
RTI Connext DDS

Core Libraries

What's New in Version 6.1.2

© 2023 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
September 2023.Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Work-
ing as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All
other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished solely under and subject to
RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance with your
License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to
the extent otherwise accepted in writing by a corporate officer of RTI.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Notice

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding
maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is deprec-
ated in a release, RTI hereby provides customer notice that RTI reserves the right after one year from the
date of such release and, with or without further notice, to immediately terminate maintenance (including
without limitation, providing updates and upgrades) for the item, and no longer support the item, in a
future release.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive, Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://www.rti.com/terms
http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 What's New in 6.1.2

1.1 Introduction 1
1.2 Serialization Error Now Displays Both message_size_max and Actual Message Size Values for

Easier Comparison 1
1.3 Use of TopicQueries or ContentFilteredTopics May Incur Lower Overhead 2
1.4 WaitSet and GuardCondition in Java API Now Implement AutoCloseable 2
1.5 Improved Performance when Calling build_data and get_loan FlatData APIs at the Same Time that

Samples Are Published 2
1.6 More Efficient Bandwidth Utilization for Configurations with Small Transport message_size_max 2
1.7 Free DDS Thread-Specific Storage on Demand in New C# API 3
1.8 New Property to Manually Enable or Disable Logging Backtrace upon SIGSEGV Signal from a

Connext DDS Application 3
1.9 Improved Search for <include> files by Including Directory of Current File Being Parsed in Search

for XML files 3
1.10 Redaction of Sensitive Properties when Logging DDS Entities' PropertyQos Configuration 4
1.11 Timestamps Now Included in addSample Failures Due to DestinationOrder by Source Timestamp

Mismatches 5
1.12 Platform and Build Changes 5

1.12.1 New platforms 5
1.12.2 New Support for Windows 11 and Visual Studio 2022 Version 17 6
1.12.3 Support for Java on certain 32-bit Windows® platforms 7

1.13 Deprecations and Removals 7
1.13.1 Deprecated rtps_overhead Property 8
1.13.2 Removed ability to share a database connection in Persistence Service and durable writer

history 8
1.14 RTI Queuing Service Now Experimental 8
1.15 Third-Party Software Upgrades 8

Chapter 2 Previous Releases

iii

iv

2.1 What's New in 6.1.1 10
2.1.1 Introduction 10
2.1.2 C# API: Improved Performance, Interoperability, and Platform Support 10
2.1.3 Prioritize Data Flow (on Linux platforms) Using Newly Added Support for Differentiated Services

Field in RTI Real-Time WAN Transport 12
2.1.4 Simplify DDS Application Code Using AsyncWaitSet (no Longer Experimental) 12
2.1.5 RTI Tools Now Launch Successfully Even When JREHOME is Assigned to Old Version 12
2.1.6 Improved Reporting when the Monitoring List of Properties is Longer than 64 Elements 13
2.1.7 Platform and Build Changes 13
2.1.8 Deprecations 14
2.1.9 Third-Party Software Upgrades 15

2.2 What's New in 6.1.0 15
2.2.1 Introduction 15
2.2.2 High-Performance WAN Connectivity over UDP that is Secure and Scalable, Using RTI Real-Time

WAN Transport and RTI Cloud Discovery Service 16
2.2.3 New C# Language Binding Allows Building Multi-Platform Connext DDS Applications for .NET 5 17
2.2.4 New Getting Started Guides in Traditional C++, Modern C++, and C# 18
2.2.5 Compressed Application Data Using Builtin Support for zlib, LZ4, and bzip2 Algorithms 19
2.2.6 Network Capture Utility, Analyzing Network Traffic for DomainParticipants - Works even with

Shared Memory and Encrypted Data 19
2.2.7 Separate Durability and History Depths, Using New writer_depth Durability QoS 20
2.2.8 Coherent Access with Group Presentation QoS: Ensure a Set of Samples Sent from Multiple

DataWriters within a Publisher is Received as a Cohesive Unit 21
2.2.9 Activity Context in Messages: Identify the Source of a Logged Message More Easily with Added

Resources and Activities Information 22
2.2.10 New Lost, Rejected, and Dropped Statistics to Better Identify why a Subscribing Application is not

Seeing Samples 24
2.2.11 New Protocol Status Statistics for DataWriters and DataReaders to more Easily Monitor Fragmented

Messages 25
2.2.12 Increased Visibility into Connext DDS Applications 27
2.2.13 Improved Control over Application Behavior 41
2.2.14 Language Bindings, APIs, XML Configuration 53
2.2.15 Platform and Build Changes 57
2.2.16 Changes to Defaults 59
2.2.17 Performance Improvements 61
2.2.18 Deprecations 61

Chapter 1 What's New in 6.1.2
1.1 Introduction

RTI® Connext® DDS 6.1.2 LTS is a long-term support release. It improves stability for pro-
duction-ready customers by fixing issues found after the release of Connext DDS 6.1.1. See the
Connext LTS page on the RTI website for more information about long-term support releases.

This document highlights new platforms and improvements in 6.1.2. These enhancements have
been made since 6.1.1 was released.

For what's fixed in the Core Libraries for 6.1.2, 6.1.1, and 6.1.0, see the RTI Connext DDS Core
Libraries Release Notes. For what's new and fixed in other products included in the Connext suite,
see those products' release notes.

For backward compatibility information between 6.1.2 and previous releases, see the
Migration Guide on the RTI Community Portal (https://community.rti.com/documentation).

1.2 Serialization Error Now Displays Both message_size_max
and Actual Message Size Values for Easier Comparison

When Connext DDS exceeds the maximum size of the serialization buffer, the error now shows the
current value along with the limit value, so that you can know the status of the buffer and take
action on the issue more clearly. An example of the new error message is as follows:
ERROR [0x0101707E,0xF19D1787,0x0CECDBF7:0x000001C1\{D=0}\|CREATE
DP\|ENABLE\|LC:DISC]MIGGenerator_addData:add data failed. The most likely cause is that
the
message size max ('950') (for at least one of the installed transports) is too small for
propagating the participant discovery information, with message size (956).

1

https://www.rti.com/products/connext-lts
https://community.rti.com/documentation

1.3 Use of TopicQueries or ContentFilteredTopics May Incur Lower Overhead

2

1.3 Use of TopicQueries or ContentFilteredTopics May Incur Lower
Overhead

This release introduces a reliability protocol improvement that may reduce bandwidth consumption in scen-
arios where you create a lot of TopicQueries and/or ContentFilteredTopics. The improvement reduces the
number of RTPS GAP sub-messages that are sent in response to a NACK message requesting:

l Samples that do not pass the DataReader's ContentFilteredTopic expression.

l TopicQuery samples that are not part of the response to a DataReader's TopicQuery—that is,
samples directed to TopicQueries from other DataReaders.

1.4 WaitSet and GuardCondition in Java API Now Implement
AutoCloseable

WaitSet and GuardCondition objects require manual destruction, which was provided only as a delete()
method. Starting in this release, these classes implement java.lang.AutoCloseable, which provides the
close()method and allows for a simplified lifecycle management within a try block:
try (WaitSet waitset = new WaitSet()) {

// Use waitset
// ...

} // waitset deleted

1.5 Improved Performance when Calling build_data and get_loan
FlatData APIs at the Same Time that Samples Are Published

There was a concurrency issue in the build_data and get_loan FlatData™ APIs. The calls to these meth-
ods would block if the DataWriter was publishing or repairing a sample. This may have led to significant
concurrency issues.

For example, when using asynchronous publication, which typically is required with large data scenarios,
you may have noticed that the time required by the build_data and get_loan FlatData APIs had a high jit-
ter. This was because build_data/get_loan were taking the same lock as the asynchronous publisher pub-
lishing the data. This problem has been resolved.

Note that this concurrency improvement does not apply to scenarios in which FlatData is used in com-
bination with ZeroCopy.

1.6 More Efficient Bandwidth Utilization for Configurations with Small
Transport message_size_max

Connext DDS adds protocol information to every RTPS message it sends out. In previous releases, Con-
next DDS reserved 512 bytes for the protocol information out-the-box regardless of whether the bytes
were used. Reducing the Connext DDS transport MTU (<message_size_max>) led to a small payload

1.7 Free DDS Thread-Specific Storage on Demand in New C# API

utilization ratio per RTPS packet. For example, if you reduced the transport MTU to 1400 bytes to disable
IP fragmentation, the maximum number of bytes per RTPS packet was 888.

To improve bandwidth utilization, Connext DDS offered a property, dds.participant.protocol.rtps_over-
head, that you could use to adjust the protocol overhead to a value smaller than the default 512. However,
coming out with a good value for the property was not easy. In addition, if the value was too small, Con-
next DDS could not send samples.

Starting with this release, the calculation of the RTPS protocol overhead is automatically done by Connext
DDS per message, leading to more efficient bandwidth utilization. The property dds.-
participant.protocol.rtps_overhead has been deprecated, since there is no need to use it anymore.

1.7 Free DDS Thread-Specific Storage on Demand in New C# API

The first release of the new C# API did not provide a method to free DDS thread-specific storage when a
user thread exits. This is now possible via the new ThreadManager disposable object.

1.8 New Property to Manually Enable or Disable Logging Backtrace
upon SIGSEGV Signal from a Connext DDS Application

For debuggability purposes, Connext DDS applications log a backtrace when a SIGSEGV signal is
triggered.

In this release, a new property, dds.participant.enable_backtrace_upon_sigsegv, allows you to manu-
ally enable or disable the use of this logging feature. (See the "PROPERTY QosPolicy (DDS Extension)"
section in the RTI Connext DDS Core Libraries User's Manual.) By default, logging of the backtrace will
be disabled in release libraries, but enabled in debug libraries. See "Potential hang upon SIGSEGV signal
from a Connext DDS application" (CORE-12794) in the RTI Core Libraries Release Notes.

The accepted values for the new property are "auto" for the default behavior (backtrace enabled only in
debug libraries), "true" for enabling the logging of the backtrace in both debug and release libraries, and
"false" for disabling it in both release and debug libraries.

Note: This property takes effect upon the creation of the first DomainParticipant within a process.
Consequently, if a SIGSEGV signal is received before the creation of the first DomainParticipant, the
default behavior will be applied (backtrace enabled in debug libraries and disabled in release libraries).

1.9 Improved Search for <include> files by Including Directory of
Current File Being Parsed in Search for XML files

This release improves the way Connext DDS searches for the XML contained in the file attribute of the
<include> XML tag.

In previous releases, Connext DDS only searched the current working directory for XML files. For
example, assume these three files:

3

1.10 Redaction of Sensitive Properties when Logging DDS Entities' PropertyQos Configuration

4

File1.xml (located in the current working directory)
<dds>

<types>
<include file=”./nested/File2.xml"/>
…

</types>
</dds>

nested/File2.xml
<dds>

<types>
<include file=”File3.xml"/>
…

</types>
</dds>

nested/File3.xml
<dds>

<types>
…

</types>
</dds>

Previously, Connext DDS could not parse File2.xml, because in File2.xml, the path to File3.xml is given
as relative to File2.xml's current directory, but the parser wasn't looking in that directory for File3.xml; it
was looking only in the current working directory (where File1.xml is) for File3.xml. In this release, Con-
next DDS now also considers the directory containing the current file being parsed (File2.xml) to resolve
the path for its included files (File3.xml).

The search order for included files is now as follows:

1. (new step) Connext DDS searches for the included files contained in a file in the directory where
that file is located.

2. Connext DDS searches for the included files in the current working directory.

1.10 Redaction of Sensitive Properties when Logging DDS Entities'
PropertyQos Configuration

Connext DDS has the ability to log the DDS Entity QoS configuration when a DDS Entity is created and
when the DDS Entity QoS is set. The logged information includes all the Entity’s PropertyQos properties
that have non-default values.

1.11 Timestamps Now Included in addSample Failures Due to DestinationOrder by Source Timestamp

This release now redacts the values of sensitive properties (for example, those containing cryptographic
keys) before they are output to the log. For example, logging the dds.sec.auth.private_key property will
result in the following output:
...
<element>

<name>dds.sec.auth.private_key</name>
<value>[redacted]</value>

</element>
...

Connext DDS considers sensitive any property that ends with any of the following suffixes:

l .cryptography.key

l .internal_license_string

l .internal_license_validation

l .key_material_key

l .license_file

l .license_string

l .participant_discovery_protection_key

l .password

l .private_key

l .private_key_file

l .private_key_password

l .rsa_private_key

l .rsa_private_key_file

l .rtps_protection_key

1.11 Timestamps Now Included in addSample Failures Due to
DestinationOrder by Source Timestamp Mismatches

When addSample fails due to DestinationOrder by source timestamp, Connext DDS now logs the two
timestamps that were compared. This message is generated at the warning logging level. Additionally,
timestamp comparison logs now display the timestamps at microsecond resolution.

1.12 Platform and Build Changes

1.12.1 New platforms

This release adds support for the following new platforms:

5

1.12.2 New Support for Windows 11 and Visual Studio 2022 Version 17

6

Table 1.1 New Platforms

Operating System CPU Compiler RTI Architecture Abbreviation

Linux®

Ubuntu®22.04 LTS

Validated using existing libraries forUbuntu 18.04 LTS.

x64 gcc 7.3.0 x64Linux4gcc7.3.0

Arm®v8 gcc 7.3.0 armv8Linux4gcc7.3.0

RedHawk™ Linux®8.2.1

Custom-supported target platform. Contact yourRTI sales
representative or sales@rti.com formore information.

x64 gcc 8.3.1 x64RedHawk8.2gcc8.3.1

TI® Linux 8.2.0.3

Custom-supported target platform. Contact yourRTI sales
representative or sales@rti.com formore information.

Armv8 gcc 9.2.1 armv8Linux-armgcc9.2.1

macOS®
macOS 12

Validated using existing libraries formacOS 11.
x64

clang 9.0-
13.0

x64Darwin17clang9.0

QNX® QNX Neutrino®7.1
Armv8 qcc 8.3.0 armv8QNX7.1qcc_cxx8.3.0

x64 qcc 8.3.0 x64QNX7.1qcc_cxx8.3.0

VxWorks®

VxWorks 7.0 SR0660

Custom-supported target platform. Contact your
RTI sales representative or sales@rti.com for more
information.

Armv8 llvm10.0.1

For KernelModules:
armv8Vx7SR0660llvm10.0.1.cortex-a53

ForReal-Time Processes: arm-
v8Vx7SR0660llvm10.0.1.cortex-a53_rtp

VxWorks 21.11 x64 llvm12.0.1.1

For KernelModules:
x64Vx21.11llvm12.0.1.1

ForReal-Time Processes:
x64Vx21.11llvm12.0.1.1_rtp

Windows®
Windows 11

Validated using existing libraries forWindows 10.
x64

Visual Stu-
dio®2022 ver-
sion 17

x64Win64VS2017

1.12.2 New Support for Windows 11 and Visual Studio 2022 Version 17

With this release, we have validated that the existing x64Win64VS2017 libraries can also be used on Win-
dows 11, and with Visual Studio 2022 version 17. The following table summarizes the supported Win-
dows platforms.

1.12.3 Support for Java on certain 32-bit Windows® platforms

Operating System Visual Studio® Version RTI Architecture Abbreviation .NET Versiona JDK
Version CPU

Windows 10

VS 2015 Update 3 x64Win64VS2015 4.6

JDK 11 x64

VS 2017 Update 2

VS 2019 Version 16.0.0

VS 2022 Version 17.0

x64Win64VS2017 4.6.1

Windows 11

VS 2017 Update 2

VS 2019 Version 16.0.0

VS 2022 Version 17.0

x64Win64VS2017 4.6.1

Windows Server 2012 R2 VS 2015 Update 3 x64Win64VS2015 4.6

Windows Server 2016

VS 2015 Update 3 x64Win64VS2015 4.6

VS 2017 Update 2

VS 2019 Version 16.0.0

VS 2022 Version 17.0

x64Win64VS2017 4.6.1

Table 1.2 Supported Windows Platforms

The Code Generator (rtiddsgen) provided in this release has been updated to generate Visual Studio pro-
ject files.

1.12.3 Support for Java on certain 32-bit Windows® platforms

This release adds Java support to the 32-bit Windows platforms, i86Win32VS2017 and
i86Win32VS2015. (These platforms are deprecated and only available on demand.)

1.13 Deprecations and Removals

This section describes products, features, and platforms that are deprecated or removed starting in release
6.1.2.

Deprecated means that the item is still supported in this release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is deprec-
ated in this release, RTI is hereby providing customer notice that RTI reserves the right after one year from
the date of this release and, with or without further notice, to immediately terminate maintenance (includ-
ing without limitation, providing updates and upgrades) for the item, and no longer support the item, in a
future release.

aThe RTI .NET assemblies are supported for both the C++/CLI and C# languages. The type support code
generated by rtiddsgen is in C++/CLI; compiling the generated type support code requires Microsoft
Visual C++. Calling the assembly from C# requires Microsoft Visual C#.

7

1.13.1 Deprecated rtps_overhead Property

8

This section serves as notice under the Real-Time Innovations, Inc. Maintenance Policy #4220 and/or any
other agreements by and between RTI and customer regarding maintenance and support of RTI’s soft-
ware.

1.13.1 Deprecated rtps_overhead Property

The property dds.participant.protocol.rtps_overhead has been deprecated, since there is no need to use
it anymore. See 1.6 More Efficient Bandwidth Utilization for Configurations with Small Transport mes-
sage_size_max on page 2 for an explanation.

1.13.2 Removed ability to share a database connection in Persistence
Service and durable writer history

This release removes the ability to share a database connection in RTI Persistence Service by setting the
tag <share_database_connection> to true for a <persistence_group>. It also removes the ability to share a
database connection when using durable writer history and setting the property dds.data_writer-
.history.odbc_plugin.shared to 1.

Note that sharing a database connection was only allowed for external databases, and support for external
databases was deprecated in Connext DDS 6.1.1 (see 2.1.8.4 Support for external databases deprecated in
this release on page 14).

1.14 RTI Queuing Service Now Experimental

Queuing Service is now available as an experimental feature in RTI Labs, https://www.rti.-
com/developers/rti-labs. As with all RTI experimental products, it should not be used in production applic-
ations.

If you already have Queuing Service from another release in which it is fully supported, you can continue
using it as such in that release. See Experimental Features in the RTI Connext DDS Core Libraries
Release Notes for information on RTI experimental products and features.

1.15 Third-Party Software Upgrades

The following third-party software used by the Core Libraries has been upgraded:

Third-Party Software Previous Version Current Version

Expat 2.4.4 2.4.8

Zlib 1.2.11 1.2.12

Some of these upgrades may fix potential vulnerabilities. See Fixes Related to Vulnerabilities, in "What's
Fixed in 6.1.2," in the RTI Core Libraries Release Notes.

https://www.rti.com/developers/rti-labs
https://www.rti.com/developers/rti-labs

1.15 Third-Party Software Upgrades

For other third-party upgrades, see other products' release notes.

For information on third-party software used by Connext DDS products, see the "3rdPartySoftware" doc-
uments in your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_
3rdparty.

9

Chapter 2 Previous Releases
2.1 What's New in 6.1.1

2.1.1 Introduction

RTI® Connext® DDS 6.1.1 LTS is a long-term support release. It improves stability for pro-
duction-ready customers by fixing issues introduced before or during the development of Connext
DDS 6.1.0. See the Connext LTS page on the RTI website for more information about long-term
support releases.

This document highlights new platforms and improvements in 6.1.1. These enhancements have
been made since 6.1.0 was released.

For what's fixed in the Core Libraries for 6.1.1 and 6.1.0, see the RTI Connext DDS Core Librar-
ies Release Notes. For what's new and fixed in other products included in the Connext suite, see
those products' release notes.

For backward compatibility information between 6.1.2 and previous releases, see the
Migration Guide on the RTI Community Portal (https://community.rti.com/documentation).

2.1.2 C# API: Improved Performance, Interoperability, and Platform
Support

2.1.2.1 C# language binding introduced in 6.1.0 now used by default

By default, when you specify -language C#, Code Generator now generates code for the new C#
API that was introduced in release 6.1.0. If you want to generate code for the legacy C# language,
which was used in release 6.1.0 and earlier, specify -language C# -dotnet legacy.

The legacy C# language was deprecated in 6.1.0 and will be removed in a future release. See the
RTI Code Generator User's Manual for more information on the -language C# option.

10

https://www.rti.com/products/connext-lts
https://community.rti.com/documentation

2.1.2 C# API: Improved Performance, Interoperability, and Platform Support

11

2.1.2.2 Major performance improvements increase throughput

This release includes a few performance improvements that drastically increase the maximum throughput
that can be achieved with the Connext DDS C# API.

Note also that our internal testing shows that .NET 5 provides far better performance than previous .NET
versions such as .NET Core 3.1 or .NET Framework 4.6.1.

2.1.2.3 Less-strict character conversion improves interoperability with other language
bindings

IDL 1-byte chars in topic-types need to be converted from and to C#'s 2-byte chars. In 6.1.0 this con-
version failed if the C# char didn't represent a valid 1-byte UTF-8 character. For example, integer values
above 127 were rejected.

This behavior was stricter than any other Connext DDS language API and for that reason has been
relaxed. Now any 0-255 integer value in a C# character will be accepted. Any C# char above 255 will still
fail when translated into a single IDL char member. This change affects both IDL-generated topic-types as
well as DynamicData. (Note that it is still recommended to use IDL octet instead of IDL char to represent
an arbitrary 1-byte integer.)

This change doesn't affect string, wstring, or wchar.

2.1.2.4 Support for Linux systems on Arm v7 CPUs

This release supports the C# API for Linux® systems on Arm v7 CPUs.

Running a Connext DDS C# application on Arm v7 CPUs requires installing the Connext DDS arm-
v7Linux4gcc7.5.0 target libraries on the target machine and making them available to the C# application
(for example, by setting the LD_LIBRARY_PATH to <NDDSHOME>/lib/armv7Linux4gcc7.5.0).

Previous releases of the C# API had not been fully tested on Arm v7 CPUs. This release fully tests and
supports the C# API on Linux systems on Arm v7 CPUs.

Note that for other supported platforms like x64 Windows®, Linux on x64 and Arm v8 CPUs, and
macOS®, the C# libraries are bundled in the Rti.ConnextDds.Native NuGet package, and there's no need
to install the target package. For C# applications on Arm v7 CPUs, you need to install the target package
separately.

2.1.2.5 Support for 32-bit Windows Systems

This release supports the C# API for 32-bit Windows systems.

Running a Connext DDS C# application on 32-bit Windows systems requires installing the Connext DDS
i86Win32VS2017 target libraries on the target machine and making them available to the C# application
(for example, by setting the PATH to <NDDSHOME>/lib/i86Win32VS2017).

2.1.3 Prioritize Data Flow (on Linux platforms) Using Newly Added Support for Differentiated Services

Previous releases of the C# API were unable to load the 32-bit Windows native libraries. This problem has
been fixed.

Note that for other supported platforms like x64 Windows, x64 and Arm v8 Linux, and macOS, the C# lib-
raries are bundled in the Rti.ConnextDds.Native NuGet package, and there's no need to install the target
package. For C# applications on 32-bit Windows systems, you need to install the target package sep-
arately.

2.1.3 Prioritize Data Flow (on Linux platforms) Using Newly Added Support
for Differentiated Services Field in RTI Real-Time WAN Transport

This release allows setting the differentiated services field value in the IP packets sent by the Real-Time
WAN Transport using DataWriterQos.transport_priority and DataReaderQos.transport_priority for
user Topics and DomainParticipantQos.discovery.metatraffic_transport_priority for non-user Topics
(e.g., discovery Topics).

This feature is only supported on Linux platforms.

2.1.4 Simplify DDS Application Code Using AsyncWaitSet (no Longer
Experimental)

The AsyncWaitSet API is no longer experimental. This API is now considered stable and can be used in
production starting in release 6.1.1.

Available in the C, Traditional C+, and Modern C++ APIs, AsyncWaitSet is an executor utility that uses
a configurable thread pool to execute user callbacks when any of the Conditions attached to it get
triggered. This utility simplifies the multi-threaded code typically required to monitor status changes of
DDS Entities using a regular WaitSet.

For more information, see the API Reference HTML Documentation for each language where Asyn-
cWaitSet is included:

l For the C API, see DDS_AsyncWaitSet

l For the Traditional C++ API, see DDSAsyncWaitSet

l For the Modern C++ API, see rti::core::cond::AsyncWaitSet

2.1.5 RTI Tools Now Launch Successfully Even When JREHOME is
Assigned to Old Version

RTI Launcher, RTI Monitor, and RTI Admin Console failed on startup when JREHOME was assigned to
an old version of JRE. Those tools now check if the JRE version assigned in the variable JREHOME is
valid; if not, they will use the JRE provided by RTI to ensure that they launch correctly.

12

2.1.6 Improved Reporting when the Monitoring List of Properties is Longer than 64 Elements

13

2.1.6 Improved Reporting when the Monitoring List of Properties is Longer
than 64 Elements

Previously, when using Monitoring Library, if you used more than 64 properties for the DomainPar-
ticipant, the following error message was logged and the monitoring information was not published for the
entity:
RTIDefaultMonitorParticipantObject_sampleAndPublishParticipantDesc: PropertyQosPolicy sequence
length (91) exceeds maximum (64)
[D0000|ENABLE]RTIDefaultMonitorPublisher_onEventNotify:!publish participant desc

Now, the error message is more clear, including providing a workaround for the problem:
RTIDefaultMonitorParticipantObject_sampleAndPublishParticipantDesc: PropertyQosPolicy sequence
length (91) exceeds maximum (64). You can skip sending the participant properties by setting
'rti.monitor.config.skip_participant_properties' to 'true'

The same improvement has been made for the DataWriter and DataReader properties, when they exceed
the maximum.

2.1.7 Platform and Build Changes

2.1.7.1 Generic package for Linux platforms (Experimental)

Release 6.1.1 includes a new generic package, x64_Linux_Cairo, which can be used with a class of
Linux distributions. The class is defined by a combination of compatibility factors: CPU, minimum glibc
version, and a range of libstdc++ versions. To see the requirements for using this package, see the Linux
Platforms chapter in the RTI Connext DDS Core Libraries Platform Notes.

2.1.7.2 New platforms

This release adds support for the following platforms:

Operating System CPU Compiler RTI Architecture Abbreviation

AIX® 7.2

Custom-supported target platform. Contact your RTI sales
representative or sales@rti.com for more information.

POWER9™ xlclang 16.1 64p9AIX7.2xlclang16.1

macOS®11

RequiresRosetta® 2 during installation, not required
during runtime.

Arm®v8 clang 12.0 arm64Darwin20clang12.0

macOS 11

The same libraries formacOS 10.x have been validated on
macOS 11 systems.

Intel® x64 clang 12.0 x64Darwin17clang9.0

QNX® Neutrino®7.1

Available for use with OpenSSL orwolfSSL.
Armv8 qcc 8.3.0 armv8QNX7.1qcc_gpp8.3.0

2.1.8 Deprecations

2.1.7.3 Removed Platforms

This release removes support for one platform:

Operating System CPU Compiler RTI Architecture Abbreviation

Wind River Linux 8

Custom-supported target platform.
PPCe6500 gcc 5.2.0 (32-bit) ppce6500Linuxgcc5.2.0

2.1.8 Deprecations

This section describes products, features, and platforms that are deprecated starting in release 6.1.1.

Deprecated means that the item is still supported in this release, but will be removed in a future release.

This section serves as notice under the Real-Time Innovations, Inc. Maintenance Policy #4220.

2.1.8.1 Old command-line options deprecated in RTI DDS Spy

Starting in release 6.1.1, the following command-line options in DDS Spy are deprecated, since they were
only needed for backward compatibility with older releases. These will be removed in a future release:

l -use510CompatibleLocatorKind

l -use43LargeDataFormat

l -use530dynamicData

Based on customer feedback, RTI also plans to improve and simplify DDS Spy's output format in a future
release.

2.1.8.2 RTI Secure WAN Transport deprecated in this release

Secure WAN Transport is deprecated starting with release 6.1.1. Secure WAN Transport will not be sup-
ported in a future release. You should use RTI Real-Time WAN Transport instead. See the RTI Real-Time
WAN part of the RTI Connext DDS Core Libraries User's Manual for more information.

2.1.8.3 EXCLUSIVE_AREA QoS Policy deprecated in this release

The EXCLUSIVE_AREA QoS Policy is deprecated starting with release 6.1.1. Support for this policy
will be removed in a future release. This deprecation only affects the EXCLUSIVE_AREA QoS policy
(the ability to set use_shared_exclusive_area).

2.1.8.4 Support for external databases deprecated in this release

Support for external databases is deprecated starting with release 6.1.1. Specifically:

14

2.1.9 Third-Party Software Upgrades

15

l The Durable Writer History and Durable Reader State features are deprecated in this release, since
they require an external database.

l The <external_database> tag in RTI Persistence Service is deprecated in this release.

Support for external databases will be removed in a future release.

2.1.9 Third-Party Software Upgrades

The following third-party software used by the Core Libraries has been upgraded:

Third-Party Software Previous Version Current Version

Apache Log4j 2™ 1.2.16 2.17.1

LZ4 1.9.2 1.9.3

bzip2 1.0.6 1.0.8

Expat 2.2.5 2.4.4

Flex 2.5.31 2.6.4

Bison 2.0 3.7.6

Some of these upgrades may fix potential vulnerabilities. See Fixes Related to Vulnerabilities, in "What's
Fixed in 6.1.1," in the RTI Core Libraries Release Notes.

For other third-party upgrades, see other products' release notes.

For information on third-party software used by Connext DDS products, see the "3rdPartySoftware" doc-
uments in your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_
3rdparty.

2.2 What's New in 6.1.0

2.2.1 Introduction

Connext DDS 6.1.0 is a general access release. It adds support for geographically distributed systems with
a new secure WAN connectivity solution, bandwidth efficiency with data compression, and improved
instance resource management capabilities. It also improves ecosystem integration with a new C# language
binding based on .NET Standard 2.0.

This document highlights new platforms and improvements in the Core Libraries for 6.1.0.

For what's fixed in the Core Libraries for 6.1.0, see the RTI Connext DDS Core Libraries Release Notes.
For what's new and fixed in other products included in the Connext suite, see those products' release notes.

2.2.2 High-Performance WAN Connectivity over UDP that is Secure and Scalable, Using RTI Real-

For backward compatibility information between this and previous releases, see theMigration
Guide on the RTI Community Portal (https://community.rti.com/documentation).

Any deprecations described in this section serve as notice under the Real-Time Innovations, Inc. Main-
tenance Policy #4220.

2.2.2 High-Performance WAN Connectivity over UDP that is Secure and
Scalable, Using RTI Real-Time WAN Transport and RTI Cloud
Discovery Service

RTI Real-Time WAN Transport (RWT) is a new, smart transport that enables secure, scalable, and high-
performance communication over wide area networks (WANs), including public networks. It extends Con-
next DDS capabilities to WAN environments. Real-Time WAN Transport uses UDP as the underlying IP
transport-layer protocol to better anticipate and adapt to the challenges of diverse network conditions,
device mobility, and the dynamic nature of WAN system architectures.

Real-Time WAN Transport, in combination with RTI Cloud Discovery Service, provides a complete, seam-
less solution out of the box for WAN connectivity. This WAN connectivity solution, including Real-Time
WAN Transport and Cloud Discovery Service, is available as an optional add-on.

An example scenario of an Edge-to-Data Center deployment for a fleet of vehicles using a Routing Service in the
vehicles and in the data center. This is one of the many deployment configurations that RTI Real-Time WAN Transport

supports.

Real-Time WAN Transport replaces the transport capabilities of the Secure WAN Transport optionally
available with previous Connext DDS releases, and provides the following capabilities:

16

https://community.rti.com/documentation

2.2.3 New C# Language Binding Allows Building Multi-Platform Connext DDS Applications for .NET

17

l NAT (Network Address Translator) traversal: Ability to communicate between DomainPar-
ticipants running in a Local Area Network (LAN) that is behind a NAT-enabled router, and
DomainParticipants on the outside of the NAT across a WAN. This functionality is provided in
combination with Cloud Discovery Service.

l IP mobility: Support for network transitions and changes in IP addresses in any of the DomainPar-
ticipants participating in the communication

l Security: Secure communications between DomainParticipants using Security Plugins

Real-Time WAN Transport does not require third-party components, such as STUN servers, or protocols
like SIP to handle session establishment. Using a single API and security model, you can leverage the
extensive capabilities of the Connext DDS framework and ecosystem, including tools and infrastructure ser-
vices, even for real-time connectivity from edge to cloud and back in highly distributed systems that com-
municate across wide area networks.

All new applications that communicate over wide area networks using UDP should use Real-Time
WAN Transport. This release includes RTI Secure WAN Transport only for compatibility with
existing applications, which should upgrade to Real-Time WAN Transport. RTI may not support
Secure WAN Transport in future versions of Connext DDS and no longer provides it to new
customers.

For more information on setting up and using the Real-Time WAN Transport, see the "RTI Real-Time
WAN Transport" part in the RTI Connext DDS Core Libraries User's Manual.

2.2.3 New C# Language Binding Allows Building Multi-Platform Connext
DDS Applications for .NET 5

This release includes a new C# language binding for .NET Standard 2.0, which will replace the previous
binding.

Unlike the previous binding, which ran exclusively on Windows® and .NET Framework, the new bind-
ing runs on .NET Standard 2.0-compatible systems, including .NET 5, .NET Core 2+, and .NET Frame-
work 4.6.1+; and on Linux, macOS, and Windows.

The new binding includes a new DDS API and new IDL-to-C# code generation. The API has been
redesigned to follow modern C# best-practices. Some of the most significant improvements are:

l Seamless integration with Visual Studio® Code, Visual Studio, Visual Studio for Mac, and the dot-
net CLI.

l Documentation is readable via IntelliSense.

l Use of .NET naming conventions and other common practices, such as properties and events.

l Use of generics to define types such as Topic, DataWriter, DataReader.

2.2.4 New Getting Started Guides in Traditional C++, Modern C++, and C#

l Use of standard .NET types and interfaces: IEnumerable, IList, IEquatable, etc.

l Simplified entity lifecycle: entities implement IDisposable, which enables the “using” keyword.

l Value types are designed as immutable types with fluent mutators to enhance robustness.

The following is a simple Hello World subscriber:
using var participant = DomainParticipantFactory.Instance

.CreateParticipant(domainId: 0);
var topic = participant.CreateTopic<Shape>("Example Shape");
var subscriber = participant.CreateSubscriber();
var reader = subscriber.CreateDataReader(topic);
reader.DataAvailable += _ =>
{
using var samples = reader.Take();
foreach (var sample in samples.ValidData())
{
Console.WriteLine($"Received {sample}");

}
};
// ...

The first release of this binding is distributed as a separate RTI package and via the NuGet package man-
ager. It is not yet included in the RTI Connext DDS Professional package.

The previous .NET binding is still available, but deprecated, and will be removed in a future release.

For more information, see the RTI Connext DDS Getting Started Guide, and select C#. The API reference
is available on the RTI Community Portal.

2.2.4 New Getting Started Guides in Traditional C++, Modern C++, and C#

This release presents a brand new RTI Connext DDS Getting Started Guide, available in three languages:
modern C++, traditional C++, and C#. It is available on the RTI Community portal, as well as now being
part of the Connext DDS installation (in <installdir>/doc/manuals/connext_dds_professional/getting_
started_guide). If you or your co-workers are new to Connext or DDS, this is the right place to learn the
fundamentals with the included hands-on exercises.

Some highlights of the guide:

l A modular approach to learning Connext DDS concepts that you can learn at your own pace: intro-
duction to publish/subscribe, data types, keys and instances, QoS basics, content filtering, and dis-
covery.

l Simple, user-friendly language, with pictures.

l Introduction to tools such as RTI Admin Console.

18

https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_csharp/index.html
https://community.rti.com/documentation

2.2.5 Compressed Application Data Using Builtin Support for zlib, LZ4, and bzip2 Algorithms

19

l Links to more in-depth topics in the RTI Connext DDS Core Libraries User's Manual, for next
steps.

2.2.5 Compressed Application Data Using Builtin Support for zlib, LZ4, and
bzip2 Algorithms

This release adds support for user data compression for any communication between a DataWriter and
DataReader. There are three different compression algorithms currently supported: zlib, LZ4, and bzip2.
This new feature will help to reduce bandwidth usage and increase throughput on networks with low capa-
city.

In support of this feature, a new field, compression_settings, has been added to the DATA_
REPRESENTATION QoS Policy. This field contains the following settings:

l compression_ids: Chosen compression algorithm, such as COMPRESSION_ID_ZLIB or
COMPRESSION_ID_BZIP2.

l writer_compression_level: Level of compression to use when compressing data, ranging between
BEST_COMPRESSION and BEST_SPEED.

l writer_compression_threshold: Threshold, in bytes, above which a serialized sample will be eligible
to be compressed.

See the "DATA_REPRESENTATION QosPolicy" section in the RTI Connext DDS Core Libraries
User's Manual for more information.

2.2.6 Network Capture Utility, Analyzing Network Traffic for
DomainParticipants - Works even with Shared Memory and Encrypted
Data

This release introduces a new feature, network capture, that enables Connext DDS to capture the network
traffic that one or more DomainParticipants send or receive. This feature can be used to analyze and
debug communication problems between your DDS applications.

The result of capturing traffic for a DomainParticipant is a pcap-based file that can be opened by a packet
analyzer like Wireshark. Network capture has several advantages over more general tools:

l It can capture shared memory traffic.

l It is available from all platforms that support a file system.

l It is security-friendly. The capture can include the decryption of RTPS packets.

l You can exclude user data from the capture to preserve confidentiality and reduce the file size.

2.2.7 Separate Durability and History Depths, Using New writer_depth Durability QoS

You can enable network capture and start capturing traffic for one or more DomainParticipants through
new APIs that have been added to the C, Traditional C++, Modern C++, Java, and .NET languages. For
information about the use of these APIs, please refer to the API Reference HTML documentation.

For more information about network capture, see the "Network Capture" section in the "Troubleshooting"
chapter of the RTI Connext DDS Core Libraries User's Manual.

2.2.7 Separate Durability and History Depths, Using New writer_depth
Durability QoS

In this release, it is possible to configure the reliability window (the number of samples kept in the queue
for reliability purposes) separately from the durability window (the number of samples kept in the
DataWriter queue for that are delivered to late-joining DataReaders). This allows an application to
achieve the level of reliability that is required and still only deliver a subset of data to late-joining
DataReaders when using a non-VOLATILE kind in the DURABILITY QoS Policy.

The reliability window is configured with the existing depth field in the HISTORY QoS Policy. The dur-
ability window is configured with a new writer_depth field in the DURABILITY QoS Policy.

While a History.depth of 5 samples is maintained to repair losses for DataReaders that haven't acknowledged the
samples yet, Durability.writer_depth is set up to send only the last two samples to late-joining DataReaders

Previously, it was not possible to configure use cases such as strict reliability while only delivering the
latest state per instance to late-joining DataReaders. This can now be achieved by using reliable com-
munication and setting HistoryQosPolicy.kind = KEEP_ALL and DurabilityQosPolicy.writer_depth = 1.

20

2.2.8 Coherent Access with Group Presentation QoS: Ensure a Set of Samples Sent fromMultiple

21

2.2.8 Coherent Access with Group Presentation QoS: Ensure a Set of
Samples Sent from Multiple DataWriters within a Publisher is
Received as a Cohesive Unit

This release adds support for coherent access with group presentation (DDS_GROUP_
PRESENTATION_QOS). In previous releases, this functionality was supported only with topic or
instance presentation (TOPIC_PRESENTATION_QOS or INSTANCE_PRESENTATION_QOS).

A publishing application can request that a set of DDS data samples across all the DataWriters within a
Publisher be propagated in such a way that they are interpreted at the receivers' side as a cohesive set of
modifications. In this case, the matching DataReaders will only be able to access the data after all the modi-
fications in the set are available at the subscribing end.

By default, the first coherent set was not provided to the application because it was deemed incomplete by the
DataReaders. (Different colored rectangles represent samples from different Topics.) The second coherent set was

received completely by the DataReaders, and was therefore provided to the application.

As part of this feature, this release also adds a way to identify a sample as part of a coherent set by intro-
ducing a new optional field called coherent_set_info in the SampleInfo data structure with type DDS_
CoherentSetInfo_t:
struct DDS_CoherentSetInfo_t {

DDS_GUID_t group_guid;
DDS_SequenceNumber_t coherent_set_sequence_number;
DDS_SequenceNumber_t group_coherent_set_sequence_number;

2.2.9 Activity Context in Messages: Identify the Source of a Logged Message More Easily with Added

DDS_Boolean incomplete_coherent_set;
};

A group coherent set is uniquely identified by the pair (group_guid, group_coherent_set_sequence_
number) where group_guid identifies the Publisher.

A topic coherent set is uniquely identified by the pair (group_guid, coherent_set_sequence_number)
where group_guid is the DataWriter's protocol.virtual_guid.

The field incomplete_coherent_set is used to indicate if a sample is part of an incomplete coherent set.
An incomplete coherent set is a coherent set for which some of the samples have not been received. This
includes samples that are filtered by content or time on the DataWriter side.

By default, the samples that are received from an incomplete coherent set are dropped by the DataReader
(s) and they are not provided to the application. By setting the new QoS parameter subscriber_qos.-
presentation.drop_incomplete_coherent_set to FALSE, you can change this behavior and, in this case,
samples from incomplete coherent sets will be provided to the application. These samples have sample_
info.coherent_set_info.incomplete_coherent_set set to TRUE.

For more information, see "The SampleInfo Structure" and "PRESENTATION QosPolicy" in the
RTI Connext DDS Core Libraries User's Manual.

See also: Known Issues in the RTI Core Libraries Release Notes.

2.2.9 Activity Context in Messages: Identify the Source of a Logged Message
More Easily with Added Resources and Activities Information

The “activity context” is the information that log messages provide about the context in which an error or a
warning occurs (for example, when a DataWriter fails to write a data sample, the log message includes
information such as the topic name, the domain ID or the writer name). This release expands the inform-
ation that is presented as well as the situations in which this information is available.

Previously, activity context was included in select NDDS_Config_LogPrintFormat options, such as
NDDS_CONFIG_LOG_PRINT_FORMAT_DEFAULT.

The activity context functionality has been expanded and enhanced:

l It has been added to the NDDS_CONFIG_LOG_PRINT_FORMAT_DEBUG option. See
2.2.12.6.3 Ability to see new activity context information available as part of NDDS_CONFIG_
LOG_PRINT_FORMAT_DEBUG print format on page 38.

l It is easier to use, with an updated format.

The activity context is a group of resources and activities associated with an action such as the creation of
an entity:

22

2.2.9 Activity Context in Messages: Identify the Source of a Logged Message More Easily with Added

23

l A resource is an abstraction of an entity. It can contain attributes such as Topic or Domain ID.

l An activity is a general task that the resource is doing, such as "Getting QoS."

The activity context is used in two places:

l Logging: activity context is one of the NDDS_Config_LogPrintFormat DDS logging infra-
structure formats. If a format that prints activity context is selected (see the "Message Formats" table
in the section "Format of Logged Messages," in the RTI Connext DDS Core Libraries User's
Manual), then every time Connext DDS logs a message, it will contain the contextual information.

l Heap monitoring: every time memory is allocated and heap monitoring is enabled, the string rep-
resentation of the activity context will be associated with the allocation. This information will be
available when taking the snapshot.

For example, in the creation of a DataWriter, the activity context will provide information about:

l Resource: the Publisher creating the DataWriter. The attributes of the publisher will be GUID, kind,
name, and Domain ID.

l Activity: entity creation. It will have one parameter, entity kind, in this case a DataWriter.

The string representation of the above activity context would be:
[0X101A76B,0X79E5D71,0X50EE914:0X1C1:0X80000088{E=Pu,N=TestPublisher,D=1}|CREATE Writer WITH
TOPIC TestTopic]

Where:

l GUID is 0X101A76B,0X79E5D71,0X50EE914:0X1C1:0X80000088

l Entity kind is E=Pu (for Publisher)

l Entity name is N=TestPublisher

l Domain ID is D=1

l Activity is CREATE Writer WITH TOPIC TestTopic

You can now also configure the attributes used in the activity context. These are the attributes that NDDS_
Config_ActivityContextAttribute uses in the string representation of the activity context. You can con-
figure these attributes through a mask. This mask indicates what resource attributes are used when Connext
DDS logs a message or when the Heap Monitoring utility saves statistics for a memory allocation.
void NDDS_Config_ActivityContext_set_attribute_mask(

NDDS_Config_ActivityContextAttributeKindMask attribute_mask);

enum NDDS_Config_ActivityContextAttributeKind {
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_GUID_PREFIX,

2.2.10 New Lost, Rejected, and Dropped Statistics to Better Identify why a Subscribing Application is not

NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_TOPIC,
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_TYPE,
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_ENTITY_KIND,
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_DOMAIN_ID,
NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_ENTITY_NAME
}
#define NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_MASK_DEFAULT
#define NDDS_CONFIG_ACTIVITY_CONTEXT_ATTRIBUTE_MASK_NONE

For more information, see the "Activity Context" section in the RTI Connext DDS Core Libraries User's
Manual.

2.2.10 New Lost, Rejected, and Dropped Statistics to Better Identify why a
Subscribing Application is not Seeing Samples

This feature provides information through statistics about every sample that is not seen by a subscribing
application. A sample that is never seen by a subscribing application is now considered one (and only one)
of the following statuses at any given time:

l Lost: a sample that is lost will never be received. This is the same behavior as in previous releases,
but now a sample can no longer be both lost and rejected at the same time.

l Rejected: the sample is rejected due to resource limit configuration. This is the same behavior as in
previous releases, but now a sample can no longer be both lost and rejected. (A rejected sample can,
however, later be reported as lost, dropped, or accepted.)

l Dropped: this is a new status in this release for samples dropped for non-resource limit con-
figuration reasons such as out-of-order samples, source timestamp tolerances, KEEP_LAST history
replacement, content filtering, and so on.

Lost and rejected samples are exposed through statuses (SampleLostStatus and SampleRejectedStatus) and
DataReader listener callbacks (on_sample_lost() and on_sample_rejected()). Dropped samples are
exposed through counters in the DataReaderCacheStatus and DataReaderProtocolStatus.

l Dropped sample counter

The following counters have been added:
l DDS_DataReaderCacheStatus:old_source_timestamp_dropped_sample_count

l DDS_DataReaderCacheStatus:tolerance_source_timestamp_dropped_sample_count

l DDS_DataReaderCacheStatus:ownership_dropped_sample_count

l DDS_DataReaderCacheStatus:content_filter_dropped_sample_count

l DDS_DataReaderCacheStatus:time_based_filter_dropped_sample_count

l DDS_DataReaderCacheStatus:virtual_duplicate_dropped_sample_count

24

2.2.11 New Protocol Status Statistics for DataWriters and DataReaders to more Easily Monitor

25

l DDS_DataReaderCacheStatus:replaced_dropped_sample_count

l DDS_DataReaderCacheStatus:expired_dropped_sample_count

l DDS_DataReaderCacheStatus:writer_removed_batch_sample_dropped_sample_count

l DDS_DataReaderProtocolStatus:out_of_range_rejected_sample_count

You can find more information in the sections "DATA_READER_CACHE_STATUS" and
"DATA_READER_PROTOCOL_STATUS" in the RTI Connext DDS Core Libraries User's
Manual.

l Lost sample reasons

The following reasons have been added:
l DDS_LOST_BY_DESERIALIZATION_FAILURE

l DDS_LOST_BY_SAMPLES_PER_INSTANCE_LIMIT

l DDS_LOST_BY_SAMPLES_LIMIT

l DDS_LOST_BY_DECODE_FAILURE

You can find more information in the section "SAMPLE_LOST Status" section in the RTI Connext
DDS Core Libraries User's Manual.

l Rejected samples reason

The following reason has been added
l DDS_REJECTED_BY_DECODE_FAILURE

The following reasons have been removed
l DDS_REJECTED_BY_UNKNOWN_INSTANCE

l DDS_REJECTED_BY_REMOTE_WRITERS_PER_SAMPLE_LIMIT

l DDS_REJECTED_BY_VIRTUAL_WRITERS_LIMIT

l DDS_REJECTED_BY_REMOTE_WRITERS_PER_INSTANCE_LIMIT

l DDS_REJECTED_BY_REMOTE_WRITERS_LIMIT

You can find more information in the section "SAMPLE_REJECTED Status" section in the
RTI Connext DDS Core Libraries User's Manual.

2.2.11 New Protocol Status Statistics for DataWriters and DataReaders to
more Easily Monitor Fragmented Messages

The DDS_DataReaderProtocolStatus and DDS_DataWriterProtocolStatus structures have been extended
to include statistics relating to fragmented data.

2.2.11 New Protocol Status Statistics for DataWriters and DataReaders to more Easily Monitor

The following fields have been added to DDS_DataWriterProtocolStatus:

l pushed_fragment_count

l pushed_fragment_bytes

l pulled_fragment_count

l pulled_fragment_bytes

l received_nack_fragment_count

l received_nack_fragment_bytes

The following fields have been added to DDS_DataReaderProtocolStatus:

l received_fragment_count

l dropped_fragment_count

l reassembled_sample_count

l sent_nack_fragment_count

l sent_nack_fragment_bytes

These fields have also been added to the topics published by the monitoring libraries: the new DataWriter
fields have been added to the DataWriterEntityStatistics type published by the monitoring libraries, and the
new DataReader fields have been added to the DataReaderEntityStatistics type published by the mon-
itoring libraries, to include the statistics related to data fragmentation. The way in which these monitoring
types have been extended means that they are backwards compatible.

The following fields within DDS_DataReaderProtocolStatus did not previously work when data frag-
mentation was used, but now they are correct when data fragmentation is used:

l received_sample_count

l received_sample_count_change

l received_sample_bytes

l received_sample_bytes_change

In release 5.3.0, partial support was added for the following fields in DDS_DataWriterProtocolStatus; they
worked when data fragmentation was used, but only when obtained for the local DataWriter (i.e., they did
not work when obtained for a matched subscription or matched locator):

l pushed_sample_count

l pushed_sample_count_change

26

2.2.12 Increased Visibility into Connext DDS Applications

27

l pushed_sample_bytes

l pushed_sample_bytes_change

l pulled_sample_count

l pulled_sample_count_change

l pulled_sample_bytes

l pulled_sample_bytes_change

These fields are now correct when the DataWriterProtocolStatus is obtained for the local DataWriter,
matched locator, or matched subscription.

For more information about these fields, see the "DATA_WRITER_PROTOCOL_STATUS" and
"DATA_READER_PROTOCOL_STATUS" sections in the RTI Connext DDS Core Libraries User's
Manual.

2.2.12 Increased Visibility into Connext DDS Applications

2.2.12.1 QoS

2.2.12.1.1 View current QoS of entities being used through new APIs

New APIs have been added to the C, Traditional C++, Modern C++, Java, and .NET APIs that allow top-
level QoS objects to be converted into strings and printed, so that you can see the current QoS being used.
Top-level QoS objects are defined as DataReaderQos, DataWriterQos, PublisherQos, SubscriberQos, Top-
icQos, DomainParticipantQos and DomainParticipantFactoryQos.

In C, there are three new APIs per top-level QoS object (DataWriterQos is used as an example below):
DDS_DataWriterQos_print(const struct DDS_DataWriterQos *self)
DDS_DataWriterQos_to_string(const struct DDS_DataWriterQos *self, char *string, DDS_
UnsignedLong *string_size)
DDS_DataWriterQos_to_string_w_params(const struct DDS_DataWriterQos *self, char *string, DDS_
UnsignedLong *string_size, const struct DDS_DataWriterQos *base, const struct DDS_
QosPrintFormat *format)

In Traditional C++, the same functionality is achieved through overloads:
DDS_DataWriterQos::print()
DDS_DataWriterQos::to_string(char *string, DDS_UnsignedLong& string_size)
DDS_DataWriterQos::to_string(char *string, DDS_UnsignedLong& string_size, const DDS_
DataWriterQos& base)
DDS_DataWriterQos::to_string(char *string, DDS_UnsignedLong& string_size, const DDS_
QosPrintFormat &format)
DDS_DataWriterQos::to_string(char *string, DDS_UnsignedLong& string_size, const DDS_
DataWriterQos &format, const DDS_QosPrintFormat &format)

2.2.12 Increased Visibility into Connext DDS Applications

In Modern C++, the to_string APIs are free-standing functions:
std::string to_string(const DataWriterQos& qos, const QosPrintFormat& format = QosPrintFormat
())
std::string to_string(const DataWriterQos& qos, const DataWriterQos& base, const
QosPrintFormat& format = QosPrintFormat())
std::string to_string(const DataWriterQos& qos, const qos_print_all_t& qos_print_all, const
QosPrintFormat& format = QosPrintFormat())
std::ostream& operator<<(std::ostream& out, const DataWriterQos& qos)

In Java, Object.toString is overridden, and additional overloads are available:
String DataWriterQos.toString()
String DataWriterQos.toString(DataWriterQos baseQos, QosPrintFormat format)
String DataWriterQos.toString(QosPrintFormat format)
String DataWriterQos.toString(DataWriterQos baseQos

In .NET, Object.ToString is overridden, and additional overloads are available:
String ^DataWriterQos::ToString()
String ^DataWriterQos::ToString(DataWriterQos ^base, QosPrintFormat ^format)
String ^DataWriterQos::ToString(QosPrintFormat ^format)
String ^DataWriterQos::ToString(DataWriterQos ^base)

For more information about the use of these APIs, please refer to the API Reference HTML doc-
umentation.

2.2.12.1.2 View QoS used in DDS Entity creation in logs using log level 'LOCAL' and category 'API'

Creating and/or setting the QoS of a DDS Entity (DDS_DomainParticipant, DDS_Topic, DDS_Publisher,
DDS_DataWriter, DDS_Subscriber, DDS_DataReader) or DDS_DomainParticipantFactory, will now res-
ult in the QoS of that entity being logged. This QoS is logged in XML format with a verbosity level of
LOCAL and a category of API. Only the differences between the configured QoS and the documented
default for that QoS are logged.

2.2.12.2 Sample losses

2.2.12.2.1 Detect and accept samples marked as ‘removed’ from a batch by a DataWriter

When the DataReader receives a batch, it could contain samples marked as removed by the DataWriter.
Examples of removed samples in a batch are samples that were replaced due to KEEP_LAST_
HISTORY_QOS on the DataWriter or samples that outlived the DataWriter's LifespanQosPolicy dur-
ation. By default, any sample marked as removed in a batch is dropped.

Now, each time the DataReader receives a sample marked as removed in a batch, a new counter, writer_
removed_batch_sample_dropped_sample_count, in the DataReaderCacheStatus will be incremented.
This way, you can now detect these removed samples.

You can also choose to accept samples marked as removed by setting the property dds.data_read-
er.accept_writer_removed_batch_samples to TRUE (by default it is set to FALSE); you can set this
property via the PropertyQosPolicy (DDS Extension).

28

2.2.12 Increased Visibility into Connext DDS Applications

29

If a sample marked as removed in a batch is accepted and received by the DataReader, the SampleIn-
fo::flag will contain the new value DDS_WRITER_REMOVED_BATCH_SAMPLE.

For more information, see the "BATCH QosPolicy" section of the RTI Connext DDS Core Libraries
User's Manual.

2.2.12.2.2 Detect samples dropped due to deserialization errors using DDS_LOST_BY_
DESERIALIZATION_FAILURE status

Previously when a sample could not be deserialized, it was dropped and a message was dropped. You
could only detect this scenario by checking the log with a LoggerDevice.

Now, the sample will be lost with the new reason DDS_LOST_BY_DESERIALIZATION_FAILURE.

2.2.12.2.3 Detect when received sample is lost or rejected due to decoding errors using new statuses

There are two new statuses:

l LOST_BY_DECODE_FAILURE: When using BEST_EFFORT_RELIABILITY_QOS, a
received sample was lost because it could not be decoded.

l REJECTED_BY_DECODE_FAILURE: When using RELIABLE_RELIABILITY_QOS, a
received sample was rejected because it could not be decoded.

2.2.12.3 Errors and unexpected behavior

2.2.12.3.1 ReliableWriterCacheChangedStatus extended to include information about unacknowledged
replaced samples

The ReliableWriterCacheChangedStatus structures have been extended to provide information about the
unacknowledged samples that have been replaced in the DataWriter's cache after applying the KEEP_
LAST history policy.

The following field has been added to ReliableWriterCacheChangedStatus:

replaced_unacknowledged_sample_count

The monitoring topics have also been updated to publish this information.

2.2.12.3.2 View value of field causing inconsistent configuration for READER_DATA_LIFECYCLE QoS
Policy as part of error messages

The error messages that were reported when an inconsistent configuration was set for the READER_
DATA_LIFECYCLE QoS Policy only showed the name of the field causing the inconsistency. Now
these error messages also show the value of the field that is causing the inconsistency and the values accep-
ted for that field.

2.2.12 Increased Visibility into Connext DDS Applications

2.2.12.3.3 See information about root cause in space assert error messages

The following error message is now more descriptive in order to provide a guide about how to solve the
problem:
Mx0A:GeneratorContext.c:2537:MIGGeneratorContext_addData:RTI0x20a3001:!space assert

The new error message will depend on the root of the problem.

l If the problem is related to the message size, the following message appears:

MIGGeneratorContext_addData:!space assert.
New message size (131096), current message size (36), maximum message size

(131072). Consider increment 'message_size_max'

l If the problem is related to the gather send buffer, the following message appears:

MIGGeneratorContext_addData:!space assert.
New buffer size (24), current scratch buffer size (16), maximum scratch buffer

size (8192).
Extra gather buffer count (1), current gather buffer index (1), maximum gather

buffer count (2).
Consider increment 'gather_send_buffer_count_max'

2.2.12.3.4 See the property name in error messages related to issues in adding a property twice with the
same name

Before when adding a property twice with the same name, the following error message was logged:
DDS_PropertySeq_add_element:!new element. ELEMENT ALREADY EXISTS. EITHER REMOVE THIS CALL OR
CALL assert_element INSTEAD. DDS_PropertyQosPolicyHelper_add_property:!add element

This message has been improved; now it includes the property name:
DDS_PropertySeq_add_element:!new element. ELEMENT 'dds.transport.UDPv4.builtin.parent.message_
size_max' ALREADY EXISTS. EITHER REMOVE THIS CALL OR CALL assert_element INSTEAD.
DDS_PropertyQosPolicyHelper_add_property:!Add property:
dds.transport.UDPv4.builtin.parent.message_size_max

2.2.12.3.5 Trace root cause of failures better using new function history logging feature for all supported
platforms, as alternative to backtrace functionality

Backtrace support, which was added in release 6.0.1 (see "Logging a backtrace for failures" in What's
New in 6.0.1) is available only on Linux, macOS, and Windows®.

For the rest of the platforms, Connext DDS now offers the function history. Function history is a soft ver-
sion of the backtrace feature for the last function called.

Due to the performance impact, function history will only be available in debug mode and only for the plat-
forms that do not support backtrace. Function history will be disabled by default.

You can enable function history by calling the following API method before the creation of the logger:

30

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_WhatsNew/index.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_WhatsNew/index.htm

2.2.12 Increased Visibility into Connext DDS Applications

31

NDDS_Utility_enable_function_history()

2.2.12.3.6 Configure validation of property names at plugin level

Previously, the validation of property names could only be configured at the entity level using the property
dds.participant.property_validation_action. However, it was not possible to configure validation at the
plugin level. If you used an unknown or incorrect plugin property name, the creation of the plugin failed
with the following error message:
DDS_PropertyQosPolicy_validate_plugin_property_suffixes:Unexpected property:
dds.transport.TCPv4.tcp1.invalidPropertyTest. Closest valid property:
dds.transport.TCPv4.tcp1.aliases

NDDS_Transport_TCPv4_Property_parseDDSProperties:Inconsistent QoS property:
dds.transport.TCPv4.

NDDS_Transport_TCPv4_create:!get transport TCPv4 plugin property from DDS Property

This lack of configuration has been resolved. Now you can decide the plugin property name validation
behavior using a new property, <plugin_name>.property_validation_action:

l VALIDATION_ACTION_EXCEPTION: validate properties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate properties. Upon failure, log warnings and do not
fail.

If the property is not set, the plugin property validation behavior will be the same as the participant's plugin
property validation behavior, which by default is VALIDATION_ACTION_EXCEPTION.

Here is an example of setting a plugin property's name validation:
<domain_participant_qos>

<property>
<value>

<element>
<name>dds.transport.load_plugins</name>
<value>dds.transport.TCPv4.tcp1</value>

</element>
<element>

<name>dds.transport.TCPv4.tcp1.property_validation_action</name>
<value>VALIDATION_ACTION_WARNING</value>

</element>
</value>

</property>
</domain_participant_qos>

2.2.12 Increased Visibility into Connext DDS Applications

2.2.12.4 Application state

2.2.12.4.1 Identify Connext DDS threads more easily using updated and consistent names

In previous releases, thread names were inconsistent or not set. Now, thread names have been updated
with the goal of identifying each thread easily.

The general rules for thread names are as follows:

l The maximum length for a thread name is 16, including the '\0'.

l The first character 'r' means that the thread has been created by RTI Connext DDS.

l The second and third characters identify themodule: for example, Co for 'Core' or Tr for 'Trans-
port.'

l The task type is represented with three characters: for example Evt for 'Event' or Rcv for 'Receive.'

Fields are named as follows:

l Participant identifier is five characters, as follows:

l The first 3 characters and last 2 characters of the participant_name, if set.

l The DomainId (3 characters) plus participant_id (2 characters), if participant_name is not
set.

l The last five digits of the rtps_instance_id in the participant GUID if participant_name is
not set and participant_id is set to -1 (default value).

l Transport name is four characters: for example, TCP4 for 'Transmission Control Protocol version
4 (TCPv4)' or DTLS for 'Datagram Transport Layer Security (DTLS).'

Table 2.1 Example Thread Names

Thread Information Name Fields

Example:

Domain: 111
Participant Id : 22
ThreadIndex: 33
Topic: HelloWorld
DataBase: Test
Application Name:
TestPersistence

Receive thread rCo%5s##%02dRcv Participant identifier, thread index rCo11122##33Rcv

Asynchronous waitset thread
rCo%5s##%02dAWs

Participant identifier, thread index rCo11122##33AWs

32

2.2.12 Increased Visibility into Connext DDS Applications

33

Thread Information Name Fields

Example:

Domain: 111
Participant Id : 22
ThreadIndex: 33
Topic: HelloWorld
DataBase: Test
Application Name:
TestPersistence

Database thread rCo%5s####Dtb Participant identifier rCo11122####Dtb

Event thread rCo%5s####Evt Participant identifier rCo11122####Evt

TCP event thread rTr%5s%04sEvt
Participant identification, transportName
(TCP4)

rTr11122TCP4Evt

DTLS event thread rTr%5s%04sEvt
Participant identification, transportName
(DTLS)

rTr11122DTLSEvt

WANserver thread rTr%5s%04sSvr
Participant identification, transportName (WAN)

rTr11122#WANCtr

Interface tracking thread rTr%5s%04sITr
Participant identification, transportName
(UDP4, UDP6, TCP4)

rTr11122UDP4ITr

Persistence Service publication
thread

rPs%07s%02dPub topic name, thread index rPsHello##33Pub

Recording Service timer thread rRe#########Tim rRe#########Tim

Monitor event thread rMo%5s####Evt Participant identifier rREHelloWorlPub

Routing Service filter tracker event
thread

rRsFilterTr#Evt rRsFilterTr#Evt

Database Integrated Service con-
nection thread

rDs%.9sCon Database name rDsTestsCon

For complete information, see the section "Identifying Threads Used by Connext DDS" in the
RTI Connext DDS Core Libraries User's Manual.

2.2.12.4.2 See updated name of interface tracker thread of the IP Mobility feature

The name of the interface tracker thread of the IP Mobility feature has been updated to rTr<Participant
identifier><Transport name>ITr:

l r: Specify that the thread has be created by RTI Connext DDS.

l Tr: Identify the transport module.

2.2.12 Increased Visibility into Connext DDS Applications

l Participant identifier: five characters to identify the participant. It is described in 2.2.12.4.1
Identify Connext DDS threads more easily using updated and consistent names on page 32 with
more details.

l Transport name: four characters to identify the transport. It can be UDP4 or UDP6 or TCP4.

l ITr: taskType of the thread, in this case, "Interface tracker".

2.2.12.4.3 Receive discovery information implicitly from RTPS header

If the following fields are not sent as part of the BuiltinTopicData in the discovery process, Connext DDS
now derives them from the RTPS header and from other fields:

l ParticipantBuiltinTopicData: VendorId, Protocol Version, Participant Guid.

l PublicationBuiltinTopicData: VendorId, Protocol Version, Virtual Guid (derived from endpoint
Guid).

l SubscriptionBuiltinTopicData: VendorId, Protocol Version, Virtual Guid (derived from endpoint
Guid).

Note that Connext DDS always propagates these fields; this enhancement has no effect when discovering
Connext DDS entities. This enhancement is useful when discovering entities from remote vendors, which
might not always send these fields.

2.2.12.4.4 View product version and type name used in pool allocation for heap monitoring snapshots

Heap monitoring now prints the correct type name used in the pool allocation for the heap monitoring snap-
shot. (Previously, the name of the type allocated by the pool was not accurate, and it was redundant when
printing the snapshot of heap monitoring.) The product version is now also in the header of the heap mon-
itoring snapshot file.

For example:
Product Version: NDDSCORE_BUILD_6.0.0.0_20191211T113449Z_RTI_ENG
Process virtual memory: 1518837760
Process physical memory: 509612032
Current heap usage: 887096247
High watermark: 888834186
Alloc count: 10791197
Free count: 9485215
block_id, timestamp, block_size, pool_alloc, pool_buffer_size, pool_buffer_count, topic_name,
activity, alloc_method_name, type_name
.
.
.
1576509471, 64, POOL, 64, 1, PRESServiceRequest, PRESCstReaderCollator_new, RTIOsapiHeap_
allocateBufferAligned, struct REDASkiplistNode

18817, 1576509471, 2000, POOL, 1000, 2, PRESServiceRequest, PRESCstReaderCollator_new,
RTIOsapiHeap_allocateBufferAligned, struct PRESCstReaderCollatorRemoteWriterQueue

34

2.2.12 Increased Visibility into Connext DDS Applications

35

18821, 1576509471, 9984, POOL, 312, 32, PRESServiceRequest, PRESCstReaderCollator_new,
RTIOsapiHeap_allocateBufferAligned, struct PRESCstReaderCollatorRegisteredKeyedEntry

18831, 1576509471, 2560, POOL, 80, 32, PRESServiceRequest, PRESCstReaderCollator_new,
RTIOsapiHeap_allocateBufferAligned, struct PRESCstReaderCollatorInstanceFilterMemberNode

18839, 1576509471, 5376, POOL, 168, 32, PRESServiceRequest, PRESCstReaderCollator_new,
RTIOsapiHeap_allocateBufferAligned, struct PRESCstReaderCollatorKeyedEntry

2.2.12.4.5 See messages from Security Plugins marked as related to security

Messages from RTI Security Plugins now have the is_security_message flag in NDDS_Config_LogMes-
sage set to TRUE.

2.2.12.5 Backtrace for fatal error debugging

Backtrace support was added in release 6.0.1 (see "Logging a backtrace for failures" in the 6.0.1 Core
Libraries Release Notes). In this release, the following enhancements have been made to the backtrace
functionality.

2.2.12.5.1 View logs related to crashes and fatal errors using FATAL log level, which is printed by
default in DEBUG format

A new NDDS_Config_LogLevel has been added: NDDS_CONFIG_LOG_LEVEL_FATAL_ERROR.
This log level indicates an unrecoverable situation in the functioning of Connext DDS. Error messages
with this log level usually indicate a violation of an internal invariant or a segmentation fault.

Now by default, the print_format NDDS_CONFIG_LOG_PRINT_FORMAT_DEBUG is set for the
log level NDDS_CONFIG_LOG_LEVEL_FATAL_ERROR. (For the rest of the log levels, NDDS_
CONFIG_LOG_PRINT_FORMAT_DEFAULT is used.)

This means that by default the backtrace is logged in precondition and segmentation faults; however, you
can disable the backtrace for NDDS_CONFIG_LOG_LEVEL_FATAL_ERROR. In the following code,
the log level NDDS_CONFIG_LOG_LEVEL_FATAL_ERROR uses the print_format NDDS_
CONFIG_LOG_PRINT_FORMAT_DEFAULT, which does not contain the backtrace information:
NDDS_Config_Logger *logger = NDDS_Config_Logger_get_instance();
NDDS_Config_Logger_set_print_format_by_log_level(

logger,
NDDS_CONFIG_LOG_PRINT_FORMAT_DEFAULT,
NDDS_CONFIG_LOG_LEVEL_FATAL_ERROR));

See the "Logging a Backtrace for Failures" section in the RTI Connext DDS Core Libraries User's
Manual.

2.2.12.5.2 Redundant backtrace information no longer logged for same error message

Previously, the backtrace was logged for each error message, but this was redundant for an error that had
several related errors following it.

2.2.12 Increased Visibility into Connext DDS Applications

This issue has been improved. The backtrace feature is now smart enough to log the backtrace only once
for a given error and not for the following errors in the same code path of the caller's functions.

For example, in the failure of the creation of the DDSDomainParticipant, Connext DDS logs the backtrace
for just one error instead of logging it for all of the error messages in the same code path:
U00007f86a87df700 Mx08:Udpv4SocketFactory.c:685:RTI0x2080010:invalid port 5562900
Backtrace:
#3 NDDS_Transport_UDPv4_Socket_bind_with_ip ??:? [0xCB235C]
#4 NDDS_Transport_UDPv4_SocketFactory_create_receive_socket ??:? [0xCB2619]
#5 NDDS_Transport_UDP_create_recvresource_rrEA Udp.c:? [0xCAB170]
#6 RTINetioReceiver_addEntryport ??:? [0xCA33F3]
#7 COMMENDActiveFacade_addEntryport ActiveFacade.c:? [0xC12B56]
#8 DDS_DomainParticipantPresentation_reserve_entryportI DomainParticipantPresentation.c:?
[0x7E4F11]
#9 DDS_DomainParticipantPresentation_reserve_participant_index_entryports ??:? [0x7E8015]
#10 DDS_DomainParticipant_reserve_participant_index_entryports DomainParticipant.c:? [0x7B0B7E]
#11 DDS_DomainParticipant_enableI DomainParticipant.c:? [0x7CC15E]
#12 DDS_Entity_enable ??:? [0x72EC92]
#13 DDS_DomainParticipantFactory_create_participant ??:? [0x7DACF1]
#14 main ??:? [0x40675F]
#15 ?? ??:0 [0xA76F4830]
#16 _start ??:? [0x405EC9]
U00007f86a87df700 Mx0F:DomainParticipant.c:13313:RTI0x20f0c02:Automatic participant index
failed to initialize. PLEASE VERIFY CONSISTENT TRANSPORT / DISCOVERY CONFIGURATION.
U00007f86a87df700 Mx0F:DomainParticipantFactory.c:1314:RTI0x20f000e:ERROR: Failed to auto-
enable entity
U00007f86a87df700 Mx01:DomainParticipantTester.c:9325:RTI0x2000007:!
[DomainParticipantTester.c:9325] pointer is null: participant

See the "Logging a Backtrace for Failures" section in the RTI Connext DDS Core Libraries User's
Manual.

2.2.12.5.3 Enable backtrace information for log levels using print formats

Backtrace information is now part of the format used to output Connext DDS logging. The backtrace will
be logged in the following print formats:

l NDDS_CONFIG_LOG_PRINT_FORMAT_DEBUG

l NDDS_CONFIG_LOG_PRINT_FORMAT_MAXIMAL

See the "Format of Logged Messages" section in the RTI Connext DDS Core Libraries User's Manual.

2.2.12.5.4 Backtrace functionality disabled by default in ppc32e6500Linuxgcc4.9.1 platforms

In general, for all architectures, the Backtrace functionality is enabled by default.

Some platforms, however, have not had their C standard library (libc) built with “libc-backtrace". So if the
backtrace is logged on these platforms, your application fails, printing the following error at runtime:

36

2.2.12 Increased Visibility into Connext DDS Applications

37

./app: relocation error:

./app: symbol backtrace, version GLIBC_2.1 not defined in file libc.so.6 with link time
reference

Therefore, for ppc32e6500Linuxgcc4.9.1, RTI has disabled the backtrace functionality by default. For this
platform, if you set an NDDS_Config_LogPrintFormat that contains the backtrace, the bit for the back-
trace will be ignored. However, if you know that the C standard library (libc) has been built with "libc-
backtrace" and you would like to force the use of the backtrace functionality, you can do so using a special
NDDS_Config_LogPrintFormat.

In order to force the backtrace for this platform, use the bit “0x80”. For example:
NDDS_Config_Logger_set_print_format_by_log_level(

NDDS_Config_Logger_get_instance(),
NDDS_CONFIG_LOG_PRINT_FORMAT_DEBUG | 0x80,
NDDS_CONFIG_LOG_LEVEL_FATAL_ERROR);

See the RTI Connext DDS Core Libraries Platform Notes and "Logging a Backtrace for Failures" in the
RTI Connext DDS Core Libraries User's Manual for more information.

2.2.12.6 Improved log messages

2.2.12.6.1 View Exclusive Area (EA) names and stacktrace in logs related to deadlock risk errors

Previously, when there was a deadlock using Exclusive Areas (EA), an error message was logged, similar
to the following:
REDAWorker_enterExclusiveArea:worker rCoRTImo####Evt deadlock risk: cannot enter 0x2811300 of
level 35 from level 40

In this release, Connext DDS adds the EA names and the stacktrace where the issue is happening to the
message. For example:
[0x0101A11B,0xA02FC811,0x290A76BA:0x80000003{K=DW,T=testEventsTopic,Y=DDS::String,D=10}|LINK
0x0101A11B,0xA02FC811,0x290A76BA:0x80000004{Y=DDS::String}|:0x80018C42
{K=DW,T=rti/dds/monitoring/dataWriterEntityMatchedSubscriptionWithLocatorStatistics,Y=rti::dds
::monitoring::DataWriterEntityMatchedSubscriptionWithLocatorStatistics,D=10}|WRITE] REDAWorker_
enterExclusiveArea:worker rCo51610####Evt deadlock risk: cannot enter 'PUBLISHER_EA' of level
35 from 'DP_REMOTE_EA' of level 40.
Backtrace:
#1 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(REDAWorker_enterExclusiveArea+0x100)
[0x10e6a66]
#2 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(REDACursor_modifyReadWriteArea+0x31)
[0x10e9285]
#3 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(PRESPsWriter_writeInternal+0x8ff)
[0xec5083]
#4 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(DDS_DataWriter_write_untyped_
generalI+0x43c) [0xbe1dff]
#5 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(rti_dds_monitoring_
DataWriterEntityMatchedSubscriptionWithLocatorStatisticsDataWriter_write+0x19) [0xabbbf9]
#6 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(RTIDefaultMonitorParticipantObject_
publishWriterMatchedWithLocatorStatsI+0x122) [0xad17e1]
#7 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(RTIDefaultMonitorParticipantObject_
sampleAndPublishWriterMatchedWithLocatorStats+0xce) [0xad1a21]

2.2.12 Increased Visibility into Connext DDS Applications

#8 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(RTIDefaultMonitorPublisher_
onEventNotify+0x20eb) [0xac6fa3]
#9 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(DDS_DomainParticipantMonitoringListener_
notify_library+0x1a9) [0xb5c9c5]
#10 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(DDS_DomainParticipantMonitoring_
onNewWriterLocatorPair+0xd0) [0xb5e754]
#11 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(PRESPsService_
writerStatusListenerOnNewWriterLocatorPair+0x2ec) [0xf2faca]
#12 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(COMMENDBeWriterService_
assertRemoteReader+0x34ed) [0xffd542]
#13 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester() [0xf57002]
#14 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester() [0xf58da1]
#15 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(PRESPsService_
linkLocalWriterToRemoteReaders+0x7d7) [0xf5bae8]
#16 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester(PRESPsService_
onLinkToRemoteEndpointEvent+0x132) [0xf17838]
#17 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester() [0x1088ebf]
#18 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester() [0x110d18e]
#19 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester() [0x110d18e]
#20 ./monitor.1.0/lib/x64Linux3gcc5.4.0/monitorTester() [0x1106681]
#21 /lib/x86_64-linux-gnu/libpthread.so.0(+0x76ba) [0x7f89c90b66ba]
#22 /lib/x86_64-linux-gnu/libc.so.6(clone+0x6d) [0x7f89c8be44dd]

2.2.12.6.2 See warning message in logs when receive socket buffer size is larger than the maximum

The following message was logged with STATUS_LOCAL verbosity:
NDDS_Transport_UDPv4_SocketFactory_create_receive_socket:The specified recv_socket_buffer_size,
67108864, was not set. The actual receive socket buffer size is 425984

It has been changed to be logged with WARNING verbosity.

2.2.12.6.3 Ability to see new activity context information available as part of NDDS_CONFIG_LOG_
PRINT_FORMAT_DEBUG print format

Connext DDS now includes the activity context as part of the NDDS_Config_LogPrintFormat NDDS_
CONFIG_LOG_PRINT_FORMAT_DEBUG.

The activity context provides extra contextual information to the log message when using the DEBUG
NDDS_Config_LogPrintFormat. It describes the activity (such as, “Get Qos” or “Sending participant
discovery announcements”) that a resource was doing when the logging occurred. For example, in the cre-
ation of a DataWriter, the activity context will provide information about the resource—the Publisher cre-
ating the entity. The activity will be “entity creation.”

For example, a message using NDDS_CONFIG_LOG_PRINT_FORMAT_DEBUG will now look like
this (the bolded information is new):
U00007f71fe36d700_dds_c3Tester
[0X1019D1D,0XBD6B47B0,0XA6C11F6B:0X80004202{E=Writer,T=Example Stock,C=Stock,D=1}|WRITE]
Mx16:Memory.c:7311:RTI0x2161000:instance not found
Backtrace:
#3 WriterHistoryMemoryPlugin_addSample ??:? [0xC236CE]
#4 PRESWriterHistoryDriver_addWrite ??:? [0xE11B7F]

38

2.2.12 Increased Visibility into Connext DDS Applications

39

#5 PRESPsWriter_writeInternal ??:? [0xB5EBEA]
#6 DDS_DataWriter_write_untyped_generalI ??:? [0x8AED4D]
#7 StockDataWriter_write ??:? [0x71B1D1]
#8 DDSCDataWriterTester_testAutoRegisterInstance ??:? [0x41FC10]
#9 RTITestSetting_runTestsExt ??:? [0xABA2C3]
#10 DDSCDataWriterTester_run ??:? [0x436EA0]
#11 RTITestSetting_runTestsExt ??:? [0xABA2C3]
#12 RTITestSetting_runTests ??:? [0xABB05B]
#13 main ??:? [0x40687F]
#14 ?? ??:0 [0xFD49C830]
#15 _start ??:? [0x405FE9]

2.2.12.6.4 Easier to identify Connext DDS threads with improved consistency in thread names in logs

The thread identifier information is part of the NDDS_Config_LogPrintFormat logging infrastructure
formats. Sometimes, this field was inconsistently populated.

This problem has been resolved. The thread identifier is:

l The thread name for the Connext DDS threads.

l “U” + Thread Id + Thread Name (only on Posix platforms), for the User threads.

2.2.12.6.5 Improved messages on fixing issues with reserving memory for writer/reader pools

Previously, an error during DataWriter/DataReader creation looked similar to the following ones:

l For the DataWriter:

[D001|Pub(80000008)|T=ExampleTest|CREATE Writer] PRESTypePluginDefaultEndpointData_
createWriterPool:!create writer buffer pool

l For the DataReader:

[D001|Sub(80000009)|T=ExampleTest|CREATE Reader] PRESCstReaderCollator_new:!create
serializedKeyPool

Now the messages include information about how to fix this issue:

l For the DataWriter:

[0X101301B,0X2BD1038F,0X503C2B68:0X80000008\{E=Pu,D=1}|CREATE Writer WITH TOPIC
ExampleTest] PRESTypePluginDefaultEndpointData_createWriterPool:Failed to create writer
buffer pool, cannot allocate 32 initial samples with size 520000. Consider setting
dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size if your type has a
large or unbounded max serialized size or reduce initial_samples.

l For the DataReader:

[0X1013122,0XDDCD138E,0X7FF55651:0X80000009\{E=Su,D=1}|CREATE Reader WITH TOPIC
ExampleTest] PRESCstReaderCollator_new:!create serializedKeyPool. Consider setting the
property 'dds.data_reader.history.memory_manager.fast_pool.pool_buffer_max_size'

2.2.12 Increased Visibility into Connext DDS Applications

2.2.12.6.6 See improved logging messages for issues in destroying all participants upon deletion of a
DomainParticipantFactory instance

When you deleted the DomainParticipantFactory instance and not all the participants were destroyed, the
following error message was logged.
DDS_DomainParticipantFactory_deleteI:!delete factory instance: outstanding participant(s)

This message now has more debugging information:
DDS_DomainParticipantFactory_deleteI:ERROR: Failed to delete the DomainParticipantFactory
instance. Not all the participants created were destroyed (2 left).
DDS_DomainParticipantFactory_deleteI: 0) DomainParticipant with GUID
(0x01012A3D,0x934AAC0F,0xF52D39B2:0x000001C1) was not destroyed.
DDS_DomainParticipantFactory_deleteI: 1) DomainParticipant with GUID
(0x01014185,0x60E370D7,0xB83C5848:0x000001C1) was not destroyed.

2.2.12.6.7 View suggestions in logs for how to proceed when Connext DDS detects an unexpected prop-
erty

The error message logged during the validation of properties in the PROPERTY QoS Policy has been
improved.

Before, Connext DDS logged the following message when a property was not expected:

For an entity:
DDS_PropertyQosPolicy_validatePropertyNames:Unexpected property: dds.type_consistnecy.ignore_
sequence_bounds. Closest valid property: dds.type_consistency.ignore_sequence_bounds
DDS_DataReaderQos_is_consistentI:inconsistent QoS property
DDS_Subscriber_create_datareader_disabledI:ERROR: Inconsistent QoS

For a plugin, such as TCPv4:
DDS_PropertyQosPolicy_validate_plugin_property_suffixes:Unexpected property:
dds.transport.TCPv4.tcp1.invalidPropertyTest. Closest valid property:
dds.transport.TCPv4.tcp1.aliases
NDDS_Transport_TCPv4_Property_parseDDSProperties:Inconsistent QoS property:
dds.transport.TCPv4.
NDDS_Transport_TCPv4_create:!get transport TCPv4 plugin property from DDS Property

Now there is extra information in case you wish to proceed with that property:

Entity:
DDS_PropertyQosPolicy_validateEntityPropertyNames:Unexpected property: dds.type_
consistnecy.ignore_sequence_bounds. Closest valid property: dds.type_consistency.ignore_
sequence_bounds. If you wish to proceed with this property name anyway, change
'dds.participant.property_validation_action' to 'VALIDATION_ACTION_SKIP' or 'VALIDATION_ACTION_
WARNING'.
DDS_DataReaderQos_is_consistentI:inconsistent QoS property
DDS_Subscriber_create_datareader_disabledI:ERROR: Inconsistent QoS

Plugin, such as TCPv4:
DDS_PropertyQosPolicy_validate_plugin_property_suffixes:Unexpected property:
dds.transport.TCPv4.tcp1.invalidPropertyTest. Closest valid property:

40

2.2.13 Improved Control over Application Behavior

41

dds.transport.TCPv4.tcp1.aliases. If you wish to proceed with this property name anyway, change
'dds.transport.TCPv4.tcp1.property_validation_action' to 'VALIDATION_ACTION_SKIP' or
'VALIDATION_ACTION_WARNING'.
NDDS_Transport_TCPv4_Property_parseDDSProperties:Inconsistent QoS property:
dds.transport.TCPv4.
NDDS_Transport_TCPv4_create:!get transport TCPv4 plugin property from DDS Property

2.2.13 Improved Control over Application Behavior

2.2.13.1 Instance lifecycle management

2.2.13.1.1 Configure how existing instances will be replaced to make space for new instances when
max_instances is reached, using a new DataReader-side instance replacement policy

A DataWriter has long used the instance_replacement field in the DATA_WRITER_RESOURCE_
LIMITS QoS Policy whenever themax_instances limit in the RESOURCE_LIMITS QoS Policy is
reached. Now the DataReader also has an instance_replacement field, set in the DATA_READER_
RESOURCE_LIMITS QoS Policy, that is used to determine the behavior whenevermax_instances in
the RESOURCE_LIMITS QosPolicy is reached.

Now when themax_instances limit in the RESOURCE_LIMITS QosPolicy is reached, a DataReader
will try to make space for a new instance by replacing an existing instance according to the instance
replacement kind set in the instance_replacement field.

The instance_replacement field is useful for managing potentially unbounded sets of instances that come
and go. It is important to be able to set an upper limit on the resources that will be used by an application to
avoid running into decreased performance and potentially running out of system resources. This new QoS
on the DataReader side allows you to set an upper bound on the resources that will be used for instances.

Before this QoS was in place, when themax_instances resource limit was reached, no more instances
could be accepted by the DataReader before others were unregistered. This put an unnecessary burden on
the applications to unregister instances and manage the instance lifecycle in the application. Now, you can
set this QoS, allowing DataReaders to make room for new instances by replacing older ones.

For example, a hospital may have 100 beds. Many patients (instances) come and go, so at any given time
you only need resources for 100 instances, but over time you will see an unbounded number of instances.
An instance replacement policy can help manage this flow.

For each instance state (ALIVE, NOT_ALIVE_DISPOSED, and NOT_ALIVE_NO_WRITERS), you
can set the following removal kinds for the DataReader:

l The alive_instance_removal kind sets a removal policy for ALIVE instances (default: DDS_NO_
INSTANCE_REMOVAL).

l The disposed_instance_removal kind sets a removal policy for NOT_ALIVE_DISPOSED
instances (default: DDS_EMPTY_INSTANCE_REMOVAL).

l The no_writers_instance_removal kind sets a removal policy for NOT_ALIVE_NO_WRITERS
instances (default: DDS_EMPTY_INSTANCE_REMOVAL).

2.2.13 Improved Control over Application Behavior

For each of the above removal kinds, you can choose among the following replacement criteria:

l DDS_NO_INSTANCE_REMOVAL: Instances in the associated state cannot be replaced. This
means that samples for new instances that exceed the max_instances resource limit will be lost with
the reason LOST_BY_INSTANCES_LIMIT (see SAMPLE_LOST Status).

l DDS_EMPTY_INSTANCE_REMOVAL: Instances in the associated state can be replaced only if
they are empty (all samples have been taken or removed from the DataReader queue due to the
LIFESPAN QoS Policy or sample purging due to the READER_DATA_LIFECYCLE QoS
Policy, and there are no outstanding loans on any of the instance's samples).

l DDS_FULLY_PROCESSED_INSTANCE_REMOVAL: Instances in the associated state can be
replaced only if every sample has been processed by the application.

l DDS_ANY_INSTANCE_REMOVAL: Instances in the associated state can be replaced regardless
of whether the subscribing application has processed all of the samples. Samples that have not been
processed will be dropped and accounted for by the DataReaderCacheStatus total_samples_
dropped_by_instance_replacement statistic.

See the "DATA_READER_RESOURCE_LIMITS QosPolicy" section of the RTI Connext DDS Core
Libraries User's Manual for more information.

As part of this feature, a new total_samples_dropped_by_instance_replacement field has been added to
in the DDS_DataReaderCacheStatus to count the number of NOT_READ samples replaced as a result of
DataReader-side instance replacement.

2.2.13.1.2 Define minimum duration for which Data Reader will maintain information about NOT_
ALIVE_NO_WRITERS instance with no samples, using a new QoS setting

The autopurge_nowriter_instances_delay defines the minimum duration for which the DataReader will
maintain information about a NOT_ALIVE_NO_WRITERS instance with no samples in the DataReader
queue. With the addition of this field, the behavior of the DataReader with regards to the lifecycle of the
instances it manages offers the same configuration options for both NOT_ALIVE_DISPOSED and
NOT_ALIVE_NO_WRITERS instances. Currently the only supported values are 0 or INFINITE; the
default value is 0.

2.2.13.1.3 Query liveliness of matched remote entities using new APIs

Two new APIs have been added, DDS_DataWriter_is_matched_subscription_active and DDS_
DataReader_is_matched_publication_alive. These can be used to query the liveliness of matched
remote entities.

See also issue CORE-9366 in "Fixes Related to OMG Specification Compliance" in the RTI Connext
DDS Core Libraries Release Notes. As part of CORE-9366, the DDS_DataWriter_get_matched_sub-

42

2.2.13 Improved Control over Application Behavior

43

scriptions and DDS_DataReader_get_matched_publications APIs now return the instance handles for
any matching remote entities, including those that are not alive.

2.2.13.1.4 Filter out NOT-ALIVE instances from historical part of responses to a CONTINUOUS Top-
icQuery

Connext DDS 6.0.0 added a new feature to TopicQuery that allows selecting only ALIVE instances for
HISTORY_SNAPSHOT TopicQueries (see "Ability to select only alive instances with TopicQuery" in
the 6.0.0 Core Libraries Release Notes).

This release extends this functionality to filter out NOT-ALIVE instances from the historical portion of the
responses to a CONTINUOUS TopicQuery, when the string @instance_state = ALIVE is prepended to
the TopicQuery filter expression. That is, when the continuous TopicQuery is first dispatched by the
DataWriter, no previously-written samples or meta-samples (disposed or unregistered samples) are
delivered in response to the query for instances in a NOT-ALIVE state; however, all subsequently written
disposed or unregistered meta-samples for any instance will be delivered—as well as samples matching the
rest of the filter expression—as long as the continuous TopicQuery remains active (i.e., not deleted).

2.2.13.1.5 Obtain statistics for currently maintained instances in DataReaderCacheStatus and
DataWriterCacheStatus

The DataReaderCacheStatus and DataWriterCacheStatus structures have been extended to provide inform-
ation about the instances that are currently being maintained by that DataReader or DataWriter.

The following fields have been added to DataReaderCacheStatus:

l alive_instance_count

l alive_instance_count_peak

l no_writers_instance_count

l no_writers_instance_count_peak

l disposed_instance_count

l disposed_instance_count_peak

l detached_instance_count

l detached_instance_count_peak

The following fields have been added to DataWriterCacheStatus:

l alive_instance_count

l alive_instance_count_peak

l disposed_instance_count

l disposed_instance_count_peak

2.2.13 Improved Control over Application Behavior

l unregistered_instance_count

l unregistered_instance_count_peak

The monitoring topics have also been updated to publish this information.

2.2.13.2 Logging usability

2.2.13.2.1 Enable log warnings to indicate when certain operations are taking longer than expected

You will now be able to configure logging a warning when a specific operation takes more time than
expected. The different operations are:

l Send operation: Print warning message when the send operation time exceeds the time threshold con-
figured by the property dds.participant.logging.time_based_logging.send.timeout.

l Event operations: Print warning message when the event start/execution time exceeds the time
threshold configured by the property dds.participant.logging.time_based_logging.event.timeout.

l Process received data operation: Print warning message when the processing of a received message
on a specific port exceeds a time threshold set in dds.participant.logging.time_based_log-
ging.process_received_message.timeout.

l Authentication process: Print warning message when the authentication operation time exceeds the
time threshold configured by the property dds.participant.logging.time_based_log-
ging.authentication.timeout.

See "Setting Warnings for Operation Delays" in the RTI Connext DDS Core Libraries User's Manual for
more information.

2.2.13.2.2 Verbosity level for log messages printed for samples written with an out of order sequence
number now set to NDDS_CONFIG_LOG_VERBOSITY_STATUS_LOCAL

Setting the property dds.data_writer.history.allow_out_of_order_write to TRUE allows writing a
sample using DataWriter::write_w_params, where identity.sequence_number is smaller than the
sequence number of the last sample written by the DataWriter.

However, when the sequence number ordering was violated, Connext DDS printed the following warning:
PRESWriterHistoryDriver_resolveAndCheckOriginalWriterInfo:sequence number out of order.
Expected greater or equal to (x,y)

This release changes the verbosity of the message to be NDDS_CONFIG_LOG_VERBOSITY_
STATUS_LOCAL. Warning was not the right level because, by setting dds.data_writer.history.allow_
out_of_order_write to TRUE, the user accepted out-of-order writing as valid.

2.2.13.2.3 Control level of verbosity for every log level by specifying the print format
Now, you will be able to set a different print format, which controls the level of verbosity for every log
level. To configure this, there are two new APIs:

44

2.2.13 Improved Control over Application Behavior

45

l Set the print_format at which Connext DDS will log diagnostic information in the given logLevel.

DDS_Boolean NDDS_Config_Logger_set_print_format_by_log_level(
NDDS_Config_Logger *self,
NDDS_Config_LogPrintFormat print_format,
NDDS_Config_LogLevel log_level);

l Get the print_format at which Connext DDS will log diagnostic information in the given logLevel.

NDDS_Config_LogPrintFormat
NDDS_Config_Logger_get_print_format_by_log_level(
const NDDS_Config_Logger *self,
NDDS_Config_LogLevel log_level);

You could use a less verbose print_format, such as NDDS_CONFIG_LOG_PRINT_FORMAT_
MINIMAL, for warnings, as follows:
NDDS_Config_Logger *logger = NDDS_Config_Logger_get_instance();
NDDS_Config_Logger_set_print_format_by_log_level(

logger,
NDDS_CONFIG_LOG_PRINT_FORMAT_MINIMAL,
NDDS_CONFIG_LOG_LEVEL_WARNING));

You could use a more verbose print_format, such as NDDS_CONFIG_LOG_PRINT_FORMAT_
DEBUG (which contains the backtrace) when you are troubleshooting errors, as follows:
NDDS_Config_Logger *logger = NDDS_Config_Logger_get_instance();
NDDS_Config_Logger_set_print_format_by_log_level(

logger,
NDDS_CONFIG_LOG_PRINT_FORMAT_DEBUG,
NDDS_CONFIG_LOG_LEVEL_ERROR));

This way, you will reduce the amount of logging on warnings, and errors will contain more information.
This configuration is key to understanding and solving issues when needed.

By default, NDDS_CONFIG_LOG_PRINT_FORMAT_DEFAULT is assigned to all log levels except
FATAL_ERROR. By default, FATAL_ERROR is assigned to NDDS_CONFIG_LOG_PRINT_
FORMAT_DEBUG, which prints the backtrace information.

See the "NDDSConfigLogger Operations" table in the RTI Connext DDS Core Libraries User's Manual.

2.2.13.2.4 Easily access distributed log levels in C and C++ using new APIs

Previously, to access distributed log levels, you needed to use a .idl file, generate code, and include the
header in your project.

Now, you can access the distributed log levels, in C and C++, using new APIs:
DDS_Long RTI_DL_DistLogger_get_fatal_log_level();
DDS_Long RTI_DL_DistLogger_get_error_log_level();
DDS_Long RTI_DL_DistLogger_get_warning_log_level();
DDS_Long RTI_DL_DistLogger_get_notice_log_level();

2.2.13 Improved Control over Application Behavior

DDS_Long RTI_DL_DistLogger_get_info_log_level();
DDS_Long RTI_DL_DistLogger_get_debug_log_level();

DDS_Long DistLogger::getFatalLogLevel();
DDS_Long DistLogger::getErrorLogLevel();
DDS_Long DistLogger::getWarningLogLevel();
DDS_Long DistLogger::getNoticeLogLevel();
DDS_Long DistLogger::getInfoLogLevel();
DDS_Long DistLogger::getDebugLogLevel();

2.2.13.2.5 Logging verbosity now remains unchanged if creation of Distributed Logger instance fails

If other threads are writing log messages while the main thread is trying to call RTI_DL_DistLogger_
getInstance, it is possible for RTI_DL_DistLogger_getInstance to fail with these errors:
DL Error: RTI_DL_DistLogger_createInstance: Unable to hook up RTI Logger
DL Error: RTI_DistLogger_getInstance: Unable to create DistLogger singleton!

If these errors occurred, then the logging verbosity would incorrectly be set at NDDS_CONFIG_LOG_
VERBOSITY_SILENT, which prevented the NDDS_Config_Logger from generating any further log
messages. This problem has been fixed. The logging verbosity now remains unchanged if Distributed Log-
ger creation fails.

2.2.13.3 Resource Usage Tuning

2.2.13.3.1 Configure how to allocate memory for serialized typeObjects using new QoS field in DDS_
DomainParticipantResourceLimitsQosPolicy

A new QoS field has been added to the DDS_DomainParticipantResourceLimitsQosPolicy for con-
figuring how to allocate the serialized typeObject.

serialized_type_object_dynamic_allocation_threshold is a threshold, in bytes, for dynamic memory
allocation for the serialized typeObject. Above this threshold, the memory for a TypeObject is allocated
dynamically. Below it, the memory is obtained from a pool of fixed-size buffers.

If type_object_max_serialized_length is not LENGTH_UNLIMITED and is smaller than serialized_
type_object_dynamic_allocation_threshold:

l serialized_type_object_dynamic_allocation_threshold will be adjusted to type_object_max_seri-
alized_length.

l The following warning will be logged:

DDS_DomainParticipantResourceLimitsQosPolicy_is_consistent:inconsistent QoS policies:
serialized_type_object_dynamic_allocation_threshold and type_object_max_serialized_
length. serialized_type_object_dynamic_allocation_threshold will be adjusted with type_
object_max_serialized_length.

By default, serialized_type_object_dynamic_allocation_threshold is the same value as type_object_
max_serialized_length, 8192. This means that the typeObject memory is obtained from a pool of fixed-
size buffers.

46

2.2.13 Improved Control over Application Behavior

47

The new field can be configured in the DDS_DomainParticipant as follows:
<domain_participant_qos>

<resource_limits>
<rtps_reliable_writer>

<serialized_type_object_dynamic_allocation_threshold>3072</serialized_type_object_dynamic_
allocation_threshold>

</rtps_reliable_writer>
</resource_limits>

</domain_participant_qos>

2.2.13.3.2 Control throughput of certain topics by disabling repair of piggyback heartbeats using new
QoS field in RtpsReliableWriterProtocol

A new QoS field has been added to the RtpsReliableWriterProtocol in the DATA_WRITER_
PROTOCOL QoS Policy (for application DataWriters) and DISCOVERY_CONFIG QoS Policy (for
builtin DataWriters) for preventing piggyback heartbeats from being sent with repair samples.

When samples are repaired, the DataWriter resends RtpsReliableWriterProtocol_t_max_bytes_per_
nack_response bytes and a piggyback heartbeat with each message. You can configure the DataWriter to
not send the piggyback heartbeat and instead rely on the RtpsReliableWriterProtocol_t_late_joiner_
heartbeat_period to control the throughput used to repair samples.

This QoS setting is only mutable for application DataWriters using the DATA_WRITER_PROTOCOL
QoS Policy. The QoS setting is not mutable for builtin DataWriters.

The default value for this field is BOOLEAN_FALSE.

The new QoS setting can be configured in DATA_WRITER_PROTOCOL and DISCOVERY_
CONFIG as follows:
<datawriter_qos>

<protocol>
<rtps_reliable_writer>

<disable_repair_piggyback_heartbeat>false</disable_repair_piggyback_heartbeat>
</rtps_reliable_writer>

</protocol>
</datawriter_qos>
<domain_participant_qos>

<discovery_config>
<secure_volatile_writer>

<disable_repair_piggyback_heartbeat>false</disable_repair_piggyback_heartbeat>
</secure_volatile_writer>
<publication_writer>

<disable_repair_piggyback_heartbeat>false</disable_repair_piggyback_heartbeat>
</publication_writer>
<subscription_writer>

<disable_repair_piggyback_heartbeat>false</disable_repair_piggyback_heartbeat>
</subscription_writer>
<participant_message_writer>

<disable_repair_piggyback_heartbeat>false</disable_repair_piggyback_heartbeat>
</participant_message_writer>

2.2.13 Improved Control over Application Behavior

<service_request_writer>
<disable_repair_piggyback_heartbeat>false</disable_repair_piggyback_heartbeat>

</service_request_writer>
</discovery_config>

</domain_participant_qos>

2.2.13.4 Improved transport functionality

2.2.13.4.1 Detect changes in the IP address for a name resolved by the DNS Service

Connext DDS allows adding peers based on a hostname instead of an IP address. Those hostnames were
resolved into an IP address only when they were added. Therefore, changes in the IP address that the host-
name was resolved to were not noticed by Connext DDS.

This release introduces a way to detect these changes in the IP address that a hostname is resolved to and
update the related peers accordingly. This mechanism creates a new thread that regularly polls the DNS ser-
vice and uses a callback to notify Connext DDS of the changes in the resolved IP address of a tracked host-
name.

To enable, disable, and configure this feature, set the appropriate value in the dns_tracker_polling_
period field in the DISCOVERY_CONFIG QoS Policy.

See the section "Using DNS Tracker to Keep the Peer List Updated," in the RTI Connext DDS Core
Libraries User's Manual for more information.

2.2.13.4.2 IP mobility change events will now cause reduced network traffic in certain scenarios

In previous releases, IP mobility events that qualified as a change (for example, the change of the IP
address of one of the local interfaces) always triggered the sending of both Participant and Endpoint dis-
covery updates to all the matched remote entities.

This was true even in scenarios where, due to the nature of the change, it was enough just to send Par-
ticipant Discovery updates—for example, when DataWriters and DataReaders were using the default Par-
ticipant locators (as opposed to setting specific locators through TransportSelection or TransportUnicast
QoS policies).

This release changes the behavior of Connext DDS in this scenario: a Participant will now only send Par-
ticipant Discovery updates, saving the network bandwidth associated with sending Endpoint Discovery
updates. Connext DDS will still propagate Endpoint Discovery updates in scenarios where DataWriters
and DataReaders are using specific locators instead of the ones inherited from the Participant.

IMPORTANT: This change breaks backwards compatibility with previous versions of Connext DDS
once an IP mobility change occurs. Previous versions of Connext DDS still need to receive the redund-
ant Endpoint Discovery traffic to process the change. Or you can set the property dds.-
participant.discovery_config.force_endpoint_announcement_on_ip_mobility_event to true.

48

2.2.13 Improved Control over Application Behavior

49

2.2.13.4.3 TCP transport in TLS mode now logs error message if CA certificate file is missing

When using the TCP transport in TLS mode and the CA Certificate file was missing, there was no error
message specifying the problem.

Now the following error is logged:
RTITLS_configuration_verify:Identifying certificate not specified
NDDS_Transport_TCPv4_new:!create connection endpoint factory
DDS_DomainParticipantConfigurator_setup_custom_transports:!create custom transport plugin
DDS_DomainParticipantConfigurator_enable:!install transport plugin aliases = custom transports
DDS_DomainParticipant_enableI:!enable transport configurator
DDS_DomainParticipantFactory_create_participant:ERROR: Failed to auto-enable entity

To specify the CA certificate file, add it to the property dds.transport.TCPv4.tls.tls.identity.certificate_
chain_file. For example, in the XML file:
<element>

<name> dds.transport.TCPv4.tls.tls.identity.certificate_chain_file </name>
<value>security/certificates/peer1.pem</value>

</element>

2.2.13.4.4 Improved performance with RTI TCP Transport when force_asynchronous_send is set to 1

In previous releases of the TCP Transport, the buffers in which RTPS messages were copied before being
sent, when the property dds.transport.TCPv4.tcp1.force_asynchronous_send was set to 1, came from
a pool that was shared across all the TCP connections. The size of this pool was configured using the trans-
port properties dds.transport.TCPv4.tcp1.write_buffer_allocation.(initial_count|max_coun-
t|incremental_count). When the number of buffers in the pool was exhausted, new messages were
dropped.

This approach for asynchronous writing had two main drawbacks:

l The pool of buffers was shared across TCP connections. High-throughput connections may have
starved low-throughput connections.

l When the pool was exhausted, new messages were dropped. Because of this, old data was pri-
oritized over new data. In extreme cases, messages may not have been received on a TCP con-
nection.

With this improvement, the behavior when force_asynchronous_send is set to 1 is changed as follows:

l There is a new property, dds.transport.TCPv4.tcp1.shared_write_buffer_allocation, which con-
figures whether the pool of buffers is shared or exclusive per TCP connection. Setting this property
to 0 (default value) will help with the starvation problem once the pool of resources is exhausted.
You can still revert to old behavior by setting this property to 1.

2.2.13 Improved Control over Application Behavior

l When there are no buffers left in the pool, a new message will replace the oldest message that is not
currently in the process of being sent. This guarantees that new messages are prioritized, while at the
same time not running into a situation in which messages are not received.

See the "Properties for NDDS_Transport_TCPv4_Property_t" table in the Core Libraries User's Manual
for details.

2.2.13.4.5 View diagnostic information in TCP Transport log messages when using NDDS_Config_
LogPrintFormat

Some of the error messages in the TCP Transport log were missing diagnostic information. For example:
Connection established to server at: 10.101.100.113:7401

Now, TCP Transport log messages apply the NDDS_Config_LogPrintFormat, which provides diagnostic
information such as method name, activity context, and timestamp. See the section "Format of Logged
Messages" in the RTI Connext DDS Core Libraries User's Manual for more information.

2.2.13.4.6 More robust TCP Transport creation behavior when disable_interface_tracking property set to
true

TCP Transport creation may have failed when the disable_interface_tracking property was set to true.
This may have only happened if the transport was configured to operate in either "TCP over LAN" or
"TLS over LAN" mode.

This problem is fixed. TCP Transport will no longer fail creation when interface tracking is disabled.

2.2.13.4.7 Configure transport thread name using property <transport_property_prefix>.parent.thread_
name_prefix

The transport thread name can now be configured using the property <transport_property_pre-
fix>.parent.thread_name_prefix.

This property creates the thread name of the transport. The maximum size of the property is 8 characters.

For example:
<element>

<name>dds.transport.UDPv4.builtin.parent.thread_name_prefix</name>
<value>myPrefix</value>

</element>

If you do not set this property, Connext DDS automatically generates it as: rTr<Participant Identifier>:

l r specifies that the thread has been created by RTI Connext DDS.

l Tr identifies the transport module.

l Participant Identifier is five characters to identify the participant. (See 2.2.12.4.1 Identify Connext
DDS threads more easily using updated and consistent names on page 32 for more details.)

50

2.2.13 Improved Control over Application Behavior

51

The name of the thread, created as part of the transport, will be: <Thread Name Prefix><Transport
name><Task type>. See "Identifying Threads Used by Connext DDS" in the RTI Connext DDS Core
Libraries User's Manual.

2.2.13.4.8 UDP send_blocking property now supports string constant

Previously, the properties dds.transport.UDPv4.builtin.send_blocking and dds.trans-
port.UDPv6.builtin.send_blocking only accepted "1" or "0".

This limitation has been resolved, and now those properties accept string constants, too:

l dds.transport.UDPv4.builtin.send_blocking and dds.transport.UDPv4_WAN.builtin.send_
blocking support:

"0",
"1",
"NDDS_TRANSPORT_UDP_BLOCKING_NEVER",
"NDDS_TRANSPORT_UDPV4_BLOCKING_NEVER",
"TRANSPORT_BLOCKING_NEVER",
"NDDS_TRANSPORT_UDP_BLOCKING_ALWAYS",
"NDDS_TRANSPORT_UDPV4_BLOCKING_ALWAYS",
"TRANSPORT_BLOCKING_ALWAYS"

l dds.transport.UDPv6.builtin.send_blocking supports:

"0",
"1",
"NDDS_TRANSPORT_UDP_BLOCKING_NEVER",
"NDDS_TRANSPORT_UDPV6_BLOCKING_NEVER",
"TRANSPORT_BLOCKING_NEVER",
"NDDS_TRANSPORT_UDP_BLOCKING_ALWAYS",
"NDDS_TRANSPORT_UDPV6_BLOCKING_ALWAYS",
"TRANSPORT_BLOCKING_ALWAYS"

2.2.13.5 New character support in filters

2.2.13.5.1 Use special characters in filter expressions using MATCH operator

Escaping special characters in the MATCH operator expressions is now supported. These special char-
acters are: ,\’?*[]-^!. Previously, it was not possible to match any one of these characters directly or
to use them in the filter expression at all. For example, if the filter expression was "myString MATCH
'Won't Match'", the filter expression failed to compile:
[D0100|CREATE CFTopic|T=cft] DDS_SqlFilter_compileWithOptimizationLevel:SQL compiler failed
with error-code: -1 (Syntax error)
[D0100|CREATE CFTopic|T=cft] PRESParticipant_createContentFilteredTopic:content filter compile
error 1
[D0100|CREATE CFTopic|T=cft] DDS_ContentFilteredTopic_createI:!create DDS_ContentFilteredTopic
[D0100|CREATE CFTopic|T=cft] DDS_DomainParticipant_create_contentfilteredtopic_with_
filter:!create content filtered topic
create_cft error

2.2.13 Improved Control over Application Behavior

Other special characters did not cause the expression to fail to compile, but they could not be matched. For
example, '?' has special meaning: without an escape character, the filter expression "myString MATCH
'?'" returns all one-character strings; "myString MATCH 'h?'" returns all two-character strings starting with
'h.' Now, "myString MATCH 'h\?'" will return only the string 'h?'.

The matching rules have been updated so that every occurrence of a backslash ('\') followed by a character
in the pattern is replaced by that character and not treated with any special meaning.

2.2.13.5.2 Use non-ASCII UTF-8 characters in filtering of IDL strings

The filtering features in previous releases did not support filtering samples based on the value of IDL string
fields that contained non-ASCII UTF-8 characters. This means that non-ASCII UTF-8 characters were not
allowed in filter expressions, filter parameters, or the value of IDL string members referenced by the filter
expression. The usage of non-ASCII UTF-8 characters may have led to either errors parsing the filter
expression or wrong results during the filter evaluation.

For example, the creation of a ContentFilterTopic with the following expression failed with the error mes-
sages below:
msg MATCH '\u0403*'

[D0056|CREATE CFTopic|T=CFT Example MyType] DDS_SqlFilter_compileWithOptimizationLevel:SQL
compiler failed to parse parameter string ''Ѓ''
[D0056|CREATE CFTopic|T=CFT Example MyType] DDS_SqlFilter_compileWithOptimizationLevel:SQL
compiler failed with error-code: -13 (Invalid parameter string)
[D0056|CREATE CFTopic|T=CFT Example MyType] PRESParticipant_createContentFilteredTopic:content
filter compile error 1
[D0056|CREATE CFTopic|T=CFT Example MyType] DDS_ContentFilteredTopic_createI:!create DDS_
ContentFilteredTopic
[D0056|CREATE CFTopic|T=CFT Example MyType] DDS_DomainParticipant_create_contentfilteredtopic_
with_filter:!create content filtered topic

This release adds full support for UTF-8 characters to the following filtering features:

l ContentFilteredTopics

l Query conditions

l TopicQueries

l MultiChannel DataWriters

Note that the name of the fields in the expression is still restricted to ASCII characters as described in the
latest Interface Definition Language Version 4.0 (https://www.omg.org/spec/IDL/4.0/PDF).

Normalization

Unicode supports multiple ways to encode some characters, most notably accented characters. A com-
posed character in Unicode can often have a number of different ways of representing the character. For
example:

52

https://www.omg.org/spec/IDL/4.0/PDF

2.2.14 Language Bindings, APIs, XML Configuration

53

Precomposed Ḽ is represented by \u1e3c

Composed Ḽ = L + ^ is represented by \u004c + \u032d

The lexical comparison of the two characters above will return false. To do the correct comparison, the
characters need to be normalized—that is, reduced to the same character composition.

This new feature includes a DomainParticipant Property QoS property called dds.domain_par-
ticipant.filtering_unicode_normalization that allows you to configure the normalization kind for UTF-8
strings that are part of the filter expression, the string filter parameters, or the value of IDL string members
referenced by the filter expression.

The possible values of the normalization property are:

l OFF: Disables normalization

l NFD: Canonical Decomposition

l NFC (default value): Canonical Decomposition, followed by Canonical Composition

l NFKC: Compatibility Decomposition, followed by Canonical Composition

l NFKC_Casefold: Casefold followed by NFKC normalization

Because normalization may affect performance, the property allows disabling the normalization process
per DomainParticipant using the value OFF.

Normalization only affects the filter evaluation. Connext DDS does not normalize the content of the IDL
string fields when they are serialized and sent on the wire. It is the responsibility of your application to do
that.

Character encoding

Connext DDS offers ISO 8859-1 as an alternative encoding for IDL strings. The default is UTF-8. In
order to configure ISO 8859-1 for filtering, set the value of a new DomainParticipant Property QoS prop-
erty dds.domain_participant.filtering_character_encoding to ISO-8859-1.

The possible values for dds.domain_participant.filtering_character_encoding are:

l UTF-8 (default value)

l ISO-8859-1

2.2.14 Language Bindings, APIs, XML Configuration

2.2.14.1 Print data state (sample, view, instance states) in Modern C++ using new
operator<< definitions

New operator<< definitions have been added for for DataState, SampleState, ViewState, and
InstanceState.

2.2.14 Language Bindings, APIs, XML Configuration

These new operator definitions provide a convenient way for applications to print changes in the data state.
For example:
for (const auto& sample : reader.take()) {

if (sample.info().valid()) {
std::cout << sample.data() << std::endl;

} else {
std::cout << "Instance state changed to "

<< sample.info().state().instance_state() << std::endl;
}

}

2.2.14.2 Simplified listener lifecycle management in Modern C++ API

Starting in this release, Entities expect their Listeners to be passed as a std::shared_ptr. Previously, Listen-
ers were expected as raw pointers.

Example of the new API:
class MyReaderListener : public dds::sub::DataReaderListener<Foo> {

// …
} ;

// …

auto my_listener = std::make_shared<MyReaderListener>();
dds::sub::DataReader<Foo> reader(subscriber, topic, qos, my_listener);

This change simplifies the lifecycle of the listener and its entity. Previously, an Entity with a Listener was
“retained” (it wouldn’t be automatically destroyed even if its reference count reached zero) to allow for the
application to unset the listener and delete it.

Now an Entity with a Listener holds a reference to the shared_ptr, keeping the Listener alive while the
Entity is alive. If the Entity reference count reaches zero, it is destroyed even if it has a Listener.

The following APIs have changed:

l Entity constructors now take a shared_ptr to the Listener. Constructors taking a raw pointer are
deprecated and may be removed in a future version.

l New functions in each Entity called set_listener and get_listener have been added. They receive
and return a shared_ptr to the listener. The previous functions that received and returned a raw
pointer are deprecated and may be removed in a future version.

l The rti::core::ListenerBinder utility is deprecated because it is no longer needed and may be
removed in a future version.

The deprecated constructor and Listener setters behave as they used to (they prevent the automatic destruc-
tion of the entity), so existing code that upgrades to this version will not see any difference. However, it is
recommended that applications transition to the new APIs.

54

2.2.14 Language Bindings, APIs, XML Configuration

55

2.2.14.3 Introduced Remote Procedure Calls (RPC) - Experimental Feature

Remote Procedure Calls, or RPC, is an inter-process communication that allows a computer program to
cause a subroutine or procedure to execute in another address space.

RPC interfaces are defined in IDL, for example:
exception TooFastError {
};

@final
struct Coordinates {

int32 x;
int32 y;

};

@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed) raises(TooFastError);
float get_speed();
attribute string<128> name;

};

From this definition, Code Generator generates a client that can be used as follows:
Coordinates final_position = robot_client.walk_to(Coordinates(150, 200), 85.0f);

And a service skeleton:
class RobotControlExample : public RobotControl {
public:

Coordinates walk_to(const Coordinates& destination, float speed) override
{
…
}
…

};

The client and service each run on a DomainParticpant and under the hood, they use the request-reply
communication pattern: the client uses a Requester to send requests and receive replies; the service uses a
Replier to receive the requests and send the replies.

Note: RPC is an experimental feature available only on C++11, for certain platforms. See the Core
Libraries Platform Notes for the supported architectures.

For more details, see the new "Remote Procedure Calls (RPC)—Experimental Feature" chapter in the
RTI Connext DDS Core Libraries User's Manual.

2.2.14 Language Bindings, APIs, XML Configuration

2.2.14.4 GetTypeCode from a definition provided in an XML configuration file using the type
name

Connext DDS has added a function to get a TypeCode from a definition provided in an XML con-
figuration file using the type name.

Its usage in different API's is demonstrated in the following example:

XML definition
<types>

<struct name="MyType">
...

</struct>
</types>

[C]
const DDS_TypeCode * type = DDS_DomainParticipantFactory_get_typecode_from_config
(domainParticipantFactoryPtr, "MyType");

[Traditional C++]
const DDS_TypeCode * type = domainParticipantFactoryPtr->get_typecode_from_config("MyType");

[.NET]
DDS.TypeCode type = domainParticipantFactory.get_typecode_from_config("MyType");

[Java]
TypeCode type = domainParticipantFactory.get_typecode_from_config("MyType");

Note that the modern C++ API already provided this functionality through the QosProvider:

[Modern C++]
const DynamicType& type = qosProvider.extensions().type("MyType");

2.2.14.5 XML fields of type duration have unset tags default to 0 with a warning log message

The duration type tag has two subfields, <sec> and <nanosec>. Some QoS Policies that use these fields,
such as the DEADLINE QoS Policy, set the default duration to INFINITE. Therefore, if you had set just
one of these fields (such as <sec>, but not <nanosec>, or vice-versa), the resulting duration value was still
INFINITE.

This problem is resolved in this release. Now if you set only one of these fields (<sec> or <nanosec>) in
the XML file, the other value defaults to 0. (If you set neither one of them, the default duration for that
policy would be used.) A warning message will also be logged by the parser specifying the parent tag, the
missing subfield, and the line number.

56

2.2.15 Platform and Build Changes

57

2.2.14.6 Simple new component to process new data in a thread pool

This release introduces SampleProcessor, a new component that simplifies the code to process new data in
a DataReader. A SampleProcessor uses an AsyncWaitSet and its thread pool to process each individual
sample in a DataReader with a user-provided handler.

This component provides the concurrency benefits of a thread pool without the user code required to manu-
ally operate a WaitSet.

The following C++11 example shows how to create a DataReader and register a handler for new data
using a SampleProcessor:
dds::sub::DataReader<Foo> reader(subscriber, topic);
rti::sub::SampleProcessor sample_processor;
sample_processor.attach_reader(reader, [](const rti::sub::LoanedSample<Foo>& sample) {
if (sample.info().valid()) {
std::cout << "Received " << sample.data() << std::endl;
}
});
// The handler is now called asynchronously for each sample received

SampleProcessor is available in the the following language bindings: C (DDS_SampleProcessor), mod-
ern C++ (rti::sub::SampleProcessor), and C# (Rti.Dds.Subscription.SampleProcessor).

2.2.15 Platform and Build Changes

2.2.15.1 Use of Core Libraries now supported on these additional platforms

This release adds support for these platforms:

l macOS® 10.15 (x64) (x64Darwin17clang9.0)

l QNX® Neutrino® 7.0.4 (x64) (x64QNX7.0.0qcc_gpp5.4.0, x64QNX7.0.0qcc_cxx5.4.0)

l QNX Neutrino 7.0.4 (Arm v8) (armv8QNX7.0.0qcc_gpp5.4.0, armv8QNX7.0.0qcc_cxx5.4.0)

l QNX Neutrino 7.0.4 (Arm v7) (custom supported platform armv7QNX7.0.0qcc_cxx5.4.0)

l Red Hat® Enterprise Linux® 7.6 (x64) (x64Linux3gcc4.8.2)

l Ubuntu® 18.04 LTS (Arm v7) (armv7Linux4gcc7.5.0)

l Ubuntu 18.04 LTS (Arm v8) (armv8Linux4gcc7.3.0)

l Ubuntu 20.04 LTS (x64) (x64Linux4gcc7.3.0)

l VxWorks® 7.0.0 SR0630 (x64) (x64Vx7SR0630llvm8.0.0.2[_rtp])

l Yocto Project® 2.5 (Arm v8) (custom supported platform armv8Linux4gcc7.3.0)

This release also adds support for the following POSIX-compliant platforms, which are made available
with RTI Connext TSS:

2.2.15 Platform and Build Changes

l CentOS® 7.0 (x64) (x64Linux3gcc4.8.2FACE_GP)

l Red Hat Enterprise Linux 7, 7.3, 7.5, 7.5 (x64) (x64Linux3gcc4.8.2FACE_GP)

l Red Hat Enterprise Linux 8 (x64) (x64Linux4gcc7.3.0FACE_GP)

l Ubuntu 14.04 LTS (x64) (x64Linux3gcc4.8.2FACE_GP)

l Ubuntu 18.04 LTS (x64) (x64Linux4gcc7.3.0FACE_GP)

2.2.15.2 Use of Core Libraries no longer supported on these platforms

l 32-bit host bundles for Linux and Windows platforms

l AIX®

l Android™ 5.0, 5.1

l Debian® 7 (custom supported platform)

l Freescale™ Linux 1.4 (custom supported platform)

l INTEGRITY® 5.0.11

l iOS®

l LynxOS®

l macOS 10.12

l Red Hat Enterprise Linux 5.2 (custom supported platform)

l Solaris™

l SUSE Linux Enterprise Server 11

l Ubuntu 12.04 LTS

l VxWorks 653

l VxWorks 6.9.0 (pentiumVx6.9gcc4.3.3 and ppc604Vx6.9gcc4.3.3 only)

l Wind River Linux 7 (x64, and Arm v7 custom supported platform)

l Xlinx® Linux 14.2 (custom supported platform)

l Yocto Project 2.2 (custom supported platform)

2.2.15.3 Build applications for Linux architectures without using -lnsl flag

The -lnsl flag is no longer required when building applications for Linux architectures.

glibc 2.26 deprecated libnsl and glibc no longer includes the module in the glibc library.

The "Building Instructions for Linux Architectures" table in the RTI Connext DDS Core Libraries Plat-
form Notes has been updated accordingly.

58

2.2.16 Changes to Defaults

59

2.2.15.4 Generate build system once, and build Release and Debug configurations using
fully supported multiconfiguration generators in FindRTIConnextDDS script

The FindRTIConnextDDS script now includes full support for multiconfiguration CMake® generators
like Visual Studio® or Ninja Multi-Config projects. This new support allows developers to generate the
build system once and build Release and Debug configurations.

2.2.15.5 Configure the development environment in Z shell using a new script

Connext DDS provides a number of scripts to configure the development environment in different oper-
ating systems and shells. Among other things, these scripts configure paths, library paths, and environment
variables that are often required to build Connext DDS applications. This release adds support for the Z
shell (ZSH). For that purpose, it includes a new script named rtisetenv_<architecture>.zsh, which is loc-
ated in <installation_directory>/resource/scripts and can be "sourced" to configure the environment
within a ZSH session.

2.2.16 Changes to Defaults

2.2.16.1 Default for WriterDataLifeCycleQosPolicy.autodispose_unregistered_instances
changed to FALSE, now no longer applies during DataWriter deletion

In previous releases, the deletion of a Reliable DataWriter, where writer_data_lifecycle.autodispose_
unregistered_instances is set to TRUE, may not have caused the DataWriter's registered instances to
transition to DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE on the Reliable DataReader side.
Instead, some instances may have transitioned to the DDS_NOT_ALIVE_NO_WRITERS state. This is
due to one or multiple of the following reasons:

l There is a race condition in which a DataReader may have detected that the DataWriter is gone
through discovery mechanisms before receiving and ACKing all dispose messages sent by the
DataWriter for its instances during the execution of the Publisher::delete_datawriter operation.

l Reliable DataWriters configured with KEEP_ALL history will never send more than min(max_
send_window_size, max_samples) dispose messages. The rest of the instances will never be dis-
posed.

To address these issues, DataWriter deletion is now treated differently than an explicit call to DataWriter-
::unregister_instance. The autodispose_unregistered_instances setting in the WRITER_DATA_
LIFECYCLE QoS Policy (writer_data_lifecycle.autodispose_unregistered_instances) no longer
applies during DataWriter deletion and only applies when a DataWriter calls unregister_instance expli-
citly.

The default value for writer_data_lifecycle.autodispose_unregistered_instances has also been changed
from TRUE to FALSE. Disposing an instance and unregistering from an instance are two distinct actions
that a DataWriter can take. Disposing an instance indicates that the instance no longer exists, while

2.2.16 Changes to Defaults

unregistering from an instance means that the DataWriter will not be updating the instance anymore. Unre-
gistering from an instance says nothing about the instance itself, and other DataWriters may still continue
to update the instance. In the majority of use cases, it is better and more transparent to explicitly perform
each action when appropriate in your application rather than relying on Connext DDS to perform either
action automatically.

2.2.16.2 Default value for max_objects_per_thread increased from 1024 to 2048

The default value formax_objects_per_thread in the SYSTEM_RESOURCE_LIMITS QoS Policy has
been increased from 1024 to 2048. This increase now allows you to create about 20 or 21 participants.

2.2.16.3 Default behavior for a Connext DDS application that detects an incorrect property
name is now to log an error instead of a warning

Previously when you specified an incorrect property name via the PROPERTY QoS Policy, Connext
DDS logged a warning similar to the following:
DDS_PropertyQosPolicy_validatePropertyNames:Unexpected property: dds.type_consistnecy.ignore_
sequence_bounds. Closest valid property: dds.type_consistency.ignore_sequence_bounds

The message contained the invalid property and the closest property name.

Now by default, Connext DDS logs an error when it does not recognize the property name, and stops the
creation of the entity or the plugin. (See also 2.2.12.3.6 Configure validation of property names at plugin
level on page 31.) You can configure the validation of the property by using dds.participant.property_
validation_action. For more information, see the "PROPERTY QosPolicy (DDS Extension)" section of
the RTI Connext DDS Core Libraries User's Manual.

2.2.16.4 Changes to default stack size for INTEGRITY platforms

The default stack size for middleware-created threads has changed for INTEGRITY platforms:

Thread New Value

Asynchronous Publisher and Asynchronous flushing
thread

64*1024

Database thread 64*1024

Event thread 4*64*1024

ReceiverPool threads 4*64*1024

See the RTI Connext DDS Core Libraries Platform Notes for more details.

60

2.2.17 Performance Improvements

61

2.2.17 Performance Improvements

2.2.17.1 Improved support for concurrency in data reception events in DataReaders in a
DomainParticipant

Increasing data reception concurrency across the DataReaders in a DomainParticipant requires:

1. Associating each DataReader with its own Subscriber.

2. Using a different receiver port per DataReader by configuring the QoS policy <unicast> or <mul-
ticast> on the DataReaderQos.

In previous releases, even after following the previous steps, there was a contention point that required
each received thread to take the same DomainParticipantmutex after every packet is received. This mutex
was also used by different events and operations within the middleware. An operation holding the mutex
for a long time would have blocked data reception. This release improves concurrency by removing the
need for a receive thread to take the DomainParticipantmutex that may have led to long delays in data
reception.

2.2.17.2 Improved performance in response to a TopicQuery issued by a DataReader

This release introduced changes that may lead to a reduction in the time that it takes to respond to a Top-
icQuery issued by a DataReader.

The changes will be more noticeable in large systems as a function of the number of discovered endpoints.

2.2.18 Deprecations

This section describes products, features, and platforms that are deprecated starting in release 6.1.0.

Deprecated means that the item is still supported in this release, but will be removed in a future release.

These deprecations serve as notice under the Real-Time Innovations, Inc. Maintenance Policy #4220.

2.2.18.1 Use of refilter field in HISTORY QoS Policy no longer supported

The refilter field in the HISTORY QoS Policy has been removed along with the associated public enum
DDS_RefilterQosPolicyKind. If you are using this QoS setting, you will need to remove it from any
source code and XML configuration files, and recompile your application.

The filtering behavior of a DataWriter can now only be controlled through themax_remote_reader_fil-
ters field in the DATA_WRITER_RESOURCE_LIMITS QoS Policy. The behavior ofmax_remote_
reader_filters is as follows, and has not changed. The following descriptions assume that all other con-
ditions have been met that allow for writer-side filtering:

2.2.18 Deprecations

l UNLIMITED (default): The DataWriter will filter for up to (2^31)-2 DataReaders. However, in
this case, the DataWriter does not store the filtering result per sample per DataReader. Thus, if a
sample is resent (such as due to a loss of reliable communication), the sample will be filtered again.

l A finite value N: The DataWriter will filter for up to N DataReaders. The DataWriter will store the
filtering result per sample per DataReader. Thus, if a sample is resent (such as due to a loss of reli-
able communication), the sample will not need to be filtered again.

l 0: The DataWriter will not perform writer-side filtering.

2.2.18.2 CORBA Compatibility Kit has been removed in this release

RTI CORBA Compatibility Kit is not supported in this release.

2.2.18.3 RTI Prototyper has been deprecated in this release

RTI Prototyper is deprecated starting with release 6.1.0, which is the last release that supports it. After
release 6.1.0, Prototyper will not be supported. RTI Connector replaces it and supports more scripting lan-
guages.

2.2.18.4 Previous release's C# / .NET binding is deprecated

A new C# language binding for .NET 5 and .NET Standard 2.0 is available (see 2.2.3 New C# Language
Binding Allows Building Multi-Platform Connext DDS Applications for .NET 5 on page 17), and will
replace the previous binding. The previous .NET binding is still available, but deprecated, and will be
removed in a future release.

2.2.18.5 Support for pre-C++11 compilers is deprecated

The Code Generator option -language C++03 has been deprecated. This release will include a warning
message during code generation that C++03 support will be removed in future releases. See the Code Gen-
erator Release Notes for more information.

2.2.18.6 -legacyPlugin option has been removed

The Code Generator option -legacyPlugin has been removed and is not supported in this release. See the
Code Generator Release Notes for more information.

2.2.18.7 DynamicData::set_buffer and DynamicData::get_estimated_max_buffer_size APIs
have been removed

The DynamicData::set_buffer and DynamicData::get_estimated_max_buffer_size APIs have been
removed, having previously been deprecated. If you were using these APIs to get a Common Data Rep-
resentation (CDR) of the DynamicData object, now use DynamicData::to_cdr_buffer for that instead.

62

2.2.18 Deprecations

63

2.2.18.8 RTI Secure WAN Transport may be deprecated in a future release

RTI may not support Secure WAN Transport in future versions of Connext DDS. Existing applications
that use Secure WAN Transport should be updated to take advantage of RTI Real-Time WAN Transport as
soon as feasible. All new applications should use Real-Time WAN Transport. (See 2.2.2 High-Per-
formance WAN Connectivity over UDP that is Secure and Scalable, Using RTI Real-Time WAN Trans-
port and RTI Cloud Discovery Service on page 16.)

2.2.18.9 RTI Spreadsheet Add-in for Microsoft Excel is deprecated in this release

Spreadsheet Add-in for Microsoft Excel is deprecated starting with release 6.1.0, which is the last release
that supports it. After release 6.1.0, Spreadsheet Add-in for Microsoft Excel will not be supported. Source
code for the plug-in will be available in the RTI Community Github repository (https://-
github.com/rticommunity) when official support ends.

https://github.com/rticommunity
https://github.com/rticommunity

	Chapter 1 What's New in 6.1.2
	1.1 Introduction
	1.2 Serialization Error Now Displays Both message_size_max and Actual Message Size Values for Easier Comparison
	1.3 Use of TopicQueries or ContentFilteredTopics May Incur Lower Overhead
	1.4 WaitSet and GuardCondition in Java API Now Implement AutoCloseable
	1.5 Improved Performance when Calling build_data and get_loan FlatData APIs at the Same Time that Samples Are Published
	1.6 More Efficient Bandwidth Utilization for Configurations with Small Transport message_size_max
	1.7 Free DDS Thread-Specific Storage on Demand in New C# API
	1.8 New Property to Manually Enable or Disable Logging Backtrace upon SIGSEGV Signal from a Connext DDS Application
	1.9 Improved Search for <include> files by Including Directory of Current File Being Parsed in Search for XML files
	1.10 Redaction of Sensitive Properties when Logging DDS Entities' PropertyQos Configuration
	1.11 Timestamps Now Included in addSample Failures Due to DestinationOrder by Source Timestamp Mismatches
	1.12 Platform and Build Changes
	1.12.1 New platforms
	1.12.2 New Support for Windows 11 and Visual Studio 2022 Version 17
	1.12.3 Support for Java on certain 32-bit Windows® platforms

	1.13 Deprecations and Removals
	1.13.1 Deprecated rtps_overhead Property
	1.13.2 Removed ability to share a database connection in Persistence Service and durable writer history

	1.14 RTI Queuing Service Now Experimental
	1.15 Third-Party Software Upgrades

	Chapter 2 Previous Releases
	2.1 What's New in 6.1.1
	2.1.1 Introduction
	2.1.2 C# API: Improved Performance, Interoperability, and Platform Support
	2.1.3 Prioritize Data Flow (on Linux platforms) Using Newly Added Support for Differentiated Services Field in RTI Real-Time WAN Transport
	2.1.4 Simplify DDS Application Code Using AsyncWaitSet (no Longer Experimental)
	2.1.5 RTI Tools Now Launch Successfully Even When JREHOME is Assigned to Old Version
	2.1.6 Improved Reporting when the Monitoring List of Properties is Longer than 64 Elements
	2.1.7 Platform and Build Changes
	2.1.8 Deprecations
	2.1.9 Third-Party Software Upgrades

	2.2 What's New in 6.1.0
	2.2.1 Introduction
	2.2.2 High-Performance WAN Connectivity over UDP that is Secure and Scalable, Using RTI Real-Time WAN Transport and RTI Cloud Discovery Service
	2.2.3 New C# Language Binding Allows Building Multi-Platform Connext DDS Applications for .NET 5
	2.2.4 New Getting Started Guides in Traditional C++, Modern C++, and C#
	2.2.5 Compressed Application Data Using Builtin Support for zlib, LZ4, and bzip2 Algorithms
	2.2.6 Network Capture Utility, Analyzing Network Traffic for DomainParticipants - Works even with Shared Memory and Encrypted Data
	2.2.7 Separate Durability and History Depths, Using New writer_depth Durability QoS
	2.2.8 Coherent Access with Group Presentation QoS: Ensure a Set of Samples Sent from Multiple DataWriters within a Publisher is Received as a Cohesive Unit
	2.2.9 Activity Context in Messages: Identify the Source of a Logged Message More Easily with Added Resources and Activities Information
	2.2.10 New Lost, Rejected, and Dropped Statistics to Better Identify why a Subscribing Application is not Seeing Samples
	2.2.11 New Protocol Status Statistics for DataWriters and DataReaders to more Easily Monitor Fragmented Messages
	2.2.12 Increased Visibility into Connext DDS Applications
	2.2.13 Improved Control over Application Behavior
	2.2.14 Language Bindings, APIs, XML Configuration
	2.2.15 Platform and Build Changes
	2.2.16 Changes to Defaults
	2.2.17 Performance Improvements
	2.2.18 Deprecations

