_discovery_service>
</dds>

The initial peer that can be used to establish communication with CDS is:

Chapter 35 Transport Configuration
Real-Time WAN Transport is a transport plugin that can be configured in three different ways:

l Programmatically by calling set_builtin_transport_property() (see 16.5 Setting Builtin
Transport Properties of Default Transport Instance—get/set_builtin_transport_properties() on
page 805).

l By specifying predefined property strings in the DomainParticipant’s PropertyQosPolicy
(see 16.6 Setting Builtin Transport Properties with the PropertyQosPolicy on page 807).

l By using the tag <domain_participant_qos>/<transport_builtin>/<udpv4_wan> in the XML
configuration.

35.1 Setting Real-Time WAN Transport Properties

Table 35.1 Properties for Real-Time WAN Transport describes the configuration parameters for
Real-Time WAN Transport:

1074

35.1 Setting Real-Time WAN Transport Properties

1075

Table 35.1 Properties for Real-Time WAN Transport

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

General Transport Properties

<gather_send_buffer_count_max> parent.gather_send_buffer_
count_max

Specifies the maximumnumber of buffers thatConnext DDS can
pass to the send()method of a transport plugin.

The transport plugin send() API supports a gather-send concept,
where the send() call can take several discontiguous buffers, as-
semble and send them in a single message. This enablesConnext
DDS to send a message fromparts obtained fromdifferent sources
without first having to copy the parts into a single contiguous buffer.

However, most transports that support a gather-send concept have
an upper limit on the number of buffers that can be gathered and
sent. Setting this value will preventConnext DDS from trying to
gather too many buffers into a send call for the transport plugin.

Connext DDS requires all transport-plugin implementations to sup-
port a gather-send of least a minimumnumber of buffers. This min-
imumnumber is NDDS_TRANSPORT_PROPERTY_GATHER_
SEND_BUFFER_COUNT_MIN.

See 16.6.1 Setting theMaximumGather-Send Buffer Count for
UDPTransports on page 825.

Default: 16

<message_size_max> parent.message_size_max

The maximumsize of a message in bytes that can be sent or re-
ceived by the transport plugin. Above this size, DDS-level frag-
mentation will occur. See 23.3 Large Data Fragmentation on
page 976.

This value must be set before the transport plugin is registered, so
thatConnext DDS can properly use the plugin.

Default for Integrity platforms: 9216

Default for non-Integrity platforms: 65507

35.1 Setting Real-Time WAN Transport Properties

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

<allow_interfaces_list> parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses or an
interface name.

As a property value, interfacesmust be specified as comma-sep-
arated strings, with each comma delimiting an interface. In XML,
they are provided as a set of elements (<element>) under <allow_in-
terfaces_list>. For example, the following are acceptable strings:

192.168.1.1

192.168.1.*

192.168.*

192.*

ether0

If the list is non-empty, this "white" list is applied before the par-
ent.deny_interfaces_list list.

The DomainParticipantwill use the resulting list of interfaces to in-
form its remote participant(s) about which unicast addressesmay be
used to contact the DomainParticipant.

The resulting list restricts reception to a particular set of interfaces for
unicast UDP. You must manage the memory of the list. The memory
may be freed after the DomainParticipant is deleted.

Default: empty list that represents all available interfaces

<deny_interfaces_list> parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses or an
interface name. If the list is non-empty, deny the use of these in-
terfaces.

As a property value, interfacesmust be specified as comma-sep-
arated strings, with each comma delimiting an interface. In XML,
they are provided as a set of elements (<element>) under <deny_in-
terfaces_list>. For example, the following are acceptable strings:

192.168.1.1

192.168.1.*

192.168.*

192.*

ether0

This "black" list is applied after the parent.allow_interfaces_list
and filters out the interfaces that should not be used for receiving
data. The resulting list restricts reception to a particular set of in-
terfaces for unicast UDP.

You must manage the memory of the list. The memory may be freed
after the DomainParticipant is deleted.

Default: empty list that represents no deny interfaces

1076

35.1 Setting Real-Time WAN Transport Properties

1077

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

<properties_bitmap> parent.properties_bitmap

A bitmap that defines various properties of the transport to the Con-
next DDS core. Currently, the only property supported is whether or
not the transport plugin will always loan a bufferwhen Connext DDS
tries to receive a message using the plugin. This is in support of a
zero-copy interface.

Default: 0

N/A property_validation_action

By default, property names given in the 7.5.19 PROPERTY
QosPolicy (DDSExtension) on page 440 are validated to avoid us-
ing incorrect or unknown names (for example, due to a typo). This
property configures the validation of the property names associated
with the transport:

l VALIDATION_ACTION_EXCEPTION: validate the prop-
erties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the prop-
erties. Upon failure, log warnings and do not fail.

If this property is not set, the property validation behaviorwill be the
same as that of the DomainParticipant, which by default is
VALIDATION_ACTION_EXCEPTION. See 7.5.19.1 PropertyVal-
idation on page 442 formore information.

<thread_name_prefix> thread_name_prefix

If you do not set this field,Connext DDS creates the following prefix:

'r' + 'Tr' + participant identifier + '\0'

Where 'r' indicates this is a thread fromRTI, 'Tr' indicates the thread
is related to a transport, and participant identifier contains 5 char-
acters as follows:

l If participant_name is set: The participant identifier will be
the first 3 characters and the last 2 characters of the par-
ticipant_name.

l If participant_name is not set, then the identifier is com-
puted as domain_id (3 characters) followed by par-
ticipant_id (2 characters).

l If participant_name is not set and the participant_id is set
to -1 (default value), then the participant identifier is com-
puted as the last 5 digits of the rtps_instance_id in the par-
ticipant GUID.

See 21.9 Identifying ThreadsUsed byConnext DDSon page 922.

35.1 Setting Real-Time WAN Transport Properties

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

General UDP Properties

<protocol_overhead_max> protocol_overhead_max

Maximumsize in bytes of protocol overhead, including headers.

This value is the maximumsize, in bytes, of protocol-related over-
head. Normally, the overhead accounts forUDP and IP headers.
The default value is set to accommodate the most common UDP/IP
header size.

Note that when parent.message_size_max plus this overhead is
larger than the UDPv4 maximummessage size (65535 bytes), the
middleware will automatically reduce the effectivemessage_size_
max to 65535 minus this overhead.

Default: 28

<send_socket_buffer_size> send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On
most operating systems, setsockopt() will be called to set the
SENDBUF to the value of this parameter.

This value must be greater than or equal to parent.message_size_
max. The maximumvalue is operating system-dependent.

If -1, setsockopt() (or equivalent) will not be called to size the send
buffer of the socket. The transport will use the OS default.

Default: 131072

<recv_socket_buffer_size> recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving. On
most operating systems, setsockopt() will be called to set the
RECVBUF to the value of this parameter.

This value must be greater than or equal to parent.message_size_
max. The maximumvalue is operating system-dependent.

If -1, setsockopt() (or equivalent) will not be called to size the re-
ceive buffer of the socket. The transport will use the OS default.

Default: 131072

1078

35.1 Setting Real-Time WAN Transport Properties

1079

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

<ignore_loopback_interface> ignore_loopback_interface

Prevents the transport plugin fromusing the IP loopback interface.
Three values are allowed:

l 0: Forces local traffic to be sent over loopback, even if a
more efficient transport (such as shared memory) is
installed (in which case traffic will be sent over both trans-
ports).

l 1: Disables local traffic via this plugin. The IP loopback inter-
face will not be used, even if no NICs are discovered. This is
useful when you want applications running on the same
node to use a more efficient transport (such as shared
memory) instead of the IP loopback.

l -1: Automatic. Enables local traffic via this plugin. To avoid
redundant traffic,Connext DDSwill selectively ignore the
loopback destinations that are also reachable through
shared memory.

Default: -1

DEPRECATED

N/A

DEPRECATED

ignore_nonup_interfaces

This property is only supported on Windows platforms with statically
configured IP addresses.

It allows/disallows the use of interfaces that are not reported as UP
(by the operating system) in the UDPv4_WAN transport. Two values
are allowed:

l 0: Allow interfaces that are reported as DOWN.
l Setting this value to 0 supports communication scenarios in which

interfaces are enabled after the participant is created. Once the inter-
faces are enabled, discovery will not occur until the participant
sends the next periodic announcement (controlled by the parameter
participant_qos.discovery_config.participant_liveliness_
assert_period).

l To reduce discovery time, youmay want to decrease the value of
participant_liveliness_assert_period. For the above scenario,
there is one caveat: non-UP interfaces must have a static IP
assigned.

l 1: Do not allow interfaces that are reported as DOWN.

Default:1

35.1 Setting Real-Time WAN Transport Properties

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

<ignore_nonrunning_interfaces> ignore_nonrunning_in-
terfaces

Prevents the transport plugin fromusing a network interface that is
not reported as RUNNING by the operating system.

The transport checks the flags reported by the operating system for
each network interface upon initialization. An interface which is not
reported as UP will not be used. This property allows the same check
to be extended to the IFF_RUNNING flag implemented by some op-
erating systems. The RUNNING flag is defined to mean that "all re-
sources are allocated", and may be off if there is no link detected,
e.g., the network cable is unplugged. Two values are allowed:

l 0: Do not check the RUNNING flag when enumerating inter-
faces, just make sure the interface is UP.

l 1: Check the flag when enumerating interfaces, and ignore
those that are not reported as RUNNING. This can be used
on some operating systems to cause the transport to
ignore interfaces that are enabled but not connected to the
network.

By default this property is set to 1, so Connext DDSwill ignore non-
running interfaces.

DEPRECATED

N/A

DEPRECATED

no_zero_copy

Prevents the transport plugin fromdoing a zero copy.

By default, this plugin will use the zero copy on OSs that offer it.
While this is good for performance, it may sometimes tax the OS re-
sources in a manner that cannot be overcome by the application.

The best example is if the hardware/device driver lends the buffer to
the application itself. If the application does not return the loaned
buffers soon enough, the node may error ormalfunction. In case
you cannot reconfigure the hardware, device driver, or the OS to al-
low the zero-copy feature to work for your application, you may have
no choice but to turn off zero-copy.

By default this is set to 0, so Connext DDSwill use the zero-copy
API if offered by the OS.

<send_blocking> send_blocking

Controls the blocking behavior of send sockets.CHANGING THIS
FROM THE DEFAULT CAN CAUSE SIGNIFICANT
PERFORMANCE PROBLEMS. Currently two values are defined:

l 1 (NDDS_TRANSPORT_UDP_BLOCKING_ALWAYS):
Sockets are blocking (default socket options for operating
system).

l 0 (NDDS_TRANSPORT_UDP_BLOCKING_NEVER): Sock-
ets are modified to make themnon-blocking. This may
cause significant performance problems.

Default: 1

1080

35.1 Setting Real-Time WAN Transport Properties

1081

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

<transport_priority_mask> transport_priority_mask

Sets the mask for the transport priority field. This is used in con-
junction with transport_priority_mapping_low and transport_pri-
ority_mapping_high to define the mapping from the 7.5.26
TRANSPORT_PRIORITYQosPolicy on page 459 to the IPv4 TOS
field. Defines a contiguous region of bits in the 32-bit transport pri-
ority value that is used to generate values for the IPv4 TOS field on
an outgoing socket.

For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be
used in the mapping. The value will be scaled from the mask range
(0x0000 - 0xff00 in this case) to the range specified by low and high.

If the mask is set to zero, then the transport will not set IPv4 TOS for
send sockets.

Default: 0

<transport_priority_mapping_low> transport_priority_mapping_
low

Sets the low and high values of the output range to IPv4 TOS.

These values are used in conjunction with transport_priority_
mask to define the mapping from the 7.5.26 TRANSPORT_
PRIORITYQosPolicy on page 459 to the IPv4 TOS field. Defines
the low and high values of the output range for scaling.

Note that IPv4 TOS is generally an 8-bit value.

Default: 0 for transport_priority_mapping_low and 0xFF for trans-
port_priority_mapping_high

<transport_priority_mapping_
high>

transport_priority_mapping_
high

<send_ping> send_ping

This property specifies whether to send a PINGmessage before
commencing the discovery process. On certain operating systems or
with certain switches the initial UDP packet, configuring the ARP
table, was unfortunately dropped. To avoid dropping the initial
RTPS discovery sample, a PINGmessage is sent to preconfigure
the ARP table in those environments.

Default: 1

<use_checksum> use_checksum

This property specifies whether the UDP checksumwill be com-
puted. On Windows and Linux systems, the UDP checksumwill not
be set when use_checksum is set to 0. This is useful when RTPS
protocol statistics related to corrupted messages need to be col-
lected through the operation get_participant_protocol_status()
(see 9.3.14 Getting Participant ProtocolStatuson page 637).

Default: 1

35.1 Setting Real-Time WAN Transport Properties

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

IP Mobility Properties

<interface_poll_period> interface_poll_period

Specifies the period in milliseconds to query for changes in the state
of all the interfaces.

When possible, the detection of an IP address changes is done
asynchronously using the APIs offered by the underlying OS. If
there is no mechanism to do that, the detection will use a polling
strategy where the polling period can be configured by setting this
property.

Default: 500

<force_interface_poll_detection> force_interface_poll_de-
tection

This property forces the interface tracker to use a polling method to
detect changes to the network interfaces in IP mobility scenarios. It
only applies to operating systems that support asynchronous no-
tifications of interface changes.

If set to TRUE, the interface trackerwill use a polling method that
queries the interfaces periodically to detect the changes. If set to
FALSE, the interface trackerwill use the operating system’s default
method.

Basically, this property allows you—for an operating system that sup-
ports asynchronous notification—to use the polling method instead.

Default: FALSE

<disable_interface_tracking> disable_interface_tracking

Disables detection of network interface changes.

By default, network interfaces changes are propagated in the form
of locators to other applications. This is done to support IP mobility
scenarios. For example, you could start an application with Wi-Fi and
move to a wired connection. In order to continue communicating
with other applications, this interface change must be propagated.

You can disable the notification and propagation of interface
changes by setting this property to 1.

WAN Properties

<public_address> public_address

Public IP address associated with the transport instantiation. The ad-
dress is the public IP address of the NAT-enabled router that
provides access to the WAN.

Setting the public IP address is only necessary for the Real-Time
WAN Transport associated with an externalDomainParticipant in
order to support the communication scenario described in 31.1
Peer-to-Peer Communication with a Participant that hasa Public
Addresson page 1051.

When this property is set, the DomainParticipantwill announce
PUBLIC+UUID locators to otherDomainParticipants. These loc-
ators are reachable locators because they contain a public IP trans-
port address for the DomainParticipant. For additional information
on Real-TimeWAN Transport locators, see 37.1 Transport Loc-
ators on page 1093.

By default, the public address is not set.

1082

35.1 Setting Real-Time WAN Transport Properties

1083

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

<binding_ping_period> binding_ping_period

Configures the period in milliseconds at which BINDING_PINGmes-
sages are sent by a local transport instance to a remote transport in-
stance. For example, 1000 means to send BINDING_PING
messages every second.

BINDING_PINGmessages are used on the sending side to open
NAT bindings froma local transport instance to a remote transport in-
stance and they are sent periodically to keep the bindings open.

For additional information on the role of BINDING_PINGmessages
opening NAT bindings, see 37.3 Communication Establishment
Protocol for Peer-to-Peer Communication with Participants be-
hind Cone NATson page 1095.

On the receiving side, BINDING_PINGS are used to calculate the
public IP transport address of a UUID locator. This address will be
used to send data to the locator.

For additional information on the role of BINDING_PING to as-
sociate UUID locators to public IP transport addresses, see 37.4
Communication Establishment Protocol for Peer-to-Peer Com-
munication with a Participant that hasa PublicAddresson
page 1098.

Froma configuration point of view, and to avoid communication dis-
ruptions, the period at which a transport instance sends BINDING_
PINGmessages should be smaller than the NAT binding session
timeout. This timeout depends on the NAT router configuration.

Default: 1000 (1 sec)

<port_offset> port_offset

This property allows using the builtin UDPv4 transport and the Real-
TimeWAN Transport at the same time.

<transport_builtin>
<mask>UDPv4_WAN|UDPv4</mask>

</transport_builtin>

When the UDP ports used byReal-TimeWAN Transport are not ex-
plicitly set, they are calculated as follows: RTPS port + port_offset.
See 35.2Managing UDPPortsUsed for Communication on the
next page for additional details.

Default: 125

<comm_ports> comm_ports

Configures the public and private UDP ports that a transport in-
stance uses to receive/send RTPS data. See 35.2Managing UDP
PortsUsed for Communication on the next page for additional de-
tails.

If this property is not set (default), the UDP ports used for com-
munications will be derived from the RTPS ports associated with the
locators for the DomainParticipant and its endpoints (DataWriters
and DataReaders).

35.2 Managing UDP Ports Used for Communication

XML tag (under <udpv4_wan>)

Property Name

(prefix with
‘dds.transport.UDPv4_

WAN.builtin.’)

Property Value Description

<plugin_enabled_function_ptr> plugin_enabled_function_ptr

Only required if your platformdoes not support dynamic loading of
libraries (independently of how the application was linked).

A string that must be set programmatically to the stringified pointer
value of the Real-TimeWAN Transport library'sNDDS_Trans-
port_UDP_WAN_Library_is_plugin_enabled function. See
Chapter 33 Enabling Real-TimeWAN Transport on page 1070 for
details.

Default: NULL

35.2 Managing UDP Ports Used for Communication

35.2.1 Receiving Data

By default, Real-Time WAN Transport uses one UDP port per RTPS port to receive data. The UDP port
number is calculated as RTPS port + port_offset.

A DomainParticipant uses two RTPS ports, one for discovery and one for user data. Therefore, Real-
Time WAN Transport uses two UDP ports out-of-the-box. For information on how the RTPS ports are
obtained, see 9.5.9.2 Ports Used for Discovery on page 678.

You can also configure a specific DataWriter and DataReader to receive unicast data in a different RTPS
port by configuring the 7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension) on page 465).
This will also lead to the usage of a different UDP port by Real-Time WAN Transport.

There are two main use cases in which the default mapping from RTPS ports to UDP ports is not suitable:

l The first use case involves the configuration of the External Participant described in 31.1 Peer-to-
Peer Communication with a Participant that has a Public Address on page 1051. In this use case,
you must be able to select the private and public UDP ports used for communication because you
have to create a static NAT binding on the router for the External Participant.

l The second use case involves the use of UDP load balancers. With UDP load balancers, you must
be able to configure a single UDP port to handle all data reception because the load balancer would
not know how to map different ports to the same DomainParticipant.

For these use cases, Real-Time WAN Transport provides a way to specify the private and public UDP
ports that will be used to serve specific RTPS ports.

1084

35.2.1 Receiving Data

1085

35.2.1.1 Changing the UDP Port Mapping

The <comm_ports> XML tag or the property dds.transport.UDPv4_WAN.builtin.comm_ports can be
used to change the mapping of UDP ports to RTPS ports.

You can specify a list of mappings from an RTPS port to a host, and (optionally) a public UDP port. For
RTPS ports that are not part of the list, you can provide a default mapping.

When the property dds.transport.UDPv4_WAN.builtin.comm_ports is used instead of XML, the list is
a JSON string.

35.2.1.2 Configuring the Transport to Use a Single Port for an External Participant behind a
NAT

This configuration will be needed for the External Participant behind a NAT in the scenario described in
31.2 Peer-to-Peer Communication with Participants behind Cone NATs Using Cloud Discovery Service
on page 1054.
Figure 35.1: Single Port External Participant

XML:

35.2.2 Configuring the Transport to Use a Single Port for an Internal Participant behind a NAT

<udpv4_wan>
<comm_ports>

<default>
<host>1234</host>
<public>2345</public>

</default>
</comm_ports>

</udpv4_wan>

Property dds.transport.UDPv4_WAN.builtin.comm_ports:
{

"default": {
"host": 1234,
"public": 2345

}
}

35.2.2 Configuring the Transport to Use a Single Port for an Internal
Participant behind a NAT

For the Internal Participants behind NATs used in the scenarios described in Chapter 31 Communication
Scenarios on page 1051, it is not necessary to configure the public port. The public port will be auto-
matically assigned by the NAT once packages are sent from the private address.

1086

35.2.2 Configuring the Transport to Use a Single Port for an Internal Participant behind a NAT

1087

Figure 35.2: Single Port Internal Participant

XML:
<udpv4_wan>

<comm_ports>
<default>

<host>1234</host>
</default>

</comm_ports>
</udpv4_wan>

Property dds.transport.UDPv4_WAN.builtin.comm_ports:
{

"default": {
"host": 1234,

}
}

35.2.3 Configuring the Transport to Segregate Traffic for a Topic in its own Port

35.2.3 Configuring the Transport to Segregate Traffic for a Topic in its own
Port

In some cases, you may want to segregate the RTPS traffic for a Topic, such as a Video Topic, in its own
port. This Topic will get its own socket and receive a socket buffer. It will also get its own receive thread,
which will make data reception on the Topic completely concurrent. For details on the middleware threads,
see Chapter 21 Connext DDS Threading Model on page 914.
Figure 35.3: Traffic Segregation in Different Port

35.2.3.1 External Participant Configuration

<dds>
<qos_profile name="ExternalParticipant">

<domain_participant_qos>
<transport_builtin>

<mask>UDPv4_WAN</mask>
<udpv4_wan>

<public_address>50.10.23.45</public_address>
<comm_ports>

<default>
<host>1234</host>
<public>2345</public>

</default>
<mappings>

<element>
<rtps>5001</rtps>
<host>5000</host>
<public>3456</public>

</element>
</mappings>

</comm_ports>
</udpv4_wan>

</transport_builtin>

1088

35.2.4 Sending Data

1089

</domain_participant_qos>
</qos_profile>

<qos_profile name="VideoTopic" base_name="ExternalParticipant">
<datareader_qos>

<unicast>
<value>

<element>
<receive_port>5001</receive_port>
<transports>

<element>udpv4_wan</element>
</transports>

</element>
</value>

</unicast>
</datareader_qos>

</qos_profile>
</dds>

To use a different port for the Video Topic, you will have to first change the 7.5.28 TRANSPORT_
UNICAST QosPolicy (DDS Extension) on page 465 to specify an RTPS port (<unicast>/<receiver_
port>) for video data reception. Then, you will have to configure the mapping to UDP ports by updating
the comm_ports configuration.

If you choose to configure the comm_ports using the property dds.transport.UDPv4_WAN.built-
in.comm_ports, the following example will be the JSON string for the scenario described in Figure 35.3:
Traffic Segregation in Different Port on the previous page
{

"default": {
"host": 1234,
"Public": 2345

}
"mappings":
[
{

"rtps": 5001,
"Host": 5000,
"Public": 3456

}
]
}

35.2.4 Sending Data

Data is always sent from a single UDP port. There is no way to send data using different UDP ports for dif-
ferent Topics.

The UDP port used for sending data corresponds to the port associated with the discovery RTPS port
according to the rules described in 35.2.1 Receiving Data on page 1084. When the <comms_port>/<de-
fault> is defined, the port used for sending data is the one provided in <comms_port>/<default>.

35.3 Disabling IP Fragmentation for Real-Time WAN Transport

35.3 Disabling IP Fragmentation for Real-Time WAN Transport

For WAN communications, it is not a good idea to rely on IP fragmentation. IP fragmentation causes sig-
nificant issues in UDP, where there is no integrated support for a path MTU (maximum transmission unit)
discovery protocol as there is in TCP. These are some of the problems associated with IP fragmentation:

l To successfully reassemble a packet, all fragments must be delivered. If a fragment is lost, the whole
packet will be lost.

l Before reassembly, a host must hold partial fragment datagrams in memory. This opens an oppor-
tunity for memory exhaustion attacks.

l Subsequent fragments lack the higher-layer header. The TCP or UDP header is only present in the
first fragment, making it impossible for firewalls to filter fragment datagrams based on criteria like
source or destination ports.

For more information on IP-level versus Connext DDS-level fragmentation, see 23.3 Large Data Frag-
mentation on page 976.

This section describes how to disable IP fragmentation in Connext DDS applications using the RTI Real-
Time WAN Transport. Instead, Connext DDS will be responsible for fragmentation, done at the RTPS
level. The key changes involve:

l Setting the Real-Time WAN TransportMTU (<message_size_max>) to be smaller than the typical
IP MTU of around 1500 bytes. The recommendation is to be even more conservative and set the
transport MTU to 1400 bytes.

l Enabling DDS fragmentation for reliable Topics (user and built-in Topics) by configuring the 7.5.20
PUBLISH_MODE QosPolicy (DDS Extension) on page 445.

For example:
<qos_profile name="Transport.UDP.WAN">

<participant_qos>
<discovery_config>

<publication_writer_publish_mode>
<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>

</publication_writer_publish_mode>
<subscription_writer_publish_mode>

<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>
</subscription_writer_publish_mode>
<secure_volatile_writer_publish_mode>

<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>
</secure_volatile_writer_publish_mode>
<service_request_writer_publish_mode>

<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>
</service_request_writer_publish_mode>

</discovery_config>

1090

35.3 Disabling IP Fragmentation for Real-Time WAN Transport

1091

<transport_builtin>
<mask>UDPv4_WAN</mask>
<udpv4_wan>

<message_size_max>1400</message_size_max>
</udpv4_wan>

</transport_builtin>
</participant_qos>

<datawriter_qos>
<publish_mode>

<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>
</publish_mode>

</datawriter_qos>
</qos_profile>

Note: Batching does not currently support RTPS fragmentation. If you use batching, you will currently
not be able to take advantage of Connext DDS fragmentation. This means that your batch size, including
RTPS protocol overhead, has to be limited to the transport MTU. See 23.3 Large Data Fragmentation on
page 976 for more information.

Chapter 36 Security
Fine-grained security and access control at the Topic level is provided through the use of RTI Secur-
ity Plugins, which are the Connext DDS implementation of the OMG 'DDS Security' specification,
version 1.1, builtin plugins. For detailed information on how to secure your Connext DDS system,
see the RTI Security Plugins User's Manual.

In addition, you can use symmetric cryptography using pre-shared keys to protect the integrity of
the Binding Ping messages (see 37.2 Binding Ping Messages on page 1094) and the com-
munication with Cloud Discovery Service. For further details, see the "Support for RTI Real-Time
WAN Transport" chapter in the RTI Security Plugins User's Manual.

1092

https://www.omg.org/spec/DDS-SECURITY/1.1
https://www.omg.org/spec/DDS-SECURITY/1.1

Chapter 37 Advanced Concepts
37.1 Transport Locators

This section provides information about the format of the locators associated with the Real-Time
WAN Transport. For general information about RTPS locators, see Chapter 17 RTPS Locators and
IP Mobility on page 833.

An RTPS locator is an address at which a DDS endpoint (DataWriter or DataReader) can be
reached. Default locators for discovery endpoints and user data endpoints are exchanged with the
Participant Announcement (PA).

An RTPS locator consists of a transport Class ID, an address of 128 bits, and a logical port called
the RTPS port, as shown in Figure 37.1: RTPS Locator below.
Figure 37.1: RTPS Locator

0 8 16 24 31

DDS_Long class_id

DDS_UnsignedLong rtps_port

DDS_Octet address[16]

The locators for Real-Time WAN Transport use the following mapping:
Figure 37.2: RTPS WAN Locator

0 8 16 24 31

1093

37.2 Binding Ping Messages

1094

DDS_Long class_id

DDS_UnsignedLong rtps_port

Flags

DDS_Octet UUID[9]

public_port

DDS_Octet public_ip_address[4]

Flags has the following format: x|x|x|x|x|B|P|U

The B flag indicates whether the locator is unidirectional or bidirectional. Bidirectional locators can send/re-
ceive RTPS traffic. Unidirectional locators can only receive RTPS traffic. If the B flag is set, the P flag
must be set, too. Locators with the B flag set are called BIDIRECTIONAL locators.

The P flag indicates that the locator contains a public IP address and public port where a DDS endpoint
can be reached. public_ip_address contains the public IP address, and public_port contains the public
UDP port. The public UDP port is always used to receive data, and, if the B flag is set, it is also used to
send data. Locators with the P flag set are called PUBLIC locators.

The U flag indicates whether the locator contains a UUID. While this identifier by itself cannot be directly
used to reach a DDS endpoint in a DomainParticipant DP1, the UUID can be mapped to a public address
by Cloud Discovery Service and other DomainParticipants. Also, a locator can have both the U flag and
the P flag, enabled simultaneously. Locators with the U flag set are called UUID locators.

A PUBLIC+UUID locator is a locator in which both the U flag and P flag are set.

Initial peers locators will have the B and P flags set and the U flag unset.

The U flag will be set for locators generated automatically by a DomainParticipant.

The P flag will be automatically set for locators generated for a transport that is configured using the prop-
erty dds.transport.UDPv4_WAN.builtin.public_address. The flag will be also be set by Cloud Dis-
covery Service when generating locators that contain the service reflexive address for a UUID locator.

37.2 Binding Ping Messages

As described in 35.1 Setting Real-Time WAN Transport Properties on page 1074, Real-Time WAN Trans-
port uses special RTPS messages called Binding Ping messages to open NAT bindings and to resolve
UUID locators into public IP transport addresses.

37.3 Communication Establishment Protocol for Peer-to-Peer Communication with Participants behind

Binding Ping messages contain the UUID and the RTPS port of the locator with which they are asso-
ciated. This information allows the receiving Real-Time WAN Transport to create and update the mapping
between a (UUID, RTPS port) pair and its corresponding public address. Figure 37.3: BINDING_PING
messages below depicts the structure of a Binding Ping message.
Figure 37.3: BINDING_PING messages

0 7 15 31

BINDING_PING X X X X X B L E octetsToNextHeader

DDS_UnsignedLong rtps_port

DDS_Octet address[12] [If L=0]

DDS_Octet address[16] [If L=1]

The security of the Binding Pings can be configured using the com.rti.serv.secure.cryptography.rtps_
protection_key property. For further details, see the "Support for RTI Real-Time WAN Transport"
chapter in the RTI Security Plugins User's Manual.

37.3 Communication Establishment Protocol for Peer-to-Peer
Communication with Participants behind Cone NATs

This section describes the communication establishment protocol for the scenario described in 31.2 Peer-
to-Peer Communication with Participants behind Cone NATs Using Cloud Discovery Service on
page 1054.

Communication is established as indicated in Figure 37.4: Public Address Resolution Phase Using Cloud
Discovery Service (CDS) on the next page and Figure 37.5: UDP Hole Punching Phase on page 1097.

1095

37.3 Communication Establishment Protocol for Peer-to-Peer Communication with Participants behind

1096

Figure 37.4: Public Address Resolution Phase Using Cloud Discovery Service (CDS)

1. DomainParticipants DP1 and DP2 register with CDS by sending DDS Participant Announcements
PA1 and PA2. Each PA contains two (one for discovery and one for user data) or more UUID loc-
ators. These UUID locators are not directly reachable. For the sake of simplicity, Figure 37.4: Public
Address Resolution Phase Using Cloud Discovery Service (CDS) above only shows the discovery
UUID locator being exchanged.

2. When CDS gets the PAs, it obtains the service reflexive address for each one of the UUID locators
and updates the PAs, replacing the UUID locators with UUID+PUBLIC locators that contain the
service reflexive addresses. UUID+PUBLIC locators are reachable locators.

3. CDS sends PA1', which contains the UUID+PUBLIC locators for DP1, to DP2. It sends PA2',
which contains the UUID+PUBLIC locators for DP2, to DP1.

4. After DP1 and DP2 receive each other’s UUID+PUBLIC locators from CDS, they start com-
municating peer-to-peer using these locators by applying a technique called UDP hole punching.

Figure 37.5: UDP Hole Punching Phase on the next page illustrates how UDP hole punching works to
allow sending PAs (PA1 and PA2) from DP2 data to DP1. For simplicity, the restricted-cone NAT for
DP2 has been removed from the sequence diagram.

37.3 Communication Establishment Protocol for Peer-to-Peer Communication with Participants behind

Figure 37.5: UDP Hole Punching Phase

In the initial state, DP2 has received a PUBLIC+UUID locator from Cloud Discovery Service indicating
that DP1 can be reached at the address 40.10.23.45:2000. The PUBLIC+UUID locator was part of PA1'
in Figure 37.4: Public Address Resolution Phase Using Cloud Discovery Service (CDS) on the previous
page.

1. When DP2 tries to send a PA to DP1, the NAT router for DP1 will drop the message because the
NAT binding from 192.168.1.1:100 to 40.10.23.45:2000 does not allow incoming traffic from
50.10.23.445:2000 (see 30.1.1 NAT Kinds on page 1045 for additional details).

2. To allow incoming traffic from DP2, DP1 sends an RTPS BINDING_PING message to DP2 pub-
lic address 50.10.23.445:2000.

3. After the BINDING_PING is sent, the NAT router for DP1 will allow PA traffic from DP2 through
the NAT binding from 192.168.1.1:100 to 40.10.23.45:2000. For additional details on the
BINDING_PING message see 37.2 Binding Ping Messages on page 1094.

1097

37.4 Communication Establishment Protocol for Peer-to-Peer Communication with a Participant that has a

1098

4. and 5) The next PA announcement coming from DP2 to DP1 will make it through the NAT router
for DP1.

The same UDP hole punching mechanism is also used in the opposite direction so that DP1 can send PAs
to DP2.

37.4 Communication Establishment Protocol for Peer-to-Peer
Communication with a Participant that has a Public Address

This section describes the communication establishment protocol for the scenario described in 31.1 Peer-
to-Peer Communication with a Participant that has a Public Address on page 1051.

Communication is established using a technique called “Connection Reversal” as described in Figure 37.6:
Connection Reversal Protocol on the next page.

37.4 Communication Establishment Protocol for Peer-to-Peer Communication with a Participant that has a

Figure 37.6: Connection Reversal Protocol

1. DP1 sends a PA to DP2 by using the public IP transport address contained in DP1's initial peers
(50.10.23.45:2000).

2. The PA creates a NAT binding in the DP1 NAT router from 192.168.1.1:100 to 40.10.23.45:2000
for the destination address 50.10.23.45:2000.

3. The NAT router sends the PA from DP1 to DP2 by replacing the source IP transport address with
40.10.23.45:2000.

1099

37.4 Communication Establishment Protocol for Peer-to-Peer Communication with a Participant that has a

1100

4. When DP2 receives the PA from DP1, it will add the discovery UUID locator for DP1 contained in
the PA to an unresolved locator table. DP1 cannot send PAs to DP2 yet because it does not know
the public IP transport address corresponding to the discovery UUID locator for DP1.

5. DP1 sends a BINDING_PING message from the address associated with the discovery UUID loc-
ator to the initial peer for DP2. The initial peer contains the address from which DP2 will send PAs.

6. Explained in 5).

7. When DP2 receives the BINDING_PING from DP1, it extracts the source IP transport address
(40.10.23.45:2000) from the UDP packet containing the BINDING_PING and associates this
address to the unresolved discovery UUID locator from DP1.

8. and 9) At this point, DP2 can send a PA to DP1.

Chapter 38 Transport Debugging
It is recommended that you read Chapter 37 Advanced Concepts on page 1093 before proceeding
with this section.

The Real-Time WAN Transport operation can be debugged by setting the Connext DDS verbosity
to LOCAL for the COMMUNICATION category:
<participant_factory_qos>

<logging>
<category>COMMUNICATION</category>
<verbosity>LOCAL</verbosity>

</logging>
</participant_factory_qos>

Or programmatically, shown here in modern C++ (other languages are similar):
Logger::instance().verbosity_by_category(LogCategory::COMMUNICATION, Verbosity::STATUS_
LOCAL);

38.1 Debugging Peer-to-Peer Communication with a Participant
that has a Public Address

Consider the communication scenario described in 31.1 Peer-to-Peer Communication with a Par-
ticipant that has a Public Address on page 1051. Let’s assume the External Participant creates a
DataReader on a Topic ‘T’ and the Internal Participant a DataWriter on the same Topic ‘T’.

1101

38.1 Debugging Peer-to-Peer Communication with a Participant that has a Public Address

1102

Figure 38.1: Peer-to-Peer with Any-NAT with a Public Participant

After enabling logging verbosity as indicated above, we can follow the Real-Time WAN Transport life-
cycle by looking at the logging output:

1. When the Internal Participant is started, it creates a send resource for the locator provided in the ini-
tial peers 50.10.23.45:2345:

[0x01015FAF,0xBA456FDC,0x040952B8:0x000001C1{D=0}|CREATE DP|ENABLE]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=BP,u={00,00,00,00,00,00,00,00,00},p=50.10.23.45:2345:7410

A send resource is a transport object that can be used to send data to a locator.

We know this is the initial peer locator because:
l The locator UUID is all zeros: u={00,00,00,00,00,00,00,00,00}.

l The public address is the one provided in the initial peers: 50.10.23.45:2345.

7410 is the RTPS port for discovery data on domain 0. To see how RTPS ports are calculated, see
9.5.9.2 Ports Used for Discovery on page 678.

At this point, the Internal Participant starts sending PAs to the External Participant.
2. When the External Participant receives the PA from the Internal Participant, it creates a send

resource for the discovery UUID locator contained in the PA.

38.1 Debugging Peer-to-Peer Communication with a Participant that has a Public Address

[0x01017AA5,0x4B4691C4,0x600386AD:0x000100C7{E=DR,I=21}|RECEIVE FROM
0x00000000,0x00000000,0x00000000:0x000100C2]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=U,u={47,82,BA,ED,A3,27,6F,A8,42},p=172.31.11.80:0:7410

The UUID locator is a non-reachable locator.
l f=U indicates that this is a non-reachable UUID locator.

l u={47,82,BA,ED,A3,27,6F,A8,42} is the UUID of the discovery locator coming from the
Internal Participant.

l Even though the public address field has the value (p=172.31.11.80:0:7410), the IP address in
the log message is not reachable and it corresponds to the private IP address of the Internal
Participant.

The External Participant also creates a send resource for the user data UUID locator contained in the
PA once it discovers the DataWriter created by the Internal Participant. The user data locator will be
used to send RTPS traffic for Topic ‘T’.
[0x01017AA5,0x4B4691C4,0x600386AD:0x80000004{E=DR,T=Example Quote,C=Quote,D=0}|LINK
0x01010402,0x1CA21E93,0xB02F44C3:0x80000003{C=Quote}]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=U,u={47,82,BA,ED,A3,27,6F,A8,42},p=172.31.11.80:0:7411

The distinction between discovery and user data locators is based on the RTPS port. 7410 is dis-
covery and 7411 is user data.

3. The External Participant cannot send a PA to the Internal Participant until it resolves the public
address for the locator with UUID {47,82,BA,ED,A3,27,6F,A8,42} and the RTPS port 7410 asso-
ciated with the discovery send resource created in step 2.

The public address resolution is done when a BINDING_PING is received from the Internal Par-
ticipant.
[0x01017AA5,0x4B4691C4,0x600386AD:0x000001C1|PROCESS BINDING PING]
NDDS_Transport_UDPv4_WAN_PublicAddressMappingInfo_log:added
P=7410,u={47,82,BA,ED,A3,27,6F,A8,42},k=3,p=54.151.6.102:7535,f=BPU,r=0

l P=7410 is the RTPS port.

l u={47,82,BA,ED,A3,27,6F,A8,42} is the UUID of the locator coming from the Internal Par-
ticipant.

l f=BPU indicates that the resolved locator is a PUBLIC+UUID locator that can be used for
bidirectional communication. This means that the Internal Participant will be sending RTPS
messages using the address 54.151.6.102:7535.

l k=3 and r=0 are internal fields not relevant for this discussion.

1103

38.2 Peer-to-Peer Communication with Participants behind Cone NATs

1104

The External Participant also will not be able to send RTPS data for Topic ‘T’ until it resolves the
public address for the locator identified by the UUID {47,82,BA,ED,A3,27,6F,A8,42} and the
RTPS port 7411. This resolution is also done by the reception of a BINDING_PING:
[0x01017AA5,0x4B4691C4,0x600386AD:0x000001C1|PROCESS BINDING PING]
NDDS_Transport_UDPv4_WAN_PublicAddressMappingInfo_log:added
P=7411,u={47,82,BA,ED,A3,27,6F,A8,42},k=3,p=54.151.6.102:7536,f=PU,r=0

4. The Internal Participant receives a PA from the External Participant, and it creates two transport
send resources: one for sending discovery data and one for sending user data:

Discovery data:
[0x01010402,0x1CA21E93,0xB02F44C3:0x000100C7{E=DR,I=21}|RECEIVE FROM
0x00000000,0x00000000,0x00000000:0x000100C2]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=BPU,u={F2,7D,8B,5D,90,AF,93,DD,90},p=50.10.23.45:2345:7410

User data:
[0x01010402,0x1CA21E93,0xB02F44C3:0x80000003{E=DW,T=Example Quote,C=Quote,D=0}|LINK
0x01017AA5,0x4B4691C4,0x600386AD:0x80000004{C=Quote}]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=BPU,u={F2,7D,8B,5D,90,AF,93,DD,90},p=50.10.23.45:2345:7411

The user data locator will be used to send RTPS traffic for Topic ‘T’.

Note that the public address 50.10.23.45:2345 is the same for both send resources because we are
configuring the External Participant to use a single UDP port for communications. The distinction
between user data and discovery data is done by looking at the RTPS port. 7410 is the port for dis-
covery and 7411 is the port for user data.

5. At this point, both Participants can communicate with each other. The External Participant will start
receiving samples for Topic ‘T’ from the Internal Participant.

38.2 Peer-to-Peer Communication with Participants behind Cone NATs

This section covers the scenario described in 31.2 Peer-to-Peer Communication with Participants behind
Cone NATs Using Cloud Discovery Service on page 1054. It is recommended that you read that section
to interpret some of the log messages.

38.2 Peer-to-Peer Communication with Participants behind Cone NATs

Figure 38.2: Peer-to-Peer with Cone NATs

The Internal Participant 1 (DP1) will create a DataWriter publishing data on a Topic ‘T’, and the Internal
Participant 2 (DP2) will create a DataReader subscribing to Topic ‘T’.

This section will focus on debugging the Real-Time WAN Transport lifecycle for DP1 and DP2. For
details on how to debug Cloud Discovery Service (CDS), see "Debugging Cloud Discovery Service with
the UDP WAN Transport," in the NAT Traversal section of the RTI Cloud Discovery Service doc-
umentation .

1. When DP1 is started, it creates a send resource for the locator provided as the initial peer
50.10.23.45:2345. This locator corresponds to the CDS locator.

[0x01016F1B,0x2294D448,0x8060E06B:0x000001C1{D=0}|CREATE DP|ENABLE]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=BP,u={00,00,00,00,00,00,00,00,00},p=50.10.23.45:2345:2345

We know this is the initial peer locator because:
l The locator UUID is all zeros: u={00,00,00,00,00,00,00,00,00}.

l The public address is the one provided in the initial peers: 50.10.23.45:2345.

At this point the DP1 starts sending PAs to CDS.

1105

38.2 Peer-to-Peer Communication with Participants behind Cone NATs

1106

2. Likewise, when DP2 is started, it creates a send resource for the CDS locator provided as the initial
peer 50.10.23.45:2345.

[0x01017116,0xF14A169C,0xE7799A94:0x000001C1{D=0}|CREATE DP|ENABLE]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=BP,u={00,00,00,00,00,00,00,00,00},p=50.10.23.45:2345:2345

At this point, DP2 starts sending PAs to CDS.
3. To start sending PAs to DP2, DP1 must receive a PA from CDS on behalf of DP2 containing the

discovery UUID+PUBLIC locator at which DP2 can be reached.

4. Once DP1 receives the PA from CDS, it creates a send resource for the discovery UUID+PUBLIC
locator used for discovery and starts sending PAs to DP2.

[0x01016F1B,0x2294D448,0x8060E06B:0x000100C7{E=DR,I=21}|RECEIVE FROM
0x00000000,0x00000000,0x00000000:0x000100C2]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=BPU,u={50,26,6D,EA,B7,11,AC,B9,5F},p=99.35.17.233:7535:7410

99.35.17.233:7535 is the public address at which DP2 will receive RTPS discovery traffic.
5. To start sending PAs to DP1, DP2 must receive a PA from CDS on behalf of DP1 containing the

discovery UUID+PUBLIC locator at which DP1 can be reached.

6. Once DP2 receives the PA from CDS, it creates a send resource for the UUID+PUBLIC locator
used for discovery and starts sending PAs to DP1.

[0x01017116,0xF14A169C,0xE7799A94:0x000100C7{E=DR,I=21}|RECEIVE FROM
0x00000000,0x00000000,0x00000000:0x000100C2]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=BPU,u={B1,1D,4B,B5,A1,58,5E,E1,58},p=54.151.6.102:7535:7410

54.151.6.102:7535 is the public address at which DP 1 will receive RTPS discovery traffic.
7. After DP1 discovers DP2’s DataReader for Topic ‘T’, DP1 will create a send resource to send

RTPS data for Topic ‘T’ (samples, GAPs, and HBs) to the DataReader in DP2.

[0x01016F1B,0x2294D448,0x8060E06B:0x80000003{E=DW,T=Example Quote,C=Quote,D=0}|LINK
0x01017116,0xF14A169C,0xE7799A94:0x80000004{C=Quote}]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for
f=PU,u={50,26,6D,EA,B7,11,AC,B9,5F},p=99.35.17.233:7536:7411

99.35.17.233:7536 is the public address at which DP1 will receive RTPS user data traffic for Topic
‘T’.

8. After DP2 discovers DP1’s DataWriter for Topic ‘T’, DP2 will create a send resource to send
RTPS data for Topic ‘T’ (NACKs) to the DataWriter in DP1.

[0x01017116,0xF14A169C,0xE7799A94:0x80000004{E=DR,T=Example Quote,C=Quote,D=0}|LINK
0x01016F1B,0x2294D448,0x8060E06B:0x80000003{C=Quote}]
NDDS_Transport_UDP_create_sendresource_srEA:Created send resource for

38.2 Peer-to-Peer Communication with Participants behind Cone NATs

f=U,u={B1,1D,4B,B5,A1,58,5E,E1,58},p=172.31.11.80:0:7411

Note that in this case, the send resource has been created with a UUID locator that is not reachable.
When this occurs, the public IP transport address for the UUID locator will be resolved by receiving
a BINDING_PING from DP1.
[0x01017116,0xF14A169C,0xE7799A94:0x80000004{E=DR,T=Example Quote,C=Quote,D=0}|MODIFY
LINK 0x01016F1B,0x2294D448,0x8060E06B:0x80000003{C=Quote}]
NDDS_Transport_UDPv4_WAN_PublicAddressMappingInfo_log:updated
P=7411,u={B1,1D,4B,B5,A1,58,5E,E1,58},k=1,p=54.151.6.102:7536,f=PU,r=1

9. At this point, both Participants can communicate with each other. DP2's DataReader will start
receiving samples for Topic ‘T’ from DP1's DataWriter.

1107

Chapter 39 Tools Integration
RTI Tools such as RTI Admin Console can use Real-Time WAN Transport if they are configured
appropriately.

Admin Console ships with a builtin profile that enables use of the Real-Time WAN Transport:
AdminConsole::RealTimeWAN. Make sure you select that profile in the Admin Console Prefer-
ences and provide the right initial peers (see Chapter 34 Transport Initial Peers on page 1072) to
Admin Console to inspect Connext DDS applications running across the WAN. See Figure 39.1:
Real-Time WAN Transport and Admin Console on the next page.
<qos_library name="AdminConsole">

<qos_profile name="RealTimeWAN" base_name="AdminConsole::Default">
<participant_qos>

<transport_builtin>
<mask>MASK_DEFAULT|UDPv4_WAN</mask>

</transport_builtin>
</participant_qos>

</qos_profile>
</qos_library>

Important: The auto-join feature will not work when using Real-Time WAN Transport
because multicast is not available in WAN environments. You will have to join the WAN
domain(s) explicitly.

1108

Chapter 39 Tools Integration

1109

Figure 39.1: Real-Time WAN Transport and Admin Console

Chapter 40 Troubleshooting
40.1 Communication Stops Working after Application Transitions

to Different Network

Possible Root Cause:

If you are using Cloud Discovery Service, it is possible that before the network transition, all the
applications were behind cone NATs. When the transition occurs, the application that is changing
to a new network connects to a symmetric NAT.

This configuration is not currently supported. Symmetric NATs are only supported in scenarios
like the one described in Figure 31.1: Peer-to-Peer between a Participant behind Any Kind of
NAT and an External Participant on page 1052.

To validate if you are behind a symmetric NAT in the new network, you can run the application
natat as described in 30.1.2 Identifying the NAT Type on page 1047.

Solution:

When you do not know in advance whether the networks in which applications run are behind
cone NATs or symmetric NATs, you may want to do a relay deployment as indicated in 32.2
Relayed Edge-to-Edge Deployment Scenario on page 1063.

40.2 Communication not Established after Changing Cloud
Discovery Service <receiver_port>

For example, when changing the Cloud Discovery Service configuration from:
<dds>

<cloud_discovery_service name="CDS">
<transport>

<element>
<alias>builtin.udpv4_wan</alias>
<receive_port>2345</receive_port>
<property>

1110

40.3 Communication not Established even though Transport Settings are Set Correctly

1111

<element>
<name>dds.transport.UDPv4_WAN.builtin.public_address</name>
<value>50.10.23.45</value>

</element>
</property>

</element>
</transport>

</cloud_discovery_service>
</dds>

To:
<dds>

<cloud_discovery_service name="CDS">
<transport>

<element>
<alias>builtin.udpv4_wan</alias>
<receive_port>6001</receive_port>
<property>

<element>
<name>dds.transport.UDPv4_WAN.builtin.public_address</name>
<value>50.10.23.45</value>

</element>
</property>

</element>
</transport>

</cloud_discovery_service>
</dds>

Possible Root Cause:

If Cloud Discovery Service (CDS) is running behind a NAT-enabled router, it is possible that you have
not created a static NAT binding in the router for the new public address: 50.10.23.45:6001.

Solution:

Create a new static NAT binding to support the port change. The NAT binding must create this mapping:

<CDS private address X>:<port number Y> → <new public address Z>:<port number Y>

<CDS private address>:6001 → 50.10.23.45:6001

Note that the private host CDS port and public port must be the same (6001 is the port number for both in
the example above). To make them different, use the transport property dds.transport.UDPv4_
WAN.builtin.comm_ports. See 35.1 Setting Real-Time WAN Transport Properties on page 1074.

40.3 Communication not Established even though Transport Settings
are Set Correctly

Possible Root Cause:

40.4 Slow Discovery using Cloud Discovery Service

There may be an IP fragmentation problem. For WAN communications, it is not a good idea to rely on IP
fragmentation. IP fragmentation causes significant issues in UDP, where there is no support for an MTU
(maximum transmission unit) discovery protocol as there is in TCP. These are some of the problems asso-
ciated with IP fragmentation:

l To successfully reassemble a packet, all fragments must be delivered. No fragment can become cor-
rupt or get lost in-flight. If a fragment is lost, the whole packet will be lost.

l Before reassembly, a host must hold partial, fragment datagrams in memory. This opens an oppor-
tunity for memory exhaustion attacks.

l Subsequent fragments lack the higher-layer header. The TCP or UDP header is only present in the
first fragment, making it impossible for firewalls to filter fragment datagrams based on criteria like
source or destination ports.

When testing over some cellular networks, in some cases you may not be able to send samples larger than
the IP MTU, such as images, without losing a large percentage of the frames.

Solution:

Disable IP fragmentation by letting Connext DDS do fragmentation at the RTPS level. For details, see sec-
tion 35.3 Disabling IP Fragmentation for Real-Time WAN Transport on page 1090.

40.4 Slow Discovery using Cloud Discovery Service

Possible Root Cause:

If you are using Cloud Discovery Service, it is possible that the Participant Announcements sent by Cloud
Discovery Service to other DomainParticipants when discovering a new DomainParticipant are lost. This
may delay the discovery process.

Solution:

To accelerate the discovery process, decrease the refresh period from the default of 60 seconds to a smaller
value (e.g., 10 seconds). For example:
<dds>

<cloud_discovery_service name="CDS">
<transport>

<element>
<alias>builtin.udpv4_wan</alias>
<receive_port>2345</receive_port>
<property>

<element>
<name>dds.transport.UDPv4_WAN.builtin.public_address</name>
<value>60.10.23.45</value>

</element>
</property>

</element>

1112

40.4 Slow Discovery using Cloud Discovery Service

1113

</transport>
<forwarder>

<event>
<refresh_period>

<sec>10</sec>
<nanosec>0</nanosec>

</refresh_period>
</event>

</forwarder>
</cloud_discovery_service>

</dds>

Part 6: RTI Secure WAN Transport
Secure WAN Transport is an optional package that enables participant discovery and data
exchange in a secure manner over the public WAN. Secure WAN Transport enables Connext DDS
to address the challenges in NAT traversal and authentication of all participants. By implementing
UDP hole punching using the STUN protocol and providing security to channels by leveraging
DTLS (Datagram TLS), you can securely exchange information between different sites separated
by firewalls.

The material in this part of the manual is only relevant if you have installed Secure WAN
Transport. This feature is not installed as part of a Connext DDS package; it must be
downloaded and installed separately. It is only available on specific architectures. See the
RTI Secure WAN Transport Release Notes and RTI Secure WAN Transport Installation
Guide for details.

Secure WAN Transport is deprecated starting with release 6.1.1, and RTI no longer
provides it to new customers. Existing applications that use it should be updated to take
advantage of Real-Time WAN Transport as soon as feasible. All new applications should
use Real-Time WAN Transport. See Part 5: RTI Real-Time WAN Transport on
page 1040.

This section includes:

l Introduction to Secure WAN Transport (Chapter 41 on page 1115)

l Configuring RTI Secure WAN Transport (Chapter 42 on page 1127)

Chapter 41 Introduction to Secure WAN
Transport

Secure WAN Transport provides transport plugins that can be used by developers of Connext DDS
applications. These transport plugins allow Connext DDS applications running on private networks
to communicate securely over a Wide-Area Network (WAN), such the internet. There are two
primary components in the package which may be used independently or together: communication
over Wide-Area Networks that involve Network Address Translators (NATs), and secure com-
munication with support for peer authentication and encrypted data transport.

The Connext DDS core is transport-agnostic. Connext DDS offers three built-in transports:
UDP/IPv4, UDP/IPv6, and inter-process shared memory. The implementation of NAT traversal
and secure communication is done at the transport level so that the Connext DDS core is not
affected and does not need to be changed, although there is additional on-the-wire traffic.

The basic problem to overcome in a WAN environment is that messages sent from an application
on a private local-area network (LAN) appear to come from the LAN's router address, not from the
internal IP address of the host running the application. This is due to the existence of a Network
Address Translator (NAT) at the gateway. This does not cause problems for client/server systems
because only the server needs to be globally addressable; it is only a problem for systems with
peer-to-peer communication models, such as Connext DDS.Secure WAN Transport solves this
problem, allowing communication between peers that are in separate LAN networks, using a UDP
hole-punching mechanism based on the STUN protocol (IETF RFC 3489bis) for NAT traversal.
This requires the use of an additional rendezvous server application, the RTI WAN Server.

Once the transport has enabled traffic to cross the NAT gateway to the WAN, it is flowing on net-
work hardware that is shared (in some cases, over the public internet). In this context, it is import-
ant to consider the security of data transmission. There are three primary issues involved:

l Authenticating the communication peer (source or destination) as a trusted partner;

l Encrypting the data to hide it from other parties that may have access to the network;

1115

41.1 WAN Traversal via UDP Hole-Punching

1116

l Validating the received data to ensure that it was not modified in transmission.

Secure WAN Transport addresses these problems by wrapping all RTPS-encoded data using the DTLS
protocol (IETF RFC 4347), which is a variant of SSL/TLS that can be used over a datagram network-
layer transport such as UDP. The security features of the WAN Transport may also be used on an untrus-
ted local-area network with the Secure Transport.

In summary, the package includes two transports:

l The WAN Transport is for use on a WAN and includes security. It must be used with the WAN
Server, a rendezvous server that provides the ability to discover public addresses and to register and
look up peer addresses based on a unique WAN ID. The WAN Server is based on the STUN (Ses-
sion Traversal Utilities for NAT) protocol (https://tools.ietf.org/html/rfc5389), with some extensions.
Once information about public addresses for the application and its peers has been obtained and con-
nections have been initiated, the server is no longer required to maintain communication with a peer.
(Note: security is disabled by default.)

l The Secure Transport is an alternate transport that provides security on an untrusted LAN. Use of
the RTI WAN Server is not required.

Multicast communication is not supported by either of these transports.

This chapter provides a technical overview of:

l 41.1 WAN Traversal via UDP Hole-Punching below

l 41.2 WAN Locators on page 1120

l 41.3 Datagram Transport-Layer Security (DTLS) on page 1121

l 41.4 Certificate Support on page 1123

For information on how to use Secure WAN Transport with your Connext DDS application, see Con-
figuring RTI Secure WAN Transport (Chapter 42 on page 1127).

41.1 WAN Traversal via UDP Hole-Punching

In order to resolve the problem of communication across NAT boundaries, the WAN Transport imple-
ments a UDP hole-punching solution for NAT traversal [draft-ietf-behave-p2p-state]. This solution uses a
rendezvous server, which provides the ability to discover public addresses, and to register and lookup peer
addresses based on a unique WAN ID. This server is based on the STUN (Session Traversal Utilities for
NAT) protocol [draft-ietf-behave-rfc3489bis], with some extensions. This protocol is a part of the solution
used for standards-based voice over IP applications; similar technology has be used by systems such as
Skype and has proven to be highly reliable. A key advantage of STUN is that it is based on UDP and
therefore is able to preserve the real-time characteristics of the DDS Interoperability Wire Protocol.

https://tools.ietf.org/html/rfc5389

41.1.1 Protocol Details

Once information about public addresses for the application and its peers has been obtained, and con-
nections have been initiated, the server is no longer required to maintain communication with a peer.
However, if communication fails, possibly due to changes in dynamically-allocated addresses, the server
will be needed to reopen new public channels.

Figure 41.1: RTI WAN Transport Architecture below shows the RTI WAN transport architecture.
Figure 41.1: RTI WAN Transport Architecture

41.1.1 Protocol Details

The UDP hole-punching algorithm implemented by the WAN transport has two different phases: regis-
tration and connection. This algorithm only works with cone or asymmetric NATs where the same public
address/port is assigned to all the sessions with the same private address/port address.

l Registration Phase

The RTI WAN Server application runs on a machine that resides on the WAN network (i.e., not in
a private LAN). It has to be globally accessible to LAN applications. It is started by a script and acts
as a rendezvous point for LAN applications. During the registration phase, each transport locator is
registered with the RTI WAN Server using a STUN binding request message.

The RTI WAN Server associates RTPS locators with their corresponding public IPv4 transport
addresses (a combination of IP address and port) and stores that information in an internal table. Fig-
ure 41.2: Registration Phase on the next page illustrates the registration phase.

1117

41.1.1 Protocol Details

1118

Figure 41.2: Registration Phase

l Connection Phase

The connection phase starts when locator A wants to establish a connection with locator B. Locator
A obtains information about locator B via Connext DDS discovery traffic or the initial NDDS_
DISCOVERY_PEERS list. To establish a connection with locator B, locator A sends a STUN con-
nect request to the RTI WAN server. The server sends a STUN connect response to locator A,
including information about the public IP transport address (IP address and port) of locator B. In par-
allel, the RTI WAN server contacts locator B using another STUN connect request to let it know
that locator A wants to establish a connection with it.

When locator A receives the public IP address of locator B, it will try to contact B using two STUN
binding request messages. The first message is sent to the public address of B and the second mes-
sage is sent to the private address of B. The private address was obtained using the last 32 bits of the
locator address of B. The STUN binding request message directed to the public transport address of
B sent by locator A will open a hole in A's NAT to receive messages from B.

41.1.1 Protocol Details

When locator B receives the public address of locator A, it will try to contact A sending a STUN
binding request message to that public address. This message will open a hole in B's NAT to receive
messages from A. When locator A receives the first STUN binding response from locator B, it starts
sending RTPS traffic.

The connection phase includes two processes: the connect process (Figure 41.3: Connect Process
below) and the NAT hole punching process (Figure 41.4: NAT Hole Punching Process on the next
page).

Figure 41.3: Connect Process

1119

41.2 WAN Locators

1120

Figure 41.4: NAT Hole Punching Process

l STUN Liveliness

Finally, since bindings allocated by NAT expire unless refreshed, the clients (locators) must gen-
erate binding request messages for the server and other clients to refresh the bindings. The RTI
STUN protocol implementation uses the attribute LIVELINESS-PERIOD in the STUN binding
request to indicate the period in milliseconds at which a client will assert its liveliness. The WAN
Server will remove a locator from its mapping table when the liveliness contract is not met. Like-
wise, a transport instance will remove a STUN connection with a locator when this locator does not
assert its liveliness as indicated in the last binding request.

41.2 WAN Locators

The WAN transport does not use simple IP addresses to locate peers. A WAN transport locator consists of
a WAN ID, which is an arbitrary 12-byte value, and a bottom 4-byte value that specifies a fallback local
IPv4 address. Your peers list (NDDS_DISCOVERY_PEERS) must be configured to look for peers with
locators of the form:

41.3 Datagram Transport-Layer Security (DTLS)

l The address is a 128-bit address in IPv6 notation.

l The first part, "3@", specifies the maximum participant ID to be contacted at the given locator. See
15.2.1 Peer Descriptor Format on page 775.

l The "wan://" part specifies that the address is for the WAN transport.

l The next part, "::1", specifies the top 12 bytes of the address to be 11 zero bytes, followed by a byte
with value 1 (this corresponds to the peer's WAN ID). The WAN ID must be in hexadecimal
format. For example, if the WAN ID was decimal 23, the locator would be:
3@wan://::17:10.10.1.150 (not 3@wan://::23:10.10.1.150).

l The last part, "10.10.1.150" refers to the peers local IPv4 address, which will be used if the peers
are on the same local network.

A DomainParticipant using the WAN transport will have to initialize the DDS_DiscoveryQosPolicy’s ini-
tial_peers field with the WAN locator addresses corresponding to the peers to which it wants to connect
to. The value of initial_peers can be set using the environment variable NDDS_DISCOVERY_PEERS
or the NDDS_DISCOVERY_PEERS configuration file. (See 15.2 Configuring the Peers List Used in
Discovery on page 773.)

41.3 Datagram Transport-Layer Security (DTLS)

Data security is provided by wrapping all Connext DDS network traffic with the Datagram Transport
Layer Security (DTLS) protocol (IETF RFC 4347). DTLS is a relatively recent variant of the mature
SSL/TLS family of protocols which adds the capability to secure communication over a connectionless net-
work-layer transport such as UDP. UDP is the preferred network layer transport for the DDS wire pro-
tocol RTPS, as well as for NAT traversal. Like SSL/TLS, the DTLS protocol provides capabilities for
certificate-based authentication, data encryption, and message integrity. The protocol specifies a number of
standard cryptographic algorithms that must be available; the base set is listed in the TLS 1.1 specification
(IETF RFC 4346).

Secure protocol support is provided by the open source OpenSSL library, which has supported the DTLS
protocol since the release of OpenSSL 0.9.8. Note however that many critical issues in DTLS were
resolved by the OpenSSL 0.9.8f release. For more detailed information about available ciphers, certificate
support, etc. please refer to the OpenSSL documentation. The DTLS protocol securely authenticates with
each individual peer; as such, multicast communication is not supported by the Secure Transport. There is
also a FIPS security-certified version of OpenSSL (OpenSSL-FIPS 1.1.1), but this does not yet support
DTLS.

The Secure Transport protocol stack is similar to the Secure WAN transport stack, but without the STUN
layer and server. See Figure 41.5: DTLS Architecture on the next page.

1121

41.3.1 Security Model

1122

Figure 41.5: DTLS Architecture

41.3.1 Security Model

In order to communicate securely, an instance of the secure plugin requires: 1) a certificate authority
(shared with all peers), 2) an identifying certificate which has been signed by the authority, 3) the private
key associated with the public key contained in the certificate.

The Certificate Authority (CA) is specified by using a PEM format file containing its public key or by
using a directory of PEM files following standard OpenSSL naming conventions. If a single CA file is
used, it may contain multiple CA keys. In order to successfully communicate with a peer, the CA keys that
are supplied must include the CA that has signed that peer's identifying certificate.

The identifying certificate is specified by using a PEM format file containing the chain of CAs used to
authenticate the certificate. The identifying certificate must be signed by a CA. It will either be directly
signed by a root CA (one of the CAs supplied above), by an authority whose certificate has been signed
by the root CA, or by a longer chain of certificate authorities. The file must be sorted starting with the cer-
tificate to the highest level (root CA). If the certificate is directly signed by a root CA, then this file will
only contain the root CA certificate followed by the identity certificate.

Finally, a private key is required. In order to avoid impersonation of an identity, this should be kept
private. It can be stored in its own PEM file specified in one of the private key properties, or it can be
appended to the certificate chain file.

One complication in the use of DTLS for communication by Connext DDS is that even though DTLS is a
connectionless protocol, it still has client/server semantics. The RTI Secure Transportmaps a bidirectional

41.3.2 Liveliness Mechanism

communication channel between two peer applications into a pair of unidirectional encrypted channels.
Both peers are playing the part of a client (when sending data) and a server (when receiving).

41.3.2 Liveliness Mechanism

When a peer shuts down cleanly, the DTLS protocol ensures that resources are released. If a peer crashes
or otherwise stops responding, a liveliness mechanism in the DTLS transport cleans up resources. You can
configure the DTLS handshake retransmission interval and the connection liveliness interval.

41.4 Certificate Support

Cryptographic certificates are required to use the security features of the WAN transport. This section
describes a mechanism to use the OpenSSL command line tool to generate a simple private certificate
authority. For more information, see the manual page for the openssl tool (http://www.openssl.or-
g/docs/apps/openssl.html) or the book, "Network Security with OpenSSL" by Viega, Messier, & Chandra
(O'Reilly 2002), or other references on Public Key Infrastructure.

1. Initialize the Certificate Authority:
a. Create a copy of the openssl.cnf file and edit fields to specify the proper default names and

paths.

b. Create the required CA directory structure:

mkdir myCA
mkdir myCA/certs
mkdir myCA/private
mkdir myCA/newcerts
mkdir myCA/crl
touch myCA/index.txt

c. Create a self-signed certificate and CA private key:

openssl req -nodes -x509 -days 1095 -newkey rsa:2048 \
-keyout myCA/private/cakey.pem -out myCA/cacert.pem \
-config openssl.cnf

2. For each identifying certificate:

a. You may want to create a copy of your customized openssl.cnf file with default identifying
information to be used as a template for certificate request creation; the commands below refer
to this file as template.cnf.

b. Generate a certificate request and private key:

openssl req -nodes -new -newkey rsa:2048 -config template.cnf \
-keyout peer1key.pem -out peer1req.pem

c. Use the CA to sign the certificate request to generate certificate:

1123

http://www.openssl.org/docs/apps/openssl.html
http://www.openssl.org/docs/apps/openssl.html

41.5 License Issues

1124

openssl ca -create_serial -config openssl.cnf -days 365 \
-in peer1req.pem -out myCA/newcerts/peer1cert.pem

d. Optionally, append the private key to the peer certificate:

cat myCA/newcerts/peer1cert.pem peer1key.pem \
$>${private location}/ peer1.pem

41.5 License Issues

The OpenSSL toolkit stays under a dual license, i.e., both the conditions of the OpenSSL License and the
original SSLeay license apply to the toolkit. See below for the actual license texts. Actually both licenses
are BSD-style Open Source licenses. In case of any license issues related to OpenSSL please contact
openssl-core@openssl.org.
/* ==
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" *
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

41.5 License Issues

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given
* attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the routines from the
* library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof)
* from the apps directory (application code) you must include an
* acknowledgement:
* "This product includes software written by Tim Hudson
* (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

1125

41.5 License Issues

1126

* PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publicly available
* version or
* derivative of this code cannot be changed. i.e. this code cannot
* simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */

Chapter 42 Configuring RTI Secure
WAN Transport

The Secure WAN Transport package includes two transports:

l The WAN Transport is for use on a WAN and includes security.1 It must be used with the
WAN Server, a separate application that provides additional services needed for Connext
DDS applications to communicate with each other over a WAN.

l The Secure Transport is an alternate transport that provides security on an untrusted LAN.
Use of the RTI WAN Server is not required.

There are two ways in which these transports can be configured:

l By setting up predefined strings in the Property QoS Policy of the DomainParticipant, on
architectures that support dynamic libraries. This process is described in 42.2 Setting Up a
Transport with the Property QoS on the next page.

Dynamic libraries are supported on all architectures except INTEGRITY and certain
VxWorks architectures. For VxWorks, dynamic libraries are only supported for architectures
that are on Pentium®/Arm® CPUs AND use kernel mode.

l By instantiating a new transport (42.5 Explicitly Instantiating a WAN or Secure Transport
Plugin on page 1145) and then registering it with the DomainParticipant, see 16.7 Installing
Additional Builtin Transport Plugins with register_transport() on page 827 (not available in
the Java API).

Refer to the API Reference HTML documentation for details on these two approaches.

1Security is disabled by default.

1127

42.1 Example Applications

1128

42.1 Example Applications

A simple example is available to show how to configure the WAN transport. It includes example settings
to enable communication over WAN, and optional settings to enable security (along with example cer-
tificate files to use for secure communication). The example is located in <path to examples>a/connext_
dds/<language>/hello_world_wan.

As seen in the example, you can configure the properties of either transport by setting the appropriate
name/value pairs in the DomainParticipant’s PropertyQoS, as described in 42.2 Setting Up a Transport
with the Property QoS below. This will cause Connext DDS to dynamically load the WAN or Secure
Transport libraries at run time and then implicitly create and register the transport plugin.

Another way to use the WAN or Secure transports is to explicitly create the plugin and use register_trans-
port() to register the transport with Connext DDS (see 16.7 Installing Additional Builtin Transport Plugins
with register_transport() on page 827). This way is not shown in the example. See 42.5 Explicitly Instan-
tiating a WAN or Secure Transport Plugin on page 1145.

42.2 Setting Up a Transport with the Property QoS

The 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440 allows you to set up name/value pairs
of data and attach them to an entity, such as a DomainParticipant. This will cause Connext DDS to dynam-
ically load the WAN or Secure Transport libraries at run time and then implicitly create and register the
transport plugin.

Please refer to 16.6 Setting Builtin Transport Properties with the PropertyQosPolicy on page 807.

To assign properties, use the add_property() operation:
DDS_ReturnCode_t DDSPropertyQosPolicyHelper::add_property

(DDS_PropertyQosPolicy policy,
const char * name,
const char * value,
DDS_Boolean propagate)

For more information on add_property() and the other operations in the DDSPropertyQosPolicyHelper
class, please see Table 7.65 PropertyQoSPolicyHelper Operations, as well as the API Reference HTML
documentation.

The ‘name’ part of the name/value pairs is a predefined string, described in 42.3 WAN Transport Prop-
erties on page 1130 and 42.4 Secure Transport Properties on page 1138.

Here are the basic steps, taken from the example Hello World application (for details, please see the
example application.)

aSee Paths Mentioned in Documentation on page 1.

42.2 Setting Up a Transport with the Property QoS

1. Get the default DomainParticipant QoS from the DomainParticipantFactory.

DDSDomainParticipantFactory::get_instance()->
get_default_participant_qos(participant_qos);

2. Disable the builtin transports.

participant_qos.transport_builtin.mask =
DDS_TRANSPORTBUILTIN_MASK_NONE;

3. Set up the DomainParticipant’s Property QoS.
a. Load the plugin.

DDSPropertyQosPolicyHelper::add_property (
participant_qos.property,
"dds.transport.load_plugins",
"dds.transport.wan_plugin.wan",
DDS_BOOLEAN_FALSE);

b. Specify the transport plugin library.

DDSPropertyQosPolicyHelper::add_property (
participant_qos.property,

"dds.transport.wan_plugin.wan.library",
"nddstransportwan",
DDS_BOOLEAN_FALSE);

c. Specify the transport’s ‘create’ function.

DDSPropertyQosPolicyHelper::add_property (
participant_qos.property,
"dds.transport.wan_plugin.wan.create_function"
"NDDS_Transport_WAN_create",
DDS_BOOLEAN_FALSE);

d. Specify the WAN Server and instance ID.
DDSPropertyQosPolicyHelper::add_property (

participant_qos.property
"dds.transport.wan_plugin.wan.server",
"192.168.1.1",
DDS_BOOLEAN_FALSE);

DDSPropertyQosPolicyHelper::add_property (
participant_qos.property,
"dds.transport.wan_plugin.wan.transport_instance_id",
1,
DDS_BOOLEAN_FALSE);

e. Specify any other properties, as needed.

4. Create the DomainParticipant, using the modified QoS.

1129

42.3 WAN Transport Properties

1130

participant = DDSTheParticipantFactory->create_participant (
domainId,
participant_qos,
NULL /* listener */,
DDS_STATUS_MASK_NONE);

Property changes should be made before the transport is loaded: either before the
DomainParticipant is enabled, before the first DataWriter/DataReader is created, or before the
builtin topic reader is looked up, whichever one happens first.

42.3 WAN Transport Properties

Table 42.1 Properties for NDDS_Transport_WAN_Property_t lists the properties that you can set for the
WAN Transport.

Property Name

(prefix with
‘dds.transport.WAN.wan1.’)

1

Property Value Description

dds.transport.load_plugins
(note: this doesnot take a prefix)

Required

Comma-separated strings indicating the prefix names of all plugins that will be loaded byConnext DDS. You
will use this string as the prefix to the property names.

For example: “dds.transport.WAN.wan1". (This assumes you used ‘dds.transport.WAN.wan1’ as the alias to
load the plugin. If not, change the prefix to match the string used with dds.transport.load_plugins.)

This prefix must begin with 'dds.transport.'

Note: You can load up to 8 plugins.

library

Required

Must set to nddstransportwan.

This library and the dependent OpenSSL libraries need to be in your library search path (pointed to by the
environment variable LD_LIBRARY_PATHon Linux systems, Path on Windows systems, DYLD_LIBRARY_
PATHon macOS systems).

create_function
Required

Must be "NDDS_Transport_WAN_create".

Table 42.1 Properties for NDDS_Transport_WAN_Property_t

1 Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

42.3 WAN Transport Properties

Property Name

(prefix with
‘dds.transport.WAN.wan1.’)

1

Property Value Description

aliases

Used to register the transport plugin returned byNDDS_Transport_WAN_create() (as specified by
<WAN_prefix>.create_function) to the DomainParticipant. Aliases should be specified as a comma-sep-
arated string, with each comma delimiting an alias.

If it is not specified, the prefix—without the leading "dds.transport"—is used as the default alias for the plugin.
For example, if the <WAN_prefix> is "dds.transport.mytransport", the default alias for the plugin is
"mytransport".

verbosity

Specifies the verbosity of log messages from the transport.

Possible values:

l -1: silent

l 0 (default): errors only

l 1: errors and warnings

l 2: local status

l 5 or higher: all messages

Note: the logging verbosity is a global property shared across the multiple instances of the WANTransport
within an application. If you create a newWANTransport instance and you explicitly set this property,
the new value will be applied to all the other instances as well. If not explicitly set, the verbosity will be left un-
changed.

security_verbosity

Specifies the verbosity of security-related log messages from the transport. These are usually messages
generated by OpenSSL.

Possible values:

l -1: silent

l 0: errors only

l 1: errors and warnings

l 2: local status

l 5 or higher: all messages

Default: If not set, the value is inherited from the verbosity property.

Note: the security logging verbosity is a global property shared across the multiple instances of the WAN
Transport within an application. If you create a newWANTransport instance and you explicitly set either
this property or the verbosity one (see the default value of security_verbosity), the new security verb-
osity value will be applied to all the other instances as well. If none of the verbosity properties are explicitly
set, the security verbosity will be left unchanged.

Table 42.1 Properties for NDDS_Transport_WAN_Property_t

1 Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1131

42.3 WAN Transport Properties

1132

Property Name

(prefix with
‘dds.transport.WAN.wan1.’)

1

Property Value Description

parent.parent.properties_
bitmap

A bitmap that defines various properties of the transport to the Connext DDS core. Currently, the only prop-
erty supported is whether or not the transport plugin will always loan a bufferwhen Connext DDS tries to re-
ceive a message using the plugin. This is in support of a zero-copy interface.

parent.parent.gather_send_
buffer_count_max

Specifies the maximumnumber of buffers thatConnext DDS can pass to the send() function of the trans-
port plugin.

The transport plugin send() API supports a gather-send concept, where the send() call can take several dis-
contiguous buffers, assemble and send them in a single message. This enablesConnext DDS to send a
message fromparts obtained fromdifferent sources without first having to copy the parts into a single con-
tiguous buffer.

However, most transports that support a gather-send concept have an upper limit on the number of buffers
that can be gathered and sent. Setting this value will preventConnext DDS from trying to gather too many
buffers into a send call for the transport plugin.

Connext DDS requires all transport-plugin implementations to support a gather-send of least a minimum
number of buffers. This minimumnumber is defined as NDDS_TRANSPORT_-PROPERTY_GATHER_
SEND_BUFFER_COUNT_MIN.

parent.parent.message_size_max

The maximumsize of a message in bytes that can be sent or received by the transport plugin. Above this
size, DDS-level fragmentation will occur. See 23.3 Large Data Fragmentation on page 976.

This value must be set before the transport plugin is registered, so thatConnext DDS can properly use the
plugin.

Default for Integrity platforms: 9216

Default for non-Integrity platforms: 65507

parent.parent.allow_interfaces

A list of strings, each identifying a range of interface addresses.

Interfacesmust be specified as comma-separated strings, with each comma delimiting an interface.

If the list is non-empty, this "white" list is applied before the parent.parent.deny_interfaceson the next
page list.

It is up to the transport plugin to interpret the list of strings passed in. Usually this interpretation will be con-
sistent with NDDS_Transport_String_To_Address_Fcn_cEA().

This property is not interpreted by the Connext DDS core; it is provided merely as a convenient and stand-
ardized way to specify the interfaces for the benefit of the transport plugin developer and user.

You must manage the memory of the list. The memory may be freed after the DomainParticipant is enabled.

Table 42.1 Properties for NDDS_Transport_WAN_Property_t

1 Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

42.3 WAN Transport Properties

Property Name

(prefix with
‘dds.transport.WAN.wan1.’)

1

Property Value Description

parent.parent.deny_interfaces

A list of strings, each identifying a range of interface addresses. If the list is non-empty, deny the use of
these interfaces.

Interfacesmust be specified as comma-separated strings, with each comma delimiting an interface.

This "black" list is applied after the parent.parent.allow_interfaceson the previouspage list and filters out
the interfaces that should not be used.

It is up to the transport plugin to interpret the list of strings passed in. Usually this interpretation will be con-
sistent with NDDS_Transport_String_To_Address_Fcn_cEA().

This property is not interpreted by the Connext DDS core; it is provided merely as a convenient and stand-
ardized way to specify the interfaces for the benefit of the transport plugin developer and user.

You must manage the memory of the list. The memory may be freed after the DomainParticipant is enabled.

parent.send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most operating systems, setsockopt() will
be called to set the SENDBUF to the value of this parameter.

This value must be greater than or equal to
parent.parent.message_size_maxon the previouspage. The maximumvalue is operating system-de-
pendent.

If -1, setsockopt() (or equivalent) will not be called to size the send buffer of the socket. The transport will
use the OS default.

Default: 131072

parent.recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving. On most operating systems, setsockopt()
will be called to set the RECVBUF to the value of this parameter.

This value must be greater than or equal to parent.parent.message_size_maxon the previouspage. The
maximumvalue is operating system-dependent.

If -1, setsockopt() (or equivalent) will not be called to size the receive buffer of the socket. The transport will
use the OS default.

Default: 131072

parent.unicast_enabled
Allows the transport plugin to use unicast UDP for sending and receiving. By default, it will be turned on. Also
by default, it will use all the allowed network interfaces that it finds up and running when the plugin is in-
stanced.

parent.ignore_loopback_interface

Prevents the transport plugin fromusing the IP loopback interface. Three values are allowed:

l 0: Enable local traffic via this plugin. This plugin will only use and report the IP loopback interface
only if there are no other network interfaces (NICs) up on the system.

l 1: Disable local traffic via this plugin. Do not use the IP loopback interface even if no NICs are dis-
covered. This is useful when you want applications running on the same node to use a more effi-
cient plugin like Shared Memory instead of the IP loopback.

Table 42.1 Properties for NDDS_Transport_WAN_Property_t

1 Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1133

42.3 WAN Transport Properties

1134

Property Name

(prefix with
‘dds.transport.WAN.wan1.’)

1

Property Value Description

parent.ignore_nonrunning_
interfaces

Prevents the transport plugin fromusing a network interface that is not reported as RUNNING by the op-
erating system.

The transport checks the flags reported by the operating system for each network interface upon ini-
tialization. An interface which is not reported as UP will not be used. This property allows the same check to
be extended to the IFF_RUNNING flag implemented by some operating systems. The RUNNING flag is
defined to mean that "all resources are allocated", and may be off if there is no link detected, e.g., the net-
work cable is unplugged.

Two values are allowed:

l 0: Do not check the RUNNING flag when enumerating interfaces, just make sure the interface is UP.

l 1: Check the flag when enumerating interfaces, and ignore those that are not reported as
RUNNING. This can be used on some operating systems to cause the transport to ignore interfaces
that are enabled but not connected to the network.

By default this property is set to 1, so Connext DDSwill ignore non-running interfaces.

DEPRECATED

parent.no_zero_copy

Prevents the transport plugin fromdoing a zero copy.

By default, this plugin will use the zero copy on OSs that offer it. While this is good for performance, it may
sometime tax the OS resources in a manner that cannot be overcome by the application.

The best example is if the hardware/device driver lends the buffer to the application itself. If the application
does not return the loaned buffers soon enough, the node may error ormalfunction. In case you cannot re-
configure the H/W, device driver, or the OS to allow the zero copy feature to work for your application, you
may have no choice but to turn off zero copy use.

By default this is set to 0, so Connext DDSwill use the zero-copy API if offered by the OS.

parent.send_blocking

CHANGING THIS FROM THE DEFAULT CAN CAUSE SIGNIFICANT
PERFORMANCE PROBLEMS.

Controls the blocking behavior of send sockets.

Two values are defined (use the number values only):

l 1 (NDDS_TRANSPORT_UDP_BLOCKING_ALWAYS): Sockets are blocking (default socket
options forOperating System).

l 0 (NDDS_TRANSPORT_UDP_BLOCKING_NEVER): Sockets are modified to make themnon-
blocking. THIS IS NOTA SUPPORTEDCONFIGURATIONANDMAY CAUSE SIGNIFICANT
PERFORMANCE PROBLEMS.

Table 42.1 Properties for NDDS_Transport_WAN_Property_t

1 Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

42.3 WAN Transport Properties

Property Name

(prefix with
‘dds.transport.WAN.wan1.’)

1

Property Value Description

parent.transport_priority_mask

Mask for the transport priority field. This is used in conjunction with transport_priority_mapping_low/high to
define the mapping fromDDS transport priority to the IPv4 TOS field. Defines a contiguous region of bits in
the 32-bit transport priority value that is used to generate values for the IPv4 TOS field on an outgoing
socket.

For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the mapping. The value will be
scaled from the mask range (0x0000 - 0xff00 in this case) to the range specified by low and high.

If the mask is set to zero, then the transport will not set IPv4 TOS for send sockets.

parent.transport_priority_
mapping_low

Sets the low and high values of the output range to IPv4 TOS.

These values are used in conjunction with transport_priority_mask to define the mapping fromDDS trans-
port priority to the IPv4 TOS field. Defines the low and high values of the output range for scaling.

Note that IPv4 TOS is generally an 8-bit value.
parent.transport_priority_
mapping_high

enable_security Required if you want to use security.

recv_decode_buffer_size

Size of buffer for decoding packets fromwire. An extra buffer is required for storage of encrypted data. The
minimumvalue for this property is parent.parent.message_size_maxon page 1132.

Default: 65507

port_offset Port offset to allow coexistence with non-secure UDP transport.

dtls_handshake_resend_interval
DTLS handshake retransmission interval in milliseconds.

Default: 1000

dtls_connection_liveliness_
interval

Liveliness interval (multiple of resend interval)

The connection will be dropped if no message from the peer is received in this amount of time. This enables
cleaning up state for peers that are no longer responding. A secure keep-alive message will be sent every
half-interval if no other sends have occurred for a given DTLS connection during that time.

Default: 60

tls.verify.ca_file

A string that specifies the name of file containing Certificate Authority certificates. File should be in PEM
format. See the OpenSSL manual page for SSL_load_verify_locations formore information.

If you want to use security, tls.verify.ca_file above or tls.verify.ca_path on the next pagemust be specified;
both may be specified.

Table 42.1 Properties for NDDS_Transport_WAN_Property_t

1 Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1135

42.3 WAN Transport Properties

1136

Property Name

(prefix with
‘dds.transport.WAN.wan1.’)

1

Property Value Description

tls.verify.ca_path

A string that specifies paths to directories containing Certificate Authority certificates. Files should be in PEM
format, and follow the OpenSSL-required naming conventions. See the OpenSSL manual page for SSL_
CTX_load_verify_locations formore information.

The Certificate Authority subject name hash valuesmust be available in the directories. You may generate
themby running openssl rehash (available in OpenSSL 1.1.0 or above) in each directory.

If you want to use security, tls.verify.ca_file on the previouspage or tls.verify.ca_path abovemust be spe-
cified; both may be specified.

tls.verify.verify_depth Maximumcertificate chain length for verification.

tls.verify.verify_peer
If non-zero, use mutual authentication when performing TLS hand- shake (default). If zero, only the reader
side will present a certificate, which will be verified by the writer side.

tls.verify.callback

This can be set to one of three values:

l "default" selects NDDS_Transport_TLS_default_verify_callback()

l "verbose" selects NDDS_Transport_TLS_verbose_verify_callback()

l "none" requests no callback be registered

tls.cipher.cipher_list

List of available DTLS ciphers when communicating with Connext DDS 6.0.0 or below. See the OpenSSL
manual page for SSL_set_cipher_list formore information on the format of this string.

Default: NULL

tls.cipher.dh_param_files

List of available Diffie-Hellman (DH) key files. For example: "foo.h:2048,bar.h:1024" means:
dh_param_files[0].file = foo.pem,
dh_param_files[0].bits = 2048,
dh_param_files[1].file = bar.pem,
dh_param_files[1].bits = 1024

tls.cipher.engine_id String ID of OpenSSL cipher engine to request.

tls.identity.certificate_chain_file

Required if you want to use security.

A string that specifies the name of a file containing an identifying certificate chain (in PEM format). An identi-
fying certificate is required for secure communication. The file must be sorted starting with the certificate to
the highest level (root CA). If no private key is specified, this file will be used to load a non-RSA private key.

tls.identity.private_key_password A string that specifies the password for private key.

tls.identity.private_key_file
A string that specifies that name of a file containing private key (in PEM format). If no private key is specified
(all values are NULL), this value will default to the same file as the specified certificate chain file.

tls.identity.rsa_private_key_file A string that specifies that name of a file containing an RSA private key (in PEM format).

Table 42.1 Properties for NDDS_Transport_WAN_Property_t

1 Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

42.3 WAN Transport Properties

Property Name

(prefix with
‘dds.transport.WAN.wan1.’)

1

Property Value Description

transport_instance_id[0] to
[NDDS_TRANSPORT_
WAN_TRANSPORT_
INSTANCE_ID_LENGTHb]

Required

A set of comma-separated values to specify the elements of the array. This value must be unique for all trans-
port instances communicating with the same WANRendezvous Server.

If less than the full array is specified, it will be right-aligned. For example, the string "01,02" results in the array
being set to:
{0,0,0,0,0,0,0,0,0,0,1,2}

interface_address Locator, as a string

server
Required

Server locator, as a string.

server_port Server port number.

stun_retransmission_interval
STUN request messages requiring a response are resent with this interval. The interval is doubled after each
retransmission. Specified in msec.

stun_number_of_retransmissions Maximumnumber of times STUNmessages are resent unless a response is received.

stun_liveliness_period
Period at which messages are sent to peers to keep NAT holes open; and to the WANserver to refresh
bound ports. Specified in msec.

parent.join_multicast_group_
timeout

Windows only.

On Windows, a network interface may be detected before it is allowed to join a multicast group address. This
property adjusts howmuch time (in milliseconds) to wait for the ADD_MEMBERSHIP multicast operation to
succeed before withdrawing.

Default: 5000

Table 42.1 Properties for NDDS_Transport_WAN_Property_t

1 Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

bNDDS_TRANSPORT_WAN_TRANSPORT_INSTANCE_ID_LENGTH = 12

1137

42.4 Secure Transport Properties

1138

Property Name

(prefix with
‘dds.transport.WAN.wan1.’)

1

Property Value Description

property_validation_action

By default, property names given in the 7.5.19 PROPERTYQosPolicy (DDSExtension) on page 440 are
validated to avoid using incorrect or unknown names (for example, due to a typo). This property configures
the validation of the property names associated with the transport:

l VALIDATION_ACTION_EXCEPTION: validate the properties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the properties. Upon failure, log warnings and do not
fail.

If this property is not set, the property validation behaviorwill be the same as that of the DomainParticipant,
which by default is VALIDATION_ACTION_EXCEPTION. See 7.5.19.1 PropertyValidation on page 442
formore information.

thread_name_prefix

You can set this field with your own value, to help you identify the transport thread in a way that's meaningful
to you. Do not exceed 8 characters.

If you do not set this field,Connext DDS creates the following prefix:

'r' + 'Tr' + participant identifier + '\0'

Where 'r' indicates this is a thread fromRTI, 'Tr' indicates the thread is related to a transport, and participant
identifier contains 5 characters as follows:

l If participant_name is set: The participant identifier will be the first 3 characters and the last 2 char-
acters of the participant_name.

l If participant_name is not set, then the identifier is computed as domain_id (3 characters) fol-
lowed by participant_id (2 characters).

l If participant_name is not set and the participant_id is set to -1 (default value), then the par-
ticipant identifier is computed as the last 5 digits of the rtps_instance_id in the participant GUID.

See 21.9 Identifying ThreadsUsed byConnext DDSon page 922.

Table 42.1 Properties for NDDS_Transport_WAN_Property_t

42.4 Secure Transport Properties

Table 42.2 Properties for NDDS_Transport_DTLS_Property_t lists the properties that you can set for the
Secure Transport.

1 Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

42.4 Secure Transport Properties

Property Name

(prefix with ‘dds.trans-
port.DTLS.dtls1’)a

Property Value Description

dds.transport.load_plugins
(note: this does not take a prefix)

Required

Comma-separated strings indicating the prefix names of all plugins that will be loaded byConnext DDS. You will
use this string as the prefix to the property names.

For example: “dds.transport.DTLS.dtls1". (This assumes you used used ‘dds.transport.DTLS.dtls1’ as the alias
to load the plugin. If not, change the prefix to match the string used with dds.transport.load_plugins.)

This prefix must begin with 'dds.transport.'

Note: you can load up to 8 plugins.

library

Only required if linking dynamically

Must set to "libnddstransporttls.so" (for Linux systems) or "nddstransporttls.dll" (forWindows systems).

This library and the dependent OpenSSL libraries must be in your library search path (pointed to by the en-
vironment variable LD_LIBRARY_PATHon Linux systems, Path on Windows systems, DYLD_LIBRARY_PATH
on macOS systems).

create_function
Only required if linking dynamically

Must be "NDDS_Transport_DTLS_create"

create_function_ptr

Only required if linking statically

Defines the function pointer to the DTLS Transport Plugin creation function. Used for loading the DTLS Trans-
port plugin statically.

Must be set to the NDDS_Transport_DTLS_create function pointer.

aliases

Used to register the transport plugin returned by NDDS_Transport_DTLS_create() (as specified by <DTLS_pre-
fix>.create_function) to the DomainParticipant. Aliases should be specified as comma-separated strings, with
each comma delimiting an alias.

If it is not specified, the prefix—without the leading "dds.transport"—is used as the default alias for the plugin.
For example, if the <TRANSPORT_PREFIX> is "dds.transport.mytransport", the default alias for the plugin is
"mytransport".

network_address

The network address at which to register this transport plugin.

The least significant transport_in.property.address_bit_count will be truncated. The remaining bits are the net-
work address of the transport plugin.

This value overwrites the value returned by the output parameter in NDDS_Transport_create_plugin function
as specified in "<DTLS_prefix>.create_function".

Table 42.2 Properties for NDDS_Transport_DTLS_Property_t

a Assuming you used ‘dds.transport.DTLS.dtls1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1139

42.4 Secure Transport Properties

1140

Property Name

(prefix with ‘dds.trans-
port.DTLS.dtls1’)a

Property Value Description

verbosity

Specifies the verbosity of log messages from the transport.

Possible values:

l -1: silent

l 0: errors only (default)

l 1: errors and warnings

l 2: local status

l 5 or higher: all messages

Note: the logging verbosity is a global property shared across the multiple instances of the Secure Transport
within an application. If you create a newSecure Transport instance and you explicitly set this property, the
new value will be applied to all the other instances as well. If not explicitly set, the verbosity will be left un-
changed.

security_verbosity

Specifies the verbosity of security-related log messages from the transport. These are usually messages gen-
erated by OpenSSL.

Possible values:

l -1: silent

l 0: errors only

l 1: errors and warnings

l 2: local status

l 5 or higher: all messages

Default: If not set, the value is inherited from the verbosity property.

Note: the security logging verbosity is a global property shared across the multiple instances of the Secure
Transport within an application. If you create a newSecure Transport instance and you explicitly set either
this property or the verbosity one (see the default value of security_verbosity), the new security verbosity
value will be applied to all the other instances as well. If none of the verbosity properties are explicitly set, the se-
curity verbosity will be left unchanged.

parent.properties_bitmap
A bitmap that defines various properties of the transport to the Connext DDS core. Currently, the only property
supported is whether or not the transport plugin will always loan a bufferwhen Connext DDS tries to receive a
message using the plugin. This is in support of a zero-copy interface.

parent.gather_send_buffer_
count_max

Specifies the maximumnumber of buffers thatConnext DDS can pass to the transport plugin’s send() function.

Table 42.2 Properties for NDDS_Transport_DTLS_Property_t

a Assuming you used ‘dds.transport.DTLS.dtls1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

42.4 Secure Transport Properties

Property Name

(prefix with ‘dds.trans-
port.DTLS.dtls1’)a

Property Value Description

parent.message_size_max

The maximumsize of a message in bytes that can be sent or received by the transport plugin. Above this size,
DDS-level fragmentation will occur. See 23.3 Large Data Fragmentation on page 976.

Default and maximumvalue: 16384. If you attempt to exceed 16384, then the transport will log a warning mes-
sage and automatically adjustmessage_size_max to be 16384.

parent.allow_interfaces

A list of strings, each identifying a range of interface addresses.

Interfacesmust be specified as comma-separated strings, with each comma delimiting an interface.

If the list is non-empty, this "white" list is applied before the parent.deny_interfacesbelow list.

You must manage the memory of the list. The memory may be freed after the DomainParticipant is enabled.

parent.deny_interfaces

A list of strings, each identifying a range of interface addresses.

Interfaces should be specified as comma-separated strings, with each comma delimiting an interface.

This "black" list is applied after the parent.allow_interfacesabove list and filters out the interfaces that should
not be used.

You must manage the memory of the list. The memory may be freed after the DomainParticipant is enabled.

disable_interface_tracking

Disables detection of network interface changes.

By default, network interfaces changes are propagated in the formof locators to other applications. This is done
to support IP mobility scenarios. For example, you could start a application with Wi-Fi and move to a wired con-
nection. In order to continue communicating with other applications this interface change must be propagated.

In 5.0 and earlier versions of the product, IP mobility scenarios were not supported. Applications using 5.2 will re-
port errors if they detect locator changes in a DataWriter orDataReader.

You can disable the notification and propagation of interface changes by setting this property to 1. This way, an
interface change in a newer application will not trigger errors in an application running 5.2 GARor earlier. Of
course, this will prevent the newapplication frombeen able to detect network interface changes.

interface_poll_period

Specifies the period in milliseconds to query for changes in the state of all the interfaces.

When possible, the detection of an IP address changes is done asynchronously using the APIs offered by the
underlying OS. If there is no mechanism to do that, the detection will use a polling strategy where the polling
period can be configured by setting this property.

send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most operating systems, setsockopt() will be
called to set the SENDBUF to the value of this parameter.

This value must be greater than or equal to
parent.message_size_max. The maximumvalue is operating system-dependent.

If -1, setsockopt() (or equivalent) will not be called to size the send buffer of the socket. The transport will use
the OS default.

Default: 131072

Table 42.2 Properties for NDDS_Transport_DTLS_Property_t

a Assuming you used ‘dds.transport.DTLS.dtls1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1141

42.4 Secure Transport Properties

1142

Property Name

(prefix with ‘dds.trans-
port.DTLS.dtls1’)a

Property Value Description

recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving. On most operating systems, setsockopt() will
be called to set the RECVBUF to the value of this parameter.

This value must be greater than or equal to parent.message_size_max. The maximumvalue is operating sys-
tem-dependent.

If -1, setsockopt() (or equivalent) will not be called to size the receive buffer of the socket. The transport will use
the OS default.

Default: 131072

ignore_loopback_interface Prevents the Transport Plugin fromusing the IP loopback interface.

ignore_nonrunning_interfaces

Prevents the transport plugin fromusing a network interface that is not reported as RUNNING by the operating
system.

The transport checks the flags reported by the operating system for each network interface upon initialization.
An interface which is not reported as UP will not be used. This property allows the same check to be extended to
the IFF_RUNNING flag implemented by some operating systems. The RUNNING flag is defined to mean that "all
resources are allocated", and may be off if there is no link detected, e.g., the network cable is unplugged.

Two values are allowed:

l 0: Do not check the RUNNING flag when enumerating interfaces, just make sure the interface is UP.

l 1: Check the flag when enumerating interfaces, and ignore those that are not reported as RUNNING.
This can be used on some operating systems to cause the transport to ignore interfaces that are
enabled but not connected to the network.

transport_priority_mask Mask for use of transport priority field.

transport_priority_mapping_low
Lowand high values of output range to IPv4 TOS.

transport_priority_mapping_high

recv_decode_buffer_size

Size of buffer for decoding packets fromwire. An extra buffer is required for storage of encrypted data. The min-
imumvalue for this property is parent.message_size_maxon the previouspage.

Default: 65507

port_offset Port offset to allow coexistence with non-secure UDP transport.

dtls_handshake_resend_interval
DTLS handshake retransmission interval in milliseconds

Default: 1000

dtls_connection_liveliness_
interval

Liveliness interval (multiple of resend interval)

The connection will be dropped if no message from the peer is received in this amount of time. This enables
cleaning up state for peers that are no longer responding. A secure keep-alive message will be sent every half-
interval if no other sends have occurred for a given DTLS connection during that time.

Default: 60

Table 42.2 Properties for NDDS_Transport_DTLS_Property_t

a Assuming you used ‘dds.transport.DTLS.dtls1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

42.4 Secure Transport Properties

Property Name

(prefix with ‘dds.trans-
port.DTLS.dtls1’)a

Property Value Description

tls.verify.ca_file

A string that specifies the name of file containing Certificate Authority certificates. File should be in PEM format.
See the OpenSSL manual page for SSL_load_verify_locations formore information.

tls.verify.ca_file above or tls.verify.ca_path belowmust be specified; both may be specified.

tls.verify.ca_path

A string that specifies paths to directories containing Certificate Authority certificates. Files should be in PEM
format, and follow the OpenSSL-required naming conventions. See the OpenSSL manual page for SSL_CTX_
load_verify_locations formore information.

The Certificate Authority subject name hash valuesmust be available in the directories. You may generate them
by running openssl rehash (available in OpenSSL 1.1.0 or above) in each directory.

tls.verify.ca_file above or tls.verify.ca_path abovemust be specified; both may be specified.

tls.verify.verify_depth Maximumcertificate chain length for verification.

tls.verify.verify_peer
If non-zero, use mutual authentication when performing TLS hand- shake (default). If zero, only the reader side
will present a certificate, which will be verified by the writer side.

tls.verify.callback

This can be set to one of three values:

l "default" selects NDDS_Transport_TLS_default_verify_callback()

l "verbose" selects NDDS_Transport_TLS_verbose_verify_callback()

l "none" requests no callback be registered

tls.cipher.cipher_list

List of available DTLS ciphers when communicating with Connext DDS 6.0.0 or below. See the OpenSSL
manual page for SSL_set_cipher_list formore information on the format of this string.

Default: NULL

tls.cipher.dh_param_files

List of available Diffie-Hellman (DH) key files. For example: "foo.h:2048,bar.h:1024" means:

dh_param_files[0].file = foo.pem,

dh_param_files[0].bits = 2048,

dh_param_files[1].file = bar.pem,

dh_param_files[1].bits = 1024

tls.cipher.engine_id String ID of OpenSSL cipher engine to request.

tls.identity.certificate_chain_file

Required

A string that specifies the name of a file containing an identifying certificate chain (in PEM format). An identifying
certificate is required for secure communication. The file must be sorted starting with the certificate to the
highest level (root CA). If no private key is specified, this file will be used to load a non-RSA private key.

tls.identity.private_key_pass-
word

A string that specifies the password for private key.

Table 42.2 Properties for NDDS_Transport_DTLS_Property_t

a Assuming you used ‘dds.transport.DTLS.dtls1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1143

42.4 Secure Transport Properties

1144

Property Name

(prefix with ‘dds.trans-
port.DTLS.dtls1’)a

Property Value Description

tls.identity.private_key_file
A string that specifies that name of a file containing private key (in PEM format). If no private key is specified (all
values are NULL), this value will default to the same file as the specified certificate chain file.

tls.identity.rsa_private_key_file A string that specifies that name of a file containing an RSA private key (in PEM format).

join_multicast_group_timeout

Windows only.

On Windows, a network interface may be detected before it is allowed to join a multicast group address. This
property adjusts howmuch time (in milliseconds) to wait for the ADD_MEMBERSHIP multicast operation to suc-
ceed before withdrawing.

Default: 5000

property_validation_action

By default, property names given in the 7.5.19 PROPERTYQosPolicy (DDSExtension) on page 440 are val-
idated to avoid using incorrect or unknown names (for example, due to a typo). This property configures the val-
idation of the property names associated with the transport:

l VALIDATION_ACTION_EXCEPTION: validate the properties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the properties. Upon failure, log warnings and do not fail.

If this property is not set, the property validation behaviorwill be the same as that of the DomainParticipant,
which by default is VALIDATION_ACTION_EXCEPTION. See 7.5.19.1 PropertyValidation on page 442 for
more information.

thread_name_prefix

You can set this field with your own value, to help you identify the transport thread in a way that's meaningful to
you. Do not exceed 8 characters.

If you do not set this field,Connext DDS creates the following prefix:

'r' + 'Tr' + participant identifier + '\0'

Where 'r' indicates this is a thread fromRTI, 'Tr' indicates the thread is related to a transport, and participant iden-
tifier contains 5 characters as follows:

l If participant_name is set: The participant identifier will be the first 3 characters and the last 2 char-
acters of the participant_name.

l If participant_name is not set, then the identifier is computed as domain_id (3 characters) followed by
participant_id (2 characters).

l If participant_name is not set and the participant_id is set to -1 (default value), then the participant
identifier is computed as the last 5 digits of the rtps_instance_id in the participant GUID.

See 21.9 Identifying ThreadsUsed byConnext DDSon page 922.

Table 42.2 Properties for NDDS_Transport_DTLS_Property_t

a Assuming you used ‘dds.transport.DTLS.dtls1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

42.5 Explicitly Instantiating a WAN or Secure Transport Plugin

42.5 Explicitly Instantiating a WAN or Secure Transport Plugin

As described on Page 1127, there are two ways to instantiate a transport plugin. This section describes the
mechanism that includes calling NDDSTransportSupport::register_transport(). (The other way is to
use the Property QoS mechanism, described in 42.2 Setting Up a Transport with the Property QoS on
page 1128).

Notes:

l This way of instantiating a transport is not supported in the Java API. If you are using Java, use the
Property QoS mechanism, described in 42.2 Setting Up a Transport with the Property QoS on
page 1128.

l To use this mechanism, there are extra libraries that you must link into your program and an
additional header file that you must include. Please see the 42.5.1 Additional Header Files and
Include Directories below and 42.5.2 Additional Libraries on the next page for details.

To instantiate a WAN or Secure Transport prior to explicitly registering it with NDDSTrans-
portSupport::register_transport(), use one of the following functions:
NDDS_Transport_Plugin* NDDS_Transport_WAN_new (

const struct NDDS_Transport_WAN_Property_t * property_in)
NDDS_Transport_Plugin* NDDS_Transport_DTLS_new (

const struct NDDS_Transport_DTLS_Property_t * property_in)

See the API Reference HTML documentation for details on these functions.

42.5.1 Additional Header Files and Include Directories

l To use the Secure WAN Transport API, you must include an extra header file (in addition to those
in Table 10.1 Header Files to Include for Connext DDS (All Architectures)).

#include "ndds/ndds_transport_secure_wan.h"

Assuming that Secure WAN Transport is installed in the same directory as Connext DDS (see Table
10.2 Include Paths for Compilation (All Architectures)), no additional include paths need to be
added for the Secure WAN Transport API. If this is not the case, you will need to specify the appro-
priate include path.

l If you want to access OpenSSL data structures, add the OpenSSL include directory, <openssl
install dir>/<arch>/include, and include the OpenSSL headers before ndds_transport_secure_
wan.h:

#include <openssl/ssl.h>
#include <openssl/x509.h> (if accessing certificate functions)
etc.

1145

42.5.2 Additional Libraries

1146

On Windows systems, if you are loading statically: you should also include the OpenSSL file,
applink.c, in your application. It can be found in the OpenSSL include directory, or included as
<openssl/applink.c>.

42.5.2 Additional Libraries

To use the Secure WAN Transport API, you must link in additional libraries, which are listed in the RTI
Connext DDS Core Libraries Platform Notes (in the appropriate section for your architecture). Refer to
10.3.1 Required Libraries on page 688 for the differences between shared and static libraries.

42.5.3 Compiler Flags

No additional compiler flags are required.

Part 7: RTI TCP Transport

Part 7: RTI TCP Transport
RTI TCP Transport is only available on specific architectures. See the RTI Connext DDS Core Libraries
Platform Notes for details.

Out of the box, Connext DDS uses the UDPv4 and Shared Memory transport to communicate with other
DDS applications. This configuration is appropriate for systems running within a single LAN. However,
using UDPv4 introduces some problems when Connext DDS applications in different LANs need to com-
municate:

l UDPv4 traffic is usually filtered out by the LAN firewalls for security reasons.

l Forwarded ports are usually TCP ports.

l Each LAN may run in its own private IP address space and use NAT (Network Address Trans-
lation) to communicate with other networks.

TCP Transport enables participant discovery and data exchange using the TCP protocol (either on a local
LAN, or over the public WAN). TCP Transport allows Connext DDS to address the challenges of using
TCP as a low-level communication mechanism between peers and limits the number of ports exposed to
one. (When using the default UDP transport, a Connext DDS application uses multiple UDP ports for com-
munication, which may make it unsuitable for deployment across firewalled networks).

1147

Chapter 43 TCP Communication
Scenarios

TCP Transport can be used to address multiple communication scenarios—from simple com-
munication within a single LAN, to complex communication scenarios across LANs where NATs
and firewalls may be involved. This section describes these scenarios:

l 43.1 Communication Within a Single LAN below

l 43.2 Symmetric Communication Across NATs on the next page

l 43.3 Asymmetric Communication Across NATs on page 1150

43.1 Communication Within a Single LAN

TCP Transport can be used as an alternative to UDPv4 to communicate with Connext DDS applic-
ations running inside the same LAN. Figure 43.1: Communication within a Single LAN on the
next page shows how to configure the TCP transport in this scenario.

1148

43.2 Symmetric Communication Across NATs

1149

Figure 43.1: Communication within a Single LAN

l parent.classid on page 1165 and server_bind_port on page 1170 are transport properties configured
using the PropertyQosPolicy of the participant. (Note: When the TCP transport is instantiated, by
default it is configured to work in a LAN environment using symmetric communication and binding
to port 7400 for incoming connections.) For additional information about these properties, see Table
44.1 Properties for NDDS_Transport_TCPv4_Property_t.

l Initial Peers represents the peers to which the participant will be announced to. Usually, these peers
are configured using the DiscoveryQosPolicy of the participant or the environment variable NDDS_
DISCOVERY_PEERS. For information on the format of initial peers, see 44.1 Choosing a Trans-
port Mode on page 1153.

Unlike the UDPv4 transport, you must specify the initial peers, because multicast cannot be used
with TCP.

43.2 Symmetric Communication Across NATs

In NAT communication scenarios, each one of the LANs has a private IP address space. The com-
munication with other LANs is done through NAT routers that translate private IP addresses and ports into
public IP addresses and ports.

In symmetric communication scenarios, any Connext DDS application can initiate TCP connections with
other applications. Figure 43.2: Symmetric Communication Across NATs on the next page shows how to
configure the TCP transport in this scenario.

43.3 Asymmetric Communication Across NATs

Figure 43.2: Symmetric Communication Across NATs

Notice that initial peers refer to the public address of the remote LAN where the Connext DDS application
is deployed and not the private address of the node where the application is running. In addition, the trans-
port associated with a Connext DDS instance will have to be configured with its public address (public_
address on page 1169) so that this information can be propagated as part of the discovery process.

Because the public address and port of the Connext DDS instances must be known before the com-
munication is established, the NAT Routers will have to be configured statically to translate (forward) the
private server_bind_port on page 1170 into a public port. This process is known as static NAT or port for-
warding; it allows traffic originating in outer networks to reach designated peers in the LAN behind the
NAT router. You will need to refer to your router’s configuration manual to understand how to correctly
set up port forwarding.

43.3 Asymmetric Communication Across NATs

This scenario is similar to the previous one, except in this case the TCP connections can be initiated only
by the Connext DDS instance in LAN1. For security reasons, incoming connections to LAN1 are not
allowed. In this case, the peer in LAN1 is considered ‘unreachable.’ Unreachable peers can publish and
subscribe just like any other peer, but communication can occur only to a ‘reachable’ peer.

1150

43.3 Asymmetric Communication Across NATs

1151

Figure 43.3: Asymmetric Communication Across NATs below shows how to configure the TCP transport
in this scenario. Notice that the transport property server_bind_port is set to 0 to configure the node as
unreachable.
Figure 43.3: Asymmetric Communication Across NATs

In an asymmetric configuration, an unreachable peer (that is behind a firewall or NAT without port for-
warding) can still publish and subscribe like a reachable peer, but with some important limitations:

l An unreachable peer can only communicate with reachable peers: two unreachable peers cannot
establish a direct communication since they are both behind a firewall and/or NAT.

Note that since Connext DDS always relies on a direct connection between peers (even if there is a
third node that can be reachable by both unreachable peers), communication can never occur
between unreachable peers. For example, suppose Peers A and B are unreachable and Peer C is
reachable. Communication can take place between A and C, and between B and C, but not between
A and B.

l It can take longer to discover unreachable peers than reachable ones. This is because a reachable
peer has to wait for the unreachable peer to establish the communication first.

For example, suppose Peer A (unreachable) starts before Peer B (reachable). The discovery mech-
anism of A attempts to connect to the (not-yet existing) Peer B. Since it fails, it will retry after n
seconds. Right after that, B starts. If A would be reachable (and in B’s peer list), the discovery

43.3 Asymmetric Communication Across NATs

mechanism will immediately contact A. In this case, since A cannot be reached, B needs to wait
until the discovery process of A decides to retry.

This effect can be minimized by modifying the QoS that controls the discovery mechanism used by
A. In particular, you should set the DomainParticipant’s
DiscoveryConfig QoS policy’smin_initial_participant_announcement_period to a small value.

Note that the concept of symmetric/asymmetric configuration is a local concept that only describes the com-
munication mechanism between two peers. A reachable peer can be involved in symmetric communication
with another reachable peer, and at the same time have asymmetric communication with a unreachable
peer. When a peer attempts to communicate with a remote peer, it knows if the remote peer is reachable or
not by looking at the transport address provided.

1152

Chapter 44 Configuring the TCP Transport
TCP Transport is distributed as a both shared and static library in <NDDSHOME>/lib/<ar-
chitecture>. The library is called nddstransporttcp.

Mechanisms for Configuring the Transport:

l By explicitly instantiating a new transport (see 44.2 Explicitly Instantiating the
TCP Transport Plugin on the next page) and then registering it with the DomainParticipant
(see 16.7 Installing Additional Builtin Transport Plugins with register_transport() on
page 827). (Not available in the Java and .NET APIs.)

l Through the Property QoS policy of the DomainParticipant (on Linux and Windows sys-
tems only). This process is described in 44.3 Configuring the TCP Transport with the Prop-
erty QosPolicy on page 1156.

This section describes:

l 44.1 Choosing a Transport Mode below

l 44.2 Explicitly Instantiating the TCP Transport Plugin on the next page

l 44.3 Configuring the TCP Transport with the Property QosPolicy on page 1156

l 44.4 Setting the Initial Peers on page 1159

l 44.6 Support for External Hardware Load Balancers in TCP Transport Plugin on page 1161

l 44.7 TCP/TLS Transport Properties on page 1163

44.1 Choosing a Transport Mode

When you configure the TCP transport, you must choose one of the following types of com-
munication:

1153

44.2 Explicitly Instantiating the TCP Transport Plugin

1154

l TCP over LAN— Communication between the two peers is not encrypted (data is written directly
to a TCP socket). Each node can use all the possible interfaces available on that machine to receive
connections. The node can only receive connections from machines that are on a local LAN.

l TCP over WAN— Communication is not encrypted (data is written directly to a TCP socket). The
node can only receive connections from a specific port, which must be configured in the public
router of the local network (WAN mode).

l TLS over LAN— This is similar to the TCP over LAN, where the node can use all the available
network interfaces to TX/RX data (LAN nodes only), but in this mode, the data being written on the
physical socket is encrypted first (through the openssl library). Performance (throughput and
latency) may be less than TCP over LAN since the data needs to be encrypted before going on the
wire. Discovery time may be longer with this mode because when the first connection is established,
the two peers exchange handshake information to ensure line protection. For more general inform-
ation on TLS, see 41.3 Datagram Transport-Layer Security (DTLS) on page 1121.

l TLS over WAN— The data is encrypted just like TLS over LAN, but it can be sent and received
only from a specific port of the router.

Note: To use either TLS mode, you also need RTI TLS Support, which is available for purchase as a sep-
arate package. TLS Support uses TLS 1.3.

An instance of the transport can only communicate with other nodes that use the same transport mode.

You can specify the transport mode in either the NDDS_Transport_TCPv4_Property_t structure (see 44.7
TCP/TLS Transport Properties on page 1163) or in the parent.classid on page 1165 field of the Properties
QoS (see 44.3 Configuring the TCP Transport with the Property QosPolicy on page 1156). Your choice
of transport mode will also be reflected in the prefix you use for setting the initial peers (see 44.4 Setting
the Initial Peers on page 1159).

44.2 Explicitly Instantiating the TCP Transport Plugin

As described in Chapter 44 Configuring the TCP Transport on the previous page, there are two ways to
configure a transport plugin. This section describes the way that includes explicitly instantiating and regis-
tering a new transport. (The other way is to use the Property QoS mechanism, described in 44.3 Con-
figuring the TCP Transport with the Property QosPolicy on page 1156).

Notes:

This way of instantiating a transport is not supported in the Java and .NET APIs. If you are using
Java or .NET, use the Property QoS mechanism described in 44.3 Configuring the TCP Transport with
the Property QosPolicy on page 1156.

To use this mechanism, there are extra libraries that you must link into your program and an addi-
tional header file that you must include. Please see 44.2.1 Additional Header Files and Include Dir-
ectories on the next page and 44.2.2 Additional Libraries and Compiler Flags on the next page for details.

44.2.1 Additional Header Files and Include Directories

To instantiate a TCP transport:

Include the extra header file described in 44.2.1 Additional Header Files and Include Directories below.

Instantiate a new transport by calling NDDS_Transport_TCPv4_new():
NDDS_Transport_Plugin* NDDS_Transport_TCPv4_new (

const struct NDDS_Transport_TCPv4_Property_t * property_in)

Register the transport by calling NDDSTransportSupport::register_transport().

See the API Reference HTML documentation for details on these functions and the contents of the
NDDS_Transport_TCPv4_Property_t structure.

44.2.1 Additional Header Files and Include Directories

To use the TCP Transport API, you must include an extra header file (in addition to those in Table 10.1
Header Files to Include for Connext DDS (All Architectures)):
#include "ndds/transport_tcp/transport_tcp_tcpv4.h"

Since TCP Transport is in the same directory as Connext DDS (see Table 10.2 Include Paths for Com-
pilation (All Architectures)), no additional include paths need to be added for the TCP Transport API. If
this is not the case, you will need to specify the appropriate include path.

44.2.2 Additional Libraries and Compiler Flags

To use the TCP Transport, you must add the nddstransporttcp library to the link phase of your applic-
ation. There are four different kinds of libraries, depending on if you want a debug or release version, and
static or dynamic linking with Connext DDS.

Note:Make sure your chosen kinds of libraries (static, dynamic, release, or debug) are consistent with
the other Connext DDS libraries that your application links with. For example, if you are using RTI
static core libraries, also use the static TCP Transport libraries. See 10.3.2 Mixing Static and Dynamic
Libraries not Supported on page 688.

For Linux systems, the libraries are:

l libnddstransporttcp.a— Release version, dynamic libraries

l libnddstransporttcpd.a—Debug version, dynamic libraries

l libnddstransporttcpz.a— Release version, static libraries

l libnddstransporttcpzd.a—Debug version, static libraries

For Windows systems, the libraries are:

1155

44.3 Configuring the TCP Transport with the Property QosPolicy

1156

l NDDSTRANSPORTTCP.LIB— Release version, dynamic libraries

l NDDSTRANSPORTTCPD.LIB—Debug version, dynamic libraries

l NDDSTRANSPORTTCPZ.LIB— Release version, static libraries

l NDDSTRANSPORTTCPZD.LIB—Debug version, static libraries

Notes for using TLS:

To use either TLS mode (see 44.1 Choosing a Transport Mode on page 1153), you also need RTI TLS
Support, which is available for purchase as a separate package. The TLS library (libnddstls.so or
NDDSTLS.LIB, depending on your platform) must be in your library search path (pointed to by the envir-
onment variable LD_LIBRARY_PATH on Linux systems, Path on Windows systems, DYLD_
LIBRARY_PATH on macOS systems).

If you already have $NDDSHOME/lib/<architecture> in your library search path, no extra steps are
needed to use TLS once TLS Support is installed.

Even if you link everything statically, you must make sure that the location for $NDDSHOME/lib/<ar-
chitecture> (or wherever the TLS library is located) is in your search path. When the TCP Transport Plu-
gin is explicitly instantiated, the TLS library is loaded dynamically, even if you use static linking for
everything else. To load TLS libraries statically, please see 44.3 Configuring the TCP Transport with the
Property QosPolicy below.

Your search path must also include the location for the OpenSSL library, which is used by the TLS lib-
rary.

44.3 Configuring the TCP Transport with the Property QosPolicy

The 7.5.19 PROPERTY QosPolicy (DDS Extension) on page 440 allows you to set up name/value pairs
of data and attach them to an entity, such as a DomainParticipant.

Like all QoS policies, there are two ways to specify the Property QoS policy:

Programmatically, as described in this section and 4.1.7 Getting, Setting, and Comparing QosPolicies on
page 172. This includes using the add_property() operation to attach name/value pairs to the Property
QosPolicy and then configuring the DomainParticipant to use that QosPolicy (by calling set_qos() or spe-
cifying QoS values when the DomainParticipant is created).

With an XML QoS Profile, as described in Configuring QoS with XML (Chapter 19 on page 854). This
causes Connext DDS to dynamically load the TCP Transport library at runtime and then implicitly create
and register the transport plugin.

Note: Dynamically load the TCP Transport library only if your application also links dynamically with
the Connext DDS core libraries. See 10.3.2 Mixing Static and Dynamic Libraries not Supported on
page 688.

44.3 Configuring the TCP Transport with the Property QosPolicy

To add name/value pairs to the Property QoS policy, use the add_property() operation:
DDS_ReturnCode_t DDSPropertyQosPolicyHelper::add_property

(DDS_PropertyQosPolicy policy, const char * name,
const char * value, DDS_Boolean propagate)

For more information on add_property() and the other operations in the DDSPropertyQosPolicyHelper
class, see Table 7.65 PropertyQoSPolicyHelper Operations, as well as the API Reference HTML doc-
umentation.

The ‘name’ part of the name/value pairs is a predefined string. The property names for the TCP Transport
are described in Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t.

Here are the basic steps, taken from the example Hello World application (for details, please see the
example application.)

Get the default DomainParticipant QoS from the DomainParticipantFactory.
DDSDomainParticipantFactory::get_instance()->

get_default_participant_qos(participant_qos);

Disable the builtin transports.
participant_qos.transport_builtin.mask =

DDS_TRANSPORTBUILTIN_MASK_NONE;

Set up the DomainParticipant’s Property QoS.

Load the plugin.
DDSPropertyQosPolicyHelper::add_property (

participant_qos.property,
"dds.transport.load_plugins",
"dds.transport.TCPv4.tcp1",
DDS_BOOLEAN_FALSE);

Specify the transport plugin library.
DDSPropertyQosPolicyHelper::add_property (

participant_qos.property,
"dds.transport.TCPv4.tcp1.library",
"nddstransporttcp",
DDS_BOOLEAN_FALSE);

Specify the transport’s ‘create’ function.
DDSPropertyQosPolicyHelper::add_property (

participant_qos.property,
"dds.transport.TCPv4.tcp1.create_function",
"NDDS_Transport_TCPv4_create", DDS_BOOLEAN_FALSE);

Set the transport to work in a WAN configuration with a public address:
DDSPropertyQosPolicyHelper::add_property (

participant_qos.property,

1157

44.3.1 Configuring the TCP Transport to be Loaded Statically

1158

"dds.transport.TCPv4.tcp1.parent.classid",
”NDDS_TRANSPORT_CLASSID_TCPV4_WAN”, DDS_BOOLEAN_FALSE);

DDSPropertyQosPolicyHelper::add_property (
participant_qos.property,
"dds.transport.TCPv4.public_address",
"182.181.2.31",
DDS_BOOLEAN_FALSE);

Specify any other properties, as needed.

Create the DomainParticipant using the modified QoS.
participant =

DDSTheParticipantFactory->create_participant (
domainId,
participant_qos,
NULL /* listener */,
DDS_STATUS_MASK_NONE);

Property changes should be made before the transport is loaded—either before the
DomainParticipant is enabled, before the first DataWriter/DataReader is created, or before the
builtin topic reader is looked up, whichever one happens first.

44.3.1 Configuring the TCP Transport to be Loaded Statically

Similar to the previous example, here are the basic steps to load the TCP Transport plugin statically.

Note: Statically load the TCP Transport library only if your application also links statically with the
Connext DDS core libraries. See 10.3.2 Mixing Static and Dynamic Libraries not Supported on
page 688.

1. Get the default DomainParticipant QoS from the DomainParticipantFactory.

DDSDomainParticipantFactory::get_instance()->
get_default_participant_qos(participant_qos);

2. Disable the builtin transports.

participant_qos.transport_builtin.mask =
DDS_TRANSPORTBUILTIN_MASK_NONE;

3. Set up the DomainParticipant’s Property QoS.

a. Load the plugin.

DDSPropertyQosPolicyHelper::add_property
(participant_qos.property,
"dds.transport.load_plugins",
"dds.transport.TCPv4.tcp1",DDS_BOOLEAN_FALSE);

b. Specify the transport’s ‘create’ function pointer.

DDSPropertyQosPolicyHelper::add_pointer_property
(participant_qos.property,

44.3.2 Loading TLS Support Libraries Statically

"dds.transport.TCPv4.tcp1.create_function_ptr",
(void*)NDDS_Transport_TCPv4_create);

c. Set the transport to work in a WAN configuration with a public address:

DDSPropertyQosPolicyHelper::add_property
(participant_qos.property,
"dds.transport.TCPv4.tcp1.parent.classid",
”NDDS_TRANSPORT_CLASSID_TCPV4_WAN”,
DDS_BOOLEAN_FALSE);

DDSPropertyQosPolicyHelper::add_property
(participant_qos.property,
"dds.transport.TCPv4.tcp1.public_address",
"182.181.2.31",
DDS_BOOLEAN_FALSE);

d. Specify any other properties, as needed.

4. Create the DomainParticipant using the modified QoS.

participant = DDSTheParticipantFactory->create_participant
(domainId, participant_qos,
NULL /* listener */, DDS_STATUS_MASK_NONE);

44.3.2 Loading TLS Support Libraries Statically

The process to load TLS Support library statically is similar, but in this case both the tls_create_function_
ptr and tls_delete_function_ptr properties need to be set.
DDSPropertyQosPolicyHelper::add_pointer_property

(participant_qos.property,
"dds.transport.TCPv4.tcp1.tls_create_function_ptr",
(void*)RTITLS_ConnectionEndpointFactoryTLSv4_create);

DDSPropertyQosPolicyHelper::add_pointer_property
(participant_qos.property,
"dds.transport.TCPv4.tcp1.tls_delete_function_ptr",
(void*)RTITLS_ConnectionEndpointFactoryTLSv4_delete);

44.4 Setting the Initial Peers

Note: You must specify the initial peers (you cannot use the defaults because multicast cannot be used
with TCP).

For TCP Transport, the addresses of the initial peers (NDDS_DISCOVERY_PEERS) that will be con-
tacted during the discovery process have the following format:

l For WAN communication using TCP: tcpv4_wan://<IP address or hostname>:<port>

l For WAN communication using TLS: tlsv4_wan://<IP address or hostname>:<port>

1159

44.5 RTPS Locator Format

1160

l For LAN communication using TCP: tcpv4_lan://<IP address or hostname>:<port>

l For LAN communication using TLS: tlsv4_lan://<IP address or hostname>:<port>

For example (enter this on one line):
export NDDS_DISCOVERY_PEERS=
tcpv4_wan://10.10.1.165:7400,tcpv4_wan://10.10.1.111:7400,tcpv4_lan://192.168.1.1:7500

When the TCP transport is configured for LAN communication (with the parent.classid on page 1165
property), the IP address is the LAN address of the peer and the port is the server port used by the trans-
port (the server_bind_port on page 1170 property).

When the TCP transport is configured for WAN communication (with the parent.classid on page 1165
property), the IP address is the WAN or public address of the peer and the port is the public port that is
used to forward traffic to the server port in the TCP transport.

44.5 RTPS Locator Format

As described in Chapter 17 RTPS Locators and IP Mobility on page 833, an RTPS locator is an n-tuple
(transport, address, port) that describes how to reach a remote endpoint.

The RTI TCP Transport locator has the following format:

0 8 16 24 31

DDS_Long kind

DDS_UnsignedLong rtps_port

DDS_Octet address[16]

where kind can be one of the following values:
#define NDDS_TRANSPORT_CLASSID_TCPV4_LAN (8)
#define NDDS_TRANSPORT_CLASSID_TCPV4_WAN (9)
#define NDDS_TRANSPORT_CLASSID_TLSV4_LAN (10)
#define NDDS_TRANSPORT_CLASSID_TLSV4_WAN (11)

There are two subkinds of RTI TCP locator, which differ in the way the address field is mapped. You can
distinguish the two subkinds from each other by comparing bytes address[8] and address[9]:

l If address[8]==0xFF and address[9]==0xFF, the RTI TCP locator is an RTI TCP server locator,
and the format of the address[16] is as follows:

44.6 Support for External Hardware Load Balancers in TCP Transport Plugin

0 8 16 24 31

DDS_Octet network_address[8]

0xFF 0xFF DDS_UnsignedShort public_address_port

DDS_Octet ip_address[4]

l Otherwise, the RTI TCP locator is an RTI TCP client locator, and the format of the address[16] is as
follows:

0 8 16 24 31

DDS_Octet client_uuid[16]

44.6 Support for External Hardware Load Balancers in TCP Transport
Plugin

For two Connext DDS applications to communicate, the TCP Transport Plugin needs to establish 4-6 con-
nections between the two communicating applications. The plugin uses these connections to exchange
DDS data (discovery or user data) and TCP Transport Plugin control messages.

With the default configuration, the TCP Transport Plugin does not support external load balancers. This is
because external load balancers do not forward the traffic to a unique TCP Transport Plugin server, but
they divide the connections among multiple servers. Because of this behavior, when an application run-
ning a TCP Transport Plugin client tries to establish all the connections to an application running a TCP
Transport Plugin server, the server may not receive all the required connections.

In order to support external load balancers, the TCP Transport Plugin provides a session-ID negotiation
feature. When session-ID negotiation is enabled (by setting the negotiate_session_id property to true), the
TCP Transport Plugin will perform the negotiation depicted in Figure 44.1: Session-ID Negotiation on the
next page.

1161

44.6 Support for External Hardware Load Balancers in TCP Transport Plugin

1162

Figure 44.1: Session-ID Negotiation

During the session-ID negotiation, the TCP Transport Plugin exchanges three types of messages:

Session-ID Request: This message is sent from the client to the server. The server must respond with a
session-ID response.

Session-ID Response: This message is sent from the server to the client as a response to a session-ID
request. The client will store the session ID contained in this message.

Session-ID Indication: This message is sent from the client to the server; it does not require a response
from the server.

The negotiation consists of the following steps:

1. The TCP client sends a session-ID request with the session ID set to zero.

2. The TCP server sends back a session-ID response with the session ID set to zero.

3. The external load balancer modifies the session-ID response, setting the session ID with a value that
is meaningful to the load balancer and identifies the session.

4. The TCP client receives the session-ID response and stores the received session ID.

5. For each new connection, the TCP client sends a session-ID indication containing the stored session
ID. This will allow the load balancer to redirect to the same server all the connections with the same
session ID.

44.6.1 Session-ID Messages

44.6.1 Session-ID Messages

TCP Payload for Session-ID Message below depicts the TCP payload of a session-ID message. The pay-
load consists of 48 bytes. In particular, your load balancer needs to read/modify the following two fields:

CTRLTYPE: This field allows a load balancer to identify session-ID messages. Its value (two bytes) var-
ies according to the session-ID message type: 0x0c05 for a request, 0x0d05 for a response, or 0x0c15 for
an indication.

SESSION-ID: This field consists of 16 bytes that the load balancer can freely modify according to its
requirements.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

RTI reserved 0xDD 0x54 0xDD 0x55 CTRLTYPE RTI reserved

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RTI reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

SESSION-ID

TCP Payload for Session-ID Message

To ensure all the TCP connections within the same session are directed to the same server, you must con-
figure your load balancer to perform the two following actions:

Modify the SESSION-ID field in the session-id response with a value that identifies the session within the
load balancer.

Make the load-balancing decision according to the value of the SESSION-ID field in the session-ID indic-
ation.

44.7 TCP/TLS Transport Properties

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t describes the TCP and TLS transport
properties.

Note: To use TLS, you also need RTI TLS Support, which is a separate component.

1163

44.7 TCP/TLS Transport Properties

1164

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

dds.transport.load_plugins

(Note: this does not take a prefix)

Required

Comma-separated strings indicating the prefix names of all plugins that will be loaded
byConnext DDS. For example: “dds.transport.TCPv4.tcp1". You will use this string
as the prefix to the property names.

Note: you can load up to 8 plugins.

library

Only required if linking dynamically

If used, must be "nddstransporttcp".

This library must be in your library search path (pointed to by the environment variable
LD_LIBRARY_PATHon Linux systems, Path on Windows systems, DYLD_
LIBRARY_PATHon macOS systems).

create_function
Only required if linking dynamically

If used, must be “NDDS_Transport_TCPv4_create”.

create_function_ptr

Only required if linking statically

Defines the function pointer to the TCP Transport Plugin creation function. Used for
loading TCP Transport Plugin statically.

Must be set to the NDDS_Transport_TCPv4_create function pointer.

tls_create_function_ptr

Defines the function pointer to the TLS Support creation function. Used for loading
TLS Support libraries statically.

Must be set to the RTITLS_ConnectionEndpointFactoryTLSv4_create function
pointer.

Note: In order to have effect, the tls_delete_function_ptr property must also be set.

tls_delete_function_ptr

Defines the function pointer to the TLS Support deletion function. Used for loading
TLS Support libraries statically.

Must be set to the RTITLS_ConnectionEndpointFactoryTLSv4_delete function
pointer.

Note: In order to have effect, the tls_create_function_ptr property must also be set.

aliases

Used to register the transport plugin returned byNDDS_Transport_TCPv4_create
() (as specified by <TCP_prefix>.create_function) to the DomainParticipant. Ali-
ases should be specified as a comma-separated string, with each comma delimiting
an alias.

If it is not specified, the prefix—without the leading "dds.transport"—is used as the de-
fault alias for the plugin. For example, if the <TRANSPORT_PREFIX> is "dds.trans-
port.mytransport", the default alias for the plugin is "mytransport".

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7 TCP/TLS Transport Properties

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

parent.classid

Must be set to one of the following values:

l NDDS_TRANSPORT_CLASSID_TCPV4_LAN
for TCP communication within a LAN

l NDDS_TRANSPORT_CLASSID_TLSV4_LAN
for TLS communication within a LAN

l NDDS_TRANSPORT_CLASSID_TCPV4_WAN
for TCP communication across LANs and firewalls

l NDDS_TRANSPORT_CLASSID_TLSV4_WAN
for TLS communication across LANand firewalls

Default:NDDS_TRANSPORT_CLASSID_TCPV4_LAN

Note: To use either TLS mode, you also need RTI TLSSupportwhich is available
for purchase as a separate package.

parent.gather_send_
buffer_count_max

Specifies the maximumnumber of buffers thatConnext DDS can pass to the send()
function of the transport plugin.

The transport plugin send() API supports a gather-send concept, where the send()
call can take several discontiguous buffers, assemble and send them in a single mes-
sage. This enablesConnext DDS to send a message fromparts obtained fromdif-
ferent sources without first having to copy the parts into a single contiguous buffer.

However, most transports that support a gather-send concept have an upper limit on
the number of buffers that can be gathered and sent. Setting this value will prevent
Connext DDS from trying to gather too many buffers into a send call for the transport
plugin.

Connext DDS requires all transport-plugin implementations to support a gather-send
of least a minimumnumber of buffers. This minimumnumber is defined asNDDS_
TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.

Default: 128

parent.message_size_max

The maximumsize of a message in bytes that can be sent or received by the transport
plugin. Above this size, DDS-level fragmentation will occur. See 23.3 Large Data
Fragmentation on page 976.

Default: 65536

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1165

44.7 TCP/TLS Transport Properties

1166

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name
that can be used by the transport.

Interfacesmust be specified as comma-separated strings, with each comma de-
limiting an interface.

For example: 10.10.*, 10.15.*

If the list is non-empty, this "white" list is applied before parent.deny_interfaces_list
below.

Default: All available interfaces are used.

parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses or an interface name
that will not be used by the transport.

If the list is non-empty, deny the use of these interfaces.

Interfacesmust be specified as comma-separated strings, with each comma de-
limiting an interface.

For example: 10.10.*

This "black" list is applied after parent.allow_interfaces_list above and filters out the
interfaces that should not be used.

Default: No interfaces are denied

send_socket_buffer_size

Size, in bytes, of the send buffer of a socket used for sending. On most operating sys-
tems, setsockopt() will be called to set the SENDBUF to the value of this parameter.

This value must be greater than or equal to parent.message_size_maxon the pre-
viouspage, or -1. The maximumvalue is operating system-dependent.

When set to -1, setsockopt() (or equivalent) will not be called to size the send buffer
of the socket. The transport will use the OS default.

Default: 131072

recv_socket_buffer_size

Size, in bytes, of the receive buffer of a socket used for receiving. On most operating
systems, setsockopt() will be called to set the RECVBUF to the value of this para-
meter.

This value must be greater than or equal to parent.message_size_maxon the pre-
viouspage, or -1. The maximumvalue is operating-systemdependent.

When set to -1, setsockopt() (or equivalent) will not be called to size the receive buf-
fer of the socket. The transport will use the OS default.

Default: 131072

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7 TCP/TLS Transport Properties

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

ignore_loopback_interface

Prevents the transport plugin fromusing the IP loopback interface.

This property is ignored when parent.classid on page 1165 is NDDS_TRANSPORT_
CLASSID_TCPV4_WANorNDDS_TRANSPORT_CLASSID_TLSV4_WAN.

Two values are allowed:

l 0: Enable local traffic via this plugin. The plugin will only use and report the IP
loopback interface only if there are no other network interfaces (NICs) up on
the system.

l 1: Disable local traffic via this plugin. This means “do not use the IP loopback
interface, even if no NICs are discovered.” This setting is useful when you
want applications running on the same node to use a more efficient plugin
like shared memory instead of the IP loopback.

Default: 1

ignore_nonrunning_interfaces

It prevents the transport plugin fromusing a network interface that is not reported as
RUNNING by the operating system.

The transport checks the flags reported by the operating system for each network in-
terface upon initialization. An interface which is not reported as UP will not be used.
This property allows the same check to be extended to the IFF_RUNNING flag im-
plemented by some operating systems. The RUNNING flag is defined to mean that
"all resources are allocated" and may be off if no link is detected (e.g., the network
cable is unplugged).

Two values are allowed:

l 0: Do not check the RUNNING flag when enumerating interfaces, just make
sure the interface is UP.

l 1: Check the flag when enumerating interfaces, and ignore those that are
not reported as RUNNING. This can be used on some operating systems to
cause the transport to ignore interfaces that are enabled but not connected
to the network.

Default: 1

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1167

44.7 TCP/TLS Transport Properties

1168

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

transport_priority_mask

Mask for the transport priority field. This is used in conjunction with transport_pri-
ority_mapping_low below/ transport_priority_mapping_high below to define the
mapping fromDDS transport priority to the IPv4 TOS field. Defines a contiguous re-
gion of bits in the 32-bit transport priority value that is used to generate values for the
IPv4 TOS field on an outgoing socket.

For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the map-
ping. The value will be scaled from the mask range (0x0000 -0xff00 in this case) to the
range specified by low and high.

If the mask is set to zero, then the transport will not set IPv4 TOS for send sockets.

Default: 0

transport_priority_mapping_low

Sets the low and high values of the output range to IPv4 TOS.

These values are used in conjunction with transport_priority_maskabove to define
the mapping fromDDS transport priority to the IPv4 TOS field. Defines the low and
high values of the output range for scaling.

Note that IPv4 TOS is generally an 8-bit value.

Default transport_priority_mapping_low: 0

Default transport_priority_mapping_high: 0xFF

transport_priority_mapping_high

interface_poll_period

Specifies the period in milliseconds to query for changes in the state of all the in-
terfaces.

See interface_poll_period in 16.6 Setting Builtin Transport Propertieswith the Prop-
ertyQosPolicy on page 807

server_socket_backlog

The backlog parameter determines what is the maximum length of the queue of
pending connections.

Default: 5

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7 TCP/TLS Transport Properties

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

public_address

Required for WAN communication (see note below)

Public IP address and port (WANaddress and port) (separated with ‘:’) associated
with the transport instantiation.

For example: 10.10.9.10:4567

This field is used only when parent.classid on page 1165 is NDDS_TRANSPORT_
CLASSID_TCPV4_WANorNDDS_TRANSPORT_CLASSID_TLSV4_WAN.

The public address and port are necessary to support communication overWAN that
involves Network Address Translators (NATs). Typically, the address is the public ad-
dress of the IP router that provides access to the WAN. The port is the IP router port
that is used to reach the private server_bind_port on the next page inside the LAN
from the outside. This value is expressed as a string in the form: ip[:port], where ip rep-
resents the IPv4 address and port is the external port number of the router.

Host names are not allowed in the public_address because theymay resolve to an
internet address that is not what you want (i.e., ‘localhost’ maymap to your local IP or
to 127.0.0.1).

Note: If you are using an asymmetric configuration, public_address does not have
to be set for the non-public peer.

bind_interface_address

The TCP transport can be configured to bind all sockets to a specified interface.

If NULL, the sockets will be bound to the special IP address INADDR_ANY. This ad-
dress allows the sockets to receive packets destined to any of the interfaces.

This field should be set in multi-homed systems communicating across NAT routers.

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1169

44.7 TCP/TLS Transport Properties

1170

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

server_bind_port

Private IP port (inside the LAN) used by the transport to accept TCP connections.

If this property is set to zero (which is only a valid configuration when parent.classid is
NDDS_TRANSPORT_CLASSID_TCPV4_WANorNDDS_TRANSPORT_CLASSID_
TLSV4_WAN), the transport will operate in "asymmetric mode" and it will disable the in-
ternal server socket, making it impossible for external peers to connect to this node. In
this case, the node is considered unreachable and will communicate only using the
asymmetric mode with other (reachable) peers. Formore information about the avail-
able modes of operation for the transport, please refer to Chapter 43 TCPCom-
munication Scenarios on page 1148.

ForWANcommunication, if server_bind_port is set to a value other than zero, this
port must be forwarded to a public port in the NAT-enabled router that connects to the
outer network.

The server_bind_port cannot be shared among multiple participants on a common
host. On most operating systems, attempting to reuse the same server_bind_port
formultiple participants on a common host will result in a "port already in use" error.
However, Windows systems will not recognize if the server_bind_port is already in
use; therefore care must be taken to properly configure Windows systems.

Default: 7400

read_buffer_allocation

Allocation settings applied to read buffers.

These settings configure the initial number of buffers, the maximumnumber of buffers
and the buffers to be allocated when more buffers are needed.

Default:

l read_buffer_allocation.initial_count = 2

l read_buffer_allocation.max_count = -1 (unlimited)

l read_buffer_allocation.incremental_count = -1 (number of buffers will
keep doubling on each allocation until it reachesmax_count)

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7 TCP/TLS Transport Properties

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

write_buffer_allocation

Allocation settings applied to buffers used for asynchronous (non-blocking) send. To
enable asynchronous send, set the property force_asynchronous_send to 1.

These settings configure the initial number of buffers, the maximumnumber of buf-
fers, and the buffers to be allocated when more buffers are needed.

Default:

l write_buffer_allocation.initial_count = 4

l write_buffer_allocation.max_count = 32

l write_buffer_allocation.incremental_count = 2

The pool of buffers can be configured to be shared across all the TCP connections
created by the TCP Transport or to be exclusive for a connection by setting the prop-
erty shared_write_buffer_allocation to 1. The default value is 0.

Note that for the write buffer pool, themax_count is not set to unlimited. This is to
avoid having a fast writer quickly exhaust all the available systemmemory, in case of a
temporary network slowdown. When this write buffer pool reaches the maximum, a
newmessage will replace the oldest message that is not currently in the process of be-
ing sent. This guarantees that newmessages are prioritized, while at the same time
not running into a situation in which messages are not received. Messages that are re-
placed and not sent may be resent later depending on the application's QoS (if the
transport is used for reliable communication, the data will still be sent eventually).

shared_write_buffer_allocation

This property determines whether the pool of buffers created with asynchronous
(non-blocking) send is shared or exclusive per TCP connection. Sharing this buffer
across connections may lead to less memory consumption. However, high-through-
put connections may starve low-throughput connections. This is why the default value
is 0. The size of the buffer pool can be configured using the propertywrite_buffer_al-
location.

Default: 0

control_buffer_allocation

Allocation settings applied to buffers used to serialize and send controlmessages.

These settings configure the initial number of buffers, the maximumnumber of buffers
and the buffers to be allocated when more buffers are needed.

Default:

l control_buffer_allocation.initial_count = 2

l control_buffer_allocation.max_count = -1 (unlimited)

l control_buffer_allocation.incremental_count = -1 (number of buffers will
keep doubling on each allocation until it reachesmax_count)

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1171

44.7 TCP/TLS Transport Properties

1172

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

control_message_allocation

Allocation settings applied to controlmessages.

These settings configure the initial number of messages, the maximumnumber of
messages and the messages to be allocated when more messages are needed.

Default:

l control_message_allocation.initial_count = 2

l control_message_allocation.max_count = -1 (unlimited)

l control_message_allocation.incremental_count = -1 (number of mes-
sages will keep doubling on each allocation until it reachesmax_count)

control_attribute_allocation

Allocation settings applied to controlmessages attributes.

These settings configure the initial number of attributes, the maximumnumber of at-
tributes and the attributes to be allocated when more attributes are needed.

Default:

l control_attribute_allocation.initial_count = 2

l control_attribute_allocation.max_count = -1 (unlimited)

l control_attribute_allocation.incremental_count = -1 (number of attributes
will keep doubling on each allocation until it reachesmax_count)

force_asynchronous_send

Forces asynchronous send. When this parameter is set to 0, the TCP Transport will at-
tempt to send data as soon as the internal send() function is called. When it is set to
1, the transport will make a copy of the data to send in an internal send buffer and en-
queue it. Data will be sent as soon as the low-level socket buffer has space.

Setting this option to 0 (default) should provide better latency. However, in high-
throughput scenarios, a 0 setting may cause the low-level send() function to block un-
til the data is physically delivered to the lower socket buffer. For an application writing
data at a very fast rate, the 0 setting may cause the caller thread to block if the send
socket buffer is full. This could produce lower throughput in those conditions (the
caller thread could prepare the next packet while waiting for the send socket buffer to
become available).

The size of the buffer pool created by setting this option to 1 can be configured using
the propertywrite_buffer_allocation. In addition, the TCP Transport can be used to
create one buffer pool per connection or a single buffer pool shared across all TCP
connections by using the property shared_write_buffer_allocation.

Default: 0

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7 TCP/TLS Transport Properties

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

max_packet_size

The maximumsize of a TCP segment.

This parameter is only supported on Linux architectures.

By default, the maximumsize of a TCP segment is based on the network MTU for des-
tinations on a local network, or on a default 576 for destinations on non-local net-
works. This behavior can be changed by setting this parameter to a value between 1
and 65535.

Default: -1 (default behavior)

enable_keep_alive

Configures the sending of KEEP_ALIVE messages in TCP.

Setting this value to 1, causes a KEEP_ALIVE packet to be sent to the remote peer if
a long time passes with no other data sent or received.

This feature is implemented only on architectures that provide a low-level im-
plementation of the TCP keep-alive feature.

On Windows systems, the TCP keep-alive feature can be globally enabled through
the system’s registry: \HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Tcpip\Parameters.

Refer to MSDNdocumentation formore details.

Default: 0

keep_alive_time

Specifies the interval of inactivity in seconds that causes TCP to generate a KEEP_
ALIVE message.

This parameter is only supported on Linux and Mac architectures.

Default: -1 (OS default value)

keep_alive_interval

Specifies the interval in seconds between KEEP_ALIVE retries.

This parameter is only supported on Linux architectures.

Default: -1 (OS default value)

keep_alive_retry_count

The maximumnumber of KEEP_ALIVE retries before dropping the connection.

This parameter is only supported on Linux architectures.

Default: -1 (OS default value)

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1173

44.7 TCP/TLS Transport Properties

1174

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

user_timeout

Changes the default OS TCP User Timeout configuration. If set to a value greater
than 0, it specifies the maximumamount of time in seconds that transmitted data may
remain unacknowledged before TCP will forcibly close the corresponding connection
and return ETIMEDOUT to the application.

If set to 0, TCP Transport plugin will use the systemdefault.

Currently this feature is supported only on Linux 2.6.37 and higher platforms.

Default: 0 (use system's default).

connection_liveliness

Configures the connection liveliness feature. See 44.7.1 Connection Livelinesson
page 1182.

Defaults:

l connection_liveliness.enable: 0

l connection_liveliness.lease_duration: 10

l connection_liveliness.assertions_per_lease_duration: 3

event_thread

Configures the event thread used by the TCP Transport plugin for providing some fea-
tures.

Defaults:

l event_thread.priority: THREAD_PRIORITY_DEFAULT

l event_thread.stack_size: THREAD_STACK_SIZE_DEFAULT

l event_thread.mask: PRIORITY_ENFORCE | STDIO

disable_nagle

Disables the TCP nagle algorithm.

When this property is set to 1, TCP segments are always sent as soon as possible,
which may result in poor network utilization.

Default: 0

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7 TCP/TLS Transport Properties

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

logging_verbosity_bitmap

Bitmap that specifies the verbosity of log messages from the transport.

Logging values:

l -1 (0xffffffff): do not change the current verbosity

l 0x00: silence

l 0x01: fatal error

l 0x02: errors

l 0x04: warnings

l 0x08: local

l 0x10: remote

l 0x20: periodic

l 0x100: other (used for control protocol tracing)

l 13F: all (fatal error, errors, warnings, local, remote, periodic, and other)

You can combine these values by logically ORing them together.

Default: -1 (meaning, do not change the current verbosity, which is fatal errors, errors,
and warnings by default)

Note: The logging verbosity is a global property shared across the multiple instances
of the TCP Transport within an application. If you create a newTCP Transport in-
stance with logging_verbosity_bitmap different than -1, the change will affect all the
other instances as well.

Note: The option of 0x100 (other) is used only for tracing the internal control protocol.
Since the output is very verbose, this feature is enabled only in the debug version of
the TCP Transport library
(libnddstransporttcpd.so / LIBNDDSTRANSPORTD.LIB).

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1175

44.7 TCP/TLS Transport Properties

1176

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

security_logging_verbosity_bitmap

Bitmap that specifies the verbosity of security-related log messages from the trans-
port. These are usually messages generated by OpenSSL.

Logging values:

l -1 (0xffffffff): use the current verbosity of the transport, which is a global prop-
erty (see logging_verbosity_bitmap)

l 0x00: silence

l 0x01: fatal error

l 0x02: errors

l 0x04: warnings

l 0x08: local

l 0x10: remote

l 0x20: periodic

You can combine these values by logically ORing them together.

Default: -1 (use the current verbosity of the transport, which is a global property (see
logging_verbosity_bitmap))

Note: The security logging verbosity is a global property shared across the multiple in-
stances of the TCP Transport within an application. If you create a newTCP Transport
instance, the value of security_logging_verbosity_bitmapwill be applied to all the
other instances as well.

socket_monitoring_kind

Configures the socket monitoring API used by the transport. This property can have
the following values:

l SELECT: The transport uses the POSIX select API to monitor sockets.

l WINDOWS_IOCP: The transport usesWindows I/O completion ports to mon-
itor sockets. This value only applies to Windows systems.

l WINDOWS_WAITFORMULTIPLEOBJECTS: The transport uses the API
WaitForMultipleObjects to monitor sockets. This value only applies to Win-
dows systems.

Default: SELECT

Note: The value selected for this property may affect transport performance and
scalability. On Windows systems, using WINDOWS_IOCP provides the best per-
formance and scalability.

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7 TCP/TLS Transport Properties

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

windows_iocp

Configures I/O completion ports when socket_monitoring_kind on the previouspage
is set to WINDOWS_IOCP.

This setting configures the number of threads the plugin creates to process I/O com-
pletion packets (thread_pool_size) and the number of those threads that the op-
erating systemcan allow to concurrently run (concurrency_value).

Defaults:

windows_iocp.thread_pool_size: 2

windows_iocp.concurrency_value: 1

send_crc
When set to 1, enables the computation of the CRC for sent RTI TCP messages.

Default: 0

force_crc_check

When set to 1, forces the checking of the CRC for received RTI TCP messages. By de-
fault, the TCP Transport plugin will only validate the CRC if the CRC is present in the re-
ceived message. If this property is set to 1, TCP Transport will drop messages not
including the CRC.

Default: 0

negotiate_session_id

When set to 1, the TCP Transport Plugin will performa session negotiation that will
help external load balancers identify all the connections associated with a particular
session between two Connext DDS applications. This keeps the connections frombe-
ing divided among multiple servers and ensures proper communication.

Formore information about this property, see 44.6 Support for ExternalHardware
Load Balancers in TCPTransport Plugin on page 1161.

Default: 0

Note: The value of this property must be consistent among all the applications run-
ning the TCP Transport Plugin. If two applications have a different value for this prop-
erty, they may not communicate.

outstanding_connection_cookies

Maximumnumber of outstanding connection cookies allowed by the transport when
acting as server.

A connection cookie is a token provided by a server to a client; it is used to establish a
data connection. Until the data connection is established, the cookie cannot be re-
used by the server.

To avoid wasting memory, it is good practice to set a cap to the maximumnumber of
connection cookies (pending connections).

When the maximumvalue is reached, a client will not be able to connect to the server
until new cookies become available.

Range: 1 or higher, or -1 (which means an unlimited number).

Default: 100

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1177

44.7 TCP/TLS Transport Properties

1178

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

outstanding_connection_
cookies_life_span

Maximum lifespan (in seconds) of the cookies associated with pending connections.

If a client does not connect to the server before the lifespan of its cookie expires, it will
have to request a new cookie.

Range: 1 second or higher, or -1

Default: -1, which means an unlimited amount of time (effectively disabling the fea-
ture).

send_max_wait_sec

Controls the maximum time (in seconds) the low-level sendto() function is allowed to
block the caller thread when the TCP send buffer becomes full.

If the bandwidth used by the transport is limited, and the sender thread tries to push
data faster than the OS can handle, the low-level sendto() function will block the
caller until there is some roomavailable in the queue. Limiting this delay eliminates the
possibility of deadlock and increases the response time of the internal DDS thread.

This property affects both CONTROL and DATA streams. It only affects
SYNCHRONOUS send operations. Asynchronous sends never block a send op-
eration.

For synchronous send() calls, this property limits the time the DDS sender thread can
block for a full send buffer. If it is set too large, Connext DDS not only won't be able to
send more data, it also won't be able to receive anymore data because of an internal
resource mutex.

Setting this property to 0 causes the low-level function to report an immediate failure if
the TCP send buffer is full.

Setting this property to -1 causes the low-level function to block forever until space be-
comes available in the TCP buffer.

Default: 3 seconds.

client_connection_negotiation_
timeout

Timeout (in seconds) for negotiating a client data connection.

The TCP Transport plugin requires some negotiation before establishing a con-
nection. This property controls the maximum time (in seconds) a client data con-
nection negotiation can remain in progress.

In particular, it controls a maximum timeout for requesting and replying to a server lo-
gical port request.

If the negotiation of a connection has not completed after the specified timeout, the
negotiation will restart, and if there is an associated data connection, it will be closed.
This way, the TCP Transport plugin can retry the process of establishing and ne-
gotiating that connection.

Range: 1 second or higher.

Default: 10 seconds

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7 TCP/TLS Transport Properties

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

server_connection_negotiation_
timeout

Timeout (in seconds) for negotiating a server data connection.

The TCP Transport plugin requires some negotiation before establishing a con-
nection. This property controls the maximum time (in seconds) a server data con-
nection negotiation can remain in progress.

In particular, it controls a maximum timeout for requesting and replying to a client lo-
gical port request.

If the negotiation of a connection has not completed after the specified timeout, the
negotiation will restart, and if there is an associated data connection, it will be closed.
This way, the TCP Transport plugin can retry the process of establishing and ne-
gotiating that connection.

Range: 1 second or higher.

Default: 10 seconds

initial_handshake_timeout

Timeout (in seconds) for the initial handshake for a connection.

Once a connection is established, TCP transport will exchange some information to
identify itself and the connection. This process is known as the initial handshake of a
connection, and if using TLS the TCP Transport plugin will also exchange additional
information to secure the connection.

This property controls the maximum time (in seconds) the initial handshake for a con-
nection can remain in progress. If the handshake has not completed after the spe-
cified timeout, the connection will be closed. This way, the TCP Transport plugin can
restart the process of establishing and handshaking that connection.

Range: 1 second or higher.

Default: 10 seconds

tls.verify.ca_file

A string that specifies the name of file containing Certificate Authority certificates. File
should be in PEM format. See the OpenSSL manual page for SSL_load_verify_loc-
ations formore information.

To enable TLS, ca_file or ca_path is required; both may be specified (at least
one is required).

tls.verify.ca_path

A string that specifies paths to directories containing Certificate Authority certificates.
Files should be in PEM format and follow the OpenSSL-required naming conventions.
See the OpenSSL manual page for SSL_CTX_load_verify_locations formore in-
formation.

The Certificate Authority subject name hash valuesmust be available in the dir-
ectories. You may generate themby running openssl rehash (available in OpenSSL
1.1.0 or above) in each directory.

To enable TLS, ca_file or ca_path is required; both may be specified (at least
one is required).

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1179

44.7 TCP/TLS Transport Properties

1180

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

tls.verify.verify_depth Maximumcertificate chain length for verification.

tls.verify.crl_file
Name of the file containing the Certificate Revocation List.

File should be in PEM format.

tls.identity.certificate_chain

String containing an identifying certificate (in PEM format) or certificate chain (ap-
pending intermediate CA certs in order).

An identifying certificate is required for secure communication. The string must
be sorted starting with the certificate to the highest level (root CA). If this is specified,
certificate_chain_file must be empty.

tls.identity.certificate_chain_file

File containing identifying certificate (in PEM format) or certificate chain (appending in-
termediate CA certs in order).

An identifying certificate is required for secure communication. The file must be
sorted starting with the certificate to the highest level (root CA). If this is specified, cer-
tificate_chainmust be empty.

Optionally, a private keymay be appended to this file. If no private key option is spe-
cified, this file will be used to load a private key.

tls.identity.private_key_password A string that specifies the password for private key.

tls.identity.private_key

String containing private key (in PEM format).

At most one of private_key and private_key_filemay be specified. If no private key
is specified (all values are NULL), the private key will be read from the certificate chain
file.

tls.identity.private_key_file

File containing private key (in PEM format).

At most one of private_key and private_key_filemay be specified. If no private key
is specified (all values are NULL), the private key will be read from the certificate chain
file.

tls.identity.rsa_private_key

String containing additional RSA private key (in PEM format).

For use if both an RSA and non-RSA key are required for the selected cipher. At most
one of rsa_private_key and rsa_private_key_file may be specified.

At most one of rsa_private_key and rsa_private_key_filemay be specified.

tls.identity.rsa_private_key_file

File containing additional RSA private key (in PEM format).

For use if both an RSA and non-RSA key are required for the selected cipher. At most
one of rsa_private_key and rsa_private_key_file may be specified.

At most one of rsa_private_key and rsa_private_key_filemay be specified.

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7 TCP/TLS Transport Properties

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

tls.cipher.cipher_list

List of available TLS ciphers when communicating with Connext DDS 6.0.0 or below.
See the OpenSSL manual page for SSL_set_cipher_list formore information on the
format of this string.

Default: NULL

tls.cipher.ciphersuites

List of available TLS ciphersuites when communicating with Connext DDS 6.0.1 or
above. See the OpenSSL manual page for SSL_CTX_set_ciphersuites formore in-
formation on the format of this string.

Default: NULL

tls.cipher.dh_param_files

List of available Diffie-Hellman (DH) key files. For example: "foo.h:2048,bar.h:1024"
means:

dh_param_files[0].file = foo.pem,
dh_param_files[0].bits = 2048,
dh_param_files[1].file = bar.pem,
dh_param_files[1].bits = 1024

This property is only effective when communicating with Connext DDS 5.3 ap-
plications.

Default: NULL

tls.cipher.engine_id ID of OpenSSL cipher engine to request.

disable_interface_tracking

If this variable is set, the automatic change detection over the systemnetwork in-
terfaces will be disabled.

See disable_interface_tracking in 16.6 Setting Builtin Transport Propertieswith the
PropertyQosPolicy on page 807

force_interface_poll_detection

This property forces the interface tracker to use a polling method to detect changes to
the network interfaces in IP mobility scenarios. It only applies to operating systems
that support asynchronous notifications of interface changes.

If set to TRUE, the interface trackerwill use a polling method that queries the in-
terfaces periodically to detect the changes. If set to FALSE, the interface trackerwill
use the operating system’s default method.

Basically, this property allows you—for an operating system that supports asyn-
chronous notification—to use the polling method instead.

Default: FALSE

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

1181

44.7.1 Connection Liveliness

1182

Property Name

(prefix with
‘dds.transport.TCPv4.tcp1.’)

1

Description

property_validation_action

By default, property names given in the 7.5.19 PROPERTYQosPolicy (DDSEx-
tension) on page 440 are validated to avoid using incorrect or unknown names (for ex-
ample, due to a typo). This property configures the validation of the property names
associated with the transport:

l VALIDATION_ACTION_EXCEPTION: validate the properties. Upon failure,
log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the properties. Upon failure, log
warnings and do not fail.

If this property is not set, the property validation behaviorwill be the same as that of
the DomainParticipant, which by default is VALIDATION_ACTION_EXCEPTION.
See 7.5.19.1 PropertyValidation on page 442 formore information.

thread_name_prefix

You can set this field with your own value, to help you identify the transport thread in a
way that's meaningful to you. Do not exceed 8 characters.

If you do not set this field,Connext DDS creates the following prefix:

'r' + 'Tr' + participant identifier + '\0'

Where 'r' indicates this is a thread fromRTI, 'Tr' indicates the thread is related to a
transport, and participant identifier contains 5 characters as follows:

l If participant_name is set: The participant identifier will be the first 3 char-
acters and the last 2 characters of the participant_name.

l If participant_name is not set, then the identifier is computed as domain_id
(3 characters) followed by participant_id (2 characters).

l If participant_name is not set and the participant_id is set to -1 (default
value), then the participant identifier is computed as the last 5 digits of the
rtps_instance_id in the participant GUID.

See 21.9 Identifying ThreadsUsed byConnext DDSon page 922.

Table 44.1 Properties for NDDS_Transport_TCPv4_Property_t

44.7.1 Connection Liveliness

The connection_liveliness property configures the connection liveliness feature. When enabled, the TCP
Transport plugin will periodically exchange some additional control traffic (liveliness requests/responses)
over one of the connections between the TCP Client and Server. This traffic allows determining if a that
connection is not alive anymore, and thus proceed to its close. This avoids depending on the OS noti-
fication about the status of the connection, potentially decreasing the time to reestablish lost connections.

1Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the string
used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

44.7.1 Connection Liveliness

The following parameters can be configured:

l connection_liveliness.enable: Enables or disables the feature.

l connection_liveliness.lease_duration: In seconds, the timeout by which the connection liveliness
must be asserted or the connection will be considered not alive. It is also used as the period between
connection liveliness checks. Therefore, the maximum time before a connection is marked as not
alive is 2*connection_liveliness.lease_duration.

l connection_liveliness.assertions_per_lease_duration: The number of liveliness requests send per
each lease duration. Increasing this value will increase the overhead send into the network, but it
will also make the connection liveliness mechanism more robust.

This feature relies on the creation on an additional thread in the TCP Transport Plugin (the event thread).
For more information about how to configure this thread, see the event_thread in Table 44.1 Properties
for NDDS_Transport_TCPv4_Property_t.

Enabling this feature breaks backwards compatibility with TCP Transport plugins that do not
include this feature.

1183

Part 8: RTI Persistence Service

1184

Part 8: RTI Persistence Service
The material in this part of the manual describes Persistence Service. It saves DDS data samples so they
can be delivered to subscribing applications that join the system at a later time—even if the publishing
application has already terminated.

Persistence Service is not available on all platforms. See the RTI Connext DDS Core Libraries
Platform Notes.

This section includes:

l Introduction to RTI Persistence Service (Chapter 45 on page 1185)

l Configuring Persistence Service (Chapter 46 on page 1186)

l Running RTI Persistence Service (Chapter 47 on page 1211)

l Administering Persistence Service from a Remote Location (Chapter 48 on page 1215)

l Advanced Persistence Service Scenarios (Chapter 49 on page 1221)

Chapter 45 Introduction to RTI Persistence
Service

Persistence Service is a Connext DDS application that saves DDS data samples to transient or per-
manent storage, so they can be delivered to subscribing applications that join the system at a later
time—even if the publishing application has already terminated.

Persistence Service runs as a separate application; you can run it on the same node as the pub-
lishing application, the subscribing application, or some other node in the network.

When configured to run in PERSISTENT mode (<persistent_storage> is used), Persistence Ser-
vice can use the filesystem or a relational database that provides an ODBC driver. For each per-
sistent topic, it collects all the data written by the corresponding persistent DataWriters and stores
them into persistent storage. See the RTI Persistence Service Release Notes for the list of platforms
and relational databases that have been tested.

When configured to run in TRANSIENT mode (<persistent_storage> is not used), Persistence Ser-
vice stores the data in memory.

The following chapters assume you have a basic understanding of DDS terms such as DomainPar-
ticipants, Publishers, DataWriters, Topics, and Quality of Service (QoS) policies. For an overview
of DDS terms, please see Data-Centric Publish-Subscribe Communications (Chapter 2 on
page 14). You should also have already read Mechanisms for Achieving Information Durability
and Persistence (Chapter 13 on page 738).

1185

Chapter 46 Configuring Persistence
Service

To use Persistence Service:

1. Modify your Connext DDS applications.

l The 7.5.9 DURABILITY QosPolicy on page 412 controls whether or not, and how,
published DDS samples are stored by Persistence Service for delivery to late-joining
DataReaders. See 13.5 Data Durability on page 755.

l For each DataWriter whose data must be stored, set the Durability QosPolicy’s
kind to DDS_PERSISTENT_DURABILITY_QOS or DDS_TRANSIENT_
DURABILITY_QOS.

l For each DataReader that needs to receive stored data, set the Durability
QosPolicy’s kind to DDS_PERSISTENT_DURABILITY_QOS or DDS_
TRANSIENT_DURABILITY_QOS.

l Optionally, modify the 7.5.10 DURABILITY SERVICE QosPolicy on page 417,
which can be used to configure Persistence Service.

By default, the History and ResourceLimits QosPolicies for a Persistence Service
DataReader (PRSTDataReader) and Persistence Service DataWriter (PRSTDataWriter)
with topic 'A' will be configured using the values specified in the XML file (unless you use
the tag <use_durability_service> in the persistence group definition, see 46.8 Creating Per-
sistence Groups on page 1198). Setting the <use_durability_service> tag to true will cause
the History and ResourceLimits QosPolicies for a PRSTDataReader and PRSTDataWriter
to be configured using the 7.5.10 DURABILITY SERVICE QosPolicy on page 417 of the
first-discovered DataWriter publishing 'A'. (For more information on the PRSTDataReader
and PRSTDataWriter, see 13.5.1 RTI Persistence Service on page 755.)

2. Create a configuration file or edit an existing file, as described in 46.2 XML Configuration
File on page 1188.

1186

46.1 How to Load the Persistence Service XML Configuration

1187

3. Start Persistence Service with your configuration file, as described in 47.1 Starting Persistence Ser-
vice on page 1211. You can start it on either application’s node, or even an entirely different node
(provided that node is included in one of the applications’ NDDS_DISCOVERY_PEERS lists).

46.1 How to Load the Persistence Service XML Configuration

Persistence Service loads its XML configuration from multiple locations. This section presents the various
approaches, listed in load order.

The first three locations only contain QoS Profiles and are inherited from Connext DDS (see Configuring
QoS with XML (Chapter 19 on page 854)).

l $NDDSHOME/resource/xml/NDDS_QOS_PROFILES.xml

This file contains the DDS default QoS values; it is loaded automatically if it exists. (First to be
loaded.)

l File specified in the NDDS_QOS_PROFILES Environment Variable

The files (or XML strings) separated by semicolons referenced in this environment variable are
loaded automatically.

l <working directory>/USER_QOS_PROFILES.xml

This file is loaded automatically if it exists.

The next locations are specific to Persistence Service.

l <NDDSHOME>/resource/xml/RTI_PERSISTENCE_SERVICE.xml

This file contains the default Persistence Service configurations; it is loaded if it exists. There are
two default configurations: default and defaultDisk. The default configuration persists all the top-
ics into memory. The defaultDisk configuration persists all the topics into files located in the current
working directory.

l <working directory>/USER_PERSISTENCE_SERVICE.xml

This file is loaded automatically if it exists.
l File specified using the command line option, -cfgFile

The command-line option -cfgFile (see Table 47.1 Persistence Service Command-Line Options) can
be used to specify a configuration file.

46.2 XML Configuration File

46.2 XML Configuration File

The configuration file uses XML format. Let's look at a very basic configuration file, just to get an idea of
its contents. You will learn the meaning of each line as you read the rest of this section.

Example Configuration File
<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- A Configuration file may be used by several

persistence services specifying multiple
<persistence_service> entries

-->
<dds>

<!-- QoS LIBRARY SECTION -->
<qos_library name="QosLib1">

<qos_profile name="QosProfile1">
<datawriter_qos name="WriterQos1">

<history>
<kind>DDS_KEEP_ALL_HISTORY_QOS</kind>

</history>
</datawriter_qos>
<datareader_qos name="ReaderQos1">

<reliability>
<kind>DDS_RELIABLE_RELIABILITY_QOS</kind>

</reliability>
<history>

<kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
</history>

</datareader_qos>
</qos_profile>

</qos_library>
<!-- PERSISTENCE SERVICE SECTION -->
<persistence_service name="Srv1">

<!-- REMOTE ADMINISTRATION SECTION -->
<administration>

<domain_id>72</domain_id>
<distributed_logger>

<enabled>true</enabled>
</distributed_logger>
</administration>

<!-- PERSISTENT STORAGE SECTION -->
<persistent_storage>

<filesystem>
<directory>/tmp</directory>
<file_prefix>PS</file_prefix>

</filesystem>
</persistent_storage>
<!-- DOMAINPARTICIPANT SECTION -->
<participant name="Part1">

<domain_id>71</domain_id>
<!-- PERSISTENCE GROUP SECTION -->
<persistence_group name="PerGroup1" filter="*">

<single_publisher>true</single_publisher>
<single_subscriber>true</single_subscriber>
<datawriter_qos base_name="QosLib1::QosProfile1"/>
<datareader_qos base_name="QosLib1::QosProfile1"/>

1188

46.2.1 Configuration File Syntax

1189

</persistence_group>
</participant>

</persistence_service>
</dds>

46.2.1 Configuration File Syntax

The configuration file must follow these syntax rules:

l The syntax is XML and the character encoding is UTF-8.

l Opening tags are enclosed in <>; closing tags are enclosed in </>.

l A value is a UTF-8 encoded string. Legal values are alphanumeric characters. All leading and trail-
ing spaces are removed from the string before it is processed.

For example, " <tag> value </tag>" is the same as "<tag>value</tag>".
l All values are case-sensitive unless otherwise stated.

l Comments are enclosed as follows: <!-- comment -->.

l The root tag of the configuration file must be <dds> and end with </dds>.

l The primitive types for tag values are specified in Table 46.1 Supported Tag Values.

Type Format Notes

DDS_Boolean

yes, 1, true, BOOLEAN_TRUE orDDS_BOOLEAN_TRUE: these all mean
TRUE

Not case-sensitive
no, 0, false, BOOLEAN_FALSE orDDS_BOOLEAN_FALSE: these all mean
FALSE

DDS_Enum
A string. Legal values are those listed in the C or Java API Reference HTML
documentation.

Must be specified as a string. (Do not use numeric
values.)

DDS_Long

-2147483648 to 2147483647

or 0x80000000 to 0x7fffffff

or LENGTH_UNLIMITED

orDDS_LENGTH_UNLIMITED

A 32-bit signed integer

DDS_
UnsignedLong

0 to 4294967296

or

0 to 0xffffffff

A 32-bit unsigned integer

String UTF-8 character string
All leading and trailing spaces are ignored
between two tags

Table 46.1 Supported Tag Values

46.2.2 XML Validation

46.2.2 XML Validation

46.2.2.1 Validation at Run Time

Persistence Service validates the input XML files using a builtin Document Type Definition (DTD). You
can find a copy of the builtin DTD in <NDDSHOME>a/resource/schema/rti_persistence_service.dtd.
(This is only a copy of what the Persistence Service core uses. Changing this file has no effect unless you
specify its path with the DOCTYPE tag, described below.)

You can overwrite the builtin DTD by using the XML tag, <!DOCTYPE>. For example, the following
indicates that Persistence Service must use a different DTD file to perform validation:
<!DOCTYPE dds SYSTEM
"/local/usr/rti/dds/modified_rtipersistenceservice.dtd">

If you do not specify the DOCTYPE tag in the XML file, the builtin DTD is used.

The DTD path can be absolute, or relative to the application's current working directory.

46.2.2.2 Validation During Editing

Persistence Service provides DTD and XSD files that describe the format of the XML content. We recom-
mend including a reference to one of these documents in the XML file that contains the persistence ser-
vice’s configuration—this provides helpful features in code editors such as Visual Studio and Eclipse,
including validation and auto-completion while you are editing the XML file. Including a reference to the
XSD file in the XML documents provides stricter validation and better auto-completion than the cor-
responding DTD file.

The DTD and XSD definitions of the XML elements are in
<NDDSHOME>/resource/schema (rti_persistence_service.dtd and
rti_persistence_service.xsd, respectively).

To include a reference to the XSD document in your XML file, use the attribute xsi:noNamespaceS-
chemaLocation in the <dds> tag. For example (in the following, replace <NDDSHOME> with the Con-
next DDS installation directory, see Paths Mentioned in Documentation on page 1):
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"<NDDSHOME>/resource/schema/rti_persistence_service.xsd">

...
</dds>

To include a reference to the DTD document in your XML file, use the <!DOCTYPE> tag. For example
(in the following, replace <NDDSHOME> with the Connext DDS installation directory):
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dds SYSTEM
"<NDDSHOME>/resource/schema/rti_persistence_service.dtd">

aSee Paths Mentioned in Documentation on page 1.

1190

46.3 QoS Configuration

1191

<dds>
...

</dds>

46.3 QoS Configuration

Each persistence group and participant has a set of DDS QoSs. There are six tags:

l <domain_participant_qos>

l <publisher_qos>

l <subscriber_qos>

l <topic_qos>

l <datawriter_qos>

l <datareader_qos>

Each QoS is identified by a name. The QoS can inherit its values from other QoSs described in the XML
file. For example:
<datawriter_qos name="DerivedWriterQos" base_name="Lib::BaseWriterQos">

<history>
<kind>DDS_KEEP_ALL_HISTORY_QOS</kind>

</history>
</datawriter_qos>

In the above example, the writer QoS named 'DerivedWriterQos' inherits the values from the writer QoS
'BaseWriterQos' contained in the library 'Lib'. The HistoryQosPolicy kind is set to DDS_KEEP_ALL_
HISTORY_QOS.

Each XML tag with an associated name can be uniquely identified by its fully qualified name in C++
style. For more information on tags, see Configuring QoS with XML (Chapter 19 on page 854)

The persistence groups and participants can use QoS libraries and profiles to configure their QoS values.
For example:
<dds>
<!- QoS LIBRARY SECTION -->
<qos_library name="QosLib1">

<qos_profile name="QosProfile1">
<datawriter_qos name="WriterQos1">

<history>
<kind>DDS_KEEP_ALL_HISTORY_QOS</kind>

</history>
</datawriter_qos>

</qos_profile>
</qos_library>
<!-PERSISTENCE SERVICE SECTION -->
<persistence_service name="Srv1">

...
<!-PERSISTENCE GROUP SECTION -->

46.4 Configuring the Persistence Service Application

<persistence_group name="PerGroup1" filter="*">
<single_publisher>true</single_publisher>
<single_subscriber>true</single_subscriber>
<datawriter_qos base_name="QosLib1::QosProfile1"/>

</persistence_group>
</persistence_service>

</dds >

For more information about QoS libraries and profiles see Configuring QoS with XML (Chapter 19 on
page 854).

46.4 Configuring the Persistence Service Application

Each execution of the Persistence Service application is configured using the content of a tag: <per-
sistence_service>. When you start Persistence Service (described in 47.1 Starting Persistence Service on
page 1211), you must specify which <persistence_service> tag to use to configure the service.

For example:
<dds>

<persistence_service name="Srv1">
...

</persistence_service>
</dds>

If you do not specify a service name when you start Persistence Service, the service will print the list of
available configurations and then exit.

Because a configuration file may contain multiple <persistence_service> tags, one file can be used to con-
figure multiple Persistence Service executions.

Table 46.2 Persistence Service Application Tags lists the tags you can specify for a persistence service.
Notice that <participant> is required. For default values, please see the API Reference HTML doc-
umentation.

Tags within
<persistence_
service>

Description
Number
of Tags
Allowed

<administration> Enables and configures remote administration. See 46.5 Configuring Remote Administration on the next page. 0 or 1

<annotation>

Provides a description for the persistence service configuration.

Example:
<annotation>

<documentation>
Persists in the file system all topics
published with PERSISTENT durability

</documentation>
</annotation>

0 or 1

Table 46.2 Persistence Service Application Tags

1192

46.5 Configuring Remote Administration

1193

Tags within
<persistence_
service>

Description
Number
of Tags
Allowed

<purge_samples
after
acknowledgment>

A DDS_Boolean that indicates whether or not a PRSTDataWriter will purge a DDS sample from its cache once it is
acknowledged by all the matching/active DataReadersand all the Durable Subscriptions.

Default: 0

See 46.9 Configuring Durable Subscriptions in Persistence Service on page 1205.

0 or 1

<participant>

For each <participant> tag, Persistence Service creates two DomainParticipantson the same domain ID: one to
subscribe to changes and one to publish changes. There may be more Participant pairs created when there are
multiple versions of a type (see 46.13 Support for Extensible Typeson page 1209).

The QoS values used to configure both DomainParticipantsare the same, except for:

l The participant_id in the 9.5.9 WIRE_PROTOCOLQosPolicy (DDSExtension) on page 676). If par-
ticipant_id is not -1 (the default value, which means automatic selection), Persistence Service uses par-
ticipant_id for the firstDomainParticipant and participant_id+1 for the second DomainParticipant.

l The TCP server ports are configured with the properties dds.transport.tcp.server_bind_port and
dds.transport.tcp.public_address. See 44.7 TCP/TLSTransport Properties on page 1163.

1 ormore
(required)

<persistent_stor-
age>

When this tag is present, the topic data will be persisted to disk. You can select between file storage and relational
database storage. See 46.6 Configuring Persistent Storage on the next page. 0 or 1

<synchronization>

Enables synchronization in redundant persistence service instances.

See 46.10 Synchronizing of Persistence Service Instanceson page 1206.

Default: Synchronization is not enabled

0 or 1

Table 46.2 Persistence Service Application Tags

46.5 Configuring Remote Administration

You can create a Connext DDS application that can remotely control Persistence Service. The <admin-
istration> tag is used to enable remote administration and configure its behavior.

By default, remote administration is turned off in Persistence Service.

When remote administration is enabled, Persistence Service will create a DomainParticipant, Publisher,
Subscriber, DataWriter, and DataReader. These Entities are used to receive commands and send
responses. You can configure these entities with QoS tags within the <administration> tag.

Table 46.3 Remote Administration Tags lists the tags allowed within <administration> tag. Notice that
the <domain_id> tag is required.

For more details, please see Administering Persistence Service from a Remote Location (Chapter 48 on
page 1215).

Note: The command-line options used to configure remote administration take precedence over the XML
configuration (see Table 47.1 Persistence Service Command-Line Options).

46.6 Configuring Persistent Storage

Tags within
<administration> Description Number of Tags

Allowed

<datareader_qos>

Configures the DataReader QoS for remote administration.

If the tag is not defined, Persistence Servicewill use the DDS defaults with the following
changes:

reliability.kind = DDS_RELIABLE_RELIABILITY_QOS (this
value cannot be changed)

history.kind = DDS_KEEP_ALL_HISTORY_QOS

resource_limits.max_samples = 32

0 or 1

<datawriter_qos>

Configures the DataWriter QoS for remote administration.

If the tag is not defined, Persistence Servicewill use the DDS defaults with the following
changes:

history.kind = DDS_KEEP_ALL_HISTORY_QOS

resource_limits.max_samples = 32

0 or 1

<distributed_logger> ConfiguresRTI Distributed Logger. 0 or 1

<domain_id> Specifies which domain IDPersistence Servicewill use to enable remote administration. 1 (required)

<participant_qos>
Configures the DomainParticipant QoS for remote administration.

If the tag is not defined, Persistence Servicewill use the DDS defaults.
0 or 1

<publisher_qos>
Configures the PublisherQoS for remote administration.

If the tag is not defined, Persistence Servicewill use the DDS defaults.
0 or 1

<subscriber_qos>
Configures the SubscriberQoS for remote administration.

If the tag is not defined, Persistence Servicewill use the DDS defaults.
0 or 1

Table 46.3 Remote Administration Tags

46.6 Configuring Persistent Storage

The <persistent_storage> tag is used to persist DDS samples into permanent storage. If the <persistent_
storage> tag is not specified, the service will operate in TRANSIENT mode and all the data will be kept
in memory. Otherwise, the persistence service will operate in PERSISTENT mode and all the topic data
will be stored into the filesystem or into a relational database that provides an ODBC driver.

Table 46.4 Persistent Storage tags lists the tags that you can specify in <persistent_storage>.

Relational Database Limitations: The ODBC storage does not support BLOBs. The maximum size for
a serialized DDS sample is 65535 bytes in MySQL.

1194

46.6 Configuring Persistent Storage

1195

Tags within
<persistent_
storage>

Description
Number
of Tags
Allowed

DEPRECATED

<external_
database>

When this tag is present, the topic data will be persisted in a relational database.

This tag is required if <filesystem> is not specified.

See Table 46.5 ExternalDatabase Tags.

0 or 1

<filesystem>

When this tag is present, the topic data will be persisted into files.

This tag is required if <external_database> is not specified.

See Table 46.6 Filesystem tags.

0 or 1

<restore>

This DDS_Boolean (see Table 46.1 Supported Tag Values) indicates if the topic data associated with a pre-
vious execution of the persistence service must be restored or not. If the topic data is not restored, it will be de-
leted from the persistent storage.

Default: 1

0 or 1

<type_object_
max_
serialized_
length>

Defines the length in bytes of the database column used to store the TypeObjects associated with
PRSTDataWriters and PRSTDataReader.

For additional information on TypeObjects, see the RTI Connext DDSCore LibrariesExtensible TypesGuide.

Default: 10488576

0 or 1

Table 46.4 Persistent Storage tags

DEPRECATED

Tags within
<external_
database>

Description
Number of
Tags
Allowed

DEPRECATED

<dsn>

DSNused to connect to the database using ODBC. You should create this DSN through the ODBCset-
tings on Windows systems, or in your .odbc.ini file on Linux systems.

This tag is required.

1 (required)

DEPRECATED

<odbc_library>

Specifies the ODBCdriver to load. By default,Connext DDSwill try to use the standard ODBCdriverman-
ager library (UnixOdbc on Linux systems, the WindowsODBCdrivermanager on Windows systems).

0 or 1

DEPRECATED

<password>

Password to connect to the database.

Default: no username is used
0 or 1

DEPRECATED

<username>

Username to connect to the database.

Default: no username is used
0 or 1

Table 46.5 External Database Tags

46.6 Configuring Persistent Storage

Tags within
<filesystem> Description

Number of
Tags
Allowed

<directory>

Specifies the directory of the files in which topic data will be persisted. There will be one file per
PRSTDataWriter/PRSTDataReader pair.

The directory must exist; otherwise the service will report an error upon start up.

Default: current working directory

0 or 1

<file_prefix>
A name prefix associated with all the files created byPersistence Service.

Default: PS
0 or 1

<journal_mode>

Sets the journalmode of the persistent storage. This tag can take these values:

l DELETE: Deletes the rollback journal at the conclusion of each transaction.

l TRUNCATE: Commits transactions by truncating the rollback journal to zero-length instead of delet-
ing it.

l PERSIST: Prevents the rollback journal frombeing deleted at the end of each transaction.
Instead, the header of the journal is overwritten with zeros.

l MEMORY: Stores the rollback journal in volatile RAM. This saves disk I/O.

l WAL: Uses a write-ahead log instead of a rollback journal to implement transactions.

l OFF: Completely disables the rollback journal. If the application crashes in the middle of a trans-
action when the OFF journaling mode is set, the files containing the DDS samples will very likely be
corrupted.

Default: DELETE

0 or 1

<synchronization>

Determines the level of synchronization with the physical disk.

This tag can take three values:

l FULL: Every DDS sample is written into physical disk asPersistence Service receives it.

l NORMAL: DDS samples are written into disk at criticalmoments.

l OFF: No synchronization is enforced. Data will be written to physical disk when the OS flushes its
buffers.

Default: OFF

0 or 1

<trace_file>

Specifies the name of the trace file for debugging purposes. The trace file contains information about all
SQL statements executed by the persistence service.

Default: No trace file is generated

0 or 1

<vacuum>

Sets the auto-vacuumstatus of the storage. This tag can take these values:

l NONE: When data is deleted from the storage files, the files remain the same size.

l FULL: The storage files are compacted every transaction.

Default: FULL

0 or 1

Table 46.6 Filesystem tags

1196

46.7 Configuring Participants

1197

46.7 Configuring Participants

An XML <persistence_service> tag will contain a set of <participants>. The persistence service will per-
sist topics published in the domainIDs associated with these participants. For example:
<persistence_service name="Srv1">

<participant name="Part1">
<domain_id>71</domain_id>
...

</participant>
<participant name="Part2">

<domain_id>72</domain_id>
...

</participant>
</persistence_service>

Using the above example, the persistence service will create two pairs of DomainParticipants on
DDS domains 71 and 72, respectively. In each pair, one DomainParticipant is used to receive data and the
other to publish.

After the DomainParticipants are created, the persistence service will monitor the discovery traffic, look-
ing for topics to persist.

Notice that in some cases there may be more than one pair of DomainParticipants per domain when there
are multiple versions of a type for a given topic. (See 46.13 Support for Extensible Types on page 1209.)

The <domain_id> tag can be specified alternatively as an attribute of <participant>. For example:
<persistence_service name="Srv1">

<participant name="Part1" domain_id="71">
...

</participant>
</persistence_service>

Table 46.7 Participant Tagsdescribes the participant tags. Notice that <persistence_group> is required.

Tags within
<participant> Description

Number
of Tags
Allowed

<domain_id>
Domain ID associated with the Participant. The domain ID can be specified as an attribute of the participant tag.

Default: 0
0 or 1

Table 46.7 Participant Tags

46.8 Creating Persistence Groups

Tags within
<participant> Description

Number
of Tags
Allowed

<durable_
subscriptions>

Configures a set of Durable Subscriptions for a given topic. This is a sequence of <element> tags, each of which
has a <name> (role name in DDS_EndpointGroup_t), a <topic_name>, and a <quorum_count> (quorum in
DDS_EndpointGroup_t). For example:

<durable_subscriptions>
<element>

<name>DurSub1</name>
<topic_name>Example MyType</topic_name>
<quorum_count>2</quorum_count>

</element>
<element>

<name>DurSub2</name>
<topic_name>Example MyType</topic_name>

</element>
</durable_subscriptions>

Default: Empty list

See 46.9 Configuring Durable Subscriptions in Persistence Service on page 1205 for additional information

0 or 1

<participant_
qos>

Participant QoS.

Default: DDS defaults
0 or 1

<persistence_
group>

A persistence group describes a set of topics whose data that must be persisted by the persistence service.
1 ormore
(required)

Table 46.7 Participant Tags

46.8 Creating Persistence Groups

The topics that must be persisted in a specific domain ID are specified using <persistence_group> tags. A
<persistence_group> tag defines a set of topics identified by a POSIX expression.

For example:
<participant name="Part1">

<domain_id>71</domain_id>
<persistence_group name="PerGroup1" filter="H*">

...
</persistence_group>

</participant>

In the above example, the persistence group 'PerGroup1' is associated with all the topics published in DDS
domain 71 whose name starts with 'H'.

When a participant discovers a topic that matches a persistence group, it will create a PRSTDataReader
and a PRSTDataWriter. The PRSTDataReader and PRSTDataWriter will be configured using the QoS
policies associated with the persistence group. The DDS samples received by the PRSTDataReader will
be persisted in the queue of the corresponding PRSTDataWriter.

1198

46.8 Creating Persistence Groups

1199

A <participant> tag can contain multiple persistence groups; the set of topics that each one represents can
intersect.

Table 46.8 Persistence Group Tags further describes the persistence group tags. For default values, please
see the API Reference HTML documentation.

Tags within
<persistence_
group>

Description
Number
of Tags
Allowed

<allow_durable_
subscriptions>

A DDS_Boolean (see Table 46.1 Supported Tag Values) that enables support for durable subscriptions in the
PRSTDataWriters created in a persistence group.

When Durable Subscriptions are not required, setting this property to 0 will increase performance.

Default: 1

0 or 1

<content_filter>

Content filter topic expression. A persistence group can subscribe to a specific set of data based on the value of this
expression.

A filter expression is similar to the WHERE clause in SQL. Formore information on the syntax, please see the API Re-
ference Documentation (from the Modules page, select RTIConnext DDSDDS API Reference, Queries and Filters
Syntax).

Default: no expression

0 or 1

<datareader_
qos>

PRSTDataReaderQoS1. See 46.8.1 QoSson page 1202.

Default: DDS defaults
0 or 1

<datawriter_
qos>

PRSTDataWriterQoS2. See 46.8.1 QoSson page 1202.

Default: DDS defaults
0 or 1

<deny_filter>

Specifies a list of POSIX expressions separated by commas that describe the set of topics to be denied in the per-
sistence group.

This "black" list is applied to the topics that pass the filter specified with the <filter> tag

Default: *

0 or 1

<filter>

Specifies a list of POSIX expressions separated by commas that describe the set of topics associated with the per-
sistence group.

The filter can be specified as an attribute of <persistence_group> as well.

Default: *

0 or 1

<memory_
management>

This flag configures the memory allocation policy forDDS samples in PRSTDataReaders and PRSTDataWriters.

See 46.8.5 MemoryManagement on page 1204.
0 or 1

Table 46.8 Persistence Group Tags

1These fields cannot be set and are assigned automatically: protocol.virtual_guid, protocol.rtps_object_id, durability.kind.

2These fields cannot be set and are assigned automatically: protocol.virtual_guid, protocol.rtps_object_id, durability.kind.

46.8 Creating Persistence Groups

Tags within
<persistence_
group>

Description
Number
of Tags
Allowed

<propagate_
dispose>

A DDS_Boolean (see Table 46.1 Supported Tag Values) that controls whether or not the persistence service
propagates dispose messages fromDataWriters to DataReaders.

When this tag is set to true, Persistence Service propagates dispose samples, but it doesn't propagate the key
value for those dispose samples. Therefore, a DataReader receiving samples from the Persistence Servicemay
not be able to access the key value for an instance if the first and only sample that it received is a dispose sample of
that instance.

Default: 1

0 or 1

<propagate_
source_
timestamp>

A DDS_Boolean (see Table 46.1 Supported Tag Values). When this tag is 1, the DDS data samples sent by the
PRSTDataWriters preserve the source timestamp that was associated with themwhen they were published by the
original DataWriter.

Default: 0

0 or 1

<propagate_
unregister>

A DDS_Boolean (see Table 46.1 Supported Tag Values) that controls whether or not the persistence service
propagates unregistermessages fromDataWriters to DataReaders.

Default: 0

0 or 1

<publisher_qos>
PublisherQoS. See 46.8.1 QoSson page 1202.

Default: DDS defaults
0 or 1

<reader_
checkpoint_
frequency>

This property controls how often (expressed as a number of DDS samples) the PRSTDataReader state is stored in
the database. The PRSTDataReaders are the DataReaders created by the persistence service.

A high frequency will provide better performance. However, if the persistence service is restarted, it may receive
some duplicate DDS samples. The persistence service will send these duplicates DDS samples on the wire but they
will be filtered by the DataReadersand they will not be propagated to the application.

This property is only applicable when the persistence service operates in persistent mode (the <persistent_storage>
tag is present).

Default: 1

0 or 1

<single_
publisher>

A DDS_Boolean (see Table 46.1 Supported Tag Values) that indicates if the persistence service should create one
Publisher per persistence group or one Publisher per PRSTDataWriter inside the persistence group. See 46.8.3
Sharing a Publisher/Subscriber on page 1203.

Default: 1

0 or 1

<single_
subscriber>

A DDS_Boolean (see Table 46.1 Supported Tag Values) that indicates if the persistence service should create one
Subscriber per persistence group or one Subscriber per PRSTDataReader in the persistence group.

See 46.8.3 Sharing a Publisher/Subscriber on page 1203.

Default: 1

0 or 1

<subscriber_
qos>

SubscriberQoS. See 46.8.1 QoSson page 1202.

Default: DDS defaults
0 or 1

<topic_qos>
Topic QoS. See 46.8.1 QoSson page 1202.

Default: DDS defaults
0 or 1

Table 46.8 Persistence Group Tags

1200

46.8 Creating Persistence Groups

1201

Tags within
<persistence_
group>

Description
Number
of Tags
Allowed

<use_durability_
service>

A DDS_Boolean (see Table 46.1 Supported Tag Values) that indicates if the HISTORY and RESOURCE_LIMITS
QoS policy of the PRSTDataWriters and PRSTDataReaders should be configured based on the DURABILITY
SERVICE value of the discovered DataWriters.

See 46.8.2 DurabilityService QoSPolicy on page 1203

Default: 0

0 or 1

<writer_ack_
period>

Controls how often (expressed in milliseconds)DDS samples are marked as ACK'd in the database by the
PRSTDataWriter.

Default: 0

0 or 1

<writer_
checkpoint_
period>

Controls how often (expressed in milliseconds) transactions are committed for a PRSTDataWriter.

A value of 0 indicates that transactions will be committed immediately. This is the recommended setting to avoid los-
ing data in the case of an unexpected error in Persistence Service and/or the underlying hardware/software in-
frastructure.

For applications that can tolerate some data losses, setting this tag to a value greater than 0 will increase per-
formance.

Default: 0

0 or 1

<writer_
checkpoint_
volume>

Controls how often (expressed as a number of DDS samples) transactions are committed for a PRSTDataWriter.

A value of 1 indicates that DDS samples will be persisted by the PRSTDataWriters immediately. This is the re-
commended setting to avoid losing data in the case of an unexpected error in persistence service and/or the un-
derlying hardware/software infrastructure.

For application that can tolerate some data losses, setting this tag to a value greater than 1 will increase per-
formance.

Default: 1

0 or 1

<late_joiner_
read_batch>

Defines howmany DDS samples will be pre-fetched by a PRSTDataWriter to satisfy requests from late-joiners.

When a DataReader requests DDS samples froma PRSTDataWriter by sending a NACK message, the
PRSTDataWritermay retrieve additional DDS samples from the database to minimize disk access.

This parameter determines that amount of DDS samples that will be retrieved preemptively from the database by the
PRSTDataWriter.

Default: 20000

0 or 1

<sample_log-
ging>

This tag can be used to enable and configure a DDS sample log for the PRSTDataWriters in a persistence group. A
DDS sample log is a buffer of DDS samples on disk that, when used in combination with delegate reliability, allow de-
coupling the originalDataWriters fromslowDataReaders.

For additional information on the DDS sample log, see 49.3 Scenario: Slow Consumer on page 1224.

Default: DDS sample log is disabled

0 or 1

Table 46.8 Persistence Group Tags

46.8.1 QoSs

Tags within
<persistence_
group>

Description
Number
of Tags
Allowed

<writer_in_
memory_state>

A DDS_Boolean (see Table 46.1 Supported Tag Values) that determines howmuch state will be kept in memory by
the PRSTDataWriters in order to avoid accessing the persistent storage.

The property is only applicable when the persistence service operates in persistent mode (the <persistent_storage>
tag is present).

If this property is 1, the PRSTDataWriters will keep a copy of all the instances in memory. They will also keep a fixed
state overhead of 24 bytes perDDS sample. This mode provides the best performance. However, the restore op-
eration will be slower and the maximumnumber of DDS samples that a PRSTDataWriter can manage will be limited
by the available physicalmemory.

If this property is 0, all the state will be kept in the underlying persistent storage. In this mode, the maximumnumber
of DDS samples that a PRSTDataWriter can manage will not be limited by the available physicalmemory.

Default: If the HistoryQosPolicy‘s kind is KEEP_LAST or the ResourceLimitsQosPolicy’s max_samples != DDS_
UNLIMITED_LENGTH, the default is 1. Otherwise, the default is 0.

0 or 1

<use_wait_set>

A DDS_Boolean (see Table 46.1 Supported Tag Values) that indicates if Persistence Servicewill use Waitsets or
Listeners to read data from the PRSTDataReaders of the group.

By default, the usage of Waitsets is disabled. With this configuration, Persistence Service uses the on_data_avail-
able() listener callback to take the data from the PRSTDataReaders within the persistence group. The write op-
eration in a PRSTDataWriter is called within the listener callback.

When Waitsets are enabled, Persistence Servicewill use them to read the data:

If <single_subscriber> is set to 1, there will be a single Waitset and a read thread shared across all the
PRSTDataReaders in the group.

If <single_subscriber> is set to 0, there will be a Waitset and a read thread per PRSTDataReader in the group.

The write operation in a PRSTDataWriter is called by the read thread associated with the PRSTDataReader.

Default: 0

0 or 1

Table 46.8 Persistence Group Tags

46.8.1 QoSs

When a persistence service discovers a topic 'A' that matches a specific persistence group, it creates a
reader (known as ‘PRSTDataReader’) and writer (‘PRSTDataWriter’) to persist that topic. The QoSs asso-
ciated with these readers and writers, as well as the corresponding publishers and subscribers, can be con-
figured inside the persistence group using QoS tags.

For example:
<participant name="Part1">

<domain_id>71</domain_id>
<persistence_group name="PerGroup1" filter="*">

...
<publisher_qos base_name="QosLib1::PubQos1"/>
<subscriber_qos base_name="QosLib1::SubQos1"/>
<datawriter_qos base_name="QosLib1::WriterQos1"/>
<datareader_qos base_name="QosLib1::ReaderQos1"/>
...

</persistence_group>
</participant>

1202

46.8.2 DurabilityService QoS Policy

1203

For instance, the number of DDS samples saved by Persistence Service is configurable through the 7.5.12
HISTORY QosPolicy on page 421 of the PRSTDataWriters.

If a QoS tag is not specified, the persistence service will use the corresponding DDS default values (46.8.2
DurabilityService QoS Policy below describes an exception to this rule).

46.8.1.1 DataRepresentation QoS Policy

The PRSTDataReader's DataRepresentation QoS Policy may contain either XCDR_DATA_
REPRESENTATION or XCDR2_DATA_REPRESENTATION, but not both. The PRSTDataReader
and PRSTDataWriter of a given topic must have identical DataRepresentation QoS Policy values. See
7.5.3 DATA_REPRESENTATION QosPolicy on page 381.

46.8.2 DurabilityService QoS Policy

The 7.5.10 DURABILITY SERVICE QosPolicy on page 417 associated with a DataWriter is used to
configure the HISTORY and the RESOURCE_LIMITS associated with the PRSTDataReaders and
PRSTDataWriters.

By default, the HISTORY and RESOURCE_LIMITS of a PRSTDataReader and PRSTDataWriter with
topic 'A' will be configured using the values specified in the XML file used to configure Persistence Ser-
vice. To overwrite those values and use the values in the 7.5.10 DURABILITY SERVICE QosPolicy on
page 417 of the first discovered DataWriter publishing 'A', you can use the tag <use_durability_service>
in the persistence group definition:
<participant name="Part1">

<domain_id>71</domain_id>
<persistence_group name="PerGroup1" filter="*">

...
<use_durability_service/>1</ use_durability_service>

...
</persistence_group>

</participant>

46.8.3 Sharing a Publisher/Subscriber

By default, the PRSTDataWriters and PRSTDataReaders associated with a persistence group will share
the same Publisher and Subscriber.

To associate a different Publisher and Subscriber with each PRSTDataWriter and PRSTDataReader, use
the tags <single_publisher> and <single_subscriber>, as follows:
<participant name="Part1">

<domain_id>71</domain_id>
<persistence_group name="PerGroup1" filter="*">

...
<single_publisher/>0</single_publisher>
<single_subscriber/>0</single_subscriber>
...

46.8.4 Sharing a Database Connection

</persistence_group>
</participant>

46.8.4 Sharing a Database Connection

By default, the persistence service will share a single ODBC database connection to persist the topic data
received by each PRSTDataReader.

To associate an independent database connection to the PRSTDataReaders created by the persistence ser-
vice, use the tag <share_database_connection>, as follows:
<participant name="Part1">

<domain_id>71</domain_id>
<persistence_group name="PerGroup1" filter="*">

...
<share_database_connection>0</share_database_connection>

...
</persistence_group>

</participant>

Sharing a database connection optimizes the resource usage. However, the concurrency of the system
decreases because the access to the database connection must be protected.

46.8.5 Memory Management

The DDS samples received and stored by the PRSTDataReaders and PRSTDataWriters are in serialized
form.

The serialized size of a DDS sample is the number of bytes required to send the DDS sample on the wire.
The maximum serialized size of a DDS sample is the number of bytes that the largest DDS sample for a
given type requires on the wire.

By default, the PRSTDataReaders and PRSTDataWriters created by the persistence service try to allocate
multiple DDS samples to their maximum serialized size. This may cause memory allocation issues when
the maximum serialized size is significantly large.

For PRSTDataReaders, the number of DDS samples in the DataReader’s queues can be controlled using
the QoS values resource_qos.resource_limits.max_samples and resource_qos.resource_limits.initial_
samples.

The PRSTDataWriters keep a cache of DDS samples so that they do not have to access the database every
time. The minimum size of this cache is 32 DDS samples.

In addition, each PRSTDataWriter keeps an additional DDS sample called the DB sample, which is used
to move information from the DataWriter cache to the database and vice versa

The <memory_management> tag in a persistence group can be used to control the memory allocation
policy for the DDS samples created by PRSTDataReaders and PRSTDataWriters in the persistence group.

Table 46.9 Memory Management Tags describes the memory management tags.

1204

46.9 Configuring Durable Subscriptions in Persistence Service

1205

Tags within
<memory_

management>
Description

Number
of Tags
Allowed

<persistent_
sample_
buffer_max_
size>

This tag is used to control the memory associated with the DB sample in a PRSTDataWriter. The persistence ser-
vice will not be able to store a DDS sample into persistent storage if the serialized size is greater than this value.
Therefore, this parametermust be used carefully.

Default: LENGTH_UNLIMITED (DB sample is allocated to the maximumsize).

0 or 1

<pool_sample_
buffer_max_
size>

This tag applies to both PRSTDataReaders and PRSTDataWriters. Its value determines the maximumsize (in
bytes) of the buffers that will be pre-allocated to store the DDS samples. If the space required for a newDDS
sample is greater than this size, the persistence service will allocate the memory dynamically to the exact size re-
quired by the DDS sample.

This parameter is used to control the memory allocated for the DDS samples in the PRSTDataReaders queues and
the PRSTDataWriters caches.

The size of the DB sample in the PRSTDataWriters is controlled by the value of the tag <persistent_sample_buf-
fer_max_size>.

Default: 4096

0 or 1

Table 46.9 Memory Management Tags

46.9 Configuring Durable Subscriptions in Persistence Service

This section assumes you are familiar with the concept of 7.3.13 Required Subscriptions on page 324.

A Durable Subscription is a Required Subscription where DDS samples are stored and forwarded by Per-
sistence Service.

There are two ways to create a Durable Subscriptions:

1. Programmatically using a DomainParticipant API:

A subscribing application can register a Durable Subscription by providing the topic name and the
durable subscription information, consisting of the Durable Subscription name (role_name in DDS_
EndpointGroup_t) and the quorum_count (quorum_count in DDS_EndpointGroup_t). To
register or delete a Durable Subscription, use the DomainParticipant’s register_durable_sub-
scription() and delete_durable_subscription() operations, respectively (see Table 9.3 DomainPar-
ticipant Operations). The Durable Subscription information is propagated via a built-in topic to
Persistence Service.

2. Preconfigure Persistence Service with a set of Durable Subscriptions:

Persistence Service can be (pre-)configured with a list of Durable Subscriptions using the <dur-
able_subscriptions> XML tag under <participant>.
<participant name="Participant">

...
<durable_subscriptions>

<element>

46.9.1 DDS Sample Memory Management With Durable Subscriptions

<name>Logger</name>
<topic_name>Track</topic_name>
<quorum_count>2</quorum_count>

</element>
<element>

<name>Processor</name>
<topic_name>Track</topic_name>
<quorum_count>1</quorum_count>

</element>
</durable_subscriptions>

</participant>

After registering or configuring the persistence service with specific Durable Subscriptions, the persistence
service will keep DDS samples until they are acknowledged by all the required Durable Subscriptions. In
the above example, the DDS samples must be acknowledged by two DataReaders that belong to the “Log-
ger” Durable Subscription and one DataReader belonging to the “Processor” Durable Subscription.

46.9.1 DDS Sample Memory Management With Durable Subscriptions

The maximum number of DDS samples that will be kept in a PRSTDataWriter queue is determined by the
value of <resource_limits><max_samples> in the <writer_qos> used to configure the PRSTDataWriter.

By default, a PRSTDataWriter configured with KEEP_ALL <history><kind> will keep the DDS
samples in its cache until they are acknowledged by all the Durable Subscriptions associated with the
PRSTDataWriter. After the DDS samples are acknowledged by the Durable Subscriptions, they will be
marked as reclaimable but they will not be purged from the PRSTDataWriter’s queue until the DataWriter
needs these resources for new DDS samples. This may lead to inefficient resource utilization, especially
when <max_samples> is high or UNLIMITED.

The PRSTDataWriter behavior can be changed to purge DDS samples after they have been acknow-
ledged by all the active/matching DataReaders and all the Durable Subscriptions configured for the <per-
sistence_service>. To do so, set the tag <purge_samples_after_acknowledgment> under <persistence_
service> to TRUE. Notice that this setting is global to the service and applies to all the PRSTDataWriters
created by each <persistence_group>.

46.10 Synchronizing of Persistence Service Instances

By default, different Persistence Service instances do not synchronize with each other. For example, in a
scenario with two Persistence Service instances, the first persistence service could receive a DDS sample
‘S1’ from the original DataWriter that is not received by the second persistence service. If the disk where
the first persistence service stores its DDS samples fails, ‘S1’ will be lost.

To enable synchronization between Persistence Servic instances, use the tag <synchronization> under
<persistence_service>.When it comes to synchronization, there are two different kinds of information
that can be synchronized independently:

1206

46.11 Enabling RTI Distributed Logger in Persistence Service

1207

l Information about Durable Subscriptions and their states (see 46.9 Configuring Durable Sub-
scriptions in Persistence Service on page 1205)

l DDS data samples

Tags within
<synchronization> Description

Number
of Tags
Allowed

<synchronize_data>

Enables synchronization of DDS data samples in redundant Persistence Service instances.

When set to 1, DDS samples lost on the way to one service instance can be repaired by anotherwithout im-
pacting the original publisher of that message.

To synchronize the instances, the tag <synchronize_data> must be set to 1 in every instance involved in the
synchronization.

Note: This DDS sample synchronization mechanism is not equivalent to database replication. The extent to
which database instances have identical contents depends on the destination ordering and otherQoS set-
tings for the Persistence Service instances.

Default: 0

0 or 1

<synchronize_
durable_
subscription>

Enables synchronization of Durable Subscriptions in redundant Persistence Service instances.

When set to 1, the different Persistence Service instances will synchronize their Durable Subscription in-
formation. This information includes the set of Durable Subscriptions as well as information about the Durable
Subscription’s state, such as the DDS samples that have already been received by the Durable Sub-
scriptions.

Default: 0

0 or 1

<durable_
subscription_
synchronization_
period>

The period (in milliseconds) at which the information about Durable Subscriptions is synchronized.

Default: 5000 milliseconds
0 or 1

Table 46.10 Synchronization Tags

46.11 Enabling RTI Distributed Logger in Persistence Service

Persistence Service provides integrated support for RTI Distributed Logger (see Part 10: RTI Distributed
Logger on page 1243).

Distributed Logger is included in Connext DDS but it is not supported on all platforms; see the RTI Con-
next DDS Core Libraries Platform Notes to see which platforms support Distributed Logger.

When you enable Distributed Logger, Persistence Service will publish its log messages to Connext DDS.
Then you can use RTI Monitor1 to visualize the log message data. Since the data is provided in a Connext
DDS topic, you can also use rtiddsspy or even write your own visualization tool.

To enable Distributed Logger, modify the Persistence Service XML configuration file. In the <admin-
istration> section, add the <distributed_logger> tag as shown in the example below.

1RTI Monitor is a separate GUI application that can run on the same host as your application or on a different host.

46.12 Enabling RTI Monitoring Library in Persistence Service

<persistence_service name="default">
...
<administration>

...
<distributed_logger>

<enabled>true</enabled>
</distributed_logger>

...
</administration>
...

</persistence_service>

There are more configuration tags that you can use to control Distributed Logger’s behavior. For example,
you can specify a filter so that only certain types of log messages are published. For details, see Enabling
Distributed Logger in RTI Services (Chapter 53 on page 1254)

46.12 Enabling RTI Monitoring Library in Persistence Service

Persistence Service provides integrated support for RTI Monitoring Library (see Part 9: RTI Monitoring
Library on page 1227).

To enable monitoring in Persistence Service, you must specify the property rti.monitor.library for the par-
ticipants that you want to monitor. For example:
<persistence_service name="monitoring_test">

<participant name="monitoring_enabled_participant">
<domain_id>54</domain_id>
<participant_qos>

<property>
<value>
<element>
<name>rti.monitor.library</name>
<value>rtimonitoring</value>
<propagate>false</propagate>

</element>
</value>

</property>
</participant_qos>
<persistence_group name="persistAll">
...
</persistence_group>

</participant>
</persistence_service>

Since Persistence Service is statically linked with RTI Monitoring Library, you do not need to have it in
your library search path.

For details on how to configure the monitoring process, see Configuring Monitoring Library (Chapter 51
on page 1238).

1208

46.13 Support for Extensible Types

1209

46.13 Support for Extensible Types

Persistence Service includes partial support for the OMG 'Extensible and Dynamic Topic Types for DDS'
specification, version 1.3. This section assumes that you are familiar with Extensible Types and you have
read the RTI Connext DDS Core Libraries Extensible Types Guide.

Persistence groups can publish and subscribe to topics associated with final, appendable, and mutable
types.

46.13.1 TypeConsistencyEnforcementQosPolicy Integration

The service will automatically create different pairs (PRSTDataReader, PRSTDataWriter) for each version
of a type discovered for a topic in a persistence group. In Connext DDS 5.0, it is not possible to associate
more than one type with a topic within a single DomainParticipant, therefore each version of a type
requires its own DomainParticipant.

The 8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy on page 599 kind for each
PRSTDataReader is set to DISALLOW_TYPE_COERCION. This value cannot be overwritten by the
user.

For example:
struct A {

int32 x;
};
struct B {

int32 x;
int32 y;

};

Let’s assume that Persistence Service is configured as follows and we have two DataWriters on Topic “T”
publishing type “A” and type “B” and sending TypeObject information.
<persistence_service name="XTypes">

<participant name="XTypesParticipant">
<persistence_group name="XTypesPersistenceGroup">

<filter>T</filter>
</persistence_group>

</participant>
</persistence_service>

When Persistence Service discovers the first DataWriter with type “A”, it will create a DataReader
(PRSTDataReader) to read DDS samples from that DataWriter, and a DataWriter (PRSTDataWriter) to
publish and store the received DDS samples so they can be available to late-joiners.

When Persistence Service discovers the second DataWriter with type “B”, it will see that type “B” is not
equal to type “A”; then it will create a new pair (PRSTDataReader, PRSTDataWriter) to receive and store
DDS samples from the second DataWriter.

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

46.13.2 DataRepresentationQosPolicy Integration

Since the PRSTDataReaders are created with the TypeConsistencyEnforcementQosPolicy’s kind set to
DISALLOW_TYPE_COERCION, the PRSTDataReader with type “A” will not match the DataWriter
with type “B”. Likewise, the PRSTDataReader with type “B” will not match the DataWriter with type
“A”.

46.13.1.1 Type Version Discrimination

Persistence Service uses the rules described in the RTI Connext DDS Core Libraries Extensible Types
Guide to decide whether or not to create a new pair (PRSTDataReader, PRSTDataWriter) when it dis-
covers a DataWriter for a topic “T”.

For DataWriters created with previous Connext DDS releases, Persistence Service will select the first pair
(PRSTDataReader, PRSTDataWriter) with a registered type name equal to the discovered registered type
name since DataWriters created with previous Connext DDS releases (before 5.0) do not send TypeObject
information.

46.13.2 DataRepresentationQosPolicy Integration

There are some restrictions on how the 7.5.3 DATA_REPRESENTATION QosPolicy on page 381 is
configured for the PRSTDataReader and PRSTDataWriter in a persistence group:

l A PRSTDataReader cannot be configured to request two or more data representations. For example,
it is not possible to request XCDR and XCDR2. Subscribing to a Topic in which data is published
in XCDR and XCDR2 format requires creating two different persistence groups.

l The data representation requested by a PRSTDataReader has to be equal to the data representation
offered by the corresponding PRSTDataWriter.

46.14 TCP Transport Support in Persistence Service

You can configure Persistence Service's Participants to use the TCP Transport. To do so, enable the TCP
Transport under the proper XML Persistence Service's <participant_qos> tag.

Make sure the string prefix passed in the property dds.transport.load_plugins is
"dds.transport.tcp". For more information about how to enable the TCP Transport, please see
44.7 TCP/TLS Transport Properties on page 1163.

Note that the Persistence Service's participant_qos will be used at least by two Participants: one for send-
ing data and another for receiving data. Consequently, at least two TCP Transport plugins will be instan-
tiated when enabling the TCP Transport. In order to avoid port collisions, Persistence Service will
automatically assign consecutive ports. For a base, it will use the values set for dds.transport.tcp.server_
bind_port (only when it is non-zero) and dds.transport.tcp.public_address (only if it is set). Con-
sequently, the Participants creating a TCP Transport running as a server will open a minimum of two TCP
ports.

1210

Chapter 47 Running RTI Persistence
Service

This chapter describes how to start and stop Persistence Service.

You can run Persistence Service on any node in the network. It does not have to be run on the
same node as the publishing or subscribing applications for which it is saving/delivering data. If
you run it on a separate node, make sure that the other applications can find it during the discovery
process—that is, it must be in one of the NDDS_DISCOVERY_PEERS lists.

47.1 Starting Persistence Service

The script to run Persistence Service’s executable is located in <NDDSHOME>/bin.

To run this service executable on a target system (not your host development platform),
you must first select the target architecture. To do so, either:
Set the environment variable CONNEXTDDS_ARCH to the name of the target
architecture. (Do this for each command shell you will be using.)
Or set the variable connextdds_architecture in the file rticommon_config.[sh/bat]a to the
name of the target architecture. If the CONNEXTDDS_ARCH environment variable is
set, the architecture in this file will be ignored.

Run rtipersistenceservice -help to see descriptions of the command-line options, which are also
described in more detail in Table 47.1 Persistence Service Command-Line Options.

aThis file is resource/scripts/rticommon_config.sh on Linux or macOS systems,
resource/scripts/rticommon_config.bat on Windows systems.

1211

47.1 Starting Persistence Service

1212

Command-line Option Description

-appName <string>

Assigns a name to the execution of Persistence Service.

Remote commands will refer to the persistence service using this name.

In addition, the name of the DomainParticipants created byPersistence Servicewill be based on this name as fol-
lows:

RTI Persistence Service: <appName>: <participantName>(<pub|sub>)

Default: The name given with -cfgName if present, otherwise it is “RTI_Persistence_Service”

-cfgFile <string>

Specifies an XML configuration file for the Persistence Service.

The parameter is optional since the Persistence Service configuration can be loaded fromother locations. See
46.1 How to Load the Persistence Service XMLConfiguration on page 1187 for further details.

-cfgName <string>

Required.

Selects a Persistence Service configuration.

The same configuration files can be used to configure multiple persistence services. Each Persistence Service in-
stance will load its configuration froma different <persistence_service> tag based on the name specified with this
option.

If not specified, Persistence Servicewill print the list of available configurations and then exit.

-identifyExecution
Appends the host name and process ID to the service name provided with the -appName option. This helps en-
sure unique names for remote administration.

-enableDatabaseLocking

Prevents multiple instances of Persistence Service fromaccessing the same database. This feature only has ef-
fect when <persistent_storage> is used.

Default: Database locking is disabled. By default, multiple instances of Persistence Service can access the same
database.

-domainId <ID>
Sets the domain ID for the DomainParticipants created byPersistence Service.

If not specified, the value in the <participant> XML tag (see Table 46.7 Participant Tags) is used.

-re-
moteAdministrationDomainId
<ID>

Enables remote administration and sets the domain ID for remote communication.

When remote administration is enabled, Persistence Servicewill create a DomainParticipant, Publisher, Sub-
scriber,DataWriter, and DataReader in the designated DDS domain.

This option overwrites the value of the tag <domain_id> within <administration>.

Default: Use the value <domain_id> under<administration>.

-help Prints the Persistence Service version and list of command-line options.

-licenseFile <file>

Specifies the license file (path and filename). Only applicable to licensed-managed (LM) versions of Persistence
Service.

If not specified, Persistence Service looks for the license as described in the RTI Connext DDS Installation
Guide.

-restore <0|1>

Indicates whether or not Persistence Servicemust restore its state from the persistent storage. 0 = do not restore;
1 = do restore.

If this option is not specified, the corresponding XML value in the <persistent_storage> tag (see Table 46.4 Per-
sistent Storage tags) is used.

Table 47.1 Persistence Service Command-Line Options

47.1 Starting Persistence Service

Command-line Option Description

-noAutoStart

Indicates that Persistence Servicewill not be started when the process is executed.

Use this option if you plan to start Persistence Service remotely, as described in Administering Persistence Ser-
vice from aRemote Location (Chapter 48 on page 1215).

-infoDir <dir>

The info directory of the running Persistence Service.

Using this command line option, Persistence Service can be configured to create a file used to monitor the status
of the last shutdown.

At startup, the Persistence Service instance will create a file called ps.pid into the directory specified by -infoDir.

If Persistence Service is shutdown gracefully, the file will be deleted before the process exists.

If Persistence Service is not shutdown gracefully, the file will not be deleted.

You can detect the shutdown state of Persistence Service by checking for the presence of the ps.pid file.

If the file is present and Persistence Service is no longer running, the previous shutdown was not graceful.

If Persistence Service is started and a ps.pid file exists, Persistence Servicewill immediately shutdown. In this
case, you must remove the file before Persistence Service can be restarted again.

Default: The file ps.pidwill not be generated.

-maxObjectsPerThread <int>

Parameter used to configure the maximumobjects per thread in the DomainParticipantFactory created byPer-
sistence Service.

Default:Connext DDS default

-heapSnapshotPeriod

Enables heap monitoring.

Persistence Servicewill generate a heap snapshot every n seconds.

Default: Heap monitoring is disabled.

Valid range: [1, 86400]

-serviceThreadStackSize <int>
Service thread stack size.

Default:Connext DDS default

-verbosity

Persistence Service verbosity:

0 -No verbosity

1 - Exceptions (Core Libraries and Persistence Service)

2 -Warning (Persistence Service)

3 - Information (Persistence Service)

4 -Warning (Core Libraries and Persistence Service)

5 - Tracing (Persistence Service)

6 - Tracing (Core Libraries and Persistence Service)

Each verbosity level, n, includes all the verbosity levels smaller than n.

Default: 1

-version Prints the Persistence Service version.

Table 47.1 Persistence Service Command-Line Options

1213

47.2 Stopping Persistence Service

1214

47.2 Stopping Persistence Service

To stop Persistence Service: Press Ctrl-C.

Persistence Service will close all files and perform a clean shutdown. It can also be stopped and shutdown
remotely (see Administering Persistence Service from a Remote Location (Chapter 48 on page 1215)).

Chapter 48 Administering Persistence
Service from a Remote Location

Persistence Service can be controlled remotely by sending commands through a special Topic.
Any Connext DDS application can be implemented to send these commands and receive the cor-
responding responses. A shell application that sends/receives these commands is provided with Per-
sistence Service.

The script for the shell application is $NDDSHOME/bin/rtipssh.

Entering rtipssh -help will show you the command-line options:
RTI Persistence Service Shell v6.1.2
Usage: rtipssh [options]...
Options:
-domainId <integer> Domain ID for the remote configuration
-timeout <seconds> Max time to wait a remote response
-cmdFile <file> Run commands in this file
-help Displays this information

48.1 Enabling Remote Administration

By default, remote administration is disabled in Persistence Service.

To enable remote administration you can use the <administration> tag (see 46.5 Configuring
Remote Administration on page 1193) or the -remoteAdministrationDomainId command-line
parameter (see Table 47.1 Persistence Service Command-Line Options), which enables remote
administration and sets the domain ID for remote communication.

When remote administration is enabled, Persistence Service will create a DomainParticipant, Pub-
lisher, Subscriber, DataWriter, and DataReader in the designated DDS domain. (The QoS values
for these entities are described in 46.5 Configuring Remote Administration on page 1193.)

1215

48.2 Remote Commands

1216

48.2 Remote Commands

This section describes the remote commands using the shell interface; 48.3 Accessing Persistence Service
from a Connext DDS Application on the next page explains how to use remote administration from a Con-
next DDS application.

Remote commands:
start <target_persistence_service>
stop <target_persistence_service>
shutdown <target_persistence_service>
status <target_persistence_service>

Parameters:

<target_persistence_service> can be:

l The application name of a persistence service, such as “MyPersistenceService1”, as specified at
start-up with the command-line option -appName

l A wildcard expression1 for a persistence service name, such as
“MyPersistenceService*”

48.2.1 start
start <target_persistence_service>

The start command starts the persistence service instance. DDS samples will not be persisted until the per-
sistence service is started.

By default, the persistence service is started automatically when the process is executed. To start the ser-
vice remotely use the command line option -noAutoStart (see Table 47.1 Persistence Service Command-
Line Options).

48.2.2 stop
stop <target_persistence_service>

The stop command stops the persistence service instance.

An instance that has been stopped can be started again using the command start.

48.2.3 shutdown
shutdown <target_persistence-_service>

The command shutdown stops the persistence service instance and finalizes the process

1As defined by the POSIX fnmatch API (1003.2-1992 section B.6)

48.2.4 status

48.2.4 status
status <target_persistence_service>

The status command gets the status of a running persistence service instance. Possible values are
STARTED and STOPPED.

48.3 Accessing Persistence Service from a Connext DDS Application

You can send commands to control a Persistence Service instance from your own Connext DDS applic-
ation. You will need to create a DataWriter for a specific topic and type. Then, you can send a DDS
sample that contains a command and its parameters. Optionally, you can create a DataReader for a spe-
cific topic to receive the results of the execution of your commands.

The topics are:

l rti/persistence_service/administration/command_request

l rti/persistence_service/administration/command_response

The types are:

l RTI::PersistenceService::Administration::CommandRequest

l RTI::PersistenceService::Administration::CommandResponse

You can find the IDL definitions for these types in:

<NDDSHOME>/resource/idl/PersistenceServiceAdministration.idl.

The QoS configuration of your DataWriter and DataReader must be compatible with the one used by the
persistence service (see how this QoS is configured in 46.5 Configuring Remote Administration on
page 1193).

The following example in C shows how to send a command to shutdown a persistence service instance:
/***/
/*** Create the Entities needed to send command request ****/
/***/
participant = DDS_DomainParticipantFactory_create_participant(

DDS_TheParticipantFactory, domainId,
&DDS_PARTICIPANT_QOS_DEFAULT, NULL,
DDS_STATUS_MASK_NONE);

if (participant == NULL)
{ /* Error */ }
if (publisher == NULL)
{ /* Error */ }

subscriber = DDS_DomainParticipant_create_subscriber(
participant, &DDS_SUBSCRIBER_QOS_DEFAULT,
NULL, DDS_STATUS_MASK_NONE);

1217

48.3 Accessing Persistence Service from a Connext DDS Application

1218

publisher = DDS_DomainParticipant_create_publisher(
participant, &DDS_PUBLISHER_QOS_DEFAULT,
NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL)
{ /* Error */ }

typeName =
RTI_PersistenceService_Administration_CommandRequestTypeSupport_get_type_name();
retcode =
RTI_PersistenceService_Administration_CommandRequestTypeSupport_register_type(

participant, typeName);
if (retcode != DDS_RETCODE_OK)
{ /* Error */ }

topicCmd = DDS_DomainParticipant_create_topic(
participant,
"rti/persistence_service/administration/command_request",
typeName, &DDS_TOPIC_QOS_DEFAULT,
NULL, DDS_STATUS_MASK_NONE);

if (topicCmd == NULL)
{ /* Error */ }

typeName =
RTI_PersistenceService_Administration_CommandResponseTypeSupport_get_type_name();
retcode =
RTI_PersistenceService_Administration_CommandResponseTypeSupport_register_type(

participant, typeName);
if (retcode != DDS_RETCODE_OK)
{ /* Error */ }

topicResponse = DDS_DomainParticipant_create_topic(
participant,
"rti/persistence_service/administration/command_response",
typeName, &DDS_TOPIC_QOS_DEFAULT, NULL,
DDS_STATUS_MASK_NONE);

if (topicResponse == NULL)
{ /* Error */ }

writerQos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
writerQos.history.kind = DDS_KEEP_ALL_HISTORY_QOS;
writer = DDS_Publisher_create_datawriter(

publisher, topicCmd, &writerQos,
NULL /* listener */,
DDS_STATUS_MASK_NONE);

if (writer == NULL)
{ /* Error */ }

readerQos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
readerQos.history.kind = DDS_KEEP_ALL_HISTORY_QOS;
reader = DDS_Subscriber_create_datareader(

subscriber,
DDS_Topic_as_topicdescription(topicResponse),
&readerQos, NULL, DDS_STATUS_MASK_NONE);

if (reader == NULL)
{ /* Error */ }

/***/

48.3 Accessing Persistence Service from a Connext DDS Application

/*** Wait for discovery **/
/***/
/* Wait until we discover one reader and one writer matching
* with the command request DataWriter and the command response
* DataReader */
while (count < maxPollPeriods)
{
retcode = DDS_DataWriter_get_publication_matched_status(

writer, &pubMatchStatus);
if (retcode != DDS_RETCODE_OK)
{ /* Error */ }

retcode = DDS_DataReader_get_subscription_matched_status(
reader, &subMatchStatus);

if (retcode != DDS_RETCODE_OK) { /* Error */ }

if (pubMatchStatus.total_count == 1 &&
subMatchStatus.total_count == 1)

{ break; }
count++;
NDDS_Utility_sleep(&pollPeriod);

}
if (count == maxPollPeriods)
{ /* Error */ }

/***/
/*** Send the command request **************************************/
/***/
request =

RTI_PersistenceService_Administration_CommandRequestTypeSupport_create_data();
if (request == NULL)
{ /* Error */ }

/* request->id provides an unique way to identify a request so that
* it can be correlated with a response. Although one of the fields is
* called host it does not necessarily has to contain the IP address of
* the host. Same applies to app */
request->id.host = 0;
request->id.app = 0;
request->id.invocation = 0;
strcpy(request->target_ps, "MyPersistenceService");
request->command._d = RTI_PERSISTENCE_SERVICE_COMMAND_SHUTDOWN;
retcode = RTI_PersistenceService_Administration_CommandRequestDataWriter_write(

(RTI_PersistenceService_Administration_CommandRequestDataWriter *) writer,
request, &instance_handle);

if (retcode != DDS_RETCODE_OK)
{ /* Error */ }

/***/
/*** Wait for response **/
/***/
response =

RTI_PersistenceService_Administration_CommandResponseTypeSupport_create_data();
if (response == NULL)
{ /* Error */ }
count = 0;
while (count < maxPollPeriods) {

1219

48.3 Accessing Persistence Service from a Connext DDS Application

1220

retcode =
RTI_PersistenceService_Administration_CommandResponseDataReader_take_next_sample(
(RTI_PersistenceService_Administration_CommandResponseDataReader*) reader,
response, &sampleInfo);

if (retcode == DDS_RETCODE_OK) {
break;

} else if (retcode != DDS_RETCODE_NO_DATA) {
/* Error */

}
NDDS_Utility_sleep(&pollPeriod);
count++;

}
if (count == maxPollPeriods) {

printf("No response received\n");
} else {

printf("Response received: %s\n",response->message);
}

Chapter 49 Advanced Persistence Service
Scenarios

This section covers several advanced scenarios for using Persistence Service.

49.1 Scenario: Load-balanced Persistence Services

Each running instance of the Persistence Service executes as a single process in a single computer.
In high-throughput scenarios the Persistence Service may become a bottleneck. The main reasons
are:

l If the Persistence Service is configured to persist its DDS samples to durable storage (a disk
or a database) this will further limit the throughput of DDS samples that can be persisted to
what the database and/or disk can handle. Depending on computer hardware, the disk or
database this limit may be in the order of tens of thousands of DDS samples per second
which is far less than what could be communicated system-wide.

l Depending on the CPU there will be limits on the throughput of DDS samples that can be
received by a single process.

l The computer running the Persistence Service is typically connected to the network via a
single network interface so the data that can be persisted will be limited to the throughput
that flows though a single interface which is typically far less that the aggregated throughput
that can flow on the complete network.

To overcome these limits multiple instances of the RTI Persistence Service can be run in parallel.
These instances may run in multiple machines and be configured in a “load balancing” fashion
such that each Persistence Service process is only responsible for persisting a subset of the data
published on the DDS domain.

Multiple strategies for partitioning the data stored by each Persistence Service instance are possible:

1221

49.1 Scenario: Load-balanced Persistence Services

1222

l Balance Persistence Services by Topic name. This strategy configures each persistence service to
persist different Topic names. This is accomplished by associating a filter expression with the declar-
ation of the persistent groups used to configure each Persistence Service (see 46.8 Creating Per-
sistence Groups on page 1198). The filter expression is applied to the Topic names, so for example
one Persistence Service could be configured with the filter “[A-Z]*” filter in the name of the Topics
that it will persist and the second with the filter “[a-z]*”. With this configuration the first Persistence
Service will persist data produced by DataWriters that specify durability TRANSIENT or
PERSISTENT and have a Topic name that starts with a capital letter and the second Persistence Ser-
vice will do the same for Topics that start with a lower-case letter.

l Balance Persistence Services by data content. In some scenarios the data published on a single
Topic is too much for a single Persistence Service to handle. In this case the Persistence Services
can also be configured with filter expressions based on the content of the data. This is accomplished
by associating a content filter with the declaration of the persistent groups used to configure each
Persistence Service (see 46.8 Creating Persistence Groups on page 1198).

When multiple instances of Persistence Service are used to store data on the same Topic, it becomes pos-
sible for DDS samples from the same original DataWriter to be stored in separate instances of Persistence
Service. In this situation, Connext DDS DataReaders automatically merge the data from the multiple Per-
sistence Services such that the relative order of the DDS samples from the original DataWriter is pre-
served. This Connext DDS capability is called Collaborative Datawriters because multiple DataWriters, in
this case the ones for different Persistence Services, collaborate to reconstruct the original stream. (See Col-
laborative DataWriters (Chapter 12 on page 733)).
Figure 49.1: Load-Balanced Persistence Services Scenario

49.2 Scenario: Delegated Reliability

49.2 Scenario: Delegated Reliability

The DDS-RTPS reliability protocol requires the DataWriter to periodically send HeartBeat messages to
the DataReaders, process their ACKs and NACK messages, keep track of the DataReader state, and send
the necessary repairs. The additional load caused by the reliability protocol increases with the number of
reliable DataReaders matched with the DataWriter. Even if the data is sent via multicast the number of
ACKs and NACKs will increase with the number of DataReaders.

In situations where there many DataReaders are subscribing to the same Topic, the reliability and repair
traffic may become too much for the DataWriter to handle and negatively impact its performance. To
address this situation, Connext DDS provides the ability to configure the DataWriter so that it delegates the
reliability task to a separate service. This approach is known as delegated reliability.

To take advantage of delegated reliability, both the original DataWriter and DataReader must be con-
figured to enable an external service to ensure the reliability on their behalf. This is done by setting both
the dds.data_writer.reliability.delegate_reliability property on the DataWriter and the dds.data_read-
er.reliability.delegate_reliability property on the DataReader to 1.

With this configuration, the DataWriter creates a reliable channel to Persistence Service, yet sends data
using ‘best-effort’ reliability to the DataReaders directly. If a DDS sample is dropped, Persistence Service
will repair the DDS sample. Persistence Service is configured with push_on_write (in the 7.5.5 DATA_
WRITER_PROTOCOL QosPolicy (DDS Extension) on page 390) set to false. This way, DDS samples
will only be sent from Persistence Service to the DataReaders when they are explicitly NACKed by the
DataReader.
Figure 49.2: Delegated Reliability Scenario

1223

49.3 Scenario: Slow Consumer

1224

49.3 Scenario: Slow Consumer

Unless special measures are taken, the presence of slow consumers can impact the overall behavior of the
system. If a DataReader is not keeping up with the DDS samples being sent by the DataWriter, it will
apply back-pressure to the DataWriter to slow the rate at which the DataWriter can write DDS samples.
With delegated reliability (see 49.2 Scenario: Delegated Reliability on the previous page), the original
DataWriter can offload the processing of the ACK/NACK messages generated by the DataReaders to a
PRSTDataWriter. However, the original DataWriter still has a reliable channel with the PRSTDataReader
that can slow it down.

By default, Persistence Service uses the Connext DDS receive thread to read DDS samples from the
PRStDataReaders, write the DDS samples to the PRSTDataWriters history, and send ACKs to the ori-
ginal DataWriter. With this configuration, a PRSTDataReader does not ACK DDS samples to the original
DataWriter until they are written into the corresponding PRSTDataWriter’s history. Since multiple
DataReaders may be accessing the PRSTDataWriter history at the same time that the persistence service is
trying to write new DDS samples, the PRSTDataWriter history becomes a contention point that can indir-
ectly slow down the original DataWriter (see Figure 49.3: Slow-Consumer Scenario with Delegated Reli-
ability below).
Figure 49.3: Slow-Consumer Scenario with Delegated Reliability

To remove this contention point and decouple the slow consumer from the original DataWriter, Per-
sistence Service supports a mode where DDS samples can be buffered prior to being added to the
PRSTDataWriter’s queue (see Figure 49.4: Slow Consumer Scenario with Delegated Reliability and DDS
Sample Log on the next page).

49.3 Scenario: Slow Consumer

Figure 49.4: Slow Consumer Scenario with Delegated Reliability and DDS Sample Log

If the PRSTDataWriter slows down due to the presence of slow consumers, the buffer will hold DDS
samples such that the original DataWriter and the rest of the system are not impacted. This buffer is called
the Persistence Service sample log. The persistence service creates a separate DDS sample log per
PRSTDataWriter in the group. In addition to the DDS sample log, the persistence service creates a thread
(write thread) whose main function is to read DDS samples from the log and write them to the associated
PRSTDataWriter. There is one thread per PRSTDataWriter.

Persistence Service currently does not allow multiple DDS sample logs to share the same write
thread.

Persistence Service can be configured to enable DDS sample logging per persistence group using the
<sample_logging> XML tag to specify the log’s configuration parameters—see Table 49.1 Sample Log-
ging Tags..

1225

49.3 Scenario: Slow Consumer

1226

Tags
within
<sample_
logging>

Description Number of
Tags Allowed

<enable>

A DDS_Boolean (see Table 46.1 Supported Tag Values) that indicates whether or not DDS sample logging is
enabled in the container persistence group.

Default: 0

0 or 1

<log_file_
size>

Specifies the maximumsize of a DDS sample log file in Mbytes. When a log file becomes full, Persistence Ser-
vice creates a new log file.

Default: 60 MB

0 or 1

<log_flush_
period>

The period (in milliseconds) at which Persistence Service removes DDS sample log files whose full content have
been written into the PRSTDataWriter by the DDS sample log write thread.

Default: 10000 milliseconds

0 or 1

<log_read_
batch>

Determines howmany DDS samples should be read and processed at once by the DDS sample log write
thread.

Default: 100 DDS samples

0 or 1

<log_book-
mark_
period>

DDS samples in the DDS sample log are identified by two attributes:

l The file ID

l The row ID (position within the file)

The read bookmark indicates the most recently processed DDS sample.

This tag indicates how often (in milliseconds) the read bookmark is persisted into disk.

Default: 1000 milliseconds

0 or 1

Table 49.1 Sample Logging Tags

Enabling DDS sample logging in a persistence group is expensive. For every PRSTDataWriter,
Persistence Service will create a write thread and an event thread that will be in charge of flushing
the log files and storing the read bookmark. Therefore, DDS sample logging should be enabled
only for the persistence groups where it is needed based on the potential presence of slow
consumers and/or the expected data rate in the persistence group. Small data rates will likely not
require a DDS sample log.

Part 9: RTI Monitoring Library

Part 9: RTI Monitoring Library
RTI Monitoring Library is a plug-in that enables Connext DDS applications to provide monitoring data.
The monitoring data can be visualized with RTI Monitor, a separate GUI application that can run on the
same host asMonitoring Library or on a different host.

Connext DDS notifiesMonitoring Library every time an entity is created/deleted or a QoS is changed.
Monitoring Library periodically queries the status of all Connext DDS entities. You can enable/disable
monitoring by setting values in the DomainParticipant’s PropertyQosPolicy (programmatically or through
an XML QoS profile).

This part of the User’s Manual includes:

l Using Monitoring Library in Your Application (Chapter 50 on page 1228)

l Configuring Monitoring Library (Chapter 51 on page 1238)

1227

Chapter 50 Using Monitoring Library in
Your Application

50.1 Enabling Monitoring

There are two ways to enable monitoring in your application:

l 50.1.1 Method 1—Change the Participant QoS to Automatically Load the Dynamic Mon-
itoring Library on the next page

l 50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring Library Create
Function Pointer and Explicitly Load the Monitoring Library on page 1230

Notes:

l The libraries that you will need for Monitoring are listed in the RTI Connext DDS Core
Libraries Platform Notes.

l If your original application has made modifications to the ParticipantQos resource_lim-
its.type_code_max_serialized_length, ParticipantQos resource_limits.type_object_max_
serialized_length, or any of the transport's default settings to enable large type code or large
data, refer to 50.3 What Monitoring Topics are Published? on page 1235 for additional QoS
modifications that may be needed.

l Monitoring Library creates internal DataWriters to publish monitoring data by making modi-
fications based on the default DataWriter QoS settings. If you have made changes to the
default DataWriter QoS, especially if you have increased/decreased the initial or maximum
DDS sample/instance values, Monitoring Library may have trouble creating DataWriters to
publish monitoring data, or it may limit the number of statistics that you can publish through
the internal monitoring writers. If this is true for your case, you may want to specify the qos_
library and qos_profile that will be used to create these internal writers for publishing mon-

1228

50.1.1 Method 1—Change the Participant QoS to Automatically Load the Dynamic Monitoring Library

1229

itoring data, to avoid being impacted by default DataWriter QoS settings. See Configuring Mon-
itoring Library (Chapter 51 on page 1238) for details.

50.1.1 Method 1—Change the Participant QoS to Automatically Load the
Dynamic Monitoring Library

If all of the following are true, you can enable monitoring simply by changing your participant QoS (oth-
erwise, use 50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring Library Create
Function Pointer and Explicitly Load the Monitoring Library on the next page):

l Your application is linked to dynamic Connext DDS libraries (see 10.3.2 Mixing Static and
Dynamic Libraries not Supported on page 688), or you are using Java or .Net, and

l You will run your application on a platform that is not VxWorks or INTEGRITY (which don't sup-
port this), and

l You are NOT linking in an additional monitoring library into your application at link time (you let
the middleware load the monitoring library for you automatically as needed).

If you change the QoS in an XML file as shown below, you can enable/disable monitoring without recom-
piling. If you change the QoS in your source code, you may need to recompile every time you enable/dis-
able monitoring.

If you need to change the participant QoS by hand, refer to the definition of Built-
inQosLib::Generic.Monitoring.Common in <NDDSHOME>/re-
source/xml/BuiltinProfiles.documentationONLY.xml for the values you should set.

Example XML to enable monitoring:

50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring Library Create Function Pointer

<domain_participant_qos>
<property>

<value>
<element>

<name>rti.monitor.library</name>
<value>rtimonitoring</value>

</element>
<element>

<name>rti.monitor.create_function</name>
<value>RTIDefaultMonitor_create</value>

 </element>
</value>

</property>
</domain_participant_qos>

50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring
Library Create Function Pointer and Explicitly Load the Monitoring
Library

If any of the following are true, you must change the Participant QoS to enable monitoring and explicitly
load the correct version ofMonitoring Library at compile time:

l Your application is linked to the static version of Connext DDS libraries. (See 10.3.2 Mixing Static
and Dynamic Libraries not Supported on page 688.)

l You will run your application on a VxWorks or INTEGRITY platform.

l You want to explicitly link in the monitoring library (static or dynamic) into your application.

There are two ways to do this:

l 50.1.2.1 Method 2-A: Change the Participant QoS by Specifying the Monitoring Library Create
Function Pointer in Source Code on the next page: Applies to most users who cannot use Method 1
and do not mind changing/recompiling source code every time you enable/disable monitoring, or
whose system does not support setting environment variables programmatically. Participant QoS
must be defined in source code with this approach.

l 50.1.2.2 Method 2-B: Change the Participant QoS by Specifying the Monitoring Library Create
Function Pointer in an Environment Variable on page 1234: Applies to users who cannot use
Method 1 and want to specify the create function pointer via an environment variable. This
approach allows the Participant QoS to be defined in an XML file or in source code.

1230

50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring Library Create Function Pointer

1231

50.1.2.1 Method 2-A: Change the Participant QoS by Specifying the Monitoring Library
Create Function Pointer in Source Code

1. Modify your Connext DDS application based on the following examples.

Traditional C++ Example:

#include "ndds/ndds_cpp.h"
#include "monitor/monitor_common.h"
extern "C" int publisher_main(int domainId, int sample_count)
{

...
DDSDomainParticipant *participant = NULL;
DDS_DomainParticipantQos participant_qos;

/* Get default QoS */
retcode =
DDSTheParticipantFactory->get_default_participant_qos(

participant_qos);
if (retcode != DDS_RETCODE_OK) {

/*Error*/
}
/* This property indicates that the DomainParticipant

has monitoring turned on. The property name MUST be
"rti.monitor.library". The value can be anything.*/

retcode = DDSPropertyQosPolicyHelper::add_property(
participant_qos.property,
"rti.monitor.library", "rtimonitoring", DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/*Error*/

}
/* The property name "rti.monitor.create_function"

indicates the entry point for the monitoring library.
The value MUST be the value of the function pointer of
RTIDefaultMonitor_create */

retcode = DDSPropertyQosPolicyHelper::add_pointer_property(
participant_qos.property,
"rti.monitor.create_function_ptr",
(void *) RTIDefaultMonitor_create);

if (retcode!= DDS_RETCODE_OK) {
/* Error */

}
/* Create DomainParticipant with participant_qos */
participant = DDSTheParticipantFactory->create_participant(

domainId, participant_qos,NULL /* listener */,
DDS_STATUS_MASK_NONE);

if (participant == NULL) {
/* Error */

}
...

50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring Library Create Function Pointer

Modern C++ Example:

#include "rti/rti.hpp" // include all the modern C++ API
#include "monitor/monitor_common.h" // for RTIDefaultMonitor_create
//...
using rti::core::policy::Property;

// Get property policy from default DomainParticipantQos
auto participant_qos =

dds::core::QosProvider::Default().participant_qos();
auto property_policy = participant_qos.policy<Property>();

// This property turns monitoring on
property_policy.set(Property::Entry("rti.monitor.library",

"rtimonitoring"));

// This property specifies the entry point (function
// pointer) for the monitoring library.
std::ostringstream monitor_function_to_str;
monitor_function_to_str <<

reinterpret_cast<void*>(RTIDefaultMonitor_create);
property_policy.set(Property::Entry(

"rti.monitor.create_function_ptr",
monitor_function_to_str.str()));

participant_qos << property_policy;

// Create a DomainParticipant with Qos
dds::domain::DomainParticipant participant(0, participant_qos);

...

C Example:
#include "ndds/ndds_c.h"
#include "monitor/monitor_common.h"
...
extern "C" int publisher_main(int domainId, int sample_count)
{

DDS_DomainParticipantFactory *factory = NULL;
struct DDS_DomainParticipantQos participantQos =
DDS_DomainParticipantQos_INITIALIZER;

DDS_DomainParticipant *participant = NULL;
factory = DDS_DomainParticipantFactory_get_instance();
if (factory == NULL) {

/* error */
}

1232

50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring Library Create Function Pointer

1233

if (DDS_DomainParticipantFactory_get_default_participant_qos(
factory, &participantQos) != DDS_RETCODE_OK) {

/* error */
}
/* This property indicates that the DomainParticipant has

monitoring turned on. The property name MUST be
“rti.monitor.library”. The value can be anything.*/

if (DDS_PropertyQosPolicyHelper_add_property(
&participantQos.property,
"rti.monitor.library", "rtimonitoring",
DDS_BOOLEAN_FALSE) != DDS_RETCODE_OK) {

/* error */
}
/* The property name "rti.monitor.create_function_ptr"

indicates the entry point for the monitoring library.
The value MUST be the value of the function pointer
of RTIDefaultMonitor_create */

if (DDS_PropertyQosPolicyHelper_add_pointer_property(
&participantQos.property,
"rti.monitor.create_function_ptr",RTIDefaultMonitor_create)
!= DDS_RETCODE_OK) {

/* error */
}
/* create DomainParticipant with participantQos */
participant=

DDS_DomainParticipantFactory_create_participant(
factory, domainId, &participantQos,
NULL /* listener */,
DDS_STATUS_MASK_NONE);

if (participant == NULL) {
/* error */

}
DDS_DomainParticipantQos_finalize(&participantQos);
...

Note:
l In the above code, you may notice that valueBuffer is initialized to 17 characters. This is
because a pointer (RTIDefaultMonitor_create) is at most 8 bytes (on a 64-bit system) and
it takes two characters to represent a byte in hex. So the total size must be:

(2 * 8 characters) + 1 null-termination character = 17 characters

2. Link theMonitoring Library for your platform into your application at compile time (the Monitoring
libraries are listed in the RTI Connext DDS Core Libraries Platform Notes).

The kind of monitoring library that you link into your application at compile time must be consistent
with the kind of Connext DDS libraries that you are linking into your application (static/dynamic,
release/debug version of the libraries).

50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring Library Create Function Pointer

On Windows systems:If you are linking a static monitoring library, you will also need to link in
Psapi.lib at compile time.

50.1.2.2 Method 2-B: Change the Participant QoS by Specifying the Monitoring Library
Create Function Pointer in an Environment Variable

This is similar to Method 2-A, but if you specify the function pointer value for rti.monitor.create_func-
tion_ptr in an environment variable that is set programmatically, you can specify your QoS either in an
XML file or in source code. If you specify the QoS in an XML file, you can enable/disable monitoring
without recompiling. If you change the QoS in your source code, you may need to recompile every time
you enable/disable monitoring.

1. In XML, enable monitoring by setting the rti.monitor.create_function_ptr property to an envir-
onment variable. In our example, the variable is named RTIMONITORFUNCPTR.

<participant_qos>
<property>

<value>
<element>

<name>rti.monitor.library</name>
<value>rtimonitoring</value>

</element>
<element>

<name>rti.monitor.create_function_ptr</name>
<value>$(RTIMONITORFUNCPTR)</value>

</element>
</value>

</property>
</participant_qos>

2. In the DDS application that links in the monitoring library, get the function pointer of RTIDe-
faultMonitor_create and write it to the same environment variable you named in Step 1 and create
a DomainParticipant by using the XML profile specified in Step 1. (Setting of the environment vari-
able must appear in the application before it creates the DomainParticipant using the profile from
Step 1.)

Here is an example in C:
#include <stdio.h>
#include <stdlib.h>
#include "monitor/monitor_common.h"
...
char putenvBuffer[34];
int putenvReturn;
putenvBuffer[0] = '\0';
sprintf(putenvBuffer, "RTIMONITORFUNCPTR=%p",

RTIDefaultMonitor_create);
putenvReturn = putenv(putenvBuffer);
if (putenvReturn) {

printf(
"Error: couldn't set env variable for RTIMONITORFUNCPTR. "
"error code: %d\n", putenvReturn);

1234

50.2 How does Monitoring Library Work?

1235

}
...
/* create DomainParticipant using XML profile from Step 1 */
...

Note: In the above code, you may notice that putenvBuffer is initialized to 34 characters. This is
because a pointer (RTIDefaultMonitor_create) is at most 8 bytes (on a 64-bit system) and it takes 2
characters to represent a byte in hex. So the total size must be: strlen(RTIMONITORFUNCPTR) +
(2 * 8 characters) + 1 null-termination character = 17 + 16 + 1 = 34 characters

3. Link theMonitoring Library for your platform into your application at compile time (the Monitoring
libraries are listed in the RTI Connext DDS Core Libraries Platform Notes).

The kind of monitoring library that you link into your application at compile time must be consistent
with the kind of Connext DDS libraries that you are linking into your application (static/dynamic,
release/debug version of the libraries).

On Windows systems: If you are linking a static monitoring library, you will also need to link in
Psapi.lib at compile time.

50.2 How does Monitoring Library Work?

Monitoring Library works by creating DDS Topics that publish information about the other DDS entities
contained in the same operating system process. The Topics can be created inside of the first DomainPar-
ticipant that enables the library (the default). Or they may be created in a separate DomainParticipant if
the rti.monitor.config.new_participant_domain_id property is used. Use cases for this latter con-
figuration include controlling the domain ID on which this information is exchanged (for example to
ensure that this data does not interfere with production topics) as well as the ability to specify the QoS that
is used for the DomainParticipant (through the rti.monitor.config.qos_library and rti.-
monitor.config.qos_profile properties). It may be desirable to specify the QoS forMonitoring Library's
DomainParticipant if the information will be consumed on a different transport or simply to enable the fea-
ture but keep it as isolated from the production system as possible.

50.3 What Monitoring Topics are Published?

Two categories of predefined monitoring topics are sent out:

l Descriptions are published when an entity is created or deleted, or there are QoS changes (see Table
50.1 Descriptions (QoS and Other Static System Information)).

l Entity Statistics are published periodically (see Table 50.2 Entity Statistics (Statuses, Aggregated
Statuses, CPU and Memory Usage)).

50.4 Enabling Support for Large Type-Code (Optional)

Topic Name Topic Contents

rti/dds/monitoring/domainParticipantDescription DomainParticipantQoS and other static information

rti/dds/monitoring/topicDescription TopicQoS and other static information

rti/dds/monitoring/publisherDescription Publisher QoS and other static information

rti/dds/monitoring/subscriberDescription Subscriber QoS and other static information

rti/dds/monitoring/dataReaderDescription DataReader QoS and other static information

rti/dds/monitoring/dataWriterDescription DataWriter QoS and other static information

Table 50.1 Descriptions (QoS and Other Static System Information)

Topic Name Topic Contents

rti/dds/monitoring/domainParticipantEntityStatistics Number of entities discovered in the system, CPUand memory usage of the process

rti/dds/monitoring/dataReaderEntityStatistics DataReader statuses

rti/dds/monitoring/dataWriterEntityStatistics DataWriter statuses

rti/dds/monitoring/topicEntityStatistics Topic statuses

rti/dds/monitoring/
dataReaderEntityMatchedPublicationStatistics

DataReader statuses calculated on a per discovered matching writer basis

rti/dds/monitoring/
dataWriterEntityMatchedSubscriptionStatistics

DataWriter statuses calculated on a per discovered matching reader basis

rti/dds/monitoring/
dataWriterEntityMatchedSubscriptionWithLocatorStatistics

DataWriter statuses calculated on a per sending destination basis

Table 50.2 Entity Statistics (Statuses, Aggregated Statuses, CPU and Memory Usage)

All monitoring data are sent out using specially created DataWriters with the above topics.

You can configure some aspects ofMonitoring Library’s behavior, such as which monitoring topics to
turn on, which user topics to monitor, how often to publish the statistics topics, and whether to publish
monitoring data using (a) the participant created in the user’s application that has monitoring turned on or
(b) a separate participant created just for publishing monitoring data. See Configuring Monitoring Library
(Chapter 51 on page 1238).

50.4 Enabling Support for Large Type-Code (Optional)

Some monitoring topics have large type-code (larger than the default maximum type code serialized size
setting). If you useMonitor to display all the monitoring data, it already has all the monitoring types built-

1236

50.5 Troubleshooting Monitoring

1237

in and therefore it uses the default maximum type-code serialized size in the Connext DDS application and
there is no problem. However, if you are using any other tools to display monitoring data (such as RTI
Spreadsheet Add-in for Microsoft Excel, rtiddsspy, or writing your own application to subscribe to mon-
itoring data), or if your user data-type has large type-code, you may need to increase the maximum type-
object serialized size setting in the DomainParticipantResourceLimitsQosPolicy.

50.5 Troubleshooting Monitoring

50.5.1 Buffer Allocation Error

Monitoring Library obtains the default DataWriter QoS from the Connext DDS application’s DomainPar-
ticipant. If the application has changed the default QoS Profile, either through application code or in an
XML file, Monitoring Library will use this new default QoS. In specific scenarios, the new default QoS
may cause your Connext DDS application to run out of memory and report error messages similar to these:
REDAFastBufferPool_growEmptyPoolEA: !allocate buffer of 1210632000 bytes
[D0012|ENABLE]REDAFastBufferPool_newWithNotification:!create fast buffer pool buffers
[D0012|ENABLE]PRESTypePluginDefaultEndpointData_createWriterPool:!create writer buffer pool
[D0012|ENABLE]WriterHistorySessionManager_new:!create newAllocator
[D0012|ENABLE]WriterHistoryMemoryPlugin_createHistory:!create sessionManager
[D0012|ENABLE]PRESWriterHistoryDriver_new:!create _whHnd
[D0012|ENABLE]PRESPsService_enableLocalEndpointWithCursor:!create WriterHistoryDriver
[D0012|ENABLE]PRESPsService_enableAllLocalEndpointsInGroupWithCursor:!enable endpoint
[D0012|ENABLE]PRESPsService_enableGroupWithCursor:!enableAllLocalEndpointsInGroupWithCursor
[D0012|ENABLE]PRESPsService_enableGroup:!enableGroupWithCursor
[D0012|ENABLE]RTIDefaultMonitorPublisher_enableEntitiesAndStartThreadI:!create enable publisher
[D0012|ENABLE]RTIDefaultMonitorPublisher_onEventNotify:!create enable entities

To resolve this problem, either:

l ConfigureMonitoring Library to use a non-default QoS Profile. For details, see Configuring Mon-
itoring Library (Chapter 51 on page 1238).

l Change the default QoS to have a lower value for DataWriter’s initial_samples; this field is part of
the ResourceLimitsQosPolicy.

Chapter 51 Configuring Monitoring Library
You can control some aspects ofMonitoring Library’s behavior by setting the PropertyQosPolicy
of the DomainParticipant, either via an XML QoS profile or in your application’s code prior to cre-
ating the DomainParticipant.

Two example QoS profiles are provided in
<path to examples>/connext_dds/qos/MONITORING_LIBRARY_QOS_PROFILES.xml
(see Paths Mentioned in Documentation on page 1):

l CustomerExampleMonitoringLibrary::CustomerExampleMonitoringProfile

This is an example of how to enableMonitoring Library for your applications. It can be used
as a guide to enabling Monitoring Library quickly in your applications.

l RTIMonitoringQosLibrary::RTIMonitoringQosProfile

This profile documents the QoS used by Monitoring Library. It can also be used as a starting
point if you want to tune QoS forMonitoring Library (normally not necessary). Use cases
for this include customizing DomainParticipant QoS (often the transports) to accommodate
preferences or environment. This same profile can also be used to subscribe to theMon-
itoring Library Topics. This is useful in situations where theMonitoring Library information
can be used directly by system components or it is not possible to use the RTI Monitor tool.

<NDDSHOME>/resource/xml/RTI_MONITOR_QOS_PROFILES.xml is used by the RTI
Monitor tool. See Changing Transport Settings in the Configuration File, in the RTI Monitor
User's Manual for more information.

See the qos_library on page 1240 and qos_profile on page 1240 properties in Table 51.1 Con-
figuration Properties for Monitoring Library for further information on when to use the example
profiles inMONITORING_LIBRARY_QOS_PROFILES.xml.

1238

Chapter 51 Configuring Monitoring Library

1239

Table 51.1 Configuration Properties for Monitoring Library lists the configuration properties that you can
set forMonitoring Library. These properties are immutable; they cannot be changed after the DomainPar-
ticipant is created.

Property Name

(all must be
prepended with

“rti.monitor.config.”)

Property Value

get_process_statistics

This boolean value specifies whether or notMonitoring Library should collect CPUand memory usage statistics for
the process in the topic rti/dds/monitoring/domainParticipantDescription.

This property is only applicable for platforms that support obtaining CPUand memory usage frommonitoring data.
CPUand memory usage is not available on these platforms:VxWorks, INTEGRITY.

CPUusage is reported in terms of time spent since the process has been started. It can be longer than the actual run-
ning time of the process on a multi-core machine.

Default: true if unspecified

new_participant_domain_
id

To create a separate participant that will be used to publish monitoring information in the application, set this to the do-
main ID that you want to use for the newly created participant.

The newparticipant is created with the default Qos (for example, that defined in USER_QOS_PROFILES.xml), unless
the qos_library on the next page and qos_profile on the next page properties are set.

Default: Not set (means you want to reuse the participant in your application that hasmonitoring turned on to publish
statistics information for that participant)

publish_period
Period of time to sample and publish all monitoring topics, in units of seconds.

Default: 5 if unspecified

publish_thread_priority

Priority of the thread used to sample and publish monitoring data.

This value is architecture dependent.

Default if unspecified: same as the default used in Connext DDS for the event thread:

Windows systems: -2

Linux systems: -999999 (meaning use OS-default priority)

publish_thread_stacksize

Stack size used for the thread that samples and publishesmonitoring data. This value is architecture dependent.

Default if unspecified: same as the default used in Connext DDS for the event thread:

Windows systems: -1 (meaning use the default size for the executable).

Linux systems: -1 (meaning use OS’s default value).

Table 51.1 Configuration Properties for Monitoring Library

Chapter 51 Configuring Monitoring Library

Property Name

(all must be
prepended with

“rti.monitor.config.”)

Property Value

publish_thread_options

Describes the type of thread.

Supported values (may be combined with by OR’ing with ‘|’ as seen in the default below):

l FLOATING_POINT: Code executed within the thread may perform floating point operations

l STDIO: Code executed within the thread may access standard

l REALTIME_PRIORITY: The thread will be scheduled on a real-time basis

l PRIORITY_ENFORCE: Strictly enforce this thread's priority

Default: FLOATING_POINT|STDIO (same as the default used in Connext DDS for the event thread)

qos_library

Specifies the name of the QoS library that will be used to create the monitoring libraryDomainParticipant, Publisher,
and DataWriters.

Default: Not set. If you don't set this property, the entities are created with the following QoS values:

l The DomainParticipant uses the default DomainParticipantQos (for example, that defined in USER_QOS_
PROFILES.xml).

l The Publisher and the DataWritersuse a specific QoS configuration that can be found in the libraryRTIMon-
itoringQosLibrary in <path to examples>/connext_dds/qos/MONITORING_LIBRARY_QOS_
PROFILES.xml. (Note that the Publisher and DataWritersuse the values reproduced in this .xml file, but
modifying the file has no effect; it is for reference only.)

qos_profile

Specifies the name of the QoS profile that will be used to create the monitoring libraryDomainParticipant, Publisher,
and DataWriters.

Default: Not set. If you don't set this property, the entities are created with the following QoS values:

l The DomainParticipant uses the default DomainParticipantQos (for example, that defined in USER_QOS_
PROFILES.xml).

l The Publisher and the DataWritersuse a specific QoS configuration that can be found in the libraryRTIMon-
itoringQosLibrary in <path to examples>/connext_dds/qos/MONITORING_LIBRARY_QOS_
PROFILES.xml. (Note that the Publisher and DataWritersuse the values reproduced in this .xml file, but
modifying the file has no effect; it is for reference only.)

reset_status_change_
counts

Monitoring Libraryobtains all statuses of all entities in the Connext DDS application. This boolean value controls
whether or not the change counts in those statuses are reset byMonitoring Library.

If set to true, the change counts are reset each timeMonitoring Library is done accessing them.

If set to false, the change counts truly reflect what users will see in their application and are unaffected by the access
of the monitoring library.

Default: false

Table 51.1 Configuration Properties for Monitoring Library

1240

Chapter 51 Configuring Monitoring Library

1241

Property Name

(all must be
prepended with

“rti.monitor.config.”)

Property Value

skip_monitor_entities

This boolean value controls whether or not the entities created internally byMonitoring Library should be included in
the entity counts published by the participant entity statistics topic.

If set to true, the internalmonitoring entities will not be included in the count. (Thirteen internal writers are created by
the monitoring library by default.)

Default: true

skip_participant_
properties

If set to true,DomainParticipant PropertyQosPolicy name and value pairs will not be sent out through the do-
mainParticipantDescriptionTopic. This is necessary if you are linking withMonitoring Libraryand any of these con-
ditions occur:

l The PropertyQosPolicy of a DomainParticipant hasmore than 64 properties.

l Any of the properties in PropertyQosPolicy of a DomainParticipant has a name longer than 127 characters
or a value longer than 511 characters.

Default: false if unspecified

skip_reader_
properties

If set to true,DataReader PropertyQosPolicy name and value pairs will not be sent out through the dataRead-
erDescriptionTopic. This is necessary if you are linking withMonitoring Libraryand any of these conditions occur:

l The PropertyQosPolicy of a DataReader hasmore than 64 properties.

l Any of the properties in PropertyQosPolicy of a DataReader has a name longer than 127 characters or a
value longer than 511 characters.

Default: false if unspecified

skip_writer_properties

If set to true,DataWriter PropertyQosPolicy name and value pairs will not be sent out through the dataWriter-
DescriptionTopic. This is necessary if you are linking withMonitoring Libraryand any of these conditions occur:

l The PropertyQosPolicy of a DataWriter hasmore than 64 properties.

l Any of the properties in PropertyQosPolicy of a DataWriter has a name longer than 127 characters or a
value longer than 511 characters.

Default: false if unspecified

topics

Filter formonitoring topics, with regular expression matching syntax as specified in the Connext DDS documentation
(similar to the POSIX fnmatch syntax). For example, if you only want to send description topics and the entity statistics
topics, but NOT the matching statistics topics, you can specify “*Description,*EntityStatistics”.

Default: * if unspecified

usertopics

Filter for user topics, with regular expression matching syntax as specified in the Connext DDS documentation (similar
to the POSIX fnmatch syntax). For example, if you only want to send monitoring information for reader/writer/topic en-
tities for topics that start with Foo or Bar, you can specify “Foo*,Bar*”.

Default: * if unspecified

Table 51.1 Configuration Properties for Monitoring Library

Chapter 51 Configuring Monitoring Library

Property Name

(all must be
prepended with

“rti.monitor.config.”)

Property Value

verbosity

Sets the verbosity on the monitoring library for debugging purposes (does not affect the topic/data that is sent out).

l -1: Silent

l 0: Exceptions only

l 1: Warnings

l 2 and up: Higher verbosity level

Default: 1 if unspecified

writer_pool_buffer_max_
size

Controls the threshold at which dynamic memory allocation is used, expressed as a number of bytes.

If the serialized size of the data to be sent is smaller than this size, a pre-allocated writer buffer pool is used to obtain
the memory.

If the serialized size of the data is larger than this value, the memory is allocated dynamically.

This setting can be used to controlmemory consumption of the monitoring library, at the cost of performance, when
the maximumserialized size of the data type is large (which is the case for some description topics’ data types) or if you
have several participants on the same machine.

The default setting is -1, meaning memory is always obtained from the writer buffer pool, whose size is determined by
the maximumserialized size.

Table 51.1 Configuration Properties for Monitoring Library

1242

Part 10: RTI Distributed Logger

1243

Part 10: RTI Distributed Logger
RTI Distributed Logger is a library that enables applications to publish their log messages to Connext
DDS. The log message data can be visualized with RTI Monitor and RTI Admin Console. Since the data is
provided in a Topic, you can also use rtiddsspy or even write your own visualization tool.

Distributed Logger can also send Connext DDS errors, warnings and other internal messages from its own
builtin logging system as a DDS Topic. In fact, Distributed Logger provides a remote command topic so
that its behavior can be remotely controlled at run time.

This part of the User’s Manual includes:

l Using Distributed Logger in a Connext DDS Application (Chapter 52 on page 1244)

l Enabling Distributed Logger in RTI Services (Chapter 53 on page 1254)

Chapter 52 Using Distributed Logger in a
Connext DDS Application

There are two ways to use Distributed Logger: directly through its API or by attaching it to an
existing logging framework as an ‘appender’ or a ‘handler.’ Using the API directly is straight-
forward, but keep in mind that Distributed Logger is not intended to be a full-featured logging lib-
rary. Rather, it is primarily intended to be integrated into third-party logging infrastructures.

The libraries that you will need for Distributed Logger are listed in 52.1 Distributed Logger Librar-
ies below.

Distributed Logger comes with third-party integrations for the open-source project log4j (http://-
logging.apache.org/log4j/) as well as Java’s built-in logging library (java.util.logging). Please see
52.3 Examples on the next page for examples that illustrate these integrations.

Distributed Logger captures and forwards Connext DDS internal information, warning, and error
messages using a DDS topic. It monitors these messages using the same mechanism as user log
messages.

These Connext DDS log messages are sent over DDS automatically as soon as you initialize Dis-
tributed Logger (by calling RTI_DL_DistLogger_getInstance() in C or C++, or Log-
ger.getLogger(...) in Java; see the API Reference HTML documentation for details).

52.1 Distributed Logger Libraries

Table 52.1 Required Libraries lists the additional libraries you will need in order to use Distributed
Logger.

1244

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/

52.2 Using the API Directly

1245

Platform Language
Static Dynamic

Release Debug Release Debug

Linux®

C librtidlcz.a librtidlczd.a librtidlc.so librtidcd.so

C++
librtidlcz.a
librtidlcppz.a

librtidlczd.a
librtidlcppzd.a

librtidlc.so
librtidlcpp.so

librtidlcd.so
librtidlcppd.so

Java N/A N/A
distlog.jar
distlogdatamodel.jar

distlogd.jar
distlogdatamodeld.jar

QNX
C librtidlcz.a librtidlczd.a librtidlc.so librtidcd.so

C++
librtidlcz.a

librtidlcppz.a

librtidlczd.a

librtidlcppzd.a

librtidlc.so

librtidlcpp.so

librtidlcd.so

librtidlcppd.so

VxWorks™

C librtidlcz.a librtidlczd.a librtidlc.so librtidcd.so

C++
librtidlcz.a
librtidlcppz.a

librtidlczd.a
librtidlcppzd.a

librtidlc.so
librtidlcpp.s

librtidlcd.so
librtidlcppd.s

Windows®

C rtidlcz.lib rtidlczd.lib rtidlc.dll rtidlcd.dll

C++
rtidlcz.lib
rtidlcppz.lib

rtidlczd.lib
rtidlcppzd.lib

rtidlc.dll
rtidlcpp.dll

rtidlcd.dll
rtidlcppd.dll

Java N/A N/A
distlog.jar
distlogdatamodel.jar

distlogd.jar
distlogdatamodeld.jar

Table 52.1 Required Libraries

52.2 Using the API Directly

Details on using the Distributed Logger APIs are provided in the API Reference HTML documentation:
<NDDSHOME>/doc/api/connext_dds/distributed_logger/<language>. Start by opening index.html.
(See Paths Mentioned in Documentation on page 1

If you plan to use the Distributed Logger’s API directly, please be aware of the following notes. To con-
figure the options, create an options object and update its fields. Once your updates are complete, set the
options on Distributed Logger. It is important that this be done before Distributed Logger is instantiated.
Distributed Logger acts as a singleton and there is no way to change the options after it has been created.

When your application is ready to exit, use the ‘delete’ method. This will delete all Entities and threads
associated with Distributed Logger.

52.3 Examples

Distributed Logger includes several examples in <path to examples>/distributed_logger (see Paths Men-
tioned in Documentation on page 1):

52.4 Data Type Resource

l c/hello_distributed_logger

This is a simple example of how to use the API directly and does not publish or subscribe to any
Topics except the ones related to Distributed Logger.

l c++/hello_distributed_logger

This is a simple example of how to use the API directly and does not publish or subscribe any Top-
ics except the ones related to Distributed Logger.

l java/hello_direct_usage

This is a simple example of how to use the API directly and does not publish or subscribe any Top-
ics except the ones related to Distributed Logger.

l java/hello_file_logger

This example shows how an application can use the information provided by Distributed Logger.
As the name suggests, this example subscribes to log messages and writes them to a file. Multiple
DDS domains can be subscribed to simultaneously if desired. The example is meant to strike a bal-
ance between simplicity and function. Certainly more features could be added to make it a pro-
duction-ready application but that would obscure the goal of the example.

l java/hello_java_util_logging

In this example, all System.{out/err} invocations are replaced with Java logging library equivalents.
It adds Distributed Logger through a configuration file.

l java/hello_log4j_logging

In this example, all System.{out/err} invocations are replaced with log4j library equivalents. It adds
Distributed Logger through a configuration file.

Each example has a READ_ME.txt file which explains how to build and run it.

52.4 Data Type Resource

You can find the data types used by Distributed Logger in <NDDSHOME>/resource/idl/distog.idl. (See
Paths Mentioned in Documentation on page 1.)

If you want to generate code and interact with Distributed Logger through Topics, you can use this file to
do so. You will need to provide extra command-line arguments to RTI Code Generator (rtiddsgen). (This
allows us to accommodate multiple language bindings within the same file. As a consequence, we’ve used
preprocessor definitions to achieve this functionality.) The command-line options which must be added to
rtiddsgen are as follows:

1246

52.5 Distributed Logger Topics

1247

l For C or C++: –D LANGUAGE_C

l For Java: –D LANGUAGE_JAVA

l For .Net: –D LANGUAGE_DOTNET

If you plan to use the generated code in your application (to subscribe to log messages, for
instance) be aware that the type names used might not match the default ones. Do not use the
generated type names obtained when calling get_type_name() or found in distlogSupport.h. Use
the variables in Table 52.2 Registration Names for each Distributed Logger Type instead.

Type Registered Typename Variable

Log Message com::rti::dl::LogMessage

C/C++:
RTI_DL_LOG_MESSAGE_TYPE_NAME

Java:
LOG_MESSAGE_TYPE_NAME.VALUE

Administration State com::rti::dl::admin::State

C/C++:
RTI_DL_STATE_TYPE_NAME

Java:
STATE_TYPE_NAME.VALUE

Administration Command Request
com::rti::dl::admin::
CommandRequest

C/C++:
RTI_DL_COMMAND_REQUEST_TYPE_NAME

Java:
COMMAND_REQUEST_TYPE_NAME.VALUE

Administration Command Response
com::rti::dl::admin::
CommandResponse

C/C++:
RTI_DL_COMMAND_RESPONSE_TYPE_NAME

Java:
COMMAND_RESPONSE_TYPE_NAME.VALUE

Table 52.2 Registration Names for each Distributed Logger Type

For instance, to subscribe to log messages in C you will need to do the following:
retcode = RTI_DL_LogMessageTypeSupport_register_type(

participant, RTI_DL_LOG_MESSAGE_TYPE_NAME);

52.5 Distributed Logger Topics

Distributed Logger uses four Topics to publish log messages, state, and command responses and one topic
to subscribe to command requests. These are detailed in Table 52.3 Topics Used by Distributed Logger.

Topic Type Name Quality of Service

Table 52.3 Topics Used by Distributed Logger

52.6 Distributed Logger IDL

rti/distlog com::rti::dl::LogMessage
Reliable

Transient Local

rti/distlog/administration/state com::rti::dl::admin::State
Reliable

Transient Local

rti/distlog/administration/command_request com::rti::dl::admin::CommandRequest Reliable

rti/distlog/administration/command_response com::rti::dl::admin::CommandResponse Reliable

Table 52.3 Topics Used by Distributed Logger

52.6 Distributed Logger IDL

The IDL describing the types used for Topics created by Distributed Logger are in <NDDSHOME>/re-
source/idl/distlog.idl. (See Paths Mentioned in Documentation on page 1.) You can use this IDL to cre-
ate custom applications that use the data provided by Distributed Logger and/or to remotely control any
Distributed Logger instances that are running in your system. The IDL has been designed to take advant-
age of the latest type-support features in Connext DDS.

52.7 Viewing Log Messages

One way to see the messages from Distributed Logger is to use RTI Monitor.

1248

52.8 Logging Levels

1249

Figure 52.1: Viewing Log Messages with RTI Monitor

Other ways to see the log messages include using rtiddsspy or writing your own visualization tool. If you
want to write your own application that interacts with Distributed Logger, you can find the IDL in
<NDDSHOME>/resource/idl/distlog.idl. (See Paths Mentioned in Documentation on page 1.)

52.8 Logging Levels

Log levels in Distributed Logger are organized as shown in Table 52.4 Mapping between Distributed Log-
ger and Connext DDS Builtin Logging System (ordered by importance). This table also shows the map-
ping between logging levels in the Connext DDS builtin logging system and Distributed Logger.

Table 52.4 Mapping between Distributed Logger and Connext DDS Builtin Logging System

Connext DDS Builtin Logging System Log Level Distributed Logger Log Level

NDDS_CONFIG_LOG_FATAL_ERROR RTI_DL_FATAL_LEVEL

NDDS_CONFIG_LOG_LEVEL_ERROR RTI_DL_ERROR_LEVEL

NDDS_CONFIG_LOG_LEVEL_WARNING RTI_DL_WARNING_LEVEL

NDDS_CONFIG_LOG_LEVEL_STATUS_LOCAL RTI_DL_NOTICE_LEVEL

52.9 Distributed Logger Quality of Service Settings

Connext DDS Builtin Logging System Log Level Distributed Logger Log Level

NDDS_CONFIG_LOG_LEVEL_STATUS_REMOTE RTI_DL_INFO_LEVEL

NDDS_CONFIG_LOG_LEVEL_DEBUG RTI_DL_DEBUG_LEVEL

52.9 Distributed Logger Quality of Service Settings

To ensure that Distributed Logger works correctly with other RTI tools, some QoS settings are hard-coded
and cannot be modified by customized profiles. Table 52.5 QoS Values Used by Distributed Logger lists
the QoS values that are set in Distributed Logger. Values in bold are hard-coded; therefore even if they
appear in an XML profile, they remain as noted in the table.

Entity Property Value

Subscriber

Presentation.access_scope PRES_INSTANCE_PRESENTATION_QOS

Presentation.coherent_access false

Presentation.ordered_access false

Publisher

Presentation.access_scope PRES_INSTANCE_PRESENTATION_QOS

Presentation.coherent_access false

Presentation.ordered_access false

Log Message Topic
Reliability.kind DDS_RELIABLE_RELIABILITY_QOS

Durability.kind DDS_TRANSIENT_LOCAL_DURABILITY_QOS

Administration State Topic

Reliability.kind DDS_RELIABLE_RELIABILITY_QOS

Durability.kind
DDS_TRANSIENT_LOCAL_DURABILITY_
QOS

Administration Command Request Topic Reliability.kind DDS_RELIABLE_RELIABILITY_QOS

Administration Command Response Topic Reliability.kind DDS_RELIABLE_RELIABILITY_QOS

Table 52.5 QoS Values Used by Distributed Logger

1250

52.9 Distributed Logger Quality of Service Settings

1251

Entity Property Value

Log Message DataWriter

Ownership.kind DDS_SHARED_OWNERSHIP_QOS

Latency_budget.duration.sec 0

Latency_budget.duration.nanosec 0

Liveliness.kind DDS_AUTOMATIC_LIVELINESS_QOS

Destination_order.kind
DDS_BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

Reliability.kind DDS_RELIABLE_RELIABILITY_QOS

Durability.kind DDS_TRANSIENT_LOCAL_DURABILITY_QOS

History.kind DDS_KEEP_LAST_HISTORY_QOS

History.depth 10

Administration State DataWriter

Ownership.kind DDS_SHARED_OWNERSHIP_QOS

Latency_budget.duration.sec 0

Latency_budget.duration.nanosec 0

Liveliness.kind DDS_AUTOMATIC_LIVELINESS_QOS

Destination_order.kind
DDS_BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

Reliability.kind DDS_RELIABLE_RELIABILITY_QOS

Durability.kind DDS_TRANSIENT_LOCAL_DURABILITY_QOS

History.kind DDS_KEEP_LAST_HISTORY_QOS

History.depth 1

Administration Command Response DataWriter

Ownership.kind DDS_SHARED_OWNERSHIP_QOS

Latency_budget.duration.sec 0

Latency_budget.duration.nanosec 0

Liveliness.kind DDS_AUTOMATIC_LIVELINESS_QOS

Destination_order.kind
DDS_BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

Reliability.kind DDS_RELIABLE_RELIABILITY_QOS

History.kind DDS_KEEP_LAST_HISTORY_QOS

History.depth 10

Table 52.5 QoS Values Used by Distributed Logger

52.10 Troubleshooting

Entity Property Value

Administration Command Request DataReader

Ownership.kind DDS_SHARED_OWNERSHIP_QOS

Latency_budget.duration.sec DDS_DURATION_INFINITE_SEC

Latency_budget.duration.nanosec DDS_DURATION_INFINITE_NSEC

Deadline.period.sec DDS_DURATION_INFINITE_SEC

Deadline.period.nanosec DDS_DURATION_INFINITE_NSEC

Liveliness.kind DDS_AUTOMATIC_LIVELINESS_QOS

Destination_order.kind
DDS_BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

Reliability.kind DDS_RELIABLE_RELIABILITY_QOS

History.kind DDS_KEEP_LAST_HISTORY_QOS

History.depth 10

Table 52.5 QoS Values Used by Distributed Logger

52.10 Troubleshooting

52.10.1 Message Losses

In some cases, some of the messages logged with Distributed Logger can be lost, especially when the log
message generation rate is high.

You can detect losses by inspecting the LogMessage.messageId field when subscribing to log messages.
If the difference between two consecutive log messages coming from the same LogMes-
sage.hostAndAppId is greater than 1, then some messages were lost.

Messages can be lost for two reasons:

l The queue that Distributed Logger uses to temporarily store log messages from the application until
they can be written to Connext DDS is full.

l A log message published by Distributed Logger is replaced on the Connext DDS DataWriter queue
before the DataReaders have a chance to receive it.

To minimize losses in the Distributed Logger queue, increase the queue size by using the API RTI_
DLOptions::setQueueSize.

To minimize losses in the DataWriter that publishes the log messages, increase the number of messages
that the DataWriter is caching for the process where Distributed Logger is running. To increase this num-
ber, configure writer_qos.history.depth. You can change the history depth in the QoS profile that you

1252

52.10.2 Logger Device not Working

1253

use to configure Distributed Logger, by invoking the APIs RTI_DLOptions::setQosLibrary and RTI_
DLOptions::setQosProfile.

52.10.2 Logger Device not Working

If you enable Distributed Logger, any previously created logger device will not be used. This is because
you cannot have more than one logger device installed. When you enable Distributed Logger, it over-
writes any previously created logger device.

Suppose Distributed Logger is enabled, and you are using a profile that configures Connext DDS to print
the log messages to a file, such as:
<qos_profile name="..." is_default_qos="true">

<participant_factory_qos>
<logging>

<output_file>/path/to/log/file/log.txt</output_file>
</logging>

</participant_factory_qos>
...

In this case, messages will be printed by Distributed Logger, they will not be sent to the log file.

If you want messages to be printed to the log file, you need to disable Distributed Logger first.

Chapter 53 Enabling Distributed Logger in
RTI Services

Many RTI components provide integrated support for Distributed Logger (check the component’s
Release Notes) and include the Distributed Logger library in their distribution. To enable Dis-
tributed Logger in these components, modify their XML configuration file. In the <administration>
section, add the <distributed_logger> tag as shown in this example:
<persistence_service name="default">

<administration>
<domain_id>10</domain_id>
<distributed_logger>

<enabled>true</enabled>
<filter_level>DEBUG</filter_level>
<queue_size>2048</queue_size>
<thread>

<priority>
THREAD_PRIORITY_BELOW_NORMAL

</priority>
<stack_size>8192</stack_size>
<cpu_list>

<element>0</element>
<element>1</element>

</cpu_list>
<cpu_rotation>

THREAD_SETTINGS_CPU_NO_ROTATION
</cpu_rotation>

</thread>
</distributed_logger>

</administration>
...

</persistence_service>

The tags supported within the <distributed_logger> tag are described in Table 53.1 Distributed
Logger Tags.

1254

Chapter 53 Enabling Distributed Logger in RTI Services

1255

Tags within
<distributed_
logger>

Description
Number
of Tags
Allowed

<enabled>
Controls whether or notDistributed Logger should be enabled at start up. This field is required.

Allowed values: TRUE or FALSE

1 (re-
quired)

<filter_level>

The filter level for the log messages to be sent.Distributed Logger uses the filter level to discard logmessagesbe-
fore they can be sent from the application/service. This is theminimum log level that will be sent out over the net-
work. For example, when using the NOTICE level, any INFO, DEBUGand TRACE-level logmessageswill be
filtered out and not sent from the application/service to Connext DDS.

See important information in 53.1 Relationship Between Service Verbosity and Filter Level
on page 1257.

Can be set to these values:

l SILENT

l FATAL

l SEVERE

l ERROR

l WARNING

l NOTICE

l INFO

l DEBUG

l TRACE (most verbose level, default)

0 or 1

<queue_size>
The size of an internalmessage queue used to store log messages before they are written to DDS.

Default, 128 log messages.
0 or 1

<echo_to_
stdout>

Controls whether or not Distributed Logger should echo log messages to standard output (true) or not (false).

Allowed values: TRUE or FALSE

Default: TRUE

0 or 1

<log_in-
frastructure_
messages>

Controls whether or not Distributed Logger should log infrastructure messages

Allowed values: TRUE or FALSE

Default: TRUE

0 or 1

<thread> See Table 53.2 Distributed Logger Thread Tags. 0 or 1

Table 53.1 Distributed Logger Tags

Chapter 53 Enabling Distributed Logger in RTI Services

Tags within
<distributed_
logger>/
<thread>

Description Number of
Tags Allowed

<cpu_list>

Each <element> specifies a processor on which the Distributed Logger thread may run.
<cpu_list>

<element>value</element>
</cpu_list>

Only applies to platforms that support controlling CPU core affinity (see the RTI Connext DDS
Core LibrariesPlatformNotes).

0 or 1

<cpu_rotation>

Determines how the CPUs in <cpu_list>will be used by the Distributed Logger thread. The
value can be either:

l THREAD_SETTINGS_CPU_NO_ROTATION

The thread can run on any listed processor, as determined by OS scheduling.

l THREAD_SETTINGS_CPU_RR_ROTATION

The thread will be assigned a CPU from the list in round-robin order.

Only applies to platforms that support controlling CPU core affinity (see the RTI Connext DDS
Core LibrariesPlatformNotes).

0 or 1

<mask>

A collection of flags used to configure threads of execution. Not all of these options may be rel-
evant for all operating systems. May include these bits:

l STDIO

l FLOATING_POINT

l REALTIME_PRIORITY

l PRIORITY_ENFORCE

It can also be set to a combination of the above bits by using the “or” symbol (|), such as
STDIO|FLOATING_POINT.

Default: MASK_DEFAULT

0 or 1

<priority>

Thread priority. The value can be specified as an unsigned integer or one of the following
strings.

l THREAD_PRIORITY_DEFAULT

l THREAD_PRIORITY_HIGH

l THREAD_PRIORITY_ABOVE_NORMAL

l THREAD_PRIORITY_NORMAL

l THREAD_PRIORITY_BELOW_NORMAL

l THREAD_PRIORITY_LOW

When using an unsigned integer, the allowed range is platform-dependent.

0 or 1

<stack_size>
Thread stack size, specified as an unsigned integer or set to the string THREAD_STACK_
SIZE_DEFAULT. The allowed range is platform-dependent.

0 or 1

Table 53.2 Distributed Logger Thread Tags

1256

53.1 Relationship Between Service Verbosity and Filter Level

1257

53.1 Relationship Between Service Verbosity and Filter Level

A service’s verbosity influences the way the log messages reach Distributed Logger and their quantity. If a
service (such as RTI Persistence Service, RTI Routing Service, or another service that is integrated with
Distributed Logger) is configured with a low verbosity, it will not pass a lot of messages to Distributed
Logger, even if the Distributed Logger filter level is set to a very verbose one (such as TRACE). On the
contrary, a high verbosity will work better, because it will pass more messages to Distributed Logger; in
this case the filter level will have more effect.

Note: Since Distributed Logger uses a separate thread to send log messages, there is little impact on per-
formance with more verbose filter levels. However, there is some performance penalty in services that use
a higher verbosity.

	About this Document
	Paths Mentioned in Documentation
	Programming Language Conventions
	Traditional vs. Modern C++

	Extensions to the DDS Standard
	Environment Variables
	Additional Resources

	Part 1: Welcome to RTI Connext DDS
	Chapter 1 Overview
	1.1 What is Connext DDS?
	1.2 Network Communications Models
	1.3 What is Middleware?
	1.4 Features of Connext DDS

	Chapter 2 Data-Centric Publish-Subscribe Communications
	2.1 What is DCPS?
	2.1.1 DCPS for Real-Time Requirements

	2.2 DDS Data Types, Topics, Keys, Instances, and Samples
	2.3 Data Topics — What is the Data Called?
	2.4 DDS Samples, Instances, and Keys
	2.5 DataWriters/Publishers and DataReaders/Subscribers
	2.6 DDS Domains and DomainParticipants
	2.7 Quality of Service (QoS)
	2.7.1 Controlling Behavior with Quality of Service (QoS) Policies

	2.8 Application Discovery

	Part 2: Core Concepts
	Chapter 3 Data Types and DDS Data Samples
	3.1 Introduction to the Type System
	3.1.1 Sequences
	3.1.2 Strings and Wide Strings
	3.1.3 Introduction to TypeCode

	3.2 Built-in Data Types
	3.2.1 Registering Built-in Types
	3.2.2 Creating Topics for Built-in Types
	3.2.3 String Built-in Type
	3.2.4 KeyedString Built-in Type
	3.2.5 Octets Built-in Type
	3.2.6 KeyedOctets Built-in Type
	3.2.7 Managing Memory for Built-in Types
	3.2.8 Type Codes for Built-in Types

	3.3 Creating User Data Types with IDL
	3.3.1 Variable-Length Types
	3.3.2 Value Types
	3.3.3 Type Codes
	3.3.4 Translations for IDL Types
	3.3.5 Escaped Identifiers
	3.3.6 Namespaces In IDL Files
	3.3.7 Referring to Other IDL Files
	3.3.8 Preprocessor Directives
	3.3.9 Using Builtin Annotations

	3.4 Creating User Data Types with Extensible Markup Language (XML)
	3.5 Creating User Data Types with XML Schemas (XSD)
	3.5.1 Primitive Types

	3.6 Using RTI Code Generator (rtiddsgen)
	3.7 Using Generated Types without Connext DDS (Standalone)
	3.7.1 Using Standalone Types in C
	3.7.2 Using Standalone Types in C++
	3.7.3 Standalone Types in Java

	3.8 Interacting Dynamically with User Data Types
	3.8.1 Type Schemas and TypeCode Objects
	3.8.2 Defining New Types
	3.8.3 Sending Only a Few Fields
	3.8.4 Sending Type Information on the Network

	3.9 Working with DDS Data Samples
	3.9.1 Objects of Concrete Types
	3.9.2 Objects of Dynamically Defined Types
	3.9.3 Serializing and Deserializing Data Samples
	3.9.4 Accessing the Discriminator Value in a Union

	3.10 Data Sample Serialization Limits

	Chapter 4 DDS Entities
	4.1 Common Operations for All DDS Entities
	4.1.1 Creating and Deleting DDS Entities
	4.1.2 Enabling DDS Entities
	4.1.3 Getting an Entity’s Instance Handle
	4.1.4 Getting Status and Status Changes
	4.1.5 Getting and Setting Listeners
	4.1.6 Getting the StatusCondition
	4.1.7 Getting, Setting, and Comparing QosPolicies

	4.2 QosPolicies
	4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property
	4.2.2 Special QosPolicy Handling Considerations for C

	4.3 Statuses
	4.3.1 Types of Communication Status
	4.3.2 Special Status-Handling Considerations for C

	4.4 Listeners
	4.4.1 Types of Listeners
	4.4.2 Creating and Deleting Listeners
	4.4.3 Special Considerations for Listeners in C
	4.4.4 Special Considerations for Listeners in Modern C++
	4.4.5 Hierarchical Processing of Listeners
	4.4.6 Operations Allowed within Listener Callbacks
	4.4.7 Best Practices with Listeners

	4.5 Exclusive Areas (EAs)
	4.5.1 Restricted Operations in Listener Callbacks

	4.6 Conditions and WaitSets
	4.6.1 Creating and Deleting WaitSets
	4.6.2 WaitSet Operations
	4.6.3 Waiting for Conditions
	4.6.4 Processing Triggered Conditions—What to do when Wait() Returns
	4.6.5 Conditions and WaitSet Example
	4.6.6 GuardConditions
	4.6.7 ReadConditions and QueryConditions
	4.6.8 StatusConditions
	4.6.9 Using Both Listeners and WaitSets

	Chapter 5 Working with Topics
	5.1 Topics
	5.1.1 Creating Topics
	5.1.2 Deleting Topics
	5.1.3 Setting Topic QosPolicies
	5.1.4 Copying QoS From a Topic to a DataWriter or DataReader
	5.1.5 Setting Up TopicListeners
	5.1.6 Navigating Relationships Among Entities

	5.2 Topic QosPolicies
	5.2.1 TOPIC_DATA QosPolicy

	5.3 Status Indicator for Topics
	5.3.1 INCONSISTENT_TOPIC Status

	5.4 ContentFilteredTopics
	5.4.1 Overview
	5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side
	5.4.3 Creating ContentFilteredTopics
	5.4.4 Deleting ContentFilteredTopics
	5.4.5 Using a ContentFilteredTopic
	5.4.6 SQL Filter Expression Notation
	5.4.7 STRINGMATCH Filter Expression Notation
	5.4.8 Character Encoding
	5.4.9 Unicode Normalization
	5.4.10 Custom Content Filters

	Chapter 6 Working with Instances
	6.1 Instance States
	6.1.1 ALIVE Details
	6.1.2 NOT_ALIVE_DISPOSED Details
	6.1.3 NOT_ALIVE_NO_WRITERS Details
	6.1.4 Transitions between NOT_ALIVE States

	6.2 Instance Memory Management
	6.3 QoS Configuration and Instances
	6.3.1 QoS Policies that are Applied per Instance
	6.3.2 QoS Policies that Affect Instance Management

	Chapter 7 Sending Data
	7.1 Preview: Steps to Sending Data
	7.2 Publishers
	7.2.1 Creating Publishers Explicitly vs. Implicitly
	7.2.2 Creating Publishers
	7.2.3 Deleting Publishers
	7.2.4 Setting Publisher QosPolicies
	7.2.5 Setting Up PublisherListeners
	7.2.6 Finding a Publisher’s Related DDS Entities
	7.2.7 Waiting for Acknowledgments in a Publisher
	7.2.8 Statuses for Publishers
	7.2.9 Suspending and Resuming Publications

	7.3 DataWriters
	7.3.1 Creating DataWriters
	7.3.2 Getting All DataWriters
	7.3.3 Deleting DataWriters
	7.3.4 Setting Up DataWriterListeners
	7.3.5 Checking DataWriter Status
	7.3.6 Statuses for DataWriters
	7.3.7 Using a Type-Specific DataWriter (FooDataWriter)
	7.3.8 Writing Data
	7.3.9 Flushing Batches of DDS Data Samples
	7.3.10 Writing Coherent Sets of DDS Data Samples
	7.3.11 Waiting for Acknowledgments in a DataWriter
	7.3.12 Application Acknowledgment
	7.3.13 Required Subscriptions
	7.3.14 Managing Instances (Working with Keyed Data Types)
	7.3.15 Setting DataWriter QosPolicies
	7.3.16 Navigating Relationships Among DDS Entities
	7.3.17 Asserting Liveliness
	7.3.18 Turbo Mode and Automatic Throttling for DataWriter Performance—Experimental Features

	7.4 Publisher/Subscriber QosPolicies
	7.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)
	7.4.2 ENTITYFACTORY QosPolicy
	7.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension)
	7.4.4 GROUP_DATA QosPolicy
	7.4.5 PARTITION QosPolicy
	7.4.6 PRESENTATION QosPolicy

	7.5 DataWriter QosPolicies
	7.5.1 AVAILABILITY QosPolicy (DDS Extension)
	7.5.2 BATCH QosPolicy (DDS Extension)
	7.5.3 DATA_REPRESENTATION QosPolicy
	7.5.4 DATATAG QosPolicy
	7.5.5 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)
	7.5.6 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)
	7.5.7 DEADLINE QosPolicy
	7.5.8 DESTINATION_ORDER QosPolicy
	7.5.9 DURABILITY QosPolicy
	7.5.10 DURABILITY SERVICE QosPolicy
	7.5.11 ENTITY_NAME QosPolicy (DDS Extension)
	7.5.12 HISTORY QosPolicy
	7.5.13 LATENCYBUDGET QoS Policy
	7.5.14 LIFESPAN QoS Policy
	7.5.15 LIVELINESS QosPolicy
	7.5.16 MULTI_CHANNEL QosPolicy (DDS Extension)
	7.5.17 OWNERSHIP QosPolicy
	7.5.18 OWNERSHIP_STRENGTH QosPolicy
	7.5.19 PROPERTY QosPolicy (DDS Extension)
	7.5.20 PUBLISH_MODE QosPolicy (DDS Extension)
	7.5.21 RELIABILITY QosPolicy
	7.5.22 RESOURCE_LIMITS QosPolicy
	7.5.23 SERVICE QosPolicy (DDS Extension)
	7.5.24 TOPIC_QUERY_DISPATCH_QosPolicy (DDS Extension)
	7.5.25 TRANSFER_MODE QosPolicy
	7.5.26 TRANSPORT_PRIORITY QosPolicy
	7.5.27 TRANSPORT_SELECTION QosPolicy (DDS Extension)
	7.5.28 TRANSPORT_UNICAST QosPolicy (DDS Extension)
	7.5.29 TYPESUPPORT QosPolicy (DDS Extension)
	7.5.30 USER_DATA QosPolicy
	7.5.31 WRITER_DATA_LIFECYCLE QoS Policy

	7.6 FlowControllers (DDS Extension)
	7.6.1 Flow Controller Scheduling Policies
	7.6.2 Managing Fast DataWriters When Using a FlowController
	7.6.3 Token Bucket Properties
	7.6.4 Prioritized DDS Samples
	7.6.5 Creating and Configuring Custom FlowControllers with Property QoS
	7.6.6 Creating and Deleting FlowControllers
	7.6.7 Getting/Setting Default FlowController Properties
	7.6.8 Getting/Setting Properties for a Specific FlowController
	7.6.9 Adding an External Trigger
	7.6.10 Other FlowController Operations

	Chapter 8 Receiving Data
	8.1 Preview: Steps to Receiving Data
	8.2 Subscribers
	8.2.1 Creating Subscribers Explicitly vs. Implicitly
	8.2.2 Creating Subscribers
	8.2.3 Deleting Subscribers
	8.2.4 Setting Subscriber QosPolicies
	8.2.5 Beginning and Ending Group-Ordered Access
	8.2.6 Setting Up SubscriberListeners
	8.2.7 Getting DataReaders with Specific DDS Samples
	8.2.8 Finding a Subscriber’s Related Entities
	8.2.9 Statuses for Subscribers

	8.3 DataReaders
	8.3.1 Creating DataReaders
	8.3.2 Getting All DataReaders
	8.3.3 Deleting DataReaders
	8.3.4 Setting Up DataReaderListeners
	8.3.5 Checking DataReader Status and StatusConditions
	8.3.6 Waiting for Historical Data
	8.3.7 Statuses for DataReaders
	8.3.8 Accessing and Managing Instances (Working with Keyed Data Types)
	8.3.9 Setting DataReader QosPolicies
	8.3.10 Navigating Relationships Among Entities

	8.4 Using DataReaders to Access Data (Read & Take)
	8.4.1 Using a Type-Specific DataReader (FooDataReader)
	8.4.2 Loaning and Returning Data and SampleInfo Sequences
	8.4.3 Accessing DDS Data Samples with Read or Take
	8.4.4 Acknowledging DDS Samples
	8.4.5 The Sequence Data Structure
	8.4.6 The SampleInfo Structure

	8.5 Subscriber QosPolicies
	8.6 DataReader QosPolicies
	8.6.1 DATA_READER_PROTOCOL QosPolicy (DDS Extension)
	8.6.2 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)
	8.6.3 READER_DATA_LIFECYCLE QoS Policy
	8.6.4 TIME_BASED_FILTER QosPolicy
	8.6.5 TRANSPORT_MULTICAST QosPolicy (DDS Extension)
	8.6.6 TYPE_CONSISTENCY_ENFORCEMENT QosPolicy

	Chapter 9 Working with DDS Domains
	9.1 Fundamentals of DDS Domains and DomainParticipants
	9.2 DomainParticipantFactory
	9.2.1 Setting DomainParticipantFactory QosPolicies
	9.2.2 Getting and Setting Default QoS for DomainParticipants
	9.2.3 Freeing Resources Used by the DomainParticipantFactory
	9.2.4 Looking Up DomainParticipants
	9.2.5 Getting QoS Values from a QoS Profile

	9.3 DomainParticipants
	9.3.1 Creating a DomainParticipant
	9.3.2 Deleting DomainParticipants
	9.3.3 Deleting Contained Entities
	9.3.4 Choosing a Domain ID and Creating Multiple DDS Domains
	9.3.5 Choosing a Domain Tag
	9.3.6 Setting Up DomainParticipantListeners
	9.3.7 Setting DomainParticipant QosPolicies
	9.3.8 Looking up Topic Descriptions
	9.3.9 Finding a Topic
	9.3.10 Getting the Implicit Publisher or Subscriber
	9.3.11 Asserting Liveliness
	9.3.12 Learning about Discovered DomainParticipants
	9.3.13 Learning about Discovered Topics
	9.3.14 Getting Participant Protocol Status
	9.3.15 Other DomainParticipant Operations

	9.4 DomainParticipantFactory QosPolicies
	9.4.1 LOGGING QosPolicy (DDS Extension)
	9.4.2 PROFILE QosPolicy (DDS Extension)
	9.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension)

	9.5 DomainParticipant QosPolicies
	9.5.1 DATABASE QosPolicy (DDS Extension)
	9.5.2 DISCOVERY QosPolicy (DDS Extension)
	9.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)
	9.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
	9.5.5 EVENT QosPolicy (DDS Extension)
	9.5.6 RECEIVER_POOL QosPolicy (DDS Extension)
	9.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension)
	9.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension)
	9.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

	9.6 Clock Selection
	9.6.1 Available Clocks
	9.6.2 Clock Selection Strategy

	9.7 System Properties

	Chapter 10 Building Applications
	10.1 Running on a Computer Not Connected to a Network
	10.2 Connext DDS Header Files — All Architectures
	10.3 Choosing the Right Libraries
	10.3.1 Required Libraries
	10.3.2 Mixing Static and Dynamic Libraries not Supported

	10.4 Linux Platforms
	10.5 Windows Platforms
	10.5.1 Using Visual Studio

	10.6 Java Platforms
	10.6.1 Java Libraries
	10.6.2 Native Libraries

	10.7 Building Applications Using CMake

	Part 3: Advanced Concepts
	Chapter 11 Reliable Communications
	11.1 Sending Data Reliably
	11.1.1 Best-effort Delivery Model
	11.1.2 Reliable Delivery Model

	11.2 Overview of the Reliable Protocol
	11.3 Using QosPolicies to Tune the Reliable Protocol
	11.3.1 Enabling Reliability
	11.3.2 Tuning Queue Sizes and Other Resource Limits
	11.3.3 Controlling Queue Depth with the History QosPolicy
	11.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy
	11.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy
	11.3.6 Resending DDS Samples to Late-Joiners with the Durability QosPolicy
	11.3.7 Use Cases

	11.4 Auto Throttling for DataWriter Performance—Experimental Feature

	Chapter 12 Collaborative DataWriters
	12.1 Collaborative DataWriters Use Cases
	12.2 DDS Sample Combination (Synchronization) Process in a DataReader
	12.3 Configuring Collaborative DataWriters
	12.3.1 Associating Virtual GUIDs with DDS Data Samples
	12.3.2 Associating Virtual Sequence Numbers with DDS Data Samples
	12.3.3 Specifying which DataWriters will Deliver DDS Samples to the DataReader from a Logical Data Source
	12.3.4 Specifying How Long to Wait for a Missing DDS Sample

	12.4 Collaborative DataWriters and Persistence Service

	Chapter 13 Mechanisms for Achieving Information Durability and Persistence
	13.1 Introduction
	13.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History)
	13.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader State)
	13.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data)

	13.2 Durability and Persistence Based on Virtual GUIDs
	13.3 Durable Writer History
	13.3.1 Durable Writer History Use Case
	13.3.2 How To Configure Durable Writer History

	13.4 Durable Reader State
	13.4.1 Durable Reader State With Protocol Acknowledgment
	13.4.2 Durable Reader State with Application Acknowledgment
	13.4.3 Durable Reader State Use Case
	13.4.4 How To Configure a DataReader for Durable Reader State

	13.5 Data Durability
	13.5.1 RTI Persistence Service

	Chapter 14 Guaranteed Delivery of Data
	14.1 Introduction
	14.1.1 Identifying the Required Consumers of Information
	14.1.2 Ensuring Consumer Applications Process the Data Successfully
	14.1.3 Ensuring Information is Available to Late-Joining Applications

	14.2 Scenarios
	14.2.1 Scenario 1: Guaranteed Delivery to a-priori Known Subscribers
	14.2.2 Scenario 2: Surviving a Writer Restart when Delivering DDS Samples to a priori Known Subscribers
	14.2.3 Scenario 3: Delivery Guaranteed by Persistence Service (Store and Forward) to a priori Known Subscribers

	Chapter 15 Discovery
	15.1 What is Discovery?
	15.1.1 Simple Participant Discovery
	15.1.2 Simple Endpoint Discovery

	15.2 Configuring the Peers List Used in Discovery
	15.2.1 Peer Descriptor Format
	15.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format
	15.2.3 NDDS_DISCOVERY_PEERS File Format

	15.3 Discovery Implementation
	15.3.1 Participant Discovery
	15.3.2 Endpoint Discovery
	15.3.3 Discovery Traffic Summary
	15.3.4 Discovery-Related QoS

	15.4 Debugging Discovery
	15.5 Ports Used for Discovery
	15.5.1 Inbound Ports for Meta-Traffic
	15.5.2 Inbound Ports for User Traffic
	15.5.3 Automatic Selection of participant_id and Port Reservation
	15.5.4 Tuning domain_id_gain and participant_id_gain

	Chapter 16 Transport Plugins
	16.1 Builtin Transport Plugins
	16.2 Extension Transport Plugins
	16.3 The NDDSTransportSupport Class
	16.4 Explicitly Creating Builtin Transport Plugin Instances
	16.5 Setting Builtin Transport Properties of Default Transport Instance—get/set_builtin_transport_properties()
	16.6 Setting Builtin Transport Properties with the PropertyQosPolicy
	16.6.1 Setting the Maximum Gather-Send Buffer Count for UDP Transports
	16.6.2 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists
	16.6.3 RTPS Overhead

	16.7 Installing Additional Builtin Transport Plugins with register_transport()
	16.7.1 Transport Lifecycles
	16.7.2 Transport Aliases
	16.7.3 Transport Network Addresses

	16.8 Installing Additional Builtin Transport Plugins with PropertyQosPolicy
	16.9 Other Transport Support Operations
	16.9.1 Adding a Send Route
	16.9.2 Adding a Receive Route
	16.9.3 Looking Up a Transport Plugin

	Chapter 17 RTPS Locators and IP Mobility
	17.1 Locator Changes at Run Time
	17.1.1 Locator Changes in IP-Based Transports

	17.2 Detection of Unreachable Locators
	17.3 Using DNS Tracker to Keep Peer List Updated

	Chapter 18 Built-In Topics
	18.1 Listeners for Built-in Entities
	18.2 Built-in DataReaders
	18.2.1 LOCATOR_FILTER QoS Policy (DDS Extension)

	18.3 Accessing the Built-in Subscriber
	18.4 Restricting Communication—Ignoring Entities
	18.4.1 Ignoring Specific Remote DomainParticipants
	18.4.2 Ignoring Publications and Subscriptions
	18.4.3 Ignoring Topics
	18.4.4 Resource Limits Considerations for Ignored Entities
	18.4.5 Supervising Endpoint Discovery

	Chapter 19 Configuring QoS with XML
	19.1 Example XML File
	19.2 QoS Libraries
	19.3 QoS Profiles
	19.3.1 Built-in QoS Profiles
	19.3.2 Overwriting Default QoS Values
	19.3.3 QoS Profile Inheritance and Composition
	19.3.4 Topic Filters
	19.3.5 QoS Profiles with a Single QoS

	19.4 Tags for Configuring QoS with XML
	19.4.1 QosPolicies
	19.4.2 Sequences
	19.4.3 Arrays
	19.4.4 Enumeration Values
	19.4.5 Time Values (Durations)
	19.4.6 Transport Properties
	19.4.7 Thread Settings
	19.4.8 Entity Names

	19.5 How to Load XML-Specified QoS Settings
	19.5.1 Loading, Reloading and Unloading Profiles

	19.6 XML File Syntax
	19.6.1 Using Environment Variables in XML
	19.6.2 Using Special Characters in XML
	19.6.3 Specifying Fully Qualified Names in XML

	19.7 XML String Syntax
	19.8 URL Groups (Loading Redundant Locations)
	19.9 How the XML is Validated
	19.9.1 Validation at Run-Time
	19.9.2 XML File Validation During Editing

	19.10 Using QoS Profiles in Your Connext DDS Application
	19.10.1 Retrieving a List of Available Libraries
	19.10.2 Retrieving a List of Available QoS Profiles

	19.11 Configuring Logging Via XML

	Chapter 20 Multi-channel DataWriters
	20.1 What is a Multi-channel DataWriter?
	20.2 How to Configure a Multi-channel DataWriter
	20.2.1 Limitations

	20.3 Multi-Channel Configuration on the Reader Side
	20.4 Where Does the Filtering Occur?
	20.4.1 Filtering at the DataWriter
	20.4.2 Filtering at the DataReader
	20.4.3 Filtering on the Network Hardware

	20.5 Fault Tolerance and Redundancy
	20.6 Reliability with Multi-Channel DataWriters
	20.6.1 Reliable Delivery
	20.6.2 Reliable Protocol Considerations

	20.7 Performance Considerations
	20.7.1 Network-Switch Filtering
	20.7.2 DataWriter and DataReader Filtering

	Chapter 21 Connext DDS Threading Model
	21.1 Database Thread
	21.2 Event Thread
	21.3 Receive Threads
	21.4 Exclusive Areas, RTI Connext DDS Threads, and User Listeners
	21.5 Controlling CPU Core Affinity for RTI Threads
	21.6 Configuring Thread Settings with XML
	21.7 User-Managed Threads
	21.8 Unregistering Threads
	21.9 Identifying Threads Used by Connext DDS
	21.9.1 Checking Thread Names at the OS Level
	21.9.2 Checking Thread Names from the Call Stack
	21.9.3 Checking Thread Names Using the Worker’s Name

	Chapter 22 DDS Sample and Instance Memory Management
	22.1 DDS Sample Memory Management for DataWriters
	22.1.1 Memory Management without Batching
	22.1.2 Memory Management with Batching
	22.1.3 Writer-Side Memory Management when Using Java
	22.1.4 Writer-Side Memory Management when Working with Large Data

	22.2 DDS Sample Memory Management for DataReaders
	22.2.1 Memory Management for DataReaders Using Generated Type-Plugins
	22.2.2 Reader-Side Memory Management when Using Java
	22.2.3 Memory Management for DynamicData DataReaders
	22.2.4 Memory Management for Fragmented DDS Samples
	22.2.5 Reader-Side Memory Management when Working with Large Data

	22.3 Instance Memory Management for DataWriters
	22.4 Instance Memory Management for DataReaders

	Chapter 23 Sending Large Data
	23.1 Reducing Latency
	23.1.1 Use Cases
	23.1.2 Copies in the Middleware Memory Space
	23.1.3 Choosing between FlatData Language Binding and Zero Copy Transfer over Shared Memory
	23.1.4 FlatData Language Binding
	23.1.5 Zero Copy Transfer Over Shared Memory

	23.2 Reducing Bandwidth Usage
	23.3 Large Data Fragmentation
	23.3.1 Avoiding IP-Level Fragmentation
	23.3.2 Reliable Reliability
	23.3.3 Asynchronous Publishing
	23.3.4 Flow Controllers
	23.3.5 Example
	23.3.6 Fragmentation Statistics

	Chapter 24 Topic Queries
	24.1 Reading TopicQuery Samples
	24.2 Debugging Topic Queries
	24.2.1 The Built-in ServiceRequest DataReader
	24.2.2 The on_service_request_accepted() DataWriter Listener Callback

	24.3 System Resource Considerations
	24.3.1 Publishing Application
	24.3.2 Subscribing Application

	Chapter 25 Troubleshooting
	25.1 What Version am I Running?
	25.1.1 Finding Version Information in Revision Files
	25.1.2 Finding Version Information on Windows or Linux Systems
	25.1.3 Finding Version Information Programmatically

	25.2 Controlling Messages from Connext DDS
	25.2.1 Format of Logged Messages
	25.2.2 Configuring Logging via XML
	25.2.3 Customizing the Handling of Generated Log Messages

	25.3 Monitoring Native Heap Memory Usage
	25.4 Network Capture
	25.4.1 Capturing Shared Memory Traffic

	25.5 Logging a Backtrace for Failures
	25.6 Setting Warnings for Operation Delays

	Part 4: Request-Reply and RPC Communication Patterns
	Chapter 26 Introduction to the Request-Reply Communication Pattern
	26.1 The Request-Reply Pattern
	26.1.1 Request-Reply Correlation

	26.2 Single-Request, Multiple-Replies
	26.3 Multiple Repliers
	26.4 Combining Request-Reply and Publish-Subscribe

	Chapter 27 Using the Request-Reply Communication Pattern
	27.1 Requesters
	27.1.1 Creating a Requester
	27.1.2 Destroying a Requester
	27.1.3 Setting Requester Parameters
	27.1.4 Summary of Requester Operations
	27.1.5 Sending Requests
	27.1.6 Processing Incoming Replies with a Requester

	27.2 Repliers
	27.2.1 Creating a Replier
	27.2.2 Destroying a Replier
	27.2.3 Setting Replier Parameters
	27.2.4 Summary of Replier Operations
	27.2.5 Processing Incoming Requests with a Replier
	27.2.6 Sending Replies

	27.3 SimpleRepliers
	27.3.1 Creating a SimpleReplier
	27.3.2 Destroying a SimpleReplier
	27.3.3 Setting SimpleReplier Parameters
	27.3.4 Getting Requests and Sending Replies with a SimpleReplierListener

	27.4 Accessing Underlying DataWriters and DataReaders

	Chapter 28 Remote Procedure Calls (RPC)—Experimental Feature
	28.1 RPC Service
	28.1.1 Creating a Service
	28.1.2 Setting the Server Parameters
	28.1.3 Summary of Server Operations
	28.1.4 Run the Server
	28.1.5 Setting the Service Parameters

	28.2 RPC Client
	28.2.1 Creating a Client
	28.2.2 Setting the Client Parameters
	28.2.3 Summary of Client Operations

	28.3 Accessing Underlying DataWriters and DataReaders
	28.4 Generating RPC Code from IDL using RTI Code Generator

	Part 5: RTI Real-Time WAN Transport
	Chapter 29 Introduction to Real-Time WAN Transport
	29.1 Key Terms
	29.1.1 Basic Terms
	29.1.2 IP Address Types
	29.1.3 Locators
	29.1.4 WAN Ecosystem

	Chapter 30 Transport Capabilities
	30.1 NAT Traversal
	30.1.1 NAT Kinds
	30.1.2 Identifying the NAT Type
	30.1.3 NAT Bindings
	30.1.4 NAT Bindings Expiration
	30.1.5 NAT Hairpinning

	30.2 IP Mobility

	Chapter 31 Communication Scenarios
	31.1 Peer-to-Peer Communication with a Participant that has a Public Address
	31.1.1 External Participant Configuration: Sub-Scenario 1
	31.1.2 External Participant Configuration: Sub-Scenario 2
	31.1.3 Internal Participants Configuration

	31.2 Peer-to-Peer Communication with Participants behind Cone NATs Using Cloud Discovery Service
	31.2.1 Internal Participants Configuration
	31.2.2 Cloud Discovery Service Configuration

	Chapter 32 Deployment Scenarios
	32.1 Edge-to-Data Center Deployment Scenario
	32.1.1 Data Center Routing Service Configuration
	32.1.2 In-Vehicle Routing Service Configuration

	32.2 Relayed Edge-to-Edge Deployment Scenario
	32.2.1 Data Center Routing Service Configuration
	32.2.2 Webinar Application Configuration

	32.3 Peer-to-Peer, Edge-to-Edge Deployment Scenario
	32.3.1 Video Connext Application Configuration
	32.3.2 Cloud Discovery Service Configuration

	Chapter 33 Enabling Real-Time WAN Transport
	33.1 Dynamically Loading the Real-Time WAN Transport
	33.2 Linking the Real-Time WAN Transport against your Application

	Chapter 34 Transport Initial Peers
	Chapter 35 Transport Configuration
	35.1 Setting Real-Time WAN Transport Properties
	35.2 Managing UDP Ports Used for Communication
	35.2.1 Receiving Data
	35.2.2 Configuring the Transport to Use a Single Port for an Internal Participant behind a NAT
	35.2.3 Configuring the Transport to Segregate Traffic for a Topic in its own Port
	35.2.4 Sending Data

	35.3 Disabling IP Fragmentation for Real-Time WAN Transport

	Chapter 36 Security
	Chapter 37 Advanced Concepts
	37.1 Transport Locators
	37.2 Binding Ping Messages
	37.3 Communication Establishment Protocol for Peer-to-Peer Communication with Participants behind Cone NATs
	37.4 Communication Establishment Protocol for Peer-to-Peer Communication with a Participant that has a Public Address

	Chapter 38 Transport Debugging
	38.1 Debugging Peer-to-Peer Communication with a Participant that has a Public Address
	38.2 Peer-to-Peer Communication with Participants behind Cone NATs

	Chapter 39 Tools Integration
	Chapter 40 Troubleshooting
	40.1 Communication Stops Working after Application Transitions to Different Network
	40.2 Communication not Established after Changing Cloud Discovery Service <receiver_port>
	40.3 Communication not Established even though Transport Settings are Set Correctly
	40.4 Slow Discovery using Cloud Discovery Service

	Part 6: RTI Secure WAN Transport
	Chapter 41 Introduction to Secure WAN Transport
	41.1 WAN Traversal via UDP Hole-Punching
	41.1.1 Protocol Details

	41.2 WAN Locators
	41.3 Datagram Transport-Layer Security (DTLS)
	41.3.1 Security Model
	41.3.2 Liveliness Mechanism

	41.4 Certificate Support
	41.5 License Issues

	Chapter 42 Configuring RTI Secure WAN Transport
	42.1 Example Applications
	42.2 Setting Up a Transport with the Property QoS
	42.3 WAN Transport Properties
	42.4 Secure Transport Properties
	42.5 Explicitly Instantiating a WAN or Secure Transport Plugin
	42.5.1 Additional Header Files and Include Directories
	42.5.2 Additional Libraries
	42.5.3 Compiler Flags

	Part 7: RTI TCP Transport
	Chapter 43 TCP Communication Scenarios
	43.1 Communication Within a Single LAN
	43.2 Symmetric Communication Across NATs
	43.3 Asymmetric Communication Across NATs

	Chapter 44 Configuring the TCP Transport
	44.1 Choosing a Transport Mode
	44.2 Explicitly Instantiating the TCP Transport Plugin
	44.2.1 Additional Header Files and Include Directories
	44.2.2 Additional Libraries and Compiler Flags

	44.3 Configuring the TCP Transport with the Property QosPolicy
	44.3.1 Configuring the TCP Transport to be Loaded Statically
	44.3.2 Loading TLS Support Libraries Statically

	44.4 Setting the Initial Peers
	44.5 RTPS Locator Format
	44.6 Support for External Hardware Load Balancers in TCP Transport Plugin
	44.6.1 Session-ID Messages

	44.7 TCP/TLS Transport Properties
	44.7.1 Connection Liveliness

	Part 8: RTI Persistence Service
	Chapter 45 Introduction to RTI Persistence Service
	Chapter 46 Configuring Persistence Service
	46.1 How to Load the Persistence Service XML Configuration
	46.2 XML Configuration File
	46.2.1 Configuration File Syntax
	46.2.2 XML Validation

	46.3 QoS Configuration
	46.4 Configuring the Persistence Service Application
	46.5 Configuring Remote Administration
	46.6 Configuring Persistent Storage
	46.7 Configuring Participants
	46.8 Creating Persistence Groups
	46.8.1 QoSs
	46.8.2 DurabilityService QoS Policy
	46.8.3 Sharing a Publisher/Subscriber
	46.8.4 Sharing a Database Connection
	46.8.5 Memory Management

	46.9 Configuring Durable Subscriptions in Persistence Service
	46.9.1 DDS Sample Memory Management With Durable Subscriptions

	46.10 Synchronizing of Persistence Service Instances
	46.11 Enabling RTI Distributed Logger in Persistence Service
	46.12 Enabling RTI Monitoring Library in Persistence Service
	46.13 Support for Extensible Types
	46.13.1 TypeConsistencyEnforcementQosPolicy Integration
	46.13.2 DataRepresentationQosPolicy Integration

	46.14 TCP Transport Support in Persistence Service

	Chapter 47 Running RTI Persistence Service
	47.1 Starting Persistence Service
	47.2 Stopping Persistence Service

	Chapter 48 Administering Persistence Service from a Remote Location
	48.1 Enabling Remote Administration
	48.2 Remote Commands
	48.2.1 start
	48.2.2 stop
	48.2.3 shutdown
	48.2.4 status

	48.3 Accessing Persistence Service from a Connext DDS Application

	Chapter 49 Advanced Persistence Service Scenarios
	49.1 Scenario: Load-balanced Persistence Services
	49.2 Scenario: Delegated Reliability
	49.3 Scenario: Slow Consumer

	Part 9: RTI Monitoring Library
	Chapter 50 Using Monitoring Library in Your Application
	50.1 Enabling Monitoring
	50.1.1 Method 1—Change the Participant QoS to Automatically Load the Dynamic Monitoring Library
	50.1.2 Method 2—Change the Participant QoS to Specify the Monitoring Library Create Function Pointer and Explicitly Load the Monitoring Library

	50.2 How does Monitoring Library Work?
	50.3 What Monitoring Topics are Published?
	50.4 Enabling Support for Large Type-Code (Optional)
	50.5 Troubleshooting Monitoring
	50.5.1 Buffer Allocation Error

	Chapter 51 Configuring Monitoring Library
	Part 10: RTI Distributed Logger
	Chapter 52 Using Distributed Logger in a Connext DDS Application
	52.1 Distributed Logger Libraries
	52.2 Using the API Directly
	52.3 Examples
	52.4 Data Type Resource
	52.5 Distributed Logger Topics
	52.6 Distributed Logger IDL
	52.7 Viewing Log Messages
	52.8 Logging Levels
	52.9 Distributed Logger Quality of Service Settings
	52.10 Troubleshooting
	52.10.1 Message Losses
	52.10.2 Logger Device not Working

	Chapter 53 Enabling Distributed Logger in RTI Services
	53.1 Relationship Between Service Verbosity and Filter Level

