
RTI Connext Micro

Release Notes

Version 2.4.1

© 2014 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
November 2014.

Trademarks
Real-Time Innovations, RTI, and Connext are registered trademarks of Real-Time Innovations, Inc.
All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc. The software described in this document is furnished
under and subject to the RTI software license agreement. The software may be used or copied only
under the terms of the license agreement.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: http://www.rti.com

http://www.rti.com

Contents

1 Supported Operating Systems and Compilers ..1

2 Installing RTI Connext Micro ...9
2.1 Installing on a Windows System ..9
2.2 Installing on a UNIX-Based System...9
2.3 Unpacking Buildable Source...9

3 RTI Connext Micro Features ...10
3.1 Modular Architecture...10
3.2 Buildable Source Code...10
3.3 Type-Support Code Generation.. 11
3.4 Static and Dynamic Endpoint Discovery ..12
3.5 User Documentation ..12
3.6 Code Examples..13
3.7 Interoperability and Compatibility ..13

4 New Features in 2.4.1...14
4.1 New -micro option for rtiddsgen ...14
4.2 New language options for generating code for RTI Connext Micro using

rtiddsgen ..14
4.3 CMake Configuration for Buildable Source ...14
4.4 DDS_WaitSet and DDS_Condition APIs For C++ ...15
4.5 New HelloWorld_dpde_waitset Example ..15
4.6 Access to Status of DDS Entities by C++ APIs ...16
4.7 Improved support for listeners of DDS entities in C++ API16
4.8 New Operations FooTypeSupport_register/unregister_type for User Data-

Types...17
iii

4.9 Sample Info Provided With DataReaderListener's Sample Filter Callback17
4.10 More Information Provided in DDS_SampleLostStatus Type17

5 What’s Fixed in 2.4.1 ..18
5.1 Full Support of -namespace Option for rtiddsgen...18
5.2 Redundant Code Not Generated for Non Top-Level Types...............................18
5.3 Setting Real-Time Clock for VxWorks Platform...18
5.4 IDL Copy Directives Now Supported by rtiddsgen..18
5.5 Incompatible Encoding of DDS_Duration_t with RTI Connext DDS19
5.6 Premature Wakeup from Semaphore Take for POSIX Platforms.......................19
5.7 Failed Compilation of C++ Generated Code from rtiddsgen19
5.8 DDS_Topic_get_inconsistent_topic_status in C API ...19
5.9 DDS_StatusCondition's Trigger Value Not Updated When

DDS_DATA_AVAILABLE_STATUS Is Reset ..20
5.10 DDS_WaitSet_get_conditions Supported by C API...20
5.11 Reliable, Keep-Last DataReader May Stop Receiving Samples20
5.12 Memory Dynamically Allocated By DPSE After Initialization20
5.13 Application Crashed When Looking Up DomainParticipant21
5.14 Setting Log Verbosity May Have Been Ineffective...21
5.15 Waitset’s Wait may have Incorrectly Timed Out when Listener also Installed ...

21
5.16 Data not Received due to Samples not being Sent by all Transports21
5.17 Static Endpoint Discovery Restrictively Required Unique Object IDs Across

All Remote Endpoints ..22
5.18 Possible Non-Discovery or Non-Communication between Connext Micro

using DPSE and a Non-Micro Application22

6 Known Issues ..22
6.1 Incomplete Documentation for non-DDS APIs..22
6.2 C++ APIs Not Supported for Android Platform ..22
6.3 Waitset’s Wait May Return Same Condition More Than Once For a Single

Triggering Event..23
6.4 Waitset Delete Not Safe For Concurrent Use..23
iv

Release Notes for RTI Connext Micro

This document provides release-specific information and identifies highlights and
updates in RTI® Connext™ Micro version 2.4.1.

❏ Supported Operating Systems and Compilers (Section 1)

❏ Installing RTI Connext Micro (Section 2)

❏ RTI Connext Micro Features (Section 3)

❏ New Features in 2.4.1 (Section 4)

❏ What’s Fixed in 2.4.1 (Section 5)

❏ Known Issues (Section 6)

1 Supported Operating Systems and Compilers
This section describes the platforms supported by RTI Connext Micro 2.4.1.

Supported Platforms:

❏ Linux (Intel®)

❏ Windows®

❏ VxWorks®

❏ Android (NDK)
1

Release Notes for RTI Connext Micro
The following tables provide specific details per supported platform.

Table 1.1 Linux Supported Platforms

Operating System CPU Compiler RTI Architecture
Abbreviation

Red Hat Enterprise Linux
6.0, 6.1 (2.6 kernel)

x86 gcc 4.4.5 i86Linux2.6gcc4.4.5

Table 1.2 Linux Build Instructions

RTI Architecture Required
System Libraries

Required
Compiler Flags

i86Linux2.6gcc4.4.5

(Release)

-ldl

-lnsl

-lm-

lpthread

-lrt

-fPIC -DLINUX -DRTI_GCC4 -DRTI_LINUX26

-DRTI_LINUX -DRTI_POSIX_THREADS

-DRTI_POSIX_SEMAPHORES

-DRTI_CPU_AFFINITY -O -Wall

-Wno-unknown-pragmas -DRTI_UNIX

-DRTS_UNIX -DPtrIntType=long

-DCSREAL_IS_FLOAT -DCPU=I80586

-DRTI_ENDIAN_LITTLE -DRTI_THREADS

-DRTI_MULTICAST

-DRTI_SHARED_MEMORY -DRTI_IPV6

-DNDEBUG

i86Linux2.6gcc4.4.5

(Debug)

-ldl

-lnsl

-lm-

lpthread

-lrt

-fPIC -DLINUX -DRTI_GCC4 -DRTI_LINUX26

-DRTI_LINUX -DRTI_POSIX_THREADS

-DRTI_POSIX_SEMAPHORES

-DRTI_CPU_AFFINITY -g

-DRTI_PRECONDITION_TEST

-Wall -Wno-unknown-pragmas -DRTI_UNIX

-DRTS_UNIX -DPtrIntType=long

-DCSREAL_IS_FLOAT -DCPU=I80586

-DRTI_ENDIAN_LITTLE -DRTI_THREADS

-DRTI_MULTICAST

-DRTI_SHARED_MEMORY -DRTI_IPV6
2

1 Supported Operating Systems and Compilers
Table 1.3 Windows Supported Platforms

Operating System CPU Compiler RTI Architecture
Abbreviation

Windows 7 x86 Visual Studio 2010 i86Win32VS2010

Table 1.4 Windows Build Instructions

RTI Architecture Required
System Libraries

Required
Compiler Flags

i86Win32VS2010

netapi32.lib

advapi32.lib

user32.lib

WS2_32.lib

Iphlpapi.lib

winmm.lib

/D “RTI_WIN32” /D “WIN32”/Gd

/MT (Static Release)

/MTd (Static Debug)

/MD (Dynamic Release)

/MDd (Dynamic Debug)

/D “NDDS_DLL_VARIABLE
(Dynamic)

/D “NDEBUG” (Release)

Table 1.5 VxWorks Supported Platforms1

Operating
System CPU

Compiler,
Required
System

Libraries

RTI Architecture
Abbreviation

VxWorks 6.9

Pentium 32-bit gcc 4.3.3

For Kernel Modules:
pentiumVx6.9gcc4.3.3

For Real Time Processes:
pentiumVx6.9gcc4.3.3_rtp

PPC32 gcc 4.3.3

For Kernel Modules:
ppc604Vx6.9gcc4.3.3

For Real Time Processes:
ppc604Vx6.9gcc4.3.3_rtp

VxWorks Cert
6.6.4.1

PPC32 e500v2 gcc 4.1.2 ppce500v2VxCert6.6.4.1gcc4.1.2

1. For use with host platforms (e.g., Windows or Linux) as supported by Wind River Systems
3

Release Notes for RTI Connext Micro
Table 1.6 VxWorks Build Instructions

RTI Architecture Required
Compiler Flags

pentiumVx6.9gcc4.3.3 (Release)

-march=pentium -m32 -fno-builtin -ansi -
DCPU=PENTIUM

-DTOOL_FAMILY=gnu -DTOOL=gnu -DRTI_GCC4

-D_WRS_KERNEL -D__PROTOTYPE_5_0

-DVXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=9 -O

-Wall -Wno-unknown-pragmas -DRTI_VXWORKS

-DRTS_VXWORKS -DPtrIntType=long

-DCSREAL_IS_FLOAT -DCPU=PENTIUM

-DRTI_ENDIAN_LITTLE -DRTI_THREADS

-DRTI_MULTICAST -DRTI_SHARED_MEMORY

-DRTI_IPV6 -DNDEBUG

pentiumVx6.9gcc4.3.3 (Debug)

-march=pentium -m32 -fno-builtin -ansi

-DCPU=PENTIUM

-DTOOL_FAMILY=gnu -DTOOL=gnu -DRTI_GCC4

-D_WRS_KERNEL -D__PROTOTYPE_5_0 -g

-DRTI_PRECONDITION_TEST

-DVXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=9

-Wall -Wno-unknown-pragmas -DRTI_VXWORKS

-DRTS_VXWORKS -DPtrIntType=long

-DCSREAL_IS_FLOAT -DCPU=PENTIUM

-DRTI_ENDIAN_LITTLE -DRTI_THREADS

-DRTI_MULTICAST -DRTI_SHARED_MEMORY

-DRTI_IPV6
4

1 Supported Operating Systems and Compilers
pentiumVx6.9gcc4.3.3_rtp

(Release)

-march=pentium -m32 -ansi -DCPU=PENTIUM

-DTOOL_FAMILY=gnu -DTOOL=gnu -DRTI_GCC4 -mrtp

-D__PROTOTYPE_5_0 -O -Wall -Wno-unknown-pragmas

-DRTI_VXWORKS -DRTS_VXWORKS -DRTI_RTP

-DVXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=9 -DPtrIntType=long

-DCSREAL_IS_FLOAT -DCPU=PENTIUM

-DRTI_ENDIAN_LITTLE -DRTI_THREADS

-DRTI_MULTICAST -DRTI_SHARED_MEMORY

-DRTI_IPV6 -DNDEBUG

pentiumVx6.9gcc4.3.3_rtp

(Debug)

-march=pentium -m32 -ansi -DCPU=PENTIUM

-DTOOL_FAMILY=gnu -DTOOL=gnu -DRTI_GCC4 -mrtp

-fPIC -D__PROTOTYPE_5_0 -g

-DRTI_PRECONDITION_TEST -Wall

-Wno-unknown-pragmas -DRTI_VXWORKS

-DRTS_VXWORKS -DRTI_RTP

-DVXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=9 -DPtrIntType=long

-DCSREAL_IS_FLOAT -DCPU=PENTIUM

-DRTI_ENDIAN_LITTLE -DRTI_THREADS

-DRTI_MULTICAST -DRTI_SHARED_MEMORY

-DRTI_IPV6

Table 1.6 VxWorks Build Instructions

RTI Architecture Required
Compiler Flags
5

Release Notes for RTI Connext Micro
ppc604Vx6.9gcc4.3.3

(Release)

-m32 -mstrict-align -ansi -fno-builtin -mlongcall

-DCPU=PPC32 -DTOOL_FAMILY=gnu -DTOOL=gnu

-DRTI_USE_MUNCH -DRTI_GCC4 -D_WRS_KERNEL

-D__PROTOTYPE_5_0

-DVXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=9 -O2

-fno-strict-aliasing -Wall -Wno-unknown-pragmas

-DRTI_VXWORKS -DRTS_VXWORKS

-DPtrIntType=long -DCSREAL_IS_FLOAT

-DCPU=PPC32 -DRTI_ENDIAN_BIG -DRTI_THREADS

-DRTI_MULTICAST -DRTI_SHARED_MEMORY

-DRTI_IPV6 -DNDEBUG

ppc604Vx6.9gcc4.3.3

(Debug)

-m32 -mstrict-align -ansi -fno-builtin -mlongcall

-DCPU=PPC32 -DTOOL_FAMILY=gnu

-DTOOL=gnu -DRTI_USE_MUNCH

-DRTI_GCC4 -D_WRS_KERNEL -D__PROTOTYPE_5_0 -g

-DRTI_PRECONDITION_TEST

-DVXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=9 -Wall

-Wno-unknown-pragmas -DRTI_VXWORKS

-DRTS_VXWORKS -DPtrIntType=long

-DCSREAL_IS_FLOAT -DCPU=PPC32

-DRTI_ENDIAN_BIG -DRTI_THREADS

-DRTI_MULTICAST -DRTI_SHARED_MEMORY

-DRTI_IPV6

Table 1.6 VxWorks Build Instructions

RTI Architecture Required
Compiler Flags
6

1 Supported Operating Systems and Compilers
ppc604Vx6.9gcc4.3.3_rtp

(Release)

-mhard-float -mstrict-align -m32 -mregnames -ansi

-mlongcall -DCPU=PPC32 -DTOOL_FAMILY=gnu

-DTOOL=gnu -DRTI_USE_MUNCH -DRTI_GCC4

-DRTI_RTP -mrtp -D__PROTOTYPE_5_0 -O2

-fno-strict-aliasing -Wall -Wno-unknown-pragmas

-DRTI_VXWORKS -DRTS_VXWORKS -DRTI_RTP

-DVXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=9 -DPtrIntType=long

-DCSREAL_IS_FLOAT -DCPU=PPC32

-DRTI_ENDIAN_BIG -DRTI_THREADS

-DRTI_MULTICAST -DRTI_SHARED_MEMORY

-DRTI_IPV6 -DNDEBUG

ppc604Vx6.9gcc4.3.3_rtp

(Debug)

-mhard-float -mstrict-align -m32 -mregnames -ansi

-mlongcall -DCPU=PPC32 -DTOOL_FAMILY=gnu

-DTOOL=gnu -DRTI_USE_MUNCH -DRTI_GCC4

-DRTI_RTP -mrtp -fPIC -D__PROTOTYPE_5_0 -g

-DRTI_PRECONDITION_TEST -Wall

-Wno-unknown-pragmas -DRTI_VXWORKS

-DRTS_VXWORKS -DRTI_RTP

-DVXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=9 -DPtrIntType=long

-DCSREAL_IS_FLOAT -DCPU=PPC32

-DRTI_ENDIAN_BIG -DRTI_THREADS

-DRTI_MULTICAST -DRTI_SHARED_MEMORY

-DRTI_IPV6

Table 1.6 VxWorks Build Instructions

RTI Architecture Required
Compiler Flags
7

Release Notes for RTI Connext Micro
To be able to use the RTI Connext Micro libraries, the Android manifest should have the
following permissions:

❏ android.permission.INTERNET

ppce500v2VxCert6.6.4.1gcc4.1.2

(Release)

-m32 -mstrict-align -mcpu=8548 -mfloat-gprs=double

-mspe=yes -mabi=spe -ansi -fno-exceptions -fno-builtin

-Wall -msdata=eabi -DCPU=PPC32

-DTOOL_FAMILY=gnu -DTOOL=e500v2gnu

-VXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=6 -DCERT

-DRTI_CERT -DRTI_ENDIAN_BIG -DRTI_VXWORKS

-DOSAPI_PLATFORM=4 -O -DNDEBUG

ppce500v2VxCert6.6.4.1gcc4.1.2

(Debug)

-m32 -mstrict-align -mcpu=8548 -mfloat-gprs=double

-mspe=yes -mabi=spe -ansi -fno-exceptions -fno-builtin

-Wall -msdata=eabi -DCPU=PPC32

-DTOOL_FAMILY=gnu -DTOOL=e500v2gnu

-VXWORKS_MAJOR_VERSION=6

-DVXWORKS_MINOR_VERSION=6 -DCERT

-DRTI_CERT -DRTI_ENDIAN_BIG -DRTI_VXWORKS

-DOSAPI_PLATFORM=4 -O -g

Table 1.7 Android Supported Platform

Operating System CPU Compiler RTI Architecture
Abbreviation

Android NDK, Revision 8d ARMv7 gcc 4.7 armv7leAndroidR8Dgcc4.7

Table 1.8 Android Build Instructions

RTI Architecture Required
Compiler Flags

armv7leAndroidR8Dgcc4.7
-march=armv7-a -mfpu=neon -msoft-float
-mlong-calls

Table 1.6 VxWorks Build Instructions

RTI Architecture Required
Compiler Flags
8

2 Installing RTI Connext Micro
❏ android.permission.CHANGE_WIFI_MULTICAST_STATE

❏ android.permission.CHANGE_WIFI_STATE

2 Installing RTI Connext Micro
RTI Connext Micro is available for installation in separate host and target packages.

You will have at least two bundles (as .zip or .tar.gz archives): one for your host platform
and at least one target platform. The host package is platform agnostic; it provides doc-
umentation, header files, examples, and the rtiddsgen utility. The target package pro-
vides platform-specific libraries and utilities. Expand them into the same directory of
your choice, as described below.

2.1 Installing on a Windows System

The distribution is packaged in one or more .zip files. Unzip them into a directory of
your choice.

2.2 Installing on a UNIX-Based System

The distribution is packaged in one or more files. Unpack them as described below. You
do not need to be logged in as root during installation.

1. Make sure you have GNU’s version of unzip and tar (which handles long file
names). On Linux systems, this is the default tar executable.

2. Create a directory for RTI Connext Micro.

3. Move the downloaded file(s) into your newly created directory.

4. Extract the distribution from the uncompressed files. For example:

unzip RTI_Connext_Micro-Host-2.4.1.zip
tar zxvf RTI_Connext_Micro_Target-2.4.1-i86Linux2.6gcc4.4.5.tar.gz

Assuming your directory is /home/user/, you will end up with /home/user/
rti_connext_micro.2.4.1.

2.3 Unpacking Buildable Source

For the optional buildable source bundle, unpack it in the same directory (from the
example above, /home/user).
9

Release Notes for RTI Connext Micro
3 RTI Connext Micro Features
Important features of RTI Connext Micro are described here.

3.1 Modular Architecture

The flexible architecture of RTI Connext Micro 2.4.1 enables users to create, change, and
connect the modules that make up RTI Connext Micro’s middleware and network stack.

Each module within this architecture has the same data and control interface. For exam-
ple, the modules for DDS, RTPS, and the UDPv4 transport all implement the same inter-
faces, even though they each occupy a different level in the middleware stack. Having
the same interface for each module enables easier extensibility and testability.

Users can create and add a custom transport to the stack as a new module. Users can
also remove or revise existing modules. For example, it is possible to remove DDS and
send/receive data over pure RTPS.

3.2 Buildable Source Code

Users can build RTI Connext Micro from the available buildable source code bundle. This
enables users to port RTI Connext Micro to new platforms, without having to wait for an
official release. With the open-source build tool, cmake (ww.cmake.org), users can gener-
ate native makefiles and workspaces for any of the cmake-supported platforms. Note
that the shipped CMakeLists.txt file is set up to generate a Linux makefile and a Win-
dows project.

A README within the buildable source directory provides instructions on using cmake
to build RTI Connext Micro. Consult cmake documentation or contact RTI Support to cre-
ate the cross-compilation toolchain files necessary for VxWorks and other embedded
platforms.

To request the separate buildable source code bundle, please contact sales@rti.com.

3.2.1 Build Configuration

The top-level configuration file, rti_me_config.h, has all the build configuration flags
and settings that a user building from buildable source may need to set.
10

3 RTI Connext Micro Features
3.2.2 Porting to New Platforms

RTI Connext Micro has an operating system abstraction layer (OSAPI) to support run-
ning on different platforms. OSAPI supports functionality typically provided by operat-
ing system calls, devices drivers, and the standard C library.

Consult the OSAPI API in the HTML documentation when porting to a new platform,
as most source code changes will likely be within OSAPI.

3.3 Type-Support Code Generation

RTI Connext Micro provides the rtiddsgen utility for generating type support code that is
necessary to publish and subscribe user-defined data types.

The script to run rtiddsgen is in rti_connext_micro.2.4.1/rtiddsgen/scripts.

An example command for generating code for a type Foo.idl:

rtiddsgen -micro -language C -replace Foo.idl

In this release, rtiddsgen supports generating code from IDL for the following standard
types:

❏ octet, char, wchar

❏ short, unsigned short

❏ long, unsigned long

❏ long long, unsigned long long

❏ float

❏ double, long double

❏ boolean

❏ string

❏ struct

❏ array

❏ enum

❏ wstring

❏ sequence

❏ union

❏ typedef
11

Release Notes for RTI Connext Micro
❏ value type

Unlike in RTI Connext, this version rtiddsgen does not generate example HelloWorld
applications. Instead, users should refer to the examples shipped with RTI Connext
Micro.

3.4 Static and Dynamic Endpoint Discovery

Discovery is the process by which DDS participants, writers, and readers determine
whether communication should be established between one another. For a DDS end-
point (i.e., a writer or reader) to discover another entity, it must first receive some state
(i.e., endpoint discovery information) about the other entity (e.g., reliability QoS, Topic
name, etc.). Then it establishes communication only with other entities that have states
compatible with its own state.

RTI Connext Micro provides two mechanisms for endpoint discovery between writers
and readers: static endpoint discovery is the manual registration of remote endpoint
information by the user; dynamic endpoint discovery is the automatic exchange of end-
point information over a reliable channel, and is transparent to the user.

Example code for static and dynamic discovery is provided in the HelloWorld_dpse and
HelloWorld_dpde examples, respectively.

3.5 User Documentation

3.5.1 API Reference Documentation

The complete RTI Connext Micro API is accessible through hyperlinked HTML docu-
mentation.

For porting RTI Connext Micro to a new platform, the HTML documentation includes
the RTI Connext Micro Porting Guide module, which describes the features, APIs, and
configuration that need to be considered.

3.5.2 DDS API Guide

As a small-footprint implementation of DDS, RTI Connext Micro supports a subset of the
standard DDS API and Quality of Service (QoS) policies.

The API and QoS supported in this version are described in the accompanying API
Guide (RTI_Connext_Micro_APIGuide.pdf).
12

3 RTI Connext Micro Features
3.6 Code Examples

The provided example applications will help users become familiar with RTI Connext
Micro. Each example has a README with instructions on how to build and run an
application.

All examples are available in C, while the HelloWorld_dpde example is available in
C++.

HELLOWORLD_DPSE EXAMPLE Shows how to use rtiddsgen to generate type-support code
from a simple HelloWorld IDL-defined type. This example creates a publisher
and subscriber, and uses dynamic participant, static endpoint discovery to estab-
lish communication.

HELLOWORLD_DPDE EXAMPLE Same as the HelloWorld_dpse example, except it uses
dynamic participant, dynamic endpoint discovery. This example is available in
both C and C++.

HELLOWORLD_DPDE_WAITSET Same as the HelloWorld_dpde example, except it uses
waitsets instead of listener callbacks to access received data.

HELLOWORLD_ANDROID Example application using Android NDK.
HELLOWORLD_STATIC_UDP Example using static configuration of network interfaces.
RTPS Example of an RTPS emitter that bypasses the DDS module and APIs to send

RTPS discovery and user data.

LATENCY Measures the end-to-end latency of RTI Connext Micro.

THROUGHPUT Measures the end-to-end throughput of RTI Connext Micro.

3.7 Interoperability and Compatibility

RTI Connext Micro supports a subset of the submessages defined by the Real-Time Pub-
lish-Subscribe (RTPS) interoperability specification: DATA, ACKNACK, HEARTBEAT,
and GAP submessages are supported, as well as INFO_TS and INFO_DST. Note that
fragmented data submessages are not supported. The messages are compatible with
Wireshark and its RTPS packet dissector.

Interoperability between 2.4.1 and both RTI Data Distribution Service 4.5d and RTI Con-
next 5.1.0 has been verified between example HelloWorld applications and with the rtid-
dsspy utility.

Compatibility with the following RTI tools and services has not been verified: Routing
Service, Federation Service, Analyzer, Spreadsheet Add-In, Real-Time Connect, and Recording
Service. Nevertheless, they may currently be compatible, assuming that the RTI Connext
Micro application is using the dynamic endpoint discovery plugin. Monitor and Limited
Bandwidth Plug-Ins are not compatible with RTI Connext Micro 2.4.1.
13

Release Notes for RTI Connext Micro
4 New Features in 2.4.1
This section describes new features added since 2.3.2.

4.1 New -micro option for rtiddsgen

The rtiddsgen version shipped with this release of RTI Connext Micro introduces a new
command line argument, "-micro", which enables users to explicitly target RTI Connext
Micro when using the code generation tool.

[RTI Issue ID MICRO-779]

Previously this was implicitly implied by the use of values "microC" or "microC++" for
command line argument "-language".

This prevented rtiddsgen to be able to produce an help output specific for RTI Connext
Micro. This functionality is now available to users, who may use arguments "-micro -
help" to visualize a list of all command line arguments supported by rtiddsgen when tar-
geting RTI Connext Micro.

4.2 New language options for generating code for RTI Connext Micro using
rtiddsgen

The new version of rtiddsgen that is shipped with RTI Connext Micro introduces new val-
ues for the "-language" command line argument, which should be adopted by users
instead of the previously supported "microC" and "microC++".

In order to generated custom data-types support code that can be used with RTI Connext
Micro, user shall specify the following command line options.

❏ Target language C

-micro -language C

❏ Target language C++

-micro -language C++

[RTI Issue ID MICRO-79]

4.3 CMake Configuration for Buildable Source

The provided CMake configuration for building RTI Connext Micro from source code
has been updated:
14

4 New Features in 2.4.1
❏ Configuration options have been simplified, including selecting a target operat-
ing system, and for including C++ API support

❏ Output libraries are now identical to pre-built shipped libraries of RTI Connext
Micro. The previous configuration instead produced a single library.

[RTI Issue ID MICRO-112, MICRO-770, MICRO-805]

4.4 DDS_WaitSet and DDS_Condition APIs For C++

This release officially introduces full support of DDS_WaitSet and DDS_Condition APIs
also for C++ users of RTI Connext Micro.

The following operations are officially supported:

❏ DDSWaitSet::DDSWaitSet()

❏ DDSWaitSet::wait()

❏ DDSWaitSet::attach_condition()

❏ DDSWaitSet::detach_condition()

❏ DDSWaitSet::get_conditions()

❏ DDSCondition::get_trigger_value()

❏ DDSGuardCondition::DDSGuardCondition()

❏ DDSGuardCondition::set_trigger_value()

❏ DDSStatusCondition::set_enabled_statuses()

❏ DDSStatusCondition::get_enabled_statuses()

❏ DDSStatusCondition::get_entity()

[RTI Issue ID MICRO-685]

4.5 New HelloWorld_dpde_waitset Example

A new code example, HelloWorld_dpde_waitset, has been added to the set of examples
shipped with RTI Connext Micro.

This example is based on the preexisting HelloWorld_dpde example and it exemplifies
the use of the recently introduced DDS_WaitSet and DDS_Condition APIs.

By leveraging a few pre-processor macros, the example also provides an equivalent
implementation of its behavior using traditional listeners on DDS entities. Users may
switch between one implementation and the other by modifying values of these macro
and by recompiling the example's source code.
15

Release Notes for RTI Connext Micro
[RTI Issue ID MICRO-708]

4.6 Access to Status of DDS Entities by C++ APIs

Operations of the DDS API which grant users access to data structures describing the
current internal information about a particular entity status have now been fully imple-
mented and they are officially supported by RTI Connext Micro's C++ API.

The following methods have been introduced:

❏ DDSDataReader::get_sample_rejected_status

❏ DDSDataReader::get_sample_lost_status

❏ DDSDataReader::get_subscription_matched_status

❏ DDSDataReader::get_requested_incompatible_qos_status

❏ DDSDataReader::get_requested_deadline_missed_status

❏ DDSDataReader::get_instance_replaced_status

❏ DDSDataReader::get_liveliness_changed_status

❏ DDSDataWriter::get_publication_matched_status

❏ DDSDataWriter::get_offered_incompatible_qos_status

❏ DDSDataWriter::get_offered_deadline_missed_status

❏ DDSDataWriter::get_liveliness_lost_status

❏ DDSTopic::get_inconsistent_topic_status

[RTI Issue ID MICRO-784]

4.7 Improved support for listeners of DDS entities in C++ API

Support for operations allowing the setting and retrieval of listener objects from DDS
entities has been extended and it is now fully available to users of RTI Connext Micro's
C++ API.

The following methods have been implemented and they are now fully supported as
part of the C++ API:

❏ DDSDomainParticipant::set_listener

❏ DDSDomainParticipant::get_listener

❏ DDSSubscriber::set_listener

❏ DDSSubscriber::get_listener
16

4 New Features in 2.4.1
❏ DDSPublisher::set_listener

❏ DDSPublisher::get_listener

❏ DDSTopic::set_listener

❏ DDSTopic::get_listener

❏ DDSDataWriter::set_listener

❏ DDSDataReader::set_listener

[RTI Issue ID MICRO-795]

4.8 New Operations FooTypeSupport_register/unregister_type for User Data-
Types

The new version of rtiddsgen that is shipped with RTI Connext Micro now generates two
new additional operation which can be used by users to more easily register a data-type
on a DDS_DomainParticipant. In particular, these operation allow the specification of an
empty (null) type name at registration time. The default name associated with the type
will be used in this case.

The new operations are generated only for top-level data-types which are the only ones
usable for the creation of a DDS_Topic.

[RTI Issue ID MICRO-796]

4.9 Sample Info Provided With DataReaderListener's Sample Filter Callback

DataReaderListener.on_before_sample_commit() now provides sample info of the sam-
ple being filtered in a new parameter, sample_info.

[RTI Issue ID MICRO-809]

4.10 More Information Provided in DDS_SampleLostStatus Type

The DDS_SampleLostStatus type has two new fields:

❏ kind

❏ sample_info

The kind (of type DDS_SampleLostStatusKind) indicates why a sample was lost. For
samples lost for any reason other than DDS_SAMPLE_LOST_BY_DATAWRITER,
sample_info gives additional information about the sample.

[RTI Issue ID MICRO-919]
17

Release Notes for RTI Connext Micro
5 What’s Fixed in 2.4.1
This section describes bugs fixed in this release since 2.3.2.

5.1 Full Support of -namespace Option for rtiddsgen

The new version of rtiddsgen shipped with RTI Connext Micro introduces official sup-
port for the "-namespace" command line argument when the tool is used for the genera-
tion of C++ type support code.

If the option is specified on the command line, IDL modules will be translated into C++
namespaces instead of being used as prefixes to the name of data-types defined within
them.

[RTI Issue ID MICRO-153]

5.2 Redundant Code Not Generated for Non Top-Level Types

Previous version of rtiddsgen that were shipped with RTI Connext Micro included, in the
generated code for user-specified data-types, several support operations which were
not required by data-types which cannot be used as top-level types for a DDS_Topic.

These redundant operation have now been removed from the generation outcome and
they are only produced for top-level types.

[RTI Issue ID MICRO-678]

5.3 Setting Real-Time Clock for VxWorks Platform

For VxWorks platforms, when initializing an application, RTI Connext Micro set the real-
time clock (i.e. clock_settime) to a predefined value. This could have interfered with
user configured time, thus this release no longer sets the real-time clock.

[RTI Issue ID MICRO-692]

5.4 IDL Copy Directives Now Supported by rtiddsgen

Support for IDL copy directives (such as "//@copy", "//@copy-c", ...) has been
improved and the following copy directives are now fully supported in user-provided
IDL files:

❏ //@copy

❏ //@copy-declaration
18

5 What’s Fixed in 2.4.1
❏ //@copy-c

❏ //@copy-c-declaration

[RTI Issue ID MICRO-740]

5.5 Incompatible Encoding of DDS_Duration_t with RTI Connext DDS

The DDS_Duration_t datatype was not correctly encoded by RTI Connext Micro when
sent over the wire. Specifically, the nanoseconds field of Duration_t was not correctly
encoded. This was not a problem between RTI Connext Micro applications, but when
inter-operating with RTI Connext DDS applications, the durations of Liveliness
lease_duration and Deadline period were misinterpreted and resulted in incorrect tim-
ing. A workaround was to multiply the nanoseconds field of the RTI Connext Micro
application's durations by 4 when communication with RTI Connext DDS.

[RTI Issue ID MICRO-768]

5.6 Premature Wakeup from Semaphore Take for POSIX Platforms

A problem existed on platforms using POSIX threads (e.g. Linux) where taking a sema-
phore with a timeout may have woken up prematurely. This could have resulted prema-
ture wake-up for Waitsets.

[RTI Issue ID MICRO-772]

5.7 Failed Compilation of C++ Generated Code from rtiddsgen

A bug has been fixed in the code generation templates, used by rtiddsgen to produce
support code used by the C++ API for user-defined custom data-types. The bug caused
erroneous code to be generated for non top-level data-types in the resulting source files.
This code prevented the generated source code from being successfully compiled.

These additional and unnecessary parts have now been removed.

[RTI Issue ID MICRO-777, MICRO-778]

5.8 DDS_Topic_get_inconsistent_topic_status in C API

The operation DDS_Topic_get_inconsistent_topic_status has been added to RTI Connext
Micro's C API and it is now fully supported.

[RTI Issue ID MICRO-783]
19

Release Notes for RTI Connext Micro
5.9 DDS_StatusCondition's Trigger Value Not Updated When
DDS_DATA_AVAILABLE_STATUS Is Reset

A bug has been fixed which prevented a DDS_StatusCondition instance, associated
with a DDS_DataReader, DDS_Subscriber, or DDS_DomainParticipant, from correctly
transitioning its trigger value from true to false when state
DDS_DATA_AVAILABLE_STATUS was consumed and deactivated in the associated
DDS entity.

This behavior caused the wait() operation of any DDS_WaitSet, that had the
DDS_StatusCondition instance attached to it, to always immediately return successfully,
after the DDS_StatusCondition's trigger value had been transitioned to active. Note that
it was still possible for the condition's trigger value to transition to false state if another
of the enabled statuses transitioned to false in the associated DDS entity, causing the
DDS_StatusCondition to properly update its state according to the DDS entity's one.

[RTI Issue ID MICRO-786]

5.10 DDS_WaitSet_get_conditions Supported by C API

The operation DDS_WaitSet_get_conditions has now been fully implemented and it can
be now used to access the list of DDS_Conditions attached to a DDS_WaitSet instance.

[RTI Issue ID MICRO-788]

5.11 Reliable, Keep-Last DataReader May Stop Receiving Samples

A reliable DataReader with KEEP_LAST history may have stopped receiving new sam-
ples, after previous samples were received out of order. This was due to a bug where
there were no available resources of the DataReader to receive samples that would
allow the out of order samples to be presented in order to the application.

[RTI Issue ID MICRO-790]

5.12 Memory Dynamically Allocated By DPSE After Initialization

RTI Connext Micro is designed not to allocate memory dynamically after an entity has
been created and enabled. However, a bug in the implementation for Dynamic Partici-
pant, Static Endpoint (DPSE) discovery resulted in the dynamic allocation of memory
during participant discovery. The memory allocated was to increase the maximum size
of sequences for storing received participant discovery data. This release has been fixed
to do this allocation during initialization.

[RTI Issue ID MICRO-803]
20

5 What’s Fixed in 2.4.1
5.13 Application Crashed When Looking Up DomainParticipant

Previously, an application would crash when
DDS_DomainParticipantFactory_lookup_participant() was called before the first invo-
cation of DDS_DomainParticipantFactory_get_instance(). This was caused by improper
initialization of the DomainParticipantFactory and has been fixed in this release.

[RTI Issue ID MICRO-819]

5.14 Setting Log Verbosity May Have Been Ineffective

Logging verbosity is configured by calling OSAPI_Log_set_verbosity(). It should be
configurable at any time. However, a bug existed where the first call to
DDS_DomainParticipantFactory_get_instance() reset the log verbosity to
OSAPI_LOGKIND_ERROR. This caused calls to OSAPI_Log_set_verbosity() for verbos-
ity not equal OSAPI_LOGKIND_ERROR to be ineffective when called before the first
DDS_DomainParticipantFactory_get_instance().

[RTI Issue ID MICRO-820]

5.15 Waitset’s Wait may have Incorrectly Timed Out when Listener also
Installed

Given a DataReader and a DDS status handled by both the DataReaderListener and a
Waitset, the Waitset's wait operation may not have correctly woken up, resulting in a
timeout. For example, having DDS_DATA_AVAILABLE_STATUS handled by both the
listener's on_data_available callback and as an enabled status of a StatusCondition
attached to a Waitset could have resulted in the Waitset waiting to timeout even though
data was actually available. As a workaround, you may have disabled the listener and
instead relied only on the Waitset. This workaround is no longer needed.

[RTI Issue ID MICRO-969]

5.16 Data not Received due to Samples not being Sent by all Transports

RTI Connext Micro supports two built-in transports: UDP and Intra, where Intra only
transports data between endpoints belonging to the same DomainParticipant. With both
transports enabled (which is the default setting), a bug introduced in Connext Micro
2.3.1 caused written samples to be sent over only one transport. This could result in
samples not being received by a remote DomainParticipant, where samples are sent
over Intra but not over UDP.

[RTI Issue ID MICRO-866]
21

Release Notes for RTI Connext Micro
5.17 Static Endpoint Discovery Restrictively Required Unique Object IDs Across
All Remote Endpoints

When using static endpoint discovery (DPSE), RTI Connext Micro incorrectly enforced a
requirement that the object_id for statically asserted remote endpoints must be unique
across all remote endpoints, as opposed to just between remote endpoints within the
same participant. This restriction has been removed.

[RTI Issue ID MICRO-211]

5.18 Possible Non-Discovery or Non-Communication between Connext Micro
using DPSE and a Non-Micro Application

The participant discovery messages sent by a Connext Micro application using the
Dynamic-Participant Static-Endpoint (DPSE) discovery plugin contained an incorrect
value for the Built-in Endpoint Mask parameter. The bits of the mask indicate which
built-in discovery endpoints are enabled, and for DPSE the bits corresponding to the
participant built-in writer and reader were not set. This could cause other DDS imple-
mentations not to discover, communicate, or correctly update statuses with Connext
Micro using DPSE. This problem has been fixed in this release.

[RTI Issue ID MICRO-974]

6 Known Issues

6.1 Incomplete Documentation for non-DDS APIs

RTI Connext Micro does not yet provide documentation for all non-DDS modules. The
internal modules missing documentation include the run-time (RT), the writer and
reader history queues (wh_sm, rh_sm), RTPS, and NETIO.

6.2 C++ APIs Not Supported for Android Platform

The Android platform (armv7leAndroidR8Dgcc4.7) does not support C++ APIs in this
release.
22

6 Known Issues
6.3 Waitset’s Wait May Return Same Condition More Than Once For a Single
Triggering Event

When a Condition attached to a Waitset is triggered, it should be returned by a follow-
ing call to that Waitset’s wait(), as long as it is not reset. However, due to a race condi-
tion between a Waitset and its attached Conditions, the same Condition may be
returned by two successive calls to wait(). Even though the Condition was unnecessar-
ily returned again, if inspected the Condition’s trigger value would be correctly seen as
inactive.

6.4 Waitset Delete Not Safe For Concurrent Use

A Waitset’s delete() operation is not safe for concurrent use when other threads may be
calling any operations of the Waitset. In general, access to a WaitSet should be guaran-
teed to have ceased before its delete() operation is called.
23

Release Notes for RTI Connext Micro
24

	Contents
	Release Notes for RTI Connext Micro
	1 Supported Operating Systems and Compilers
	2 Installing RTI Connext Micro
	2.1 Installing on a Windows System
	2.2 Installing on a UNIX-Based System
	2.3 Unpacking Buildable Source

	3 RTI Connext Micro Features
	3.1 Modular Architecture
	3.2 Buildable Source Code
	3.3 Type-Support Code Generation
	3.4 Static and Dynamic Endpoint Discovery
	3.5 User Documentation
	3.6 Code Examples
	3.7 Interoperability and Compatibility

	4 New Features in 2.4.1
	4.1 New -micro option for rtiddsgen
	4.2 New language options for generating code for RTI Connext Micro using rtiddsgen
	4.3 CMake Configuration for Buildable Source
	4.4 DDS_WaitSet and DDS_Condition APIs For C++
	4.5 New HelloWorld_dpde_waitset Example
	4.6 Access to Status of DDS Entities by C++ APIs
	4.7 Improved support for listeners of DDS entities in C++ API
	4.8 New Operations FooTypeSupport_register/unregister_type for User Data- Types
	4.9 Sample Info Provided With DataReaderListener's Sample Filter Callback
	4.10 More Information Provided in DDS_SampleLostStatus Type

	5 What’s Fixed in 2.4.1
	5.1 Full Support of -namespace Option for rtiddsgen
	5.2 Redundant Code Not Generated for Non Top-Level Types
	5.3 Setting Real-Time Clock for VxWorks Platform
	5.4 IDL Copy Directives Now Supported by rtiddsgen
	5.5 Incompatible Encoding of DDS_Duration_t with RTI Connext DDS
	5.6 Premature Wakeup from Semaphore Take for POSIX Platforms
	5.7 Failed Compilation of C++ Generated Code from rtiddsgen
	5.8 DDS_Topic_get_inconsistent_topic_status in C API
	5.9 DDS_StatusCondition's Trigger Value Not Updated When DDS_DATA_AVAILABLE_STATUS Is Reset
	5.10 DDS_WaitSet_get_conditions Supported by C API
	5.11 Reliable, Keep-Last DataReader May Stop Receiving Samples
	5.12 Memory Dynamically Allocated By DPSE After Initialization
	5.13 Application Crashed When Looking Up DomainParticipant
	5.14 Setting Log Verbosity May Have Been Ineffective
	5.15 Waitset’s Wait may have Incorrectly Timed Out when Listener also Installed
	5.16 Data not Received due to Samples not being Sent by all Transports
	5.17 Static Endpoint Discovery Restrictively Required Unique Object IDs Across All Remote Endpoints
	5.18 Possible Non-Discovery or Non-Communication between Connext Micro using DPSE and a Non-Micro Application

	6 Known Issues
	6.1 Incomplete Documentation for non-DDS APIs
	6.2 C++ APIs Not Supported for Android Platform
	6.3 Waitset’s Wait May Return Same Condition More Than Once For a Single Triggering Event
	6.4 Waitset Delete Not Safe For Concurrent Use

