RTI Connext Micro

APl and QoS Guide

\Version 2.4.1

r t ' Your systems. Working as one.

[) © 2014 Real-Time Innovations, Inc.
All rights reserved.
Printed in U.S.A. First printing.
November 2014.
Trademarks

Real-Time Innovations, RTI, and Connext are registered trademarks of Real-Time Innovations, Inc.
All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc. The software described in this document is furnished
under and subject to the RTT software license agreement. The software may be used or copied only
under the terms of the license agreement.

Technical Support

Real-Time Innovations, Inc.
232 E. Jave Drive

Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com

Website: http://www.rti.com

http://www.rti.com

Contents

1 Baseline API and QOS POLICIES.cceieuiruiriirierieriesieieieeeteeeeesteeeeessessessessessessessessessensens 1
1.1 SUppPOrted C APIS ... e 2
1.2 Supported C++ Classes and Methodsc.cccceeuiiiiiiiiiiciicicccccceenes 6
1.3 Supported QO0S POLICIESc.cvvieieiieiiicieie s 6
1.4 ContentFilteredTOPiCscociuiiiiuiieiiicicie s 8
1.5 Conditions and WaitSets...........cocceiririiiiiiiiiiiiccirccecee e 9
2 Disabling Optional APIs and QoS Policies..........cccccevuiiiiiiiiiininiiiiiiiiiciiiiiiciccciccca 9
20 G APIS e 9
2.2 QOS. i eeese 10
B THANSPOTILS ..ocviiiiiiiiciic s 11
4 DISCOVETY vttt ettt ene 11
5 User-Data Type-Support Code Generationc.ccccucucueueueicicicicueieieieeeeeeeeeennas 11
6 Wire Interoperability..........cccociiiiiiiiiiiiiicccc e 12
7 EXAMPLE COAE ... 12
7.1 Managing Writer and Reader History Plug-insccccccoeiiiiiincicinnccnnne 12
7.2 Configuring Transport Allowed Interfaces...........c.ccoooveiiiniiieiiiniinines 13
7.3 Managing Discovery PIUg-iNScccccooiiiiiiiiiiic 14
74 Configuring Static DISCOVETYcovviiiiiiiiiiiiiicccs 15
7.5 TYPE SUPPOTt ..ottt 16
8 Logging AP ... 16

RTI Connext Micro APl and QoS Guide

This guide presents the APIs and Quality of Service (QoS) supported by RTI Connext
Micro (formerly RTI Micro Edition). It assumes familiarity with Connext DDS, Connext
Messaging, or the standard DDS API and QoS.

As a DDS-compliant implementation with a small footprint, implements a subset of the
standard DDS API. A baseline API is provided by default that provides functionality
for:

[d Creating and deleting DDS entities

[Writing and receiving data

[d Configuring notifications for statuses via listeners
When using the available buildable source code, some APIs may be optionally enabled
or disabled at compile time. In addition to this guide, please consult the Release Notes

(RTI_Connext_Micro_ReleaseNotes.pdf) and the API Reference HTML documentation
for details on how to configure these optional APIs.

Baseline APl and QoS Policies

The baseline configuration of RTI Connext Micro provides the minimal subset of APIs
and QoS needed to create (and delete) an application that can publish and subscribe to
other DDS-compatible applications.

This section describes the subset of the Connext API that is available in the baseline con-
tiguration of RTI Connext Micro.

For APIs, function declarations are provided below. Further descriptions are provided
in HTML documentation. For complete function prototypes and descriptions for all
DDS APIs, see the RTI Connext Core Libraries and Utilities documentation.

RTI Connext Micro API and QoS Guide

1.1

Supported C APIs
The following are the supported C language DDS APIs.

Note: some platforms restrict calling APIs that free dynamically allocated memory.
Because finalize and delete operations in general can free memory, some of the APIs
listed in this document may either be not available or are no-ops for such platforms. See
HTML documentation for allowed APISs for specific platforms and also safety certifiable
versions of RTI Connext Micro.

Creating Entities and Registering Types

DDS Entities are created one at a time, and either auto-enabled upon creation or explic-
itly enabled after creation. Topics are created for user data types that first must be regis-
tered.

'd DDS_DomainParticipantFactory_create_participant()
'd DDS_DomainParticipantFactory_get_instance()

[l DDS_DomainParticipant_create_publisher()

4 DDS_DomainParticipant_create_subscriber()

'd DDS_DomainParticipant_register_type()

‘4 DDS_DomainParticipant_create_topic()

(d DDS_Publisher_create_datawriter()

(d DDS_Subscriber_create_datareader()

Enabling Entities
Enabling an entity after its creation is done with
d DDS_Entity_enable

To use the above function, each entity must be cast to a DDS_Entity, and this is done
with the following:

[l DDS_DomainParticipant_as_entity()
(d DDS_Publisher_as_entity()

[DDS_Subscriber_as_entity()

' DDS_DataWriter_as_entity()

' DDS_DataReader_as_entity()

' DDS_Topic_as_entity()

1 Baseline API and QoS Policies

Configuring DomainParticipantFactory QoS

The QoS for each entity can be specified as input when the entity is created. However,
since the DomainParticipantFactory is not an “entity,” its QoS policies are configured
with these APIs:

[d DDS_DomainParticipantFactory_get_qos()
' DDS_DomainParticipantFactory_set_qos()

Finalizing QoS

Upon shutdown, the QoS for the DomainParticipantFactory and each entity should be
finalized with the following APIs. This ensures that internal resources are properly
cleaned up.

(1 DDS_DataReaderQos_finalize()

(d DDS_DataWriterQos_finalize()

(d DDS_DomainParticipantFactoryQos_finalize()
4 DDS_DomainParticipantQos_finalize()

(d DDS_PublisherQos_finalize()

(J DDS_SubscriberQos_finalize()

' DDS_TopicQos_finalize()

Deleting Entities
Entities may delete all of their contained entities at once by calling these APIs:
[l DDS_DomainParticipant_delete_contained_entities()
(d DDS_Publisher_delete_contained_entities()
[d DDS_Subscriber_delete_contained_entities()
To clean up the DomainParticipantFactory’s internal resources, use this:
1 DDS_DomainParticipantFactory_finalize_instance()
Alternatively, individual entities can be deleted with these APIs:
'd DDS_DomainParticipant_delete_publisher()
1 DDS_DomainParticipant_delete_subscriber()
‘4 DDS_DomainParticipant_delete_topic()
(d DDS_DomainParticipantFactory_delete_participant()
(J DDS_Publisher_delete_datawriter()
1 DDS_Subscriber_delete_datareader()

RTI Connext Micro API and QoS Guide

1.1.6

Finally, registered types can be unregistered:

(d DDS_DomainParticipant_unregister_type()

Getting Entities

An entity can access its parent entity. DataWriters and DataReaders can also access their
Topics and Topic descriptions, respectively.

1 DDS_DataReader_get_subscriber()

d DDS_DataReader_get_topicdescription()
[DDS_DataWriter_get_publisher()

' DDS_DataWriter_get_topic()

1 DDS_Publisher_get_participant()

d DDS_Subscriber_get_participant()

1 DDS_TopicDescription_get_name()

'd DDS_TopicDescription_get_participant()
' DDS_TopicDescription_get_type_name()

Getting Topics
A Topic or Topic description can be obtained from its DomainParticipant.

(d DDS_DomainParticipant_find_topic() (*Note: timeout not supported)
(d DDS_DomainParticipant_lookup_topicdescription()

Writing, Registering, and Disposing Data
Data can be written with or without a user-specified timestamp.

[(d DDS_DataWriter_write()
' DDS_DataWriter_write_w_timestamp()

Keyed data can have instances be registered, unregistered, and disposed.
' DDS_DataWriter_register_instance()
1 DDS_DataWriter_register_instance_w_timestamp()
[l DDS_DataWriter_unregister_instance()
1 DDS_DataWriter_unregister_instance_w_timestamp()
[DDS_DataWriter_dispose()
' DDS_DataWriter_dispose_w_timestamp()

1 Baseline API and QoS Policies

1.1.10

All above functions can be called by a typed DataWriter. For example, the functions
FooDataWriter_write(), FooDataWriter_register_instance(), and
FooDataWriter_dispose() will be among the functions available for user data type Foo.

Receiving Data

Received data can be accessed one sample at a time, either by reading or taking. If tak-
ing, the loan on the sample’s resources should eventually be returned.

(d DDS_DataReader_read()

(d DDS_DataReader_read_instance()

[l DDS_DataReader_read_next_sample()
(d DDS_DataReader_return_loan()

(d DDS_DataReader._take()

(1 DDS_DataReader_take_instance()

[l DDS_DataReader_take_next_sample()

These read, take, and return loan functions can also be called by a typed DataReader; for
example: FooDataReader_take_next_sample().

DataWriter and DataReader Listeners

Listeners are available for DataWriters and DataReaders, and a few statuses are handled
by the baseline configuration. First, matching of local DataWriters with remote
DataReaders, and vice versa, is necessary to ensure the initial discovery phase has suc-
cessfully completed; thus, the on_publication_matched() and
on_subscription_matched() callbacks are provided.

Next, since DataWriters and DataReaders may communicate with remote entities using
non-default QoS, it is necessary to know whether QoS incompatibilities exist; thus, the
on_offered_incompatible_qos() callback is provided. Lastly, a DataReader should notify
its user when data is available to be read or taken; thus, the on_data_available()
DataReaderListener callback is provided.

In summary, a DataWriterListener has these callbacks:
'd on_offered_incompatible_qos()
'd on_publication_matched()
(1 on_offered_deadline_missed()
[on_liveliness_lost()

'd on_reliable_reader_activity_changed()

RTI Connext Micro API and QoS Guide

1.2

1.3

A DataReaderListener has these callbacks:

[on_data_available()

‘A on_requested_incompatible_qos()

[l on_subscription_matched()

'd on_sample_rejected()

(d on_sample_lost()

'd on_liveliness_changed()

[l on_requested_deadline_missed()

'd on_instance_replaced()
In addition, two other DataReaderListener callbacks enable an application to filter sam-
ples based on content:

'd on_before_sample_commit()

1 on_before_sample_deserialize()
Each is called when a sample 1is received by the DataReader.
on_before_sample_deserialize() is called before the (serialized) sample has been deseri-
alized. on_before_sample_commit() is called after the sample has been serialized but
before it has been made available for read or take. Each callback allows the application

to determine, from either serialized or deserialized data, whether the sample will be
dropped, thus acting as a content-based filtering listener callback.

The HelloWorld and HelloWorld_dpde examples show how to use these callbacks for
filtering samples. Consult the API Reference HTML documentation for further details.

Supported C++ Classes and Methods
Documentation of C++ APIs, an early access feature in this release, is provided in
HTML documentation, in module RTI Connext Micro C++ API Reference.

Supported QoS Policies

The baseline configuration of RTI Connext Micro uses DDS-standard default QoS values.
Any deviations from the DDS default values, as well as any unsupported QoS policies
or fields, are described below.

QoS policies not described below should be assumed to be supported only for default
values.

A general note on interoperability: because RTI Connext Micro does not support all fields
for all QoS, it may not have the same default values as other DDS implementations.
Thus, requested-offered (RxO) semantics need to be considered when interoperating

1 Baseline API and QoS Policies

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

with other DDS implementations. For example, RTI Connext Micro currently supports
only MANUAL_BY_TOPIC LivelinessQos kind; to be compatible with a RTI Connext
Micro DataReader, a DataWriter must also set its LivelinessQos kind to be
MANUAL_BY_TOPIC, which is different than the DDS default kind of AUTOMATIC.

Inline QoS: QoS sent in-line with data is accepted, but is only interpreted if the QoS pol-
icy is supported.
DataReaderResourcelimits

The following DataReaderResourceLimits fields are supported. All must be finite values
greater than 0.

[l max_remote_writers
'd max_remote_writers_per_instance
[l max_samples_per_remote_writer

'd max_outstanding_reads

DataWriterResourcelLimits

DataWriterResourceLimits QoS policy is supported with field max_remote_readers.

Destination Order
Only the BY_RECEPTION_TIMESTAMP kind is supported.

Durability
Only VOLATILE and TRANSIENT_LOCAL Durability kinds are supported.

History
Only KEEP_LAST History kind is supported.

LatencyBudget
The LatencyBudget QoS policy is not supported (effectively zero duration).

Lifespan

The Lifespan QoS policy is not supported (effectively infinite duration).

RTI Connext Micro API and QoS Guide

1.3.8

1.3.9

1.3.10

1.3.11

1.3.12

1.3.13

1.3.14

1.4

Liveliness

When lease duration is infinite, any Liveliness kind may be set. When lease duration is
finite, only the MANUAL_BY_TOPIC Liveliness kind is supported. Lease duration has
range of [1, infinite].

Deadline

The Deadline Qos policy is supported.

Ownership and OwnershipStrength
Both SHARED and EXCLUSIVE Ownership kinds are supported.

Presentation

Coherent sets are not supported, therefore the coherent_access field is not supported.

Reliability

Both BEST-EFFORT and RELIABLE Reliability kinds are supported.

For RELIABLE reliability, additional settings related to the RTPS protocol (e.g. periodic
and piggyback HEARTBEATS) are available, see HTML documentation for specifics.
Resourcelimits

The following limits in the ResourceLimits QoS policy are supported. All must be finite
values greater than 0.

' max_samples
[max_instances

' max_samples_per_instance

Note that max_samples must be large enough to contain all samples for all instances:

max_samples >= max_instances * max_samples_per_instance

TimeBasedFilter

The TimeBasedFilter QoS policy is not supported.

ContentFilteredTopics

ContentFilteredTopics are not supported, but content filtering is provided by two
DataReaderListener callbacks: on_before_sample_deserialize() and

2 Disabling Optional APIs and QoS Policies

1.5

2.1

on_before_sample_commit() (see Section 1.1.10).

Conditions and WaitSets

StatusConditions, GuardConditions, and WaitSets are supported.

Disabling Optional APIls and QoS Policies

When building RTI Connext Micro from buildable source, some of the APIs and QoS
available in RTI Connext Micro may optionally be removed. Predefined compiler flags
may be selectively disabled for different features; this can minimize the library size by
removing unused functionality.

C APIs

The following APIs are enabled in RTI Connext Micro. A custom build can disable the
corresponding flags to remove these APIs.

Configuring QoS (INCLUDE_API_QOS)

The following APIs are enabled by default. If QoS configuration is not necessary, these
APIs can be disabled in source code by defining the preprocessor flag
INCLUDE_API_QOS as 0.

' DDS_DataReader_get_qos()

' DDS_DataReader_set_qos()

'd DDS_DataWriter_get_qos()

' DDS_DataWriter_set_qos()

[l DDS_DomainParticipant_get_default_publisher_gqos()

'd DDS_DomainParticipant_get_default_subscriber_qos()

[l DDS_DomainParticipant_get_default_topic_qos()

' DDS_DomainParticipant_get_qos()

[l DDS_DomainParticipant_set_default_publisher_qos()

'd DDS_DomainParticipant_set_default_subscriber_qos()

[l DDS_DomainParticipant_set_default_topic_qos()

'd DDS_DomainParticipant_set_qos()

'd DDS_DomainParticipantFactory_get_default_participant_qos()

RTI Connext Micro API and QoS Guide

2.2

10

(d DDS_DomainParticipantFactory_set_default_participant_qos()
' DDS_Publisher_copy_from_topic_qos()

d DDS_Publisher_get_default_datawriter_qos()
[DDS_Publisher_get_qos()

1 DDS_Publisher_set_default_datawriter_qos()
1 DDS_Publisher_set_qos()

' DDS_Subscriber_copy_from_topic_qos()

4 DDS_Subscriber_get_default_datareader_qos()
(d DDS_Subscriber_get_qos()

4 DDS_Subscriber_set_default_datareader_qos()
' DDS_Subscriber_set_qos()

[DDS_Topic_get_qos()

' DDS_Topic_set_qos()

Looking Up Local and Remote Entities (INCLUDE_API_LOOKUP)

The following APIs are used to take inventory of and gain access to created local enti-
ties. They are enabled by default. If they are not needed, they can be disabled in source
code by defining the preprocessor flag INCLUDE_API_LOOKUP as 0.

[l DDS_DomainParticipant_find_topic()

'd DDS_DomainParticipant_lookup_topicdescription()
[l DDS_Publisher_lookup_datawriter()

' DDS_Subscriber_lookup_datareader()

d DDS_DataReader_lookup_instance()

Note lookup_instance can be called by a typed DataReader, as
FooDataReader_lookup_instance().

QoS

RTI Connext Micro does not have any QoS that may optionally be disabled at compile
time by setting a predefined flag.

3 Transports

Transports

RTI Connext Micro supports a built-in UDPv4 transport for inter-process communica-
tion. In addition, an intra-process transport is supported for communication between
entities within a single DomainParticipant, as an alternative to UDPv4 loopback.

No additional transports are currently supported. This includes the transports available
from the RTI Limited Bandwidth Plug-Ins.

Discovery

RTI Connext Micro supports both dynamic and static endpoint discovery:

[d Static. Remote endpoint state is manually configured and asserted by the user
and only those asserted remote endpoints may be discovered.

d Dynamic. Remote endpoint state is automatically propagated between built-in
discovery writers and readers.

Example HelloWorld source code is available for each discovery type: HelloWorld for
static, and HelloWorld_dpde for dynamic.

Note: In both cases, participant discovery is dynamic, handled automatically between
participants.

User-Data Type-Support Code Generation

User-defined data types need type-support code to interface with RTI Connext Micro.
This type-support code can be generated automatically by using the rtiddsgen utility.

rtiddsgen takes an input type-definition in IDL and produces type-support code that RTI
Connext Micro uses when publishing and subscribing to data of the type.

To run rtiddsgen, invoke the script in <install_dir>/rtiddsgen/scripts. Given an example
type, Foo.idl, the following command will generate type-support code (while replacing
any previously generated code):

rtiddsgen -micro -language C -replace Foo.idl

RTI Connext Micro API and QoS Guide

7.1

12

For C++, the language option must be C++:

rtiddsgen -micro -language C++ -replace Foo.idl

See the RTI Connext Micro Release Notes for the latest supported types and features of
rtiddsgen.

Wire Interoperability

RTI Connext Micro uses a subset of the OMG Real-Time Publish-Subscribe (RTPS) wire
protocol, version . It is interoperable with applications implemented using RTI Connext
Messaging or Connext DDS, RTI Data Distribution Service 4.5, as well as applications built
using DDS implementations from other vendors.

RTI Connext Micro supports serialization and deserialization of samples. It does not sup-
port RTPS fragmented data samples; therefore samples are limited to the transport’s
maximum message size.

Example Code

RTI Connext Micro includes source code for a few examples. While the baseline API of
Connext Micro is shared with Connext Messaging and Connext DDS, there are APIs
unique to RTI Connext Micro. A few APIs are outlined below.

Managing Writer and Reader History Plug-ins

Queues for storing written and received samples are managed by the Writer History
and Reader History factories, respectively. RTI Connext Micro provides pluggable inter-
faces for both, so each needs to be registered (and unregistered) with the DomainPartic-
ipantFactory’s registry.

/* Register Writer and Reader Histories */

RTComponentFactoryRegistry_ t *registry;

registry =
DDS_DomainParticipantFactory get_registry
(DDS_DomainParticipantFactory_get_instance()) ;

RTComponentFactoryRegistry register (

7 Example Code

7.2

registry, “wh”,
RTI_SmWriterHistoryFactory get_interface()
NULL, NULL) ;

RTComponentFactoryRegistry register (
registry, “rh”,
RTI_SmReaderHistoryFactory_get_interface()
NULL, NULL) ;

Configuring Transport Allowed Interfaces

A transport component module, such as UDP, has a set of allowed interfaces, over
which data is allowed to be sent and received.

An example configuration of allowed interfaces for the UDP transport:

/* Re-register UDP component with updated allowed interfaces */
RTComponentFactoryRegistry_t *registry;
struct UDPInterfaceFactoryProperty *udp_property;

registry =
DDS_DomainParticipantFactory _get_registry
(DDS_DomainParticipantFactory_get_instance()) ;

/* First, unregister UDP */
if (!RTComponentFactoryRegistry unregister (
registry, "_udp", NULL, NULL))
{
printf("failed to unregister udp\n");
goto done;

udp_property = (struct UDPInterfaceFactoryProperty *)
malloc (sizeof (struct UDPInterfaceFactoryProperty)) ;
*udp_property = UDPINTERFACE_FACTORY_PROPERTY_ DEFAULT;

/* Set allowed_interface in property */
REDAStringSeq set_maximum (&udp_property->allow_interface, 2) ;
REDAStringSeq set_length (&udp_property->allow_interface,2);

*REDAStringSeq get_reference (&udp_property->allow_interface, 0)
"lO" ;

*REDAStringSeq get_reference (&udp_property->allow_interface,1) =
"eth0";

RTI Connext Micro API and QoS Guide

/* Re-register UDP with updated property */
if (!RTComponentFactoryRegistry_register (registry, "_udp",
UDPInterfaceFactory_get_interface(),

(struct RTComponentFactoryProperty*)udp_property, NULL))

{
printf("failed to register udp\n");
goto done;

7.3 Managing Discovery Plug-ins

Discovery state is managed by the Discovery Factory. The factory can be configured for
static or dynamic endpoint discovery. RTI Connext Micro provides a pluggable interface
for discovery, so it needs to be registered with the DomainParticipantFactory. The exam-

ple below registers the static endpoint discovery plugin:

/* Setting up Static Endpoint Discovery Plugin */
struct DDS_DomainParticipantQos participant_gos =
DDS_DomainParticipantQos_INITIALIZER;
struct DPSE_Discovery_ PluginProperty
discovery_plugin_properties =
DPSE_Discovery_ PluginProperty INITIALIZER;
RTComponentFactoryRegistry_t *registry;

registry =
DDS_DomainParticipantFactory get_registry
(DDS_DomainParticipantFactory_get_instance()) ;

RTComponentFactoryRegistry_register (
registry, “dpse”,
DPSE_Discovery Factory_get_interface(),
&discovery_plugin_properties._parent,
NULL) ;

OSAPIStdio_snprintf (
participant_gos.discovery.discovery.name, 8, “dpse”) ;

/* Setting initial peers */

const char *peer = “10.10.1.123";

DDS_StringSeq_ set_maximum (
&participant_gos.discovery.initial_peers,1);

DDS_StringSeq set_length (
&participant_gos.discovery.initial_peers,1);

*DDS_StringSeq get_reference (

14

7 Example Code

7.4

&participant_gos.discovery.initial_peers,0) =
DDS_String_dup (peer) ;

Configuring Static Discovery

With static endpoint discovery, remote endpoints must be asserted in order to be discov-
erable. Assuming a local DataWriter, the remote DataReader’s subscription built-in
topic data will need to be configured, then used to assert the remote subscription. Simi-
lar configuration must be done for remote publications of a local DataReader.

The remote endpoint configuration must be the same as the configuration of the local
endpoint. For example, given a DataWriter, it must assert a remote DataReader with the
same QoS, topic, type, and other state that was used to create the DataReader.

We show this with the example source code below.

A DataReader is created with its QoS configuration set to include RTPS object ID 200
and Reliability QoS kind set to RELIABLE:

/* Creating local DataReader */
DDS_DataReader *datareader = NULL;
struct DDS_DataReaderQos dr_gos = DDS_DataReaderQos_INITIALIZER;

/* Set Reader identity */
dr_gos.protocol.rtps_object_id = 200;
dr_gos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

datareader = DDS_Subscriber_ create_datareader (subscriber,
DDS_Topic_as_topicdescription (application->topic),
&dr_gos,
&dr_listener,
DDS_DATA_AVAILABLE_STATUS) ;

For a DataWriter to match the above DataReader, it must configure the remote subscrip-
tion built-in topic data to be the same:

/* DataWriter asserting remote DataReader */
struct DDS_SubscriptionBuiltinTopicData rem_subscription_data =
DDS_SubscriptionBuiltinTopicData INITIALIZER;

/* Configure remote reader */
rem_subscription_data.key.value[DDS_BUILTIN TOPIC_KEY OBJECT_ID] =
200;

RTI Connext Micro API and QoS Guide

7.5

7.5.1

7.5.2

16

rem_subscription_data.reliability.kind =
DDS_RELIABLE_RELIABILITY_QOS;

if (DDS_RETCODE_OK !=
DPSE_RemoteSubscription_assert (participant,
"subscriber",
&rem_subscription_data,
NDDS_ TYPEPLUGIN_NO_KEY)) {
printf("failed to assert remote subscription\n");

Type Support

Generating Type-Support Code with rtiddsgen
Support code for user-defined data types can be generated by the rtiddsgen utility.

For an example data type defined in the IDL file, Foo.idl, rtiddsgen will generate type-
support code with the command:

rtiddsgen -micro -language C -replace Foo.idl

Registering a Type

To be used by RTI Connext Micro, a type must be registered with the DomainParticipant.
The generic type registration function is as follows:

retcode = DDS_DomainParticipant_register_type(
participant, type_name, FooTypeSupport_get_instance());

Logging API
RTI Connext Micro maintains a log of events occurring in an application and provides
APIs to configure the log buffer and process log messages.

For descriptions of these APIs, users should consult online documentation in the mod-
ule RTI Connext Micro Logging Reference. It describes:

[d The format and kinds of log messages
[Managing the size of the log buffer
'd Interpreting Log Message Kinds and Error Codes

8 Logging API

[d Setting a Log Handler Callback Function for user-specific processing of log mes-
sages

RTI Connext Micro API and QoS Guide

18

	Contents
	RTI Connext Micro API and QoS Guide
	1 Baseline API and QoS Policies
	1.1 Supported C APIs
	1.2 Supported C++ Classes and Methods
	1.3 Supported QoS Policies
	1.4 ContentFilteredTopics
	1.5 Conditions and WaitSets

	2 Disabling Optional APIs and QoS Policies
	2.1 C APIs
	2.2 QoS

	3 Transports
	4 Discovery
	5 User-Data Type-Support Code Generation
	6 Wire Interoperability
	7 Example Code
	7.1 Managing Writer and Reader History Plug-ins
	7.2 Configuring Transport Allowed Interfaces
	7.3 Managing Discovery Plug-ins
	7.4 Configuring Static Discovery
	7.5 Type Support

	8 Logging API

