
RTI Connext Micro
User’s Manual

Version 2.4.14.2

Contents

1 Introduction 2
1.1 What is RTI Connext Micro? . 2

1.1.1 RTI Connext Cert versus RTI Connext Micro 3
1.1.2 Optional Certification Package . 3
1.1.3 Publish-Subscribe Middleware . 3

1.2 Supported DDS Features . 3
1.2.1 DDS Entity Support . 4
1.2.2 DDS QoS Policy Support . 4

1.3 Standards and Interoperability . 5
1.3.1 DDS Wire Compatibility . 5
1.3.2 Profile / Feature . 5
1.3.3 DDS API Support . 7

1.4 RTI Connext DDS Documentation . 7
1.5 OMG DDS Specification . 8
1.6 Other Products . 8

2 Installation 10
2.1 Installing RTI Connext Micro . 10

2.1.1 Installing the Connext Micro package . 10
2.1.2 Installing Connext Micro from Connext Drive 11

2.2 Setting Up Your Environment . 11
2.2.1 Compiler Preprocessor Defines . 11
2.2.2 Compiler Header Files Path . 12
2.2.3 Libraries . 12

2.3 Building Connext Micro . 12

3 Getting Started 14
3.1 Define a Data Type . 14
3.2 Generate Type Support Code with rtiddsgen . 14
3.3 Configure UDP Transport . 16
3.4 Create DomainParticipant, Topic, and Type . 17

3.4.1 Register Type . 19
3.4.2 Create Topic of Registered Type . 19
3.4.3 DPSE Discovery: Assert Remote Participant 19

3.5 Create Publisher . 20
3.6 Create DataWriter . 20

3.6.1 DPSE Discovery: Assert Remote Subscription 21

i

3.6.2 Writing Samples . 22
3.7 Create Subscriber . 23
3.8 Create DataReader . 23

3.8.1 DPSE Discovery: Assert Remote Publication 25
3.8.2 Receiving Samples . 26
3.8.3 Filtering Samples . 28

3.9 Examples . 29
3.10 Example Generation . 29

3.10.1 Description of Examples . 30
3.10.2 How to Compile the Generated Examples 31
3.10.3 How to Run the Generated Examples . 32

4 User’s Manual 34
4.1 Initializing the Connext Micro Library . 34

4.1.1 rtiddsgen . 35
4.1.2 The Connext Micro System API . 36
4.1.3 Component Registration . 36

4.2 Data Types . 37
4.2.1 Introduction to the Type System . 38

Sequences . 39
Strings and Wide Strings . 40

4.2.2 Creating User Data Types with IDL . 42
4.2.3 Working with DDS Data Samples . 42

4.3 DDS Entities . 43
4.4 Sending Data . 44

4.4.1 Preview: Steps to Sending Data . 44
4.4.2 Publishers . 45
4.4.3 DataWriters . 45
4.4.4 Publisher QosPolicies . 46
4.4.5 DataWriter QosPolicies . 46

4.5 Receiving Data . 46
4.5.1 Preview: Steps to Receiving Data . 46
4.5.2 Subscribers . 48
4.5.3 DataReaders . 49
4.5.4 Using DataReaders to Access Data (Read & Take) 49
4.5.5 Subscriber QosPolicies . 49
4.5.6 DataReader QosPolicies . 49

4.6 DDS Domains . 49
4.6.1 Fundamentals of DDS Domains and DomainParticipants 49
4.6.2 Discovery Announcements . 51

4.7 Transports . 52
4.7.1 Introduction . 52
4.7.2 Transport Limits . 53

IDL Data Types and Size . 53
Maximum Transmission Unit (MTU) . 53
Maximum Receive Unit (MRU) . 53

4.7.3 Transport Registration . 54
4.7.4 Transport Addresses . 55

ii

Reserving Addresses and Ports . 55
Address Limitations . 56
Address Notation . 56

4.7.5 RTPS . 57
Registration of RTPS . 57
Overriding the Builtin RTPS Checksum Functions 58
Example . 59

4.7.6 INTRA Transport . 61
Registering the INTRA Transport . 62
Reliability and Durability . 62
Threading Model . 62

4.7.7 UDP Transport . 63
Registering the UDP Transport . 63
Threading Model . 65
UDP Configuration . 66
UDP Transformations . 70

4.8 Discovery . 99
4.8.1 What is Discovery? . 99

Simple Participant Discovery . 100
Simple Endpoint Discovery . 100

4.8.2 Configuring Participant Discovery Peers . 101
The Peer Address . 101

4.8.3 Configuring Initial Peers and Adding Peers 103
4.8.4 Configuring Discovery Data Reception . 103
4.8.5 Configuring User Data Reception . 104
4.8.6 Configuring User Data Reception per DataReader or DataWriter 106
4.8.7 Discovery Plugins . 106

Dynamic Discovery Plugin . 106
Static Discovery Plugin . 106

4.8.8 Asymmetric Matching and Lost Samples . 109
4.9 Configuring Resource Limits . 109

4.9.1 Introduction . 109
4.9.2 Resource Limits . 109

DomainParticipantFactoryQos . 110
DomainParticipantQos . 110
DataReaderQos . 110
DataWriterQos . 110
UDP Transport . 110
Dynamic Participant Static Endpoint (DPSE) 110
Dynamic Participant Dynamic Endpoint (DPDE) 110
Memory Map . 111

4.9.3 Dynamic Memory Allocation . 112
4.9.4 Internal Resource Allocation . 112

4.10 Generating Type Support with rtiddsgen . 113
4.10.1 Why Use rtiddsgen? . 113
4.10.2 IDL Type Definition . 113
4.10.3 Generating Type Support . 114

C . 114

iii

C++ . 114
Notes on Command-Line Options . 114
Generated Type Support Files . 115

4.10.4 Using custom data-types in Connext Micro Applications 115
4.10.5 Customizing generated code . 116
4.10.6 Unsupported Features of rtiddsgen with Connext Micro 116

4.11 Threading Model . 116
4.11.1 Introduction . 116
4.11.2 Architectural Overview . 117
4.11.3 Threading Model . 117

OSAPI Threads . 117
UDP Transport Threads . 118
General Thread Configuration . 119

4.11.4 Thread-Safety . 120
Calling DDS APIs from listeners and callbacks 120
Calling DDS APIs from a type-plugin . 121

4.12 Batching . 121
4.12.1 Overview . 121
4.12.2 Interoperability . 122
4.12.3 Performance . 122
4.12.4 Example Configuration . 122

4.13 Message Integrity Checking . 123
4.13.1 RTPS Checksum . 124
4.13.2 Configurations . 124

Selecting a checksum algorithm . 124
Configuring the DDS DomainParticipant . 125

4.13.3 Participant Discovery and Participant Compatibility 126
4.13.4 Interoperability with Connext Professional 126

4.14 Working With Sequences . 127
4.14.1 Introduction . 127
4.14.2 Working with Sequences . 127

Overview . 127
Working with IDL Sequences . 128
Working with Application Defined Sequences 130

4.15 Debugging . 131
4.15.1 Overview . 131
4.15.2 Configuring Logging . 132
4.15.3 Log Message Kinds . 133
4.15.4 Interpreting Log Messages and Error Codes 133

4.16 Connext Micro Hardcoded Resource Limits . 134
4.16.1 Introduction . 134
4.16.2 Summary . 134
4.16.3 Operating Services API (OSAPI) . 135
4.16.4 DDS C API . 135
4.16.5 Dynamic Discovery Plugin (DPDE) . 136
4.16.6 Static Discovery Plugin (DPSE) . 136
4.16.7 RTPS Protocol Implementation (RTPS) . 136

4.17 Building Against FACE Conformance Libraries . 137

iv

4.17.1 Requirements . 137
Connext Micro Source Code . 137
FACE Conformance Tools . 137
CMake . 137

4.17.2 FACE Golden Libraries . 137
Building the FACE Golden Libraries . 137

4.17.3 Building the Connext Micro Source . 137

5 Building and Porting Connext Micro 140
5.1 RTI Connext Micro Platforms . 140

5.1.1 Reference Platforms . 140
5.1.2 Known Customer Platforms . 141

5.2 Building the Connext Micro Source . 141
5.2.1 Introduction . 141
5.2.2 The Host and Target Environment . 142

The Host Environment . 142
The Target Environment . 143

5.2.3 Overview of the Connext Micro Source . 143
Directory Structure . 144

5.2.4 Compiling Connext Micro . 145
Building Connext Micro with rtime-make . 145
Manually Building with CMake . 146

5.2.5 Connext Micro Compile Options . 150
Connext Micro Debug Information . 150
Connext Micro Platform Selection . 151
Connext Micro Compiler Selection . 151
Connext Micro UDP Options . 152

5.2.6 Cross-Compiling Connext Micro . 152
5.2.7 Custom Build Environments . 153

Importing the Connext Micro Code . 153
5.3 Connext Micro for QNX . 154

5.3.1 Introduction . 154
5.3.2 QNX Platform Notes . 154

Heap . 154
Mutex . 155
Semaphores . 155
Timers . 155
Time . 156
Threads . 156
Sockets . 157

5.3.3 OS Resource Usage . 157
5.3.4 Build environment . 157
5.3.5 Compiling with rtime-make . 158

5.4 Building the Connext Micro Source for FreeRTOS 158
5.4.1 Introduction . 158
5.4.2 Overview . 158
5.4.3 Configuration . 159
5.4.4 CMake Support . 164

v

5.5 Building the Connext Micro Source for ThreadX . 164
5.5.1 Introduction . 164
5.5.2 Overview . 165
5.5.3 Configuration . 165
5.5.4 CMake Support . 165

5.6 Connext Micro on AUTOSAR . 166
5.6.1 Introduction . 166
5.6.2 AUTOSAR Configuration . 166

Properties . 166
Tasks . 168
Critical Sections . 170
TCP/IP Configuration . 172
Events . 173
Semaphores . 173
Memory . 174

5.6.3 AUTOSAR Port Details . 175
Logging . 175
WaitSets . 175
UDP Automatic Configuration . 176

5.6.4 Compiling . 176
Building Connext Micro with rtime-make . 176
Importing the Connext Micro Source Code 177

5.6.5 Interoperability . 177
5.6.6 Compiling Applications . 178

5.7 Porting RTI Connext Micro . 178
5.7.1 Updating from Connext Micro 2.4.8 and earlier 178
5.7.2 Directory Structure . 179
5.7.3 OS and CC Definition Files . 180
5.7.4 Heap Porting Guide . 181
5.7.5 Mutex Porting Guide . 181
5.7.6 Semaphore Porting Guide . 181
5.7.7 Process Porting Guide . 182
5.7.8 System Porting Guide . 182

Migrating a 2.2.x port to 2.3.x . 183
5.7.9 Thread Porting Guide . 184

5.8 Port Validation . 184
5.8.1 Introduction . 184
5.8.2 Overview . 184
5.8.3 Building the Port Validation Tests . 185

Building with rtime-make . 186
Manually building with CMake . 186
Custom Build Environments . 186

5.8.4 Running the Tests . 187
Setting Up a Config File . 187
Running the tests using a configuration file 188
Test Results . 189
Troubleshooting . 190

5.8.5 Embedded Platforms . 191

vi

AUTOSAR Systems . 191
FreeRTOS Systems . 193

5.8.6 Porting UTEST . 194
5.9 Building Connext Micro with compatibility for Connext Cert 195

6 Working with RTI Connext Micro and RTI Connext 197
6.1 Development Environment . 197
6.2 Non-standard APIs . 198
6.3 QoS Policies . 198
6.4 Standard APIs . 198
6.5 IDL Files . 198
6.6 Interoperability . 198

6.6.1 Discovery . 198
6.6.2 Transports . 199

6.7 Connext Tools . 199
6.7.1 Admin Console . 199
6.7.2 Distributed Logger . 200
6.7.3 LabVIEW . 200
6.7.4 Monitor . 200
6.7.5 Recording Service . 200

RTI Recorder . 200
RTI Replay . 201
RTI Converter . 201

6.7.6 Wireshark . 201
6.7.7 Persistence Service . 201

7 API Reference 202

8 Release Notes 203
8.1 Supported Platforms and Programming Languages 203
8.2 What’s New in 2.4.14.2 . 204

8.2.1 New multicast feature available on AUTOSAR platforms 204
8.3 What’s Fixed in 2.4.14.2 . 204

8.3.1 DataReader on a Topic using an appendable type may receive samples with
incorrect value . 204

8.3.2 Building for FreeRTOS failed when using RTIME_CERT flag 205
8.3.3 Potential segmentation fault while creating entities 205
8.3.4 Incorrect generated code when using IDL whose name starts with a number 205
8.3.5 Code Generator could not parse a file preprocessed with GCC 11 205
8.3.6 Race condition and memory corruption in logger 205
8.3.7 Generated example CMakeLists.txt required -udp_intf option to be specified206

8.4 Previous Releases . 206
8.4.1 What’s New in 2.4.14.1 . 206

Important Interoperability Changes . 206
8.4.2 What’s Fixed in 2.4.14.1 . 206

Invalid samples in batched data did not count as ‘lost samples’ 206
Local variables in header file may have caused compiler warning 206
Non-default timer resolutions may have caused an incorrect timeout 207

vii

Missing checks for max_routes_per_reader and max_routes_per_writer . . 207
Missing NULL checks for enabled_transports 207
Possible exception due to misaligned RTPS header 207
DDS_SubscriptionBuiltinTopicData_copy did not copy the Presentation-

QosPolicy . 208
Possible failure to start timer . 208
Sample timestamp now set to 0 if timestamp cannot be retrieved 208
Qos_copy functions did not validate input arguments 208
Unused parameter DOMAIN_PARTICIPANT_RESOURCE_LIM-

ITS.matching_reader_writer_pair_allocation removed 208
DDS_DomainParticpant_add_peer may have returned success on failure . . 209
DDS_StringSeq_copy did not validate input arguments 209
Memory leak in C++ classes for builtin topic data types and certain QoSes . 209
Possible NULL pointer exception in generated code if the system was out of

memory . 209
A DataWriter could run out of resources if sample was not added to cache . . 209
Missing source code files . 210
Possible serialization beyond stream buffer 210
RELIABILITY.max_blocking_time must be zero 210
Possible DataReader or DataWriter creation failure with multiple Domain-

Participants . 210
Incorrect lease_duration may have been used for a discovered participant . . 211
Missing consistency check for DESTINATION_ORDER.source_times-

tamp_tolerance . 211
Improved error detection for unresolved addresses 211
DDS_StatusCondition_set_enabled_statuses did not trigger if an active con-

dition was enabled . 211
Race condition in DDS enable APIs . 211
DDS WaitSet may have timed out later than timeout value 212
SYSTEM_RESOURCE_LIMITS.max_components QoS policy cannot be

changed . 212
Incorrect heartbeat sent before first sample when first_write_se-

quence_number is not 1 . 212
Robustness check added to verify that participant GUIDs are unique within

a DomainParticipantFactory . 212
DDS_Entity_enable was not thread-safe for a DomainParticipant 212
Missing input verification for API functions 213
Incorrect return values from REDA_String 213
Incorrect return values from QoS APIs . 213
DDS_Wstring_cmp did not match the implementation name

DDS_Wstring_compare . 213
Race condition during participant discovery 214
A DataWriter with BEST_EFFORT and TRANSIENT_LOCAL may run

out of resources . 214
Connext Micro may have repeated requesting a sample that was no longer

available from a DataWriter . 214
DDS_Subscriber_lookup_datareader may return a DataReader that was

created by a different Subscriber . 214

viii

DDS_Publisher_lookup_datawriter may return a DataWriter that was cre-
ated by a different Publisher . 215

A reliable DataWriter may ignore requests to resend samples 215
Compiler warning due to reliance on deprecated implicit copy constructor for

C++ . 215
RTPS message may have been rejected . 215
Warning about hostname not supported in posixSystem.c 216
False positive compiler warning . 216

8.4.3 What’s New in 2.4.14 . 216
Important Interoperability Changes . 216
DataWriter’s Default Reliability Changed to Reliable 216
Support for AUTOSAR Classic . 216
Support for detecting corrupted RTPS messages 216
Port Validation for Connext Micro . 217
New Documentation on Compiling Connext Micro for Connext Cert Com-

patibility . 217
ThreadX CMake Files and New Documentation on Building Connext Micro

for ThreadX + NetX . 217
Updated Example CMakeLists.txt to Automatically Regenerate Code when

IDL or XML File Changes . 217
Message Logged when Samples Received Out of Order 217
Message Logged when Sequence Numbers Received More than Once 218
Ability to Send Logs over UDP . 218
rtime-make Provides Help for a Specific Target 218
FreeRTOS CMake Files . 218
Improved Documentation on Building Connext Micro for AUTOSAR Systems 218
Examples Used Undocumented APIs . 218
New CMake Option to Enable Real-Time Timers on QNX and Linux Systems218
New -showTemplates and -exampleTemplate options for Code Generator . . . 219
Dynamic memory allocations removed from Dynamic Discovery Plugin 219
Reduced default socket send/receive buffer size for QNX systems 220

8.4.4 What’s Fixed in 2.4.14 . 220
Small Enums Caused Serialization Errors . 220
-Wcast-function-type and -Wdeprecated Compiler Warnings 220
Documentation did not list all Entities that Support Transport QosPolicy . . 220
Generated Examples Registered Wrong Type Name 221
For C++ Types Generated by rtiddsgen that have Inheritance, the ParentC-

class was also Declared in the Class as Another Member 221
DomainParticipant not Rediscovered if Terminated and Restarted Before its

Lease Duration Expired . 222
OSAPI_Log_clear did not Zero Out Log Buffer Memory 222
Error in Generated C/C++ Code when Two Members of Different Enumer-

ations had Same Name . 222
Incorrect Documentation Regarding Changeability of QoS 225
Unexpected Behavior when Copying a DDS_UnsignedShortSeq with 0 Length226
Incorrect Range Documented for DDS_ResourceLimitsQosPolicy.max_samples226
Wrong Compiler Option for AUTOSAR Elektrobit Platform caused ‘double’

to Compile as 4 Bytes instead of 8 226

ix

Log Message with Random Characters Printed 226
Event Masks of Semaphores in AUTOSAR Port were Calculated Incorrectly . 227
PUBLICATION_MATCHED_STATUS and SUBSCRIP-

TION_MATCHED_STATUS may never have triggered a WaitSet
if the status was enabled after the DomainParticipant was enabled . 227

Unicast DataReader stopped receiving samples after DataWriter matched
with a multicast DataReader . 227

A RTPS max_window_size not divisible by 32 may have resulted in retrans-
mission of wrong sequence number 227

POSIX mutex implementation did not conform with FACE Safety Profile . . 228
Waitset with timeout of 0 did not return immediately 228
For AUTOSAR the IP address is now used to generate a unique DomainPar-

ticipant ID . 228
8.4.5 What’s New in 2.4.12 . 228

Shared UDP port for discovery and user-data in a DomainParticipant 228
DomainParticipants no longer allocate dynamic memory during deletion . . . 228
New QoS parameter to set maximum outstanding samples allowed for remote

DataWriter . 229
New QoS parameter to adjust preemptive ACKNACK period 229
Deserialization of Presentation QoS policy . 229

8.4.6 What’s Fixed in 2.4.12 . 229
Examples used DomainParticipant_register_type instead of FooTypeSup-

port_register_type . 229
A DataReader and DataWriter with incompatible liveliness kind and infinite

lease_duration matched . 229
Warning at compilation time for FreeRTOS port 230
Using DDS_NOT_ALIVE_INSTANCE_STATE caused compilation error

in C and C++ . 230
Seq_copy() did not work when the source sequence is a loaned/discontiguous

sequence . 230
Warnings when compiling the example generated by Code Generator 230
Unable to generate code for XML or XSD defined types 230
Linker error in C++ application when C types were used 231
Failure to link for VxWorks RTP using shared libraries compiled with CMake 231
rtiddsgen may have failed on Windows systems when -jre was specified 231
rtime-make did not work when it was started from different shell than Bash . 231
Linker error when using shared libraries on VxWorks systems 231
A run-time error may have occurred on Windows or when compiling for FACE

when using hostnames in the peer list 231
Entity ID generation was not thread-safe . 232
DomainParticipant creation failed if active interface had invalid IP 232
rtime-make did not work when there was a space in the installation path . . 232
Sample filtering methods were always added to the subscriber code for C . . 232
‘Failure to give mutex’ error . 232
UDP interface warning using valid interfaces 232
A DataReader May Stop Receiving Samples When Filtering Callbacks Are

Used . 233

x

DDS_WaitSet_wait() returned DDS_RETCODE_ERROR if unblocked
with no active conditions . 233

Large timeout values may have caused segmentation fault 233
HelloWorld_dpde_waitset C++ example uses wrong loop variable for print-

ing data . 233
WaitSet_wait returned generic error when returned condition sequence ex-

ceeded capacity . 233
Publication handle not set in SampleInfo structure when on_before_sam-

ple_commit() called . 234
Duplicate DATA messages are sent to multicast in some cases 234
GUID generation on QNX for processes run one after another may lead to

duplicate GUIDs . 234
Read/take APIs returned more than depth samples if an instance returned

to alive without application reading NOT_ALIVE sample 234
Segmentation fault if OSAPI_Semaphore_give() was called from one thread

while another called OSAPI_Semaphore_delete() 234
Communication problems between Connext DDS Professional 6 and Connext

DDS Micro 2.4.11 . 235
OSAPI_System_get_ticktime() not implemented for FreeRTOS 235

8.4.7 What’s New in 2.4.11 . 235
Support for ThreadX/NetX . 235
Batching (reception only) . 235
UDP Transformations . 235
Optionally exclude builtin UDP Transport from compilation 235
Publication handle of DataWriter now provided upon DataReaderListener

sample loss . 236
DataWriters offer TOPIC presentation . 236
New warning if a configured UDP transport does not have any interface . . . 236

8.4.8 What’s Fixed in 2.4.11 . 236
MICRO-1814 Incorrect thread ID returned for VxWorks RTP 236
NULL listener and non-empty status mask not allowed for C++ DataReader 236
accept_unknown_peers did not work when Shared Memory transport was

enabled in RTI Connext DDS Pro 237
Calling FooSeq_set_maximum() repeatedly with the same maximum size

results in seg-fault . 237
CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used 237
OS error code (errno) not logged if sendto() returned error 237
Codegen might generate an incorrect pub/sub example if opction “-create

typefiles” is not used . 237
Generated examples use always the last structure in the idl 238
Instance might not have been disposed or unregistered under some conditions 238
Reliable Endpoints with only multicast locators may not communicate 238
Access to DDSEntity instance handles from C++ API 238
Syntax changed for initial peer participant index range 238
lookup_instance() is not thread safe . 239
CMakeLists.txt and README.txt created when they should not 239
No communication when DomainParticipant used same GUID as another

DomainParticipant in different domain 239

xi

Compiler error might happen when lwIP is used 239
Wrong C++ code generated for unkeyed types when using IDL modules and

-namespace option . 240
DDS_WaitSet_wait does not work if OSAPI_Semaphore_take() returns an

error . 240
Log buffer could overflow on 64-bit architectures, causing application crash . 240
Fix API realloc in Windows OSAPI . 240
New samples for an instance may not be received if an instance goes back to

ALIVE when using read() . 240
INTRA transport caused subscription matches to use additional resources . . 241
Resolved memory leak in class RTRegistry 241
Windows Debug DLLs are built without debug information 241
Use hardcoded build ID when not compiling with CMake 241
Example makefiles do not support 64bit compilation 241
Compilation error might happen when code is generated using option

-namespace . 242
8.4.9 What’s New in 2.4.10.4 . 242

Batching (reception only) . 242
C++ examples . 242

8.4.10 What’s Fixed in 2.4.10.4 . 242
Improve KEEP_LAST . 242
Locator might be duplicated when NAT is configured 242
Segmentation fault might happen when a DataReader cannot be created . . . 243
CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used 243
Wrong TUDP locator kind sent when using UDP transformations 243
Compile shipped examples for a 64 bits architecture 243
OSAPI_Heap_realloc() Windows implementation fixed 243
Use API DDSDomainParticipant::delete_contained_entities() in C++ ex-

amples . 244
Memory leak in shipped examples fixed . 244
C++ shipped examples might release an object twice. 244

8.4.11 What’s New in 2.4.10.1 . 244
UDP Transformations . 244

8.4.12 What’s Fixed in 2.4.10.1 . 245
Race Condition when Log Buffer is Full and a Custom Log-handler is Installed245

8.4.13 What’s New in 2.4.10 . 245
Generate Example Application with rtiddsgen 245
BY_SOURCE_TIMESTAMP_DESTINATIONORDER Support on

DataWriter . 245
8.4.14 What’s Fixed in 2.4.10 . 246

Linker Warning for Missing PDB Files . 246
Linking with Dynamic Windows C Run-Time (CRT) 246
DDS_Publisher_create_datawriter() May Fail to Create a New Datawriter . 247
DataReader May Not Reclaim NOT_ALIVE Instances when DataWriter

Deleted or Liveliness Lost . 247
A Datawriter may fail to release instance resources if a peer is inactive while

the Participant liveliness expires . 247

xii

A Reliable DataWriter With max_samples_per_instance = 1 May Run Out
of Resources After Multiple Unregistrations of Single Instance . . . 247

Connext Micro Fails to Discover Endpoints created by Connext Core if the
Endpoints are Deleted or Modified 248

Incorrect Log Output in a Complete Log Message could not be Stored 248
Possible Segmentation Fault when Unregistering TRANSIENT_LOCAL In-

stance . 248
Support to map IDL modules to C++ namespaces in generated type-plugins 248
Possible Memory Access Violation when Receiving Malformed RTPS Message 249
In Some Cases an Incorrect Timeout Calculation Caused 100% CPU Load . . 249

8.4.15 What’s New in 2.4.9 . 249
Improved Support for adding new Ports . 249
Updated Build Environment to Build RTI Connext Micro 250
Example CMake Tool-chain Files for Cross-Compilation 250
Host Bundle without the Java RunTime Available 250
Support for 64-bit Platforms . 250
POSIX Compliance Improvements . 251
C++ Support for find_topic() . 251
Types Are Automatically Unregistered Upon Deleting Contained Entities . . 251

8.4.16 What’s Fixed in 2.4.9 . 252
Improved Documentation . 252
Losing Participant Liveliness Stops Communication 252
DDSTopic::narrow() Returned Incorrect Value in C++ 252
PRECONDITION_NOT_MET Returned by deleted_topic() When Topic

Is Not Use . 252
Instance Resources Not Reclaimed When Unregistered 253
Invalid Memory Read Reported in Log.c . 253
Unsupported Functions When Compiling With RTI_CERT Has Been Re-

moved From Generated Code . 253
The HelloWorld_cert Example Now Compiles When Linked Against a Li-

brary Built With RTI_CERT . 253
Hostnames Are No Longer Validated . 253
A Participant May Not Be Rediscovered In Case Of Asymmetric Liveliness

Loss . 254
A Non-keyed Endpoint Matches a Keyed Endpoint 254

8.4.17 What’s New in 2.4.8 . 254
8.4.18 What’s Fixed in 2.4.8 . 254

Consistent support for assignment operator in C++ 254
DPSE API renamed to avoid conflict with assert() 255

8.4.19 What’s New in 2.4.7 . 255
8.4.20 What’s Fixed in 2.4.7 . 255

Statuses are passed as pointers instead of references to DDSDomainPartici-
pantListeners . 255

Missing assignment operator = in RT_ComponentFactoryId 256
CMAKE_C_FLAGS_ORIGINAL in CMakeLists.txt misspelled 256
Missing const qualifier for the sequence [] operator 256
Missing primitive IDL sequences in C++ . 256

8.4.21 What’s New in 2.4.6 . 256

xiii

Important API Changes . 256
Run-time Memory Footprint Has Been Significantly Reduced 258
New FooTypeSupport operations . 258
All public C API now natively available to C++ users 258
Status data passed by reference to C++ listeners 258
TheParticipantFactory now available to C++ users 258
Status types now available in DDS:: C++ namespace 259
Foo::copy_data() takes const argument . 259
ConditionSeq added to C++ DDS namespace 259
First 2-Bytes Of GUID Assigned to Vendor ID 259

8.4.22 What’s Fixed in 2.4.6 . 259
POSIX Threads Were Created Without Names 259
Prerequisite for HelloWorld_android updated in README.txt 259
CPP/HelloWorld_dpde example does not overwrite RTIMEHOME 260
Transport Not Supporting Multicast Did Not Ignore Multicast 260
Discovery Messages Incorrectly Dropped When Containing Non-Standard Lo-

cators . 260
HEARTBEAT Not Sent in Response To Initial ACKNACK 260
Incorrect Return Code From DataReader’s Read or Take APIs When

Max_Outstanding_Reads Exceeded 261
DataReader Did Not Replace Historical Samples When max_sam-

ples_per_instance Equaled History Depth 261
A Disposed Instance Could Be Updated By A DataWriter That Is Not Its

Exclusive Owner . 261
Fixed code generation for user-defined enum constants. 262
Hostname is verified as specified in RFC-952 and RFC-1123 262
DDS_<Foo>Seq APIs Were Missing . 262
DataReader Could Reject All Subsequent Samples From a DataWriter 262
POSIX Thread Priorities Not Changeable . 262
RTPS DATA Submessages with K-flag Set Were Dropped 263

8.5 Known Issues . 263
8.5.1 AUTOSAR ErrorHook may create CPU overhead 263
8.5.2 Failure to interoperate with other DDS implementations if default multicast

locator specified . 263
8.5.3 Maximum number of components limited to 58 263
8.5.4 Endpoint discovery requires unique object IDs across all remote endpoints . 263
8.5.5 Compiler warnings on VxWorks . 264
8.5.6 OSAPI does not always detect endianess . 264

9 Benchmarks 265

10 Copyrights 266

11 Third-Party Software 268
11.1 Connext Micro Libraries . 268

11.1.1 crc32c.c . 268
11.1.2 MD5 . 269

11.2 Third-Party Software used by the RTIDDSGEN Code-Generation Utility 269

xiv

11.2.1 ANTLR . 269
11.2.2 Apache Commons Lang . 270
11.2.3 Apache Log4j 2 . 271
11.2.4 Apache Velocity . 271
11.2.5 AdoptOpenJDK JRE . 271
11.2.6 Gson . 271

11.3 Appendix – Open Source Software Licenses . 272
11.3.1 Apache License version 2.0, January 2004 (http://www.apache.org/licenses/)272
11.3.2 GNU GENERAL PUBLIC LICENSE Version 2, June 1991 276

12 Contact Support 284

13 Join the Community 285

xv

RTI Connext DDS Micro Documentation, Version 2.4.14.2

RTI® Connext® Micro provides a small-footprint, modular messaging solution for resource-limited
devices that have limited memory and CPU power, and may not even be running an operating
system. It provides the communications services that developers need to distribute time-critical
data. Additionally, Connext Micro is designed as a certifiable component in high-assurance systems.

Key benefits of Connext Micro include:

• Accommodations for resource-constrained environments.

• Modular and user extensible architecture.

• Designed to be a certifiable component for safety-critical systems.

• Seamless interoperability with RTI Connext Professional.

Contents 1

Chapter 1

Introduction

1.1 What is RTI Connext Micro?

RTI Connext Micro is network middleware for distributed real-time applications. It provides
the communications service programmers need to distribute time-critical data between embedded
and/or enterprise devices or nodes. Connext Micro uses the publish-subscribe communications
model to make data distribution efficient and robust. Connext Micro simplifies application devel-
opment, deployment and maintenance and provides fast, predictable distribution of time-critical
data over a variety of transport networks. With Connext Micro, you can:

• Perform complex one-to-many and many-to-many network communications.

• Customize application operation to meet various real-time, reliability, and quality-of-service
goals.

• Provide application-transparent fault tolerance and application robustness.

• Use a variety of transports.

Connext Micro implements the Data-Centric Publish-Subscribe (DCPS) API within the OMG’s
Data Distribution Service (DDS) for Real-Time Systems. DDS is the first standard developed for
the needs of real-time systems. DCPS provides an efficient way to transfer data in a distributed
system.

With Connext Micro, systems designers and programmers start with a fault-tolerant and flexible
communications infrastructure that will work over a wide variety of computer hardware, operating
systems, languages, and networking transport protocols. Connext Micro is highly configurable so
programmers can adapt it to meet the application’s specific communication requirements.

2

RTI Connext DDS Micro Documentation, Version 2.4.14.2

1.1.1 RTI Connext Cert versus RTI Connext Micro

RTI Connext Micro and RTI Connext Cert originate from the same source base, but as of Connext
Micro 2.4.6 the two are maintained as two independent releases. The latest release with certification
evidence is Connext Cert 2.4.5. However, features that exist in Connext Micro and Connext Cert
behave identically and the source code is written following identical guidelines. Connext Cert only
supports a subset of the features found in Connext Micro. In the API reference manuals, APIs that
are supported by Connext Cert are clearly marked.

1.1.2 Optional Certification Package

An optional Certification Package is available for systems that require certification to DO-178C or
other safety standards. This package includes the artifacts required by a certification authority.
The Certification Package is licensed separately from Connext DDS Cert.

To use an existing Certification Package, an application must be linked against the same libraries
included in the Certification Package. Contact RTI Support, support@rti.com, for details.

1.1.3 Publish-Subscribe Middleware

Connext Micro is based on a publish-subscribe communications model. Publish-subscribe (PS)
middleware provides a simple and intuitive way to distribute data. It decouples the software
that creates and sends data—the data publishers—from the software that receives and uses the
data—the data subscribers. Publishers simply declare their intent to send and then publish the
data. Subscribers declare their intent to receive, then the data is automatically delivered by the
middleware. Despite the simplicity of the model, PS middleware can handle complex patterns of
information flow. The use of PS middleware results in simpler, more modular distributed appli-
cations. Perhaps most importantly, PS middleware can automatically handle all network chores,
including connections, failures, and network changes, eliminating the need for user applications to
program of all those special <cases. What experienced network middleware developers know is
that handling special cases accounts for over 80% of the effort and code.

1.2 Supported DDS Features

Connext Micro supports a subset of the DDS DCPS standard. A brief overview of the supported
features are listed here. For a detailed list, please refer to the C API Reference and C++ API
Reference.

1.2. Supported DDS Features 3

mailto:support@rti.com
../../doc/api_c/html/index.html
../../doc/api_cpp/html/index.html
../../doc/api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

1.2.1 DDS Entity Support

Connext Micro supports the following DDS entities. Please refer to the documentation for details.

• DomainParticipantFactory

• DomainParticipant

• Topic

• Publisher

• Subscriber

• DataWriter

• DataReader

1.2.2 DDS QoS Policy Support

Connext Micro supports the following DDS Qos Policies. Please refer to the documentation for
details.

• DDS_DataReaderProtocolQosPolicy

• DDS_DataReaderResourceLimitsQosPolicy

• DDS_DataWriterProtocolQosPolicy

• DDS_DataWriterResourceLimitsQosPolicy

• DDS_DeadlineQosPolicy

• DDS_DiscoveryQosPolicy

• DDS_DomainParticipantResourceLimitsQosPolicy

• DDS_DurabilityQosPolicy

• DDS_DestinationOrderQosPolicy

• DDS_EntityFactoryQosPolicy

• DDS_HistoryQosPolicy

• DDS_LivelinessQosPolicy

• DDS_OwnershipQosPolicy

• DDS_OwnershipStrengthQosPolicy

• DDS_ReliabilityQosPolicy

• DDS_ResourceLimitsQosPolicy

• DDS_RtpsReliableWriterProtocol_t

• DDS_SystemResourceLimitsQosPolicy

• DDS_TransportQosPolicy

1.2. Supported DDS Features 4

../../doc/api_c/html/group__DDSDomainParticipantFactoryModule.html
../../doc/api_c/html/group__DDSDomainParticipantModule.html
../../doc/api_c/html/group__DDSTopicEntityModule.html
../../doc/api_c/html/group__DDSPublisherModule.html
../../doc/api_c/html/group__DDSSubscriberModule.html
../../doc/api_c/html/group__DDSWriterModule.html
../../doc/api_c/html/group__DDSReaderModule.html
../../doc/api_c/html/structDDS__DataReaderProtocolQosPolicy.html
../../doc/api_c/html/structDDS__DataReaderResourceLimitsQosPolicy.html
../../doc/api_c/html/structDDS__DataWriterProtocolQosPolicy.html
../../doc/api_c/html/structDDS__DataWriterResourceLimitsQosPolicy.html
../../doc/api_c/html/structDDS__DeadlineQosPolicy.html
../../doc/api_c/html/structDDS__DiscoveryQosPolicy.html
../../doc/api_c/html/structDDS__DomainParticipantResourceLimitsQosPolicy.html
../../doc/api_c/html/structDDS__DurabilityQosPolicy.html
../../doc/api_c/html/structDDS__DestinationOrderQosPolicy.html
../../doc/api_c/html/structDDS__EntityFactoryQosPolicy.html
../../doc/api_c/html/structDDS__HistoryQosPolicy.html
../../doc/api_c/html/structDDS__LivelinessQosPolicy.html
../../doc/api_c/html/structDDS__OwnershipQosPolicy.html
../../doc/api_c/html/structDDS__OwnershipStrengthQosPolicy.html
../../doc/api_c/html/structDDS__ReliabilityQosPolicy.html
../../doc/api_c/html/structDDS__ResourceLimitsQosPolicy.html
../../doc/api_c/html/structDDS__RtpsReliableWriterProtocol__t.html
../../doc/api_c/html/structDDS__SystemResourceLimitsQosPolicy.html
../../doc/api_c/html/structDDS__TransportQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• DDS_UserTrafficQosPolicy

• DDS_WireProtocolQosPolicy

1.3 Standards and Interoperability

Connext Micro implements the Object Management Group (OMG) Data Distribution Service
(DDS) standard (version 1.4), and the Real-Time Publish-Subscribe (RTPS) wire interoperabilty
protocol standard (version 2.2).

Connext Micro supports a subset of the submessages defined by the Real-Time Publish-Subscribe
(RTPS) interoperability specification. Data fragment submessages are not supported. The messages
are compatible with Wireshark and its RTPS packet dissector.

Connext Micro, RTI Connext Micro, and Connext are wire-interoperable, unless stated otherwise
(see below), and API compatible for APIs specified by the DDS standard. For non-standard APIs,
Connext Micro, RTI Connext Micro, and Connext are incompatible. Please refer to Working with
RTI Connext Micro and RTI Connext for more information.

1.3.1 DDS Wire Compatibility

Connext Micro is compliant with RTPS 2.2, but does not support and ignore the following RTPS
sub-messages:

Submessage Supported DDS Standard Connext DDS Core
DATA_FRAG No Yes Yes
NACK_FRAG No Yes Yes
HEARTBEAT_FRAG No Yes No
INFO_SRC No Yes Yes
INFO_REPLY No Yes Yes
INFO_REPLY_IPV4 No Yes Yes

1.3.2 Profile / Feature

Connext Micro does not support mutable Qos policies.

Submessage Supported DDS Standard Connext DDS Core
USER_DATA No Yes Yes
TOPIC_DATA No Yes Yes
DURABILITY Partially (1) Yes Yes
PRESENTATION Partially (2) Yes Yes
DEADLINE Yes Yes Yes
LATENCY_BUDGET No Yes Yes
LIVELINESS Partially (3) Yes Yes

continues on next page

1.3. Standards and Interoperability 5

../../doc/api_c/html/structDDS__UserTrafficQosPolicy.html
../../doc/api_c/html/structDDS__WireProtocolQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Table 1.1 – continued from previous page
Submessage Supported DDS Standard Connext DDS Core
TIME_BASED_FILTER No Yes Yes
PARTITION No Yes Yes
RELIABILITY Yes (4) Yes Yes
TRANSPORT_PRIORITY No Yes Yes
LIFESPAN No Yes Yes
DESTINATION_ORDER Partially (5) Yes Yes
HISTORY Partially (6) Yes Yes
RESOURCE_LIMITS Yes (7) Yes Yes
ENTITY_FACTORY Yes Yes Yes
WRITER_DATA_LIFECYCLE No Yes Yes
READER_DATA_LIFECYCLE No Yes Yes
OWNERSHIP Yes Yes Yes
OWNERSHIP_STRENGTH Yes Yes Yes
DURABILITY_SERVICE No Yes Yes
ContentFilteredTopic No Yes Yes
QueryCondition No Yes Yes
MultiTopic No Yes No
ASYNCHRONOUS_PUBLISHER No No Yes
AVAILABILITY No No Yes
BATCH Only reception No Yes
DATA_READER_PROTOCOL rtps_object_id No Yes
DATA_WRITER_PROTOCOL Partially (8) No Yes
DISCOVERY Yes No Yes
DISCOVERY_CONFIG No No Yes
ENTITY_NAME Partially (9) No Yes
EVENT No No Yes
LOCATORFILTER No No Yes
LOGGING No No Yes
MULTICHANNEL No No Yes
PROPERTY No No Yes
PUBLISH_MODE No No Yes
RECEIVER_POOL No No Yes
SERVICE No No Yes
TYPE_CONSISTENCY_ENFORCEMENT No No Yes
TYPESUPPORT Yes No Yes
WIRE_PROTOCOL Yes No Yes

NOTES:

1. VOLATILE and TRANSIENT_LOCAL

2. No, DW offers access_scope = TOPIC, coherent_access = FALSE and ordered_access =
TRUE DR requests access_scope = INSTANCE, coherent_access = FALSE and ordered_ac-
cess = FALSE

3. AUTOMATIC (infinite only), MANUAL_BY_PARTICIPANT (infinite only), MAN-

1.3. Standards and Interoperability 6

RTI Connext DDS Micro Documentation, Version 2.4.14.2

UAL_BY_TOPIC (finite and infinite)

4. BEST_EFFORT and RELIABLE, only max_blocking_time=0

5. DataWriter: Yes, DataReader only supports BY_RECEPTION_TIMESTAMP

6. Only KEEP_LAST

7. Only finite resource limits

8. The following are supported:

• heartbeat_period

• heartbeats_per_max_samples

• max_heartbeat_retries

• max_send_window_size

• rtps_object_id

9. DomainParticipant only

1.3.3 DDS API Support

For supported APIs, please refer to:

• C API Reference

• C++ API Reference

1.4 RTI Connext DDS Documentation

Throughout this document, we may suggest reading sections in other RTI Connext DDS
documents. These documents are in your RTI Connext DDS installation directory under
rti-connext-dds-<version>/doc/manuals. A quick way to find them is from RTI Launcher’s
Help panel, select “Browse Connext Documentation”.

Since installation directories vary per user, links are not provided to these documents on your local
machine. However, we do provide links to documents on the RTI Documentation site for users with
Internet access.

New users can start by reading Parts 1 (Introduction) and 2 (Core Concepts) in the RTI Connext
DDS Core Libraries User’s Manual. These sections teach basic DDS concepts applicable to all RTI
middleware, including RTI Connext Professional and RTI Connext Micro. You can open the RTI
Connext DDS Core Libraries User’s Manual from RTI Launcher’s Help panel.

The RTI Community provides many resources for users of DDS and the RTI Connext family of
products.

1.4. RTI Connext DDS Documentation 7

../../doc/api_c/html/index.html
../../doc/api_cpp/html/index.html
https://community.rti.com/documentation
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

1.5 OMG DDS Specification

For the original DDS reference, the OMG DDS specification can be found in the OMG Specifications
under “Data Distribution Service”.

1.6 Other Products

RTI Connext Micro is one of several products in the RTI Connext family of products:

RTI Connext Cert is a subset of RTI Connext Micro. Connext Cert does not include the following
features because Certification Evidence is not yet available for them. If you require Certification
Evidence for any of these features, please contact RTI.

• C++ language API.

• Multi-platform support.

• Dynamic endpoint discovery.

• delete() APIs (e.g. delete_datareader()).

• Batching.

• UDP Transformations.

RTI Connext Professional addresses the sophisticated databus requirements in complex systems
including an API compliant with the Object Management Group (OMG) Data Distribution Service
(DDS) specification. DDS is the leading data-centric publish/subscribe (DCPS) messaging standard
for integrating distributed real-time applications. Connext Professional is the dominant industry
implementation with benefits including:

• OMG-compliant DDS API

• Advanced features to address complex systems

• Advanced Quality of Service (QoS) support

• Comprehensive platform and network transport support

• Seamless interoperability with rtime

RTI Connext Professional includes rich integration capabilities:

• Data transformation

• Integration support for standards including JMS, SQL databases, file, socket, Excel, OPC,
STANAG, LabVIEW, Web Services and more

• Ability for users to create custom integration adapters

• Optional integration with Oracle, MySQL and other relational databases

• Tools for visualizing, debugging and managing all systems in real-time

RTI Connext Professional also includes a rich set of tools to accelerate debugging and testing while
easing management of deployed systems. These components include:

1.5. OMG DDS Specification 8

https://www.omg.org/spec

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• Administration Console

• Distributed Logger

• Monitor

• Monitoring Library

• Recording Service

1.6. Other Products 9

Chapter 2

Installation

2.1 Installing RTI Connext Micro

RTI distributes Connext Micro with two different installation methods:

1. As a standalone package, rti_connext_dds_micro-<version>.zip, where <version>
matches the product version (such as 2.4.14.2). If you downloaded this package, please read
Installing the Connext Micro package.

2. As part of a Connext Drive installation. If you installed Connext Drive, please read Installing
Connext Micro from Connext Drive.

2.1.1 Installing the Connext Micro package

Once you unzip the package rti_connext_dds_micro-<version>.zip, you will create a directory
named rti_connext_dds_micro-<version>. This installation directory contains this documenta-
tion, the rtiddsgen code generation tool, and source code.

Connext Micro requires a Java Run-Time Environment (JRE) compatible with version 1.8.0_121 or
higher to run rtiddsgen. Please refer toGenerating Type Support with rtiddsgen for more information
about how to set up the JRE for use with rtiddsgen.

If a compatible JRE run-time environment is not already installed, you can install one from one of
the following bundles available from the RTI Customer Portal:

• rti_connext_dds_micro-<version>-jre-x64Darwin.zip: JRE for x64 Darwin

• rti_connext_dds_micro-<version>-jre-arm64Darwin.zip: JRE for arm64 Darwin

• rti_connext_dds_micro-<version>-jre-i86Win32.zip: JRE for i86 Windows

• rti_connext_dds_micro-<version>-jre-x64Linux.zip: JRE for x64 Linux

• rti_connext_dds_micro-<version>-jre-x64Win64.zip: JRE for x64 Windows

Note: If you already have a Connext Professional or Connext Drive installation, a compatible
JRE is available in:

10

https://support.rti.com/s/login/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

<Connext Drive or Connext Professional installation>/resource/app/jre

2.1.2 Installing Connext Micro from Connext Drive

When Connext Micro is installed as part of Connext Drive, no further installation is required.

In the Connext Drive installation directory you will see a directory named
rti_connext_dds_micro-<version>. This is the installation directory for Connext Micro
and contains this documentation, the rtiddsgen code generation tool, and source code.

Note: If you have an evaluation version of Connext Drive, the source code is not available.
Instead, you will see a lib directory with precompiled evaluation libraries.

rtiddsgen requires a JRE to run. The default JRE is included in the Connext Drive installation
under resource/app/jre. Please refer to Generating Type Support with rtiddsgen for more infor-
mation about how to set up the JRE for use with rtiddsgen.

Warning: We strongly recommend that you copy the Connext Micro installation directory
outside of the Connext Drive installation when building the source. It may not be desirable to
build Connext Micro libraries inside the Connext Drive directory due to patches, lack of write
access, or other factors.

2.2 Setting Up Your Environment

This section includes information regaring compiling and linking an application against Connext
Micro and how to set up an environment. Note that this section is generic and common for all
platforms; the platform notes section may include additional information relevant for a specific
platform.

The RTIMEHOME environment variable must be set to the installation directory path for RTI Connext
Micro.

2.2.1 Compiler Preprocessor Defines

All application code including Connext Micro header-files and all code generated with rtiddsgen
must be compiled with -DRTI_CERT=1 flag when using the Connext Micro CERT profile.

When compiling against release libraries the -DNDEBUG=1 flag must be added.

2.2. Setting Up Your Environment 11

RTI Connext DDS Micro Documentation, Version 2.4.14.2

2.2.2 Compiler Header Files Path

When compiling an application, the Connext Micro header files are located in the following directory
and the compiler’s include search path must include this directory:

RTIMEHOME/include

2.2.3 Libraries

The Connext Micro library comes in two different flavors:

• Release: Compiled without additional debug information.

• Debug: Compiled with additional debug information. Libraries with debug have a d suffix.

2.3 Building Connext Micro

This section is for users who are already familiar with CMake and may have built earlier versions
of Connext Micro. The sections following describe the process in detail and are recommended for
everyone building Connext Micro.

This section assumes that the Connext Micro source-bundle has been downloaded and installed,
that CMake (version 2.8.4 or higher) has been added to your PATH environment variable, and that
the $RTIMEHOME environment variable has been set to the installation directory path for Connext
Micro.

1. Make sure CMake (2.8.4+) is installed and available on your path.

2. Run the rtime-make script.

On UNIX®, Linux®, and macOS® systems:

$RTIMEHOME/resource/scripts/rtime-make --config Debug --target␣
↪→self \

--name i86Linux2.6gcc4.4.5 -G "Unix Makefiles" --build

On Windows® systems:

$RTIMEHOME\resource\scripts\rtime-make --config Debug --target␣
↪→self \

--name i86Win32VS2010 -G "Visual Studio 10 2010" --build

Note: rti-make uses a series of arguments to build Connext Micro for the appro-
priate environment. Please refer to Building Connext Micro with rtime-make for
details.

3. You will find the compiled Connext Micro libraries here:

On UNIX-based systems:

2.3. Building Connext Micro 12

https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

$RTIMEHOME/lib/i86Linux2.6gcc4.4.5

On Windows systems:

$RTIMEHOME\lib\i86Win32VS2010

Note: rtime-make uses the platform specified with --name to determine a few
settings needed by Connext Micro. Please refer to Preparing for a Build for details.

For help, enter:

$RTIMEHOME\resource\scripts\rtime-make --help

To list available targets, enter:

$RTIMEHOME\resource\scripts\rtime-make --list

For help with a specific target, except self, enter:

$RTIMEHOME\resource\scripts\rtime-make --target <target> --help

2.3. Building Connext Micro 13

Chapter 3

Getting Started

3.1 Define a Data Type

To distribute data using Connext Micro, you must first define a data type, then run the rtiddsgen
utility. This utility will generate the type-specific support code that Connext Micro needs and the
code that makes calls to publish and subscribe to that data type.

Connext Micro accepts types definitions in Interface Definition Language (IDL) format.

For instance, the HelloWorld examples provided with Connext Micro use this simple type, which
contains a string “msg” with a maximum length of 128 chars:

struct HelloWorld
{

string<128> msg;
};

For more details, see Data Types in the User’s Manual.

3.2 Generate Type Support Code with rtiddsgen

You will provide your IDL as an input to rtiddsgen. rtiddsgen supports code generation for the
following standard types:

• octet, char, wchar

• short, unsigned short

• long, unsigned long

• long long, unsigned long long float

• double, long double

• boolean

• string

14

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• struct

• array

• enum

• wstring

• sequence

• union

• typedef

• value type

The script to run rtiddsgen is in <your_top_level_dir>/rtiddsgen/scripts.

To generate support code for data types in a file called HelloWorld.idl:

rtiddsgen -micro -language C -replace HelloWorld.idl

Run rtiddsgen -help to see all available options. For the options used here:

• The -micro option is necessary to generate support code specific to Connext Micro, as rtidds-
gen is also capable of generating support code for Connext, and the generated code for the two
are different. Note that Connext Micro and RTI Connext Cert use the same rtiddsgen and
similar code is generated. However, when the generated code is compiled with RTI_CERT
certain APIs are excluded.

• The -language option specifies the language of the generated code. Connext Micro supports
C and C++ (with -language C++).

• The -replace option specifies that the new generated code will replace, or overwrite, any
existing files with the same name.

rtiddsgen generates the following files for an input file HelloWorld.idl:

• HelloWorld.h and HelloWorld.c. Operations to manage a sample of the type, and a DDS
sequence of the type.

• HelloWorldPlugin.h and HelloWorldPlugin.c. Implements the type-plugin interface
defined by Connext Micro. Includes operations to serialize and deserialize a sample of the
type and its DDS instance keys.

• HelloWorldSupport.h and HelloWorldSupport.c. Support operations to generate a
type-specific a DataWriter and DataReader, and to register the type with a DDS Domain-
Participant.

3.2. Generate Type Support Code with rtiddsgen 15

RTI Connext DDS Micro Documentation, Version 2.4.14.2

3.3 Configure UDP Transport

You may need to configure the UDP transport component that is pre-registered by RTI Connext
Micro. To change the properties of the UDP transport, first the UDP component has be unreg-
istered, then the properties have to be updated, and finally the component must be re-registered
with the updated properties.

Example code:

• Unregister the pre-registered UDP component:

/* Unregister the pre-registered UDP component */
if (!RT_Registry_unregister(registry, "_udp", NULL, NULL))
{

/* failure */
}

• Configure UDP transport properties:

struct UDP_InterfaceFactoryProperty *udp_property = NULL;

udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof(struct UDP_InterfaceFactoryProperty));

if (udp_property != NULL)
{

*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* allow_interface: Names of network interfaces allowed to send/receive.
* Allow one loopback (lo) and one NIC (eth0).
*/

REDA_StringSeq_set_maximum(&udp_property->allow_interface,2);
REDA_StringSeq_set_length(&udp_property->allow_interface,2);

*REDA_StringSeq_get_reference(&udp_property->allow_interface,0) = DDS_String_
↪→dup("lo");

*REDA_StringSeq_get_reference(&udp_property->allow_interface,1) = DDS_String_
↪→dup("eth0");
}
else
{

/* failure */
}

• Re-register UDP component with updated properties:

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),

(struct RT_ComponentFactoryProperty*)udp_property, NULL))
{

/* failure */
}

For more details, see the Transports section in the User’s Manual.

3.3. Configure UDP Transport 16

RTI Connext DDS Micro Documentation, Version 2.4.14.2

3.4 Create DomainParticipant, Topic, and Type

A DomainParticipantFactory creates DomainParticipants, and a DomainParticipant itself is the
factory for creating Publishers, Subscribers, and Topics.

When creating a DomainParticipant, you may need to customize DomainParticipantQos, notably
for:

• Resource limits. Default resource limits are set at minimum values.

• Initial peers.

• Discovery. The name of the registered discovery component (typically “dpde” or “dpse”)
must be assigned to DiscoveryQosPolicy’s name. Please note that in Connext Cert, only the
DPSE discovery plugin is supported.

• Participant Name. Every DomainParticipant is given the same default name. Must be
unique when using DPSE discovery.

Example code:

• Create a DomainParticipant with configured DomainParticipantQos:

DDS_DomainParticipant *participant = NULL;
struct DDS_DomainParticipantQos dp_qos =

DDS_DomainParticipantQos_INITIALIZER;
DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;

/* DDS domain of DomainParticipant */
DDS_Long domain_id = 0;

factory = DDS_DomainParticipantFactory_get_instance();

if (factory == NULL)
{

/* something failed, exit */
exit(-1);

}

registry = DDS_DomainParticipantFactory_get_registry(factory);

if (registry == NULL)
{

/* something failed, exit */
exit(-1);

}

if (!RT_Registry_register(registry, DDSHST_WRITER_DEFAULT_HISTORY_NAME,
WHSM_HistoryFactory_get_interface(), NULL, NULL))

{
/* something failed, exit */
exit(-1);

(continues on next page)

3.4. Create DomainParticipant, Topic, and Type 17

../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/structDDS__DomainParticipantQos.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DomainParticipantQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
}

if (!RT_Registry_register(registry, DDSHST_READER_DEFAULT_HISTORY_NAME,
RHSM_HistoryFactory_get_interface(), NULL, NULL))

{
/* something failed, exit */
exit(-1);

}

/* Name of your registered Discovery component */
if (!RT_ComponentFactoryId_set_name(&dp_qos.discovery.discovery.name, "dpde"))
{

/* failure */
}

/* Initial peers: use only default multicast peer */
DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers,1);
DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers,1);
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers,0) =

DDS_String_dup("239.255.0.1");

/* Resource limits */
dp_qos.resource_limits.max_destination_ports = 32;
dp_qos.resource_limits.max_receive_ports = 32;
dp_qos.resource_limits.local_topic_allocation = 1;
dp_qos.resource_limits.local_type_allocation = 1;
dp_qos.resource_limits.local_reader_allocation = 1;
dp_qos.resource_limits.local_writer_allocation = 1;
dp_qos.resource_limits.remote_participant_allocation = 8;
dp_qos.resource_limits.remote_reader_allocation = 8;
dp_qos.resource_limits.remote_writer_allocation = 8;

/* Participant name */
strcpy(dp_qos.participant_name.name, "Participant_1");

participant =
DDS_DomainParticipantFactory_create_participant(factory,

domain_id,
&dp_qos,
NULL,
DDS_STATUS_MASK_NONE);

if (participant == NULL)
{

/* failure */
}

3.4. Create DomainParticipant, Topic, and Type 18

RTI Connext DDS Micro Documentation, Version 2.4.14.2

3.4.1 Register Type

Your data types that have been generated from IDL need to be registered with the DomainPar-
ticipants that will be using them. Each registered type must have a unique name, preferably the
same as its IDL defined name.

DDS_ReturnCode_t retcode;

retcode = DDS_DomainParticipant_register_type(participant,
"HelloWorld",
HelloWorldTypePlugin_get());

if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

3.4.2 Create Topic of Registered Type

DDS Topics encapsulate the types being communicated, and you can create Topics for your type
once your type is registered.

A topic is given a name at creation (e.g. “Example HelloWorld”). The type associated with the
Topic is specified with its registered name.

DDS_Topic *topic = NULL;

topic = DDS_DomainParticipant_create_topic(participant,
"Example HelloWorld",
"HelloWorld",
&DDS_TOPIC_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE);

if (topic == NULL)
{

/* failure */
}

3.4.3 DPSE Discovery: Assert Remote Participant

DPSE Discovery relies on the application to specify the other, or remote, DomainParticipants that
its local DomainParticipants are allowed to discover. Your application must call a DPSE API
for each remote participant to be discovered. The API takes as input the name of the remote
participant.

/* Enable discovery of remote participant with name Participant_2 */
retcode = DPSE_RemoteParticipant_assert(participant, "Participant_2");
if (retcode != DDS_RETCODE_OK)
{

(continues on next page)

3.4. Create DomainParticipant, Topic, and Type 19

../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
/* failure */

}

For more information, see the DDS Domains section in the User’s Manual.

3.5 Create Publisher

A publishing application needs to create a DDS Publisher and then a DataWriter for each Topic
it wants to publish.

In Connext Micro, PublisherQos in general contains no policies that need to be customized, while
DataWriterQos does contain several customizable policies.

• Create Publisher :

DDS_Publisher *publisher = NULL;
publisher = DDS_DomainParticipant_create_publisher(participant,

&DDS_PUBLISHER_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE);

if (publisher == NULL)
{

/* failure */
}

For more information, see the Sending Data section in the User’s Manual.

3.6 Create DataWriter

DDS_DataWriter *datawriter = NULL;
struct DDS_DataWriterQos dw_qos = DDS_DataWriterQos_INITIALIZER;
struct DDS_DataWriterListener dw_listener = DDS_DataWriterListener_INITIALIZER;

/* Configure writer Qos */
dw_qos.protocol.rtps_object_id = 100;
dw_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
dw_qos.resource_limits.max_samples_per_instance = 2;
dw_qos.resource_limits.max_instances = 2;
dw_qos.resource_limits.max_samples =

dw_qos.resource_limits.max_samples_per_instance * dw_qos.resource_limits.max_
↪→instances;
dw_qos.history.depth = 1;
dw_qos.durability.kind = DDS_VOLATILE_DURABILITY_QOS;
dw_qos.protocol.rtps_reliable_writer.heartbeat_period.sec = 0;
dw_qos.protocol.rtps_reliable_writer.heartbeat_period.nanosec = 250000000;

/* Set enabled listener callbacks */
(continues on next page)

3.5. Create Publisher 20

../../api_c/html/structDDS__PublisherQos.html
../../api_c/html/structDDS__DataWriterQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
dw_listener.on_publication_matched = HelloWorldPublisher_on_publication_matched;

datawriter =
DDS_Publisher_create_datawriter(publisher,

topic,
&dw_qos,
&dw_listener,
DDS_PUBLICATION_MATCHED_STATUS);

if (datawriter == NULL)
{

/* failure */
}

The DataWriterListener has its callbacks selectively enabled by the DDS status mask. In the exam-
ple, the mask has set the on_publication_matched status, and accordingly the DataWriterListener
has its on_publication_matched assigned to a callback function.

void HelloWorldPublisher_on_publication_matched(void *listener_data,
DDS_DataWriter * writer,
const struct DDS_

↪→PublicationMatchedStatus *status)
{

/* Print on match/unmatch */
if (status->current_count_change > 0)
{

printf("Matched a subscriber\n");
}
else
{

printf("Unmatched a subscriber\n");
}

}

3.6.1 DPSE Discovery: Assert Remote Subscription

A publishing application using DPSE discovery must specify the other DataReaders that its
DataWriters are allowed to discover. Like the API for asserting a remote participant, the DPSE API
for asserting a remote subscription must be called for each remote DataReader that a DataWriter
may discover.

Whereas asserting a remote participant requires only the remote Participant’s name, asserting a
remote subscription requires more configuration, as all QoS policies of the subscription necessary
to determine matching must be known and thus specified.

struct DDS_SubscriptionBuiltinTopicData rem_subscription_data =
DDS_SubscriptionBuiltinTopicData_INITIALIZER;

/* Set Reader's protocol.rtps_object_id */
rem_subscription_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 200;

(continues on next page)

3.6. Create DataWriter 21

../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)

rem_subscription_data.topic_name = DDS_String_dup("Example HelloWorld");
rem_subscription_data.type_name = DDS_String_dup("HelloWorld");

rem_subscription_data.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

retcode = DPSE_RemoteSubscription_assert(participant,
"Participant_2",
&rem_subscription_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

↪→get(),
NULL)));

if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

3.6.2 Writing Samples

Within the generated type support code are declarations of the type-specific DataWriter. For the
HelloWorld type, this is the HelloWorldDataWriter.

Writing a HelloWorld sample is done by calling the write API of the HelloWorldDataWriter.

HelloWorldDataWriter *hw_datawriter;
DDS_ReturnCode_t retcode;
HelloWorld *sample = NULL;

/* Create and set sample */
sample = HelloWorld_create();
if (sample == NULL)
{

/* failure */
}
sprintf(sample->msg, "Hello World!");

/* Write sample */
hw_datawriter = HelloWorldDataWriter_narrow(datawriter);

retcode = HelloWorldDataWriter_write(hw_datawriter, sample, &DDS_HANDLE_NIL);
if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

For more information, see the Sending Data section in the User’s Manual.

3.6. Create DataWriter 22

RTI Connext DDS Micro Documentation, Version 2.4.14.2

3.7 Create Subscriber

A subscribing application needs to create a DDS Subscriber and then a DataReader for each Topic
to which it wants to subscribe.

In Connext Micro, SubscriberQos in general contains no policies that need to be customized, while
DataReaderQos does contain several customizable policies.

DDS_Subscriber *subscriber = NULL;
subscriber = DDS_DomainParticipant_create_subscriber(participant,

&DDS_SUBSCRIBER_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE);

if (subscriber == NULL)
{

/* failure */
}

For more information, see the Receiving Data section in the User’s Manual.

3.8 Create DataReader

DDS_DataReader *datareader = NULL;
struct DDS_DataReaderQos dr_qos = DDS_DataReaderQos_INITIALIZER;
struct DDS_DataReaderListener dr_listener = DDS_DataReaderListener_INITIALIZER;

/* Configure Reader Qos */
dr_qos.protocol.rtps_object_id = 200;
dr_qos.resource_limits.max_instances = 2;
dr_qos.resource_limits.max_samples_per_instance = 2;
dr_qos.resource_limits.max_samples =

dr_qos.resource_limits.max_samples_per_instance * dr_qos.resource_limits.max_
↪→instances;
dr_qos.reader_resource_limits.max_remote_writers = 10;
dr_qos.reader_resource_limits.max_remote_writers_per_instance = 10;
dr_qos.history.depth = 1;
dr_qos.durability.kind = DDS_VOLATILE_DURABILITY_QOS;
dr_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

/* Set listener callbacks */
dr_listener.on_data_available = HelloWorldSubscriber_on_data_available;
dr_listener.on_subscription_matched = HelloWorldSubscriber_on_subscription_matched;

datareader = DDS_Subscriber_create_datareader(subscriber,
DDS_Topic_as_topicdescription(topic),
&dr_qos,
&dr_listener,
DDS_DATA_AVAILABLE_STATUS | DDS_

↪→SUBSCRIPTION_MATCHED_STATUS);
if (datareader == NULL)

(continues on next page)

3.7. Create Subscriber 23

../../api_c/html/structDDS__SubscriberQos.html
../../api_c/html/structDDS__DataReaderQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
{

/* failure */
}

The DataReaderListener has its callbacks selectively enabled by the DDS status mask.
In the example, the mask has set the DDS_SUBSCRIPTION_MATCHED_STATUS and
DDS_DATA_AVAILABLE_STATUS statuses, and accordingly the DataReaderListener has its
on_subscription_matched and on_data_available assigned to callback functions.

void HelloWorldSubscriber_on_subscription_matched(void *listener_data,
DDS_DataReader * reader,
const struct DDS_

↪→SubscriptionMatchedStatus *status)
{

if (status->current_count_change > 0)
{

printf("Matched a publisher\n");
}
else
{

printf("Unmatched a publisher\n");
}

}

void HelloWorldSubscriber_on_data_available(void* listener_data,
DDS_DataReader* reader)

{
HelloWorldDataReader *hw_reader = HelloWorldDataReader_narrow(reader);
DDS_ReturnCode_t retcode;
struct DDS_SampleInfo *sample_info = NULL;
HelloWorld *sample = NULL;

struct DDS_SampleInfoSeq info_seq =
DDS_SEQUENCE_INITIALIZER(struct DDS_SampleInfo);

struct HelloWorldSeq sample_seq =
DDS_SEQUENCE_INITIALIZER(HelloWorld);

const DDS_Long TAKE_MAX_SAMPLES = 32;
DDS_Long i;

retcode = HelloWorldDataReader_take(hw_reader,
&sample_seq, &info_seq, TAKE_MAX_SAMPLES,
DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

if (retcode != DDS_RETCODE_OK)
{

printf("failed to take data: %d\n", retcode);
goto done;

}

/* Print each valid sample taken */
(continues on next page)

3.8. Create DataReader 24

../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/group__DDSStatusTypesModule.html
../../api_c/html/group__DDSStatusTypesModule.html
../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
for (i = 0; i < HelloWorldSeq_get_length(&sample_seq); ++i)
{

sample_info = DDS_SampleInfoSeq_get_reference(&info_seq, i);

if (sample_info->valid_data)
{

sample = HelloWorldSeq_get_reference(&sample_seq, i);
printf("\nSample received\n\tmsg: %s\n", sample->msg);

}
else
{

printf("not valid data\n");
}

}

HelloWorldDataReader_return_loan(hw_reader, &sample_seq, &info_seq);

done:
HelloWorldSeq_finalize(&sample_seq);
DDS_SampleInfoSeq_finalize(&info_seq);

}

3.8.1 DPSE Discovery: Assert Remote Publication

A subscribing application using DPSE discovery must specify the other DataWriters that its
DataReaders are allowed to discover. Like the API for asserting a remote participant, the DPSE API
for asserting a remote publication must be called for each remote DataWriter that a DataReader
may discover.

struct DDS_PublicationBuiltinTopicData rem_publication_data =
DDS_PublicationBuiltinTopicData_INITIALIZER;

/* Set Writer's protocol.rtps_object_id */
rem_publication_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 100;

rem_publication_data.topic_name = DDS_String_dup("Example HelloWorld");
rem_publication_data.type_name = DDS_String_dup("HelloWorld");

rem_publication_data.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

retcode = DPSE_RemotePublication_assert(participant,
"Participant_1",
&rem_publication_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

↪→get(),
NULL)));

if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

3.8. Create DataReader 25

../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Asserting a remote publication requires configuration of all QoS policies necessary to determine
matching.

3.8.2 Receiving Samples

Accessing received samples can be done in a few ways:

• Polling. Do read or take within a periodic polling loop.

• Listener. When a new sample is received, the DataReaderListener’s on_data_available is
called. Processing is done in the context of the middleware’s receive thread. See the above
HelloWorldSubscriber_on_data_available callback for example code.

• Waitset. Create a waitset, attach it to a status condition with the data_available status
enabled, and wait for a received sample to trigger the waitset. Processing is done in the
context of the user’s application thread. (Note: the code snippet below is taken from the
shipped HelloWorld_dpde_waitset example).

DDS_WaitSet *waitset = NULL;
struct DDS_Duration_t wait_timeout = { 10, 0 }; /* 10 seconds */
DDS_StatusCondition *dr_condition = NULL;
struct DDS_ConditionSeq active_conditions =

DDS_SEQUENCE_INITIALIZER(struct DDS_ConditionSeq);

if (!DDS_ConditionSeq_initialize(&active_conditions))
{

/* failure */
}

if (!DDS_ConditionSeq_set_maximum(&active_conditions, 1))
{

/* failure */
}

waitset = DDS_WaitSet_new();
if (waitset == NULL)
{

/* failure */
}

dr_condition = DDS_Entity_get_statuscondition(DDS_DataReader_as_entity(datareader));

retcode = DDS_StatusCondition_set_enabled_statuses(dr_condition,
DDS_DATA_AVAILABLE_STATUS);

if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

retcode = DDS_WaitSet_attach_condition(waitset,
DDS_StatusCondition_as_condition(dr_condition));

if (retcode != DDS_RETCODE_OK)
(continues on next page)

3.8. Create DataReader 26

../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
{

/* failure */
}

retcode = DDS_WaitSet_wait(waitset, active_conditions, &wait_timeout);

switch (retcode) {
case DDS_RETCODE_OK:
{

/* This WaitSet only has a single condition attached to it
* so we can implicitly assume the DataReader's status condition
* to be active (with the enabled DATA_AVAILABLE status) upon
* successful return of wait().
* If more than one conditions were attached to the WaitSet,
* the returned sequence must be examined using the
* commented out code instead of the following.
*/

HelloWorldSubscriber_take_data(HelloWorldDataReader_narrow(datareader));

/*
DDS_Long active_len = DDS_ConditionSeq_get_length(&active_conditions);
for (i = active_len - 1; i >= 0; --i)
{

DDS_Condition *active_condition =
*DDS_ConditionSeq_get_reference(&active_conditions, i);

if (active_condition ==
DDS_StatusCondition_as_condition(dr_condition))

{
total_samples += HelloWorldSubscriber_take_data(

HelloWorldDataReader_narrow(datareader));
}
else if (active_condition == some_other_condition)
{

do_something_else();
}

}
*/
break;

}
case DDS_RETCODE_TIMEOUT:
{

printf("WaitSet_wait timed out\n");
break;

}
default:
{

printf("ERROR in WaitSet_wait: retcode=%d\n", retcode);
break;

}
}

3.8. Create DataReader 27

RTI Connext DDS Micro Documentation, Version 2.4.14.2

3.8.3 Filtering Samples

In lieu of supporting Content-Filtered Topics, a DataReaderListener in Connext Micro provides
callbacks to do application-level filtering per sample.

• on_before_sample_deserialize. Through this callback, a received sample is presented
to the application before it has been deserialized or stored in the DataReader ’s queue.

• on_before_sample_commit. Through this callback, a received sample is presented to the
application after it has been deserialized but before it has been stored in the DataReader ’s
queue.

You control the callbacks’ sample_dropped parameter; upon exiting either callback, the DataReader
will drop the sample if sample_dropped is true. Consequently, dropped samples are not stored in
the DataReader ’s queue and are not available to be read or taken.

Neither callback is associated with a DDS Status. Rather, each is enabled when assigned, to a
non-NULL callback.

NOTE: Because it is called after the sample has been deserialized, on_before_sample_commit
provides an additional sample_info parameter, containing some of the usual sample information
that would be available when the sample is read or taken.

The HelloWorld_dpde example’s subscriber has this on_before_sample_commit callback:

DDS_Boolean HelloWorldSubscriber_on_before_sample_commit(
void *listener_data,
DDS_DataReader *reader,
const void *const sample,
const struct DDS_SampleInfo *const sample_info,
DDS_Boolean *dropped)

{
HelloWorld *hw_sample = (HelloWorld *)sample;

/* Drop samples with even-numbered count in msg */
HelloWorldSubscriber_filter_sample(hw_sample, dropped);

if (*dropped)
{

printf("\nSample filtered, before commit\n\tDROPPED - msg: %s\n",
hw_sample->msg);

}

return DDS_BOOLEAN_TRUE;
}

...

dr_listener.on_before_sample_commit =
HelloWorldSubscriber_on_before_sample_commit;

For more information, see the Receiving Data section in the User’s Manual.

3.8. Create DataReader 28

../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__SampleLostStatus.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

3.9 Examples

Connext Micro provides buildable example applications, in the example/ directory. Each example
comes with instructions on how to build and run an application.

In addition to the provided examples, the RTI Code Generator available with Connext Micro can
generate example DDS applications with a type definition file as input. For more information read
the guide in Example Generation.

Note that by default, all the examples link against release libraries. To build release libraries:

./resource/scripts/rtime-make --name x64Darwin17clang9.0 --target self --build --config␣
↪→Release

To build the examples against the debug libraries, specify the DEBUG option:

make DEBUG=Y

• HelloWorld_transformations. Same as HelloWorld_dpde, except it uses UDP transfor-
mations to send encrypted packets using OpenSSL.

• RTPS. Example of an RTPS emitter that bypasses the DDS module and APIs to send RTPS
discovery and user data.

• Latency. Measures the end-to-end latency of Connext Micro.

• Throughput. Measures the end-to-end throughput of Connext Micro.

3.10 Example Generation

The RTI Code Generator available with Connext Micro can generate DDS example applications
with a type definition file as input.

Note: Before running the RTI Code Generator, you might need to add

<Connext Micro install folder>/rtiddsgen/scripts

to your PATH environment variable.

To generate an example:

rtiddsgen -example -language <C|C++> [-namespace] <file with type definition>

This command generates an example using the default example template, which uses the Dynamic
Participant Dynamic Endpoint (DPDE) discovery plugin.

rtiddsgen accepts the following options:

• -example: Generates type files, example files, and CMakelists files.

• -language <C|C++>: Generates C or C++ code.

3.9. Examples 29

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• -namespace: Enables C++ namespaces when the language option is C++.

The generated example can be compiled using CMake <https://cmake.org/>_ and the CMake-
lists.txt file generated by the RTI Code Generator. A README.txt file is also generated with a
description of the example and instructions for how to compile and run the examples.

The RTI Code Generator can also generate examples using custom templates by using the option
-exampleTemplate <templateName>.

To generate an example using a custom template instead of the default one:

rtiddsgen -example -exampleTemplate <template name> -language <C|C++> [-namespace] <file␣
↪→with type definition>

To see the list of the available templates, use the following command:

rtiddsgen -showTemplates

The output from the command will look similar to this:

List of example templates per language:
- C:

- cert
- dpse
- static_udp
- waitsets

- C++:
- dpse
- waitsets

- C++ Namespace:
- dpse
- waitsets

The following command will generate an example in the C language, using the ‘waitsets’ custom
template instead of the default template:

rtiddsgen -example -exampleTemplate waitsets -language C <file with type definition>

3.10.1 Description of Examples

All examples consist of a publication and subscription pair to send and receive the type provided
by user. Two applications are compiled: one to send samples and another to receive samples.

• Default template Discovery of endpoints is done with the dynamic-endpoint discovery.
Only the UDP and INTRA transports are enabled. The subscriber application creates
a DataReader, which uses a listener to receive notifications about new samples and
matched publishers. These notifications are received in the middleware thread (instead
of the application thread).

• cert An example that only uses APIs that are compatible with Connext Cert.

3.10. Example Generation 30

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• dpse The only difference from the default template is that the discovery of endpoints is done
with static-endpoint discovery. Static-endpoint discovery uses function calls to statically
assert information about remote endpoints belonging to remote DomainParticipants.

• static_udp The only difference from the default template is that this example uses a static
UDP interface configuration. Using this API, the UDP transport is statically configured.
This is useful in systems that are not able to return the installed UDP interfaces (name,
IP address, mask…).

• waitsets The only difference from the default template is that the Subscriber application
creates a DataReader that uses a Waitset (instead of a listener) to receive notifications
about new samples and matched publishers. These notifications are received in the
middleware thread (instead of the application thread).

3.10.2 How to Compile the Generated Examples

Before compiling, set the environment variable RTIMEHOME to the Connext Micro installation
directory.

Depending on the number of network interfaces installed on the local machine, you might need to
restrict which interfaces are used by Connext Micro.

Use the option -udp_intf <interface name> when running the example.

The Connext Micro source bundle includes rtime-make (on Linux and macOS systems) or
rtime-make.bat (on Windows systems) to simplify invocation of CMake. This script is a convenient
way to invoke CMake with the correct options. For example:

Linux

cd <directory with generated example>

rtime-make --config <Debug|Release> --build --name x64Linux3gcc4.8.2 --target Linux --
↪→source-dir . \

-G "Unix Makefiles" --delete [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true]

macOS

cd <directory with generated example>

rtime-make --config <Debug|Release> --build --name x64Darwin17.3.0Clang9.0.0 --target␣
↪→Darwin --source-dir . \

-G "Unix Makefiles" --delete [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true]

Windows

cd <directory with generated example>

rtime-make.bat --config <Debug|Release> --build --name i86Win32VS2010 --target Windows --
↪→source-dir . \

-G "Visual Studio 10 2010" --delete [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE_eq_
↪→true]

3.10. Example Generation 31

RTI Connext DDS Micro Documentation, Version 2.4.14.2

The executable can be found in the directory ‘objs’.

It is also possible to compile using CMake, e.g., when the Connext Micro source bundle is not
installed.

Linux

cmake [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true] [-DCMAKE_BUILD_TYPE=
↪→<Debug|Release>] -G "Unix Makefiles" \

-B./<your build directory> -H. -DRTIME_TARGET_NAME=x64Linux3gcc4.8.2"

cmake --build ./<your build directory> [--config <Debug|Release>]

macOS

cmake [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true] [-DCMAKE_BUILD_TYPE=
↪→<Debug|Release>] -G "Unix Makefiles" \

-B./<your build directory> -H. -DRTIME_TARGET_NAME=x64Darwin17.3.0Clang9.0.0"

cmake --build ./<your build directory> [--config <Debug|Release>]

Windows

cmake [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true] [-DCMAKE_BUILD_TYPE=
↪→<Debug|Release>] -G "Visual Studio 10 2010" \

-B./<your build directory> -H. -DRTIME_TARGET_NAME=i86Win32VS2010"

cmake --build .\<your build directory> [--config <Debug|Release>]

The executable can be found in the directory ‘objs’.

The following options are accepted:

• -DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true adds a rule to regenerate type sup-
port plugin source files if the input file with the type definition changes. Default value is ‘false’.

3.10.3 How to Run the Generated Examples

By default, the example tries to guess which interfaces it should use to receive samples. This can
cause communication problems if the number of available interfaces is greater than the maximum
number of interfaces supported by Connext Micro. For this reason, it is recommended to restrict
the number of interfaces used by the application.

Use the option -udp_intf <interface name> when running the example.

For example, if the example has been compiled for Linux x64Linux3gcc4.8.2, run the subscriber
with this command:

objs/x64Linux3gcc4.8.2/<Type definition file name>_subscriber [-domain <Domain_ID>] [-
↪→peer <address>] \

[-sleep <sleep_time>] [-count <seconds_to_run>] [-udp_intf <interface name>]

and run the publisher with this command:

3.10. Example Generation 32

RTI Connext DDS Micro Documentation, Version 2.4.14.2

objs/x64Linux3gcc4.8.2/<Type definition file name>_publisher [-domain <Domain_ID> -peer
↪→<address>] \

[-sleep <sleep_time>] [-count <seconds_to_run>] [-udp_intf <interface name>]

3.10. Example Generation 33

Chapter 4

User’s Manual

4.1 Initializing the Connext Micro Library

Connext Micro has been designed to integrate with a wide range of operating systems, network
stacks, and CPUs. For this reason, Connext Micro places few restrictions on how it is integrated.
The memory management API defined by Connext Micro may be implemented using standard C
libray APIs such as malloc() and free(), or something hardware specific relying on memory being
allocated from a specific memory region.

In order to allow a degree of flexibility, integrations may be configurable at run-time. This config-
uration may require validation before it is safe to make specific calls, such as allocating memory.

In order to guarantee consistency accross all integrations for when it is safe to call APIs, Connext
Micro requires that its library is initialized with DDS_DomainParticipantFactory_get_instance
before any public APIs are called, unless an API is documented to be safe to call before DDS_Do-
mainParticipantFactory_get_instance. DDS_DomainParticipantFactory_get_instance initializes
an integration, providing an opportunity for integrations to validate its configuration.

Note: This restriction is not limited to DDS APIs, but extends to all public APIs, such as
sequence APIs, type-support APIs, string APIs, and component APIs.

Connext Micro is initialized with a successful call to DDS_DomainParticipantFactory_get_in-
stance. On success, DDS_DomainParticipantFactory_get_instance returns a reference to a
DDS_DomainParticipantFactory; on failure, ‘nil’ is returned:

DDS_DomainParticipantFactory *factory = NULL;

factory = DDS_DomainParticipantFactory_get_instance();

if (factory == NULL)
{

/* something failed, exit */
exit(-1);

}
(continues on next page)

34

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)

/* Safe to call other public APIs */

After a successful call to DDS_DomainParticipantFactory_get_instance, public APIs are safe
to call as documented. APIs that must not be called before DDS_DomainParticipantFac-
tory_get_instance have the following additional description:

API Restriction:
This function must only be called after DDS_DomainParticipantFactory_get_instance.

Warning: DDS_DomainParticipantFactory_get_instance is not guarenteed to be thread-safe.

4.1.1 rtiddsgen

rtiddsgen is the type support compiler included with Connext Micro. rtiddsgen generates code to
send and receive data types across the network, as well as to allocate memory to store data types in
memory. These memory allocations use the memory management APIs defined by Connext Micro.

Because each integration determines how these APIs are implemented, it is important that Type-
Support APIs are not called until Connext Micro has been initialized. APIs such as FooTypeSup-
port_create_data and FooTypeSupport_delete_data are not safe to call until after a successful call
to DDS_DomainParticipantFactory_get_instance:

DDS_DomainParticipantFactory *factory = NULL;
Foo *sample = NULL;

/* NOT ALLOWED */
sample = FooTypeSupport_create_data();

factory = DDS_DomainParticipantFactory_get_instance();

if (factory == NULL)
{

/* something failed, exit */
exit(-1);

}

/* ALLOWED */
sample = FooTypeSupport_create_data();
if (sample == NULL)
{

/* something failed, exit */
exit(-1);

}

/* Calls other public APIs */

4.1. Initializing the Connext Micro Library 35

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.1.2 The Connext Micro System API

The Connext Micro System API enables applications to configure the behavior of Connext Micro
at runtime. Which configuration options are available depends on the specific integration.

However, because the Connext Micro system must be configured before Connext Micro is initial-
ized, it is safe to call public System APIs before DDS_DomainParticipantFactory_get_instance,
such as OSAPI_System_get_property and OSAPI_System_set_property:

struct OSAPI_SystemProperty sys_property = OSAPI_SystemProperty_INITIALIZER;
DDS_DomainParticipantFactory *factory = NULL;

if (!OSAPI_System_get_property(&sys_property))
{

/* error */
return;

}

/* Set sys_property */

if (!OSAPI_System_set_property(&sys_property))
{

/* error */
return;

}

factory = DDS_DomainParticipantFactory_get_instance();
if (factory == NULL)
{

/* error */
return;

}

4.1.3 Component Registration

Connext Micro consists of core APIs and additional components that extend its functionality.
Connext Micro includes two components which must always be registered with Connext Micro
before any DDS entities can be created: the writer and reader history caches. The following code
sample demonstrates how to register these:

#include "wh_sm/wh_sm_history.h"
#include "rh_sm/rh_sm_history.h"

DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;

factory = DDS_DomainParticipantFactory_get_instance();

if (factory == NULL)
(continues on next page)

4.1. Initializing the Connext Micro Library 36

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
{

/* something failed, exit */
exit(-1);

}

registry = DDS_DomainParticipantFactory_get_registry(factory);

if (registry == NULL)
{

/* something failed, exit */
exit(-1);

}

if (!RT_Registry_register(registry, DDSHST_WRITER_DEFAULT_HISTORY_NAME,
WHSM_HistoryFactory_get_interface(), NULL, NULL))

{
/* something failed, exit */
exit(-1);

}

if (!RT_Registry_register(registry, DDSHST_READER_DEFAULT_HISTORY_NAME,
RHSM_HistoryFactory_get_interface(), NULL, NULL))

{
/* something failed, exit */
exit(-1);

}

Connext Micro includes other components, such as Discovery plugins and the UDP Transport.
These are documented in other sections.

4.2 Data Types

How data is stored or laid out in memory can vary from language to language, compiler to com-
piler, operating system to operating system, and processor to processor. This combination of lan-
guage/compiler/operating system/processor is called a platform. Any modern middleware must be
able to take data from one specific platform (for example, C/gcc.7.3.0/Linux®/PPC) and transpar-
ently deliver it to another (for example, C/gcc.7.3.0/Linux/Arm® v8). This process is commonly
called serialization/deserialization, or marshalling/demarshalling.

Connext Micro data samples sent on the same Connext Micro topic share a data type. This
type defines the fields that exist in the DDS data samples and what their constituent types are.
The middleware stores and propagates this meta-information separately from the individual DDS
data samples, allowing it to propagate DDS samples efficiently while handling byte ordering and
alignment issues for you.

To publish and/or subscribe to data with Connext Micro, you will carry out the following steps:

1. Select a type to describe your data and use the RTI Code Generator to define a type at
compile-time using a language-independent description language.

4.2. Data Types 37

RTI Connext DDS Micro Documentation, Version 2.4.14.2

The RTI Code Generator accepts input in the following formats:

• OMG IDL. This format is a standardized component of the DDS specification. It
describes data types with a C++-like syntax. A link to the latest specification can be
found here: https://www.omg.org/spec/IDL.

• XML in a DDS-specific format. This XML format is terser, and therefore eas-
ier to read and write by hand, than an XSD file. It offers the general benefits of
XML-extensibility and ease of integration, while fully supporting DDS-specific data
types and concepts. A link to the latest specification, including a description of the
XML format, can be found here: https://www.omg.org/spec/DDS-XTypes/.

• XSD format. You can describe data types with XML schemas (XSD). A link to
the latest specification, including a description of the XSD format, can be found here:
https://www.omg.org/spec/DDS-XTypes/.

Define a type programmatically at run time.

This method may be appropriate for applications with dynamic data description needs: ap-
plications for which types change frequently or cannot be known ahead of time.

2. Register your type with a logical name.

3. Create a Topic using the type name you previously registered.

If you’ve chosen to use a built-in type instead of defining your own, you will use the API
constant corresponding to that type’s name.

4. Create one or more DataWriters to publish your data and one or more DataReaders to
subscribe to it.

The concrete types of these objects depend on the concrete data type you’ve selected, in order
to provide you with a measure of type safety.

Whether publishing or subscribing to data, you will need to know how to create and delete (only in
Connext Micro DDS data samples and how to get and set their fields. These tasks are described in
Working with DDS Data Samples in the Core Libraries User’s Manual if you have Internet access).

4.2.1 Introduction to the Type System

A user data type is any custom type that your application defines for use with RTI Connext Micro.
It may be a structure, a union, a value type, an enumeration, or a typedef (or language equivalents).

Your application can have any number of user data types. They can be composed of any of the
primitive data types listed below or of other user data types.

Only structures, unions, and value types may be read and written directly by Connext Micro; enums,
typedefs, and primitive types must be contained within a structure, union, or value type. In order
for a DataReader and DataWriter to communicate with each other, the data types associated with
their respective Topic definitions must be identical.

• octet, char, wchar

• short, unsigned short

4.2. Data Types 38

https://www.omg.org/spec/IDL
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Working_with_DDS_Data_Samples.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• long, unsigned long

• long long, unsigned long long

• float

• double, long double

• boolean

• enum (with or without explicit values)

• bounded string and wstring

The following type-building constructs are also supported:

• module (also called a package or namespace)

• pointer

• array of primitive or user type elements

• bounded sequence of elements—a sequence is a variable-length ordered collection, such as a
vector or list

• typedef

• union

• struct

• value type, a complex type that supports inheritance and other object-oriented features

To use a data type with Connext Micro, you must define that type in a way the middleware
understands and then register the type with the middleware. These steps allow Connext Micro to
serialize, deserialize, and otherwise operate on specific types. They will be described in detail in
the following sections.

Sequences

A sequence contains an ordered collection of elements that are all of the same type. The operations
supported in the sequence are documented in the C API Reference and C++ API Reference HTML
documentation.

Elements in a sequence are accessed with their index, just like elements in an array. Indices start
at zero in all APIs. Unlike arrays, however, sequences can grow in size. A sequence has two sizes
associated with it: a physical size (the “maximum”) and a logical size (the “length”). The physical
size indicates how many elements are currently allocated by the sequence to hold; the logical size
indicates how many valid elements the sequence actually holds. The length can vary from zero up
to the maximum. Elements cannot be accessed at indices beyond the current length.

A sequence must be declared as bounded. A sequence’s “bound” is the maximum C API Reference
The bound is either excplict or implicit:

1. An explicit bound is given directly in the IDL:

4.2. Data Types 39

../../../doc/api_c/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_c/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

struct MyType
{

//Maximum of 32 longs
sequence<32> a_long_seq;

}

2. An implicit bound uses the unbounded notation in IDL, but relies on the -sequenceSize
parameter passed to rtiddsgen for the maximum length:

struct MyType
{

sequence<long> a_long_seq;
}

By default, any unbounded sequences found in an IDL file will be given a default bound of 100
elements. This default value can be overwritten using RTI Code Generator‘s -sequenceSize
command-line argument (see Command-Line Arguments for rtiddsgen in the RTI Code Gen-
erator User’s Manual, available if you have Internet access).

Strings and Wide Strings

Connext Micro supports both strings consisting of single-byte characters (the IDL string type) and
strings consisting of wide characters (IDL wstring). The wide characters supported by Connext
Micro are large enough to store 4-byte Unicode/UTF16 characters.

Like sequences, strings must be bounded. A string’s “bound” is its maximum length (not counting
the trailing NULL character in C and C++).

In C and Traditional C++, strings are mapped to char*.

The bound is either excplict or implicit:

1. An explicit bound is given directly in the IDL:

struct MyType
{

//Maximum of 32 bytes + NUL termination
string<32> a_string;

}

2. An implicit bound uses the unbounded notation in IDL, but relies on the -stringSize parameter
passed to rtiddsgen for the maximum length:

struct MyType
{

// Unbounded notation, but not unbounded. Bound determined
// by the -stringSize parameter to rtiddsgen
string a_string;

}

By default, any unbounded string found in an IDL file will be given a default bound of 255
elements. This default value can be overwritten using RTI Code Generator‘s -stringSize

4.2. Data Types 40

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/code_generator/users_manual/code_generator/users_manual/CommandLineArgs.htm#Chapter_3_Command-Line_Arguments_for_rtiddsgen

RTI Connext DDS Micro Documentation, Version 2.4.14.2

command-line argument (see the Command-Line Arguments chapter in the RTI Code Gen-
erator User’s Manual, available here if you have Internet access).

IDL String Encoding

The “Extensible and Dynamic Topic Types for DDS specification” (https://www.omg.org/spec/
DDS-XTypes/) standardizes the default encoding for strings to UTF-8. This encoding shall be
used as the wire format. Language bindings may use the representation that is most natural in
that particular language. If this representation is different from UTF-8, the language binding shall
manage the transformation to/from the UTF-8 wire representation.

As an extension, Connext Micro offers ISO_8859_1 as an alternative string wire encoding.

This section describes the encoding for IDL strings across different languages in Connext Micro
and how to configure that encoding.

• C, Traditional C++ (only in Connext Micro)

IDL strings are mapped to a NULL-terminated array of DDS_Char_ (char*). Users are
responsible for using the right character encoding (UTF-8 or ISO_8859_1) when populating
the string values. This applies to all generated code, DynamicData, and Built-in data types.
The middleware does not transform from the language binding encoding to the wire encoding.

IDL Wide Strings Encoding

The “Extensible and Dynamic Topic Types for DDS specification” (https://www.omg.org/spec/
DDS-XTypes/) standardizes the default encoding for wide strings to UTF-32. This encoding shall
be used as the wire format.

Wide-string characters have a size of 4 bytes on the wire with UTF-32 encoding.

Language bindings may use the representation that is most natural in that particular language. If
this representation is different from UTF-32, the language binding shall manage the transformation
to/from the UTF-32 wire representation.

• C, Traditional C++

IDL wide strings are mapped to a NULL-terminated array of DDS_Wchar (DDS_Wchar*).
DDS_WChar is an unsigned 4-byte integer. Users are responsible for using the right character
encoding (UTF-32) when populating the wide-string values. This applies to all generated
code, DynamicData, and Built-in data types. Connext Micro does not transform from the
language binding encoding to the wire encoding.

4.2. Data Types 41

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/code_generator/users_manual/code_generator/users_manual/CommandLineArgs.htm
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
../../api_c/html/group__DDSCdrTypesModule.html
../../api_c/html/group__DDSCdrTypesModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Sending Type Information on the Network

Connext Micro can send type information the network using a concept called type objects. A type
objects is a description of a type suitable to network transmission, and is commonly used by for
example tools to visualize data from any application.

However, please note that Connext Micro does not support sending type information on the network.
Instead, tools can load type information from XML files generated from IDL using rtiddsgen. Please
refer to the RTI Code Generator’s User’s Manual for more information (available here if you have
Internet access).

4.2.2 Creating User Data Types with IDL

You can create user data types in a text file using IDL (Interface Description Language). IDL
is programming-language independent, so the same file can be used to generate code in C and
Traditional C++ (only Connext Micro). RTI Code Generator parses the IDL file and automatically
generates all the necessary routines and wrapper functions to bind the types for use by Connext
Micro at run time. You will end up with a set of required routines and structures that your
application and Connext Micro will use to manipulate the data.

Please refer to Creating User Data Types with IDL in the Core Libraries User’s Manual (if you
have Internet access) for more information.

Note: Not all features in RTI Code Generator are supported when generating code for Connext
Micro, see Unsupported Features of rtiddsgen with Connext Micro.

4.2.3 Working with DDS Data Samples

You should now understand how to define and work with data types. Now that you have chosen
one or more data types to work with, this section will help you understand how to create and
manipulate objects of those types.

In C:

You create and delete your own objects from factories, just as you create Connext Micro objects
from factories. In the case of user Please refer to Creating User Data Types with IDL in the Core
Libraries User’s Manual (if you have Internet access) for more information.

};
/* In your code: */
MyData* sample = MyDataTypeSupport_create_data();
char* str = sample->myString; /*empty, non-NULL string*/

/* not support in Micro Cert */
MyDataTypeSupport_delete_data(sample);

In Traditional C++:

Without the -constructor option, you create and delete objects using the TypeSupport factories.

4.2. Data Types 42

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/code_generator/users_manual/code_generator/users_manual/UsersManual_Title.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/Creating_User_Data_Types_with_IDL.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/Creating_User_Data_Types_with_IDL.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/Creating_User_Data_Types_with_IDL.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.2

MyData* sample = MyDataTypeSupport::create_data();
char* str = sample->myString; // empty, non-NULL string
// ...
MyDataTypeSupport::delete_data(sample);

Please refer to Working with DDS Data Samples in the Core Libraries User’s Manual for more
information.

4.3 DDS Entities

The main classes extend an abstract base class called a DDS Entity. Every DDS Entity has a set of
associated events known as statuses and a set of associated Quality of Service Policies (QosPolicies).
In addition, a Listener may be registered with the Entity to be called when status changes occur.
DDS Entities may also have attached DDS Conditions, which provide a way to wait for status
changes. Figure 4.1: Overview of DDS Entities presents an overview in a UML diagram.

Figure 4.1: Overview of DDS Entities

Please note that RTI Connext Micro does not support the following:

• MultiTopic

• ContentFilteredTopic

• ReadCondition

• QueryConditions

4.3. DDS Entities 43

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Working_with_DDS_Data_Samples.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.2

For a general description of DDS Entities and their operations, please refer to the DDS Entities
chapter in the RTI Connext DDS Core Libraries User’s Manual (available here if you have Internet
access). Note that RTI Connext Micro does not support all APIs and QosPolicies; please refer to
the C API Reference and C++ API Reference documentation for more information.

4.4 Sending Data

This section discusses how to create, configure, and use Publishers and DataWriters to send data.
It describes how these Entities interact, as well as the types of operations that are available for
them.

The goal of this section is to help you become familiar with the Entities you need for sending data.
For up-to-date details such as formal parameters and return codes on any mentioned operations,
please see the C API Reference and C++ API Reference documentation.

4.4.1 Preview: Steps to Sending Data

To send DDS samples of a data instance:

1. Create and configure the required Entities:

a. Create a DomainParticipant.

b. Register user data types with the DomainParticipant. For example, the
‘FooDataType’.

c. Use the DomainParticipant to create a Topic with the registered data type.

d. Use the DomainParticipant to create a Publisher.

e. Use the Publisher or DomainParticipant to create a DataWriter for the Topic.

f. Use a type-safe method to cast the generic DataWriter created by the Publisher to a
type-specific DataWriter. For example, ‘FooDataWriter’. Optionally, register data
instances with the DataWriter. If the Topic’s user data type contain key fields, then
registering a data instance (data with a specific key value) will improve performance
when repeatedly sending data with the same key. You may register many different data
instances; each registration will return an instance handle corresponding to the specific
key value. For non-keyed data types, instance registration has no effect.

2. Every time there is changed data to be published:

a. Store the data in a variable of the correct data type (for instance, variable ‘Foo’ of the
type ‘FooDataType’).

b. Call the FooDataWriter’s write() operation, passing it a reference to the variable
‘Foo’.

• For non-keyed data types or for non-registered instances, also pass in DDS_HAN-
DLE_NIL.

4.4. Sending Data 44

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DDS_Entities.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DDS_Entities.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DDS_Entities.htm
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_c/html/index.html
../../../doc/api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• For keyed data types, pass in the instance handle corresponding to the instance
stored in ‘Foo’, if you have registered the instance previously. This means that the
data stored in ‘Foo’ has the same key value that was used to create instance handle.

c. The write() function will take a snapshot of the contents of ‘Foo’ and store it in Connext
DDS internal buffers from where the DDS data sample is sent under the criteria set by
the Publisher’s and DataWriter’s QosPolicies. If there are matched DataReaders, then
the DDS data sample will have been passed to the physical transport plug-in/device
driver by the time that write() returns.

4.4.2 Publishers

An application that intends to publish information needs the following Entities: DomainParticipant,
Topic, Publisher, and DataWriter. All Entities have a corresponding specialized Listener and a set
of QosPolicies. A Listener is how Connext DDS notifies your application of status changes relevant
to the Entity. The QosPolicies allow your application to configure the behavior and resources of
the Entity.

• A DomainParticipant defines the DDS domain in which the information will be made avail-
able.

• A Topic defines the name under which the data will be published, as well as the type (format)
of the data itself.

• An application writes data using a DataWriter. The DataWriter is bound at creation time
to a Topic, thus specifying the name under which the DataWriter will publish the data and
the type associated with the data. The application uses the DataWriter’s write() operation
to indicate that a new value of the data is available for dissemination.

• A Publisher manages the activities of several DataWriters. The Publisher determines when
the data is actually sent to other applications. Depending on the settings of various QosPoli-
cies of the Publisher and DataWriter, data may be buffered to be sent with the data of other
DataWriters or not sent at all. By default, the data is sent as soon as the DataWriter’s
write() function is called.

You may have multiple Publishers, each managing a different set of DataWriters, or you may
choose to use one Publisher for all your DataWriters.

4.4.3 DataWriters

To create a DataWriter, you need a DomainParticipant, Publisher, and a Topic.

You need a DataWriter for each Topic that you want to publish. For more details on all operations,
see the C API Reference and C++ API Reference documentation.

For more details on creating, deleting, and setting up DataWriters, see replace:: the DataWriters
section in the RTI Connext DDS Core Libraries User’s Manual (available here if you have Internet
access).

4.4. Sending Data 45

../../../doc/api_c/html/index.html
../../../doc/api_cpp/html/index.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DataWriters.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DataWriters.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DataWriters.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.4.4 Publisher QosPolicies

Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.4.5 DataWriter QosPolicies

Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.5 Receiving Data

This section discusses how to create, configure, and use Subscribers and DataReaders to receive
data. It describes how these objects interact, as well as the types of operations that are available
for them.

The goal of this section is to help you become familiar with the Entities you need for receiving data.
For up-to-date details such as formal parameters and return codes on any mentioned operations,
please see the C API Reference and C++ API Reference documentation.

Warning: Connext Micro DataReaders cannot match with or receive data from Connext
DataWriters that are configured to send compressed data. See the Interoperability section for
more information.

4.5.1 Preview: Steps to Receiving Data

There are three ways to receive data:

• Your application can explicitly check for new data by calling a DataReader’s read() or take()
operation. This method is also known as polling for data.

• Your application can be notified asynchronously whenever new DDS data samples arrive—this
is done with a Listener on either the Subscriber or the DataReader. RTI Connext Micro will
invoke the Listener’s callback routine when there is new data. Within the callback routine,
user code can access the data by calling read() or take() on the DataReader. This method
is the way for your application to receive data with the least amount of latency.

• Your application can wait for new data by using Conditions and a WaitSet, then calling
wait(). Connext Micro will block your application’s thread until the criteria (such as the
arrival of DDS samples, or a specific status) set in the Condition becomes true. Then your
application resumes and can access the data with read() or take().

The DataReader’s read() operation gives your application a copy of the data and leaves the data
in the DataReader’s receive queue. The DataReader’s take() operation removes data from the
receive queue before giving it to your application.

To prepare to receive data, create and configure the required Entities:

1. Create a DomainParticipant.

4.5. Receiving Data 46

../../../doc/api_c/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

2. Register user data types with the DomainParticipant. For example, the ‘FooDataType’.

3. Use the DomainParticipant to create a Topic with the registered data type.

4. Use the DomainParticipant to create a Subscriber.

5. Use the Subscriber or DomainParticipant to create a DataReader for the Topic.

6. Use a type-safe method to cast the generic DataReader created by the Subscriber to a
type-specific DataReader. For example, ‘FooDataReader’.

Then use one of the following mechanisms to receive data.

• To receive DDS data samples by polling for new data:

– Using a FooDataReader, use the read() or take() operations to access the DDS data
samples that have been received and stored for the DataReader. These operations can
be invoked at any time, even if the receive queue is empty.

• To receive DDS data samples asynchronously:

– Install a Listener on the DataReader or Subscriber that will be called back by an internal
Connext Micro thread when new DDS data samples arrive for the DataReader.

1. Create a DDSDataReaderListener for the FooDataReader or a DDSSubscriberListener for
Subscriber. In C++ you must derive your own Listener class from those base classes. In C,
you must create the individual functions and store them in a structure.

If you created a DDSDataReaderListener with the on_data_available() callback
enabled: on_data_available() will be called when new data arrives for that
DataReader.

If you created a DDSSubscriberListener with the on_data_on_readers() callback
enabled: on_data_on_readers() will be called when data arrives for any DataReader
created by the Subscriber.

2. Install the Listener on either the FooDataReader or Subscriber.

For the DataReader, the Listener should be installed to handle changes in the
DATA_AVAILABLE status.

For the Subscriber, the Listener should be installed to handle changes in the
DATA_ON_READERS status.

3. Only 1 Listener will be called back when new data arrives for a DataReader.

Connext Micro will call the Subscriber’s Listener if it is installed. Otherwise, the DataReader’s
Listener is called if it is installed. That is, the on_data_on_readers() operation takes
precedence over the on_data_available() operation.

If neither Listeners are installed or neither Listeners are enabled to handle their respective
statuses, then Connext Micro will not call any user functions when new data arrives for the
DataReader.

4. In the on_data_available() method of the DDSDataReaderListener, invoke read() or
take() on the FooDataReader to access the data.

4.5. Receiving Data 47

RTI Connext DDS Micro Documentation, Version 2.4.14.2

If the on_data_on_readers() method of the DDSSubscriberListener is called, the
code can invoke read() or take() directly on the Subscriber’s DataReaders that have re-
ceived new data. Alternatively, the code can invoke the Subscriber’s notify_dataread-
ers() operation. This will in turn call the on_data_available() methods of the
DataReaderListeners (if installed and enabled) for each of the DataReaders that have
received new DDS data samples.

To wait (block) until DDS data samples arrive:

1. Use the DataReader to create a StatusCondition that describes the DDS samples for which
you want to wait. For example, you can specify that you want to wait for never-before-seen
DDS samples from DataReaders that are still considered to be ‘alive.’

2. Create a WaitSet.

3. Attach the StatusCondition to the WaitSet.

4. Call the WaitSet’s wait() operation, specifying how long you are willing to wait for the
desired DDS samples. When wait() returns, it will indicate that it timed out, or that the
attached Condition become true (and therefore the desired DDS samples are available).

5. Using a FooDataReader, use the read() or take() operations to access the DDS data
samples that have been received and stored for the DataReader.

4.5.2 Subscribers

An application that intends to subscribe to information needs the following Entities: DomainPar-
ticipant, Topic, Subscriber, and DataReader. All Entities have a corresponding specialized Listener
and a set of QosPolicies. The Listener is how RTI Connext Micro notifies your application of status
changes relevant to the Entity. The QosPolicies allow your application to configure the behavior
and resources of the Entity.

• The DomainParticipant defines the DDS domain on which the information will be available.

• The Topic defines the name of the data to be subscribed, as well as the type (format) of the
data itself.

• The DataReader is the Entity used by the application to subscribe to updated values of the
data. The DataReader is bound at creation time to a Topic, thus specifying the named and
typed data stream to which it is subscribed. The application uses the DataWriter’s read()
or take() operation to access DDS data samples received for the Topic.

• The Subscriber manages the activities of several DataReader entities. The application re-
ceives data using a DataReader that belongs to a Subscriber. However, the Subscriber will
determine when the data received from applications is actually available for access through
the DataReader. Depending on the settings of various QosPolicies of the Subscriber and
DataReader, data may be buffered until DDS data samples for associated DataReaders are
also received. By default, the data is available to the application as soon as it is received.

For more information on creating and deleting Subscribers, as well as setting QosPolicies, see the
Subscribers section in the RTI Connext DDS Core Libraries User’s Manual (available here if you
have Internet access).

4.5. Receiving Data 48

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Subscribers.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Subscribers.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Subscribers.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.5.3 DataReaders

To create a DataReader, you need a DomainParticipant, a Topic, and a Subscriber. You need at
least one DataReader for each Topic whose DDS data samples you want to receive.

For more details on all operations, see the C API Reference and C++ API Reference HTML
documentation.

4.5.4 Using DataReaders to Access Data (Read & Take)

For user applications to access the data received for a DataReader, they must use the type-specific
derived class or set of functions in the C API Reference. Thus for a user data type ‘Foo’, you must
use methods of the FooDataReader class. The type-specific class or functions are automatically
generated if you use RTI Code Generator.

4.5.5 Subscriber QosPolicies

Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.5.6 DataReader QosPolicies

Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.6 DDS Domains

This section discusses how to use DomainParticipants. It describes the types of operations that
are available for them and their QosPolicies.

The goal of this section is to help you become familiar with the objects you need for setting up
your RTI Connext Micro application. For specific details on any mentioned operations, see the C
API Reference and C++ API Reference documentation.

4.6.1 Fundamentals of DDS Domains and DomainParticipants

DomainParticipants are the focal point for creating, destroying (only in Connext Micro), and
managing other RTI Connext Micro objects. A DDS domain is a logical network of applications:
only applications that belong to the same DDS domain may communicate using Connext Micro.
A DDS domain is identified by a unique integer value known as a domain ID. An application
participates in a DDS domain by creating a DomainParticipant for that domain ID.

As seen in Figure 4.2: Relationship between Applications and DDS Domains, a single application
can participate in multiple DDS domains by creating multiple DomainParticipants with different
domain IDs. DomainParticipants in the same DDS domain form a logical network; they are isolated
from DomainParticipants of other DDS domains, even those running on the same set of physical
computers sharing the same physical network. DomainParticipants in different DDS domains will

4.6. DDS Domains 49

../../../doc/api_c/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Figure 4.2: Relationship between Applications and DDS Domains
Applications can belong to multiple DDS domains—A belongs to DDS domains 1 and 2. Applications in
the same DDS domain can communicate with each other, such as A and B, or A and C. Applications in

different DDS domains, such as B and C, are not even aware of each other and will not exchange messages.

4.6. DDS Domains 50

RTI Connext DDS Micro Documentation, Version 2.4.14.2

never exchange messages with each other. Thus, a DDS domain establishes a “virtual network”
linking all DomainParticipants that share the same domain ID.

An application that wants to participate in a certain DDS domain will need to create a DomainPar-
ticipant. As seen in Figure 4.3: DDS Domain Module, a DomainParticipant object is a container
for all other Entities that belong to the same DDS domain. It acts as factory for the Publisher,
Subscriber, and Topic entities. (As seen in Sending Data and Receiving Data, in turn, Publishers
are factories for DataWriters and Subscribers are factories for DataReaders.) DomainParticipants
cannot contain other DomainParticipants.

Like all Entities, DomainParticipants have QosPolicies and Listeners. The DomainParticipant
entity also allows you to set ‘default’ values for the QosPolicies for all the entities created from it or
from the entities that it creates (Publishers, Subscribers, Topics, DataWriters, and DataReaders).

Figure 4.3: DDS Domain Module
Note: MultiTopics are not supported.

4.6.2 Discovery Announcements

Each DomainParticipant announces information about itself, such as which locators other Domain-
Participants must use to communicate with it. A locator is an address that consists of an address
kind, a port number, and an address. Four locator types are defined:

• A unicast meta-traffic locator. This locator type is used to identify where unicast discov-
ery messages shall be sent. A maximum of four locators of this type can be specified.

• A multicast meta-traffic locator. This locator type is used to identify where multicast
discovery messages shall be sent. A maximum of four locators of this type can be specified.

4.6. DDS Domains 51

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• A unicast user-traffic locator. This locator type is used to identify where unicast
user-traffic messages shall be sent. A maximum of four locators of this type can be spec-
ified.

• A multicast user-traffic locator. This locator type is used to identify where multicast
user-traffic messages shall be sent. A maximum of four locators of this type can be specified.

It is important to note that a maximum of four locators of each kind can be sent in a DomainPar-
ticipant discovery message.

The locators in a DomainParticipant’s discovery announcement is used for two purposes:

• It informs other DomainParticipants where to send their discovery announcements to this
DomainParticipants.

• It informs the DataReaders and DataWriters in other DomainParticipants where to send
data to the DataReaders and DataWriters in this DomainParticipant unless a DataReader or
DataWriter specifies its own locators.

If a DataReader or DataWriter specifies their own locators, only user-traffic locators can be speci-
fied, then the exact same rules apply as for the DomainParticipant.

This document uses address and locator interchangeably. An address corresponds to the port and
address part of a locator. The same address may exist as different kinds, in which case they are
unique.

For more details about the discovery process, see the Discovery section.

4.7 Transports

4.7.1 Introduction

In RTI Connext Micro, DDS entities exchange information using transports. Transports exhange
data with peer transports, and Connext Micro entities can generally exchange information using
different types of transports, e.g. UDPv4 or a serial port. All transports send and receive RTPS
messages encapsulated in the transport’s native format, e.g. UDP packets.

Note: This version of Connext Micro only supports UDPv4 and a special transport for internal
communication within a DDS DomainParticipant.

Connext Micro has a pluggable-transport architecture. The core of Connext Micro is transport
agnostic; it does not make any assumptions about the actual transports used to send and receive
messages. Instead, Connext Micro uses an abstract “transport API” to interact with the transport
plugins that implement that API. A transport plugin implements the abstract transport API, and
performs the actual work of sending and receiving messages over a physical transport.

A transport can send and receive on addresses as defined by the concrete transport. For example,
the Connext Micro UDP transport can listen to and send to UDPv4 ports and addresses. In order
to establish communication between two transports, the addresses that the transport can listen to

4.7. Transports 52

RTI Connext DDS Micro Documentation, Version 2.4.14.2

must be determined and announced to other DomainParticipants that want to communicate with
it. This section describes how the addresses are reserved and how these addresses are used by the
DDS layer in Connext Micro.

While the NETIO interface is not limited to DDS, the rest of this document is written in the
context of how Connext Micro uses the NETIO interfaces as part of the DDS implementation.

Note that Connext Micro does not support RTPS fragmentation and is limited to IDL data types
less than or equal to 63000 bytes or the maximum transmission unit (MTU) of the underlying
transport, whichever is smaller.

Also note that Connext Micro does not query the MTU size from the registered transport plugins.
If an IDL data-type exceeds the MTU size, the data will be silently discarded.

Connext Micro does not track the maximum receive unit (MRU) of other nodes in the system.
Therefore, Connext Micro relies on consistent configuration accross all the nodes in the system in
order to successfully send and receive data. For example, if a Connext Micro node has a MRU of
8000 bytes and another Connext Micro node sends 9000 bytes (with a sufficiently large MTU), the
data will be sent, but not received.

4.7.2 Transport Limits

The following limitations apply to all Connext Micro transports.

IDL Data Types and Size

Connext Micro does not support RTPS fragmentation and is limited to IDL data types less than
or equal to 63000 bytes or the maximum transmission unit (MTU) of the underlying transport,
whichever is smaller.

Maximum Transmission Unit (MTU)

Connext Micro does not query the MTU size from the registered transport plugins. If the MTU
size is exceeded, the data will be silently discarded.

Maximum Receive Unit (MRU)

Connext Micro does not track the maximum receive unit (MRU) of other nodes in the system.
Therefore, Connext Micro relies on consistent configuration accross all the nodes in the system
in order to successfully send and receive data. For example, if a node has a MRU of 8000 bytes
and another node sends 9000 bytes (with a sufficiently large MTU), the data will be sent, but not
received.

4.7. Transports 53

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.7.3 Transport Registration

RTI Connext Micro supports different transports and transports must be registered with RTI
Connext Micro before they can be used. A transport must be given a name when it is registered
and this name is later used when configuring discovery and user-traffic. A transport name cannot
exceed 7 UTF-8 characters.

The following example registers the UDP transport with RTI Connext Micro and makes it available
to all DDS applications within the same memory space. Please note that each DDS applications
creates its own instance of a transport. Resources are not shared between instances of a transport
unless stated.

For example, to register two UDP transports with the names myudp1 and myudp2, the following
code is required:

DDS_DomainParticipantFactory *factory;
RT_Registry_T *registry;
struct UDP_InterfaceFactoryProperty udp_property;

factory = DDS_DomainParticipantFactory_get_instance();
registry = DDS_DomainParticipantFactory_get_registry(factory);

/* Set UDP properties */
if (!RT_Registry_register(registry,"myudp1",

UDP_InterfaceFactory_get_interface(),
&udp_property._parent._parent,NULL))

{
return error;

}

/* Set UDP properties */
if (!RT_Registry_register(registry,"myudp2",

UDP_InterfaceFactory_get_interface(),
&udp_property._parent._parent,NULL))

{
return error;

}

Before a DomainParticipant can make use of a registered transport, it must enable it for use within
the DomainParticipant. This is done by setting the TransportQoS. For example, to enable only
myudp1, the following code is required (error checking is not shown for clarity):

DDS_StringSeq_set_maximum(&dp_qos.transports.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qos.transports.enabled_transports,1);
*DDS_StringSeq_get_reference(&dp_qos.transports.enabled_transports,0) =

REDA_String_dup("myudp1");

To enable both transports:

DDS_StringSeq_set_maximum(&dp_qos.transports.enabled_transports,2);
DDS_StringSeq_set_length(&dp_qos.transports.enabled_transports,2);
*DDS_StringSeq_get_reference(&dp_qos.transports.enabled_transports,0) =

(continues on next page)

4.7. Transports 54

../../../api_c/html/structDDS__TransportQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
REDA_String_dup("myudp1");

*DDS_StringSeq_get_reference(&dp_qos.transports.enabled_transports,1) =
REDA_String_dup("myudp2");

Before enabled transports may be used for communication in Connext Micro, they must be reg-
istered and added to the DiscoveryQos and UserTrafficQos policies. Please see the section on
Discovery for details.

4.7.4 Transport Addresses

In order for DDS entities to communicate, the DDS entities must know each other’s location. DDS
entities may be colocated in the same DDS DomainParticipant, may be located in different DDS
DomainParticipants within the same node, or may be located on different nodes connected by a
network.

In DDS, a location is called a locator. A locator uniquely describes how to reach one or more DDS
entitites in a network. A DDS locator consists of the following parts:

• The locator kind identifies the type of locators, e.g. UDPv4.

• The locator port identifies the location of DDS entities at an address. The port num-
ber of a locator is not directly configurable; rather, it is configured indirectly by the
DDS_WireProtocolQosPolicy (rtps_well_known_ports) of the DomainParticipant’s QoS,
where a well-known, interoperable RTPS port number is assigned.

• The locator address indentifies the network address. Transports are concerned with exchang-
ing messages using the network address.

Reserving Addresses and Ports

Address reservation is the process to determine which locators should be used in the discovery an-
nouncement. Which transports and addresses to be used are determined as described in Discovery.

When a DomainParticipant is created, it calculates a port number and tries to reserve this port on
all addresses available in all the transports based on the registration properties. If the port cannot
be reserved on all transports, then it releases the port on all transports and tries again. If no free
port can be found, the process fails and the DomainParticipant cannot be created.

Warning: If an address is specified without the transport name as a prefix, e.g. “192.168.1.1”
instead of “_udp://192.168.1.1”, and multiple transports understand the address, only the last
transport found will try to reserve the address. Which transport is the last is non-determinstic.
This capability is present to be backwards compatible with earlier versions of Connext Micro,
but should not be used; this feature may be deprecated in future versions. Always specify
addresses using the transport name as the prefix.

4.7. Transports 55

../../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../../api_c/html/structDDS__UserTrafficQosPolicy.html
../../../api_c/html/structDDS__WireProtocolQosPolicy.html
../../../api_c/html/structDDS__WireProtocolQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Address Limitations

The number of locators which can be announced is limited to only the first four of each type,
across all transports available for each policy. If more than four are available of any type, these
are ignored. This is by design, although it may be changed in future versions. The order in which
the locators are read is also not known, thus the exact four locators which will be used are not
deterministic.

To ensure that all the desired addresses and only the desired address are used in a transport, follow
these rules:

• Make sure that no more than four unicast addresses and four multicast addresses can be
returned across all transports for discovery traffic.

• Make sure that no more than four unicast addresses and four multicast addresses can be
returned across all transports for user traffic.

• Make sure that no more than four unicast addresses and four multicast addresses can be re-
turned across all transports for user-traffic, for DataReader and DataWriter specific locators,
and that they do not duplicate any of the DomainParticipant’s locators.

Address Notation

In Connext Micro, all addresses are specified as ASCII strings. The full address format is:

< > denotes optional
[] denotes range or discreet values, unless enclosed in ''

which means a literal.

ADDRESS = <PREFIX://><ADDRESS> |
@<PREFIX://><ADDRESS> |
INDEX@<PREFIX>://<ADDRESS>

INDEX = INTEGER | '[' INTEGER ']' | '[' INTEGER-INTEGER ']' | '[' -INTEGER ']'

PREFIX = [a-zA-Z_][0-9a-zA-Z_]+

INTEGER = DEC_INTEGER | HEX_INTEGER

DEC_INTEGER = [0-9]+

HEX_INTEGER = [0x|0X][0-9a-fA-F]+

ADDRESS = 0 or more 8bit characters

Note that while the PREFIX is marked optional, it should always be used.

4.7. Transports 56

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.7.5 RTPS

The RTPS transport encapsulates user-data in RTPS messages and parses received RTPS messages
for user-data. This chapter describes how to configure RTPS.

Registration of RTPS

RTPS is automatically registered when a DDS_DomainParticipantFactory is initialized with
DDS_DomainParticipantFactory_get_instance(). In order to change the RTPS configuration, it
is necessary to first unregister it from the participant factory, set the properties, and then register
RTPS with the new properties. This process is identical to other plugins in Connext Micro, such
as the UDP transport and discovery plugins.

The following code shows the steps:

int main(int argc,char *argv)
{

struct RTPS_InterfaceFactoryProperty *rtps_property = NULL;
DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;
struct RTPS_InterfaceFactoryProperty *rtps_property = NULL;

/* get the Domain Participant factory and registry*/
factory = DDS_DomainParticipantFactory_get_instance();

registry = DDS_DomainParticipantFactory_get_registry
(DDS_DomainParticipantFactory_get_instance());

/* unregister the RTPS transport */
if (!RT_Registry_unregister(registry, NETIO_DEFAULT_RTPS_NAME,

NULL,NULL))
{

printf("failed to unregister rtps\n");
return 0;

}

rtps_property = (struct RTPS_InterfaceFactoryProperty *)
malloc(sizeof(struct RTPS_InterfaceFactoryProperty));

if (rtps_property == NULL)
{

printf("failed to allocate rtps properties\n");
return 0;

}

/* Set the new properties and register RTPS again */

if (!RT_Registry_register(registry, NETIO_DEFAULT_RTPS_NAME,
RTPS_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)rtps_property,

(continues on next page)

4.7. Transports 57

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
NULL))

{
printf("failed to register rtps\n");
return 0;

}

DDS_DomainParticipantFactory_create_participant(
factory, domain_id,&dp_qos, NULL,DDS_STATUS_MASK_NONE);

}

Please note that the RTPS properties must be valid for the entire life-cycle of the participant
factory because RTPS does not make an internal copy. This saves memory when properties are
stored in preallocated memory (for example in ROM).

Overriding the Builtin RTPS Checksum Functions

Some applications may require specialized functions to guarantee message integrity or may have
special hardware that supports faster checksum calculations. Connext Micro provides a way for
users to override the builtin checksum functions. Note that if a different checksum is calculated it
may prevent interoperability with other DDS implementations.

Checksum function definition

A checksum function must define a structure of the following type:

typedef struct RTPS_ChecksumClass
{

RTPS_ChecksumClassId_T class_id;
void *context;
RTPS_CalculateChecksum_T calculate_checksum;

} RTPS_ChecksumClass_T;

The type has three members:

1. class_id - The class ID must be:

• RTPS_CHECKSUM_CLASSID_BUILTIN32 for the 32-bit checksum.

• RTPS_CHECKSUM_CLASSID_BUILTIN64 for the 64-bit checksum.

• RTPS_CHECKSUM_CLASSID_BUILTIN128 for the 128-bit checksum.

2. context - An opaque object for you to provide context for this function. This context will be
passed to the calculate_checksum every time it is called.

3. checksum_calculate - The function pointer to the checksum function. The function is defined
as

4.7. Transports 58

RTI Connext DDS Micro Documentation, Version 2.4.14.2

typedef RTI_BOOL
(*RTPS_ChecksumCalculate_T)(void *context,

const struct REDA_Buffer *buf,
RTI_UINT32 buf_length,
RTPS_Checksum_T *checksum);

• context: Connext Micro will pass in the context as defined in the class.

• buf: An array of REDA_Buffer. Each REDA_Buffer includes a pointer and
size of the buffer.

• buf_length: The size of the array.

RTPS_Checksum_T checksum: This is the out parameter of this function. It is a
union defined as follows:

typedef union RTPS_Checksum
{

RTI_UINT32 checksum32;
RTI_UINT64 checksum64;
RTI_UINT8 checksum128[16];

} RTPS_Checksum_T;

Please note the following important information regarding the output values:

1. The number returned in checksum32 is assumed to be in host order endinaness.

2. The number returned in checksum64 is assumed to be in host order endinaness.

3. checksum128 is treated as an octet array.

Example

Below is an example implementation of a custom CRC-32 function using the Intel intrinsic functions.
It shows the QoS that needs to be set, as well as how to override the builtin checksum function.

RTI_BOOL
CrcClassTest_custom_crc32_other(void *context,

const struct REDA_Buffer *buf,
unsigned int buf_length,
union RTPS_CrcChecksum *checksum)

{
RTI_UINT32 crc = 0;
unsigned char *data = (unsigned char *) buf[0].pointer;
RTI_UINT32 length = buf[0].length;
int k;

UNUSED_ARG(k);
UNUSED_ARG(context);
UNUSED_ARG(buf_length);

for (k = 0; k < length; k++)
(continues on next page)

4.7. Transports 59

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
{

crc = _mm_crc32_u8(crc, data[k]);
}

checksum->checksum32 = crc;

return RTI_TRUE;
}

int main(int argc,char *argv)
{

struct DDS_DomainParticipantQos dp_qos =
DDS_DomainParticipantQos_INITIALIZER;

struct RTPS_InterfaceFactoryProperty *rtps_property = NULL;
DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;
struct RTPS_InterfaceFactoryProperty *rtps_property = NULL;

/* Instantiate a RTPS_CrcClass for your custom function*/
struct RTPS_ChecksumClass custom_crc32 =
{

RTPS_CHECKSUM_CLASSID_BUILTIN32, /*class_id*/
NULL, /*context*/
CrcClassTest_custom_crc32_other /*Custom function*/

};

/* get the Domain Participant factory and registry*/
factory = DDS_DomainParticipantFactory_get_instance();

registry = DDS_DomainParticipantFactory_get_registry
(DDS_DomainParticipantFactory_get_instance());

/* unregister the RTPS transport */
if (!RT_Registry_unregister(registry, NETIO_DEFAULT_RTPS_NAME,

NULL,NULL))
{

printf("failed to unregister rtps\n");
return 0;

}

rtps_property = (struct RTPS_InterfaceFactoryProperty *)
malloc(sizeof(struct RTPS_InterfaceFactoryProperty));

if (rtps_property == NULL)
{

printf("failed to allocate rtps properties\n");
return 0;

}

(continues on next page)

4.7. Transports 60

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)

/* the rtps property takes the structure with the custom
* function
*/

*rtps_property = RTPS_INTERFACE_FACTORY_DEFAULT;
rtps_property->checksum.allow_builtin_override = RTI_TRUE;
rtps_property->checksum.builtin_checksum32_class = custom_crc32;

/* register the RTPS transport */
if (!RT_Registry_register(registry, NETIO_DEFAULT_RTPS_NAME,

RTPS_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)rtps_property,
NULL))

{
printf("failed to register rtps\n");
return 0;

}

/* modify the domain participant qos */
dp_qos.protocol.compute_crc = DDS_BOOLEAN_TRUE;
dp_qos.protocol.check_crc = DDS_BOOLEAN_TRUE;
dp_qos.protocol.require_crc = DDS_BOOLEAN_TRUE;
dp_qos.protocol.computed_crc_kind = DDS_CHECKSUM_BUILTIN32;
dp_qos.protocol.allowed_crc_mask = DDS_CHECKSUM_BUILTIN32;

/* use the qos and the factory to create a participant */

DDS_DomainParticipantFactory_create_participant(
factory, domain_id,&dp_qos, NULL,DDS_STATUS_MASK_NONE);

}

4.7.6 INTRA Transport

The builtin intra participant transport (INTRA) is a transport that bypasses RTPS and reduces
the number of data-copies from three to one for data published by a DataWriter to a DataReader
within the same participant. When a sample is published, it is copied directly to the data reader’s
cache (if there is space). This transport is used for communication between DataReaders and
DataWriters created within the same participant by default.

Please refer to Threading Model for important details regarding application constraints when using
this transport.

4.7. Transports 61

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Registering the INTRA Transport

The builtin INTRA transport is a RTI Connext Micro component that is automatically registered
when the DomainParticipantFactory_get_instance() method is called. By default, data published
by a DataWriter is sent to all DataReaders within the same participant using the INTRA transport.

In order to prevent the INTRA transport from being used it is necessary to remove it as a transport
and a user-data transport. The following code shows how to only use the builtin UDP transport
for user-data.

struct DDS_DomainParticipantQos dp_qos =
DDS_DomainParticipantQos_INITIALIZER;

REDA_StringSeq_set_maximum(&dp_qos.transports.enabled_transports,1);
REDA_StringSeq_set_length(&dp_qos.transports.enabled_transports,1);
*REDA_StringSeq_get_reference(&dp_qos.transports.enabled_transports,0) =

REDA_String_dup(NETIO_DEFAULT_UDP_NAME);

/* Use only unicast for user-data traffic. */
REDA_StringSeq_set_maximum(&dp_qos.user_traffic.enabled_transports,1);
REDA_StringSeq_set_length(&dp_qos.user_traffic.enabled_transports,1);
*REDA_StringSeq_get_reference(&dp_qos.user_traffic.enabled_transports,0) =

REDA_String_dup("_udp://");

Note that the INTRA transport is never used for discovery traffic internally. It is not possible to
disable matching of DataReaders and DataWriters within the same participant.

Reliability and Durability

Because a sample sent over INTRA bypasses the RTPS reliability and DDS durability queue, the
Reliability and Durability Qos policies are not supported by the INTRA transport. However, by
creating all the DataReaders before the DataWriters durability is not required.

Threading Model

The INTRA transport does not create any threads. Instead, a DataReader receives data over the
INTRA transport in the context of the DataWriter ’s send thread.

This model has two important limitations:

• Because a DataReader ’s on_data_available()

• listener is called in the context of the DataWriter ’s send thread, a DataReader may po-
tentially process data at a different priority than intended (the DataWriter ’s). While it is
generally not recommended to process data in a DataReader ’s on_data_available() listener,
it is particularly important to not do so when using the INTRA transport. Instead, use a
DDS WaitSet or a similar construct to wake up a separate thread to process data.

• Because a DataReader ’s on_data_available()

4.7. Transports 62

../../../../doc/api_c/html/group__DDSDomainParticipantFactoryModule.html
../../../api_c/html/group__DDSReliabilityQosModule.html
../../../api_c/html/group__DurabilityQosPolicyModule.html
../../../../doc/api_c/html/structDDS__DataReaderListener.html
../../../../doc/api_c/html/structDDS__DataReaderListener.html
../../../../doc/api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• listener is called in the context of the DataWriter ’s send thread, any method called in the
on_data_available() listener is done in the context of the DataWriter ’s stack. Calling a
DataWriter write() in the callback could result in an infinite call stack. Thus, it is recom-
mended not to call in this listener any Connext Micro APIs that write data.

4.7.7 UDP Transport

This section describes the builtin RTI Connext Micro UDP transport and how to configure it.

The builtin UDP transport (UDP) is a fairly generic UDPv4 transport. Connext Micro supports
the following functionality:

• Unicast

• Manual configuration of network interfaces

• Allow/Deny lists to select which network interfaces can be used

• Configuration of receive threads

• Simple NAT configuration

• Multicast

• Automatic detection of available network interfaces

Registering the UDP Transport

The builtin UDP transport is a Connext Micro component that is automatically registered when
the DDS_DomainParticipantFactory_get_instance() method is called. To change the UDP con-
figuration, it is necessary to first unregister the transport as shown below:

DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;

factory = DDS_DomainParticipantFactory_get_instance();
registry = DDS_DomainParticipantFactory_get_registry(factory);

/* The builtin transport does not return any properties (3rd param) or
* listener (4th param)
*/

if (!RT_Registry_unregister(registry, "_udp", NULL, NULL))
{

/* ERROR */
}

When a component is registered, the registration takes the properties and a listener as the 3rd and
4th parameters. In general, it is up to the caller to manage the memory for the properties and the
listeners. There is no guarantee that a component makes a copy.

The following code-snippet shows how to register the UDP transport with new parameters.

4.7. Transports 63

../../../../doc/api_c/html/structDDS__DataReaderListener.html
../../../../doc/api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

struct UDP_InterfaceFactoryProperty *udp_property = NULL;

/* Allocate a property structure for the heap, it must be valid as long
* as the component is registered
*/
udp_property = (struct UDP_InterfaceFactoryProperty *)

malloc(sizeof(struct UDP_InterfaceFactoryProperty));
if (udp_property != NULL)
{

*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* Only allow network interface "eth0" to be used;
*/
REDA_StringSeq_set_maximum(&udp_property->allow_interface, 1);
REDA_StringSeq_set_length(&udp_property->allow_interface, 1);

*REDA_StringSeq_get_reference(&udp_property->allow_interface, 0) =
REDA_String_dup("eth0");

/* Register the transport again, using the builtin name
*/

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),

(struct RT_ComponentFactoryProperty*)udp_property,
NULL))

{
/* ERROR */

}
}
else
{

/* ERROR */
}

It should be noted that the UDP transport can be registered with any name, but all transport QoS
policies and initial peers must refer to this name. If a transport is referred to and it does not exist,
an error message is logged.

It is possible to register multiple UDP transports with a DomainParticipantFactory. It is also
possible to use different UDP transports within the same DomainParticipant when multiple network
interfaces are available (either physical or virtual).

When UDP transformations are enabled, this feature is always enabled and determined by the
allow_interface and deny_interface lists. If any of the lists are non-empty the UDP transports will
bind each receive socket to the specific interfaces.

When UDP transformations are not enabled, this feature is determined by the value of the en-
able_interface_bind. If this value is set to RTI_TRUE and the allow_interface and/or deny_in-
terface properties are non-empty, the receive sockets are bound to specific interfaces.

4.7. Transports 64

../../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Threading Model

The UDP transport creates one receive thread for each unique UDP receive resource. By default,
two UDP threads are created:

• A multicast receive thread for discovery data (assuming multicast is available and enabled)

• A unicast receive thread for discovery data

• A unicast receive thread for user data

Additional threads may be created depending on the transport configuration for a DomainPartic-
ipant, DataReader, and DataWriter. The UDP transport creates threads based on the following
criteria:

• Each unique unicast port creates a new thread

• Each unique multicast address and port creates a new thread

For example, if a DataReader specifies its own multicast receive address, a new receive thread will
be created.

Configuring UDP Receive Threads

All threads in the UDP transport share the same thread settings. It is important to note that all the
UDP properties must be set before the UDP transport is registered. Connext Micro preregisters the
UDP transport with default settings when the DomainParticipantFactory is initialized. To change
the UDP thread settings, use the following code.

struct UDP_InterfaceFactoryProperty *udp_property = NULL;
struct UDP_InterfaceFactoryProperty udp_property =

UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* Allocate a property structure for the heap, it must be valid as long
* as the component is registered
*/
udp_property = (struct UDP_InterfaceFactoryProperty *)

malloc(sizeof(struct UDP_InterfaceFactoryProperty));
*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* Please refer to OSAPI_ThreadOptions for possible options */
udp_property->recv_thread.options = ...;

/* The stack-size is platform dependent, it is passed directly to the OS */
udp_property->recv_thread.stack_size =

/* The priority is platform dependent, it is passed directly to the OS */
udp_property->recv_thread.priority =

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)udp_property,

(continues on next page)

4.7. Transports 65

../../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
NULL))

{
/* ERROR */

}

UDP Configuration

All the configuration of the UDP transport is done via the UDP_InterfaceFactoryProperty.

allow_interface

The allow_interface string sequence determines which interfaces are allowed to be used for com-
munication. Each string element is the name of a network interface, such as “en0” or “eth1”.

If this sequence is empty, all interface names pass the allow test. The default value is empty. Thus,
all interfaces are allowed.

deny_interface

The deny_interface string sequence determines which interfaces are not allowed to be used for
communication. Each string element is the name of a network interface, such as “en0” or “eth1”.

If this sequence is empty, the test is false. That is, the interface is allowed. Note that the deny list
is checked after the allow list. Thus, if an interface appears in both, it is denied. The default value
is empty, thus no interfaces are denied.

max_send_buffer_size

The max_send_buffer_size is the maximum size of the send socket buffer and it must be at least
as big as the largest sample. Typically, this buffer should be a multiple of the maximum number
of samples that can be sent at any given time. The default value is 256KB.

max_receive_buffer_size

The max_receive_buffer_size is the maximum size of the receive socket buffer and it must be at
least as big as the largest sample. Typically, this buffer should be a multiple of the maximum
number of samples that can be received at any given time. The default value is 256KB.

4.7. Transports 66

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

max_message_size

The max_message_size is the maximum size of the message which can be received, including any
packet overhead. The default value is 65507 bytes.

multicast_ttl

The multicast_ttl is the Multicast Time-To-Live (TTL). This value is only used for multicast. It
limits the number of hops a packet can pass through before it is dropped by a router. The default
value is 1.

nat

Connext Micro supports firewalls with NAT. However, this feature has limited use and only supports
translation between a private and public IP address. UDP ports are not translated. Furthermore,
because Connext Micro does not support any hole punching technique or WAN server, this feature
is only useful when the private and public address mapping is static and known in advance. For
example, to test between an Android emulator and the host, the following configuration can be
used:

UDP_NatEntrySeq_set_maximum(&udp_property->nat,2);
UDP_NatEntrySeq_set_length(&udp_property->nat,2);

/* Translate the local emulator eth0 address 10.10.2.f:7410 to
* 127.0.0.1:7410. This ensures that the address advertised by the
* emulator to the host machine is the host's loopback interface, not
* the emulator's host interface
*/
UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->

local_address.kind = NETIO_ADDRESS_KIND_UDPv4;
UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->

local_address.port = 7410;
UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->

local_address.value.ipv4.address = 0x0a00020f;

UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->
public_address.kind = NETIO_ADDRESS_KIND_UDPv4;

UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->
public_address.port = 7410;

UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->
public_address.value.ipv4.address = 0x7f000001;

/* Translate the local emulator eth0 address 10.10.2.f:7411 to
* 127.0.0.1:7411. This ensures that the address advertised by the
* emulator to the host machine is the host's loopback interface
*/
UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->

local_address.kind = NETIO_ADDRESS_KIND_UDPv4;
(continues on next page)

4.7. Transports 67

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->

local_address.port = 7411;
UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->

local_address.value.ipv4.address = 0x0a00020f;

UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
public_address.kind = NETIO_ADDRESS_KIND_UDPv4;

UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
public_address.port = 7411;

UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
public_address.value.ipv4.address = 0x7f000001;

if_table

The if_table provides a method to manually configure which interfaces are available for use; for
example, when using IP stacks that do not support reading interface lists. The following example
shows how to manually configure the interfaces.

/* The arguments to the UDP_InterfaceTable_add_entry functions are:
* The if_table itself
* The network address of the interface
* The netmask of the interface
* The name of the interface
* Interface flags. Valid flags are:
* UDP_INTERFACE_INTERFACE_UP_FLAG - The interface is UP
* UDP_INTERFACE_INTERFACE_MULTICAST_FLAG - The interface supports multicast
*/

if (!UDP_InterfaceTable_add_entry(&udp_property->if_table,
0x7f000001,0xff000000,"loopback",
UDP_INTERFACE_INTERFACE_UP_FLAG |
UDP_INTERFACE_INTERFACE_MULTICAST_FLAG))

{
/* Error */

}

4.7. Transports 68

../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

multicast_interface

The multicast_interface may be used to select a particular network interface to be used to send
multicast packets. The default value is any interface (that is, the OS selects the interface).

is_default_interface

The is_default_interface flag is used to indicate that this Connext Micro network transport shall
be used if no other transport is found. The default value is RTI_TRUE.

disable_auto_interface_config

Normally, the UDP transport will try to read out the interface list (on platforms that support
it). Setting disable_auto_interface_config to RTI_TRUE will prevent the UDP transport from
reading the interface list.

Note that in Connext Cert this value is ignored and interfaces must always be configured manually.

recv_thread

The recv_thread field is used to configure all the receive threads. Please refer to Threading Model
for details.

enable_interface_bind

When this is set to TRUE the UDP transport binds each receive port to a specific interface when
the allow_interface/deny_interface lists are non-empty. This allows multiple UDP transports to
be used by a single DomainParticipant at the expense of an increased number of threads. This
property is ignored when transformations are enabled and the allow_interface/deny_interface lists
are non-empty.

source_rules

Rules for how to transform received UDP payloads based on the source address.

4.7. Transports 69

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

destination_rules

Rules for how to transform sent UDP payloads based on the destination address.

transform_udp_mode

Determines how regular UDP is supported when transformations are supported. When transforma-
tions are enabled the default value is UDP_TRANSFORM_UDP_MODE_DISABLED.

transform_locator_kind

The locator to use for locators that have transformations. When transformation rules have been
enabled, they are announced as a vendor specific locator. This property overrides this value.

NOTE: Changing this value may prevent communication.

UDP Transformations

The UDP transform feature enables custom transformation of incoming and outgoing UDP payloads
based on transformation rules between a pair of source and destination IP addresses. Some examples
of transformations are encrypted data or logging.

This section explains how to implement and use transformations in an application and is organized
as follows:

• Overview

• Creating a Transformation Library

• Creating Transformation Rules

• Interoperability

• Error Handling

• Example Code

• Examples

• OS Configuration

4.7. Transports 70

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Overview

The UDP transformation feature enables custom transformation of incoming and outgoing UDP
payloads. For the purpose of this section, a UDP payload is defined as a sequence of octets sent or
received as a single UDP datagram excluding UDP headers – typically UDP port numbers – and
trailers, such as the optional used checksum.

An outgoing payload is the UDP payload passed to the network stack. The transformation feature
allows a custom transformation of this payload just before it is sent. The UDP transport receives
payloads to send from an upstream layer. In Connext Micro this layer is typically RTPS, which
creates payloads containing one or more RTPS messages. The transformation feature enables
transformation of the entire RTPS payload before it is passed to the network stack.

The same RTPS payload may be sent to one or more locators. A locator identifies a destination
address, such as an IPv4 address, a port, such as a UDP port, and a transport kind. The address
and port are used by the UDP transport to reach a destination. However, only the destination
address is used to determine which transformation to apply.

An incoming payload is the UDP payload received from the network stack. The transformation
feature enables transformation of the UDP payload received from the network stack before it is
passed to the upstream interface, typically RTPS. The UDP transport only receives payloads des-
tined for one of its network interface addresses, but may receive UDP payloads destined for many
different ports. The transformation does not take a port into account, only the source address. In
Connext Micro the payload is typically a RTPS payload containing one or more RTPS messages.

UDP transformations are registered with Connext Micro and used by the UDP transport to deter-
mine how to transform payloads based on a source or destination address. Please refer to Creating
a Transformation Library for details on how to implement transformations and Creating Transfor-
mation Rules for how to add rules.

Transformations are local resources. There is no exchange between different UDP transports regard-
ing what a transformation does to a payload. This is considered a-priori knowledge and depends on
the implementation of the transformation. Any negotiation of e.g. keys must be handled before the
UDP transport is registered. Thus, if a sender and receiver do not apply consistent rules, they may
not be able to communicate, or incorrect data may result. Note that while information is typically
in the direction from a DataWriter to a DataReader, a reliable DataReader also send protocol data
to a DataWriter. These messages are also transformed.

Network Interface Selection

When a DomainParticipant is created, it first creates an instance of each transport configured
in the DomainParticipantQos::transports QoS policy. Thus, each UDP transport registered with
Connext Micro must have a unique name (up to 7 characters). Each registered transport can be
configured to use all or some of the available interfaces using the allow_interface and deny_interface
properties. The registered transports may now be used for either discovery data (specified in
DomainParticipantQos::discovery), user_traffic (specified in DomainParticipantQos::user_traffic)
or both. The DomainParticipant also queries the transport for which addresses it is capable of
sending to.

4.7. Transports 71

../../../api_c/html/structDDS__DomainParticipantQos.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structDDS__DomainParticipantQos.html
../../../api_c/html/structDDS__DomainParticipantQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

When a participant creates multiple instances of the UDP transport, it is important that instances
use non-overlapping networking interface resources.

Data Reception

Which transport to use for discovery data is determined by the DomainParticipantQos::discovery
QoS policy. For each transport listed, theDomainParticipant reserves a network address to listen to.
This network address is sent as part of the discovery data and is used by other DomainParticipants
as the address to send discovery data for this DomainParticipant. Because a UDP transformation
only looks at source and destination addresses, if different transformations are needed for discovery
and user-data, different UDP transport registrations must be used and hence different network
interfaces.

Data Transmission

Which address to send data to is based on the locators received as part of discovery and the peer
list.

Received locators are analyzed and a transport locally registered with a DomainParticipant is
selected based on the locator kind, address and mask. The first matching transport is selected. If
a matching transport is not found, the locator is discarded.

NOTE: A transport is not a matching criteria at the same level as a QoS policy. If a discovered
entity requests user data on a transport that doesn’t exist, it is not unmatched.

The peer list, as specified by the application, is a list of locators to send participant discovery
announcements to. If the transport to use is not specified, e.g. “udp1@192.168.1.1”, but instead
“192.168.1.1”, then all transports that understand this address will send to it. Thus, in this case
the latter is used, and two different UDP transports are registered; they will both send to the same
address. However, one transport may send transformed data and the other may not depending on
the destination address.

Creating a Transformation Library

The transformation library is responsible for creating and performing transformations. Note that
a library is a logical concept and does not refer to an actual library in, for example, UNIX. A
library in this context is a collection of routines that together creates, manages, and performs
transformations. How these routines are compiled and linked with an application using Connext
Micro is out of scope of this section.

The transformation library must be registered with Connext Micro’s run-time and must implement
the required interfaces. This ensures proper life-cycle management of transformation resources as
well as clear guidelines regarding concurrency and memory management.

From Connext Micro’s run-time point of view, the transformation library must implement methods
so that:

• A library can be initialized.

4.7. Transports 72

../../../api_c/html/structDDS__DomainParticipantQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• A library can be instantiated.

• An instance of the library performs and manages transformations.

The first two tasks are handled by Connext Micro’s run-time factory interface which is common for
all libraries managed by Connext Micro. The third task is handled by the transformation interface,
which is specific to UDP transformations.

The following describes the relationship between the different interfaces:

• A library is initialized once when it is registered with Connext Micro.

• A library is finalized once when it is unregistered from Connext Micro.

• Multiple library instances can be created. If a library is used twice, for example registered with
two different transports, two different library contexts are created using the factory interface.
Connext Micro assumes that concurrent access to two different instances is allowed.

• Different instances of the library can be deleted independently. An instance is deleted using
the factory interface.

• A library instance creates specific source or destination transformations. Each transformation
is expected to transform a payload to exactly one destination or from one source.

The following relationship is true between the UDP transport and a UDP transformation library:

• Each registered UDP transport may make use of one or more UDP transformation libraries.

• A DDS DomainParticipant creates one instance of each registered UDP transport.

• Each instance of the UDP transport creates one instance of each enabled transformation
library registered with the UDP transport.

• Each Transformation rule created by the UDP transport creates one send or one receive
transformation.

Creating Transformation Rules

Transformation rules decide how a payload should be transformed based on either a source or
destination address. Before a UDP transport is registered, it must be configured with the trans-
formation libraries to use, as well as which library to use for each source and destination address.
For each UDP payload sent or received, an instance of the UDP transport searches for a matching
source or destination rule to determine which transformation to apply.

The transformation rules are added to the UDP_InterfaceFactoryProperty before registration takes
place.

If no transformation rules have been configured, all payloads are treated as regular UDP packets.

If no send rules have been asserted, the payload is sent as is. If all outgoing messages are to be
transformed, a single entry is sufficient (address = 0, mask = 0).

If no receive rules have been asserted, it is passed upstream as is. If all incoming messages are to
be transformed, a single entry is sufficient (address = 0, mask = 0).

If no matching rule is found, the packet is dropped and an error is logged.

4.7. Transports 73

../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

NOTE: UDP_InterfaceFactoryProperty is immutable after the UDP transport has been registered.

Interoperability

When the UDP transformations has enabled at least one transformation, it will only inter-operate
with another UDP transport which also has at least one transformation.

UDP transformations does not interoperate with RTI Connext Professional.

Error Handling

The transformation rules are applied on a local basis and correctness is based on configuration.
It is not possible to detect that a peer participant is configured for different behavior and errors
cannot be detected by the UDP transport itself. However, the transformation interface can return
errors which are logged.

Example Code

Example Header file MyUdpTransform.h:

#ifndef MyUdpTransform_h
#define MyUdpTransform_h

#include "rti_me_c.h"
#include "netio/netio_udp.h"
#include "netio/netio_interface.h"

struct MyUdpTransformFactoryProperty
{

struct RT_ComponentFactoryProperty _parent;
};

extern struct RT_ComponentFactoryI*
MyUdpTransformFactory_get_interface(void);

extern RTI_BOOL
MyUdpTransformFactory_register(RT_Registry_T *registry,

const char *const name,
struct MyUdpTransformFactoryProperty *property);

extern RTI_BOOL
MyUdpTransformFactory_unregister(RT_Registry_T *registry,

const char *const name,
struct MyUdpTransformFactoryProperty **);

#endif

Example Source file MyUdpTransform.c:

4.7. Transports 74

../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

/*ce
* \file
* \defgroup UDPTransformExampleModule MyUdpTransform
* \ingroup UserManuals_UDPTransform
* \brief UDP Transform Example
*
* \details
*
* The UDP interface is implemented as a NETIO interface and NETIO interface
* factory.
*/

/*ce \addtogroup UDPTransformExampleModule
* @{
*/

#include <stdio.h>

#include "MyUdpTransform.h"

/*ce
* \brief The UDP Transformation factory class
*
* \details
* All Transformation components must have a factory. A factory creates one
* instance of the component as needed. In the case of UDP transformations,
* \rtime creates one instance per UDP transport instance.
*/

struct MyUdpTransformFactory
{

/*ce
* \brief Base-class. All \rtime Factories must inherit from RT_ComponentFactory.
*/

struct RT_ComponentFactory _parent;

/*ce
* \brief A pointer to the properties of the factory.
*
* \details
*
* When a factory is registered with \rtime it can be registered with
* properties specific to the component. However \rtime does not
* make a copy (that would require additional methods). Furthermore, it
* may not be desirable to make a copy. Instead, this decision is
* left to the implementer of the component. \rtime does not access
* any custom properties.
*/

struct MyUdpTransformFactoryProperty *property;
};

/*ce
* \brief The custom UDP transformation class.

(continues on next page)

4.7. Transports 75

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
*
* \details
* The MyUdpTransformFactory creates one instance of this class for each
* UDP interface created. In this example one packet buffer (NETIO_Packet_T),
* is allocated and a buffer to hold the transformed data (\ref buffer)
*
* Only one transformation can be done at a time and it is synchronous. Thus,
* it is sufficient with one buffer to transform input and output per
* instance of the MyUdpTransform.
*/

struct MyUdpTransform
{

/*ce
* \brief Base-class. All UDP transforms must inherit from UDP_Transform
*/

struct UDP_Transform _parent;

/*ce \brief A reference to its own factory, if properties must be accessed
*/

struct MyUdpTransformFactory *factory;

/*ce \brief NETIO_Packet to hold a transformed payload.
*
* \details
*
* \rtime uses a NETIO_Packet_T to abstract data payload and this is
* what is being passed betweem the UDP transport and the transformation.
* The transformation must convert a payload into a NETIO_Packet. This
* is done with NETIO_Packet_initialize_from. This function saves all
* state except the payload buffer.
*/
NETIO_Packet_T packet;

/*ce \brief The payload to assign to NETIO_Packet_T
*
* \details
*
* A transformation cannot do in-place transformations because the input
* buffer may be sent multiple times (for example due to reliability).
* A transformation instance can only transform one buffer at a time
* (send or receive). The buffer must be large enough to hold a transformed
* payload. When the the transformation is created it receives a
* \ref UDP_TransformProperty. This property has the max send and
* receive buffers for transport and can be used to sise the buffer.
* Please refer to \ref UDP_InterfaceFactoryProperty::max_send_message_size
* and \ref UDP_InterfaceFactoryProperty::max_message_size.
*/

char *buffer;

/*ce \brief The maximum length of the buffer. NOTE: The buffer must
* be 1 byte larger than the largest buffer.

(continues on next page)

4.7. Transports 76

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
*/
RTI_SIZE_T max_buffer_length;

};

/*ce \brief Forward declaration of the interface implementation
*/

static struct UDP_TransformI MyUdpTransform_fv_Intf;

/*ce \brief Forward declaration of the interface factory implementation
*/

static struct RT_ComponentFactoryI MyUdpTransformFactory_fv_Intf;

/*ce \brief Method to create an instance of MyUdpTransform
*
* \param[in] factory The factory creating this instance
* \param[in] property Generic UDP_Transform properties
*
* \return A pointer to MyUdpTransform on sucess, NULL on failure.
*/
RTI_PRIVATE struct MyUdpTransform*
MyUdpTransform_create(struct MyUdpTransformFactory *factory,

const struct UDP_TransformProperty *const property)
{

struct MyUdpTransform *t;

OSAPI_Heap_allocate_struct(&t, struct MyUdpTransform);
if (t == NULL)
{

return NULL;
}

/* All component instances must initialize the parent using this
* call.
*/
RT_Component_initialize(&t->_parent._parent,

&MyUdpTransform_fv_Intf._parent,
0,
(property ? &property->_parent : NULL),
NULL);

t->factory = factory;

/* Allocate a buffer that is the larger of the send and receive
* size.
*/
t->max_buffer_length = property->max_receive_message_size;
if (property->max_send_message_size > t->max_buffer_length)
{

t->max_buffer_length = property->max_send_message_size;
}

(continues on next page)

4.7. Transports 77

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
/* Allocate 1 extra byte */
OSAPI_Heap_allocate_buffer(&t->buffer,t->max_buffer_length+1,

OSAPI_ALIGNMENT_DEFAULT);

if (t->buffer == NULL)
{

OSAPI_Heap_free_struct(t);
t = NULL;

}

return t;
}

/*ce \brief Method to delete an instance of MyUdpTransform
*
* \param[in] t Transformation instance to delete
*/
RTI_PRIVATE void
MyUdpTransform_delete(struct MyUdpTransform *t)
{

OSAPI_Heap_free_buffer(t->buffer);
OSAPI_Heap_free_struct(t);

}

/*ce \brief Method to create a transformation for an destination address
*
* \details
*
* For each asserted destination rule a transform is created by the transformation
* instance. This method determines how a UDP payload is transformed before
* it is sent to an address that matches destination & netmask.
*
* \param[in] udptf UDP Transform instance that creates the transformation
* \param[out] context Pointer to a transformation context
* \param[in] destination Destination address for the transformation
\param[in] netmask The netmask to apply to this destination.

* \param[in] user_data The user_data the rule was asserted with
* \param[in] property UDP transform specific properties
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_create_destination_transform(

UDP_Transform_T *const udptf,
void **const context,
const struct NETIO_Address *const destination,
const struct NETIO_Netmask *const netmask,
void *user_data,
const struct UDP_TransformProperty *const property,
RTI_INT32 *const ec)

(continues on next page)

4.7. Transports 78

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
{

struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
UNUSED_ARG(self);
UNUSED_ARG(destination);
UNUSED_ARG(user_data);
UNUSED_ARG(property);
UNUSED_ARG(ec);
UNUSED_ARG(netmask);

/* Save the user-data to determine which transform to apply later */
context = (void)user_data;

return RTI_TRUE;
}

/*ce \brief Method to delete a transformation for an destination address
*
*
* \param[in] udptf UDP Transform instance that created the transformation
* \param[out] context Pointer to a transformation context
* \param[in] destination Destination address for the transformation
* \param[in] netmask The netmask to apply to this destination.
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_delete_destination_transform(UDP_Transform_T *const udptf,

void *context,
const struct NETIO_Address *const destination,
const struct NETIO_Netmask *const netmask,
RTI_INT32 *const ec)

{
UNUSED_ARG(udptf);
UNUSED_ARG(context);
UNUSED_ARG(destination);
UNUSED_ARG(ec);
UNUSED_ARG(netmask);

return RTI_TRUE;
}

/*ce \brief Method to create a transformation for an source address
*
* \details
*
* For each asserted source rule a transform is created by the transformation
* instance. This method determines how a UDP payload is transformed when
* it is received from an address that matches source & netmask.
*
* \param[in] udptf UDP Transform instance that creates the transformation

(continues on next page)

4.7. Transports 79

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
* \param[out] context Pointer to a transformation context
* \param[in] source Destination address for the transformation
\param[in] netmask The netmask to apply to this destination.

* \param[in] user_data The user_data the rule was asserted with
* \param[in] property UDP transform specific properties
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_create_source_transform(UDP_Transform_T *const udptf,

void **const context,
const struct NETIO_Address *const source,
const struct NETIO_Netmask *const netmask,
void *user_data,
const struct UDP_TransformProperty *const property,
RTI_INT32 *const ec)

{
struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
UNUSED_ARG(self);
UNUSED_ARG(source);
UNUSED_ARG(user_data);
UNUSED_ARG(property);
UNUSED_ARG(ec);
UNUSED_ARG(netmask);

context = (void)user_data;

return RTI_TRUE;
}

/*ce \brief Method to delete a transformation for an source address
*
*
* \param[in] udptf UDP Transform instance that created the transformation
* \param[out] context Pointer to a transformation context
* \param[in] source Source address for the transformation
* \param[in] netmask The netmask to apply to this destination.
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_delete_source_transform(UDP_Transform_T *const udptf,

void *context,
const struct NETIO_Address *const source,
const struct NETIO_Netmask *const netmask,
RTI_INT32 *const ec)

{
UNUSED_ARG(udptf);
UNUSED_ARG(context);

(continues on next page)

4.7. Transports 80

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
UNUSED_ARG(source);
UNUSED_ARG(ec);
UNUSED_ARG(netmask);

return RTI_TRUE;
}

/*ce \brief Method to transform data based on a source address
*
* \param[in] udptf UDP_Transform_T that performs the transformation
* \param[in] context Reference to context created by \ref MyUdpTransform_create_

↪→source_transform
* \param[in] source Source address for the transformation
* \param[in] in_packet The NETIO packet to transform
* \param[out] out_packet The transformed NETIO packet
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_transform_source(UDP_Transform_T *const udptf,

void *context,
const struct NETIO_Address *const source,
const NETIO_Packet_T *const in_packet,
NETIO_Packet_T **out_packet,
RTI_INT32 *const ec)

{
struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
char *buf_ptr,*buf_end;
char *from_buf_ptr,*from_buf_end;
UNUSED_ARG(context);
UNUSED_ARG(source);

*ec = 0;

/* Assigned the transform buffer to the outgoing packet
* saving state from the incoming packet. In this case the
* outgoing length is the same as the incoming. How to buffer
* is filled in is of no interest to \rtime. All it cares about is
* where it starts and where it ends.
*/

if (!NETIO_Packet_initialize_from(
&self->packet,in_packet,
self->buffer,self->max_buffer_length,
0,NETIO_Packet_get_payload_length(in_packet)))

{
return RTI_FALSE;

}

*out_packet = &self->packet;

(continues on next page)

4.7. Transports 81

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
buf_ptr = NETIO_Packet_get_head(&self->packet);
buf_end = NETIO_Packet_get_tail(&self->packet);
from_buf_ptr = NETIO_Packet_get_head(in_packet);
from_buf_end = NETIO_Packet_get_tail(in_packet);

/* Perform a transformation based on the user-data */
while (from_buf_ptr < from_buf_end)
{

if (context == (void*)1)
{

*buf_ptr = ~(*from_buf_ptr);
}
else if (context == (void*)2)
{

*buf_ptr = (*from_buf_ptr)+1;
}

++buf_ptr;
++from_buf_ptr;

}

return RTI_TRUE;
}

/*ce \brief Method to transform data based on a destination address
*
* \param[in] udptf UDP_Transform_T that performs the transformation
* \param[in] context Reference to context created by \ref MyUdpTransform_create_

↪→destination_transform
* \param[in] destination Source address for the transformation
* \param[in] in_packet The NETIO packet to transform
* \param[out] packet_out The transformed NETIO packet
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_transform_destination(UDP_Transform_T *const udptf,

void *context,
const struct NETIO_Address *const destination,
const NETIO_Packet_T *const in_packet,
NETIO_Packet_T **packet_out,
RTI_INT32 *const ec)

{
struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
char *buf_ptr,*buf_end;
char *from_buf_ptr,*from_buf_end;
UNUSED_ARG(context);
UNUSED_ARG(destination);

*ec = 0;

(continues on next page)

4.7. Transports 82

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)

if (!NETIO_Packet_initialize_from(
&self->packet,in_packet,
self->buffer,8192,
0,NETIO_Packet_get_payload_length(in_packet)))

{
return RTI_FALSE;

}

*out_packet = &self->packet;

buf_ptr = NETIO_Packet_get_head(&self->packet);
buf_end = NETIO_Packet_get_tail(&self->packet);
from_buf_ptr = NETIO_Packet_get_head(in_packet);
from_buf_end = NETIO_Packet_get_tail(in_packet);

while (from_buf_ptr < from_buf_end)
{

if (context == (void*)1)
{

*buf_ptr = ~(*from_buf_ptr);
}
else if (context == (void*)2)
{

*buf_ptr = (*from_buf_ptr)-1;
}

++buf_ptr;
++from_buf_ptr;

}

return RTI_TRUE;
}

/*ce \brief Definition of the transformation interface
*/
RTI_PRIVATE struct UDP_TransformI MyUdpTransform_fv_Intf =
{

RT_COMPONENTI_BASE,
MyUdpTransform_create_destination_transform,
MyUdpTransform_create_source_transform,
MyUdpTransform_transform_source,
MyUdpTransform_transform_destination,
MyUdpTransform_delete_destination_transform,
MyUdpTransform_delete_source_transform

};

/*ce \brief Method called by \rtime to create an instance of transformation
*/
MUST_CHECK_RETURN RTI_PRIVATE RT_Component_T*
MyUdpTransformFactory_create_component(struct RT_ComponentFactory *factory,

(continues on next page)

4.7. Transports 83

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
struct RT_ComponentProperty *property,
struct RT_ComponentListener *listener)

{
struct MyUdpTransform *t;
UNUSED_ARG(listener);

t = MyUdpTransform_create(
(struct MyUdpTransformFactory*)factory,
(struct UDP_TransformProperty*)property);

return &t->_parent._parent;
}

/*ce \brief Method called by \rtime to delete an instance of transformation
*/
RTI_PRIVATE void
MyUdpTransformFactory_delete_component(

struct RT_ComponentFactory *factory,
RT_Component_T *component)

{
UNUSED_ARG(factory);

MyUdpTransform_delete((struct MyUdpTransform*)component);
}

/*ce \brief Method called by \rtime when a factory is registered
*/
MUST_CHECK_RETURN RTI_PRIVATE struct RT_ComponentFactory*
MyUdpTransformFactory_initialize(struct RT_ComponentFactoryProperty* property,

struct RT_ComponentFactoryListener *listener)
{

struct MyUdpTransformFactory *fac;
UNUSED_ARG(property);
UNUSED_ARG(listener);

OSAPI_Heap_allocate_struct(&fac,struct MyUdpTransformFactory);

fac->_parent._factory = &fac->_parent;
fac->_parent.intf = &MyUdpTransformFactory_fv_Intf;
fac->property = (struct MyUdpTransformFactoryProperty*)property;

return &fac->_parent;
}

/*ce \brief Method called by \rtime when a factory is unregistered
*/
RTI_PRIVATE void
MyUdpTransformFactory_finalize(struct RT_ComponentFactory *factory,

struct RT_ComponentFactoryProperty **property,
struct RT_ComponentFactoryListener **listener)

{

(continues on next page)

4.7. Transports 84

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
struct MyUdpTransformFactory *fac =

(struct MyUdpTransformFactory*)factory;

UNUSED_ARG(property);
UNUSED_ARG(listener);

if (listener != NULL)
{

*listener = NULL;
}

if (property != NULL)
{

property = (struct RT_ComponentFactoryProperty)fac->property;
}

OSAPI_Heap_free_struct(factory);

return;
}

/*ce \brief Definition of the factory interface
*/
RTI_PRIVATE struct RT_ComponentFactoryI MyUdpTransformFactory_fv_Intf =
{

UDP_INTERFACE_INTERFACE_ID,
MyUdpTransformFactory_initialize,
MyUdpTransformFactory_finalize,
MyUdpTransformFactory_create_component,
MyUdpTransformFactory_delete_component,
NULL

};

struct RT_ComponentFactoryI*
MyUdpTransformFactory_get_interface(void)
{

return &MyUdpTransformFactory_fv_Intf;
}

/*ce \brief Method to register this transformation in a registry
*/
RTI_BOOL
MyUdpTransformFactory_register(RT_Registry_T *registry,

const char *const name,
struct MyUdpTransformFactoryProperty *property)

{
return RT_Registry_register(registry, name,

MyUdpTransformFactory_get_interface(),
&property->_parent, NULL);

}

(continues on next page)

4.7. Transports 85

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
/*ce \brief Method to unregister this transformation from a registry
*/
RTI_BOOL
MyUdpTransformFactory_unregister(RT_Registry_T *registry,

const char *const name,
struct MyUdpTransformFactoryProperty **property)

{
return RT_Registry_unregister(registry, name,

(struct RT_ComponentFactoryProperty**)property,
NULL);

}

/*! @} */

Example configuration of rules:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "common.h"

void
MyAppApplication_help(char *appname)
{

printf("%s [options]\n", appname);
printf("options:\n");
printf("-h - This text\n");
printf("-domain <id> - DomainId (default: 0)\n");
printf("-udp_intf <intf> - udp interface (no default)\n");
printf("-peer <address> - peer address (no default)\n");
printf("-count <count> - count (default -1)\n");
printf("-sleep <ms> - sleep between sends (default 1s)\n");
printf("\n");

}

struct MyAppApplication*
MyAppApplication_create(const char *local_participant_name,

const char *remote_participant_name,
DDS_Long domain_id, char *udp_intf, char *peer,
DDS_Long sleep_time, DDS_Long count)

{
DDS_ReturnCode_t retcode;
DDS_DomainParticipantFactory *factory = NULL;
struct DDS_DomainParticipantFactoryQos dpf_qos =

DDS_DomainParticipantFactoryQos_INITIALIZER;
struct DDS_DomainParticipantQos dp_qos =

DDS_DomainParticipantQos_INITIALIZER;
DDS_Boolean success = DDS_BOOLEAN_FALSE;
struct MyAppApplication *application = NULL;

(continues on next page)

4.7. Transports 86

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
RT_Registry_T *registry = NULL;
struct UDP_InterfaceFactoryProperty *udp_property = NULL;
struct DPDE_DiscoveryPluginProperty discovery_plugin_properties =

DPDE_DiscoveryPluginProperty_INITIALIZER;
UNUSED_ARG(local_participant_name);
UNUSED_ARG(remote_participant_name);

/* Uncomment to increase verbosity level:
OSAPILog_set_verbosity(OSAPI_LOG_VERBOSITY_WARNING);

*/
application = (struct MyAppApplication *)malloc(sizeof(struct MyAppApplication));

if (application == NULL)
{

printf("failed to allocate application\n");
goto done;

}

application->sleep_time = sleep_time;
application->count = count;

factory = DDS_DomainParticipantFactory_get_instance();

if (DDS_DomainParticipantFactory_get_qos(factory,&dpf_qos) != DDS_RETCODE_OK)
{

printf("failed to get number of components\n");
goto done;

}

dpf_qos.resource_limits.max_components = 128;

if (DDS_DomainParticipantFactory_set_qos(factory,&dpf_qos) != DDS_RETCODE_OK)
{

printf("failed to increase number of components\n");
goto done;

}

registry = DDS_DomainParticipantFactory_get_registry(
DDS_DomainParticipantFactory_get_instance());

if (!RT_Registry_register(registry, DDSHST_WRITER_DEFAULT_HISTORY_NAME,
WHSM_HistoryFactory_get_interface(), NULL, NULL))

{
printf("failed to register wh\n");
goto done;

}

if (!RT_Registry_register(registry, DDSHST_READER_DEFAULT_HISTORY_NAME,
RHSM_HistoryFactory_get_interface(), NULL, NULL))

{
printf("failed to register rh\n");

(continues on next page)

4.7. Transports 87

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
goto done;

}

if (!MyUdpTransformFactory_register(registry,"T0",NULL))
{

printf("failed to register T0\n");
goto done;

}

if (!MyUdpTransformFactory_register(registry,"T1",NULL))
{

printf("failed to register T0\n");
goto done;

}

/* Configure UDP transport's allowed interfaces */
if (!RT_Registry_unregister(registry, NETIO_DEFAULT_UDP_NAME, NULL, NULL))
{

printf("failed to unregister udp\n");
goto done;

}

udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof(struct UDP_InterfaceFactoryProperty));

if (udp_property == NULL)
{

printf("failed to allocate udp properties\n");
goto done;

}
*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* For additional allowed interface(s), increase maximum and length, and
set interface below:

*/
udp_property->max_send_message_size = 16384;
udp_property->max_message_size = 32768;

if (udp_intf != NULL)
{

REDA_StringSeq_set_maximum(&udp_property->allow_interface,1);
REDA_StringSeq_set_length(&udp_property->allow_interface,1);
*REDA_StringSeq_get_reference(&udp_property->allow_interface,0) =

DDS_String_dup(udp_intf);
}

/* A rule that says: For payloads received from 192.168.10.* (netmask is
* 0xffffff00), apply transformation T0.
*/

if (!UDP_TransformRules_assert_source_rule(
&udp_property->source_rules,

(continues on next page)

4.7. Transports 88

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
0xc0a80ae8,0xffffff00,"T0",(void*)2))

{
printf("Failed to assert source rule\n");
goto done;

}

/* A rule that says: For payloads sent to 192.168.10.* (netmask is
* 0xffffff00), apply transformation T0.
*/

if (!UDP_TransformRules_assert_destination_rule(
&udp_property->destination_rules,
0xc0a80ae8,0xffffff00,"T0",(void*)2))

{
printf("Failed to assert source rule\n");
goto done;

}

/* A rule that says: For payloads received from 192.168.20.* (netmask is
* 0xffffff00), apply transformation T1.
*/

if (!UDP_TransformRules_assert_source_rule(
&udp_property->source_rules,
0xc0a81465,0xffffff00,"T1",(void*)1))

{
printf("Failed to assert source rule\n");
goto done;

}

/* A rule that says: For payloads received from 192.168.20.* (netmask is
* 0xffffff00), apply transformation T1.
*/

if (!UDP_TransformRules_assert_destination_rule(
&udp_property->destination_rules,
0xc0a81465,0xffffff00,"T1",(void*)1))

{
printf("Failed to assert source rule\n");
goto done;

}

if (!RT_Registry_register(registry, NETIO_DEFAULT_UDP_NAME,
UDP_InterfaceFactory_get_interface(),

(struct RT_ComponentFactoryProperty*)udp_property, NULL))
{

printf("failed to register udp\n");
goto done;

}

DDS_DomainParticipantFactory_get_qos(factory, &dpf_qos);
dpf_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_FALSE;
DDS_DomainParticipantFactory_set_qos(factory, &dpf_qos);

(continues on next page)

4.7. Transports 89

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
if (peer == NULL)
{

peer = "127.0.0.1"; /* default to loopback */
}

if (!RT_Registry_register(registry,
"dpde",
DPDE_DiscoveryFactory_get_interface(),
&discovery_plugin_properties._parent,
NULL))

{
printf("failed to register dpde\n");
goto done;

}

if (!RT_ComponentFactoryId_set_name(&dp_qos.discovery.discovery.name,"dpde"))
{

printf("failed to set discovery plugin name\n");
goto done;

}

DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers,1);
DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers,1);
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers,0) = DDS_String_

↪→dup(peer);

DDS_StringSeq_set_maximum(&dp_qos.discovery.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qos.discovery.enabled_transports,1);

/* Use network interface 192.168.10.232 for discovery. T0 is used for
* discovery
*/
*DDS_StringSeq_get_reference(&dp_qos.discovery.enabled_transports,0) = DDS_String_

↪→dup("_udp://192.168.10.232");

DDS_StringSeq_set_maximum(&dp_qos.user_traffic.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qos.user_traffic.enabled_transports,1);

/* Use network interface 192.168.20.101 for user-data. T1 is used for
* this interface.
*/
*DDS_StringSeq_get_reference(&dp_qos.user_traffic.enabled_transports,0) = DDS_String_

↪→dup("_udp://192.168.20.101");

/* if there are more remote or local endpoints, you need to increase these limits */
dp_qos.resource_limits.max_destination_ports = 32;
dp_qos.resource_limits.max_receive_ports = 32;
dp_qos.resource_limits.local_topic_allocation = 1;
dp_qos.resource_limits.local_type_allocation = 1;
dp_qos.resource_limits.local_reader_allocation = 1;
dp_qos.resource_limits.local_writer_allocation = 1;

(continues on next page)

4.7. Transports 90

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
dp_qos.resource_limits.remote_participant_allocation = 8;
dp_qos.resource_limits.remote_reader_allocation = 8;
dp_qos.resource_limits.remote_writer_allocation = 8;

application->participant =
DDS_DomainParticipantFactory_create_participant(factory, domain_id,

&dp_qos, NULL,
DDS_STATUS_MASK_NONE);

if (application->participant == NULL)
{

printf("failed to create participant\n");
goto done;

}

sprintf(application->type_name, "HelloWorld");
retcode = DDS_DomainParticipant_register_type(application->participant,

application->type_name,
HelloWorldTypePlugin_get());

if (retcode != DDS_RETCODE_OK)
{

printf("failed to register type: %s\n", "test_type");
goto done;

}

sprintf(application->topic_name, "HelloWorld");
application->topic =

DDS_DomainParticipant_create_topic(application->participant,
application->topic_name,
application->type_name,
&DDS_TOPIC_QOS_DEFAULT, NULL,
DDS_STATUS_MASK_NONE);

if (application->topic == NULL)
{

printf("topic == NULL\n");
goto done;

}

success = DDS_BOOLEAN_TRUE;

done:

if (!success)
{

if (udp_property != NULL)
{

free(udp_property);
}
free(application);
application = NULL;

(continues on next page)

4.7. Transports 91

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
}

return application;
}

DDS_ReturnCode_t
MyAppApplication_enable(struct MyAppApplication * application)
{

DDS_Entity *entity;
DDS_ReturnCode_t retcode;

entity = DDS_DomainParticipant_as_entity(application->participant);

retcode = DDS_Entity_enable(entity);
if (retcode != DDS_RETCODE_OK)
{

printf("failed to enable entity\n");
}

return retcode;
}

void
MyAppApplication_delete(struct MyAppApplication *application)
{

DDS_ReturnCode_t retcode;
RT_Registry_T *registry = NULL;

retcode = DDS_DomainParticipant_delete_contained_entities(application->participant);
if (retcode != DDS_RETCODE_OK)
{

printf("failed to delete conteined entities (retcode=%d)\n",retcode);
}

if (DDS_DomainParticipant_unregister_type(application->participant,
application->type_name) != HelloWorldTypePlugin_get())

{
printf("failed to unregister type: %s\n", application->type_name);
return;

}

retcode = DDS_DomainParticipantFactory_delete_participant(
DDS_DomainParticipantFactory_get_instance(),
application->participant);

if (retcode != DDS_RETCODE_OK)
{

printf("failed to delete participant: %d\n", retcode);
return;

}

(continues on next page)

4.7. Transports 92

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
registry = DDS_DomainParticipantFactory_get_registry(

DDS_DomainParticipantFactory_get_instance());

if (!RT_Registry_unregister(registry, "dpde", NULL, NULL))
{

printf("failed to unregister dpde\n");
return;

}
if (!RT_Registry_unregister(registry, DDSHST_READER_DEFAULT_HISTORY_NAME, NULL,␣

↪→NULL))
{

printf("failed to unregister rh\n");
return;

}
if (!RT_Registry_unregister(registry, DDSHST_WRITER_DEFAULT_HISTORY_NAME, NULL,␣

↪→NULL))
{

printf("failed to unregister wh\n");
return;

}

free(application);

DDS_DomainParticipantFactory_finalize_instance();
}

Examples

The following examples illustrate how this feature can be used in a system with a mixture of
different types of UDP transport configurations.

For the purpose of the examples, the following terminology is used:

• Plain communication – No transformations have been applied.

• Transformed User Data – Only the user-data is transformed, discovery is plain.

• Transformed Discovery – Only the discovery data is transformed, user-data is plain.

• Transformed Data – Both discovery and user-data are transformed. Unless stated otherwise
the transformations are different.

A transformation Tn is a transformation such that an outgoing payload transformed with Tn can
be transformed back to its original state by applying Tn to the incoming data.

A network interface can be either physical or virtual.

4.7. Transports 93

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Plain Communication Between 2 Nodes

In this system two Nodes, A and B, are communicating with plain communication. Node A has
one interface, a0, and Node B has one interface, b0.

Node A:

• Register the UDP transport Ua with allow_interface = a0.

• DomainParticipantQos.transports.enabled_transports = “Ua”

• DomainParticipantQos.discovery.enabled_transports = ”Ua://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua://”

Node B:

• Register the UDP transport Ub with allow_interface = b0.

• DomainParticipantQos.transports.enabled_transports = “Ub”

• DomainParticipantQos.discovery.enabled_transports = ”Ub://”

• DomainParticipantQos.user_data.enabled_transports = ”Ub://”

Transformed User Data Between 2 Nodes

In this system two Nodes, A and B, are communicating with transformed user data. Node A has
two interfaces, a0 and a1, and Node B has two interfaces, b0 and b1. Since each node has only one
peer, a single transformation is sufficient.

Node A:

• Add a destination transformation T0 to Ua0, indicating that all sent data is transformed with
T0.

• Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

• Register the UDP transport Ua0 with allow_interface = a0.

• Register the UDP transport Ua1 with allow_interface = a1.

• No transformations are registered with Ua1.

• DomainParticipantQos.transports.enabled_transports = “Ua0”,”Ua1”

• DomainParticipantQos.discovery.enabled_transports = ”Ua1://”

• DomainParticipantQos.user_traffic.enabled_transports = ”Ua0://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that all sent data is transformed with
T1.

4.7. Transports 94

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• Add a source transformation T0 to Ub0, indicating that all received data is transformed with
T0.

• Register the UDP transport Ub0 with allow_interface = b0.

• Register the UDP transport Ub1 with allow_interface = b1.

• No transformations are registered with Ub1.

• DomainParticipantQos.transports.enabled_transports = “Ub0”,”Ub1”

• DomainParticipantQos.discovery.enabled_transports = ”Ub1://”

• DomainParticipantQos.user_traffic.enabled_transports = ”Ub0://”

Ua0 and Ub0 perform transformations and are used for user-data. Ua1 and Ub1 are used for
discovery and no transformations takes place.

Transformed Discovery Data Between 2 Nodes

In this system two Nodes, A and B, are communicating with transformed user data. Node A has
two interfaces, a0 and a1, and Node B has two interfaces, b0 and b1. Since each node has only one
peer, a single transformation is sufficient.

Node A:

• Add a destination transformation T0 to Ua0, indicating that all sent data is transformed with
T0.

• Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

• Register the UDP transport Ua0 with allow_interface = a0.

• Register the UDP transport Ua1 with allow_interface = a1.

• No transformations are registered with Ua1.

• DomainParticipantQos.transports.enabled_transports = “Ua0”,”Ua1”

• DomainParticipantQos.discovery.enabled_transports = ”Ua0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua1://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that all sent data is transformed with
T1.

• Add a source transformation T0 to Ub0, indicating that all received data is transformed with
T0.

• Register the UDP transport Ub0 with allow_interface = b0.

• Register the UDP transport Ub1 with allow_interface = b1.

• No transformations are registered with Ub1.

4.7. Transports 95

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• DomainParticipantQos.transports.enabled_transports = “Ub0”,”Ub1”

• DomainParticipantQos.discovery.enabled_transports = ”Ub0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ub1://”

Ua0 and Ub0 perform transformations and are used for discovery. Ua1 and Ub1 are used for
user-data and no transformation takes place.

Transformed Data Between 2 Nodes (same transformation)

In this system two Nodes, A and B, are communicating with transformed data using the same
transformation for user and discovery data. Node A has one interface, a0, and Node B has one
interface, b0.

Node A:

• Add a destination transformation T0 to Ua0, indicating that all sent data is transformed with
T0.

• Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

• Register the UDP transport Ua0 with allow_interface = a0.

• DomainParticipantQos.transports.enabled_transports = “Ua0”

• DomainParticipantQos.discovery.enabled_transports = ”Ua0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua0://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that all sent data is transformed with
T1.

• Add a source transformation T0 to Ub0, indicating that all received data is transformed with
T0.

• Register the UDP transport Ub0 with allow_interface = b0.

• DomainParticipantQos.transports.enabled_transports = “Ub0”

• DomainParticipantQos.discovery.enabled_transports = ”Ub0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ub0://”

Ua0 and Ub0 performs transformations and are used for discovery and for user-data.

4.7. Transports 96

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Transformed Data Between 2 Nodes (different transformations)

In this system two Nodes, A and B, are communicating with transformed data using different
transformations for user and discovery data. Node A has two interfaces, a0 and a1, and Node B
has two interfaces, b0 and b1.

Node A:

• Add a destination transformation T0 to Ua0, indicating that all sent data is transformed with
T0.

• Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

• Add a destination transformation T2 to Ua1, indicating that all sent data is transformed with
T2.

• Add a source transformation T3 to Ua1, indicating that all received data is transformed with
T3.

• Register the UDP transport Ua0 with allow_interface = a0.

• Register the UDP transport Ua1 with allow_interface = a1.

• DomainParticipantQos.transports.enabled_transports = “Ua0”,”Ua1”

• DomainParticipantQos.discovery.enabled_transports = ”Ua0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua1://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that all sent data is transformed with
T1.

• Add a source transformation T0 to Ub0, indicating that all received data is transformed with
T0.

• Add a destination transformation T3 to Ub1, indicating that all sent data is transformed with
T3.

• Add a source transformation T2 to Ub1, indicating that all received data is transformed with
T2.

• Register the UDP transport Ub0 with allow_interface = b0.

• Register the UDP transport Ub1 with allow_interface = b1.

• DomainParticipantQos.transports.enabled_transports = “Ub0”,”Ub1”

• DomainParticipantQos.discovery.enabled_transports = ”Ub0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ub1://”

Ua0 and Ub0 perform transformations and are used for discovery. Ua1 and Ub1 perform transfor-
mations and are used for user-data.

4.7. Transports 97

RTI Connext DDS Micro Documentation, Version 2.4.14.2

OS Configuration

In systems with several network interfaces, Connext Micro cannot ensure which network interface
should be used to send a packet. Depending on the UDP transformations configured, this might
be a problem.

To illustrate this problem, let’s assume a system with two nodes, A and B. Node A has two network
interfaces, a0 and a1, and Node B has two network interfaces, b0 and b1. In this system, Node A
is communicating with Node B using a transformation for discovery and a different transformation
for user data.

Node A:

• Add a destination transformation T0 to Ua0, indicating that sent data to b0 is transformed
with T0.

• Add a source transformation T1 to Ua0, indicating that received data from b0 is transformed
with T1.

• Add a destination transformation T2 to Ua1, indicating that sent data to b1 is transformed
with T2.

• Add a source transformation T3 to Ua1, indicating that received data from b1 is transformed
with T3.

• Register the UDP transport Ua0 with allow_interface = a0.

• Register the UDP transport Ua1 with allow_interface = a1.

• DomainParticipantQos.transports.enabled_transports = “Ua0”,”Ua1”

• DomainParticipantQos.discovery.enabled_transports = ”Ua0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua1://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that sent data to a0 is transformed
with T1.

• Add a source transformation T0 to Ub0, indicating that received data from a0 transformed
with T0.

• Add a destination transformation T3 to Ub1, indicating that sent data to a1 is transformed
with T3.

• Add a source transformation T2 to Ub1, indicating that received data from a1 transformed
with T2.

• Register the UDP transport Ub0 with allow_interface = b0.

• Register the UDP transport Ub1 with allow_interface = b1.

• DomainParticipantQos.transports.enabled_transports = “Ub0”,”Ub1”

• DomainParticipantQos.discovery.enabled_transports = ”Ub0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ub1://”

4.7. Transports 98

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Node A sends a discovery packet to Node B to interface b0. This packet will be transformed using
T0 as specified by Node A’s configuration. When this packet is received in Node B, it will be
transformed using either T0 or T2 depending on the source address. Node’s A OS will use a0 or
a1 to send this packet but Connext Micro cannot ensure which one will be used. In case the OS
sends the packet using a1, the wrong transformation will be applied in Node B.

Some systems have the possibility to configure the source address that should be used when a
packet is sent. In POSIX systems, the command ip route add <string> dev <interface> can
be used.

By typing the command ip route add < b0 ip >/32 dev a0 in Node A, the OS will send all
packets to Node B’s b0 IP address using interface a0. This would ensure that the correct transfor-
mation is applied in Node B. The same should be done to ensure that user data is sent with the
right address ip route add < b1 ip >/32 dev a1. Of course, similar configuration is needed in
Node B.

4.8 Discovery

This section discusses the implementation of discovery plugins in RTI Connext Micro. For a general
overview of discovery in RTI Connext Micro, see What is Discovery?.

Connext Micro discovery traffic is conducted through transports. Please see the Transports section
for more information about registering and configuring transports.

4.8.1 What is Discovery?

Discovery is the behind-the-scenes way in which RTI Connext Micro objects (DomainParticipants,
DataWriters, and DataReaders) on different nodes find out about each other. Each DomainPar-
ticipant maintains a database of information about all the active DataReaders and DataWriters
that are in the same DDS domain. This database is what makes it possible for DataWriters and
DataReaders to communicate. To create and refresh the database, each application follows a com-
mon discovery process.

This section describes the default discovery mechanism known as the Simple Discovery Protocol,
which includes two phases: Simple Participant Discovery and Simple Endpoint Discovery.

The goal of these two phases is to build, for each DomainParticipant, a complete picture of all the
entities that belong to the remote participants that are in its peers list. The peers list is the list of
nodes with which a participant may communicate. It starts out the same as the initial_peers list
that you configure in the DISCOVERY QosPolicy. If the accept_unknown_peers flag in that same
QosPolicy is TRUE, then other nodes may also be added as they are discovered; if it is FALSE, then
the peers list will match the initial_peers list, plus any peers added using the DomainParticipant’s
add_peer() operation.

The following section discusses how Connext Micro objects on different nodes find out about each
other using the default Simple Discovery Protocol (SDP). It describes the sequence of messages
that are passed between Connext Micro on the sending and receiving sides.

4.8. Discovery 99

../../api_c/html/group__DDSDiscoveryQosModule.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Note that this chapter is shared between Connext Micro and Connext Cert. However Connext Cert
only supports static endpoint discovery described in Static Discovery Plugin.

The discovery process occurs automatically, so you do not have to implement any special code. For
more information about advanced topics related to Discovery, please refer to Discovery in the Core
Libraries User’s Manual (if you have Internet access).

Simple Participant Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Participant Discovery
Protocol (SPDP) and is common for both dynamic and static endpoint discovery.

During the Participant Discovery phase, DomainParticipants learn about each other. The Domain-
Participant’s details are communicated to all other DomainParticipants in the same DDS domain
by sending participant declaration messages, also known as participant DATA submessages. The
details include the DomainParticipant’s unique identifying key (GUID or Globally Unique ID de-
scribed below), transport locators (addresses and port numbers), and QoS. These messages are sent
on a periodic basis using best-effort communication.

Participant DATAs are sent periodically to maintain the liveliness of the DomainParticipant. They
are also used to communicate changes in the DomainParticipant’s QoS. Only changes to QosPolicies
that are part of the DomainParticipant’s built-in data need to be propagated.

When receiving remote participant discovery information, Connext Micro determines if the local
participant matches the remote one. A ‘match’ between the local and remote participant occurs
only if the local and remote participant have the same Domain ID. This matching process occurs
as soon as the local participant receives discovery information from the remote one. If there is no
match, the discovery DATA is ignored, resulting in the remote participant (and all its associated
entities) not being discovered.

When a DomainParticipant is deleted, a participant DATA (delete) submessage with the Domain-
Participant’s identifying GUID is sent.

The GUID is a unique reference to an entity. It is composed of a GUID prefix and an Entity ID.
By default, the GUID prefix is calculated. The entityID is set by Connext Micro (you may be able
to change it in a future version).

Once a pair of remote participants have discovered each other, they can move on to the Endpoint
Discovery phase, which is how DataWriters and DataReaders find each other.

Simple Endpoint Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Endpoint Discovery Pro-
tocol (SEDP).

During the Endpoint Discovery phase, DataWriters and DataReaders are matched. Information
(GUID, QoS, etc.) about your application’s DataReaders and DataWriters is exchanged by sending
publication/subscription declarations in DATA messages that we will refer to as publication DATAs
and subscription DATAs. The Endpoint Discovery phase uses reliable communication.

4.8. Discovery 100

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Discovery.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Discovery.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.2

These declarations or DATA messages are exchanged until each DomainParticipant has a complete
database of information about the participants in its peers list and their entities. Then the discovery
process is complete and the system switches to a steady state. During steady state, participant
DATAs are still sent periodically to maintain the liveliness status of participants. They may also
be sent to communicate QoS changes or the deletion of a DomainParticipant.

When a remote DataWriter/DataReader is discovered, Connext Micro determines if the local ap-
plication has a matching DataReader/DataWriter. A ‘match’ between the local and remote entities
occurs only if the DataReader and DataWriter have the same Topic, same data type, and com-
patible QosPolicies. Furthermore, if the DomainParticipant has been set up to ignore certain
DataWriters/DataReaders, those entities will not be considered during the matching process.

This ‘matching’ process occurs as soon as a remote entity is discovered, even if the entire database
is not yet complete: that is, the application may still be discovering other remote entities.

A DataReader and DataWriter can only communicate with each other if each one’s application has
hooked up its local entity with the matching remote entity. That is, both sides must agree to the
connection.

Please refer to Discovery Under the Hood in the Core Libraries User’s Manual (if you have Internet
access) for more details about the discovery process.

4.8.2 Configuring Participant Discovery Peers

An RTI Connext Micro DomainParticipant must be able to send participant discovery announce-
ment messages for other DomainParticipants to discover itself, and it must receive announcements
from other DomainParticipants to discover them.

To do so, each DomainParticipant will send its discovery announcements to a set of locators known
as its peer list, where a peer is the transport locator of one or more potential other DomainPartic-
ipants to discover.

The Peer Address

A peer descriptor string of the initial_peers sequence defines the interface and address of the locator
to which to send, as well as the indices of participants to which to send. The peer descriptor format
is:

< > denotes optional
[] denotes range or discreet values, unless enclosed in ''

which means a literal.

ADDRESS = <PREFIX://><ADDRESS> |
@<PREFIX://><ADDRESS> |
INDEX@<PREFIX>://<ADDRESS>

INDEX = INTEGER | '[' INTEGER ']' | '[' INTEGER-INTEGER ']' | '[' -INTEGER ']'

PREFIX = [a-zA-Z_][0-9a-zA-Z_]+
(continues on next page)

4.8. Discovery 101

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/Discovery_Implementation.htm
../../api_c/html/structDDS__DiscoveryQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)

INTEGER = DEC_INTEGER | HEX_INTEGER

DEC_INTEGER = [0-9]+

HEX_INTEGER = [0x|0X][0-9a-fA-F]+

ADDRESS = 0 or more 8bit characters

Note that while the PREFIX is marked optional, it should always be used.

Remember that every DomainParticipant has a participant index that is unique within a DDS do-
main. The participant index (also referred to as the participant ID), together with the DDS domain
ID, is used to calculate the network ports on which DataReaders of that participant will receive
messages. Thus, by specifying the participant index, or a range of indices, for a peer locator, that
locator becomes one or more ports to which messages will be sent only if addressed to the entities of
a particular DomainParticipant. Specifying indices restricts the number of participant announce-
ments sent to a locator where other DomainParticipants exist and, thus, should be considered to
minimize network bandwidth usage.

For example:

DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers, 5);
DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers, 5);

/* If the index is not specified, it defaults to 5, thus sending to
* the first 6 participant IDs on at IP address 192.168.1.1 using
* the transport registered as _udp.
*/
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 0) =

DDS_String_dup("_udp://192.168.1.1");

/* Only send participant annoucements to multicast address 239.255.0.1
* using the transport registered as _udp. Note that for multicast
* addresses the index is not relevant since it is a shared address.
*/
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 1) =

DDS_String_dup("_udp://239.255.0.1");

/* Send annoucements to participant ID 1,2,3, and 4 on 10.10.30.101
* using the transport registered as _udp.
*/
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 2) =

DDS_String_dup("[1-4]@_udp://10.10.30.101");

/* Send annoucements to participant ID 2 on address 10.10.30.102
* using the transport registered as _udp.
*/
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 3) =

DDS_String_dup("[2]@_udp://10.10.30.102");

(continues on next page)

4.8. Discovery 102

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
/* Send annoucements to participant ID 0-8 on address 10.10.30.102
* using the transport registered as _udp.
*/
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 4) =

DDS_String_dup("8@_udp://10.10.30.102");

4.8.3 Configuring Initial Peers and Adding Peers

DiscoveryQosPolicy_initial_peers is the list of peers a DomainParticipant sends its participant
announcement messages, when it is enabled, as part of the discovery process.

DiscoveryQosPolicy_initial_peers is an empty sequence by default.

Peers can also be added to the list, before and after a DomainParticipant has been enabled, by
using DomainParticipant_add_peer.

The DomainParticipant will start sending participant announcement messages to the new peer as
soon as it is enabled.

4.8.4 Configuring Discovery Data Reception

In order to receive discovery and user data, it is necessary to configure the DomainParticipantQos.
discovery.enabled_transports sequence. This is a sequence of transport addresses to listen for
discovery data on, and is sent as part of the participant annoucements. Other DomainParticipants
will send to these addresses.

The address format for configuring data reception uses the following format:

< > denotes optional
[] denotes range or discreet values, unless enclosed in ''

which means a literal.

ADDRESS = <PREFIX://><ADDRESS>

PREFIX = [a-zA-Z_][0-9a-zA-Z_]+

ADDRESS = 0 or more 8bit characters

Note that while the PREFIX is marked optional, it should always be used.

For example, to receive on a single unicast address:

DDS_StringSeq_set_maximum(&DomainParticipantQos.discovery.enabled_transports, 1);
DDS_StringSeq_set_length(&DomainParticipantQos.discovery.enabled_transports, 1);

/* Receive on the unicast address 192.168.1.1 using the transport registered
* as _udp.
*/
*DDS_StringSeq_get_reference(&DomainParticipantQos.discovery.enabled_transports, 0) =

DDS_String_dup("_udp://192.168.1.1");

4.8. Discovery 103

../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/group__DDSDomainParticipantModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

To receive on all unicast addresses allowed by the transport:

DDS_StringSeq_set_maximum(&DomainParticipantQos.discovery.enabled_transports, 1);
DDS_StringSeq_set_length(&DomainParticipantQos.discovery.enabled_transports, 1);

/* Receive on all unicast addresses allowed by the transport registered
* as _udp. This is not recommended if more than 4 network interfaces are
* allowed as it is non-deterministic which interfaces will be used.
*/
*DDS_StringSeq_get_reference(&DomainParticipantQos.discovery.enabled_transports, 0) =

DDS_String_dup("_udp://");

To receive on one unicast address and one multicast address:

DDS_StringSeq_set_maximum(&DomainParticipantQos.discovery.enabled_transports, 2);
DDS_StringSeq_set_length(&DomainParticipantQos.discovery.enabled_transports, 2);

*DDS_StringSeq_get_reference(&DomainParticipantQos.discovery.enabled_transports, 0) =
DDS_String_dup("_udp://192.168.1.1");

*DDS_StringSeq_get_reference(&DomainParticipantQos.discovery.enabled_transports, 1) =
DDS_String_dup("_udp://239.255.0.1");

To receive on one multicast address:

DDS_StringSeq_set_maximum(&DomainParticipantQos.discovery.enabled_transports, 1);
DDS_StringSeq_set_length(&DomainParticipantQos.discovery.enabled_transports, 1);

*DDS_StringSeq_get_reference(&DomainParticipantQos.discovery.enabled_transports, 0) =
DDS_String_dup("_udp://239.255.0.1");

4.8.5 Configuring User Data Reception

In order to receive discovery and user data, it is necessary to configure the DomainParticipantQos.
user_traffic.enabled_transports sequence. This is a sequence of default transport addresses
to listen for user data on, unless a DataReader or DataWriter specifies its own address, and is sent
as part of the participant annoucements. Other DomainParticipants will send to these addresses.

The address format for configuring data reception uses the following format:

< > denotes optional
[] denotes range or discreet values, unless enclosed in ''

which means a literal.

ADDRESS = <PREFIX://><ADDRESS>

PREFIX = [a-zA-Z_][0-9a-zA-Z_]+

ADDRESS = 0 or more 8bit characters

Note that while the PREFIX is marked optional, it should always be used.

4.8. Discovery 104

RTI Connext DDS Micro Documentation, Version 2.4.14.2

For example, to receive on a single unicast address:

DDS_StringSeq_set_maximum(&DomainParticipantQos.user_traffic.enabled_transports, 1);
DDS_StringSeq_set_length(&DomainParticipantQos.user_traffic.enabled_transports, 1);

/* Receive on the unicast address 192.168.1.1 using the transport registered
* as _udp.
*/
*DDS_StringSeq_get_reference(&DomainParticipantQos.user_traffic.enabled_transports, 0) =

DDS_String_dup("_udp://192.168.1.1");

To receive on all unicast addresses allowed by the transport:

DDS_StringSeq_set_maximum(&DomainParticipantQos.user_traffic.enabled_transports, 1);
DDS_StringSeq_set_length(&DomainParticipantQos.user_traffic.enabled_transports, 1);

/* Receive on all unicast addresses allowed by the transport registered
* as _udp. This is not recommended if more than 4 network interfaces are
* allowed as it is non-deterministic which interfaces will be used.
*/
*DDS_StringSeq_get_reference(&DomainParticipantQos.user_traffic.enabled_transports, 0) =

DDS_String_dup("_udp://");

To receive on one unicast address and one multicast address:

DDS_StringSeq_set_maximum(&DomainParticipantQos.user_traffic.enabled_transports, 2);
DDS_StringSeq_set_length(&DomainParticipantQos.user_traffic.enabled_transports, 2);

*DDS_StringSeq_get_reference(&DomainParticipantQos.user_traffic.enabled_transports, 0) =
DDS_String_dup("_udp://192.168.1.1");

*DDS_StringSeq_get_reference(&DomainParticipantQos.user_traffic.enabled_transports, 1) =
DDS_String_dup("_udp://239.255.0.1");

Note: When both multicast and unicast is specified, the following rules are used:

• New data is sent over multicast.

• Retransmissions are sent over unicast.

To receive on one multicast address:

DDS_StringSeq_set_maximum(&DomainParticipantQos.user_traffic.enabled_transports, 1);
DDS_StringSeq_set_length(&DomainParticipantQos.user_traffic.enabled_transports, 1);

*DDS_StringSeq_get_reference(&DomainParticipantQos.user_traffic.enabled_transports, 0) =
DDS_String_dup("_udp://239.255.0.1");

4.8. Discovery 105

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.8.6 Configuring User Data Reception per DataReader or DataWriter

A DataReader and DataWriter can specify its own addresses in the DataReaderQos.transport.
enabled_transports and DataWriterQos.transport.enabled_transports policies. The address
format is exactly the same as for DomainParticipantQos.user_traffic.enabled_transports,
with the restriction that a DataWriter can only specify its own unicast addresses.

4.8.7 Discovery Plugins

When a DomainParticipant receives a participant discovery message from another DomainPar-
ticipant, it will engage in the process of exchanging information of user-created DataWriter and
DataReader endpoints.

RTI Connext Micro provides two ways of determinig endpoint information of other DomainPar-
ticipants: Dynamic Discovery Plugin and Static Discovery Plugin.

Dynamic Discovery Plugin

Dynamic endpoint discovery uses builtin discovery DataWriters and DataReader to exchange mes-
sages about user created DataWriter and DataReaders. A DomainParticipant using dynamic par-
ticipant, dynamic endpoint (DPDE) discovery will have a pair of builtin DataWriters for sending
messages about its own user created DataWriters and DataReaders, and a pair of builtin DataRead-
ers for receiving messages from other DomainParticipants about their user created DataWriters and
DataReaders.

Given a DomainParticipant with a user DataWriter, receiving an endpoint discovery message for a
user DataReader allows the DomainParticipant to get the type, topic, and QoS of the DataReader
that determine whether the DataReader is a match. When a matching DataReader is discovered,
the DataWriter will include that DataReader and its locators as destinations for its subsequent
writes.

Static Discovery Plugin

Static endpoint discovery uses function calls to statically assert information about remote end-
points belonging to remote DomainParticipants. An application with a DomainParticipant using
dynamic participant, static endpoint (DPSE) discovery has control over which endpoints belonging
to particular remote DomainParticipants are discoverable.

Whereas dynamic endpoint-discovery can establish matches for all endpoint-discovery messages
it receives, static endpoint-discovery establishes matches only for the endpoint that have been
asserted programmatically. When a DomainParticipant receives a participant discovery message
from another DomainParticipant, it will engage in the process of matching previously asserted
user-created DataWriter and DataReader endpoints.

With DPSE, a user needs to know a priori the configuration of the entities that will need to be
discovered by its application. The user must know the names of all DomainParticipants within the
DDS domain and the exact QoS of the remote DataWriters and DataReaders.

4.8. Discovery 106

../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Please refer to the C API Reference and C++ API Reference for the following remote entity
assertion APIs:

• DPSE_RemoteParticipant_assert

• DPSE_RemotePublication_assert

• DPSE_RemoteSubscription_assert

Remote Participant Assertion

Given a local DomainParticipant, static discovery requires first the names of remote Domain-
Participants to be asserted, in order for endpoints on them to match. This is done by calling
DPSE_RemoteParticipant_assert with the name of a remote DomainParticipant. The name must
match the name contained in the participant discovery announcement produced by that Domain-
Participant. This has to be done reciprocally between two DomainParticipants so that they may
discover one another.

For example, a DomainParticipant has entity name “participant_1”, while another DomainPartici-
pant has name “participant_2.” participant_1 should call DPSE_RemoteParticipant_assert(“par-
ticipant_2”) in order to discover participant_2. Similarly, participant_2 must also assert partici-
pant_1 for discovery between the two to succeed.

/* participant_1 is asserting (remote) participant_2 */
retcode = DPSE_RemoteParticipant_assert(participant_1,

"participant_2");
if (retcode != DDS_RETCODE_OK) {

printf("participant_1 failed to assert participant_2\n");
goto done;

}

Remote Publication and Subscription Assertion

Next, a DomainParticipant needs to assert the remote endpoints it wants to match that belong to an
already asserted remote DomainParticipant. The endpoint assertion function is used, specifying an
argument which contains all the QoS and configuration of the remote endpoint. Where DPDE gets
remote endpoint QoS information from received endpoint-discovery messages, in DPSE, the remote
endpoint’s QoS must be configured locally. With remote endpoints asserted, the DomainPartic-
ipant then waits until it receives a participant discovery announcement from an asserted remote
DomainParticipant. Once received that, all endpoints that have been asserted for that remote
DomainParticipant are considered discovered and ready to be matched with local endpoints.

Assume participant_1 contains a DataWriter, and participant_2 has a DataReader, both commu-
nicating on topic HelloWorld. participant_1 needs to assert the DataReader in participant_2 as
a remote subscription. The remote subscription data passed to the operation must match exactly
the QoS actually used by the remote DataReader :

4.8. Discovery 107

../../../doc/api_cpp/html/index.html
../../../doc/api_cpp/html/index.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

/* Set participant_2's reader's QoS in remote subscription data */
rem_subscription_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 200;
rem_subscription_data.topic_name = DDS_String_dup("Example HelloWorld");
rem_subscription_data.type_name = DDS_String_dup("HelloWorld");
rem_subscription_data.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

/* Assert reader as a remote subscription belonging to (remote) participant_2 */
retcode = DPSE_RemoteSubscription_assert(participant_1,

"participant_2",
&rem_subscription_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

↪→get(), NULL));
if (retcode != DDS_RETCODE_OK)
{

printf("failed to assert remote subscription\n");
goto done;

}

Reciprocally, participant_2 must assert participant_1’s DataWriter as a remote publication, also
specifying matching QoS parameters:

/* Set participant_1's writer's QoS in remote publication data */
rem_publication_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 100;
rem_publication_data.key.value.topic_name = DDS_String_dup("Example HelloWorld");
rem_publication_data.key.value.type_name = DDS_String_dup("HelloWorld");
rem_publication_data.key.value.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

/* Assert writer as a remote publication belonging to (remote) participant_1 */
retcode = DPSE_RemotePublication_assert(participant_2,

"participant_1",
&rem_publication_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

↪→get(), NULL));
if (retcode != DDS_RETCODE_OK)
{

printf("failed to assert remote publication\n");
goto done;

}

When participant_1 receives a participant discovery message from participant_2, it is aware of par-
ticipant_2, based on its previous assertion, and it knows participant_2 has a matching DataReader,
also based on the previous assertion of the remote endpoint. It therefore establishes a match be-
tween its DataWriter and participant_2’s DataReader. Likewise, participant_2 will match partic-
ipant_1’s DataWriter with its local DataRead, upon receiving one of participant_1’s participant
discovery messages.

Note, with DPSE, there is no runtime check of QoS consistency between DataWriters and DataRead-
ers, because no endpoint discovery messages are exchanged. This makes it extremely important
that users of DPSE ensure that the QoS set for a local DataWriter and DataReader is the same
QoS being used by another DomainParticipant to assert it as a remote DataWriter or DataReader.

4.8. Discovery 108

../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.8.8 Asymmetric Matching and Lost Samples

The DDS discovery process is necessary to establish communication between a DataWriter and a
DataReader. However, it is important to understand that DDS applications do not connect to each
other; there is no handshake protocol to ensure that a DataReader is ready to receive data from a
DataWriter. Thus, it is possible that a DataWriter matches a DataReader before the DataReader
matches the DataWriter (and vice versa). For this reason, it is possible that data published by a
DataWriter is not received by the DataReader, even on a local network.

The reason for this asymmetric behavior can be for any number of reasons, such as, but not limited
to:

• Network delays

• Packets taking different paths through the network

• Address resolution delays

• OS scheduling

DDS offers some solutions to mitigate this problem, e.g., the DURABILITY QoS policy, but in
other cases it may be necessary for applications to implement their own synchronization protocols.

4.9 Configuring Resource Limits

4.9.1 Introduction

Connext Micro is designed for use in real-time systems and uses a predictable and deterministic
memory manager to ensure that memory growth is not unbounded, OS memory fragmentation is
eliminated and memory usage can be determined a-priori. The advantage with this design is that
proper operation is ensured as soon as steady state has been reached. However, it also places an
additional burden on the system designer to properly configure each resource limit. The purpose
of this document is to describe all resource limits in Connext Micro, what the behavioral impact
is, and what the impact on memory usage is.

4.9.2 Resource Limits

All resource limits in Connext Micro are specified in a QoS policy or property. Please refer to the
links to the API Reference below for more details, and refer to the Micro Memory Map below for
an overview of how the memory is used by each resource limit.

4.9. Configuring Resource Limits 109

RTI Connext DDS Micro Documentation, Version 2.4.14.2

DomainParticipantFactoryQos

See DomainParticipantFactoryQos for more detail.

DomainParticipantQos

The DomainParticipantQos controls resources that are applicable to the entire DomainParticipant.
All the resources specified in the DomainParticipantQos are allocated when the DomainParticipant
is created with the DDS_DomainParticipantFactory_create_participant() call.

DataReaderQos

The DataReaderQos controls the resources used by the DDS_DataReader. Each DDS_DataReader
allocates its own resources, even DDS_DataReader’s of the same DDS_Topic. For this reason is
it advised to limit the number of DDS_DataReader’s per DDS_Topic to one.

DataWriterQos

The DataWriterQos controls the resources allocated by a DDS_DataWriter. Each
DDS_DataWriter allocates its own resources, even DDS_DataWriters of the same DDS_Topic.
For this reason is it advised to limit the number of DDS_DataWriters per topic to one.

UDP Transport

See UDP Transport for more details.

Dynamic Participant Static Endpoint (DPSE)

The Dynamic Participant Static Endpoint (DPSE) discovery plugin creates one DDS_DataWriter
and one DDS_DataReader for the ParticipantBuiltinTopicData. The memory for the plugin in-
cludes the memory allocated by the DDS_DataReader and DDS_DataWriter. The memory allo-
cated by the properties must be added for total memory usage.

Dynamic Participant Dynamic Endpoint (DPDE)

The Dynamic Participant Dynamic Endpoint (DPDE) discovery plugin creates one
DDS_DataWriter and one DDS_DataReader for each ParticipantBuiltinTopicData, Publication-
BuiltinTopicData, and SubscriptionBuiltinTopicData. The memory for the plugin includes the
memory allocated by these DDS_DataReaders and DDS_DataWriters. The memory allocated by
the properties must be added for total memory usage.

4.9. Configuring Resource Limits 110

../../../../doc/api_c/html/structDDS__DomainParticipantFactoryQos.html
../../../../doc/api_c/html/structDDS__DomainParticipantResourceLimitsQosPolicy.html
../../../../doc/api_c/html/group__DDSDomainParticipantFactoryModule.html
../../../../doc/api_c/html/structDDS__DataReaderResourceLimitsQosPolicy.html
../../../../doc/api_c/html/structDDS__DataWriterResourceLimitsQosPolicy.html
../../../../doc/api_c/html/structUDP__InterfaceFactoryProperty.html
../../../../doc/api_c/html/structDPSE__DiscoveryPluginProperty.html
../../../../doc/api_c/html/structDPDE__DiscoveryPluginProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Memory Map

4.9. Configuring Resource Limits 111

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.9.3 Dynamic Memory Allocation

Connext Micro allocates heap memory to create internal data-structures. It is important to know
that Connext Micro manages memory allocated from the system heap using its own internal mem-
ory management, and only returns memory allocated from the system back to the system when
something is deleted. That is, if an application never deletes anything, no memory is returned to
the system.

As a rule of thumb, in Connext Micro the only APIs that allocate heap memory are:

• DDS_DomainParticipantFactory_get_instance().

• Those that contain the word “new”, i.e. DDS_WaitSet_new().

• Those that contain the word “create”, i.e. DDS_DomainParticipantFactory_create_partici-
pant().

And the only APIs that free memory are:

• DDS_DomainParticipantFactory_finalize_instance().

• Those that contain the word “delete”, i.e. OSAPI_Waitset_delete().

• Those that contain the word “free”, i.e. DDS_String_free().

Connext Micro does not support dynamically allocating resources beyond the initial configuration.
That is, all resource limits must be finite. This restriction may be removed in a future version.

4.9.4 Internal Resource Allocation

Connext Micro allocates additional resources to entities based on internal needs. As a result,
resource limits set by the user will often appear to have increased by a constant when read back.
This is because Connext Micro uses additional internal readers and other entities. Connext Micro
takes the user-defined value and adds a constant depending on the resource limit, topic and entity
being used. For specific values, consult the table below.

See Benchmarks for further details on the amount of memory used by each resource limit in the
memory model.

4.9. Configuring Resource Limits 112

../../../../doc/api_c/html/group__DDSDomainParticipantFactoryModule.html
../../../../doc/api_c/html/group__DDSConditionsModule.html
../../../../doc/api_c/html/group__DDSDomainParticipantFactoryModule.html
../../../../doc/api_c/html/group__DDSDomainParticipantFactoryModule.html
../../../../doc/api_c/html/group__DDSDomainParticipantFactoryModule.html
../../../../doc/api_c/html/group__DDSConditionsModule.html
../../../../doc/api_c/html/group__DDSStringClass.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Table 4.1: Connext Micro Internal resource limit Modifica-
tions

resource limit Modifications by Feature
local_topic_allocation DPSE1 1

DPDE2 3
local_type_allocation DPSE 1

DPDE 3
local_writer_allocation DPSE 1

DPDE 3
local_reader_allocation DPSE 1

DPDE 3
local_publisher_allocation DPSE 1

DPDE 1
local_subscriber_allocation DPSE 1

DPDE 1
matching_writer_reader_pair_allocationDPSE 1

DPDE remote_participant_allocation
* 6

4.10 Generating Type Support with rtiddsgen

4.10.1 Why Use rtiddsgen?

For Connext Micro to publish and subscribe to topics of user-defined types, the types have to be de-
fined and programmatically registered with Connext Micro. A registered type is then serialized and
deserialized by Connext Micro through a pluggable type interface that each type must implement.

Rather than have users manually implement each new type, Connext Micro provides the rtiddsgen
utility for automatically generating type support code.

4.10.2 IDL Type Definition

rtiddsgen for Connext Micro accepts types defined in IDL. The HelloWorld examples included with
Connext Micro use the following HelloWorld.idl:

struct HelloWorld
{

string<128> msg;
};

For further reference, see the section on Creating User Data Types with IDL in the RTI Connext
DDS Core Libraries User’s Manual (available here if you have Internet access).

1 Dynamic Participant Static Endpoint. Not used concurrently with DPDE.
2 Dynamic Participant Dynamic Endpoint. Not used concurrently with DPSE.

4.10. Generating Type Support with rtiddsgen 113

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Creating_User_Data_Types_with_IDL.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Creating_User_Data_Types_with_IDL.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.10.3 Generating Type Support

Before running rtiddsgen, some environment variables must be set:

• RTIMEHOME sets the path of the Connext Micro installation directory

• RTIMEARCH sets the platform architecture (e.g. i86Linux2.6gcc4.4.5 or i86Win32VS2010)

• JREHOME sets the path for a Java JRE

Note that a JRE is shipped with Connext Professional on platforms supported for the execution
of rtiddsgen (Linux®, Windows®, and macOS®). It is not necessary to set JREHOME on these
platforms, unless a specific JRE is preferred.

C

Run rtiddsgen from the command line to generate C language type-support for a UserType.idl (and
replace any existing generated files):

> $rti_connext_micro_root/rtiddsgen/scripts/rtiddsgen -micro -language C -replace␣
↪→UserType.idl

C++

Run rtiddsgen from the command line to generate C++ language type-support for a UserType.idl
(and replace any existing generated files):

.. code-block:: none

> $rti_connext_micro_root/rtiddsgen/scripts/rtiddsgen -micro -language C++
-replace UserType.idl

Notes on Command-Line Options

In order to target Connext Micro when generating code with rtiddsgen, the -micro option must be
specified on the command line.

To list all command-line options specifically supported by rtiddsgen for Connext Micro, enter:

> rtiddsgen -micro -help

Existing users might notice that that previously available options, -language microC``and
``-language microC++, have been replaced by -micro -language C and``-micro -language
C++``, respectively. It is still possible to specify microC and microC++ for backwards compati-
bility, but users are advised to switch to using the -micro command-line option along with other
arguments.

4.10. Generating Type Support with rtiddsgen 114

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Generated Type Support Files

rtiddsgen will produce the following header and source files for each IDL file passed to it:

• UserType.h and UserType.c (.cxx for C++) implement creation/intialization and deletion
(only for Connext Micro of a single sample and a sequence of samples of the type (or types)
defined in the IDL description.

• UserTypePlugin.h and UserTypePlugin.c (.cxx for C++) implement the pluggable type in-
terface that Connext Micro uses to serialize and deserialize the type.

• UserTypeSupport.h and UserTypeSupport.c(xx) define type-specific DataWriters and
DataReaders for user-defined types.

4.10.4 Using custom data-types in Connext Micro Applications

A Connext Micro application must first of all include the generated headers. Then it must register
the type with the DomainParticipant before a topic of that type can be defined. For an example
HelloWorld type, the following code registers the type with the participant and then creates a topic
of that type:

#include "HelloWorldPlugin.h"
#include "HelloWorldSupport.h"

/* ... */

retcode = HelloWorldTypeSupport_register_type(application->participant,
"HelloWorld");

if (retcode != DDS_RETCODE_OK)
{

/* Log an error */
goto done;

}

application->topic = DDS_DomainParticipant_create_topic(
application->participant,
"Example HelloWorld",
"HelloWorld",
&DDS_TOPIC_QOS_DEFAULT, NULL,
DDS_STATUS_MASK_NONE);

if (application->topic == NULL)
{

/* Log an error */
goto done;

}

See the full HelloWorld examples for further reference.

4.10. Generating Type Support with rtiddsgen 115

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.10.5 Customizing generated code

rtiddsgen allows Connext Micro users to select whether they want to generate code to subscribe to
and/or publish a custom data-type. When generating code for subscriptions, only those parts of
code dealing with deserialization of data and the implementation of a typed DataReader endpoint
are generated. Conversely, only those parts of code addressing serialization and the implementation
of a DataWriter are considered when generating publishing code.

Control over these options is provide by two command-line arguments:

• -reader generates code for deserializing custom data-types and creating DataReaders from
them.

• -writer generates code for serializing custom data-types and creating DataWriters from
them.

If neither of these two options are supplied to rtiddsgen, they will both be considered active and
code for both DataReaders and DataWriters will be generated. If only one of the two options is
supplied to rtiddsgen, only that one is enabled. If both options are supplied, both are enabled.

4.10.6 Unsupported Features of rtiddsgen with Connext Micro

Connext Micro supports a subset of the features and options in rtiddsgen. Use rtiddsgen -micro
-help to see the list of features supported by rtiddsgen for Connext Micro.

4.11 Threading Model

4.11.1 Introduction

This section describes the threading model, the use of critical sections, and how to configure thread
parameters in RTI Connext Micro. Please note that the information contained in this document
applies to application development using Connext Micro. For information regarding porting the
Connext Micro thread API to a new OS, please refer to Porting RTI Connext Micro.

This section includes:

• Architectural Overview

• Threading Model

• UDP Transport Threads

4.11. Threading Model 116

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.11.2 Architectural Overview

RTI Connext Micro consists of a core library and a number of components. The core library
provides a porting layer, frequently used data-structures and abstractions, and the DDS API.
Components provide additional functionality such as UDP communication, DDS discovery plugins,
DDS history caches, etc.

+-------+ \
| DDS_C | } C API
+-------+ /

+-------+ +-------+ +------+ +------+ \
| DPSE | | DPDE | | WHSM | | RHSM | |
+-------+ +-------+ +------+ +------+ |
+-------+ +-------+ +------+ +------+ +-----+ } Optional components
| LOOP | | UDP(*)| | RTPS | | DRI | | DWI | | (platform independent)
+-------+ +-------+ +------+ +------+ +-----+ |

/

+-------+ +-------+ +------+ +------+ \ Core Services (always
| REDA | | CDR | | DB | | RT | } present, platform
+-------+ +-------+ +------+ +------+ / independent)

+-----------------------------------+ \
| OSAPI | } Platform dependent module
+-----------------------------------+ /

(*) The UDP transport relies on a BSD socket API

4.11.3 Threading Model

RTI Connext Micro is architected in a way that makes it possible to create a port of Connext
Micro that uses no threads, for example on platforms with no operating system or where the OS
itself creates the threads which calls into Connext Micro. Thus, the following discussion is only
applicable to Connext Micro libraries from RTI that runs on operating systems where Connext
Micro is allowed to create threads. The platform specific notes provide additional information
regarding integration with specific environments.

OSAPI Threads

The Connext Micro OSAPI layer creates one thread per OS process. This thread manages all the
Connext Micro timers, such as deadline and liveliness timers. This thread is created by the Connext
Micro OSAPI System when the OSAPI_System_initialize() function is called. When the Connext
Micro DDS API is used DomainParticipantFactory_get_instance() calls this function once.

4.11. Threading Model 117

../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Configuring OSAPI Threads

The timer thread is configured through the OSAPI_SystemProperty structure and any changes
must be made before OSAPI_System_initialize() is called. In Connext Micro, DomainParticipant-
Factory_get_instance() calls OSAPI_System_initialize(). Thus, if it is necessary to change the
system timer thread settings, it must be done before DomainParticipantFactory_get_instance() is
called the first time.

Please refer to OSAPI_Thread for supported thread options. Note that not all options are sup-
ported by all platforms.

struct OSAPI_SystemProperty sys_property = OSAPI_SystemProperty_INITIALIZER;

if (!OSAPI_System_get_property(&sys_property))
{

/* ERROR */
}

/* Please refer to OSAPI_ThreadOptions for possible options */
sys.property.timer_property.thread.options =;

/* The stack-size is platform dependent, it is passed directly to the OS */
sys.property.timer_property.thread.stack_size =

/* The priority is platform dependent, it is passed directly to the OS */
sys.property.timer_property.thread.priority =

if (!OSAPI_System_set_property(&sys_property))
{

/* ERROR */
}

UDP Transport Threads

Of the components that RTI provides, only the UDP component creates threads. The UDP trans-
port creates one receive thread for each unique UDP receive resource. Thus, two UDP threads are
created by default:

• A unicast receive thread for discovery data

• A unicast receive thread for user-data

Additional threads may be created depending on the transport configuration for a DomainPartic-
ipant, DataReader and DataWriter. The UDP transport creates threads based on the following
criteria:

• Each unique unicast port creates a new thread

• Each unique multicast address and port creates a new thread

For example, if a DataReader specifies its own multicast receive address a new receive thread will
be created.

4.11. Threading Model 118

../../api_c/html/structOSAPI__SystemProperty.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__OSAPI__ThreadClass.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Configuring UDP Receive Threads

All threads in the UDP transport share the same thread settings. It is important to note that all the
UDP properties must be set before the UDP transport is registered. Connext Micro pre-registers
the UDP transport with default settings when the DomainParticipantFactory is initialized. To
change the UDP thread settings, use the following code.

RT_Registry_T *registry = NULL;
DDS_DomainParticipantFactory *factory = NULL;
struct UDP_InterfaceFactoryProperty *udp_property = NULL;

factory = DDS_DomainParticipantFactory_get_instance();

udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof(struct UDP_InterfaceFactoryProperty));

*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

registry = DDS_DomainParticipantFactory_get_registry(factory);

if (!RT_Registry_unregister(registry, "_udp", NULL, NULL))
{

/* ERROR */
}

/* Please refer to OSAPI_ThreadOptions for possible options */
udp_property->recv_thread.options = ...;

/* The stack-size is platform dependent, it is passed directly to the OS */
udp_property->recv_thread.stack_size =

/* The priority is platform dependent, it is passed directly to the OS */
udp_property->recv_thread.priority =

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)udp_property,
NULL))

{
/* ERROR */

}

General Thread Configuration

The Connext Micro architecture consists of a number of components and layers, and each layer and
component has its own properties. It is important to remember that the layers and components are
configured independently of each other, as opposed to configuring everything through DDS. This
design makes it possible to relatively easily swap out one part of the library for another.

All threads created based on Connext Micro OSAPI APIs use the same OSAPI_ThreadProperty
structure.

4.11. Threading Model 119

../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/structOSAPI__ThreadProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.11.4 Thread-Safety

All public APIs have a note about thread-safety included in the API reference manuals. It is
important that an application does not violate thread-safety guidelines.

RTI Connext Micro may create multiple threads, but from an application point of view, there is
only a single critical section protecting all DDS resources within a DomainParticipant.

Note: Although Connext Micro may create multiple mutexes, these are used to protect resources
in the OSAPI layer, and are thus not relevant when using the public DDS APIs.

Calling DDS APIs from listeners and callbacks

When DDS is executing in a listener, it holds a critical section. Thus it is important to return as
quickly as possible to avoid stalling network I/O.

There are no deadlock scenarios when a listener calls Connext Micro DDS APIs from the same
DomainParticipant (and contained entities) that the listener was called from, as shown in the
diagram below:

Warning: It is not safe to call DDS APIs from a different DomainParticipant than the
one listener was called from, as shown in the diagram below. This may result in a deadlock
situation.

4.11. Threading Model 120

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Warning: There are no checks on whether or not an API call will cause problems, such as
deleting a participant when processing data in on_data_available from a reader within the
same participant.

Calling DDS APIs from a type-plugin

A user type-plugin that is registered with the DomainParticipant is subject to the following rules:

• The key kind is constant.

• The plugin is constant for a given DDS entity (Topic, DataWriter, or DataReader).

• The plugin data must be protected if thread safety is a concern, as it is user data and not
protected by Connext Micro.

Note: A type-plugin generated from an IDL file with the rtiddsgen IDL compiler included with
Connext Micro will satisfy these rules.

4.12 Batching

This section is organized as follows:

• Overview

• Interoperability

• Performance

• Example Configuration

4.12.1 Overview

Batching refers to a mechanism that allows RTI Connext Micro to collect multiple user data DDS
samples to be sent in a single network packet, to take advantage of the efficiency of sending larger
packets and thus increase effective throughput.

Connext Micro supports receiving batches of user data DDS samples, but does not support any
mechanism to collect and send batches of user data.

Receiving batches of user samples is transparent to the application, which receives the samples as
if the samples had been received one at a time. Note though that the reception sequence number
refers to the sample sequence number, not the RTPS sequence number used to send RTPS messages.
The RTPS sequence number is the batch sequence number for the entire batch.

A Connext Micro DataReader can receive both batched and non-batched samples.

For a more detailed explanation, please refer to the BATCH QosPolicy section in the RTI Connext
DDS Core Libraries User’s Manual (available here if you have Internet access).

4.12. Batching 121

../../api_c/html/structDDS__DataReaderListener.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/BATCH_Qos.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/BATCH_Qos.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.12.2 Interoperability

RTI Connext Professional supports both sending and receiving batches, whereas RTI Connext Mi-
cro supports only receiving batches. Thus, this feature primarily exists in Connext Micro to inter-
operate with RTI Connext applications that have enabled batching. An Connext Micro DataReader
can receive both batched and non-batched samples.

4.12.3 Performance

The purpose of batching is to increase throughput when writing small DDS samples at a high rate.
In such cases, throughput can be increased several-fold, approaching much more closely the physical
limitations of the underlying network transport.

However, collecting DDS samples into a batch implies that they are not sent on the network
immediately when the application writes them; this can potentially increase latency. But, if the
application sends data faster than the network can support, an increased proportion of the network’s
available bandwidth will be spent on acknowledgements and DDS sample resends. In this case,
reducing that overhead by turning on batching could decrease latency while increasing throughput.

4.12.4 Example Configuration

This section includes several examples that explain how to enable batching in RTI Connext Profes-
sional. For more detailed and advanced configuration, please refer to the RTI Connext DDS Core
Libraries User’s Manual.

• This configuration ensures that a batch will be sent with a maximum of 10 samples:

<datawriter_qos>
<publication_name>

<name>HelloWorldDataWriter</name>
</publication_name>
<batch>

<enable>true</enable>
<max_samples>10</max_samples>

</batch>
</datawriter_qos>

• This configuration ensures that a batch is automatically flushed after the delay specified by
max_flush_delay. The delay is measured from the time the first sample in the batch is
written by the application:

<datawriter_qos>
<publication_name>

<name>HelloWorldDataWriter</name>
</publication_name>
<batch>

<enable>true</enable>
<max_flush_delay>

<sec>1</sec>
(continues on next page)

4.12. Batching 122

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/index.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
<nanosec>0</nanosec>

</max_flush_delay>
</batch>

</datawriter_qos>

• The following configuration ensures that a batch is flushed automatically when
max_data_bytes is reached (in this example 8192).

<datawriter_qos>
<publication_name>

<name>HelloWorldDataWriter</name>
</publication_name>
<batch>

<enable>true</enable>
<max_data_bytes>8192</max_data_bytes>

</batch>
</datawriter_qos>

Note that max_data_bytes does not include the metadata associated with the batch samples.

Batches must contain whole samples. If a new batch is started and its initial sample causes the
serialized size to exceed max_data_bytes, RTI Connext Professional will send the sample in a
single batch.

4.13 Message Integrity Checking

Connext Micro uses the DDS-I/RTPS protocol for communication between DDS applications, and
RTPS messages are sent and received by a transport. When an RTPS message is sent across a
communication link, such as Ethernet, it is possible that some bits may change value. These errors
may cause communication failures or incorrect data to be received. In order to detect these types
of errors, transports such as UDP often include a checksum to validate the integrity of the data:
a sender adds the checksum to the transmitted data and the receiver validates that the calculated
checksum for the received data matches the checksum received from the sender. If the checksums
are different, a data corruption has occurred.

By default, Connext Micro relies on the underlying transport, such as UDP, to handle data integrity
checking. However, the underlying transport may not provide sufficient integrity checking, or may
itself introduce errors that Connext Micro must be able to detect regardless of the transport.

In order to address both of these scenarios for any transport, Connext Micro supports RTPS message
integrity checking by adding a checksum to the RTPS message itself. This chapter describes the
setup and default options to access this feature.

For information on how to write custom checksum functions, please refer to RTPS .

4.13. Message Integrity Checking 123

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.13.1 RTPS Checksum

Connext Micro implements checksum validation on a complete RTPS message. A typical RTPS
message without a checksum has the following structure:

+--------+------------+-------------------------+------------+
| Header | Submessage | submessages | Submessage |
+--------+------------+-------------------------+------------+

When the message integrity checking feature is enabled, the structure of the RTPS message changes
as illustrated below:

+--------+------------+------------+------------------+------------+
| Header | Checksum | Submessage | .. submessages ..| Submessage |
+--------+------------+------------+------------------+------------+

The sender calculates the checksum for the entire message with a checksum field set to 0 and places
the result in the checksum field.

The receiver saves the the received checksum, sets the received checksum field to 0, and calculates
the checksum for the entire message. It then compares the calculated checksum with the received
checksum. If the checksums differ, the entire RTPS message is considered corrupted.

Note that the checksum is used only for error detection and not for error correction.

4.13.2 Configurations

You can configure your application to define which algorithms to use and validate as well as the
requirements enforced by the participant when communicating with other participants using the
DDS_WireProtocolQosPolicy.

Configuring the message integrity checking consists of the two parts:

1. Selecting the checksum algorithm.

2. Configuring how a participant applies the checksums.

Selecting a checksum algorithm

Connext Micro supports three built-in algorithms and can be configured to use any of the following
algorithms:

1. DDS_CHECKSUM_BUILTIN32: CRC-32 As defined by ISO/IEC 13239:2002.

2. DDS_CHECKSUM_BUILTIN64: CRC-64 As defined by ISO/IEC 13239:2002.

3. DDS_CRC_BUILTIN128: MD5 Message Digest

The CRC functions have the following properties:

4.13. Message Integrity Checking 124

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Checksum Polynom Initial Value Input Reflected Output Reflected XOR Value
CRC-32 0x04c11db7 2^32 - 1 true true 2^32 - 1
CRC-64 0x1b 2^64 - 1 true true 2^64 -1

In addition, four custom algorithms can implemented and used:

1. DDS_CHECKSUM_CUSTOM32

2. DDS_CHECKSUM_CUSTOM64

3. DDS_CHECKSUM_CUSTOM128

4. DDS_CHECKSUM_CUSTOM256

Please refer to RTPS for information on how to implement custom checksum functions.

Configuring the DDS DomainParticipant

The RTPS message integrity feature is configured in the DDS_WireProtocolQosPolicy for a par-
ticipant. This QoS determines which RTPS checksum should be allowed, and if checksums should
be sent and/or validated.

The following three fields determine how a participant uses RTPS checksums:

• compute_crc - This configures the participant to send a checksum with each RTPS message.
Which checksum to send is determined by computed_crc_kind.

• check_crc - This configures the participant to verify the checksum in each received RTPS
message if the checksum is present. If the checksum is valid, the message is accepted; other-
wise, the message is dropped. If a message is received without a checksum, it is accepted and
processed.

• require_crc - This configures the participant to require that a checksum is present in the
receiving packet. Messages without a checksum are dropped without further processing.
Note that this option is orthogonal to the check_crc options. This option only requires that
a checksum is included, it does not validate it. To validate and only accept messages with a
checksum, both check_crc and require_crc must be true.

The following two fields determine which checksums are used:

• computed_crc_kind - The checksum type to include in each RTPS message when compute_crc
is true.

• allowed_crc_mask - A mask of all checksum algorithms that the participant can verify. This
allows the participant to receive messages from other participants with a different com-
puted_crc_kind. A participant will ignore a participant that is sending a checksum that
it cannot validate.

For example, the following snippet shows how to configure the participant to:

• Send all messages (except the participant announcements; see the Participant Discovery and
Participant Compatibility section below) with DDS_CHECKSUM_BUILTIN64.

4.13. Message Integrity Checking 125

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• Accept DDS_CHECKSUM_BUILTIN32, DDS_CHECKSUM_BUILTIN64, and
DDS_CHECKSUM_BUILTIN128 algorithms.

struct DDS_DomainParticipantQos dp_qos =
DDS_DomainParticipantQos_INITIALIZER;

dp_qos.protocol.computed_crc_kind = DDS_CHECKSUM_BUILTIN64;

dp_qos.protocol.allowed_crc_mask = DDS_CHECKSUM_BUILTIN32
| DDS_CHECKSUM_BUILTIN64
| DDS_CHECKSUM_BUILTIN128;

4.13.3 Participant Discovery and Participant Compatibility

Connext Micro ensures that participants establish communication with each other only when they
have compatible checksum configurations. If compute_crc is true, all messages sent from the par-
ticipant are protected by a checksum. Since each participant can use a different type of checksum,
a mechanism is required to ensure that participants are compatible during discovery.

To bootstrap this mechanism, all participant announcements (if compute_crc is set to true) in-
clude a checksum of type DDS_CHECKSUM_BUILTIN32. The participant announcement carries
information about the computed_crc_kind (the checksum kind used by the participant) and the
allowed_crc_mask (the checksum kinds understood by the participant), and whether or not the
participant requires a checksum for each RTPS message (if require_crc is set to true). Please
note that messages with DDS_CHECKSUM_BUILTIN32 checksum are always accepted to enable
discovering new participants.

For a Participant (A) to match with another Participant (B), the computed_crc_kind of Participant
(B) must be a strict subset of the allowed_crc_mask of Participant (A) and vice versa. If Partic-
ipant (B) does not send a checksum (compute_crc is set to false), it can only match Participant
(A) if it does not set require_crc to true.

4.13.4 Interoperability with Connext Professional

Connext Professional supports a CRC 32-bit checksum. However, the RTPS submessage used by
Connext Professional to include a checksum is different from the one used by Connext Micro and
what has been standardized by the OMG. Connext Micro always accepts Connext Professional’s
CRC32 and treats it as a DDS_CHECKSUM_BUILTIN32. However, in order to enable interop-
erability with Connext Professional and enable Connext Professional to validate the checksum, it
is necessary to change the transmit mode of Connext Micro. Two transmit modes are available:

• RTPS_CRC_TXMODE_OMG - Use the standard method as defined by the OMG. This is
the default mode. The checksums sent by Connext Micro are not understood by Connext
Professional, and Connext Professional will accept the messages as not having a CRC32.

• RTPS_CRC_TXMODE_RTICRC32 - CRC32 Mode. This mode sets the com-
puted_crc_kind to DDS_CRC_BUILTIN32. The checksum sent by Connext Micro is un-
derstood by Pro. Use this option only if the Connext Professional application in your system
needs checksum validation and has set check_crc to true.

4.13. Message Integrity Checking 126

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.14 Working With Sequences

4.14.1 Introduction

RTI Connext Micro uses IDL as the language to define data-types. One of the constructs in IDL is
the sequence: a variable-length vector where each element is of the same type. This section describes
how to work with sequences; in particular, the string sequence since it has special properties.

4.14.2 Working with Sequences

Overview

Logically a sequence can be viewed as a variable-length vector with N elements, as illustrated below.
Note that sequences indices are 0 based.

+---+
0 | T |

+---+|api_ref_c|_
|
|

+---+
N-1 | T |

+---+

There are three types of sequences in Connext Micro:

• Builtin sequences of primitive IDL types.

• Sequences defined in IDL using the sequence keyword.

• Sequences defined by the application.

The following builtin sequences exist (please refer to C API Reference and C++ API Reference for
the complete API).

4.14. Working With Sequences 127

../../../doc/api_c/html/index.html
../../../doc/api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

IDL Type Connext Micro Type Connext Micro Sequence
octet DDS_Octet DDS_OctetSeq
char DDS_Char DDS_CharSeq
boolean DDS_Boolean DDS_BooleanSeq
short DDS_Short DDS_ShortSeq
unsigned short DDS_UnsignedShort DDS_UnsignedShortSeq
long DDS_Long DDS_LongSeq
unsigned long DDS_UnsignedLong DDS_UnsignedLongSeq
enum DDS_Enum DDS_EnumSeq
wchar DDS_Wchar DDS_WcharSeq
long long DDS_LongLong DDS_LongLongSeq
unsigned long long DDS_UnsignedLongLong DDS_UnsignedLongLongSeq
float DDS_Float DDS_FloatSeq
double DDS_Double DDS_DoubleSeq
long double DDS_LongDouble DDS_LongDoubleSeq
string DDS_String DDS_StringSeq
wstring DDS_Wstring DDS_WstringSeq

The following are important properties of sequences to remember:

• All sequences in Connext Micro must be finite.

• All sequences defined in IDL are sized based on IDL properties and must not be resized. That
is, never call set_maximum() on a sequence defined in IDL. This is particularly important
for string sequences.

• Application defined sequences can be resized using set_maximum() or ensure_length().

• There are two ways to use a DDS_StringSeq (they are type-compatible):

– A DDS_StringSeq originating from IDL. This sequence is sized based on maximum
sequence length and maximum string length.

– A DDS_StringSeq originating from an application. In this case the sequence element
memory is unmanaged.

• All sequences have an initial length of 0.

Working with IDL Sequences

Sequences that originate from IDL are created when the IDL type they belong to is created. IDL
sequences are always initialized with the maximum size specified in the IDL file. The maximum
size of a type, and hence the sequence size, is used to calculate memory needs for serialization and
deserialization buffers. Thus, changing the size of an IDL sequence can lead to hard to find memory
corruption.

The string and wstring sequences are special in that not only is the maximum sequence size allo-
cated, but because strings are also always of a finite maximum length, the maximum space needed
for each string element is also allocated. This ensure that Connext Micro can prevent memory
overruns and validate input.

4.14. Working With Sequences 128

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Some typical scenarios with a long sequence and a string sequence defined in IDL is shown below:

/* In IDL */
struct SomeIdlType
{

// A sequence of 20 longs
sequence<long,20> long_seq;

// A sequence of 10 strings, each string has a maximum length of 255 bytes
// (excluding NUL)
sequence<string<255>,10> string_seq;

}

/* In C source */
SomeIdlType *my_sample = SomeIdlTypeTypeSupport_create_data()

DDS_LongSet_set_length(&my_sample->long_seq,5);
DDS_StringSeq_set_length(&my_sample->string_seq,5);

/* Assign the first 5 longs in long_seq */
for (i = 0; i < 5; ++i)
{

*DDS_LongSeq_get_reference(&my_sample->long_seq,i) = i;
snprintf(*DDS_StringSeq_get_reference(&my_sample->string_seq,0),255,"SomeString %d",

↪→i);
}

/* The delete call is _not_ available in Micro Cert */
SomeIdlTypeTypeSupport_delete_data(my_sample);

/* In C++ source */
SomeIdlType *my_sample = SomeIdlTypeTypeSupport::create_data()

/* Assign the first 5 longs in long_seq */

my_sample->long_seq.length(5);
my_sample->string_seq.length(5);

for (i = 0; i < 5; ++i)
{

/* use method */
*DDSLongSeq_get_reference(&my_sample->long_seq,i) = i;
snprintf(*DDSStringSeq_get_reference(&my_sample->string_seq,i),255,"SomeString %d",

↪→i);

/* or assignment */
my_sample->long_seq[i] = i;
snprintf(my_sample->string_seq[i],255,"SomeString %d",i);

}

/* The delete call is _not_ available in Micro Cert */
SomeIdlTypeTypeSupport::delete_data(my_sample);

Note that in the example above the sequence length is set. The maximum size for each sequence is

4.14. Working With Sequences 129

RTI Connext DDS Micro Documentation, Version 2.4.14.2

set when my_sample is allocated.

A special case is to copy a string sequence from a sample to a string sequence defined outside of the
sample. This is possible, but care must be taken to ensure that the memory is allocated properly:

Consider the IDL type from the previous example. A string sequence of equal size can be allocated
as follows:

struct DDS_StringSeq app_seq = DDS_SEQUUENCE_INITIALIZER;

/* This ensures that memory for the strings are allocated upfront */
DDS_StringSeq_set_maximum_w_max(&app_seq,10,255);

DDS_StringSeq_copy(&app_seq,&my_sample->string_seq);

If instead the following code was used, memory for the string in app_seq would be allocated as
needed.

struct DDS_StringSeq app_seq = DDS_SEQUUENCE_INITIALIZER;

/* This ensures that memory for the strings are allocated upfront */
DDS_StringSeq_set_maximum(&app_seq,10);

DDS_StringSeq_copy(&app_seq,&my_sample->string_seq);

Working with Application Defined Sequences

Application defined sequences work in the same way as sequences defined in IDL with two excep-
tions:

• The maximum size is 0 by default. It is necessary to call set_maximum or ensure_length
to allocate space.

• DDS_StringSet_set_maximum does not allocate space for the string pointers. The
memory must be allocated on a per needed basis and calls to _copy may reallocate memory
as needed. Use DDS_StringSeq_set_maximum_w_max or DDS_StringSeq_en-
sure_length_w_max to also allocate pointers. In this case _copy will not reallocate
memory.

Note that it is not allowed to mix the use of calls that pass the max (ends in _w_max) and
calls that do not. Doing so may cause memory leaks and/or memory corruption.

struct DDS_StringSeq my_seq = DDS_SEQUENCE_INITIALIZER;

DDS_StringSeq_ensure_length(&my_seq,10,20);

for (i = 0; i < 10; i++)
{

*DDS_StringSeq_get_reference(&my_seq,i) = DDS_String_dup("test");
}

(continues on next page)

4.14. Working With Sequences 130

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
/* The finalize call is _not_ available in Micro Cert */
DDS_StringSeq_finalize(&my_seq);

DDS_StringSeq_finalize automatically frees memory pointed to by each element using
DDS_String_free. All memory allocated to a string element should be allocated using a
DDS_String function.

It is possible to assign any memory to a string sequence element if all elements are released manually
first:

struct DDS_StringSeq my_seq = DDS_SEQUENCE_INITIALIZER;

DDS_StringSeq_ensure_length(&my_seq,10,20);

for (i = 0; i < 10; i++)
{

*DDS_StringSeq_get_reference(&my_seq,i) = static_string[i];
}

/* Work with the sequence */

for (i = 0; i < 10; i++)
{

*DDS_StringSeq_get_reference(&my_seq,i) = NULL;
}

DDS_StringSeq_finalize(&my_seq);

4.15 Debugging

Please note that this chapter applies to Connext Micro and Connext Cert. However, in Connext
Cert logging is only available in the Debug libraries.

4.15.1 Overview

Connext Micro maintains a log of events occuring in a Connext Micro application. Information on
each event is formatted into a log entry. Each entry can be stored in a buffer, stringified into a
displayable log message, and/or redirected to a user-defined log handler.

For a list of error codes, please refer to C Logging Reference or C++ Logging Reference.

4.15. Debugging 131

../../../doc/api_c/html/group__LoggingModule.html
../../../doc/api_cpp/html/group__LoggingModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.15.2 Configuring Logging

By default, Connext Micro sets the log verbosity to Error. It can be changed at any time by calling
OSAPI_Log_set_verbosity() using the desired verbosity as a parameter.

Note that when compiling with RTI_CERT defined, logging is completely removed.

The Connext Micro log stores new log entries in a log buffer.

The default buffer size is different for Debug and Release libraries. The Debug libraries are con-
figured to use a much larger buffer than the Release ones. A custom buffer size can be configured
using the OSAPI_Log_set_property() function. For example, to set a buffer size of 128 bytes:

struct OSAPI_LogProperty prop = OSAPI_LogProperty_INIITALIZER;

OSAPI_Log_get_property(&prop);
prop.max_buffer_size = 128;
OSAPI_Log_set_property(&prop);

Note that if the buffer size is too small, log entries will be truncated in order to fit in the available
buffer.

The function used to write the logs can be set during compilation by defining the macro OS-
API_LOG_WRITE_BUFFER. This macro shall have the same parameters as the function pro-
totype OSAPI_Log_write_buffer_T.

It is also possible to set this function during runtime by using the function OS-
API_Log_set_property():

struct OSAPI_LogProperty prop = OSAPI_LogProperty_INIITALIZER;

OSAPI_Log_get_property(&prop);
prop.write_buffer = <pointer to user defined write function>;
OSAPI_Log_set_property(&prop);

A user can install a log handler function to process each new log entry. The handler must conform
to the definition OSAPI_LogHandler_T, and it is set by OSAPI_Log_set_log_handler().

When called, the handler has parameters containing the raw log entry and detailed log information
(e.g., error code, module, file and function names, line number).

The log handler is called for every new log entry, even when the log buffer is full. An expected use
case is redirecting log entries to another logger, such as one native to a particular platform.

4.15. Debugging 132

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.15.3 Log Message Kinds

Each log entry is classified as one of the following kinds:

• Error. An unexpected event with negative functional impact.

• Warning. An event that may not have negative functional impact but could indicate an
unexpected situation.

• Information. An event logged for informative purposes.

By default, the log verbosity is set to Error, so only error logs will be visible. To change the log
verbosity, simply call the function OSAPI_Log_set_verbosity() with the desired verbosity
level.

4.15.4 Interpreting Log Messages and Error Codes

A log entry in Connext Micro has a defined format.

Each entry contains a header with the following information:

• Length. The length of the log message, in bytes.

• Module ID. A numerical ID of the module from which the message was logged.

• Error Code. A numerical ID for the log message. It is unique within a module.

Though referred to as an “error” code, it exists for all log kinds (error, warning, info).

The module ID and error code together uniquely identify a log message within Connext Micro.

Connext Micro can be configured to provide additional details per log message:

• Line Number. The line number of the source file from which the message is logged.

• Module Name. The name of the module from which the message is logged.

• Function Name. The name of the function from which the message is logged.

When an event is logged, by default it is printed as a message to standard output. An example
error entry looks like this:

[943921909.645099999]ERROR: ModuleID=7 Errcode=200 X=1 E=0 T=1
dds_c/DomainFactory.c:163/DDS_DomainParticipantFactory_get_instance: kind=19

• X Extended debug information is present, such as file and line number.

• E Exception, the log message has been truncated.

• T The log message has a valid timestamp (successful call to OSAPI_System_get_time()).

A log message will need to be interpreted by the user when an error or warning has occurred and its
cause needs to be determined, or the user has set a log handler and is processing each log message
based on its contents.

A description of an error code printed in a log message can be determined by following these steps:

4.15. Debugging 133

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• Navigate to the module that corresponds to the Module ID, or the printed module name in
the second line. In the above example, “ModuleID=7” corresponds to DDS.

• Search for the error code to find it in the list of the module’s error codes. In the example
above, with “Errcode=200,” search for “200” to find the log message that has the value
“(DDSC_LOG_BASE + 200)”.

4.16 Connext Micro Hardcoded Resource Limits

4.16.1 Introduction

Connext Micro contains a few resource limits that are not configurable in a QoS policy or property.
Note that not every single constant used in Connext Micro is addressed. The focus is on resource
limits that may prevent an application using Connext Micro from behaving correctly. For example,
the maximum number of participants that can be discovered on a node may impact an application.
On the other hand, a resource limit that has no functional impact, for example the maximum length
of the discovery plugin name, is not described in this document.

When a resource limit is exceeded an error message is logged. An explanation can be found in the
documentation. Note that some resource limits may be exceeded when calling an API and others
may be exceeded as part of processing incoming data. Thus, it may be necessary to look at log
output to see the failure reason.

Although Connext Micro can be compiled from source it is recommended to consult with RTI
before making any changes to the hard coded limits.

4.16.2 Summary

Resource Limit
Number of domain participants per OS process 8
Max topic name length 255
Max type name length 255
Max number of discovery plugins used by a domain participant 1
Max number of announced receive addresses for discovery data by a domain participant 4
Max number of announced receive addresses for user-data data by a domain participant 4
Max number of addresses that can be received (per meta-unicast, meta-multicast,
user-unicast, user-multicast)

4

4.16. Connext Micro Hardcoded Resource Limits 134

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.16.3 Operating Services API (OSAPI)

• The maximum number of object IDs are 2^32-1

– DDS objects require a unique object_id. The encoding dictated by the RTPS specifica-
tion limits the number of DDS objects within a domain participant to 2^24.

– User impact - None.

• The maximum number of timers that can be created is 8

– Each DomainParticipant allocates 1 timer

∗ User impact - The maximum number of domain participants in a single OS process
is limited to 8. This limit is based on empirical data; only specialized applications
such as tools typically use more than 2 domain participants.

• Connext Micro cannot run continously for longer than approximately 68 years.

– User impact - Do not run an application using Connext Micro for longer than approxi-
mately 68 years before restarting it.

• Connext Micro does not support a calendar time after January 1 2038.

– User impact

∗ The DESTINATION_ORDER source_timestamp relies on the difference between
two timestamps to determine if two samples are considered to have the same times-
tamp in case time has been adjusted backwards. A platform that relies on absolute
time may not support this. It is possible to write samples with a manually specified
timestamp to mitigate this limitation.

∗ Timestamp information for samples may be incorrect after January 1 2038.

4.16.4 DDS C API

• Maximum Topic name length - 255 (including NUL termination)

– The limit is specified as 256 including NUL termination in the RTPS specification, refer
to 9.6.2.2.2 in the RTPS specification (OMG formal/2009-01-05).

• Maximum Type name length - 255 (including NUL termination)

– The limit is specified as 256 including NUL termination in the RTPS specification, refer
to 9.6.2.2.2 in the RTPS specification (OMG formal/2009-01-05).

• Maximum number of matched data-writers (per data-reader) - 1,000,000

– This limit determines how many data-writers each data-reader can match.

• Maximum number of matched data-readers (per data-writer) - 100,000,000

– This limit determines how many data-readers each data-writer can match.

• Maximum number of locators of each type which can be sent in the participant announcement
- 4

4.16. Connext Micro Hardcoded Resource Limits 135

RTI Connext DDS Micro Documentation, Version 2.4.14.2

– This limit determines the number of unique network address that can be advertised
as part of discovery. The limit is per locator type. That is, the limit is applicable to
discovery and user-data (total of 4 each)

• Maximum number of discovery plugins which can be used by the domain participant - 1

– User impact: Must choose either static or dynamic discovery.

• Maximum timeout for a DDS WaitSet is approximately 40 days.

– User impact: After 40 days, the DDS WaitSet will time out, possibly with
no active conditions.

4.16.5 Dynamic Discovery Plugin (DPDE)

• Maximum number of received locators - 4

– This limit determines the number of unique network addresses that can be advertised
as part of discovery.

– The limit is per locator type. That is, the same limit is applicable to discovery unicast,
discovery multicast, user-data unicast, and user-data multicast.

4.16.6 Static Discovery Plugin (DPSE)

• Maximum number of received locators - 4

– This limit determines the number of unique network address that can be advertised as
part of discovery.

– The limit is per locator type. That is, the same limit is applicable to discovery unicast,
discovery multicast, user-data unicast, and user-data multicast.

4.16.7 RTPS Protocol Implementation (RTPS)

• Unlimited max_samples is defined as 100000000

• Maximum number of external RTPS interfaces - 16

– This limits the number of participants to 16 per OS process.

– This limit is reduced to 8 due to the OS limit.

4.16. Connext Micro Hardcoded Resource Limits 136

RTI Connext DDS Micro Documentation, Version 2.4.14.2

4.17 Building Against FACE Conformance Libraries

This section describes how to build Connext Micro using the FACETM conformance test tools.

4.17.1 Requirements

Connext Micro Source Code

The Connext Micro source code is available from RTI’s Support portal.

FACE Conformance Tools

RTI does not distribute the FACE conformance tools.

CMake

The Connext Micro source is distributed with a CMakeList.txt project file. CMake is an easy to
use tool that generates makefiles or project files for various build-tools, such has UNIX makefiles,
Microsoft® Visual Studio® project files, and Xcode.

CMake can be downloaded from https://www.cmake.org.

4.17.2 FACE Golden Libraries

The FACE conformance tools use a set of golden libraries. There are different golden libraries for
different FACE services, languages and profiles. Connext Micro only conforms to the safetyExt and
safety profile of OSS using the C language.

Building the FACE Golden Libraries

The FACE conformance tools ship with their own set of tools to build the golden libraries. Please
follow the instructions provided by FACE. In order to build the FACE golden libraries, it is necessary
to port to the required platform. RTI has only tested Connext Micro on Linux 2.6 systems with
GCC 4.4.5. The complete list of files modified by RTI are included below in source form.

4.17.3 Building the Connext Micro Source

The following instructions show how to built the Connext Micro source:

• Extract the source-code. Please note that the remaining instructions assume that only a
single platform is built from the source.

• In the top-level source directory, enter the following:

4.17. Building Against FACE Conformance Libraries 137

http://support.rti.com
https://www.cmake.org

RTI Connext DDS Micro Documentation, Version 2.4.14.2

shell> cmake-gui .

This will start the CMake GUI where all build configuration takes place.

• Click the “Configure” button.

• Select UNIX Makefiles from the drop-down list.

• Select “Use default compilers” or “Specify native compilers” as required. Press “Done.”

• Click “Configure” again. There should not be any red lines. If there are, click “Configure”
again.

NOTE: A red line means that a variable has not been configured. Some options could add new
variables. Thus, if you change an option a new red lines may appear. In this case configure
the variable and press “Configure.”

• Expand the CMAKE and RTIMICRO options and configure how to build Connext Micro:

CMAKE_BUILD_TYPE: Debug or blank. If Debug is used, the |me| debug
libraries are built.

RTIMICRO_BUILD_API: C or C++
C - Include the C API. For FACE, only C is supported.
C++ - Include the C++ API.

RTIMICRO_BUILD_DISCOVERY_MODULE: Dynamic | Static | Both
Dynamic - Include the dynamic discovery module.
Static - Include the static discovery module.
Both - Include both discovery modules.

RTIMICRO_BUILD_LIBRARY_BUILD:
Single - Build a single library.
RTI style - Build the same libraries RTI normally ships. This is useful

if RTI libraries are already being used and you want to use
the libraries built from source.

RTIMICRO_BUILD_LIBRARY_TYPE:
Static - Build static libraries.
Shared - Build shared libraries.

RTIMICRO_BUILD_LIBRARY_PLATFORM_MODULE: POSIX

RTIMICRO_BUILD_LIBRARY_TARGET_NAME: <target name>
Enter a string as the name of the target. This is also used as the
name of the directory where the built libraries are placed.
If you are building libraries to replace the libraries shipped by RTI,
you can use the RTI target name here. It is then possible to set
RTIMEHOME to the source tree (if RTI style is selected for
RTIMICRO_BUILD_LIBRARY_BUILD).

RTIMICRO_BUILD_ENABLE_FACE_COMPLIANCE: Select level of FACE compliance
None - No compliance required
General - Build for compliance with the FACE general profile

(continues on next page)

4.17. Building Against FACE Conformance Libraries 138

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
Safety Extended - Build for compliance with the FACE safety extended profile
Safety - Build for compliance with the FACE safety profile

RTIMICRO_BUILD_LINK_FACE_GOLDEBLIBS:
Check if linking against the static FACE conformance test libraries.
NOTE: This check-box is only available if FACE compliance is different
from "None".

RTIMICRO_BUILD_LINK_FACE_GOLDEBLIBS:
If the RTIMICRO_BUILD_LINK_FACE_GOLDEBLIBS is checked the path to the
top-level FACE root must be specified here.

• Click “Configure”.

• Click “Generate”.

• Build the generated project.

• Libraries are placed in lib/<RTIMICRO_BUILD_LIBRARY_TAR-
GET_NAME>.

4.17. Building Against FACE Conformance Libraries 139

Chapter 5

Building and Porting Connext Micro

5.1 RTI Connext Micro Platforms

RTI Connext Micro is a source product and can be ported to all reference platforms that RTI
supports; see Reference Platforms below. However, RTI does not test and validate the libraries on
all permutations of CPU types, compiler version and OS version.

5.1.1 Reference Platforms

The following are reference platforms for which the platform-dependent layers are provided with
the RTI Connext Micro product as part of standard product release:

• Windows®

• Linux®

• Unix™ (POSIX Compliant)

• Wind River® VxWorks®

• Express Logic® ThreadX®

• FreeRTOS™

• macOS® X (Darwin)

• QNX®

• AUTOSAR®

140

RTI Connext DDS Micro Documentation, Version 2.4.14.2

5.1.2 Known Customer Platforms

RTI Connext Micro has been ported to a number of platforms by our customers, such as:

• uC/OS™

• uLinux

• Win32

• Android™

• iOS®

• TI’s Stellaris® Arm® Cortex®-M3 and -M4 with only TI device drivers, no OS

• Baremetal - Arm Cortex-M4

• INTEGRITY®-178

• VxWorks 653 2.x, 3.x

• DDC-I Deos™

• LynxOS®-178

• VOS™

RTI Connext Micro is known to run with the following network stacks:

• BSD® socket-based stack

• Windows Socket library

• VxWorks Network stack

• ThreadX Network stack

• RTNet®

• lwIP (event and blocking mode)

• QNX Network stack

• GHS IPFlite and general purpose stack

5.2 Building the Connext Micro Source

5.2.1 Introduction

RTI Connext Micro has been engineered for reasonable portability to common platforms and
environments, such as Darwin, iOS, Linux, and Windows. This document explains how to build
the Connext Micro source-code. The focus of this document is building Connext Micro for an
architecture supported by RTI (please refer to RTI Connext Micro Platforms for more information).
Please refer to Porting RTI Connext Micro for documentation on how to port Connext Micro to
an unsupported architecture.

5.2. Building the Connext Micro Source 141

RTI Connext DDS Micro Documentation, Version 2.4.14.2

This manual is written for developers and engineers with a background in software development.
It is recommended to read the document in order, as one section may refer to or assume knowledge
about concepts described in a preceding section.

5.2.2 The Host and Target Environment

The following terminology is used to refer to the environment in which Connext Micro is built and
run:

• The host is the machine that runs the software to compile and link Connext Micro.

• The target is the machine that runs Connext Micro.

• In many cases Connext Micro is built and run on the same machine. This is referred to as a
self-hosted environment.

The environment is the collection of tools, OS, compiler, linker, hardware etc. needed to build and
run applications.

The word must describes a requirement that must be met. Failure to meet a must requirement
may result in failure to compile, use or run Connext Micro.

The word should describes a requirement that is strongly recommended to be met. A failure to
meet a should recommendation may require modification to how Connext Micro is built, used, or
run.

The word may is used to describe an optional feature.

The Host Environment

RTI Connext Micro has been designed to be easy to build and to require few tools on the host.

The host machine must:

• support long filenames (8.3 will not work). Connext Micro does not require a case sensitive
file-system.

• have the necessary compiler, linkers, and build-tools installed.

The host machine should:

• have CMake (www.cmake.org) version 3.12 or higher installed. Note that it is not required
to use CMake to build Connext Micro, and in some cases it may also not be recommended.
As a rule of thumb, if RTI Connext Micro can be built from the command-line, CMake is
recommended.

• be able to run bash shell scripts (Unix type systems) or BAT scripts (Windows machines).

Typical examples of host machines are:

• a Linux PC with the GNU tools installed (make, gcc, g++, etc).

• a Mac computer with Xcode and the command-line tools installed.

• a Windows computer with Microsoft Visual Studio Express edition.

5.2. Building the Connext Micro Source 142

https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• a Linux, Mac or Windows computer with an embedded development tool-suite.

The Target Environment

Connext Micro has been designed to run on a wide variety of targets. For example, Connext Micro
can be ported to run with no OS, an RTOS, GNU libc or a non-standard C library etc. This section
only lists the minimum requirements. Please refer to Porting RTI Connext Micro for how to port
Connext Micro.

The target machine must:

• support 8, 16, 32 and 64-bit signed and unsigned integers. Note that a 16-bit CPU (or even
8-bit) is supported as long as the listed types are supported.

Connext Micro supports 64-bit CPUs and uses native 64-bit arithmetic internally.

The target compiler should:

• have a C compiler that is C99 compliant. Note that many non-standard compilers work, but
may require additional configuration.

• have a C++ compiler that is C++98 compliant (Not required for only Connext Cert since
C++ is not supported).

The remainder of this manual assumes that the target environment is one supported by RTI:

• POSIX (Linux, Darwin, QNX®, VOS, iOS, Android).

• VxWorks 6.9 or later.

• Windows.

• QNX.

5.2.3 Overview of the Connext Micro Source

The source-code is exactly the same as developed and tested by RTI. No filtering or modifications
are performed.

RTIMEHOME--+-- CMakeLists.txt
|
+-- build -- cmake --+-- Debug --+-- <ARCH> -- <project-files>
| |
| |
| +-- Release --+-- <ARCH> -- <project-files>
+-- doc --
|
+-- example
|
+-- include
|
+-- lib +-- <ARCH> -- <libraries>
|

(continues on next page)

5.2. Building the Connext Micro Source 143

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
+-- resource --+-- cmake
| |
| +-- scripts
|
+-- rtiddsgen
|
+-- src

In this document, RTIMEHOME refers to the root directory where the rti_connext_dds_micro is
extracted and installed.

Directory Structure

The recommended directory structure is described below and should be used (1) because:

• the rtime-make script that is part of the installation expects this directory structure to run
CMake .

• this directory structure supports multiple architectures.

NOTE 1: This applies to builds using CMake. To build in a custom environment, please refer to
Custom Build Environments. Please note that Connext Cert can only be built with cmake.

CMakeLists.txt is the main input file to CMake and is used to generate build files.

The RTIMEHOME/include directory contains the public header files. By default it is identical to
RTIMEHOME/include. However, custom ports will typically add files to this directory.

The RTIMEHOME/lib directory is empty by default. All libraries successfully built with the CMake
generated build-files, regardless of which generator was used, will be copied to the RTIMEHOME/lib
directory.

The RTIMEHOME/src directory contains the Connext Micro source files. RTI does not support
modifications to these files unless explicitly stated in the porting guide. A custom port will typically
add specific files to this directory.

The RTIMEHOME/build directory is empty by default. CMake generates one set of build-files
for each configuration. A build configuration can be an architecture, Connext Micro options,
language selection, etc. This directory will contain CMake generated build-files per architecture
per configuration. By convention the Debug directory is used to generate build-files for debug
libraries and the Release directory is used for release libraries.

The following naming conventions are used regardless of the build-tool:

• Static libraries have a z suffix.

• Shared libraries do not have an additional suffix.

• Debug libraries have a d suffix.

• Release libraries do not have an additional suffix.

The following libraries are built:

5.2. Building the Connext Micro Source 144

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• rti_me - the core library, including the DDS C API

• rti_me_discdpde - the Dynamic Participant Dynamic Endpoint plugin

• rti_me_discdpse - the Dynamic Participant Static Endpoint plugin

• rti_me_rhsm - the Reader History plugin

• rti_me_whsm - the Writer History plugin

• rti_me_cpp - the C++ API

Note: The names above are the Connext Micro library names. Depending on the target architecture,
the library name is prefixed with lib and the library suffix also varies between target architectures,
such as .so, .dylib, etc.

For example:

• rti_mezd indicates a static debug library

• rti_me indicates a dynamically linked release library

5.2.4 Compiling Connext Micro

This section describes in detail how to compile Connext Micro using CMake (version 3.12 or higher).
It starts with an example that uses the included scripts followed by a section showing how to build
manually.

CMake, available from www.cmake.org, is the preferred tool to build Connext Micro because it
simplifies configuring the Connext Micro build options and generates build files for a variety of
environments. Note that CMake itself does not compile anything. CMake is used to generate build
files for a number of environments, such as make, Eclipse® CDT, Xcode® and Visual Studio. Once
the build-files have been generated, any of the tools mentioned can be used to build Connext Micro.
This system makes it easier to support building Connext Micro in different build environments.
CMake is easy to install with pre-built binaries for common environments and has no dependencies
on external tools.

NOTE: It is not required to use CMake. Please refer to Custom Build Environments for other ways
to build Connext Micro.

Building Connext Micro with rtime-make

The Connext Micro source bundle includes a bash (UNIX) and BAT (Windows) script to simplify
the invocation of CMake. These scripts are a convenient way to invoke CMake with the correct
options.

On UNIX-based systems:

$RTIMEHOME/resource/script/rtime-make --config Debug --target self \
--name i86Linux2.6gcc4.4.5 -G "Unix Makefiles" --build

On Windows systems:

5.2. Building the Connext Micro Source 145

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

$RTIMEHOME\resource\scripts\rtime-make --config Debug --target self \
--name i86Win32VS2010 -G "Visual Studio 10 2010" --build

Explanation of arguments:

• --config Debug : Create Debug build.

• --target <target> : The target for the sources to be built. “self” indicates that the host
machine is the target and Connext Micro will be built with the options that CMake auto-
matically determines for the local compiler. Please refer to Cross-Compiling Connext Micro
for information on specifying the target architecture to build for.

• --name <name> : The name of the build, shall be a descriptive name following the recom-
mendation on naming described in section Preparing for a Build. If --name is not specified,
the value for --target will be used as the name.

• --build: Build the generated project files.

• If gcc is part of the name, GCC is assumed.

• If clang is part of the name, clang is assumed.

• If cert is part of the name, a Connext Cert build is assumed.

• If Win32 is part of the name, a 32 bit Windows build is assumed.

• If Win64 is part of the name, a 64 bit Windows build is assumed.

To get a list of all the options:

rtime-make -h

To get help for a specific target:

rtime-make --target <target> --help

Manually Building with CMake

Preparing for a Build

As mentioned, it is recommended to create a unique directory for each build configuration. A
build configuration can be created to address specific architectures, compiler settings, or different
Connext Micro build options.

RTI recommends assigning a descriptive name to each build configuration, using a common format.
While there are no requirements to the format for functional correctness, the tool-chain files in
Cross-Compiling Connext Micro uses the RTIME_TARGET_NAME variable to determine
various compiler options and selections.

RTI uses the following name format:

{cpu}{OS}{compiler}_{config}

5.2. Building the Connext Micro Source 146

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

In order to avoid a naming conflict with RTI, the following name format is recommended:

{prefix}_{cpu}{OS}{compiler}_{config}

Some examples:

• acme_ppc604FreeRTOSgcc4.6.1 - Connext Micro for a PPC 604 CPU running FreeRTOS
compiled with gcc 4.6.1, compiled by acme.

• acme_i86Win32VS2015 - Connext Micro for an i386 CPU running Windows XP or higher
compiled with Visual Studio 2015, compiled by acme.

• acme_i86Linux4gcc4.4.5_test - a test configuration build of Connext Micro for an i386 CPU
running Linux 3 or higher compiled with gcc 4.4.5, compiled by acme.

Files built by each build configuration will be stored under RTIMEHOME/build/[Debug | Re-
lease]/<name>. These directories are referred to as build directories or RTIMEBUILD. The structure
of the RTIMEBUILD depends on the generated build files and should be regarded as an intermediate
directory.

Creating Build Files for Connext Micro Using the CMake GUI

Start the CMake GUI, either from a terminal window or a menu.

Please note that the Cmake GUI does not set the CMAKE_BUILD_TYPE variable. This
variable is used to determine the names of the Connext Micro libraries. Thus, it is necessary to add
CMAKE_BUILD_TYPE manually and specify either Debug or Release. To add this variable
manually, click the ‘Add Entry’ button, specify the name as a string type.

As an alternative, rtime-make’s --gui option can be used. This option starts the CMake and also
adds the CMAKE_BUILD_TYPE option when the CMake GUI exits.

Please note that when using Visual Studio or Xcode, it is important to build the same configuration
as was specified with rtime-make’s --config option. While it is possible to build a different con-
figuration from the IDE, selecting a different configuration does not update the build configuration
generated for Connext Micro.

The GUI should be started from the RTIMEHOME directory. If this is not the case, check that:

• The source directory is the location of RTIMEHOME.

• The binary directory is the location of RTIMEBUILD.

With the CMake GUI running:

• Press ‘Configure’.

• Select a generator. You must have a compatible tool installed to process the generated files.

• Select ‘Use default native compilers’.

• Press ‘Done’.

• Press ‘Configure’.

5.2. Building the Connext Micro Source 147

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• Check ‘Grouped’.

• Expand RTIME and select your build options. All available build options for Connext Micro
are listed here.

• Type a target name for RTIME_TARGET_NAME. This should be the same as the
<name> used to create the RTIMEBUILD directory, that is the RTIMEBUILD should be on the
form <path>/<RTIME_TARGET_NAME>.

• Press ‘Configure’. All red lines should disappear. Due to how CMake works, it is strongly
recommended to always press ‘Configure’ whenever a value is changed for a variable. Other
variables may depend on the modified variable and pressing ‘Configure’ will mark those with
a red line. No red lines means everything has been configured.

• Press ‘Generate’. This creates the build-files in the RTIMEBUILD directory. Whenever an
option is changed and Configure is re-run, press Generate again.

• Exit the GUI.

Depending on the generator, do one of the following:

• For IDE generators (such as Eclipse, Visual Studio, Xcode) open the generated solu-
tion/project files and build the project/solution.

• For command-line tools (such as make, nmake, ninja) change to the RTIMEBUILD directory
and run the build-tool.

After a successful build, the output is placed in RTIMEHOME/lib/<name>.

The generated build-files may contain different sub-projects that are specific to the tool. For
example, when using Xcode or Visual Studio, the following targets are available:

• ALL_BUILD - Builds all the projects.

• rti_me_<name> - Builds only the specific library. Note that that dependent libraries are
built first.

• ZERO_CHECK - Runs CMake to regenerate project files in case something changed in the
build input. This target does not need to be built manually.

For command-line tools, try <tool> help for a list of available targets to build. For example, if
UNIX makefiles were generated:

make help

Creating Build Files for Connext Micro Using CMake from the Command Line

Open a terminal window in the RTIMEHOME directory and create the RTIMEBUILD directory. Change
to the RTIMEBUILD directory and invoke cmake using the following arguments:

cmake -G <generator> -DCMAKE_BUILD_TYPE=<Debug | Release> \
-DCMAKE_TOOLCHAIN_FILE=<toolchain file> \
-DRTIME_TARGET_NAME=<target-name>

5.2. Building the Connext Micro Source 148

https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Depending on the generator, do one of the following:

• For IDE generators (such as Eclipse, Visual Studio, Xcode) open the generated solu-
tion/project files and build the project/solution.

• For command-line tools (such as make, nmake, ninja) run the build-tool.

After a successful build, the output is placed in RTIMEHOME/lib/<name>.

The generated build-files may contain different sub-projects that are specific to the tool. For
example, in Xcode and Visual Studio the following targets are available:

• ALL_BUILD - Builds all the projects.

• rti_me_<name> - Builds only the specific library. Note that that dependent libraries are
built first.

• ZERO_CHECK - Runs CMake to regenerate project-files in case something changed in the
build input. This target does not need to be built manually.

For command-line tools, try <tool> help for a list of available targets to build. For example, if
UNIX makefiles were generated:

make help

CMake Flags used by Connext Micro

The following CMake flags (-D) are understood by Connext Micro and may be useful when building
outside of the source bundle installed by RTI. An example would be incorporating the Connext
Micro source in a project tree and invoking cmake directly on the CMakeLists.txt provided by
Connext Micro.

• -DRTIME_TARGET_NAME=\<name\> - The name of the target (equivalant to --name to
rtime-make). The default value is the name of the source directory.

• -DRTIME_CMAKE_ROOT=\<path\> - Where to place the CMake build files. The default value
is <source>/build/cmake.

• -DRTIME_BUILD_ROOT=\<path\> - Where to place the intermediate build files. The default
value is <source>/build.

• -DRTIME_SYSTEM_FILE=\<file\> or an empty string - This file can be used to set the PLAT-
FORM_LIBS variable used by Connext Micro to link with. If an empty string is specified no
system file is loaded. This option may be useful when cmake can detect all that is needed.
The default value is not defined, which means try to detect the system to build for.

• -DRTI_NO_SHARED_LIB=true - Do not build shared libraries. The default is undefined, which
means shared libraries are built. NOTE: This flag must be undefined to build shared libraries.
Setting the value to false is not supported.

• -DRTI_MANUAL_BUILDID=true - Do not automatically generate a build ID. The default value
is undefined, which means generate a new build each time the libraries are built. Setting the
value to false is not supported. The build ID is in its own source and only forces a recompile

5.2. Building the Connext Micro Source 149

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

of a few files. Note that it is necessary to generate a build ID at least once (this is done
automatically).

5.2.5 Connext Micro Compile Options

The Connext Micro source supports compile-time options. These options are in general used to
control:

• Enabling/Disabling features.

• Inclusion/Exclusion of debug information.

• Inclusion/Exclusion of APIs.

• Target platform definitions.

• Target compiler definitions.

NOTE: It is no longer possible to build a single library using CMake. Please refer to Custom Build
Environments for information on customized builds.

Connext Micro Debug Information

Please note that Connext Micro debug information is independent of a debug build as defined by
a compiler. In the context of Connext Micro, debug information refers to inclusion of:

• Logging of error-codes.

• Tracing of events.

• Precondition checks (argument checking for API functions).

Unless explicitly included/excluded, the following rule is used:

• For CMAKE_BUILD_TYPE = Release, the NDEBUG preprocessor directive is defined.
Defining NDEBUG includes logging, but excludes tracing and precondition checks. Please
note that all logging is disabled in Connext Cert release libraries.

• For CMAKE_BUILD_TYPE = Debug, the NDEBUG preprocessor directive is undefined.
With NDEBUG undefined, logging, tracing and precondition checks are included.

To manually determine the level of debug information, the following options are available:

• OSAPI_ENABLE_LOG (Include/Exclude/Default)

– Include - Include logging.

– Exclude - Exclude logging.

– Default - Include logging based on the default rule.

• OSAPI_ENABLE_TRACE (Include/Exclude/Default)

– Include - Include tracing.

– Exclude - Exclude tracing.

5.2. Building the Connext Micro Source 150

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

– Default - Include tracing based on the default rule.

• OSAPI_ENABLE_PRECONDITION (Include/Exclude/Default)

– Include - Include tracing.

– Exclude - Exclude tracing.

– Default - Include precondition checks based on the default rule.

Connext Micro Platform Selection

The Connext Micro build system looks for target platform files in RTIMEHOME/include/osapi.
All files that match *osapi_os_*.h are listed under RTIME_OSAPI_PLATFORM. Thus, if
a new port is added it will automatically be listed and available for selection.

The default behavior, <auto detect>, is to try to determine the target platform based on
header-files. The following target platforms are known to work:

• Linux

• VOS

• QNX

• Darwin

• Win32

• VxWorks 6.9 and later

However, for custom ports this may not work. Instead the appropriate platform definition file can
be selected here.

Connext Micro Compiler Selection

The Connext Micro build system looks for target compiler files in RTIMEHOME/include/osapi.
All files that match *osapi_cc_*.h are listed under RTIME_OSAPI_COMPILER. Thus, if a
new compiler definition file is added it will automatically be listed and available for selection.

The default behavior, <auto detect>, is to try to determine the target compiler based on
header-files. The following target compilers are known to work:

• GCC (stdc)

• clang (stdc)

• MSVC (stdc)

However, for others compilers this this may not work. Instead the appropriate compiler definition
file can be selected here.

5.2. Building the Connext Micro Source 151

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Connext Micro UDP Options

Checking the RTIME_UDP_ENABLE_IPALIASES disables filtering out IP aliases. Note
that this currently only works on platforms where each IP alias has its own interface name, such
as eth0:1, eth1:2, etc.

Checking the RTIME_UDP_ENABLE_TRANSFORMS_DOC enables UDP transforma-
tions in the UDP transport.

Checking the RTIME_UDP_EXCLUDE_BUILTIN excludes the UDP transport from being
built.

5.2.6 Cross-Compiling Connext Micro

Cross-compiling the Connext Micro source-code uses the exact same process described in Compiling
Connext Micro, but requires a additonal tool-chain file. A tool-chain file is a CMake file that
describes the compiler, linker, etc. needed to build the source for the target. Connext Micro
includes a few basic, generic tool-chain files for cross-compilation. In general it is expected that
users will provide their own cross-compilation tool-chain files.

To see a list of available targets, use --list :

rtime-make --list

By convention, RTI only provides generic tool-chain files that can be used to build for a broad
range of targets. For example, the Linux target can be used to build for any Linux architecture as
long as it is a self-hosted build. The same is true for Windows and Darwin systems. The VxWorks
tool-chain file uses the Wind River environment variables to select the compiler.

For example, to build on a Linux machine with Kernel 2.6 and gcc 4.7.3:

rtime-make --target Linux --name i86Linux2.6gcc4.7.3 --config Debug --build

By convention, a specific name such as i86Linux2.6gcc4.4.5 is expected to only build for a spe-
cific target architecture. Note however that this cannot be enforced by the script provided by
RTI. To create a target specific tool-chain file, copy the closest matching file and add it to the
RTIMEHOME/source/Unix/resource/CMake/architectures or RTIMEHOME/source/windows/re-
source/CMake/architectures directory.

Once a tool-chain file has been created, or a suitable file has been found, edit it as needed. Then
invoke rtime-make, specifying the new tool-chain file as the target architecture. For example:

rtime-make --target i86Linux2.6gcc4.4.5 --config Debug --build

5.2. Building the Connext Micro Source 152

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

5.2.7 Custom Build Environments

The preferred method to build Connext Micro is to use CMake. However, in some cases it may be
more convenient, or even necessary, to use a custom build environment. For example:

• Embedded systems often have numerous compiler, linker and board specific options that are
easier to manage in a managed build.

• The compiler cannot be invoked outside of the build environment, it may be an integral part
of the development environment.

• Sometimes better optimization may be achieved if all the components of a project are built
together.

• It is easier to port Connext Micro.

Importing the Connext Micro Code

The process for importing the Connext Micro Source Code into a project varies depending on the
development environment. However, in general the following steps are needed:

• Create a new project or open an existing project.

• Import the entire Connext Micro source tree from the file-system. Note that some environ-
ments let you choose whether to make a copy only link to the original files.

• Add the following include paths:

– <root>/include

– <root>/src/dds_c/domain

– <root>/src/dds_c/infrastructure

– <root>/src/dds_c/publication

– <root>/src/dds_c/subscription

– <root>/src/dds_c/topic

– <root>/src/dds_c/type

• Add a compile-time definition -DRTIME_TARGET_NAME="target name" (note that the ” must
be included).

• Add a compile-time definition -DNDEBUG for a release build.

• Add a compile-time definition of either -DRTI_ENDIAN_LITTLE for a little-endian platform or
-DRTI_ENDIAN_BIG for a big-endian platform.

• If custom OSAPI definitions are used, add a compile-time definition
-DOSAPI_OS_DEF_H="my_os_file".

• If custom compiler definitions are used, add a compile-time definition
-DOSAPI_CC_DEF_H="my_cc_file.h" .

5.2. Building the Connext Micro Source 153

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

5.3 Connext Micro for QNX

5.3.1 Introduction

This chapter includes details regarding how Connext Micro is supported on QNX. Please note
that this documentation does not include information regarding installation of QNX itself. Please
consult your QNX documentation for how to install QNX.

• QNX Platform Notes

• OS Resource Usage

• Build environment

• Compiling with rtime-make

5.3.2 QNX Platform Notes

Connext Micro uses an abstract platform API that must be ported to different platforms. This
section discusses the impementation of the platform abtractions on the QNX platform.

• Heap

• Mutex

• Semaphores

• Timers

• Time

• Threads

• Sockets

Heap

Connext Micro allocates memory using the malloc API. This memory is managed internally by
Connext Micro and is not freed.

5.3. Connext Micro for QNX 154

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Mutex

Connext Micro uses recursive mutexes to protect its critical sections. Because all Connext Micro
APIs are synchronous, a mutex take operation blocks until the mutex becomes available. It is
unexptected behavior if a mutex does not become available.

Note: QNX creates all mutexes such that priority inversion does not occur (SSR-3286-0760,
Document QMS3286, QNX OS for Safety 2.1).

Semaphores

Connext Micro uses a semaphore to implement the DDS WaitSet. One semaphore is implemented
with a condition variable while another sempahore is implemented with an internal timer (e.g. a
DDS_WaitSet with a finite duration) that signals the condition variable upon timeout.

The resolution of a semaphore is rounded up to the nearest clock tick + 1. Thus, a semaphore may
take up to 2 clock ticks (at most) extra to time out. The timeout is tied to the tick-time mentioned
in Timers.

Note: Connext Micro does not support multiple threads blocking on a semaphore. None of the
public Connext Micro APIs would cause multiple threads to block on the same semaphore.

Timers

Connext Micro implements its own software timers to support timed events such as periodic par-
ticipant announcements and checking for missed deadlines.

The timer resolution for Connext Micro timers is 10 milliseonds. This cannot be changed without
recompiling Connext Micro.

Connext Micro requires an external (to Connext Micro) clock tick to run its internal timers. On
QNX, this clock tick is implemented with a POSIX real-time timer and the SIGRTMIN signal.
This cannot be changed.

When the SIGRTMIN signal is raised, a timer handler signals a semaphore, which wakes up a
separate thread that runs the timers. Thus, the timers are updated in a separate thread, not in
the context of the signal handler.

In addition to runnning the internal timers, Connext Micro maintains an internal clock that is
started when Connext Micro is first initialized, and which is incremented in each clock-tick. The
clock-tick is maintained as a 32-bit signed second counter and a 32-bit unsigned nanosecond counter.

This internal clock is known as the “tick-time” and is a function of the number of clock-ticks, not
the actual time. The tick-time is used to control semaphore timeout, deadline, and liveliness.

5.3. Connext Micro for QNX 155

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Time

DDS APIs use the time of day to timestamp samples. On QNX, this timestamp is retrieved using
gettimeofday. Note that no check is performed on the returned time of day (such as time going
backwards).

The time is also used to determine the interval between two samples when the sample ordering is
per source timestamp on the DataWriter.

Threads

Connext Micro creates threads to run timers and process data received from the network.

By default, threads are created with the:

• PTHREAD_EXPLICIT_SCHED attribute.

• PTHREAD_CREATE_DETACHED attribute.

• OS default stack size.

• priority inheritied from spawning thread.

If the OSAPI_ThreadOptions OSAPI_THREAD_REALTIME_PRIORITY is used, the following
attributes are set as well:

• PTHREAD_SCOPE_SYSTEM

• SCHED_FIFO

Two types of thread priorties can be set:

• Absolute

A priority equal to or larger than zero is used as is, and must be within the range allowed by
the OS.

• Calculated

A priority between [OSAPI_THREAD_PRIORITY_LOW, OSAPI_THREAD_PRIOR-
ITY_HIGH] is calculated using the following formula:

OS.min_priority + (((OS.max_priority - OS.min_priority) * priority_level)/OSAPI_
↪→THREAD_PRIORITY_HIGH);

5.3. Connext Micro for QNX 156

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Sockets

Connext Micro creates a single socket to send data with and one socket for each receive thread
created. If a multicast address is specified to receive data on, multicast loopback is automatically
enabled.

5.3.3 OS Resource Usage

Connext Micro uses OS resources to implement the Connext Micro abstraction layer. The following
table outlines the type and amount of resources used by different entities and objects:

Entity mu-
tex

condi-
tion

timer socket threads

DDS_DomainParticipantFactory 3 0 1 0 1
DDS_DomainParticipant 2 0 0 0 0
DDS_DataReader 1 0 0 0 0
DDS_DataWriter 1 0 0 0 0
DDS_Publisher 1 0 0 0 0
DDS_Subscriber 1 0 0 0 0
DDS_WaitSet 3 2 0 0 0
DDS_GuardCondition 1 0 0 0 0
UDP Transport Send (per Participant) 0 0 0 1 0
UDP Transport Receive (per Receive lo-
cator)

0 0 0 1 1 per Receive loca-
tor

Resources:

• mutex - POSIX mutex created with pthread_mutex_init

• condition - POSIX condition variable created with pthread_cond_init

• timer - POSIX real-time timer create with timer_create and using the signal SIGMINRT.

• socket - socket created with socket

• threads - POSIX thread created with pthread_create

5.3.4 Build environment

Source is included with Connext Micro and it is possible to compile Connext Micro from source.
However, in the case of Connext Cert only binaries provided as part of the Certification Data
Package are valid with the certification evidence. Compiling the source may be useful for develop-
ment purposes.

Connext Micro is typically cross-compiled for QNX from a Linux host machine. Before Connext
Micro can be compiled with the supplied cmake files, it is required to run the QNX setup script
located in the QNX installation directory. For example, in a Linux environment:

5.3. Connext Micro for QNX 157

RTI Connext DDS Micro Documentation, Version 2.4.14.2

source qnxsdp-env.sh

5.3.5 Compiling with rtime-make

Connext Micro includes cmake files for the following QNX architectures:

• armv8QNX7.0.4qcc_gpp5.4.0 - QNX SDP 7, ARMv8

• armv8QOS2.1qcc_gpp5.4.0 - QNX OS for Safety 2.1, ARMv8

To compile for these architectures, execute the following command:

resource/scripts/rtime-make --target <architecture> --build --config Release

5.4 Building the Connext Micro Source for FreeRTOS

5.4.1 Introduction

This section explains the environment used to run Connext Micro on FreeRTOS + lwIP and is
organized as follows:

• Overview

• Configuration

• CMake Support

5.4.2 Overview

Connext Micro is known to run on the FreeRTOS operating system with the lwIP protocol
stack. STM32F769I-DISC0 has been chosen as reference hardware. This development kit has
a STM32F769NIH6 microcontroller with 2 Mbytes of Flash memory and 512 Kbytes of RAM. For
a full description, please refer to the microcontroller documentation.

STM provides a toolchain called SW4STM32. SW4STM32 is a free multi-OS software environment
based on Eclipse, which supports the full range of STM32 microcontrollers and associated boards.
SW4STM32 includes the GCC C/C++ compiler, a GDB-based debugger, and an Eclipse-based
IDE.

STM also provides STM32CubeF7. STM32CubeF7 gathers all the generic embedded software com-
ponents required to develop an application on the STM32F7 microcontrollers in a single package.

STM32CubeF7 also includes many examples and demonstration applications. The example
LwIP_HTTP_Server_Socket_RTOS is particularly useful as it provides a working FreeRTOS
+ lwIP configuration.

The following versions of the different components have been used:

• SW4STM32 version 2.1

5.4. Building the Connext Micro Source for FreeRTOS 158

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• STM32Cube_FW_F7 version V1.7.0

• FreeRTOS version V9.0.0

• lwIP version V2.0.0

5.4.3 Configuration

Example lwIP and FreeRTOS configurations are provided below for reference. This configuration
must be tuned according to your needs. Details about how to configure these third-party compo-
nents can be found in the FreeRTOS and lwIP documentation.

• Example configuration for lwIP:

#ifndef __LWIPOPTS_H__
#define __LWIPOPTS_H__

#include <limits.h>

#define NO_SYS 0

/* ---------- Memory options ---------- */
#define MEM_ALIGNMENT 4

#define MEM_SIZE (50*1024)

#define MEMP_NUM_PBUF 10

#define MEMP_NUM_UDP_PCB 6

#define MEMP_NUM_TCP_PCB 10

#define MEMP_NUM_TCP_PCB_LISTEN 5

#define MEMP_NUM_TCP_SEG 8

#define MEMP_NUM_SYS_TIMEOUT 10

/* ---------- Pbuf options ---------- */
#define PBUF_POOL_SIZE 8

#define PBUF_POOL_BUFSIZE 1524

/* ---------- IPv4 options ---------- */
#define LWIP_IPV4 1

/* ---------- TCP options ---------- */
#define LWIP_TCP 1
#define TCP_TTL 255

#define TCP_QUEUE_OOSEQ 0
(continues on next page)

5.4. Building the Connext Micro Source for FreeRTOS 159

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)

#define TCP_MSS (1500 - 40) /* TCP_MSS = (Ethernet MTU - IP header␣
↪→size - TCP header size) */

#define TCP_SND_BUF (4*TCP_MSS)

#define TCP_SND_QUEUELEN (2* TCP_SND_BUF/TCP_MSS)

#define TCP_WND (2*TCP_MSS)

/* ---------- ICMP options ---------- */
#define LWIP_ICMP 1

/* ---------- DHCP options ---------- */
#define LWIP_DHCP 1

/* ---------- UDP options ---------- */
#define LWIP_UDP 1
#define UDP_TTL 255

/* ---------- Statistics options ---------- */
#define LWIP_STATS 0

/* ---------- link callback options ---------- */
#define LWIP_NETIF_LINK_CALLBACK 1

/*

---------- Checksum options ----------

*/

/*
The STM32F7xx allows computing and verifying checksums by hardware
*/
#define CHECKSUM_BY_HARDWARE

#ifdef CHECKSUM_BY_HARDWARE
/* CHECKSUM_GEN_IP==0: Generate checksums by hardware for outgoing IP packets.*/
#define CHECKSUM_GEN_IP 0
/* CHECKSUM_GEN_UDP==0: Generate checksums by hardware for outgoing UDP packets.*/
#define CHECKSUM_GEN_UDP 0
/* CHECKSUM_GEN_TCP==0: Generate checksums by hardware for outgoing TCP packets.*/
#define CHECKSUM_GEN_TCP 0
/* CHECKSUM_CHECK_IP==0: Check checksums by hardware for incoming IP packets.*/
#define CHECKSUM_CHECK_IP 0

(continues on next page)

5.4. Building the Connext Micro Source for FreeRTOS 160

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
/* CHECKSUM_CHECK_UDP==0: Check checksums by hardware for incoming UDP packets.*/
#define CHECKSUM_CHECK_UDP 0
/* CHECKSUM_CHECK_TCP==0: Check checksums by hardware for incoming TCP packets.*/
#define CHECKSUM_CHECK_TCP 0
/* CHECKSUM_CHECK_ICMP==0: Check checksums by hardware for incoming ICMP packets.*/
#define CHECKSUM_GEN_ICMP 0

#else
/* CHECKSUM_GEN_IP==1: Generate checksums in software for outgoing IP packets.*/
#define CHECKSUM_GEN_IP 1
/* CHECKSUM_GEN_UDP==1: Generate checksums in software for outgoing UDP packets.*/
#define CHECKSUM_GEN_UDP 1
/* CHECKSUM_GEN_TCP==1: Generate checksums in software for outgoing TCP packets.*/
#define CHECKSUM_GEN_TCP 1
/* CHECKSUM_CHECK_IP==1: Check checksums in software for incoming IP packets.*/
#define CHECKSUM_CHECK_IP 1
/* CHECKSUM_CHECK_UDP==1: Check checksums in software for incoming UDP packets.*/
#define CHECKSUM_CHECK_UDP 1
/* CHECKSUM_CHECK_TCP==1: Check checksums in software for incoming TCP packets.*/
#define CHECKSUM_CHECK_TCP 1
/* CHECKSUM_CHECK_ICMP==1: Check checksums by hardware for incoming ICMP packets.*/
#define CHECKSUM_GEN_ICMP 1

#endif

/*
--
---------- Sequential layer options ----------
--

*/
#define LWIP_NETCONN 1

/*

---------- Socket options ----------

*/
#define LWIP_SOCKET 1

/*

---------- OS options ----------

*/

#define TCPIP_THREAD_NAME "TCP/IP"
#define TCPIP_THREAD_STACKSIZE 1000
#define TCPIP_MBOX_SIZE 6
#define DEFAULT_UDP_RECVMBOX_SIZE 2000
#define DEFAULT_TCP_RECVMBOX_SIZE 2000
#define DEFAULT_ACCEPTMBOX_SIZE 2000
#define DEFAULT_THREAD_STACKSIZE 500

(continues on next page)

5.4. Building the Connext Micro Source for FreeRTOS 161

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
#define TCPIP_THREAD_PRIO osPriorityHigh

/**
* LWIP_SO_RCVBUF==1: Enable SO_RCVBUF processing.
*/
#define LWIP_SO_RCVBUF 1

/**
* Instruct lwIP to use the errno provided by libc instead of the errno in lwIP.
* If your libc doesn't include errno, you might need to delete these macros.
*/
#undef LWIP_PROVIDE_ERRNO
#define LWIP_ERRNO_INCLUDE "errno.h"

#endif /* __LWIPOPTS_H__ */

• Example configuration for FreeRTOS:

#ifndef FREERTOS_CONFIG_H
#define FREERTOS_CONFIG_H

/*---
* Application specific definitions.
*
* These definitions should be adjusted for your application requirements.
*
* THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
* FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
*
* See http://www.freertos.org/a00110.html.
--/

/* Ensure stdint is only used by the compiler, and not the assembler. */
#if defined(__ICCARM__) || defined(__CC_ARM) || defined(__GNUC__)
#include <stdint.h>
extern uint32_t SystemCoreClock;
#endif

#define configUSE_PREEMPTION 1
#define configUSE_IDLE_HOOK 0
#define configUSE_TICK_HOOK 0
#define configCPU_CLOCK_HZ (SystemCoreClock)
#define configTICK_RATE_HZ ((TickType_t)1000)
#define configMAX_PRIORITIES (7)
#define configMINIMAL_STACK_SIZE ((uint16_t)128)
#define configTOTAL_HEAP_SIZE ((size_t)(400 * 1024))
#define configMAX_TASK_NAME_LEN (16)
#define configUSE_TRACE_FACILITY 1

(continues on next page)

5.4. Building the Connext Micro Source for FreeRTOS 162

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
#define configUSE_16_BIT_TICKS 0
#define configIDLE_SHOULD_YIELD 1
#define configUSE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 8
#define configCHECK_FOR_STACK_OVERFLOW 0
#define configUSE_RECURSIVE_MUTEXES 1
#define configUSE_MALLOC_FAILED_HOOK 0
#define configUSE_APPLICATION_TASK_TAG 0
#define configUSE_COUNTING_SEMAPHORES 1
#define configGENERATE_RUN_TIME_STATS 0

/* Co-routine definitions. */
#define configUSE_CO_ROUTINES 0
#define configMAX_CO_ROUTINE_PRIORITIES (2)

/* Software timer definitions. */
#define configUSE_TIMERS 1
#define configTIMER_TASK_PRIORITY (2)
#define configTIMER_QUEUE_LENGTH 10
#define configTIMER_TASK_STACK_DEPTH 1280

/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */
#define INCLUDE_vTaskPrioritySet 1
#define INCLUDE_uxTaskPriorityGet 1
#define INCLUDE_vTaskDelete 1
#define INCLUDE_vTaskCleanUpResources 0
#define INCLUDE_vTaskSuspend 1
#define INCLUDE_vTaskDelayUntil 0
#define INCLUDE_vTaskDelay 1
#define INCLUDE_xTaskGetSchedulerState 1

/* Cortex-M specific definitions. */
#ifdef __NVIC_PRIO_BITS
/* __BVIC_PRIO_BITS will be specified when CMSIS is being used. */
#define configPRIO_BITS __NVIC_PRIO_BITS
#else
#define configPRIO_BITS 4 /* 15 priority levels */
#endif

#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 0xf

#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5

#define configKERNEL_INTERRUPT_PRIORITY (configLIBRARY_LOWEST_INTERRUPT_PRIORITY <<␣
↪→(8 - configPRIO_BITS))

#define configMAX_SYSCALL_INTERRUPT_PRIORITY (configLIBRARY_MAX_SYSCALL_INTERRUPT_
↪→PRIORITY << (8 - configPRIO_BITS))

#define configASSERT(x) if((x) == 0) { taskDISABLE_INTERRUPTS(); for(;;); }

(continues on next page)

5.4. Building the Connext Micro Source for FreeRTOS 163

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)

#define vPortSVCHandler SVC_Handler
#define xPortPendSVHandler PendSV_Handler

#endif /* FREERTOS_CONFIG_H */

5.4.4 CMake Support

Connext Micro includes support to compile libraries for FreeRTOS using CMake . It is assumed that
the Connext Micro source-bundle has been downloaded and installed and that CMake is available.

1. Make sure CMake is in the path.

2. Define the following environment variables:

• CONFIG_PATH : Path where the FreeRTOSConfig.h and lwipopts.h files are located.

• FREERTOS_PATH : Path to FreeRTOS source code and header files.

• LWIP_PATH : Path to lwIP source code and header files.

• PATH : Update your path with the location of the C and C++ compiler. By default
arm-none-eabi-gcc and arm-none-eabi-g++ are used as C and C++ compilers.

3. Enter the following command:

cd <rti_me install directory>
resource/scripts/rtime-make --target FreeRTOS --name cortexm7FreeRTOS9.
↪→0gcc7.3.1 -G "Unix Makefiles" --build

4. The Connext Micro libraries are available in:

<rti_me install directory>/lib/cortexm7FreeRTOS9.0gcc7.3.1

NOTE: rtime-make uses the name specified with –name to determine a few settings needed by
Connext Micro. Please refer to Preparing for a Build for details.

5.5 Building the Connext Micro Source for ThreadX

5.5.1 Introduction

This section explains the environment used to run Connext Micro on the Threadx® + NetX™ and
is organized as follows:

• Overview

• Configuration

• CMake Support

5.5. Building the Connext Micro Source for ThreadX 164

https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

5.5.2 Overview

Connext Micro is known to run on the ThreadX operating system and NetX network stack. The
Renesas™ SK-S7G2 Starter Kit has been chosen as reference hardware. This starter kit has a
Synergy S7G2 microcontroller with 4 Mbytes of flash memory and 640 KBytes of SRAM. For a
full description, please refer to the microcontroller and starter kit documentation (https://www.
renesas.com/us/en/products/synergy/hardware/kits/sk-s7g2.html).

Renesas provides an Eclipse-based integrated development environment (IDE) called e2 studio.
The Synergy® Software Package (SSP) provides several middleware components like ThreadX and
NetX. e2 studio and the SSP allow you to create solutions based on ThreadX and NetX for the
Renesas SK-S7G2.

Renesas provides several examples for the SK-S7G2 and e2 studio. The DHCP client example is
particularly useful, as it provides a working ThreadX and NetX configuration.

We used the following components to build the Connext Micro application:

• e2 studio version 5.4.0.018

• SSP version 1.2.0

• ThreadX 5.7

• NetX 5.9 SP2

5.5.3 Configuration

e2 studio allows you to configure ThreadX and NetX. Connext Micro expects two variables to be
configured in NetX with the following default names:

• g_ip0 : This is the expected name of the NetX IP instance.

• g_packet_pool0 : This is the expected name of the NextX packet pool instance.

5.5.4 CMake Support

Connext Micro includes support to compile libraries for ThreadX/NetX using CMake . It is assumed
that the Connext Micro source-bundle has been downloaded and installed and that CMake is
available.

1. Make sure CMake is in the path.

2. Define the following environment variables:

• SYNERGY_PATH : Path to your Synergy project. This is needed to add the include
paths to the ThreadX and NetX public header files, and other header files used by the
ThreadX and NetX public header files.

• PATH : Update your path with the location of the C and C++ compilers. By default
arm-none-eabi-gcc and arm-none-eabi-g++ are used as C and C++ compilers.

3. Enter the following command:

5.5. Building the Connext Micro Source for ThreadX 165

https://www.renesas.com/us/en/products/synergy/hardware/kits/sk-s7g2.html
https://www.renesas.com/us/en/products/synergy/hardware/kits/sk-s7g2.html
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

cd <rti_me install directory>
resource/scripts/rtime-make --target ThreadX --name cortexm4ThreadX5.7gcc4.
↪→9.3 -G "Unix Makefiles" --build

4. The Connext Micro libraries are available in:

<rti_me install directory>/lib/cortexm4ThreadX5.7gcc4.9.3

NOTE: rtime-make uses the name specified with –name to determine a few settings needed by
Connext Micro. Please refer to Preparing for a Build for details.

5.6 Connext Micro on AUTOSAR

5.6.1 Introduction

Connext Micro includes support for AUTOSAR™ and enables Connext Micro applications to run
on AUTOSAR systems. The support has been tested on the Infineon™ AURIX™ Application
Kit TC397 TFT development board with Vector™ AUTOSAR implementation version 4.2.2 and
compiler TASKING™ v6.3r1.

Note that Connext Micro requires the C-type “double” to be 64 bits. Any compiler option that
treats a “double” as a “float” must not be enabled.

This manual explains how to compile and configure Connext Micro to run on AUTOSAR systems
and the AUTOSAR configuration needed by Connext Micro.

• AUTOSAR Configuration

• AUTOSAR Port Details

• Compiling

• Interoperability

• Compiling Applications

5.6.2 AUTOSAR Configuration

Properties

AUTOSAR port properties must be set before any call to a Connext Micro API. This is done by
using OSAPI_System_get_property() followed by OSAPI_System_set_property():

/* Example application with two areas in the heap */

#define NUMBER_OF_HEAP_AREAS 2
#define HEAP_AREA_1_SIZE 10*1024
#define HEAP_AREA_2_SIZE 130*1024

(continues on next page)

5.6. Connext Micro on AUTOSAR 166

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
const RTI_PRIVATE uint32 heap_area_size[NUMBER_OF_HEAP_AREAS] =
{

HEAP_AREA_1_SIZE,
HEAP_AREA_2_SIZE

};

RTI_PRIVATE char heap_area1[HEAP_AREA_1_SIZE];
RTI_PRIVATE char heap_area2[HEAP_AREA_2_SIZE];

RTI_PRIVATE char* const heap_area[NUMBER_OF_HEAP_AREAS] =
{

heap_area1,
heap_area2

};

static Std_ReturnType
Application_get_socket(

TcpIp_DomainType domain,
TcpIp_ProtocolType protocol,
P2VAR(TcpIp_SocketIdType, AUTOMATIC, TCPIP_APPL_DATA) socket_id)

{
/* The name of this call depends on the SocketAdaptor name configured
* in the AUTOSAR project
*/

return TcpIp_TcpIpSocketOwner_0GetSocket(domain, protocol, socket_id);
}

RTI_BOOL
Application_set_system_properties(void)
{

struct OSAPI_SystemProperty system_property;

if (!OSAPI_System_get_property(&system_property))
{

printf("failed to get system properties\n");
return RTI_FALSE;

}

/* Task OSAPI_SystemAutosar_timer_task is configured to run every 10 ms */
system_property.port_property.timer_resolution_ms = 10;

system_property.port_property.number_of_heap_areas = NUMBER_OF_HEAP_AREAS;
system_property.port_property.heap_area_size = heap_area_size;
system_property.port_property.heap_area = heap_area;

/* Connext DDS Micro will use Resources as synchronization method */
system_property.port_property.sync_type = OSAPI_AUTOSAR_SYNCKIND_RESOURCES;
system_property.port_property.first_resource_id = RTIME_Resource01;
system_property.port_property.last_resource_id = RTIME_Resource26;
#if RTIME_AUTOSAR_SPINLOCK_ENABLED
system_property.port_property.spinlock_id = 0;

(continues on next page)

5.6. Connext Micro on AUTOSAR 167

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
#endif /* RTI_CERT */

system_property.port_property.semaphore_max_count = 2;
system_property.port_property.first_give_event = RTIME_Semaphore_Give_

↪→Event;
system_property.port_property.first_timeout_event = RTIME_Semaphore_

↪→Timeout_Event;
system_property.port_property.first_alarm = RTIME_Semaphore_Alarm;

system_property.port_property.use_socket_owner = TRUE;
system_property.port_property.max_receive_sockets = 2;
system_property.port_property.number_of_rcv_buffers = 0;
system_property.port_property.rcv_buffer_size = 0;
system_property.port_property.get_socket = Application_get_socket;
system_property.port_property.send_data = NULL;
system_property.port_property.max_local_addr_id = 0;

system_property.port_property.use_udp_thread = FALSE;
system_property.port_property.udp_receive_task_id = 0;
system_property.port_property.udp_packet_received_event = 0;

if (!OSAPI_System_set_property(&system_property))
{

printf("failed to set system properties\n");
return RTI_FALSE;

}

return RTI_TRUE;
}

Tasks

Micro Timer Task

Connext Micro uses a timer task, which manages all the Connext Micro timers, such as deadline
and liveliness timers. This task must be started before the first call to DDS_DomainParticipant-
Factory_get_instance(). This task must be run at a constant period, e.g., every 10 ms. Note that
the priority of this task must be set based on the required system behavior.

It is important that the port properties are configured with the value of OSAPI_PortProp-
erty::timer_resolution_ms equal to the Timer Task period.

This task needs at least 5 KB stack. The name of this task is OSAPI_SystemAutosar_timer_task.
The task implementation can be found in the file autosarSystem.c.

5.6. Connext Micro on AUTOSAR 168

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Micro UDP Task

Connext Micro provides a callback function that must be called when a UDP packet is re-
ceived. These callback functions are NETIO_Autosar_TcpIp_udp_rx_indication() and NE-
TIO_Autosar_TcpIp_pdu_callout(). It is very important that one of these functions is called for
the on-packet reception. Typically NETIO_Autosar_TcpIp_udp_rx_indication() is called when a
SocketOwner is configured in the AUTOSAR configuration and NETIO_Autosar_TcpIp_pdu_call-
out() is typically used when SocketOwner is not configured in the AUTOSAR configuration.

It is important that the port properties are configured with a correct value in OSAPI_PortProp-
erty::use_socket_owner. Set this field to TRUE only if you have configured SocketOwner in the
AUTOSAR TcpIp configuration.

When Connext Micro receives an on-packet reception notification, the packet can be processed in
the notification callback or in a different task. If OSAPI_PortProperty::use_udp_thread is set to
TRUE, the packet is copied to an internal buffer, the “UDP Packet received event” is set, and the
packet will be processed in a different task. Otherwise the packet is processed immediately.

The configuration of the OSAPI_PortProperty::use_udp_thread, OSAPI_PortProperty::udp_re-
ceive_task_id and OSAPI_PortProperty::udp_packet_received_event is the responsibility of the
application.

Connext Micro requires one semaphore to be configured for the UDP Task if OSAPI_PortProp-
erty::use_udp_thread is TRUE. This semaphore is used to temporarily suspend the UDP Task
from a best-effort DDS DataReader if the DDS DataReader is unable to process new samples; this
can happen if the DataReader is out of resources when samples have already been received by the
network stack.

This semaphore must use the first OSAPI_PortProperty::first_give_event, OSAPI_PortProp-
erty::first_timeout_event, and OSAPI_PortProperty::first_alarm. Please refer to Semaphores for
details for how to configure semaphores.

Normally a UDP packet can be processed in the notification callback if the function OSAPI_Au-
tosar_TcIp_udp_rx_indication() orNETIO_Autosar_TcpIp_pdu_callout() is called from another
task. The UDP task is normally only needed in case OSAPI_Autosar_TcIp_udp_rx_indication()
or NETIO_Autosar_TcpIp_pdu_callout() is called from an ISR.

This task should be started only once. Note that this is not a periodic task and the task never
completes.

The UDP task waits for a “UDP Packet received event.” When this event is received, the task
reads the packet from the internal buffer, processes it and waits again for the event.

This task must have at least 5 KB stack and must be configured as an extended task (only extended
tasks can wait for an event).

The priority of this task must be assigned based on system requirements.

The name of this task is NETIO_Autosar_udp_receive_task and the task implementation can be
found in the file autosarSocket.c.

The task configuration must include all necessary references to the event used to notify a UDP
packet reception.

5.6. Connext Micro on AUTOSAR 169

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Application Task

The application task defines the DDS entities required by the application.

If any of these tasks are distributed across different cores of the system, the system integrator must
disable caching for the shared memory between the tasks.

Critical Sections

Connext Micro can be configured to use different synchronization methods to protect critical sec-
tions. These critical sections synchronize access to objects shared among the different tasks (Timer
task, UDP task, and user tasks).

First, configure the OSAPI_PortProperty::sync_type in the AUTOSAR port properties. For ex-
ample, if Connext Micro is configured with tasks running on different cores, a Spinlock must be
used.

The supported methods, and how to configure Connext Micro to use them, are described below:

• Resources

• Spinlock

For a cert build, the only synchronization method supported is Resources.

Resources

With this synchronization method, Connext Micro uses AUTOSAR resources to protect critical
sections.

Only use this configuration if Connext Micro will be executed from one core.

All AUTOSAR resources used by Connext Micro must have consecutive IDs. Configure OS-
API_PortProperty::first_resource_id and OSAPI_PortProperty::last_resource_id with the “ID”
of the first and last resource used by Connext Micro.

The number of resources needed depends on the number of DataWriter and DataReader objects
that are created, the discovery plugin that is used, the AUTOSAR Configuration and the build
configuration (whether the Log Module is excluded or not).

The following APIs and modules use one or more resources to protect critical sections:

5.6. Connext Micro on AUTOSAR 170

RTI Connext DDS Micro Documentation, Version 2.4.14.2

API Number of resources needed
AUTOSAR OSAPI
Heap module

1

AUTOSAR OSAPI
Mutex module

1

AUTOSAR NETIO UDP
module

1 or 2. If the UDP task is used, by setting OSAPI_Port-
Property::use_udp_thread to TRUE, one additional resource
is needed to synchronize socket internal buffers.

DPDE discovery
plugin

11

DPSE discovery
plugin

5

DDS_DomainParticipantFactory_get_instance()4 or 5. If the Log module is included in the compilation one
additional resource is needed.

DDS_DomainParticipantFactory_create_participant()2
DDS_DomainParticipant_create_topic()1
DDS_DomainParticipant_create_publisher()1
DDS_DomainParticipant_create_subscriber()1
DDS_Publisher_create_datawriter()1
DDS_Publisher_create_datareader()1
DDS_WaitSet_new() 1

A basic Connext Micro application using the DPDE discovery plugin and one DataWriter uses 24
resources:

Table 5.1: Basic application using DPDE discovery plugin
API Number of resources needed
AUTOSAR OSAPI Heap module 1
AUTOSAR OSAPI Mutex module 1
AUTOSAR NETIO UDP module 1
DPDE discovery plugin 11
DDS_DomainParticipantFactory_get_instance() 5 (Log module included in the compila-

tion)
DDS_DomainParticipantFactory_create_participant()2
DDS_DomainParticipant_create_topic() 1
DDS_DomainParticipant_create_publisher() 1
DDS_Publisher_create_datawriter() 1

A basic Connext Micro application using DPSE discovery plugin and one DataWriter uses 18
resources:

5.6. Connext Micro on AUTOSAR 171

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Table 5.2: Basic application using DPSE discovery plugin
API Number of resources needed
AUTOSAR OSAPI Heap module 1
AUTOSAR OSAPI Mutex module 1
AUTOSAR NETIO UDP module 1
DPSE discovery plugin 5 (Log module included in the compila-

tion)
DDS_DomainParticipantFactory_get_instance() 5
DDS_DomainParticipantFactory_create_participant()2
DDS_DomainParticipant_create_topic() 1
DDS_DomainParticipant_create_publisher() 1
DDS_Publisher_create_datawriter() 1

To configure Connext Micro to use the resources to protect critical sections, set OSAPI_PortProp-
erty::sync_type equal to OSAPI_Autosar_SyncKind_T::OSAPI_AUTOSAR_SYNCKIND_RE-
SOURCES.

The AUTOSAR configuration must link these resources to the tasks or ISRs that will interact with
them.

Spinlock

When the spinlock synchronization method is used, Connext Micro uses an OSEK spinlock to
protect critical sections.

Only use this configuration if Connext Micro will be used from more than one core.

To configure Connext Micro to use spinlock to protect critical sections set OS-
API_PortProperty::sync_type equal to OSAPI_Autosar_SyncKind_T::OSAPI_AU-
TOSAR_SYNCKIND_SPINLOCK.

TCP/IP Configuration

A CDD socket owner can be optionally used. Set OSAPI_PortProperty::use_socket_owner to
TRUE only if a SocketOwner is configured in the AUTOSAR TcpIp configuration. If a Socke-
tOwner is used, a pointer to the TcpIp_<Up>GetSocket must be configured in OSAPI_PortProp-
erty::get_socket. If a SocketOwner is not used, a pointer to a function which can send data must
be configured in OSAPI_PortProperty::send_data.

Depending on the DDS discovery configuration, a maximum of 3 UDP sockets are needed for each
participant created.

• 1 socket is required for receiving unicast discovery data.

• 1 socket is required for receiving unicast user data.

• 1 socket is required for sending data.

5.6. Connext Micro on AUTOSAR 172

RTI Connext DDS Micro Documentation, Version 2.4.14.2

It depends on the discovery configuration as it can be reduced to just 2 sockets if the discovery and
user data are received in the same shared UDP port. This can be achieved by modifying the port
offsets in RtpsWellKnownPorts_t as described in Shared UDP port for discovery and user-data in
a DomainParticipant.

All function declarations needed to configure the SocketOwner can be found in the file osapi_os_au-
tosar.h and are:

• NETIO_Autosar_TcpIp_pdu_callout()

• NETIO_Autosar_TcpIp_udp_rx_indication()

It is very important that the on-packet reception function OSAPI_Autosar_TcIp_udp_rx_indi-
cation() or NETIO_Autosar_TcpIp_pdu_callout() is called. If there is an OS configuration error,
this function might not be called.

The property OSAPI_PortProperty::max_local_addr_id expects the maximum local address id
configured in the TcpIp Basic Software Module. The Autosar port uses this information to locate
the local addresses that are used for DDS communications.

It is possible to configure Connext Micro to not use a SocketOwnwer. If a SocketOwner is
not used, it is important to configure AUTOSAR such that one of the functions OSAPI_Au-
tosar_TcIp_udp_rx_indication() or NETIO_Autosar_TcpIp_pdu_callout() is called when a UDP
packet is received.

It is very important that the TCP/IP interface is running and an IP address is assigned before a
DomainParticipant is created, otherwise the DomainParticipant creation might fail because sockets
cannot be created.

Events

Depending on the configuration, only one event might be used. One event is required by the UDP
receive callback to notify the UDP receive task that a UDP packet is available.

The ID of this event can be configured in OSAPI_PortProperty::udp_packet_received_event.

This event is only needed if OSAPI_PortProperty::use_udp_thread is set to TRUE. Please refer
to Micro UDP Task for details.

DDS WaitSets require more events; please refer to Semaphores for details.

Semaphores

Connext Micro uses semaphores to create WaitSets and to support blocking the UDP receive
task if OSAPI_PortProperty::use_udp_thread is TRUE. OSEK and AUTOSAR do not define any
semaphore objects. For this reason, semaphores are implemented using events and alarms. For
each semaphore, two events and one alarm must be added to the AUTOSAR configuration.

If OSAPI_PortProperty::use_udp_thread is TRUE, one semaphore is needed. This semaphore
must use the first event and alarm IDs, and these IDs must be assigned to the UDP Task. Please
refer to Micro UDP Task for details.

5.6. Connext Micro on AUTOSAR 173

RTI Connext DDS Micro Documentation, Version 2.4.14.2

For each WaitSet, two semaphores are needed.

WaitSet.wait() can be called only from the task that created the WaitSet.

If WaitSets are not used, or if OSAPI_PortProperty::use_udp_thread is FALSE, you do not need
to allocate any resources or alarms for semaphores. In this case set the following properties to 0:

• OSAPI_PortProperty::semaphore_max_count

• OSAPI_PortProperty::first_give_event

• OSAPI_PortProperty::first_timeout_event

• OSAPI_PortProperty::first_alarm

The semaphore implementation uses two events and one alarm for each semaphore that is created
(a total of four events and two alarms are needed for each WaitSet).

One event, the give event, is set in the OSAPI_Semaphore_give() method. The other event, the
timeout event, is used to signal a timeout in the semaphore. The alarm must be configured to set
the give event. The OSAPI_Semaphore_take() method starts the alarm and waits for either of the
two events to occur.

Give events must have consecutive event IDs, starting at OSAPI_PortProperty::first_give_event
(e.g., 1, 2, 4). Timeout events must have consecutive event IDs starting at OSAPI_PortProp-
erty::first_timeout_event (e.g., 8, 16, 32). Alarms must have consecutive IDs starting at OS-
API_PortProperty::first_alarm (e.g., 1, 2, 3). So an alarm with ID 1 must set timeout event 8;
alarm ID 2 must set timeout event 16, and so on.

The alarm for semaphore implementation must be configured as ‘RELATIVE’. The counter used
to trigger the alarm must be configured with one tick per millisecond. If this is not done properly,
the semaphore timeout will occur sooner or later than expected.

Memory

Connext Micro uses a buffer for all its memory allocations. The buffer can span across sev-
eral non-adjacent areas. The number of areas can be configured in OSAPI_PortProperty::num-
ber_of_heap_areas. The size required for this buffer depends on the number of DDS entities created
and their QoS. The size of each area can be configured in OSAPI_PortProperty::heap_area_size.
The start address for each of the areas can be configured in OSAPI_PortProperty::heap_area.

This buffer location and size can be modified, but it is recommended to use a buffer of at least 100
KB.

All allocations within Connext Micro are protected by a critical section. For more information see
Critical Sections.

5.6. Connext Micro on AUTOSAR 174

RTI Connext DDS Micro Documentation, Version 2.4.14.2

5.6.3 AUTOSAR Port Details

Logging

Connext Micro can optionally use the AUTOSAR Det module:

• Set the right log verbosity in Connext Micro by calling OSAPI_Log_set_verbosity(). The
default verbosity is OSAPI_LOG_VERBOSITY_ERROR.

• Set the AUTOSAR log display handler by calling OSAPI_Log_set_display_handler(OS-
API_AutosarLog_default_display, NULL). The file osapi_autosar.h contains the declaration
of the function OSAPI_AutosarLog_default_display().

• Connext Micro calls Det_ReportError() with the module ID RTIME_DDS_MODULE_ID
and the instance ID RTIME_DDS_INSTANCE_ID. These can be found in file osapi_os_au-
tosar.h.

Connext Micro logging can be disabled by adding the following options when compiling with CMake:

• -DRTIME_OSAPI_ENABLE_LOG=Exclude (when compiling on a Windows system, re-
place the symbol = with _eq_).

If the Connext Micro sources are not compiled with CMake, logging can be disabled by adding the
compiler flags OSAPI_ENABLE_TRACE=0 and OSAPI_ENABLE_LOG=0.

The function used to write logs can be configured using the macro OS-
API_LOG_WRITE_BUFFER in the file osapi_os_autosar.h. The default value for this
macro is printf(), which on some platforms will write on the serial port. This can be useful for
debugging purposes, but it can be slow, causing tasks to have longer execution times than allowed.
If this is the case, it is recommended that you disable logging or use a different function by calling
OSAPI_AutosarLog_default_display().

WaitSets

For each WaitSet that will be created, you need to adjust the configuration to have two semaphores.
The semaphore implementation needs two events and one alarm.

A WaitSet wait operation can only be called from the task that created the WaitSet.

Note that events cannot be set for a task that is in the suspended state. As semaphore imple-
mentation is based on events, the task that reads all received samples must be running before any
sample is received.

5.6. Connext Micro on AUTOSAR 175

RTI Connext DDS Micro Documentation, Version 2.4.14.2

UDP Automatic Configuration

UDP automatic configuration is not currently supported. See the HelloWorld_static_dpde example
to learn how to statically configure the UDP transport.

5.6.4 Compiling

This section explains how to build the Connext Micro source-code for AUTOSAR.

Building Connext Micro with rtime-make

The Connext Micro source bundle includes a bash (on Linux and macOS systems) or BAT (on
Windows systems) script to simplify the invocation of cmake called rtime-make. These scripts
provide a convenient way to invoke cmake with the correct options.

On Linux and macOS systems, the script is located in:

resource/scripts/rtime-make

On Windows systems, the script is located in:

resource\scripts\rtime-make

The following environment variables are needed to compile for an Elektrobit or Vector implemen-
tation:

• OSEK_TOOLCHAIN_PATH and RTIME_TASKING_PATH : Path to the toolchain used
to compile. E.g., TASKING install folder.

• OSEK_PATH : Path to the AUTOSAR implementation installation.

To compile Connext Micro libraries for a Vector AUTOSAR implementation, set the environment
variables as follows:

• OSEK_TOOLCHAIN_PATH and RTIME_TASKING_PATH : /c/TASKING/Tri-
Corev6.3r1

• OSEK_PATH : /c/Vector/<SIP>

To compile Connext Micro libraries for an Elektrobit AUTOSAR implementation, set the environ-
ment variables as:

• OSEK_TOOLCHAIN_PATH and RTIME_TASKING_PATH : /c/TASKING/Tri-
Corev6.2r2

• OSEK_PATH : /c/eb

To compile Connext Micro libraries for a Mentor™ implementation, set the variables as:

• OSEK_TOOLCHAIN_PATH and RTIME_TASKING_PATH : /c/TASKING/Tri-
Corev6.2r2

• OSEK_PATH : /c/AUTOSAR

5.6. Connext Micro on AUTOSAR 176

RTI Connext DDS Micro Documentation, Version 2.4.14.2

cmake toolchain files are included to compile Connext Micro for Elektrobit, Vector and Mentor
AUTOSAR implementations. The following are example commands to build AUTOSAR libraries:

• Libraries for Vector Microsar using a Windows prompt and a Ninja generator:

<path-to-rtime-make>/rtime-make --target Autosar --name␣
↪→tc39xtMICROSAR4Tasking6.3r1 --build --config Debug -G "Ninja"

• Libraries for Elektrobit using a Windows prompt and Unix Makefile generator (that uses
Tasking mktc.exe as the make program):

<path-to-rtime-make>/rtime-make --target Autosar --name␣
↪→tc29xtOsekCoreTasking6.2r2 --build --config Debug -G "Unix Makefiles
↪→"

• Libraries for Elektrobit using a Windows prompt and a Ninja generator:

<path-to-rtime-make>/rtime-make --target Autosar --name␣
↪→tc29xtOsekCoreTasking6.2r2 --build --config Debug -G "Ninja"

• Libraries for Mentor using MSys and a Unix Makefile generator:

<path-to-rtime-make>/rtime-make --target Autosar --name␣
↪→tc29xtVSTARTasking6.2r2 --build --config Debug -G "Unix Makefiles"

Importing the Connext Micro Source Code

Read the general rules for importing the Connext Micro source code in Building the Connext Micro
Source.

To build the AUTOSAR port, either define -D__autosar__ or:

• -DOSAPI_OS_DEF_H=”osapi_os_autosar.h”

• -DOSAPI_CC_DEF_H=”osapi_cc_autosar.h”

5.6.5 Interoperability

The Connext Micro AUTOSAR port does not have any additional restrictions regarding interoper-
ability. The same interoperability considerations as for other ports apply to the AUTOSAR port.
For more information, please refer to Working with RTI Connext Micro and RTI Connext.

5.6. Connext Micro on AUTOSAR 177

RTI Connext DDS Micro Documentation, Version 2.4.14.2

5.6.6 Compiling Applications

When compiling applications for this platform, please note the following in addition to the infor-
mation in Setting Up Your Environment:

• The type-support code generated with rtiddsgenmust be compiled with the Tasking compiler
option –integer-enumeration

• If using Tasking v6.2r2 or Tasking v6.2r2p1, do not compile with -O3. This optimization
level may introduce errors. This has been fixed in Tasking v6.2r2p2 and later.

• The double type must be compiled with doubles as 8 bytes. That is, do not use the Tasking
compiler option to treat doubles as floats.

5.7 Porting RTI Connext Micro

RTI Connext Micro has been engineered for reasonable portability to platforms and environments
which RTI does not have access to. This porting guide describes the features required by Connext
Micro to run. The target audience is developers familiar with general OS concepts, the standard
C library, and embedded systems.

Connext Micro uses an abstraction layer to support running on a number of platforms. The
abstraction layer, OSAPI, is an abstraction of functionality typically found in one or more of the
following libraries and services:

• Operating System calls

• Device drivers

• Standard C library

The OSAPI module is designed to be relatively easy to move to a new platform. All functionality,
with the exception of the UDP transport which must be ported, is contained within this single
module. It should be noted that although some functions may not seem relevant on a particular
platform, they must still be implemented as they are used by other modules. For example, the port
running on Stellaris with no OS support still needs to implement a threading model.

Please note that the OSAPI module is not designed to be a general purpose abstraction layer; its
sole purpose is to support the execution of Connext Micro.

5.7.1 Updating from Connext Micro 2.4.8 and earlier

In RTI Connext Micro 2.4.9, a few changes were made to simplify incorporating new ports. To
upgrade an existing port to work with 2.4.9, follow these rules:

• Any changes to osapi_config.h should be placed in its own file (see Directory Structure).

• Define the OSAPI_OS_DEF_H preprocessor directive to include the file (refer to OS and
CC Definition Files).

• For compiler-specific definitions, please refer to OS and CC Definition Files.

5.7. Porting RTI Connext Micro 178

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• Please refer to Heap Porting Guide for changes to the Heap routines that need to be ported.

5.7.2 Directory Structure

The source shipped with Connext Micro is identical to the source developed and tested by RTI (with
the exception of the the line-endings difference between the Unix and Windows source-bundles).

The source-bundle directory structure is as follows:

RTIMEHOME--+-- CmakeLists.txt
|
+-- build -- cmake --+-- Debug --+-- <ARCH> -- <project-files>
| |
| |
| +-- Release --+-- <ARCH> -- <project-files>
+-- doc --
|
+-- example
|
+-- include
|
+-- lib +-- <ARCH> -- <libraries>
|
+-- resource --+-- cmake
| |
| +-- scripts
|
+-- rtiddsgen
|
+-- src

The include directory contains the external interfaces, those that are available to other modules.
The src directory contains the implementation files. Please refer to Building the Connext Micro
Source for how to build the source code.

The remainder of this document focuses on the files that are needed to add a new port. The
following directory structure is expected:

---+-- include --+-- osapi --+-- osapi_os_\<port\>.h
| |
| +-- osapi_cc_<compiler>.h
|
+-- src --+-- osapi --+-- common -- <common files>

|
+-- <port> --+-- <port>Heap.c

|
+-- <port>Mutex.c
|
+-- <port>Process.c
|
+-- <port>Semaphore.c
|

(continues on next page)

5.7. Porting RTI Connext Micro 179

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
+-- <port>String.c
|
+-- <port>System.c
|
+-- <port>Thread.c
|
+-- <port>shmSegment.c
|
+-- <port>shmMutex.c

The osapi_os_<port>.h file contains OS specific definitions for various data-types. The <port>
name should be short and in lower case, for example myos.

The osapi_cc_<compiler>.h file contains compiler specific definitions. The <compiler> name
should be short and in lower case, for example mycc. The osapi_cc_stdc.h file properly detects
GCC and MSVC and it is not necessary to provide a new file if one of these compilers is used.

The <port>Heap.c, <port>Mutex.c, <port>Process.c, <port>Semaphore.c, <port>String.c and
<port>System.c files shall contain the implementation of the required APIs.

NOTE: It is not recommended to modify source files shipped with Connext Micro. Instead if
it is desired to start with code supplied by RTI it is recommended to copy the corresponding
sub-directory, for example posix, and rename it. This way it is easier to upgrade Connext Micro
while keeping existing ports.

5.7.3 OS and CC Definition Files

The include/osapi/osapi_os_<port>.h file contains OS and platform specific definitions used by
OSAPI and other modules. To include the platform specific file, define OSAPI_OS_DEF_H
as a preprocessor directive.

-DOSAPI_OS_DEF_H=\"osapi_os_<port>.h\"

It should be noted that Connext Micro does not use auto-detection programs to detect the host and
target build environment and only relies on predefined macros to determine the target environment.
If Connext Micro cannot determine the target environment, it is necessary to manually configure
the correct OS definition file by defining OSAPI_OS_DEF_H (see above).

The include/osapi/osapi_cc_<compiler>.h file contains compiler specific definitions used by OS-
API and other modules. To include the platform specific file, define OSAPI_CC_DEF_H as a
preprocessor directive.

-DOSAPI_CC_DEF_H=\"osapi_cc_<compiler>.h\"

Endianness of some platforms is determined automatically via the platform specific file, but for
others either RTI_ENDIAN_LITTLE or RTI_ENDIAN_BIG must be defined manually
for little-endian or big-endian, respectively.

5.7. Porting RTI Connext Micro 180

RTI Connext DDS Micro Documentation, Version 2.4.14.2

5.7.4 Heap Porting Guide

Connext Micro uses the heap to allocate memory for internal data-structures. With a few excep-
tions, Connext Micro does not return memory to the heap. Instead, Connext Micro uses internal
pools to quickly allocate and free memory for specific types. Only the initial memory is allocated
directly from the heap. The following functions must be ported:

• OSAPI_Heap_allocate_buffer

• OSAPI_Heap_free_buffer

However, if the OS and C library supports the standard malloc and free APIs define the following
in the osapi_os_<port>.h file:

#define OSAPI_ENABLE_STDC_ALLOC (1)
#define OSAPI_ENABLE_STDC_REALLOC (1)
#define OSAPI_ENABLE_STDC_FREE (1)

Please refer to the OSAPI_Heap API for definition of the behavior. The available source code
contains implementation in the file osapi/<port>/<port>Heap.c.

5.7.5 Mutex Porting Guide

Connext Micro relies on mutex support to protect internal data-structures from corruption when
accessed from multiple threads.

The following functions must be ported:

• OSAPI_Mutex_new

• OSAPI_Mutex_delete

• OSAPI_Mutex_take_os

• OSAPI_Mutex_give_os

Please refer to the OSAPI_Mutex API for definition of the behavior. The available source code
contains implementation in the file osapi/<port>/<port>Mutex.c

5.7.6 Semaphore Porting Guide

Connext Micro relies on semaphore support for thread control. If Connext Micro is running on
a non pre-emptive operating system with no support for IPC and thread synchronization, it is
possible to implement these functions as no-ops. Please refer to Thread Porting Guide for details
regarding threading.

The following functions must be ported:

• OSAPI_Semaphore_new

• OSAPI_Semaphore_delete

• OSAPI_Semaphore_take

5.7. Porting RTI Connext Micro 181

../../../doc/api_c/html/group__OSAPI__HeapClass.html
../../../doc/api_c/html/group__OSAPI__HeapClass.html
../../../doc/api_c/html/group__OSAPI__HeapClass.html
../../../doc/api_c/html/group__OSAPI__MutexClass.html
../../../doc/api_c/html/group__OSAPI__MutexClass.html
../../../doc/api_c/html/group__OSAPI__MutexClass.html
../../../doc/api_c/html/group__OSAPI__MutexClass.html
../../../doc/api_c/html/group__OSAPI__MutexClass.html
../../../doc/api_c/html/group__OSAPI__SemaphoreClass.html
../../../doc/api_c/html/group__OSAPI__SemaphoreClass.html
../../../doc/api_c/html/group__OSAPI__SemaphoreClass.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• OSAPI_Semaphore_give

Please refer to the OSAPI_Semaphore API for definition of the behavior. The available source
code contains implementation in the file osapi/<port>/<port>Semaphore.c.

5.7.7 Process Porting Guide

Connext Micro only uses the process API to retrieve a unique ID for the applications.

The following functions must be ported:

• OSAPI_Process_getpid

Please refer to the OSAPI_Process_getpid API for definition of the behavior. The available source
code contains implementation in the file osapi/<port>/<port>Process.c.

5.7.8 System Porting Guide

The system API consists of functions which are more related to the hardware on which Connext
Micro is running than on the operating system. As of Connext Micro 2.3.1, the system API
is implemented as an interface as opposed to the previous pure function implementation. This
change makes it easier to adapt Connext Micro to different hardware platforms without having to
write a new port.

The system interface is defined in OSAPI_SystemI, and a port must implement all the methods
in this structure. In addition, the function OSAPI_System_get_native_interface must be imple-
mented. This function must return the system interface for the port (called the native system
interface).

The semantics for the methods in the interface are exactly as defined by the corresponding sys-
tem function. For example, the method OSAPI_SystemI::get_time must behave exactly as that
described by OSAPI_System_get_time.

The following system interface methods must be implemented in the OSAPI_SystemI structure:

• OSAPI_SystemI::get_timer_resolution

• OSAPI_SystemI::get_time

• OSAPI_SystemI::start_timer

• OSAPI_SystemI::stop_timer

• OSAPI_SystemI::generate_uuid

• OSAPI_SystemI::get_hostname

• OSAPI_SystemI::initialize

• OSAPI_SystemI::finalize

Please refer to the OSAPI_System API for definition of the behavior. The available source code
contains implementation in the file: osapi/<port>/<port>System.c.

5.7. Porting RTI Connext Micro 182

../../../doc/api_c/html/group__OSAPI__SemaphoreClass.html
../../../doc/api_c/html/group__OSAPI__SemaphoreClass.html
../../../doc/api_c/html/osapi__process_8h.html
../../../doc/api_c/html/osapi__process_8h.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/group__OSAPI__SystemClass.html
../../../doc/api_c/html/group__OSAPI__SystemClass.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/group__OSAPI__SystemClass.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Migrating a 2.2.x port to 2.3.x

In Connext Micro 2.3.x, changes where made to how the system API is implemented. Because of
these changes, existing ports must be updated, and this section describes how to make a Connext
Micro 2.2.x port compatible with Connext Micro 2.3.x.

If you have ported Connext Micro 2.2.x the following steps will make it compatible with version
2.3.x:

• Rename the following functions and make them private to your source code. For example,
rename OSAPI_System_get_time to OSAPI_MyPortSystem_get_time etc.

– OSAPI_System_get_time

– OSAPI_System_get_timer_resolution

– OSAPI_System_start_timer

– OSAPI_System_stop_timer

– OSAPI_System_generate_uuid

• Implement the following new methods.

– OSAPI_SystemI::get_hostname

– OSAPI_SystemI::initialize

– OSAPI_SystemI::finalize

• Create a system structure for your port using the following template:

struct OSAPI_MyPortSystem
{

struct OSAPI_System _parent;

Your system variable
};

static struct OSAPI_MyPortSystem OSAPI_System_g;

/* OSAPI_System_gv_system is a global system variable used by the
* generic system API. Thus, the name must be exactly as
* shown here.
*/
struct OSAPI_System * OSAPI_System_gv_system = &OSAPI_System_g._parent;

• Implement OSAPI_System_get_native_interface method and fill the OSAPI_SystemI
structure with all the system methods.

5.7. Porting RTI Connext Micro 183

../../../doc/api_c/html/group__OSAPI__SystemClass.html
../../../doc/api_c/html/group__OSAPI__SystemClass.html
../../../doc/api_c/html/group__OSAPI__SystemClass.html
../../../doc/api_c/html/group__OSAPI__SystemClass.html
../../../doc/api_c/html/group__OSAPI__SystemClass.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/structOSAPI__SystemI.html
../../../doc/api_c/html/group__OSAPI__SystemClass.html
../../../doc/api_c/html/structOSAPI__SystemI.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

5.7.9 Thread Porting Guide

The thread API is used by Connext Micro to create threads. Currently only the UDP transport
uses threads and it is a goal to keep the generic Connext Micro core library free of threads. Thus, if
Connext Micro is ported to an environment with no thread support, the thread API can be stubbed
out. However, note that the UDP transport must be ported accordingly in this case; that is, all
thread code must be removed and replaced with code appropriate for the environment.

The following functions must be ported:

• OSAPI_Thread_create

• OSAPI_Thread_sleep

Please refer to the OSAPI_Thread API for definition of the behavior. The available source code
contains implementation in the file srcC/osapi/<platform>/Thread.c.

5.8 Port Validation

5.8.1 Introduction

This section explains how to build and run the Connext Micro Port Validation and is organized as
follows:

• Overview

• Building the Port Validation Tests

• Running the Tests

• Embedded Platforms

• Porting UTEST

5.8.2 Overview

After porting Connext Micro, it is important to confirm that your code works as expected. For
this, Connext Micro comes with a suite of tests that you compile and run to validate your port.

The tests only cover the functionality described in the porting instructions earlier in this chapter
Porting RTI Connext Micro.

The tests are a subset of the tests RTI runs internally. They are just exported for your use. RTI
does not support any changes to the tests. The tests are built with RTI’s internal unit testing
framework, ‘UTEST’. Everything needed to run the tests is shipped along with the rest of Connext
Micro. The directory layout is as follows:

RTIMEHOME/----+---- CMakeLists.txt
|
+---- include
|

(continues on next page)

5.8. Port Validation 184

../../../doc/api_c/html/group__OSAPI__ThreadClass.html
../../../doc/api_c/html/group__OSAPI__ThreadClass.html
../../../doc/api_c/html/group__OSAPI__ThreadClass.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
+---- src
|
+---- resource
|
+---- lib
|
+---- build
|
+---- test --+-- test --+-- setting --- <UTEST-SRC>

|
+-- osapi --+-- common -- <OSAPI-TEST-SRC>
| |
| +-- test ---- <OSAPITester>
|
+-- netio --+-- autosar ---- <NETIO-TEST-SRC>
| |
| +-- common ----- <NETIO-TEST-SRC>
| |
| +-- test ------- <NETIOTester>
| |
| +-- udp ------- <NETIO-TEST-SRC>
|
+-- include --- test ---- <UTEST-HDR>

The test folder includes four sub-folders. The ‘test’ and ‘include’ folders contain the UTEST
framework that is required to run the unit tests. ‘osapi’ and ‘netio’ both contain common folders
(containing the test source), as well as test folders (containing the test files).

5.8.3 Building the Port Validation Tests

By default, the port validation tests are not built. We recommend that you review Building the
Connext Micro Source, since the same rules and considerations apply when building the port
validation tests.

If you will be using the ctest (CMake test driver program) set the domain ID used to run the tests
using this environment variable in your terminal:

On Linux and macOS systems:

export RTIME_TEST_CONFIG_ID="<your domain ID #>"

On Windows systems:

set RTIME_TEST_CONFIG_ID="<your domain ID #>"

5.8. Port Validation 185

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Building with rtime-make

Use the option --test when running ‘rtime-make’.

On Linux and macOS systems:

<RTIMEHOME>/resource/scripts/rtime-make --config Debug --target self \
--name i86Linux2.6gcc4.4.5 -G "Unix Makefiles" --build --test

On Windows systems:

<RTIMEHOME>\resource\scripts\rtime-make.bat --config Debug --target self \
--name i86Win32VS2010 -G "Visual Studio 10 2010" --build --test

Explanation of arguments:

• --test : Build the port validation tests.

• --config Debug : Create a Debug build.

• --target <target> : The target for the source files to be built. See Building Connext Micro
with rtime-make for information on specifying the target architecture. “self” indicates that
the host machine is also the target and Connext Micro will be built with the options that
CMake automatically determines for the local compiler.

• --name <name> : The name of the build. Use a descriptive name following the recommen-
dations on naming in section Preparing for a Build. If --name is not specified, the value for
--target will be used as the name.

• --build: Build the generated project files.

Manually building with CMake

The process for building the port validation tests manually with CMake is the same as build-
ing the Connext Micro libraries manually with CMake. Follow the instructions in Manually
Building with CMake. To build the port validation tests, you just need to ensure that the flag
RTI_BUILD_UNITTESTS is set to true, so use -DRTI_BUILD_UNITTESTS=true when invoking
CMake.

Custom Build Environments

The preferred method to build Connext Micro is to use CMake. However, in some cases it may
be more convenient, or even necessary, to use a custom build environment. Please refer to Custom
Build Environments to learn how to import Connext Micro code.

Additionally, in order to build the port validation tests the following steps are needed:

• Add compile-time definition ‘__autosar__’ (Only for AUTOSAR Systems).

• Add compile-time definition ‘__freertos__’ (Only for FreeRTOS Systems).

• Add the following include paths:

5.8. Port Validation 186

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

– <RTIMEHOME>/test/include

– <RTIMEHOME>/test/netio/autosar (Only for AUTOSAR Systems).

– <RTIMEHOME>/test/netio/common

– <RTIMEHOME>/test/netio/test

– <RTIMEHOME>/test/netio/udp

– <RTIMEHOME>/test/osapi/common

– <RTIMEHOME>/test/osapi/test

• Import all source files from the folder <RTIMEHOME>/test/test

• To build the NETIO test, import all source files from the folder <RTIMEHOME>/test/netio

• To build the OSPIA test, import all source files from the folder <RTIMEHOME>/test/osapi

As explained above, you need to build and run two images, one with NETIO tests and another one
with OSAPI tests.

5.8.4 Running the Tests

Setting Up a Config File

Since both OSAPI and NETIO run system tests, a config file is required. A template file for the
unit-test configuration can be found in:

<RTIMEHOME>/resource/test/test.cfg

The template looks like this:

property
{

netio.udp.allow_interface_multicast=1;
}

property user = "test"
{

netio.udp.allow_interface="lo";
netio.udp.allow_interface_address=0x7F000001;
netio.udp.allow_interface_netmask=0xffffff00;
netio.udp.multicast_if="lo";
osapi.system.my_hostname="my_hostname";

}

Update the fields to reflect:

• Interface name, interface address and interface netmask

• Multicast

5.8. Port Validation 187

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Running the tests using a configuration file

For systems with CMake, after compiling the tests you can simply run this command:

`ctest`

For extended output, run:

`ctest -V`

You need to run this command from the CMake build directory, that would be <RTIME-
HOME>/build/cmake/Debug|Release/<arch>.

Otherwise you can run the executables directly with the following commands:

./test/bin/<arch>/osapiTester(d) -id <domain id> -config "./resource/test/test.cfg" -
↪→user test

./test/bin/<arch>/netioTester(d) -id <domain id> -config "./resource/test/test.cfg" -
↪→user test

Note: The environment variable RTIME_TEST_CONFIG_ID is only used when running the
tests with ‘ctest’. When running the test executables directly, use the parameter -id to indicate
the domain ID.

Running the tests on platforms without a file system

On platforms without a file system, it is not possible to use a configuration file to run the port
validation tests. In this case, the configuration can be passed as parameters to the test application,
like this:

./test/bin/<arch>/osapiTester -id <domain id>
-property osapi.system.my_hostname=<hostname>
-property netio.udp.allow_interface=<Interface name>
-property netio.udp.allow_interface_address=<Interface IP address>
-property netio.udp.allow_interface_netmask=<Interface mask>
-property netio.udp.allow_interface_multicast=<1\|0>
-property netio.udp.multicast_if=<Multicast Interface name>

./test/bin/<arch>/netioTester -id <domain id>
-property osapi.system.my_hostname=<hostname>
-property netio.udp.allow_interface=<Interface name>
-property netio.udp.allow_interface_address=<Interface IP address>
-property netio.udp.allow_interface_netmask=<Interface mask>
-property netio.udp.allow_interface_multicast=<1\|0>
-property netio.udp.multicast_if=<Multicast Interface name>

5.8. Port Validation 188

https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Test Results

After running ‘ctest -V’, the output should be as follows:

test 1
Start 1: osapi

1: Test command: /Users/garrett/workspace/RTI/connextmicro/rti/build/release/
↪→connextmicro/2.4.14/source/unix/build/cmake/unix/lib/osapiTesterzd "-id" "67" "-config
↪→" "./resource/test/test.cfg"
1: Test timeout computed to be: 9.99988e+06
1: hostname is Foothill.local
1: property netio.udp.allow_interface_multicast already exists
1: time/interface ...: Passed
1: time/performance ...: Passed
1: system/hostname ..: Passed
1: system/lua ...: Passed
1: mutex/basic ..: Passed
1: mutex/lua ..: Passed
1: semaphore/basic ..: Passed
1: semaphore/thread ...: Passed
1: semaphore/timeout ..: Passed
1: semaphore/timeout_mt ...: Passed
1: semaphore/lua ..: Passed
1: thread/basic ...: Passed
1: thread/advanced ..: Passed
1: thread/priority ..: Passed
1: thread/lua ...: Passed
1: timer/1s ...: Passed
1: timer/3s ...: Passed
1: timer/MICRO-221 ..: Passed
1: timer/MICRO-240 ..: Passed
1: timer/MICRO-839 ..: Passed
1: timer/MICRO-1617 ...: Passed
1: timer/sec_nsec ...: Passed
1: timer/lua ..: Passed
1: process/pid_as_string ..: Passed
1: process/getpid ...: Passed
1: osapi:TESTS COMPLETED
1/2 Test #1: osapi Passed 73.49 sec
test 2

Start 2: netio

2: Test command: /Users/garrett/workspace/RTI/connextmicro/rti/build/release/
↪→connextmicro/2.4.14/rti_me.2.0/source/unix/build/cmake/unix/lib/netioTesterzd "-id"
↪→"67" "-config" "./resource/test/unittest.cfg"
2: Test timeout computed to be: 9.99988e+06
2: hostname is Foothill.local
2: property netio.udp.allow_interface_multicast already exists
2: address/parser ...: Passed
2: address/resolver ...: Passed
2: address/ifname ...: Passed
2: route/precondition ...: Passed

(continues on next page)

5.8. Port Validation 189

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
2: route/lua ..: Passed
2: route/precondition ...: Passed
2: route/route ..: Passed
2: route/default_mc_route ...: Passed
2: route/lua ..: Passed
2: udp/route ..: Passed
2: udp/iftable ..: Passed
2: udp/unicast ..: Passed
2: udp/multicast ..: Passed
2: udp/multicast_reserve ..: Passed
2: udp/nat ..: Passed
2: udp/max_message_size ...: Passed
2: udp/strrchr ..: Passed
2: udp/lua ..: Passed
2: packet/set_head_tail ...: Passed
2: netio:TESTS COMPLETED
2/2 Test #2: netio Passed 80.75 sec

100% tests passed, 0 tests failed out of 2

When a test fails, the output will be as follows:

1: system/hostname ..: Failed (FAILURE:␣
↪→SystemTester.c:523 osapi.system.my_hostname not set)

2: udp/iftable ..: Failed (FAILURE:␣
↪→UDPInterfaceTester.c:2397 netio.udp.allow_interface property not found)

If a test fails, the test execution stops and any following tests will not run. In the above example,
you can see that the tests OSAPI ‘system/hostname’ and NETIO ‘udp/iftable’ failed.

Troubleshooting

If the tests fail on hostname and iftable such as:

1: system/hostname ...: Failed␣
↪→(FAILURE: SystemTester.c:523 osapi.system.my_hostname not set)

2: udp/iftable ...: Failed␣
↪→(FAILURE: UDPInterfaceTester.c:2397 netio.udp.allow_interface property not found)

then you have incorrectly declared your domain ID. Refer to Setting Up a Config File for more
information.

5.8. Port Validation 190

RTI Connext DDS Micro Documentation, Version 2.4.14.2

5.8.5 Embedded Platforms

When developing for an embedded platform, you will commonly need to create an image with all
the software: OS, BSP, middleware, user application, etc. In this situation, you must create static
libraries only, instead of executables.

Two static libraries are generated, one with the OSAPI tests and another with the NETIO tests.
These are osapiTesterz(d) and netioTesterz(d) (the d suffix indicates whether it is a debug library
if present or a release library if not present).

You need to build two images, one using the OSAPI test library and another using the NETIO test
library. We recommend building and running one release image using the release libraries and one
debug image using the debug libraries.

There is a third static library, rti_me_testz(d), which contains the UTEST framework. This library
is needed to build both the OSAPI and NETIO tests.

For example, to build NETIO tests, use the following libraries:

• netioTesterz(d)

• rti_me_testz(d)

• librti_mez(d)

AUTOSAR Systems

Before continuing, you should become familiar with the configuration needed to run Connext Micro
on an AUTOSAR system. We recommend that you review Connext Micro on AUTOSAR.

The file <RTIMEHOME>/test/include/test/test_autosar.h contains the string definitions with all
the properties that are used to run the port validation tests. That is, the following definition:

#define DEVICE_ETH_IP_STR "0xc0000002"

can be used when the IP address configured on an AUTOSAR system is 192.0.0.2. In your build
system, you need to define the properties that do not match with your configuration. That is, you
need to define DEVICE_ETH_IP_STRin your build system to use a different IP address.

You need to add compile-time definition ‘__autosar__’.

The specific configuration needed to run the port validation tests on an AUTOSAR system includes
the following:

• The default timer task period used to run the AUTOSAR port validation tests is 10 ms. If your
timer task is configured with a different periodicity, define ‘TIMER_TASK_PERIOD_MS’
with that periodicity value, in ms.

• The default IP address used by the AUTOSAR port validation tests is “0xc0000002”. If your
AUTOSAR configuration uses a different IP address, define ‘DEVICE_ETH_IP_STR’ with
the string representation of that IP address.

5.8. Port Validation 191

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• The default IP mask used by the AUTOSAR port validation tests is “0xffffff00”. If your
AUTOSAR configuration uses a different IP mask, define ‘DEVICE_ETH_IP_STR’ with
the string representation of that IP mask.

• The AUTOSAR port validation tests need at least 140 KB of RAM to run. AUTOSAR system
properties (OSAPI_SystemProperty) must be configured correctly with at least this amount
of memory in the heap. You need to define variables ‘const uint32 heap_area_size[NUM-
BER_OF_HEAP_AREAS];’ and ’char* const heap_area[NUMBER_OF_HEAP_AR-
EAS];’. It is also possible to define NUMBER_OF_HEAP_AREAS in your build system
(default value is 2).

• The AUTOSAR port validation tests use 2 semaphores. 2 timeout events, 2 give events
and 2 alarms are needed. You need to define ‘RTIME_Semaphore_Give_Event’ with the
ID of the first semaphore give event, ‘RTIME_Semaphore_Timeout_Event’ with the ID of
the first semaphore timeout event, and ‘RTIME_Semaphore_Alarm’ with the ID of the first
semaphore alarm.

• The AUTOSAR port validation tests can be configured to either use resources (for single
core) or spinlock (for multicore) synchronization. The default is to use resources. You need
to define ‘RTIME_SYNC_TYPE’ with a different value in your build system.

• If using resources synchronization: the AUTOSAR port validation tests use 26 AUTOSAR
resources. You need to define ‘RTIME_Resource01’ with the ID of the first resource and
‘RTIME_Resource26’ with the ID of the last resource.

• If using spinlock synchronization: you need to define ‘RTIME_Spinlock’ with the spinlock
ID.

• 3 UDP sockets are created. The AUTOSAR configuration must allow that.

• The AUTOSAR port validation tests use SocketOwner ID 1 to create sockets. If
your AUTOSAR configuration uses a different SocketOwner, you need to define
‘RTIME_SOCK_OWNER_ID’ with the ID of the SocketOwner that can be used to cre-
ate sockets.

• The AUTOSAR port validation tests use ID 0 as the IP address identifier representing the
local IP address and EthIf controller to bind the socket to. If your AUTOSAR configuration
uses a different ID, you need to define ‘RTIME_LOCAL_ADDR_ID’ with the correct value.

• The ‘UDP receive task’ and ‘UDP receive event’ are mandatory. Some tests use them while
some others don’t. You need to define their IDs using the macros ‘NETIO_Autosar_udp_re-
ceive_task’ and ‘RTIME_UDP_Receive_Event’.

• The AUTOSAR port does not provide and does not need a ‘OSAPI_Thread_sleep()’ func-
tion. But the AUTOSAR port validation tests do need that functionality. The implemen-
tation is based on an alarm and an event. OSAPI_Thread_sleep() sets an alarm with ID
‘RTIME_Sleep_Alarm’ and waits until the event with ID ‘RTIME_Sleep_Event’ is set.

• An alarm must be configured to set an event when it expires. It is important that the alarm
is triggered by a counter based on a 1 ms tick and when the alarm expires. You need to
define in your build system the alarm ID and the event ID using ‘RTIME_Sleep_Alarm’ and
‘RTIME_Sleep_Event’.

5.8. Port Validation 192

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• A task with the name ‘Micro_UnitTests_Task’ must be configured in the AUTOSAR con-
figuration. This is the task that runs the port validation tests. The task shall have at least
32 KB stack. The implementation of this task is provided by the AUTOSAR port validation
tests.

• Test results will be printed to the standard output used by ‘printf()’.

FreeRTOS Systems

Before continuing, you should become familiar with the configuration needed to run Connext Micro
on a FreeRTOS system. We recommend that you review Building the Connext Micro Source for
FreeRTOS .

The file <RTIMEHOME>/test/include/test/test_freertos.h contains the string definitions with all
the properties that are used to run the port validation tests. That is, the following definition:

#define DEVICE_ETH_IP_STR "0xc0000002"

can be used when the IP address configured on a FreeRTOS system is 192.0.0.2. In your build
system, you need to define the properties that do not match with your configuration. That is, you
need to define DEVICE_ETH_IP_STRin your build system to use a different IP address.

Some NETIO tests send UDP packet to the local IP address. For that reason it is necessary to set
the following lwIP flag:

#define LWIP_NETIF_LOOPBACK 1

You need to add compile-time definition ‘__freertos__’.

We recommend that you create a separate thread and call the UTEST main function
(UTEST_main()) for platforms without dynamic linking. This thread should have at least 32
KB of stack.

An example implementation of that thread is:

void UTEST_freertos_main(void *param)
{

/* Avoid compiler warning */
(void)param;

/* Wait until network is available */
#ifdef USE_DHCP

while(DHCP_state != DHCP_ADDRESS_ASSIGNED)
{

OSAPI_Thread_sleep(1000);
}

#else
vTaskDelay(5000 / portTICK_RATE_MS);

#endif

(void)UTEST_main();
(continues on next page)

5.8. Port Validation 193

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)

vTaskDelete(NULL);
}

5.8.6 Porting UTEST

If you wrote a new Connext Micro port, you will also need to port the porting validation module.
Most of the changes needed are only in the file <RTIMEHOME>/include/test/test_setting.h.

1. Check for a compiler flag that identifies your platform. For example, Linux would be
__linux__. If your compiler does not provide such a flag, you can add a flag to your
build system, i.e. my_platform.

2. As explained in Running the tests on platforms without a file system, you can pass the test
configuration through a file or through a string. Write a new section in the file <RTIME-
HOME>/include/test/test_setting.h where you configure this. After this comment at the
beginning of the file:

/* If the platform has not been specified, attempt to determine it. */

Write a section like the following:

#if __my_platform__
#ifndef MYCOMPANY_MYPLATFORM
#define MYCOMPANY_MYPLATFORM
#endif /* MYCOMPANY_MYPLATFORM */
#include "test_myplatform.h"
#define HAVE_CONFIG_FILE 0
#define HAVE_ARG_STRING 1
#ifdef HAVE_TEST_RESULTS_FILE
#undef HAVE_TEST_RESULTS_FILE
#endif
#define HAVE_TEST_RESULTS_FILE 0
#endif /* __my_platform__ */

The file “test_myplatform.h” is optional. You can create it to add any definitions that are
useful for your tests.

If your platform does not have a file system, the value of HAVE_CONFIG_FILE shall
be 0 and the value of HAVE_ARG_STRING shall be 1. You also need to undef
HAVE_TEST_RESULTS_FILE. If your platform has a file system, you might need to change
the logic, but that is optional.

3. In the file <RTIMEHOME>/include/test/test_setting.h, define the maximum length of the
system name, so the new platform is recognized by UTEST. For example:

#elif defined(RTI_AUTOSAR)
#define UTEST_SYSTEM_NAME_MAX_LENGTH 255
#elif defined(MYCOMPANY_MYPLATFORM)

(continues on next page)

5.8. Port Validation 194

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
#define UTEST_SYSTEM_NAME_MAX_LENGTH 255
#else
#error "Unknown platform. Please port UT_System.c to this platform."
#endif

The third and fourth lines are new. You can also include any platform header file in this new
code.

4. If you have defined HAVE_ARG_STRINGas 1, you need to provide the string that will be used
as an argument. Create the file <RTIMEHOME>/include/test/test_myplatform.h with the
following content:

#define UTEST_ARG_STRING(argv0_) \
"-property netio.udp.allow_interface_multicast=1 " \
"-property netio.udp.allow_interface=eth0 " \
"-property netio.udp.allow_interface_address=" DEVICE_ETH_IP_STR " " \
"-property netio.udp.allow_interface_netmask=" DEVICE_MASK_STR " " \
"-property netio.udp.multicast_if=eth0 " \
"-property osapi.system.my_hostname=Myplatform-host " \
"-id 80 "

Depending on your platform, the property values might be different. For instance, if your plat-
form doesn’t have multicast you will need to set netio.udp.allow_interface_multicast=0.

5. If your new platform supports dynamic linking, executable binaries with OSAPI and NETIO
tests are generated when you build the port validation tests.

6. If your new platform does not support dynamic linking, only static libraries with OSAPI and
NETIO tests are generated when you build the port validation tests. These libraries provide
a UTEST_main() function. We recommend that you create a separate thread and call that
UTEST_main() function from that thread. This thread should have at least 32 KB of stack.

5.9 Building Connext Micro with compatibility for Connext Cert

It is possible to compile Connext Micro to support only the same set of APIs and features as
Connext Cert. This is useful to enable the development of a safety-certified project using Connext
Micro before the certification of Connext Cert is completed. Once Connext Cert certification is
finished, it will be easier to switch from Connext Micro to Connext Cert if Connext Micro has been
compiled with compatibility for Connext Cert.

When compiling Connext Micro with compatibility for Connext Cert, the following restrictions
apply:

• The C++ API is not supported.

• Dynamic Participant Dynamic Endpoint (DPDE) discovery is not compiled by default. To
make application development easier, DPDE can be enabled (any application using this dis-
covery cannot be certified). DPDE discovery is not certified.

• Memory deallocation is not possible.

5.9. Building Connext Micro with compatibility for Connext Cert 195

../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPDEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• Any API that deallocates memory is not supported. In other words,
any API whose name includes “finalize”, “free”, or “delete” is not sup-
ported (such as DDS_DomainParticipantFactory_delete_participant(),
DDS_DomainParticipantQos_finalize(), OSAPI_Heap_free()).

• Only POSIX®-compliant systems (Linux, macOS, QNX, etc.), VxWorks and AUTOSAR are
supported (Windows systems are not supported).

• Only static libraries are compiled. Dynamic libraries are not supported.

• Only one static library is built. While Connext Micro consists of different libraries for dis-
covery, reader and writer history, etc, Connext Cert consists of only one library.

• Code generated by the Connext Micro code generator is compatible with Connext Cert, but
the code must be generated again with the Connext Cert code generator.

• The Log module is only available in the debug build.

• The UDP transport shall be configured statically by using the API
UDP_InterfaceTable_add_entry() and setting UDP_InterfaceFactoryProperty.
disable_auto_interface_config equal to RTI_TRUE.

• OSAPI_Thread_sleep() is not available.

• Batching reception is not supported.

• UDP Transformations are not supported.

To compile Connext Micro with compatibility with Connext Cert, you only need to set the CMake
flag RTIME_CERT when compiling. For example, the following command compiles Connext Micro
on a Linux system with Connext Cert compatibility:

resource/scripts/rtime-make --target Linux --name x64Linux4gcc9.3.0
--build --config Debug -DRTIME_CERT=1

The CMake flag RTIME_CERT instructs the build system to build Connext Micro with Connext
Cert compatibility. In the previous example, a 64-bit debug library is generated in the directory
lib/x64Linux4gcc9.3.0.

Instead of using the flag -DRTIME_CERT=1, it is also possible to add the suffix “_cert” to the
build name, and the build system will automatically set the RTIME_CERT flag. For example:

resource/scripts/rtime-make --target Linux --name
x64Linux4gcc9.3.0_cert --build --config Release

The previous command compiles a 64-bit release library in the directory lib/x64Linux4gcc9.3.
0_cert.

As mentioned earlier, it is possible to enable DPDE (Dynamic Participant Dynamic Endpoint)
discovery, but this discovery is not certified so any application using it cannot be certified. To
enable DPDE discovery when building Connext Micro with Connext Cert compatibility, simply
add the following flag when compiling: -DRTIME_EXCLUDE_DPDE=0.

5.9. Building Connext Micro with compatibility for Connext Cert 196

../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPDEModule.html

Chapter 6

Working with RTI Connext Micro
and RTI Connext

In some cases, it may be necessary to write an application that is compiled against both RTI
Connext Micro, RTI Connext Cert, and RTI Connext. In general this is not easy to do because
RTI Connext Micro and RTI Connext Cert supports a very limited set of features compared to
RTI Connext. However, while RTI Connext Cert is subset of RTI Connext Micro, it is relatively
easy to write applications that support both.

Due to the nature of the DDS API and the philosophy of declaring behavior through QoS profiles
instead of using different APIs, it may be possible to share common code. In particular, RTI
Connext supports configuration through QoS profile files, which eases the job of writing portable
code.

Please refer to Introduction for an overview of features and what is supported by RTI Connext
Micro. Note that RTI Connext supports many extended APIs that are not covered by the DDS
specification, for example APIs that create DDS entities based on QoS profiles.

6.1 Development Environment

There are no conflicts between RTI Connext Micro and RTI Connext with respect to library names,
header files, etc. It is advisable to keep the two installations separate, which is the normal case.

RTI Connext Micro uses the environment variable RTIMEHOME to locate the root of the RTI
Connext Micro installation.

RTI Connext uses the environment variable NDDSHOME to locate the root of the RTI Connext
installation.

197

RTI Connext DDS Micro Documentation, Version 2.4.14.2

6.2 Non-standard APIs

The DDS specification omits many APIs and policies necessary to configure a DDS application, such
as transport, discovery, memory, logging, etc. In general, RTI Connext Micro and RTI Connext
do not share APIs for these functions.

It is recommended to configure RTI Connext using QoS profiles as much as possible.

6.3 QoS Policies

QoS policies defined by the DDS standard behave the same between RTI Connext Micro and RTI
Connext. However, note that RTI Connext Micro does not always support all the values for a
policy and in particular unlimited resources are not supported.

Unsupported QoS policies are the most likely reason for not being able to switch between RTI
Connext Micro and RTI Connext.

6.4 Standard APIs

APIs that are defined by the standard behave the same between RTI Connext Micro and RTI
Connext.

6.5 IDL Files

RTI Connext Micro and RTI Connext use the same IDL compiler (rtiddsgen) and RTI Connext
Micro typically ships with the latest version. However, RTI Connext Micro and RTI Connext use
different templates to generate code and it is not possible to share the generated code. Thus, while
the same IDL can be used, the generated output must be saved in different locations.

6.6 Interoperability

In general, RTI Connext Micro and RTI Connext are wire interoperable, unless noted otherwise.

6.6.1 Discovery

When trying to establish communication between an RTI Connext Micro application that uses the
Dynamic Participant / Static Endpoint (DPSE) discovery module and an RTI product based on
RTI Connext, every participant in the DDS system must be configured with a unique participant
name. While the static discovery functionality provided by RTI Connext allows participants on
different hosts to share the same name, RTI Connext Micro requires every participant to have a
different name to help keep the complexity of its implementation suitable for smaller targets.

6.2. Non-standard APIs 198

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Also, Connext DataWriters that are configured to send compressed data will not match with Con-
next Micro DataReaders, since Connext Micro does not support sending or receiving compressed
data. See DATA_REPRESENTATION QosPolicy in the Core Libraries User’s Manual for more
information on the Connext compression feature.

6.6.2 Transports

When interoperating with Connext Professional, Connext Micro must specify at least one unicast
transport for each DataWriter and DataReader, either from DDS_DomainParticipantQos::trans-
ports or the endpoint DDS_DataReaderQos::transport and DDS_DataWriterQos::transport, as it
expects to use the unicast transport’s RTPS port mapping to determine automatic participant IDs
if needed. This also affects Connext Micro itself, where participant IDs must be set manually if
only multicast transports are enabled.

Also, when interoperating with Connext Professional, only one multicast transport can be specified
per DataReader of Connext Micro.

6.7 Connext Tools

In general, Connext Micro is compatible with RTI tools and other products. The following sections
provide additional information for each product.

6.7.1 Admin Console

Admin Console can discover and display RTI Connext Micro applications that use full dynamic
discovery (DPDE). When using static discovery (DPSE), it is required to use the Limited Bandwidth
Endpoint Discovery (LBED) that is available as a separate product for RTI Connext. With the
library a configuration file with the discovery configuration must be provided (just as in the case
for products such as Routing Service, etc.). This is provided through the QoS XML file.

Data can be visualized from Connext Micro DataWriters. Keep in mind that Connext Micro does
not currently distribute type information and the type information has to be provided through an
XML file using the “Create Subscription” dialog. Unlike some other products, this information
cannot be provided through the QoS XML file. To provide the data types to Admin Console, first
run the code generator with the -convertToXml option:

rtiddsgen -convertToXml <file>

Then click on the “Load Data Types from XML file” hyperlink in the “Create Subscription” dialog
and add the generated IDL file.

Other Features Supported:

• Match analysis is supported.

• Discovery-based QoS are shown.

6.7. Connext Tools 199

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/DATAREPRESENTATION_Qos.htm
../../../doc/api_c/html/structDDS__DomainParticipantQos.html
../../../doc/api_c/html/structDDS__DomainParticipantQos.html
../../../doc/api_c/html/structDDS__DataReaderQos.html
../../../doc/api_c/html/structDDS__DataWriterQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

The following resource limits in RTI Connext Micro must be incremented as follows when using
Admin Console:

• Add 24 to DDS_DomainParticipantResourceLimitsQosPolicy::remote_reader_allocation

• Add 24 to DDS_DomainParticipantResourceLimitsQosPolicy::remote_writer_allocation

• Add 1 to DDS_DomainParticipantResourceLimitsQosPolic::remote_participant_allocation

• Add 1 to DDS_DomainParticipantResourceLimitsQosPolicy::remote_participant_allocation
if data-visualization is used

Connext Micro does not currently support any administration capabilities or services, and does not
match with the Admin Console DataReaders and DataWriters. However, if matching DataReaders
and DataWriters are created, e.g., by the application, the following resource must be updated:

• Add 48 to DDS_DomainParticipantResourceLimitsQosPolicy::match-
ing_writer_reader_pair_allocation

6.7.2 Distributed Logger

This product is not supported by RTI Connext Micro.

6.7.3 LabVIEW

The LabVIEW toolkit uses RTI Connext, and it must be configured as any other RTI Connext ap-
plication. A possible option is to use the builtin RTI Connext profile: BuiltinQosLib::Generic.Con-
nextMicroCompatibility.

6.7.4 Monitor

This product is not supported by RTI Connext Micro.

6.7.5 Recording Service

RTI Recorder

RTI Recorder is compatible with RTI Connext Micro in the following ways:

• If static endpoint discovery is used, Recorder is compatible starting with version 5.1.0.3 and
onwards.

• If dynamic endpoint discovery is used (not supported by Connext Cert), Recorder is compat-
ible with RTI Connext Micro the same way it is with any other DDS application.

• In both cases, type information has to be provided via XML. Read Recording Data with RTI
Connext Micro for more information.

6.7. Connext Tools 200

https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service
https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service

RTI Connext DDS Micro Documentation, Version 2.4.14.2

RTI Replay

RTI Replay is compatible with RTI Connext Micro in the following ways:

• If static endpoint discovery is used, Replay is compatible starting with version 5.1.0.3 and
onwards.

• If dynamic endpoint discovery is used (not supported by Connext Cert), Replay is compatible
with RTI Connext Micro the same way it is with any other DDS application.

• In both cases, type information has to be provided via XML. Read Recording Data with RTI
Connext Micro for more information on how to convert from IDL to XML.

RTI Converter

Databases recorded with RTI Connext Micro contains no type information in the DCPSPublication
table, but the type information can be provided via XML. Read Recording Data with RTI Connext
Micro for more information on how to convert from IDL to XML.

6.7.6 Wireshark

Wireshark fully supports RTI Connext Micro.

6.7.7 Persistence Service

RTI Connext Micro only supports VOLATILE and TRANSIENT_LOCAL durability and does
not support the use of Persistence Service.

6.7. Connext Tools 201

https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service
https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service
https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service
https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service

Chapter 7

API Reference

RTI Connext Micro features API support for C and C++. Select the appropriate language below
in order to access the corresponding API Reference HTML documentation.

• C API Reference

• C++ API Reference

202

../../../doc/api_c/html/index.html
../../../doc/api_cpp/html/index.html

Chapter 8

Release Notes

8.1 Supported Platforms and Programming Languages

Connext Micro supports the C and traditional C++ language bindings.

Note that RTI only tests on a subset of the possible combinations of OSs and CPUs. Please refer
to the following table for a list of specific platforms and the specific configurations that are tested
by RTI.

Table 8.1: Tested Platforms
OS CPU Com-

piler
RTI Architecture Abbreviation

Windows 7 x64 VS
2015

x64Win64VS2015

OS X 10.16 x64 clang
8.0

x64Darwin16clang8.0

Ubuntu 18.04 LTS x64 gcc
7.3.0

x64Linux4gcc7.3.0

Red Hat® Enterprise Linux®
6.0, 6.1 (Kernel version 2.6)

i86 gcc
4.4.5

i86Linux2.6gcc4.4.5

Ubuntu 18.04 LTS ARMv8
(64-bit)

gcc
7.3.0

armv8Linux4gcc7.3.0

QNX 7.1 armv8 qcc_gpp8.3.0armv8QNX7.1qcc_gpp8.3.0
VxWorks 6.9 ppc604 gcc4.3.3 ppc604Vx6.9gcc4.3.3
VxWorks 6.9 ppc604 gcc4.3.3 ppc604Vx6.9gcc4.3.3_rtp
ThreadX 5.7 Armv7E-Mgcc

4.9.3
cortexm4ThreadX5.7gcc4.9.3

FreeRTOS 9.0.0 Armv7-Mgcc
7.3.1

cortexm7FreeRTOS9.0gcc7.3.1

MicroSAR 29.06.20 (AU-
TOSAR 4)

tc39xt Task-
ing
6.3r1p7

tc39xtMICROSAR4Tasking6.3r1

203

RTI Connext DDS Micro Documentation, Version 2.4.14.2

8.2 What’s New in 2.4.14.2

8.2.1 New multicast feature available on AUTOSAR platforms

This release introduces support for multicast sockets on AUTOSAR platforms. Previously, only
unicast sockets were supported. For more information, see Connext Micro on AUTOSAR in this
document and OSAPI AutoSAR in the API Reference.

The port property local_addr_id has been renamed to max_local_addr_id, and must be set to
the maximum address id configured in the TcpIp BSW module.

[RTI Issue ID MICRO-3338]

8.3 What’s Fixed in 2.4.14.2

8.3.1 DataReader on a Topic using an appendable type may receive samples with
incorrect value

A DataReader subscribing to a Topic on an appendable type may have received incorrect samples
from a matching DataWriter.

The problem only occurred when the DataWriter published a type with fewer members than the
DataReader type. For example, consider a DataWriter on FooBase and a DataReader on FooD-
erived:

@appendable struct FooBase {
sequence<uint8,1024>base_value;

};

@appendable struct FooDerived {
sequence<uint8,1024> base_value;
@default(12) uint8 derived_value;

};

In this case, the serialized sample stream would be padded with extra bytes to align the stream
to 4 bytes as required by the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification,
version 1.3. However, the additional padding bytes were incorrectly interpreted as part of the data
and derived_value may have been set to a random value.

For example, in the case above, when the DataWriter published a sample with type FooBase, the
DataReader should drop the sample instead of interpreting the padding bytes as data.

Note: Connext Micro does not support the @default annotation.

[RTI Issue ID MICRO-6402]

8.2. What’s New in 2.4.14.2 204

../../../doc/api_c/html/group__OSAPI__AutosarClass.html
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

RTI Connext DDS Micro Documentation, Version 2.4.14.2

8.3.2 Building for FreeRTOS failed when using RTIME_CERT flag

When building Connext Micro with the RTIME_CERT flag enabled, the build would fail and output
warnings.

[RTI Issue ID MICRO-5954]

8.3.3 Potential segmentation fault while creating entities

A segmentation fault could occur while creating certain entities if Connext Micro ran out of memory.
Connext Micro will now detect this condition and return an error.

This issue only affected non-CERT profiles.

[RTI Issue ID MICRO-3396]

8.3.4 Incorrect generated code when using IDL whose name starts with a number

The generated code for an IDL whose name started with a number was incorrect and did not
compile. The generated code contained some ifdef instructions that started with a number, which
was not valid because an identifier must start with a letter (or underscore).

Now, invalid identifier characters are converted to ‘_’ in the ifdef instruction.

[RTI Issue ID MICRO-2066]

8.3.5 Code Generator could not parse a file preprocessed with GCC 11

GCC 11 produced unexpected output when used as a preproccesor. This unexpected output caused
an error in Code Generator.

Code Generator will now work correctly with the output generated by GCC 11.

[RTI Issue ID CODEGENII-1508]

8.3.6 Race condition and memory corruption in logger

The following issues have been fixed in the logger:

• Processing log-messages in a log handler was not thread-safe.

• Memory corruption may have occurred.

• Conversion of INT_MIN was incorrect.

Note: The OSAPI_Log_clear API must not be called outside a log-handler since it is no longer
thread-safe.

[RTI Issue ID MICRO-5854]

8.3. What’s Fixed in 2.4.14.2 205

RTI Connext DDS Micro Documentation, Version 2.4.14.2

8.3.7 Generated example CMakeLists.txt required -udp_intf option to be specified

The generated example CMakeLists.txt file did not use the default interfaces on macOS, Linux,
and Windows, and it was necessary to use the -udp_intf option when running the example.

[RTI Issue ID MICRO-6969]

8.4 Previous Releases

8.4.1 What’s New in 2.4.14.1

2.4.14.1 is a cumulative bug fix release and does not include any new features.

Important Interoperability Changes

This release of Connext Micro includes the following changes in API compatability with previous
release:

• DDS_DomainParticipantFactory_get_instance must be called before other APIs. This is
required to ensure that a platform integration is properly configured and initialized before
other APIs are called. APIs that need special attention have an additional attribute API
Restriction to indicate any restrictions.

8.4.2 What’s Fixed in 2.4.14.1

Invalid samples in batched data did not count as ‘lost samples’

Invalid samples in batched data were not counted as lost samples, and did not trigger Connext
Micro to call on_sample_lost() when the “on_sample_lost” notification was enabled.

This issue has been resolved.

[RTI Issue ID MICRO-2289]

Local variables in header file may have caused compiler warning

Local variables were incorrectly defined in ReaderHistory.c and may have caused a compiler warning.

This issue has been resolved.

[RTI Issue ID MICRO-2785]

8.4. Previous Releases 206

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Non-default timer resolutions may have caused an incorrect timeout

Compiling Connext Micro with a non-default timer resolution may have caused incorrect timeouts.

This issue has been resolved.

[RTI Issue ID MICRO-2794]

Missing checks for max_routes_per_reader and max_routes_per_writer

The DDS_DataReaderQos.reader_resource_limits.max_routes_per_writer and
DDS_DataWriterQos.writer_resource_limits.max_routes_per_reader were missing a check that
the values were in the range [1,2000]. They were also missing from the methods DDS_DataRead-
erQos_is_equal and DDS_DataWriterQos_is_equal respectively.

This issue has been resolved.

[RTI Issue ID MICRO-2830, MICRO-2937]

Missing NULL checks for enabled_transports

In previous releases, it was not checked that the enabled_transports QoS policy setting did not
contain NULL pointers.

This issue has been resolved.

[RTI Issue ID MICRO-3117]

Possible exception due to misaligned RTPS header

In previous releases, if multiple RTPS messages were received in the same UDP payload, a mis-
aligned RTPS message header could cause an exception.

Note: RTI Connext Micro does not send multiple RTPS messages in the same UDP payload.

This issue has been resolved.

[RTI Issue ID MICRO-2866]

8.4. Previous Releases 207

RTI Connext DDS Micro Documentation, Version 2.4.14.2

DDS_SubscriptionBuiltinTopicData_copy did not copy the PresentationQosPolicy

The DDS_SubscriptionBuiltinTopicData_copy function did not copy the PresentationQosPolicy.

This issue has been resolved.

[RTI Issue ID MICRO-2897]

Possible failure to start timer

On architctures using the posix port of Connext Micro, the DomainParticipantFactory may have
failed to initialize if compiled to use signals or if CLOCK_MONOTONIC was not available.

This issue has been resolved.

[RTI Issue ID MICRO-2904]

Sample timestamp now set to 0 if timestamp cannot be retrieved

If the reception timestamp for a sample cannot be retrieved, the reception timestamp is set to 0.

[RTI Issue ID MICRO-2909]

Qos_copy functions did not validate input arguments

In previous releases, the Qos_copy APIs did not validate that the input arguments were not NULL.

This issue has been resolved.

[RTI Issue ID MICRO-2913]

Unused parameter DOMAIN_PARTICIPANT_RESOURCE_LIMITS.match-
ing_reader_writer_pair_allocation removed

The QoS policy setting DOMAIN_PARTICIPANT_RESOURCE_LIMITS.match-
ing_reader_writer_pair_allocation was not used and has been removed from the DOMAIN_PAR-
TICIPANT_RESOURCE_LIMITS structure.

[RTI Issue ID MICRO-2915]

8.4. Previous Releases 208

RTI Connext DDS Micro Documentation, Version 2.4.14.2

DDS_DomainParticpant_add_peer may have returned success on failure

DDS_DomainParticpant_add_peer may have returned success even if the peer was not added.

This issue has been resolved.

[RTI Issue ID MICRO-2929]

DDS_StringSeq_copy did not validate input arguments

In previous versions, DDS_StringSeq_copy did not check that the source and destination arguments
were different before copying.

This issue has been resolved.

In addition, the documentation for Seq_copy has been updated to clearly state that overlapping
memory regions are not supported, with the exception of copying to itself.

[RTI Issue ID MICRO-2964]

Memory leak in C++ classes for builtin topic data types and certain QoSes

SupportMethodsGen.hxx did not implement a destructor, which could have caused a memory leak
when using the C++ API for builtin topic data types and certain QoSes.

This problem has been fixed.

[RTI Issue ID MICRO-2971]

Possible NULL pointer exception in generated code if the system was out of memory

In previous releases, it was possible to get a NULL pointer exception in the generated code if the
system was out of memory during initialization.

This issue would have occurred during DDS entity creation, as memory is only allocated during
entity creation.

This issue has been resolved.

[RTI Issue ID MICRO-2986]

A DataWriter could run out of resources if sample was not added to cache

In rare cases, a DataWriter could run out of resources if a sample could be successfully serialized,
but not added to the writer cache.

This issue has been resolved.

[RTI Issue ID MICRO-3034]

8.4. Previous Releases 209

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Missing source code files

In previous releases, the following source code files were missing:

• UDPTransformations.c

• UDPTransformations.h

• DPSEVersion.c

This problem has been fixed.

[RTI Issue ID MICRO-3042]

Possible serialization beyond stream buffer

In previous releases, CDR_Stream_check_size did not check for underflow. As a result, it was
possible to serialize data beyond the buffer boundary if the buffer assigned to the stream was too
small.

This is only an issue for applications assigning too small of a buffer to a stream.

This issue has been resolved.

[RTI Issue ID MICRO 3147, MICRO-3200]

RELIABILITY.max_blocking_time must be zero

In previous releases, a non-zero RELIABILITY.max_blocking_time was supported on a
DataReader. This feature is not supported in this release.

[RTI Issue ID MICRO-3148]

Possible DataReader or DataWriter creation failure with multiple DomainParticipants

In previous releases, creating DataReaders or DataWriters in different threads for different Do-
mainParticipants could fail due to a race condition.

This issue has been resolved.

[RTI Issue ID MICRO-3151]

8.4. Previous Releases 210

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Incorrect lease_duration may have been used for a discovered participant

In previous releases, if the lease_duration was not sent by a remote DomainParticipant, a previously
received value was used instead.

This issue has been resolved.

Note that RTI’s DDS implementations send the lease_duration.

[RTI Issue ID MICRO-3254]

Missing consistency check for DESTINATION_ORDER.source_timestamp_tolerance

In previous releases, a check that DESTINATION_ORDER.source_timestamp_tolerance was nor-
malized was missing (nanosecond < 1 seconds).

This issue has been resolved.

[RTI Issue ID MICRO-3272]

Improved error detection for unresolved addresses

In previous releases, an unresolved address was ignored. In this release, if an address cannot be
resolved, it results in a failure. This means that all addresses passed to the add_peer API and the
enabled_transports QoS policy must be valid, otherwise entity creation will fail.

[RTI Issue ID MICRO-3276]

DDS_StatusCondition_set_enabled_statuses did not trigger if an active condition was enabled

In previous releases, if a StatusCondition enabled by a call to DDS_StatusCondition_set_en-
abled_statuses was already active, the StatusCondition did not trigger.

This issue has been resolved.

[RTI Issue ID MICRO-3308]

Race condition in DDS enable APIs

In previouses releases, a race condition existed if the same DDS entity was enabled from multiple
threads at the same time.

This issue has been resolved.

[RTI Issue ID MICRO-3311]

8.4. Previous Releases 211

RTI Connext DDS Micro Documentation, Version 2.4.14.2

DDS WaitSet may have timed out later than timeout value

In very rare cases, an error message taking a mutex may have been logged when using the POSIX
real-time timers. This may have resulted in a delayed timeout for DDS_WaitSets.

This issue has been resolved.

[RTI Issue ID MICRO-3330]

SYSTEM_RESOURCE_LIMITS.max_components QoS policy cannot be changed

In previous releases, the documentation incorrectly specified that the SYSTEM_RESOURCE_LIMITS.
max_components QoS policy could be changed. This has been corrected to state that it cannot be
changed. The default value has also been increased to 64.

[RTI Issue ID MICRO-4102]

Incorrect heartbeat sent before first sample when first_write_sequence_number is not 1

In previous releases, if the DataWriterQos.protocol.rtps_reliable_writer.
first_write_sequence_number was different from the default value of 1, heartbeats sent
before the first sample was written would indicate 1 as the first sample available. This would cause
a DataReader to wait for samples with a sequence number less than DataWriterQos.protocol.
rtps_reliable_writer.first_write_sequence_number until a heartbeat with the correct first
sequence number was received.

This issue has been resolved.

[RTI Issue ID MICRO-4081]

Robustness check added to verify that participant GUIDs are unique within a DomainPartici-
pantFactory

A check has been added to DomainParticipantFactory_create_participant to validate that
DomainParticipants created within the same DomainParticipantFactory have unique GUIDs,
and return nil if this is not the case.

[RTI Issue ID MICRO-4062]

DDS_Entity_enable was not thread-safe for a DomainParticipant

DDS_Entity_enable was not thread-safe, which may have led to race conditions. This issue has
been resolved.

[RTI Issue ID MICRO-3381]

8.4. Previous Releases 212

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Missing input verification for API functions

The following functions did not have a precondition check:

• DDS_PublicationBuiltinTopicData_initialize()

• DDS_SubscriptionBuiltinTopicData_initialize()

• DDS_ParticipantBuiltinTopicData_initialize()

This issue has been resolved.

[RTI Issue ID MICRO-3442]

Incorrect return values from REDA_String

REDA_String_compare and REDA_String_ncompare would return incorrect values when NULL
was passed in as one of the parameters. This issue has been resolved.

[RTI Issue ID MICRO-3461]

Incorrect return values from QoS APIs

The following functions have been corrected to return DDS_RETCODE_BAD_PARAMETER
instead of DDS_RETCODE_PRECONDITION_NOT_MET :

• DDS_DomainParticipantFactoryQos_copy

• DDS_DomainParticipantFactoryQos_initialize

• DDS_DomainParticipantQos_copy

• DDS_DomainParticipantQos_initialize

• DDS_SubscriberQos_copy

• DDS_SubscriberQos_initialize

• DDS_DataReaderQos_copy

• DDS_DataReaderQos_initialize

[RTI Issue ID MICRO-3572]

DDS_Wstring_cmp did not match the implementation name DDS_Wstring_compare

The DDSWstring compare function was incorrectly documented as being DDS_Wstring_cmp instead
of DDS_Wstring_compare.

This issue has been resolved.

[RTI Issue ID MICRO-3529]

8.4. Previous Releases 213

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Race condition during participant discovery

A race condition existed during participant discovery.

This issue has been resolved.

[RTI Issue ID MICRO-3365]

A DataWriter with BEST_EFFORT and TRANSIENT_LOCAL may run out of resources

A DataWriter with BEST_EFFORT and TRANSIENT_LOCAL QoS policies may run out of
resources when DataWriterQos.resource_limits.max_samples_per_instance > 1.

Note: Resending of historical samples (DataWriterQos.durability.kind = TRANSIENT_LOCAL)
requires a DataWriterQos.reliability.kind = RELIABLE Qos Policy. Thus, the combination of
BEST_EFFORT and TRANSIENT_LOCAL is not useful, although it is a legal combination.

[RTI Issue ID MICRO-4508]

Connext Micro may have repeated requesting a sample that was no longer available from a
DataWriter

If Connext Micro detects a missing sample when using DDS_RELIABLE_RELIABILITY_QOS reliability,
it will request the sample to be resent, but if the sample is no longer available from the DataWriter,
the DataWriter may send a GAP message to indicate the sample is not longer available.

Connext Micro failed to interpret the GAP message correctly if the first sequence number in the
GAP message was equal to the bitmap base of the GAP message. In this case, Connext Micro
failed to ignore the no-longer-available sample and kept sending a request for the sample.

This problem has been fixed.

[RTI Issue ID MICRO-4668]

DDS_Subscriber_lookup_datareader may return a DataReader that was created by a different
Subscriber

The DDS_Subscriber_lookup_datareader API searches for a DataReader for a given TopicDe-
scription created by the Subscriber. However, in previous releases, the returned DataReader could
belong to a different Subscriber if multiple DataReaders were created for the same Topic in different
Subscribers.

This problem has been fixed.

[RTI Issue ID MICRO-4569]

8.4. Previous Releases 214

RTI Connext DDS Micro Documentation, Version 2.4.14.2

DDS_Publisher_lookup_datawriter may return a DataWriter that was created by a different
Publisher

The DDS_Publisher_lookup_datawriter API searches for a DataWriter for a given Topic created
by the Publisher. However, in previous releases, the returned DataWriter could belong to a different
Publisher if multiple DataWriters were created for the same Topic in different Publishers.

This problem has been fixed.

[RTI Issue ID MICRO-4570]

A reliable DataWriter may ignore requests to resend samples

If a DataWriter has received multiple requests to resend samples before its periodic heartbeat period
expires, the DataWriter may ignore the request if the requested sample has been sent and is also
the first expected sample by the requesting DataReader.

This problem has been fixed.

[RTI Issue ID MICRO-5183]

Compiler warning due to reliance on deprecated implicit copy constructor for C++

In previous releases, compiling with C++ could produce the following warning:

warning: definition of implicit copy constructor

This issue has been fixed. This release adds copy constructors for C++ classes where the use of
implicit implicit copy constructors have been deprecated.

[RTI Issue ID MICRO-5340]

RTPS message may have been rejected

An RTPS message may have been rejected if it had a HDR_EXT and the last RTPS submessage
had a length that is not a multiple of 4.

This issue has been fixed.

[RTI Issue ID MICRO-5387]

8.4. Previous Releases 215

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Warning about hostname not supported in posixSystem.c

Compiling posixSystem.c could produce the following warning:

warning: RTI Micro does not support retrieving the hostname for CERT. Set hostname␣
↪→manually [-Wcpp]

This warning was unnecessary and has been removed.

[RTI Issue ID MICRO-5412]

False positive compiler warning

Compiling with GCC 11 could produce the following warning:

warning: ‘presentation’ may be used uninitialized [-Wmaybe-uninitialized]

This was a false positive since presentation was deserialized. This problem has been fixed.

[RTI Issue ID MICRO-5428]

8.4.3 What’s New in 2.4.14

Important Interoperability Changes

DataWriter’s Default Reliability Changed to Reliable

The default reliability for a DataWriter has been changed from best-effort to reliable.

This solves interoperability problems when the remote DomainParticipant does not send the QoS
value if configured with its default value. However, this may cause interoperability problems with
previous releases if the former default reliability QoS is used.

Support for AUTOSAR Classic

This release includes support for Elektrobit AUTOSAR 4.0.3 and Mentor AUTOSAR 4.2.2 on
Infineon AURIX TriCore TC297. Please refer to Connext Micro on AUTOSAR for details.

Support for detecting corrupted RTPS messages

This release includes support for detecting and discarding corrupted RTPS messages. A checksum
is computed over the DDS RTPS message including the RTPS Header. This checksum is sent as
a new RTPS submessage. The subscribing application detects this new submessage and validates
the contained checksum. When a corrupted RTPS message is detected, the message is dropped.

To enable the use of a checksum in a DomainParticipant, there are three new fields in the Wire-
ProtocolQosPolicy: compute_crc, check_crc, and require_crc:

8.4. Previous Releases 216

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• To send the checksum, enable compute_crc at the sending application.

• To drop corrupted messages, enable check_crc.

• To ignore a participant with compute_crc set to false, enable require_crc.

Please refer to Message Integrity Checking in the Connext Micro User’s Manual for details.

Port Validation for Connext Micro

After porting Connext Micro, it is important to confirm that your code works as expected. For this
purpose, Connext Micro comes with a suite of tests that you can compile and run to validate your
port.

New Documentation on Compiling Connext Micro for Connext Cert Compatibility

This release includes a new chapter on how to compile Connext Micro with for compatibility with
Connext Cert. See Building Connext Micro with compatibility for Connext Cert.

ThreadX CMake Files and New Documentation on Building Connext Micro for ThreadX +
NetX

Connext Micro libraries can now be compiled using rtime-make and CMake for ThreadX + NetX.
There is a new section in the documentation on building for the ThreadX operating system and
NetX network stack, including example configurations. See Building the Connext Micro Source for
ThreadX .

Updated Example CMakeLists.txt to Automatically Regenerate Code when IDL or XML File
Changes

The CMakeLists.txt generated by the Code Generator now has a rule that will regenerate
type-support files if the IDL or XML file with the type definition changes. The rule is conditional:
it is only added if the option RTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE is
set to TRUE when invoking CMake.

Message Logged when Samples Received Out of Order

This release logs an additional message when a sample is received out of order and reliability is
enabled. This will occur if a reliable sample with a data submessage is received with a sequence
number higher than the lowest, next expected sequence number.

8.4. Previous Releases 217

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Message Logged when Sequence Numbers Received More than Once

This release logs an additional message if a sample is received more than once when reliability is
enabled. This means that a sample with the same sequence number has already been received.

Ability to Send Logs over UDP

This release includes support for sending logs over UDP. The destination IP address and UDP port
can be configured in the AUTOSAR port properties.

rtime-make Provides Help for a Specific Target

The help output from the script rtime-make has been improved to show that is possible to get help
for a specific target.

Use the command “rtime-make –target <target> –help” to print help for the target.

FreeRTOS CMake Files

The Connext Micro libraries can now be compiled using rtime-make and CMake for FreeRTOS.

Improved Documentation on Building Connext Micro for AUTOSAR Systems

The documentation on building Connext Micro for AUTOSAR systems has been improved with
information about the number of resources needed. See Resources.

Examples Used Undocumented APIs

The provided examples, and those created by the Code Generator, were using Foo_create() and
Foo_delete() to create and delete samples. Those APIs are not documented and should not be
used. The examples have been changed to use FooTypeSupport_create_data() and FooTypeSup-
port_delete_data() instead.

New CMake Option to Enable Real-Time Timers on QNX and Linux Systems

Connext Micro has supported POSIX.4 real-time timers as a way to run the its internal timers.
However, this feature has only been available by updating the osapi_os_posix.h header file and has
been disabled by default because it relies on POSIX signals that may interfere with an application,
such as if an application uses fork() and one of the exec system calls without setting the signal
mask.

Connext Micro uses the signal SIGRTMIN by default. To change this, it is necessary to
modify the constant OSAPISYSTEM_POSIX4_TIMER_SIGNAL at the beginning of src/os-
api/posix/posixSystem.c. Please note that the number of signals available varies between systems.

8.4. Previous Releases 218

RTI Connext DDS Micro Documentation, Version 2.4.14.2

To enable this feature on a QNX or Linux system, pass the following additional option to cmake
or rtime-make:

New -showTemplates and -exampleTemplate options for Code Generator

This release introduces two new Code Generator command-line options, -showTemplates and
-exampleTemplates.

The -showTemplates option prints and generates an XML file containing a list of available example
templates in your Connext DDS installation, organized per language.

When you use the -exampleTemplate option, you can specify one of these example templates, which
are in $RTIMEHOME/rtiddsgen/resource/templates/example/<language>/<templateName>/.
You may also create your own templates and place them in this directory.

To use -exampleTemplates, you must also use one of the following command-line options:

• -create examplefiles

• -update examplefiles

• -example

When you use the -exampleTemplates option, Code Generator will generate the example you spec-
ified, instead of the default one. For example:

rtiddsgen -language C++ -example -exampleTemplate <exampleTemplateName> foo.idl

Dynamic memory allocations removed from Dynamic Discovery Plugin

The dynamic discovery plugin in Connext Micro allocated memory dynamically for discovered topic
and type names after the DomainParticipant was enabled. This release includes improvements that
make it possible to avoid all memory allocations.

Dynamic memory allocations are avoided by creating the DomainParticipant in a disabled state
and creating all local endpoints before the DomainParticipant is enabled. A DomainParticipant is
created in a disabled state by setting

DomainParticipantFactoryQos.entity_factory.autoenable_created_entities =
DDS_BOOLEAN_TRUE

before calling create_participant(). When all entities have been created, call enable() on the Do-
mainParticipantFactory to enable all entities.

8.4. Previous Releases 219

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Reduced default socket send/receive buffer size for QNX systems

Some QNX kernels have a maximum send and receive socket buffer size smaller than the default
value used by Connext Micro. The default send and receive socket buffer size has been changed to
64 Kbytes in Connext Micro for QNX builds.

8.4.4 What’s Fixed in 2.4.14

Small Enums Caused Serialization Errors

In previous releases, enum types that were represented internally as 1 or 2 byte values caused
serialization and deserialization errors. This problem has been resolved by adding support for
enum types with 1 or 2 byte internal memory representations. The wire representation for enums
is unchanged at 4 bytes.

[RTI Issue ID MICRO-2249]

-Wcast-function-type and -Wdeprecated Compiler Warnings

This release fixes two different compiler warnings:

• When compiling Connext Micro with GCC8 (or later versions) and -Wcast-function-type,
the compiler printed warnings such as:

cast between incompatible function types

• When compiling Connext Micro with a C++11 compiler and -Wdeprecated, the compiler
printed warnings such as:

warning: definition of implicit copy constructor

Both of these issues have been fixed. Note that neither issue caused incorrect behavior.

[RTI Issue ID MICRO-2488]

Documentation did not list all Entities that Support Transport QosPolicy

The previous documentation did not list all the entities that support the DDS_TransportQosPolicy.
This problem has been fixed.

The DDS entities that support the DDS_TransportQosPolicy are the DomainParticipant,
DataWriter and DataReader.

[RTI Issue ID MICRO-2503]

8.4. Previous Releases 220

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Generated Examples Registered Wrong Type Name

The generated code for Connext Micro may have registered the wrong type name if you used the
option -create examplefiles and IDL such as:

module My_Module {
struct My_Entity {

long id; //@key
};

};

This generated an example that registered a type with a name that was incompatible with the type
name used by other DDS tools that were configured with the same IDL file. This issue has been
fixed.

[RTI Issue ID MICRO-2605]

For C++ Types Generated by rtiddsgen that have Inheritance, the ParentCclass was also
Declared in the Class as Another Member

Consider the following Foo.idl file, used to generate code with rtiddsgen:

struct Base
{

long x;
};

struct Foo: Base {
long y;

};

This generated the following Foo.h file:

class Base
{

long x;
};

class Foo: public Base
{

Base parent;
long y;

};

Note that the class Foo inherited from the class Base, and its first field was a ‘parent’ field of type
‘Base’. This should not happen, since it results in extra space being taken for each sample that will
not be used.

This problem has been fixed. The generated Foo class no longer has a ‘parent’ field of type ‘Base’.

[RTI Issue ID MICRO-2633]

8.4. Previous Releases 221

RTI Connext DDS Micro Documentation, Version 2.4.14.2

DomainParticipant not Rediscovered if Terminated and Restarted Before its Lease Duration
Expired

A DomainParticipant was not rediscovered if it was terminated and restarted before its lease du-
ration expired. For example, if an application with a DomainParticipant was terminated with
Control-C and restarted before the DomainParticipant’s lease duration expired, the DomainPartic-
ipant would not be rediscovered. However, if the DomainParticipant was deleted with delete_par-
ticipant() this problem would not occur. This issue has been resolved.

[RTI Issue ID MICRO-2672]

OSAPI_Log_clear did not Zero Out Log Buffer Memory

OSAPI_Log_clear() did not zero out the log buffer memory. This problem has been resolved. Now
it will set the buffer memory to zero when it resets the buffer head.

[RTI Issue ID MICRO-2678]

Error in Generated C/C++ Code when Two Members of Different Enumerations had Same
Name

The generated C/C++ code for an IDL file containing enumerations with members that had the
same name would not compile. For example, consider this IDL:

module a {
module b {

enum Foo {
GREEN, RED

}
;};

};
module c {

module d {
enum Bar {

GREEN, YELLOW
};

};
};

The above IDL produced the following code:

typedef enum c_d_Foo
{

GREEN ,
RED

} c_d_Foo;

typedef enum c_d_Bar
{

(continues on next page)

8.4. Previous Releases 222

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
GREEN ,
YELLOW

} c_d_Bar;

And it produced an error similar to this when trying to compile it:

test.h:82: error: redeclaration of enumerator ‘GREEN’
test.h:25: error: previous definition of ‘GREEN’ was here

This release introduces a new command-line option in RTI Code Generator,
-qualifiedEnumerator, which allows you to generate fully qualified enumerator names.
This avoids having conflicting names in C/C++.

For example, given this IDL:

module myModule{
enum Color2 {

GREEN,
RED

};

union MyUnion switch (Color2){
case GREEN:

long m1;
case RED:

long m2;
};

};

The following table shows the code that will be generated without the new option and with it:

8.4. Previous Releases 223

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Table 8.2: Effect of using -qualifiedEnumerator
Lan-
guage

without -qualifiedEnumerator (default) with -qualifiedEnumerator

C
typedef enum myModule_Color2
{

GREEN ,
RED

} myModule_Color2;

typedef struct myModule_MyUnion {
myModule_Color2 _d;
struct myModule_MyUnion_u
{

DDS_Long m1 ;
DDS_Long m2 ;

}_u;

} myModule_MyUnion ;

typedef enum myModule_Color2
{

myModule_Color2_GREEN ,
myModule_Color2_RED

} myModule_Color2;

typedef struct myModule_MyUnion {

myModule_Color2 _d;
struct myModule_MyUnion_u
{

DDS_Long m1 ;
DDS_Long m2 ;

}_u;

} myModule_MyUnion ;

C++
typedef enum myModule_Color2
{

GREEN ,
RED

} myModule_Color2;

typedef struct myModule_MyUnion {

typedef struct myModule_
↪→MyUnionSeq Seq;

...
myModule_Color2 _d;
struct myModule_MyUnion_u
{

DDS_Long m1 ;
DDS_Long m2 ;

}_u;

} myModule_MyUnion ;

typedef enum myModule_Color2
{

myModule_Color2_GREEN ,
myModule_Color2_RED

} myModule_Color2;

typedef struct myModule_MyUnion {

typedef struct myModule_
↪→MyUnionSeq Seq;

...
myModule_Color2 _d;
struct myModule_MyUnion_u
{

DDS_Long m1 ;
DDS_Long m2 ;

}_u;

} myModule_MyUnion ;

continues on next page

8.4. Previous Releases 224

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Table 8.2 – continued from previous page
Lan-
guage

without -qualifiedEnumerator (default) with -qualifiedEnumerator

C++
Names-
pace

namespace myModule {
typedef enum Color2
{

GREEN ,
RED

} Color2;

typedef struct MyUnion {
typedef struct MyUnionSeq␣

↪→Seq;
...
myModule::Color2 _d;
struct MyUnion_u
{

DDS_Long m1 ;
DDS_Long m2 ;

}_u;

} MyUnion ;
};

namespace myModule {
typedef enum Color
{

Color_GREEN ,
Color_BLUE

} Color;

typedef struct MyUnion {
typedef struct MyUnionSeq␣

↪→Seq;
...
myModule::Color2 _d;
struct MyUnion_u
{

DDS_Long m1 ;
DDS_Long m2 ;

}_u;
} MyUnion ;

} ;

[RTI Issue ID MICRO-2718]

Incorrect Documentation Regarding Changeability of QoS

The previous release’s documentation incorrectly stated that some QoS are changeable, when they
are not. This has been fixed.

The DomainParticipantFactory.EntityFactoryQosPolicy is always changeable. The following are
changeable until the entity is enabled:

• DomainParticipant.EntityFactoryQosPolicy

• Publisher.EntityFactoryQosPolicy

• Subscriber.EntityFactoryQosPolicy

[RTI Issue ID MICRO-2749]

8.4. Previous Releases 225

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Unexpected Behavior when Copying a DDS_UnsignedShortSeq with 0 Length

When copying a DDS_UnsignedShortSeq with 0 length, the destination sequence length was not
set to 0. This issue has been fixed.

[RTI Issue ID MICRO-2756]

Incorrect Range Documented for DDS_ResourceLimitsQosPolicy.max_samples

The range for DDS_ResourceLimitsQosPolicy.max_samples was incorrectly documented as
max_samples >= max_instances * max_samples_per_instance.

While that is correct for Connext Cert, the correct range for Connext Micro is max_samples >=
max_instances.

The documentation has been corrected.

[RTI Issue ID MICRO-2757]

Wrong Compiler Option for AUTOSAR Elektrobit Platform caused ‘double’ to Compile as 4
Bytes instead of 8

CMake files include an option to optimize doubles as floats when compiling for the AUTOSAR
classic Elektrobit platform. This caused the serialization and deserialization of type double to fail.

This optimization has been removed; now the size of type ‘double’ is 8 bytes when compiling for
the AUTOSAR classic Elektrobit platform.

[RTI Issue ID MICRO-2823]

Log Message with Random Characters Printed

In some cases, a log message was printed with random characters. For example:

$ Alignment32 id\:000000\,sig\:06\,src\:000000\,op\:flip1\,pos\:1

[1612981807.603703999]ERROR: ModuleID=5 Errcode=20021 X=1 E=1 T=1
��hV�F��~ycV{/:0/:

This issue has been resolved.

[RTI Issue ID MICRO-2877]

8.4. Previous Releases 226

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Event Masks of Semaphores in AUTOSAR Port were Calculated Incorrectly

Event masks of semaphores in the AUTOSAR port were calculated incorrectly. This only affected
semaphore implementation and Waitsets. This issue has been resolved.

[RTI Issue ID MICRO-2953]

PUBLICATION_MATCHED_STATUS and SUBSCRIPTION_MATCHED_STATUS may
never have triggered a WaitSet if the status was enabled after the DomainParticipant was
enabled

A StatusCondition with PUBLICATION_MATCHED_STATUS or SUBSCRIP-
TION_MATCHED_STATUS enabled may never have triggered a WaitSet, if the status
was enabled after the DomainParticipant was enabled.

This issue has been resolved.

[RTI Issue ID MICRO-2219]

Unicast DataReader stopped receiving samples after DataWriter matched with a multicast
DataReader

A DataReader with a unicast locator stopped receiving samples from a matched DataWriter when
another DataReader with a multicast locator matched with that DataWriter.

This problem has been resolved. Now all matched DataReaders will receive samples, regardless of
whether their locators are unicast or multicast.

[RTI Issue ID MICRO-2369]

A RTPS max_window_size not divisible by 32 may have resulted in retransmission of wrong
sequence number

An RTPS max_window_size not divisible by 32 may have caused retransmission of a sequence
number not being requested. Note that the default value is divisible by 32.

This issue has been resolved.

[RTI Issue ID MICRO-2287]

8.4. Previous Releases 227

RTI Connext DDS Micro Documentation, Version 2.4.14.2

POSIX mutex implementation did not conform with FACE Safety Profile

The POSIX mutex implementation did not conform with the FACE Safety Profile. This release
conforms to the FACE Safety profile for single-core CPU architectures.

[RTI Issue ID MICRO-2275]

Waitset with timeout of 0 did not return immediately

A Waitset with a 0 timeout did not return immediately, but was rounded up to one clock period.

This issue has been resolved.

[RTI Issue ID MICRO-2278, MICRO-2264]

For AUTOSAR the IP address is now used to generate a unique DomainParticipant ID

In previous versions of Connext Micro for AUTOSAR the timestamp was used to generate a unique
DomainParticipant ID. This release uses the IP address from the Autosar configuration by default.

[RTI Issue ID MICRO-2342]

8.4.5 What’s New in 2.4.12

Shared UDP port for discovery and user-data in a DomainParticipant

This release allows sharing a UDP port per DomainParticipant for discovery and user-traffic. The
advantage is that Connext Micro will create a single receive thread for unicast instead of two.

The disadvantage is that this port mapping is not compliant with the DDS Interoperability Wire
Protocol and communication with other DDS implementations might not be possible.

This feature may only be used if multicast or unicast is used for both discovery and user traffic. If
both unicast and multicast are enabled this feature cannot be used.

To enable this feature assign the same value to both builtin and user port offsets in RtpsWell-
KnownPorts_t.

DomainParticipants no longer allocate dynamic memory during deletion

DomainParticipants will no longer allocate dynamic memory during deletion.

8.4. Previous Releases 228

RTI Connext DDS Micro Documentation, Version 2.4.14.2

New QoS parameter to set maximum outstanding samples allowed for remote DataWriter

A new QoS parameter has been exposed for the endpoint discovery endpoints in the dy-
namic endpoint discovery plugin (DPDE). The new field, max_samples_per_remote_builtin_end-
point_writer in DPDE_DiscoveryPluginProperty, can be set to increase the number of samples a
remote writer may have per builtin endpoint reader and thus decrease network traffic. Please refer
to the DPDE for a description of this new parameter.

New QoS parameter to adjust preemptive ACKNACK period

A new QoS parameter has been introduced to expose the preemptive ACKNACK period on
DataReaders. The new parameter is configured with:

• DDS_DataReaderQos.protocol.rtps_reliable_reader.nack_period for user data readers

• builtin_endpoint_reader_nack_period for the builtin discovery endpoints in the Dynamic
discovery plugin

Please refer to API Reference API for details.

Deserialization of Presentation QoS policy

This release provides better support for the Presentation QoS policy. Previously this QoS policy
was not supported by the DataWriter; the default value was assumed for a discovered DataReader,
which caused an “Unknown QoS” warning when it was received. In this release, DataWriters will
deserialize the Presentation QoS policy and check for compatibility.

8.4.6 What’s Fixed in 2.4.12

Examples used DomainParticipant_register_type instead of FooTypeSupport_register_type

In previous versions the examples registered types using “DDS_DomainParticipant_regis-
ter_type()” instead of the recommended “FooTypeSupport_register_type()”. This version has
updated the examples to use the recommended “FooTypeSupport_register_type()” instead.

[RTI Issue ID MICRO-1922]

A DataReader and DataWriter with incompatible liveliness kind and infinite lease_duration
matched

In previous versions Connext Micro allowed a DataWriter to match a DataReader if the liveliness
kind was incompatible but the liveliness duration was infinite. However, the OMG DDS specification
mandates stricter matching rules and in this version a DataReader and DataWriter will only match
when both the liveliness duration and kind are compatible:

1. Requested Liveliness Lease duration is greater than or equal to the Offered lease duration.

8.4. Previous Releases 229

../../api_c/html/group__DPDEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

2. Requested Liveliness kind is less than or equal to the Offered Liveliness kind where AUTO-
MATIC_LIVELINESS_KIND < MANUAL_BY_PARTICIPANT_LIVELINESS_KIND <
MANUAL_BY_TOPIC_LIVELINESS_KIND.

Note that this did not affect communication between Connext Micro applications since with an
infinite liveliness duration, the liveliness will never expire, regardless of kind.

[RTI Issue ID MICRO-2007]

Warning at compilation time for FreeRTOS port

An incompatible pointer type warning was printed at compilation time when compiling for FreeR-
TOS. This issue has been resolved.

[RTI Issue ID MICRO-2090]

Using DDS_NOT_ALIVE_INSTANCE_STATE caused compilation error in C and C++

Using the constant DDS_NOT_ALIVE_INSTANCE_STATE caused a linker error due to a miss-
ing definition. This issue has been resolved.

[RTI Issue ID MICRO-2243]

Seq_copy() did not work when the source sequence is a loaned/discontiguous sequence

Calling FooSeq_copy() on a loaned or discontiguous sequence did not work correctly. This issue
has been fixed.

[RTI Issue ID MICRO-2053]

Warnings when compiling the example generated by Code Generator

When compiling the example generated by rtiddsgen, the compiler may have given warnings about
unused variables. The generated code has been updated to avoid these warnings.

[RTI Issue ID MICRO-1700]

Unable to generate code for XML or XSD defined types

Previous releases of Connext Micro did not include the XML and XSD schemas required to generate
type-support code from XML or XSD files. This issue has been resolved.

[RTI Issue ID MICRO-1709]

8.4. Previous Releases 230

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Linker error in C++ application when C types were used

Compiling generated C type-support code as C++ caused compilation errors. This issue has been
resolved.

[RTI Issue ID MICRO-1750]

Failure to link for VxWorks RTP using shared libraries compiled with CMake

Due to use of incorrect compiler and linker options for VxWorks RTP mode a linker error occurred
when compiling projects generated with CMake®. This issue has been resolved.

[RTI Issue ID MICRO-1909]

rtiddsgen may have failed on Windows systems when -jre was specified

The rtiddsen -jre option did not accept paths with spaces. This issue has been resolved.

[RTI Issue ID MICRO-1952]

rtime-make did not work when it was started from different shell than Bash

rtime-make requires Bash on Unix systems. However it did not explicitly launch Bash and would
fail if started from a Bash incompatible shell. This has been fixed.

[RTI Issue ID MICRO-2013]

Linker error when using shared libraries on VxWorks systems

There was a linker error when compiling the examples for ppc604Vx6.9gcc4.3.3 using shared li-
braries. The compiler reported that the libraries could not be found. This issue has been resolved.

[RTI Issue ID MICRO-1841]

A run-time error may have occurred on Windows or when compiling for FACE when using
hostnames in the peer list

Due to incorrect use of the getaddrinfo() API on Windows or POSIX when compiling for FACE, a
run-time error may have occured when resolving hostnames. This issue has been fixed.

[RTI Issue ID MICRO-1957]

8.4. Previous Releases 231

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Entity ID generation was not thread-safe

Entity ID generation for DataReaders and DataWriters was not thread-safe and may have lead to
duplicate entity IDs. This problem has been resolved.

[RTI Issue ID MICRO-2104]

DomainParticipant creation failed if active interface had invalid IP

An active interface without a valid IP address assigned may have caused DomainParticipant creation
to fail. This problem has been resolved. Now if an interface with an invalid IP address is used, it
will be ignored and the DomainParticipant will still be created.

[RTI Issue ID MICRO-1602]

rtime-make did not work when there was a space in the installation path

The rtime-make script did not work when Connext Micro was installed in a directory path con-
taining spaces. This issues has been resolved.

[RTI Issue ID MICRO-1622]

Sample filtering methods were always added to the subscriber code for C

The generated subscriber example code always included code to filter sample-based fields in the
IDL type. However, if the generated IDL file was modified to exclude these fields, the code would
fail to compile. The generated code now includes instructions for how to filter instead.

[RTI Issue ID MICRO-1980]

‘Failure to give mutex’ error

In Connext DDS Micro 2.4.11, a subtle race condition may have occurred on multi-core machines.
When this happened, an error message about failing to give a mutex would be printed: error code
(EC) 44 in module 1 (OSAPI). This problem has been resolved.

[RTI Issue ID MICRO-2095]

UDP interface warning using valid interfaces

Connext DDS Micro logged a warning if no new interfaces were added for each address listed
in enabled_transports. This applied to the enabled_transports field in the DiscoveryQosPolicy
and UserTrafficQosPolicy in the DomainParticipantQos, and the DDS_TransportQosPolicy in the
DataReaderQos and DataWriterQos. This problem has been resolved. Now Connext DDS Micro
will only log a warning if no new interfaces are added per enabled transport.

[RTI Issue ID MICRO-2018]

8.4. Previous Releases 232

RTI Connext DDS Micro Documentation, Version 2.4.14.2

A DataReader May Stop Receiving Samples When Filtering Callbacks Are Used

When using on_before_deserialize() or on_before_commit() to drop samples the DataReader may
have been depleted of resources and stop receiving data. This issue has been fixed.

[RTI Issue ID MICRO-1930]

DDS_WaitSet_wait() returned DDS_RETCODE_ERROR if unblocked with no active condi-
tions

An application that used a combination of polling a DataReader and blocking on a DDS_WaitSet
may have caused DDS_WaitSet_wait() to return DDS_RETCODE_ERROR. This happened if
the DDS_WaitSet was unblocked by an attached condition, but there were no active conditions.
This problem has been resolved.

[RTI Issue ID MICRO-2115]

Large timeout values may have caused segmentation fault

Timeout values larger than 2000s may have caused a segmentation fault during creation of DDS
entities. This issue has been fixed.

[RTI Issue ID MICRO-2192]

HelloWorld_dpde_waitset C++ example uses wrong loop variable for printing data

When multiple samples are loaned by calling take, the HelloWorld_dpde_waitset C++ example
uses the wrong loop variable, i, with data_seq instead of the correct index b. This issue has been
resolved.

[RTI Issue ID MICRO-2158]

WaitSet_wait returned generic error when returned condition sequence exceeded capacity

If the number of returned conditions exceeded the maximum size of the returned condition se-
quence, a generic error, DDS_RETCODE_ERROR, was returned instead of the expected error,
DDS_RETCODE_OUT_OF_RESOURCES. This problem has been resolved.

[RTI Issue ID MICRO-1933]

8.4. Previous Releases 233

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Publication handle not set in SampleInfo structure when on_before_sample_commit() called

The publication_handle member of the DDS_SampleInfo structure passed to a DataReader’s
on_before_sample_commit() function was not set. This issue has been fixed.

[RTI Issue ID MICRO-2121]

Duplicate DATA messages are sent to multicast in some cases

Duplicate DATA messages were sent to multicast when multiple DataReaders were configured with
multicast and unicast receive addresses. This issue has been fixed.

[RTI Issue ID MICRO-2043]

GUID generation on QNX for processes run one after another may lead to duplicate GUIDs

On QNX systems, two processes run one after another in quick order may end up with the same
GUID. The probability of GUID reuse has been reduced in this release.

[RTI Issue ID MICRO-2109]

Read/take APIs returned more than depth samples if an instance returned to alive without
application reading NOT_ALIVE sample

If an instance transitioned from NOT_ALIVE_NO_WRITERS or NOT_ALIVE_DISPOSED to
ALIVE and the application did not read/take the sample indicating NOT_ALIVE_NO_WRIT-
ERS or NOT_ALIVE_DISPOSED, the number of samples returned would exceed the depth set
by the History QoS policy. This issue has been fixed.

[RTI Issue ID MICRO-2196]

Segmentation fault if OSAPI_Semaphore_give() was called from one thread while another
called OSAPI_Semaphore_delete()

An application may have terminated with a segmentation fault if OSAPI_Semaphore_give() was
called from one thread while another called OSAPI_Semaphore_delete() on Unix-like systems.
This issue has been resolved.

[RTI Issue ID MICRO-2209]

8.4. Previous Releases 234

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Communication problems between Connext DDS Professional 6 and Connext DDS Micro 2.4.11

Connext DDS Professional 6 advertises support for RTPS protocol version 2.3, while Connext DDS
Micro 2.4.11 and earlier only accepted RTPS 2.1. Therefore tools such as Admin Console 6.0.0 did
not properly discover entities from a Micro 2.4.11 application. This release of Connext DDS Micro
complies with RTPS 2.1 and later minor versions (such as 2.3). Unsupported RTPS messages are
ignored.

[RTI Issue Id MICRO-2008]

OSAPI_System_get_ticktime() not implemented for FreeRTOS

OSAPI_System_get_ticktime() was not implemented for FreeRTOS. An application using a finite
DDS deadline or liveliness would have a run-time failure. This issue has been resolved.

[RTI Issue ID MICRO-2240]

8.4.7 What’s New in 2.4.11

Support for ThreadX/NetX

Support for the ThreadX operating system, version 5.7, and the NetX TCP/IP network stack,
version 5.9.

Batching (reception only)

Batching reception. Please refer to the new user’s manual UserManuals_Batching for details.

UDP Transformations

Please refer to the new user’s manual ref UserManuals_UDPTransform for details.

Optionally exclude builtin UDP Transport from compilation

Setting the flag -DRTIME_UDP_EXCLUDE_BUILTIN=1 excludes the UDP transport from be-
ing built. This setting can be useful if communication is done using only shared memory, INTRA,
or a custom UDP transport.

8.4. Previous Releases 235

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Publication handle of DataWriter now provided upon DataReaderListener sample loss

When the DDS_DataReaderListener’s on_sample_lost event is triggered, the returned DDS_Sam-
pleLostStatus.sample_info now contains the publication_handle of the DataWriter that originally
wrote the lost sample(s).

DataWriters offer TOPIC presentation

Connext Micro DataWriters now offer the DDS_TOPIC_PRESENTATION_QOS presenta-
tion (when coherent_access = FALSE). This presentation is compatible with any reader using
DDS_TOPIC_PRESENTATION_QOS and DDS_INSTANCE_PRESENTATION_QOS, when
ordered_access = TRUE and ordered_access = FALSE.

Micro readers will remain unchanged and will only support DDS_INSTANCE_PRESENTA-
TION_QOS when ordered_access = FALSE.

New warning if a configured UDP transport does not have any interface

A warning in logs has been added to notify you when a configured UDP transport does not have
any interface. This condition normally indicates a wrong UDP configuration, which might result
in discovery and/or communication failure.

8.4.8 What’s Fixed in 2.4.11

MICRO-1814 Incorrect thread ID returned for VxWorks RTP

The function OSAPI_Thread_self() when called by a VxWorks Real-Time Process (RTP) always
returned the (process) ID of the RTP, even for tasks spawned by the RTP. This issue has been
fixed.

[RTI Issue ID MICRO-1814]

NULL listener and non-empty status mask not allowed for C++ DataReader

A C++ DataReader was incorrectly not allowed to be created with a NULL DataReaderListener
and a non-empty status mask (i.e., not DDS_STATUS_MASK_NONE).

[RTI Issue ID MICRO-1807]

8.4. Previous Releases 236

RTI Connext DDS Micro Documentation, Version 2.4.14.2

accept_unknown_peers did not work when Shared Memory transport was enabled in RTI
Connext DDS Pro

When Connext Micro discovered a RTI Connext DDS Pro application with Shared Memory trans-
port enabled, Connext Micro failed to correctly use the UDPv4 locators instead.

This issue has been fixed.

[RTI Issue ID MICRO-1798]

Calling FooSeq_set_maximum() repeatedly with the same maximum size results in seg-fault

In RTI Connext Micro 2.4.10.x and earlier, calling FooSeq_set_maximum() repeatedly with the
same maximum size on an IDL sequence type containing non-primitive types (such as enums or
other structures) caused a segmentation fault.

This issue has been fixed.

[RTI Issue ID MICRO-1786]

CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used

Connext Micro buildable sources can not be compiled with CMake versions 2.8.10.1 or 2.8.10.2.

This issue has been fixed.

[RTI Issue ID MICRO-1748]

OS error code (errno) not logged if sendto() returned error

The OS error code (errno) was not correctly logged if sendto() returned an error.

This issue has been fixed.

[RTI Issue ID MICRO-1712]

Codegen might generate an incorrect pub/sub example if opction “-create typefiles” is not
used

Wrong example code is generated in case rtiddsgen is executed with option -create examplefiles and
option -create typefiles is NOT used.

This issue has been fixed.

[RTI Issue ID MICRO-1696]

8.4. Previous Releases 237

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Generated examples use always the last structure in the idl

Examples generated using Codegen use always the last structure in the idl file, even if it is not
top-level.

This issue has been fixed.

[RTI Issue ID MICRO-1694]

Instance might not have been disposed or unregistered under some conditions

Unregistered or disposed samples were not processed when preceded by a GAP sub-message within
the same RTPS message.

This issue has been fixed.

[RTI Issue ID MICRO-1692]

Reliable Endpoints with only multicast locators may not communicate

A reliable DataReader configured with only multicast (no unicast) locator(s) may have failed to dis-
cover or communicate with a reliable DataWriter. Both built-in discovery endpoints and user-data
endpoints were affected.

This issue has been fixed.

[RTI Issue ID MICRO-1687]

Access to DDSEntity instance handles from C++ API

Users of RTI Connext DDS Micro’s C++ API can now access instance handles of any DDS entity
using method DDSEntity::get_instance_handle.

[RTI Issue ID MICRO-1681]

Syntax changed for initial peer participant index range

When configuring the initial peers of a DomainParticipant (e.g. DDS_DomainParticipantQos.dis-
covery.initial_peers), the syntax for specifying a range of participant indices for a peer locator has
changed: a hyphen is now the separator, replacing a comma. In general, a peer “[x-y]@<address>”
means that participant discovery messages will be sent to the address for participant indices x
through y.

[RTI Issue ID MICRO-1680]

8.4. Previous Releases 238

RTI Connext DDS Micro Documentation, Version 2.4.14.2

lookup_instance() is not thread safe

The lookup_instance() was not thread safe in Connext Micro 2.4.10.x and earlier. If an application
was calling lookup_instance() from both a listener and a WaitSet/polling thread at the same time,
the instance handle could be corrupted.

This issue has been fixed.

[RTI Issue ID MICRO-1679]

CMakeLists.txt and README.txt created when they should not

Codegen generates project files CMakeLists.txt and README.txt are generated even when project
files are not generated.

This issue has been fixed.

[RTI Issue ID MICRO-1673]

No communication when DomainParticipant used same GUID as another DomainParticipant
in different domain

Given an application that creates DomainParticipants in different DDS domains, a DomainPar-
ticipant created with the same Participant GUID (i.e., the GUID Prefix portion of the GUID) as
created for a DomainParticipant in a different domain will fail to discover or communicate with
other endpoints within its own domain. A workaround would be for the application to assign unique
GUIDs for all DomainParticipants across all domains. This issue has been fixed.

This issue has been fixed.

[RTI Issue ID MICRO-1671]

Compiler error might happen when lwIP is used

An incorrectly defined compiler macro causes a compilation error when lwIP stack is used and
LWIP_DNS is defined.

This issue has been fixed.

[RTI Issue ID MICRO-1664]

8.4. Previous Releases 239

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Wrong C++ code generated for unkeyed types when using IDL modules and -namespace option

Code generated with the following command failed if a struct with the same name was defined in
two namespaces, and the first namespace did not have any key:

rtiddsgen -micro -example HelloWorld.idl -replace -language C++ -namespace

This issue has been fixed.

[RTI Issue ID MICRO-1663]

DDS_WaitSet_wait does not work if OSAPI_Semaphore_take() returns an error

DDS_WaitSet_wait does not work if OSAPI_Semaphore_take() returns an error; RET-
CODE_PRECONDITION_NOT_MET is always returned.

This issue has been fixed.

[RTI Issue ID MICRO-1658]

Log buffer could overflow on 64-bit architectures, causing application crash

The log buffer may have overflowed on 64-bit architectures and caused an application crash.

This issue has been fixed.

[RTI Issue ID MICRO-1657]

Fix API realloc in Windows OSAPI

Windows implementation of function realloc did not allow a NULL input pointer, this is wrong and
posix implementation and Windows API allow it. This has the effect that function DDS_String_re-
place() fails when the input string is a NULL pointer.

This issue has been fixed.

[RTI Issue ID MICRO-1655]

New samples for an instance may not be received if an instance goes back to ALIVE when
using read()

Due to an issue in the resource calculation for the DataReader, new samples for an instance may
not have been received if the instance went back to ALIVE when using any of the read() APIs.

This issue has been fixed.

[RTI Issue ID MICRO-1651]

8.4. Previous Releases 240

RTI Connext DDS Micro Documentation, Version 2.4.14.2

INTRA transport caused subscription matches to use additional resources

An issue in the matching between a reader and writer caused a reader to be matched with the same
writer twice if auto enable was set to FALSE.

This issue has been fixed.

[RTI Issue ID MICRO-1650]

Resolved memory leak in class RTRegistry

When using previous versions of Connext Micro, C++ applications might have experienced resource
leakage upon finalization of middleware resources using the method DDSDomainParticipantFac-
tory::finalize_instance. The leaks were caused by unfreed memory blocks still owned by the class
RTRegistry, and they have now been resolved. No additional action is required of users.

This issue has been fixed.

[RTI Issue ID MICRO-1637]

Windows Debug DLLs are built without debug information

Windows Debug DLLs are built without debug information what prevents debugging. This is
happening when building with CMake or the rtime-make script.

This issue has been fixed.

[RTI Issue ID MICRO-1634]

Use hardcoded build ID when not compiling with CMake

When compiling using CMake or the script rtime-make, Connext Micro libraries have a build lD
(buildid), which consist of the current time and date. A hardcoded constant ID is used as the build
ID when compilation is not done using CMake or the script rtime-make.

This issue has been fixed.

[RTI Issue ID MICRO-1632]

Example makefiles do not support 64bit compilation

Example makefiles used always option -m32. This has been changed to use -m32 or -m64 depending
on the platform configuration.

Examples can be compiled now for 32 and 64 bits platforms.

This issue has been fixed.

[RTI Issue ID MICRO-1628]

8.4. Previous Releases 241

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Compilation error might happen when code is generated using option -namespace

Compilation error fixed in generated source code when option -namespace is used and IDL file has
modules and compilation uses shared libraries.

This issue has been fixed.

[RTI Issue ID MICRO-1620]

8.4.9 What’s New in 2.4.10.4

Batching (reception only)

This release includes batching reception. Please refer to the new user manual for Batching for
details.

C++ examples

A new C++ example using Waitsets (HelloWorld_dpde_waitset) is included.

8.4.10 What’s Fixed in 2.4.10.4

Improve KEEP_LAST

To reclaim resources in version 2.4.10 and earlier the DataReader cache tries to remove the oldest
sample only. If that is on loan it cannot be removed and in case a new sample is received it cannot
be added to the DataReader cache.

This issue has been fixed.

[RTI Issue ID MICRO-1754]

Locator might be duplicated when NAT is configured

When Network Address Translation (NAT) is configured in the transport UDP properties, a dupli-
cated locator might be sent in discovery packets.

This issue has been fixed.

[RTI Issue ID MICRO-1756]

8.4. Previous Releases 242

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Segmentation fault might happen when a DataReader cannot be created

If the creation of a DataReader fails before all fields in the DataReader structure are initialized, a
NULL pointer access may have occur while finalizing the already created objects.

This issue has been fixed.

[RTI Issue ID MICRO-1755]

CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used

RTI Connext DDS Micro buildable sources could not be compiled with CMake 2.8.10.1 or 2.8.10.2.

This issue has been fixed.

[RTI Issue ID MICRO-1748]

Wrong TUDP locator kind sent when using UDP transformations

When using UDP transformations the locator kind was always set as 0, intead of the configured
value in ref UDP_InterfaceFactoryProperty.transform_locator_kind

This issue has been fixed.

[RTI Issue ID MICRO-1685]

Compile shipped examples for a 64 bits architecture

Before this release shipped examples makefiles could only compile 32 bits architectures. Makefiles
have been modified to support also 64 bits architectures.

This issue has been fixed.

[RTI Issue ID MICRO-1628]

OSAPI_Heap_realloc() Windows implementation fixed

The Windows implementation of function OSAPI_Heap_realloc() had a precondition to check for
a NULL pointer as input parameter. This is wrong as in this case the function shall allocate a new
buffer (equivalent to malloc()).

This issue has been fixed.

[RTI Issue ID MICRO-1655]

8.4. Previous Releases 243

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Use API DDSDomainParticipant::delete_contained_entities() in C++ examples

Shipped C++ examples now use DDSDomainParticipant::delete_contained_entities() to delete
all DSS entities in a DDS Participant. This is easier than using DDSDomainPartici-
pant::delete_topic(), DDSDomainParticipant::unregister_type(), etc.

This issue has been fixed.

[RTI Issue ID MICRO-1656]

Memory leak in shipped examples fixed

Shipped examples were not releasing correctly some of the allocated structures when application
finalized.

This issue has been fixed.

[RTI Issue ID MICRO-1676]

C++ shipped examples might release an object twice.

C++ shipped examples might release an object twice in case of error.

This issue has been fixed.

[RTI Issue ID MICRO-1677]

Backwards Compatability

Change in on_before_sample_deserialize callback.

In 2.4.10 and earlier the stream passed to on_before_sample_deserialize callback started
at the encapsulation header followed by user data. However, with the added support for batched
samples this is no longer possible. Instead the stream now starts at the user-data payload. Note
that the only supported encapsulation format for user-data is CDR. This may change in future
versions.

The examples have been updated to reflect the change. Please refer to the examples for details.

8.4.11 What’s New in 2.4.10.1

UDP Transformations

This release includes UDP Transformations which enables regular UDP sockets to be used with
custom payload transformations. Please refer to ref UserManuals_UDPTransform for details. The
UDP Transformation feature is enabled by default in this release. However, future releases may
disable the feature by default. Thus, it is advised to always compile with the UDP Transformation
feature enabled (-DRTIME_UDP_ENABLE_TRANSFORMS=1 to cmake).

8.4. Previous Releases 244

RTI Connext DDS Micro Documentation, Version 2.4.14.2

NOTE: In the the EAR for 2.4.10.1 the default behavior was to allow both plain UDP and trans-
formed UDP traffic when transformations was compiled in. This has changed. The default is to dis-
able regular UDP. In order to support it the transform_udp_mode must be set to UDP_TRANS-
FORM_UDP_MODE_ENABLED. Since this may change in future release it is advised to always
set the correct mode of operation.

8.4.12 What’s Fixed in 2.4.10.1

Race Condition when Log Buffer is Full and a Custom Log-handler is Installed

A race condition existed when a custom log handler was installed and the log buffer was full. A
temporary message was created to hold the minimum log data and when the custom log handler
was called it was possible that a new log entry was added while the custom log handler parsed the
temporary message.

This has been fixed in this version.

[RTI Issue ID MICRO-1641]

8.4.13 What’s New in 2.4.10

Generate Example Application with rtiddsgen

It is now possible to generate an example application for RTI Connext Micro using rtiddsgen. To
generate an example:

:: rtiddsgen -language C | C++ -micro -example <IDL File>

A CMakeLists.txt file is generated that can be used with rtime-make:

:: rtime-make [options] –srcdir <path to CMakeLists.txt>

Please refer to the generated README.txt file for details.

BY_SOURCE_TIMESTAMP_DESTINATIONORDER Support on DataWriter

The DataReader and DataWriter Qos policy now includes the DDS_DestinationOrderQosPolicy:

• The DDS DataReader only supports BY_RECEPTION_DESTINATION_ORDER (the de-
fault value).

• The DDS DataWriter supports BY_RECEPTION_TIMESTAMP_DESTINATION_OR-
DER and BY_SOURCE_TIMESTAMP_DESTINATION_ORDER.

Please refer to the DDS reference manual for details.

[RTI Issue ID MICRO-1597]

8.4. Previous Releases 245

RTI Connext DDS Micro Documentation, Version 2.4.14.2

8.4.14 What’s Fixed in 2.4.10

Linker Warning for Missing PDB Files

The i86Win32VS2010 libraries shipped with Connext Micro did not include PDB files. For this
reason, when compiling an application a warning similar to the following may have been shown:

:: rti_mezd.lib(BuiltinTopicData.obj) : warning LNK4099: PDB ‘dds_czd.pdb’ was not found
with ‘rti_mezd.lib(BuiltinTopicData.obj)’ or at ‘<path>\dds_czd.pdb’; linking object as if
no debug info

The warning was harmless and only indicates that debug information was missing for the linked
libraries.

[RTI Issue ID MICRO-1556]

Linking with Dynamic Windows C Run-Time (CRT)

All shipped Connext Micro libraries for Windows platforms (static release/debug, dynamic re-
lease/debug) now link with the dynamic Windows C Run-Time (CRT). Previously, the static Con-
next Micro libraries statically linked the CRT.

An existing Windows project that is linking with the Connext Micro static libraries must update
the RunTime Library settings.

In Visual Studio, select C/C++, Code Generation, Runtime Library, select:

• Multi-threaded DLL (/MD) instead of Multi-threaded (/MT) for static release libraries.

• Multi-threaded Debug DLL (/MDd) instead of Multi-threaded Debug (/MTd) for static debug
libraries.

For command-line compilation, use:

• /MD instead of /MT for static release libraries.

• /MDd instead of /MTd for static debug libraries.

In addition, it may be necessary to ignore the static run-time libraries in their static configurations.
In Visual Studio, select Linker, Input in the project properties and add libcmtd;libcmt to the ‘Ignore
Specific Default Libraries’ entry.

For command-line linking, add /NODEFAULTLIB:”libcmtd” /NODEFAULTLIB:”libcmt” to the
linker options.

[RTI Issue ID MICRO-1572]

8.4. Previous Releases 246

RTI Connext DDS Micro Documentation, Version 2.4.14.2

DDS_Publisher_create_datawriter() May Fail to Create a New Datawriter

When an application reaches the local_writer_allocation resource limit, where subsequent calls
to DDS_Publisher_create_datawriter() fail to create a new DataWriter, calling DDS_Pub-
lisher_delete_datawriter() should reclaim resources of the deleted DataWriter and allow the cre-
ation of a new DataWriter. However, in the previous release, in certain cases there was a problem
with reclaiming DataWriter resources that prevented the creation of a new DataWriter.

Deleting a DataWriter or DataReader involves acknowledgements from matched applications. Thus,
calling DDS_Publisher_delete_datawriter() is not an instantaneous operation so resources may
not be available immediately. When this case occurs, calling DDS_Publisher_create_datawriter()
after a short duration may be successful. The maximum time for a resource to be released is the
maximum time a response is expected from a matched application based on the DPDE discovery
plugin configuration for the built-in discovery endpoints.

[RTI Issue ID MICRO-1579]

DataReader May Not Reclaim NOT_ALIVE Instances when DataWriter Deleted or Liveliness
Lost

Applications using read()/take() in on_data_available may not have received
NOT_ALIVE_NO_WRITERS for instances that changed state to NOT_ALIVE_NO_WRIT-
ERS when a deleted data writer or data reader lost liveliness with a data writer caused the change.
This has been fixed.

[RTI Issue ID MICRO-1580]

A Datawriter may fail to release instance resources if a peer is inactive while the Participant
liveliness expires

A reliable DataWriter can mark a matched DataReader as inactive if the DataReader fails to re-
spond to heartbeats, as configured by max_heartbeat_retries. However, if a DataReader is marked
as inactive and the Participant liveliness for the DataReader’s Participant expires, a DataWriter
afterwards may have failed to reclaim instances resources if unregister_instance() was called. This
has been fixed.

[RTI Issue ID MICRO-1581]

A Reliable DataWriter With max_samples_per_instance = 1 May Run Out of Resources After
Multiple Unregistrations of Single Instance

A reliable DataWriter with max_samples_per_instance = 1 may have run out of instance resources
if the same instance is unregistered multiple times before an acknowledgement is received from a
matched DataReader. This has been fixed.

[RTI Issue ID MICRO-1583]

8.4. Previous Releases 247

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Connext Micro Fails to Discover Endpoints created by Connext Core if the Endpoints are
Deleted or Modified

If an application developed with RTI Connext Core used set_qos() on an enabled endpoint or
deleted and created new endpoints before Connext Micro had discovered the deleted endpoints,
Connext Micro failed to discovery new endpoints. This has been fixed.

[RTI Issue ID MICRO-1588]

Incorrect Log Output in a Complete Log Message could not be Stored

If there was insufficient space to store a complete log-message, the default display function would
incorrectly try to print log-data beyond the log-buffer. This has been fixed.

[RTI Issue ID MICRO-1589]

Possible Segmentation Fault when Unregistering TRANSIENT_LOCAL Instance

Calling unregister_instance() on the same TRANSIENT_LOCAL instance may have caused a seg-
mentation fault. The segmentation fault occured when a call to unregister_instance() is acknowl-
edged and a later call on unregister_instance() for the same instance had not been acknowledged
yet. For the segmentation fault to occur there must be more than 1 call to unregister_instance()
within the history depth. This has been fixed.

[RTI Issue ID MICRO-1590]

Support to map IDL modules to C++ namespaces in generated type-plugins

The rtiddsgen included by this release will correctly generate C++ code for data types defined
within IDL modules, when passed the “-namespace” argument. Consider the following IDL:

module A {
struct Foo {
long bar;

};
};

module B {
struct Foo {
long bar;

};
};

C++ code generated by previous releases of rtiddsgen for this IDL input would fail to build if the
“-namespace” argument was used to map each IDL module to a C++ namespace.

Some of the automatically generated data types were incorrectly being exported with C linkage,
effectively disabling the C++ namespaces. This would cause duplicate symbols to be detected if
two types with the same name were defined in two different modules.

8.4. Previous Releases 248

RTI Connext DDS Micro Documentation, Version 2.4.14.2

[RTI Issue ID MICRO-1600]

Possible Memory Access Violation when Receiving Malformed RTPS Message

When a received RTPS message had its message and submessage headers processed, Connext Micro
incorrectly did not validate for all cases that there was sufficient space in the message’s receive buffer
before accessing a field of a header. Consequently, reception of certain malformed messages could
have resulted in memory access violations. The problem has been fixed by always validating for
sufficient buffer. This has been fixed.

[RTI Issue ID MICRO-1614]

In Some Cases an Incorrect Timeout Calculation Caused 100% CPU Load

Some combinations of timeouts, clock resolution and resource-limits may have caused an incorrect
timeout to be scheduled causing an infinite loop in the timer thread.

If multiple timers expires at the same time and the timeout is exactly:

:: (dp_qos.resource_limits.remote_participant_allocation + (3*dp_qos.resource_limits.lo-
cal_writer_allocation) + (3*dp_qos.resource_limits.local_reader_allocation) + 1) / 2 *
timer_resolution

the next timeout may be scheduled for immediate timeout, causing the timer thread to consume
excessive CPU.

[RTI Issue ID MICRO-1617]

8.4.15 What’s New in 2.4.9

Improved Support for adding new Ports

Some changes were made to how Connext Micro includes different ports. In versions before 2.4.9
new ports would typically update osapi_config.h and add a new directory with an implementation
for the required OSAPI functions. As of 2.4.9 osapi_config.h was re-factored and OS and compiler
specific functions were moved to two new files:

• osapi_os_<osname>.h This file contains OS specific information. RTI ships three files:
osapi_os_posix.h, osapi_os_windows.h and osapi_os_vxworks.h. It is recommended to add
a new osapi_os_<osname>.h file when a new OS is added.

• osapi_cc_<osname>.h This file contains compiler specific informations. RTI ship os-
api_cc_stds.c which works with Microsoft Visual Studio, clang and GCC.

Please refer to ref OSAPIUserManuals_PortingModule for details.

8.4. Previous Releases 249

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Updated Build Environment to Build RTI Connext Micro

Connext Micro now includes better support for adding CMake tool-chain files and also includes a
better infrastructure to manage multiple builds of Connext Micro. It is strongly encouraged to read
ref OSAPIUserManuals_SourceModule for details to get familiar with the new build environment.

Example CMake Tool-chain Files for Cross-Compilation

Connext Micro ships with a more cmake tool-chain files for Linux, Darwin, Windows and VxWorks.
Please refer to ref OSAPIUserManuals_SourceModule for details.

[RTI Issue ID MICRO-706]

Host Bundle without the Java RunTime Available

A new smaller host bundle that does not include Java Runtime Environments (JRE) is now available
for download. A host bundle with JREs included is still available.

With Java being necessary for the rtiddsgen utility, rtiddsgen now picks Java based on the following
order:

• New rtiddsgen command line option -jre

• JREHOME environment variable

• JAVA_HOME environment variable

• JRE shipped with the host bundle

• PATH environment variable

[RTI Issue ID MICRO-1520]

Support for 64-bit Platforms

Connext Micro was written for 32 bit architectures and is for all practical purposes a 32 bit appli-
cation. There is no advantage to compiling Connext Micro for a 64 bit architecture and the only
reason to do so is if Connext Micro must execute in a 64 bit environment for other reasons, such
as other applications being 64 bit or 64 bit libraries not being available.

Connext Micro is compiled and tested on various 64 bit architectures (iOS, MacOS, Windows,
Linux, VxWorks). However, when doing so the following must be kept in mind:

• Connext Micro does not work with any data-type larger than what the transport supports
and up to a maximum of 2 GB.

• Timestamps in Connext Micro are limited to seconds encoded as a signed 32 bit integer.

8.4. Previous Releases 250

RTI Connext DDS Micro Documentation, Version 2.4.14.2

POSIX Compliance Improvements

Connext Micro supports various POSIX like operating systems. Due to small differences in the
implementations not all POSIX like are equal and OS specific adaptations are necessary.

As of 2.4.9 Connext Micro’s POSIX OSAPI implementation conforms to:

• POSIX Std 1003.1, 2004 Edition (_POSIX_C_SOURCE 200112L)

• X/Open 6 (_XOPEN_SOURCE 600)

The Connext Micro UDP transport uses ioctl calls to enable certain socket features. The required
flags are in non-standard header-files on some operating system. In addition, not all POSIX-like
operating systems support all the features. Connext Micro checks which OS it is compiled for by
testing the presence of preprocessor flags. As of 2.4.9 Connext Micro has been built and tested on
the following operating systems that supports a POSIX API (osapi_os.h):

• Linux (_linux_)

• Mac OS X (10.6 and later) ((_APPLE) && defined(MACH_))

• QNX 6.x (_QNXNTO_)

• VOS (_VOS_)

• iOS (((_APPLE) && defined(MACH_))

• Android (_linux_ && _ANDROID_)

NOTE: An additional compile option to enable certain non-POSIX features can be enabled to
unchecking the RTIME_OSAPI_ENABLE_STRICT_POSIX option in the cmake-gui or by defin-
ing the C preprocessor flag -DOSAPI_ENABLE_STRICT_POSIX=1

C++ Support for find_topic()

The operation DDS_DomainParticipant_find_topic() is now natively supported by the C++ API
as DDSDomainParticipant::find_topic().

Types Are Automatically Unregistered Upon Deleting Contained Entities

In previous releases, types must be unregistered manually from a DomainParticipant before the
participant can be deleted. Now in this release, all registered types are automatically unregistered
when calling DDS_DomainParticipant_delete_contained_entitites().

NOTE: It is legal to register the same type multiple times as long as it is registered with the same
type-plugin. If manually unregistering a type, the type must be unregistered the same number
of times as it was registered. DDS_DomainParticipant_delete_contained_entitites() ignores the
number of times a type has been registered since all entities using a type are deleted first.

8.4. Previous Releases 251

RTI Connext DDS Micro Documentation, Version 2.4.14.2

8.4.16 What’s Fixed in 2.4.9

Improved Documentation

The Connext Micro documentation has been improved for the following topics:

• Compiling the Connext Micro source (ref OSAPIUserManuals_SourceModule)

• Filtering of samples by a DDS DataReader (ref UserManuals_MicroAndCore)

• How to use Connext Micro with RTI Recorder (ref UserManuals_MicroAndCore)

• Compatibility between Connext Micro and other RTI Products (ref UserManuals_MicroAnd-
Core)

[RTI Issue ID MICRO-711, MICRO-1521, MICRO-1538, MICRO-1555]

Losing Participant Liveliness Stops Communication

Previously, given a DomainParticipant “P1” whose endpoints are communicating with other end-
points belonging to other DomainParticipants, when P1 detected liveliness lost with one other
DomainParticipant, communication incorrectly stopped with endpoints belonging to other Do-
mainParticipants as well.

[RTI Issue ID MICRO-1543]

DDSTopic::narrow() Returned Incorrect Value in C++

The function lookup_topicdescription() returned a DDSTopicDescription that caused
DDSTopic::narrow() to segmentation fault when this DDSTopicDescription was passed to
other functions.

DDSTopic::narrow() now correctly returns a DDSTopic when passed a DDSTopicDescription found
with lookup_topicdescription().

[RTI Issue ID MICRO-1544]

PRECONDITION_NOT_MET Returned by deleted_topic() When Topic Is Not Use

delete_topic() incorrectly returned PRECONDITION_NOT_MET if there where multiple refer-
ences to it (for example via find_topic()). This has been corrected and delete_topic() now returns
DDS_RETCODE_OK if there are multiple references, but the reference count can be decremented.

[RTI Issue ID MICRO-1545]

8.4. Previous Releases 252

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Instance Resources Not Reclaimed When Unregistered

When an instance is unregistered on the data writer that is best-effort with infinite deadline or
using TRANSIENT_LOCAL durability, the data writer fails to free the resources being used. As a
result, new instances cannot be written. This has been fixed and when an instance is unregistered
all resources associated with the key is released.

[RTI Issue ID MICRO-1546]

Invalid Memory Read Reported in Log.c

Some memory profile tools reported an invalid read in Log.c. This was caused by an invalid pointer
access when the log buffer was full and has been corrected.

[RTI Issue ID MICRO-1550]

Unsupported Functions When Compiling With RTI_CERT Has Been Removed From Generated
Code

Code generated by rtiddsgen to support user data types has been updated to properly sup-
port compilation with the flag RTI_CERT. All unsupported operations (e.g. FooTypeSup-
port_delete_data) are now excluded when RTI_CERT is specified.

[RTI Issue ID MICRO-1558]

The HelloWorld_cert Example Now Compiles When Linked Against a Library Built With
RTI_CERT

The HelloWorld_cert called functions that were not supported by libraries built with RTI_CERT.
This has been corrected.

[RTI Issue ID MICRO-1561]

Hostnames Are No Longer Validated

Previously in Connext Micro 2.4.6, a function to validate IP hostnames as defined by RFC-952 was
added and called before passing them to the OS. However, this function was too restrictive and
excluded valid service names. Hostname validation is now only done directly by the OS.

[RTI Issue ID MICRO-1563]

8.4. Previous Releases 253

RTI Connext DDS Micro Documentation, Version 2.4.14.2

A Participant May Not Be Rediscovered In Case Of Asymmetric Liveliness Loss

This problem was only present when using dynamic discovery.

Consider two participants A and B. In the previous release, if A lost liveliness with B, but B
did not lose liveliness with A, then A did not completely rediscover B when their connection was
reestablished. The problem was that since B had not lost liveliness with A, when a connection
was reestablished, B thought A was already up to date on endpoint discovery. Hence, A did not
rediscover the endpoints in B. This release has fixed this issue.

[RTI Issue ID MICRO-1571]

A Non-keyed Endpoint Matches a Keyed Endpoint

When performing matching between A DataReader and DataWriter the entity kind was not checked.
This means a keyed DataReader would match a non-keyed DataWriter and a non-keyed DataReader
would match an keyed DataWriter.

This issue would can happen if two different IDLs files are used to create DataReaders and
DataWriters of the same topic and type.

Note that Connext Micro does not support type validation. If two (or more) IDLs are used to
describe the same keyed type there is no check that the key-fields are the same. Thus, even with
this issue resolved there are still potential pitfalls with multiple IDLs for the same type.

[RTI Issue ID MICRO-1574]

8.4.17 What’s New in 2.4.8

2.4.8 is a maintenance release with no new features.

8.4.18 What’s Fixed in 2.4.8

Consistent support for assignment operator in C++

The assignment operator for the DDS Qos, Qos policy and Status structures were not consistently
supported. This has been fixed in this release as follows:

• All QoS structures support the default generated C++ assignment operator.

• All QoS policy structures support the default generated C++ assignment operator.

• All Status structures support the default generated C++ assignment operator.

In addition, all QoS structures support the == and != operators.

[RTI Issue ID MICRO-1541]

8.4. Previous Releases 254

RTI Connext DDS Micro Documentation, Version 2.4.14.2

DPSE API renamed to avoid conflict with assert()

The DPSE C++ API had methods called assert. However, this conflicts with the C assert() macro.
This has been fixed in this release by updating the DPSE C++ API to be inline with the C API.
The new API is:

class DDSCPPDllExport DPSEDiscoveryPlugin
{
public:
static DDS_ReturnCode_t
RemoteParticipant_assert(DDSDomainParticipant *const participant,

const char *rem_participant_name);

static DDS_ReturnCode_t
RemotePublication_assert(DDSDomainParticipant * const participant,

const char *const rem_participant_name,
const struct DDS_PublicationBuiltinTopicData *const data,
NDDS_TypePluginKeyKind key_kind);

static DDS_ReturnCode_t
RemoteSubscription_assert(DDSDomainParticipant * const participant,

const char *const rem_participant_name,
const struct DDS_SubscriptionBuiltinTopicData *const data,
NDDS_TypePluginKeyKind key_kind);

};

[RTI Issue ID MICRO-1539]

8.4.19 What’s New in 2.4.7

2.4.7 is a maintenance release with no new features.

8.4.20 What’s Fixed in 2.4.7

Statuses are passed as pointers instead of references to DDSDomainParticipantListeners

The statuses in the DDSDomainParticipantListener methods are now passed by reference instead
of by pointer.

[RTI Issue ID MICRO-1524]

8.4. Previous Releases 255

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Missing assignment operator = in RT_ComponentFactoryId

The C++ API did not include the assignment operator for the RT_ComponentFactoryId type.
The following assignment operators have been added:

RT_ComponentFactoryId& operator=(const char *const name);
RT_ComponentFactoryId& operator=(const RT_ComponentFactoryId& from);
const RT_ComponentFactoryId& operator=(const RT_ComponentFactoryId& from) const;

[RTI Issue ID MICRO-1525]

CMAKE_C_FLAGS_ORIGINAL in CMakeLists.txt misspelled

The CMAKE_C_FLAGS_ORIGINAL variable in the CMakeLists.txt file was misspelled causing
the original C_FLAGS to be ignored. This has been corrected in this release.

[RTI Issue ID MICRO-1526]

Missing const qualifier for the sequence [] operator

The C++ API was missing the const qualifier for the sequence [] operator. This has been corrected
in this release with these operators:

T& operator[] (RTI_INT32 index);
const T& operator[] (RTI_INT32 index) const;

[RTI Issue ID MICRO-1527]

Missing primitive IDL sequences in C++

The C++ API did not include sequence of the primitive IDL types. This has been corrected in
this release. Please refer to ref DDSUserManuals_SequenceModule for more information about the
sequence API.

[RTI Issue ID MICRO-1529]

8.4.21 What’s New in 2.4.6

Important API Changes

This version of Connext Micro includes a number of API changes to improve compatibility with
rticore and make the API more robust to input argument errors such as string length violations.
Please note that some of the changes are incompatible with earlier version of Connext Micro.

Changed and Incompatible APIs:

• DDS_SEQUENCE_INITIALIZER(t) has changed to DDS_SEQUENCE_INITIALIZER.
That is, the sequence element type is no longer passed in.

8.4. Previous Releases 256

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• Foo_seq_get_contiguous_buffer replaces Foo_seq_get_buffer.

• DDSTopic now uses multiple inheritance. Thus, it is no longer necessary to explicitly convert
a topic to a topic description with the as_topicdescription() method when creating calling
create_datareader() in C++.

• The idref_DiscoveryComponent_name value has changed type from a char pointer to a
RT_ComponentFactoryId_T type. Use ref RT_ComponentFactoryId_set_name to set the
name of the discovery plugin name.

• All C++ statuses are passed as a const reference instead of a const pointer to the listeners.

New APIs:

• By default the full sequence API has been enabled. In previous versions only a limited subset
was enabled. NOTE: For RTI_CERT the default sequence API is still the limited API.

• The following new sequence methods have been added to the full sequence API (excluding
the DDSConditionSeq):

– ensure_length

– to_array

– from_array

– operator[] in C++ is equivalent to get_reference()

– operator= is equivalent to _copy()

– operator== is equivalent to _is_equal()

– operator!= is equivalent to !_is_equal()

• The following new sequence methods have been added to the DDSConditionSeq:

– ensure_length

– operator[] in C++ is equivalent to get_reference()

– operator= is equivalent to _copy()

– operator== is equivalent to _is_equal()

– operator!= is equivalent to !_is_equal()

• RTIBool has been added (it is used by rticore) and is equivalent to RTI_BOOL in Connext
Micro.

• A new method idref_EntityNameQosPolicy_set_name has been added to set the idref_En-
tityNameQosPolicy_name field.

• Please refer to ref rl_new_246_MICRO-1512 for new C++ APIs.

8.4. Previous Releases 257

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Run-time Memory Footprint Has Been Significantly Reduced

The internal representation of state information has been refactored, significantly reducing run-time
memory usage.

Please refer to the ref DDSUserManuals_ResourceModule guide for details.

New FooTypeSupport operations

The FooTypeSupport code generated for a user-defined Foo data type now includes three additional
operations:

• FooTypeSupport::get_type_name

• FooTypeSupport::create_data

• FooTypeSupport::delete_data

These operations are available to users of both the C and C++ APIs.

All public C API now natively available to C++ users

The missing parts of RTI Connext Micro’s public C API have now been added to the public C++
API, so that C++ users don’t have to rely on C operations to implement their applications.

C++ developers are also not required to include any C header file anymore, but they must instead
rely on newly available C++ header files.

Please refer to ref CPPApiModule for a list of APIs.

Status data passed by reference to C++ listeners

All callbacks exposed by the DDS listeners of the C++ API (DDSDataReaderListener, DDS-
DataWriterListener, DDSTopicListener, and other derived classes) now accept the status data
passed in by the middleware as a C++ reference, rather than a pointer.

TheParticipantFactory now available to C++ users

The variable TheParticipantFactory is now available to users of the C++ API to reference the
singleton instance of DDSDomainParticipantFactory.

8.4. Previous Releases 258

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Status types now available in DDS:: C++ namespace

All the status types (e.g. DDS_SubscriptionMatchedStatus) have been exposed to C++ users as
part of the DDS:: namespace (e.g. DDS::SubscriptionMatchedStatus).

Foo::copy_data() takes const argument

The pointer specifying the source sample passed to the generated operation Foo::copy_data() (C++
API) is now of “const” type.

ConditionSeq added to C++ DDS namespace

C++ developers can now refer to data type DDS_ConditionSeq as DDS::ConditionSeq.

First 2-Bytes Of GUID Assigned to Vendor ID

In order to be interoperable with the Real-Time Publish-Subscribe Wire Protocol DDS Inter-
operability Wire Protocol (DDSI-RTPS), version 2.2, the first 2-bytes of every GUID are now
automatically assigned to the OMG-specified Vendor ID.

8.4.22 What’s Fixed in 2.4.6

POSIX Threads Were Created Without Names

Previous releases on POSIX platforms created threads with no names. In this release, if thread
naming is supported, a POSIX thread created with the Connext Micro OSAPI_Thread_new()
function will have its thread name set.

[RTI Issue ID MICRO-638]

Prerequisite for HelloWorld_android updated in README.txt

The README.txt file for Android did not clarify that is it necessary to install the NDK tool-chain
as a standalone toolchain. This has been fixed.

[RTI Issue ID MICRO-807]

8.4. Previous Releases 259

RTI Connext DDS Micro Documentation, Version 2.4.14.2

CPP/HelloWorld_dpde example does not overwrite RTIMEHOME

In previous releases of Connext Micro, the CPP/HelloWorld_dpde example overwrote the RTIME-
HOME environment variable, making it impossible for developers to point it to any custom value.

This error was fixed and the example can now be compiled with any valid value of RTIMEHOME.

[RTI Issue ID MICRO-834]

Transport Not Supporting Multicast Did Not Ignore Multicast

Previously, if a multicast address was specified as a discovery or user_traffic address, it was not
correctly ignored by transports that did not support multicast. Consequently, an application may
have failed to create a DomainParticipant. This has been fixed in this release.

[RTI Issue ID MICRO-1153]

Discovery Messages Incorrectly Dropped When Containing Non-Standard Locators

When a discovery message was received with a non-standard locator, such as for an unsupported
transport, rather than just ignore the locator, the entire discovery message was discarded. This
incorrect behavior prevented discovery of the entity that sent the discovery message. This issue
has been fixed in this release.

[RTI Issue ID MICRO-1270]

HEARTBEAT Not Sent in Response To Initial ACKNACK

In Connext Micro, a newly matched reliable DataReader will send an initial ACKNACK submessage
to the matching DataWriter in order to expedite reliable communication. The initial ACKNACK
is zero-valued, and a DataWriter receiving it will not resend any samples but instead will send a
HEARTBEAT that the DataReader will respond with a proper ACKNACK.

In the previous release, however, a DataWriter receiving this initial ACKNACK did not respond
with a HEARTBEAT. Consequently, reliable resend of historical samples did not start as soon as it
should have, and instead would start with the next HEARTBEAT sent by the DataWriter, either a
periodic HEARTBEAT or a piggyback HEARTBEAT sent with newly written samples. This issue
has been fixed in this release.

[RTI Issue ID MICRO-1443]

8.4. Previous Releases 260

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Incorrect Return Code From DataReader’s Read or Take APIs When Max_Outstanding_Reads
Exceeded

When a DataReader’s read or take APIs are called, depending on the input parameters of the sample
sequence and sample-info sequence, the DataReader may loan to the caller its memory contain-
ing sample and sample-info entries. A resource limit, DATA_READER_RESOURCE_LIMITS
max_outstanding_reads, sets the maximum number of samples (and corresponding sample-info
entries) that may be loaned.

In previous releases, when max_oustanding_reads was exceeded, the read/take APIs incorrectly
returned DDS_RETCODE_NO_DATA instead of DDS_RETCODE_OUT_OF_RESOURCES.
This bug has been fixed in this release.

[RTI Issue ID MICRO-1460]

DataReader Did Not Replace Historical Samples When max_samples_per_instance Equaled
History Depth

Previously, given a DataReader with RESOURCE_LIMITS max_samples_per_instance equal to
HISTORY depth, when the DataReader exceeded its depth (or max_samples_per_instance), it
incorrectly did not replace the oldest historical sample with the newest sample. Instead, the oldest
historical sample was kept in the queue, and subsequent calls to read() could return it. Note, calls
to take() would remove all taken sample from the queue.

This issue has been fixed in this release.

[RTI Issue ID MICRO-1463]

A Disposed Instance Could Be Updated By A DataWriter That Is Not Its Exclusive Owner

When EXCLUSIVE_OWNERSHIP was used, a disposed instance could incorrectly be updated
by a DataWriter with a lower strength than the DataWriter that disposed the instance, even if
that DataWriter had not unregistered the instance. This has been corrected: when an instance
is disposed, a lower strength DataWriter is not allowed to update the instance as long as the
DataWriter that disposed the instance is still registered as an updater for the instance. Only when
the DataWriter unregisters from the instance can a lower strength DataWriter update the instance
again.

[RTI Issue ID MICRO-1464]

8.4. Previous Releases 261

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Fixed code generation for user-defined enum constants.

The previous version of rtiddsgen shipped with Connext Micro contained a bug which prevented
the numerical constants assigned to an enum’s values to be correctly handled in the generated code.

This error has been fixed and IDL enum types are now correctly translated into C/C++ data types
with the correct constants.

[RTI Issue ID MICRO-1483]

Hostname is verified as specified in RFC-952 and RFC-1123

Connext Micro relied on gethostbyname() to resolve hostnames. However, if a name resolver was
not available it was possible to specify illegal names.

This has been corrected and only legal names, as defined by RFC-952 and RFC-1123, are resolved.

[RTI Issue ID MICRO-1489]

DDS_<Foo>Seq APIs Were Missing

The DDS sequence APIs for the built-in DDS types, such as DDS_LongSeq etc, were missing. The
workaround was to use CDR_<Foo>Seq instead.

This issue has been corrected in this release, with the missing sequence APIs now included.

[RTI Issue ID MICRO-1493]

DataReader Could Reject All Subsequent Samples From a DataWriter

In the previous release, given a DataReader receiving samples from a DataWriter, after the
DataWriter had written approximately (2^32) - max_samples_per_remote_writer number of sam-
ples, no more samples from that DataWriter would be received by the DataReader. Instead, every
subsequent sample from the DataWriter would be rejected. This was caused by an incorrect update
of an internal counter of the DataReader.

[RTI Issue ID MICRO-1500]

POSIX Thread Priorities Not Changeable

It was not possible to change the priority of POSIX threads created in previous releases of Connext
Micro. Instead, a POSIX thread inherited the priority of its parent. This has been fixed in this
release.

[RTI Issue ID MICRO-1502]

8.4. Previous Releases 262

RTI Connext DDS Micro Documentation, Version 2.4.14.2

RTPS DATA Submessages with K-flag Set Were Dropped

Previously, RTPS DATA submessages with the K-flag set (indicating a serialized key payload)
were not processed and instead dropped by a DataReader. This has been fixed and such DATA
submessages are now processed and accepted.

[RTI Issue ID MICRO-1511]

8.5 Known Issues

8.5.1 AUTOSAR ErrorHook may create CPU overhead

If enabled during configuration, the AUTOSAR OS Hook ErrorHook may be called if Connext
Micro tries to cancel an alarm that has already been signaled. There is no known workaround for
this issue.

[RTI Issue ID MICRO-5367]

8.5.2 Failure to interoperate with other DDS implementations if default multicast
locator specified

Connext Micro does not interoperate with other DDS implementations when the default multicast
locator is specified.

As a workaround, you can specify the multicast addresses on the endpoints instead of the partici-
pants.

[RTI Issue ID MICRO-5148]

8.5.3 Maximum number of components limited to 58

The maximum number of components that can be registered is limited to 58.

8.5.4 Endpoint discovery requires unique object IDs across all remote endpoints

When using static endpoint discovery (DPSE), RTI Connext Micro requires that the object_id for
statically asserted remote endpoints must be unique across all remote endpoints, as opposed to
just between remote endpoints within the same participant. Note, this restriction was incorrectly
documented as removed in version 2.4.1.

8.5. Known Issues 263

RTI Connext DDS Micro Documentation, Version 2.4.14.2

8.5.5 Compiler warnings on VxWorks

When compiling for VxWorks 6.9 with the -Wconversion flag there are compiler warnings of the
type:

warning: conversion to 'DDS_Boolean' from 'int' may alter its value

These compiler warnings seem to be an issue with GCC for VxWorks and can be ignored. The
problem is that returning a value from a expression seems to always be treated as an unbounded
int as opposed to an int with a value of 0 or 1 as the C standard dictates.

8.5.6 OSAPI does not always detect endianess

osapi_cc_stdc.h detects the CPU endianness by checking GCC predefined macros, such as
__BYTE_ORDER__. However, some versions of GCC does not set these macros, for exam-
ple GCC for VxWorks. If osapi_cc_stdc.h does not find any of the flags, it incorrectly sets the
CPU to little endian.

In this case it is important that one of the following preprocessor macros are defined:

• RTI_ENDIAN_BIG The CPU is big-endian

• RTI_ENDIAN_LITTLE The CPU is little-endian

NOTE: The VxWorks cmake toolchain file from RTI set these based on CPU type in the target
name (–name option).

8.5. Known Issues 264

Chapter 9

Benchmarks

Performance benchmarks are no longer included with an RTI Connext Micro installation. Please
refer to the RTI Connext Performance Benchmarks on RTI Community for more information.

Note: The RTI Connext Performance Benchmarks contain metrics for multiple products and
versions, so please ensure that you refer to the appropriate section.

265

https://community.rti.com/static/documentation/performance/benchmarks/index.html

Chapter 10

Copyrights

© 2017-2024 Real-Time Innovations, Inc.
All rights reserved.
Printed in U.S.A. First printing.
May 2024.

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase,
“Your Systems. Working as one.” are registered trademarks, trademarks or service marks of
Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc. The software described in this document is furnished
solely under and subject to RTI’s standard terms and conditions available at https://www.rti.com/
terms and in accordance with your License Acknowledgement Certificate (LAC) and Maintenance
and Support Certificate (MSC), except to the extent otherwise agreed to in writing by RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party
license terms and conditions, including open source license terms and conditions. Copies of ap-
plicable third-party licenses and notices are located at community.rti.com/documentation. IT IS
YOUR RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE
COMPLIES WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDI-
TIONS.

266

https://www.rti.com/terms
https://www.rti.com/terms

RTI Connext DDS Micro Documentation, Version 2.4.14.2

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Inno-
vations, Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and
customer regarding maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future
release. Removed means that the item is discontinued or no longer supported. By specifying that
an item is deprecated in a release, RTI hereby provides customer notice that RTI reserves the right
after one year from the date of such release and, with or without further notice, to immediately
terminate maintenance (including without limitation, providing updates and upgrades) for the item,
and no longer support the item, in a future release.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or
approved by, Microsoft Corporation.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

267

mailto:support@rti.com
https://support.rti.com/

Chapter 11

Third-Party Software

This section outlines Real-Time Innovations (RTI) usage of first-level third-party open source soft-
ware in the RTI Connext Micro libraries and utilities. Updated versions of this document and
other RTI documentation may be found at community.rti.com/documentation.

11.1 Connext Micro Libraries

11.1.1 crc32c.c

• Related to: Connext Micro 3.1 and 2.4.14 and Connext Micro Cert 2.4.12.1

• Version 1.1

• License:

This software is provided ‘as-is’, without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of the software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgement in the product documentation would
be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not
be misrepresented as being the original software.

3. This notice may not be removed or altered from any source
distribution

(continues on next page)

268

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
Mark Adler

madler@alumni.caltech.edu

11.1.2 MD5

• Related to: DDS keys implementation, content-filtered topics (to sign the filter), persistence
service (to generate writer-side unique identification), Integration Toolkit for AUTOSAR
(DDS-IDL Service Interface code generation)

• Software is included in core DDS middleware libraries, in the Connext DDS Micro libraries,
in the Connext DDS Cert libraries and in the Integration Toolkit for AUTOSAR.

• License

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

11.2 Third-Party Software used by the RTIDDSGEN Code-Generation
Utility

11.2.1 ANTLR

• This software is distributed with rtiddsgen (RTI Code Generator) as a jar file. The source
code is not modified or shipped. In addition, the output produced by this software from a
grammar file is part of the rtiddsgen JAR file. This has a dependency on ANTLR Runtime,
StringTemplates v.3.2.1 and ST4 v.4.0.4.

• Version: Release 3.5.2

11.2. Third-Party Software used by the RTIDDSGEN Code-Generation Utility 269

RTI Connext DDS Micro Documentation, Version 2.4.14.2

• License: https://www.antlr3.org/license.html

[The BSD License]

Copyright (c) 2010 Terence Parr

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of the author nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

11.2.2 Apache Commons Lang

• Used on Code Generator. We only use the class StringUtils.

• Version 2.6

• License: Apache License Version 2.0 (full text found in the Appendix).

11.2. Third-Party Software used by the RTIDDSGEN Code-Generation Utility 270

https://www.antlr3.org/license.html

RTI Connext DDS Micro Documentation, Version 2.4.14.2

11.2.3 Apache Log4j 2

• This software is distributed with rtiddsgen (RTI Code Generator) as a jar file. The source
code is not modified or shipped.

• Version: 2.17.1

• License: Apache License Version 2.0 (full text found in the Appendix).

11.2.4 Apache Velocity

• This software is included in rtiddsgen (RTI Code Generator). The source code is not modified
or shipped.

• Source: http://velocity.apache.org/

• Version: 2.3

• License: Apache License Version 2.0 (full text found in the Appendix).

11.2.5 AdoptOpenJDK JRE

• Version 17.0.6 (LTS) Hotspot JVM

• The JRE binaries of the software are distributed with RTI Connext software that uses rtid-
dsgen (RTI Code Generator). The source code is not modified or shipped.

• https://adoptopenjdk.net/about.html

• Licenses

Build scripts and other code to produce the binaries, the website and other build infrastructure are
licensed under Apache License, Version 2.0. See Appendix. OpenJDK code itself is licensed under
GPL v2 (full text found in the Appendix) with Classpath Exception (GPLv2+CE).

11.2.6 Gson

• Version 2.9.1

• Portions of rtiddsgen (RTI Code Generator) are built using Gson.

• License: The Apache Software License, Version 2.0 (full text found in the Appendix)

11.2. Third-Party Software used by the RTIDDSGEN Code-Generation Utility 271

http://velocity.apache.org/
https://adoptopenjdk.net/about.html
https://github.com/google/gson/blob/main/LICENSE

RTI Connext DDS Micro Documentation, Version 2.4.14.2

11.3 Appendix – Open Source Software Licenses

11.3.1 Apache License version 2.0, January 2004 (http://www.apache.org/licenses/)

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

(continues on next page)

11.3. Appendix – Open Source Software Licenses 272

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(continues on next page)

11.3. Appendix – Open Source Software Licenses 273

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the

(continues on next page)

11.3. Appendix – Open Source Software Licenses 274

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

11.3. Appendix – Open Source Software Licenses 275

RTI Connext DDS Micro Documentation, Version 2.4.14.2

11.3.2 GNU GENERAL PUBLIC LICENSE Version 2, June 1991

The GNU General Public License (GPL)

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public License applies to
most of the Free Software Foundation's software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will

(continues on next page)

11.3. Appendix – Open Source Software Licenses 276

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
individually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The "Program", below, refers to any such program
or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included
without limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License
and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of
this License.

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an

(continues on next page)

11.3. Appendix – Open Source Software Licenses 277

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is
not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1 and
2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code

(continues on next page)

11.3. Appendix – Open Source Software Licenses 278

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not
accept this License. Therefore, by modifying or distributing the Program (or
any work based on the Program), you indicate your acceptance of this License to
do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free redistribution
of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software

(continues on next page)

11.3. Appendix – Open Source Software Licenses 279

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body
of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any later
version", you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may
choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE

(continues on next page)

11.3. Appendix – Open Source Software Licenses 280

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion
of warranty; and each file should have at least the "copyright" line and a
pointer to where the full notice is found.

One line to give the program's name and a brief idea of what it does.

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes
with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free
software, and you are welcome to redistribute it under certain conditions;
type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than 'show w' and 'show c'; they could even be

(continues on next page)

11.3. Appendix – Open Source Software Licenses 281

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a "copyright disclaimer" for the program, if necessary. Here
is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
'Gnomovision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

"CLASSPATH" EXCEPTION TO THE GPL

Certain source files distributed by Oracle America and/or its affiliates are
subject to the following clarification and special exception to the GPL, but
only where Oracle has expressly included in the particular source file's header
the words "Oracle designates this particular file as subject to the "Classpath"
exception as provided by Oracle in the LICENSE file that accompanied this code."

Linking this library statically or dynamically with other modules is making
a combined work based on this library. Thus, the terms and conditions of
the GNU General Public License cover the whole combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent modules,
and to copy and distribute the resulting executable under terms of your
choice, provided that you also meet, for each linked independent module,
the terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library. If
you modify this library, you may extend this exception to your version of
the library, but you are not obligated to do so. If you do not wish to do
so, delete this exception statement from your version.

ADDITIONAL INFORMATION ABOUT LICENSING

Certain files distributed by Oracle America, Inc. and/or its affiliates are
subject to the following clarification and special exception to the GPLv2,
based on the GNU Project exception for its Classpath libraries, known as the

(continues on next page)

11.3. Appendix – Open Source Software Licenses 282

RTI Connext DDS Micro Documentation, Version 2.4.14.2

(continued from previous page)
GNU Classpath Exception.

Note that Oracle includes multiple, independent programs in this software
package. Some of those programs are provided under licenses deemed
incompatible with the GPLv2 by the Free Software Foundation and others.
For example, the package includes programs licensed under the Apache
License, Version 2.0 and may include FreeType. Such programs are licensed
to you under their original licenses.

Oracle facilitates your further distribution of this package by adding the
Classpath Exception to the necessary parts of its GPLv2 code, which permits
you to use that code in combination with other independent modules not
licensed under the GPLv2. However, note that this would not permit you to
commingle code under an incompatible license with Oracle's GPLv2 licensed
code by, for example, cutting and pasting such code into a file also
containing Oracle's GPLv2 licensed code and then distributing the result.

Additionally, if you were to remove the Classpath Exception from any of the
files to which it applies and distribute the result, you would likely be
required to license some or all of the other code in that distribution under
the GPLv2 as well, and since the GPLv2 is incompatible with the license terms
of some items included in the distribution by Oracle, removing the Classpath
Exception could therefore effectively compromise your ability to further
distribute the package.

Failing to distribute notices associated with some files may also create
unexpected legal consequences.

Proceed with caution and we recommend that you obtain the advice of a lawyer
skilled in open source matters before removing the Classpath Exception or
making modifications to this package which may subsequently be redistributed
and/or involve the use of third party software.

11.3. Appendix – Open Source Software Licenses 283

Chapter 12

Contact Support

We welcome your input on how to improve RTI Connext Micro to suit your needs. If you have
questions or comments about this release, please visit the RTI Customer Portal, https://support.
rti.com. The RTI Customer Portal provides access to RTI software, documentation, and support.
It also allows you to log support cases.

To access the software, documentation or log support cases, the RTI Customer Portal requires a
username and password. You will receive this in the email confirming your purchase. If you do not
have this email, please contact license@rti.com. Resetting your login password can be done directly
at the RTI Customer Portal.

284

https://support.rti.com
https://support.rti.com
mailto:license@rti.com

Chapter 13

Join the Community

RTI Community provides a free public knowledge base containing how-to guides, detailed solutions,
and example source code for many use cases. Search it whenever you need help using and developing
with RTI products.

RTI Community also provides forums for all RTI users to connect and interact.

285

https://community.rti.com/
https://community.rti.com/

	1 Introduction
	1.1 What is RTI Connext Micro?
	1.1.1 RTI Connext Cert versus RTI Connext Micro
	1.1.2 Optional Certification Package
	1.1.3 Publish-Subscribe Middleware

	1.2 Supported DDS Features
	1.2.1 DDS Entity Support
	1.2.2 DDS QoS Policy Support

	1.3 Standards and Interoperability
	1.3.1 DDS Wire Compatibility
	1.3.2 Profile / Feature
	1.3.3 DDS API Support

	1.4 RTI Connext DDS Documentation
	1.5 OMG DDS Specification
	1.6 Other Products

	2 Installation
	2.1 Installing RTI Connext Micro
	2.1.1 Installing the Connext Micro package
	2.1.2 Installing Connext Micro from Connext Drive

	2.2 Setting Up Your Environment
	2.2.1 Compiler Preprocessor Defines
	2.2.2 Compiler Header Files Path
	2.2.3 Libraries

	2.3 Building Connext Micro

	3 Getting Started
	3.1 Define a Data Type
	3.2 Generate Type Support Code with rtiddsgen
	3.3 Configure UDP Transport
	3.4 Create DomainParticipant, Topic, and Type
	3.4.1 Register Type
	3.4.2 Create Topic of Registered Type
	3.4.3 DPSE Discovery: Assert Remote Participant

	3.5 Create Publisher
	3.6 Create DataWriter
	3.6.1 DPSE Discovery: Assert Remote Subscription
	3.6.2 Writing Samples

	3.7 Create Subscriber
	3.8 Create DataReader
	3.8.1 DPSE Discovery: Assert Remote Publication
	3.8.2 Receiving Samples
	3.8.3 Filtering Samples

	3.9 Examples
	3.10 Example Generation
	3.10.1 Description of Examples
	3.10.2 How to Compile the Generated Examples
	3.10.3 How to Run the Generated Examples

	4 User’s Manual
	4.1 Initializing the Connext Micro Library
	4.1.1 rtiddsgen
	4.1.2 The Connext Micro System API
	4.1.3 Component Registration

	4.2 Data Types
	4.2.1 Introduction to the Type System
	Sequences
	Strings and Wide Strings

	4.2.2 Creating User Data Types with IDL
	4.2.3 Working with DDS Data Samples

	4.3 DDS Entities
	4.4 Sending Data
	4.4.1 Preview: Steps to Sending Data
	4.4.2 Publishers
	4.4.3 DataWriters
	4.4.4 Publisher QosPolicies
	4.4.5 DataWriter QosPolicies

	4.5 Receiving Data
	4.5.1 Preview: Steps to Receiving Data
	4.5.2 Subscribers
	4.5.3 DataReaders
	4.5.4 Using DataReaders to Access Data (Read & Take)
	4.5.5 Subscriber QosPolicies
	4.5.6 DataReader QosPolicies

	4.6 DDS Domains
	4.6.1 Fundamentals of DDS Domains and DomainParticipants
	4.6.2 Discovery Announcements

	4.7 Transports
	4.7.1 Introduction
	4.7.2 Transport Limits
	IDL Data Types and Size
	Maximum Transmission Unit (MTU)
	Maximum Receive Unit (MRU)

	4.7.3 Transport Registration
	4.7.4 Transport Addresses
	Reserving Addresses and Ports
	Address Limitations
	Address Notation

	4.7.5 RTPS
	Registration of RTPS
	Overriding the Builtin RTPS Checksum Functions
	Example

	4.7.6 INTRA Transport
	Registering the INTRA Transport
	Reliability and Durability
	Threading Model

	4.7.7 UDP Transport
	Registering the UDP Transport
	Threading Model
	UDP Configuration
	UDP Transformations

	4.8 Discovery
	4.8.1 What is Discovery?
	Simple Participant Discovery
	Simple Endpoint Discovery

	4.8.2 Configuring Participant Discovery Peers
	The Peer Address

	4.8.3 Configuring Initial Peers and Adding Peers
	4.8.4 Configuring Discovery Data Reception
	4.8.5 Configuring User Data Reception
	4.8.6 Configuring User Data Reception per DataReader or DataWriter
	4.8.7 Discovery Plugins
	Dynamic Discovery Plugin
	Static Discovery Plugin

	4.8.8 Asymmetric Matching and Lost Samples

	4.9 Configuring Resource Limits
	4.9.1 Introduction
	4.9.2 Resource Limits
	DomainParticipantFactoryQos
	DomainParticipantQos
	DataReaderQos
	DataWriterQos
	UDP Transport
	Dynamic Participant Static Endpoint (DPSE)
	Dynamic Participant Dynamic Endpoint (DPDE)
	Memory Map

	4.9.3 Dynamic Memory Allocation
	4.9.4 Internal Resource Allocation

	4.10 Generating Type Support with rtiddsgen
	4.10.1 Why Use rtiddsgen?
	4.10.2 IDL Type Definition
	4.10.3 Generating Type Support
	C
	C++
	Notes on Command-Line Options
	Generated Type Support Files

	4.10.4 Using custom data-types in Connext Micro Applications
	4.10.5 Customizing generated code
	4.10.6 Unsupported Features of rtiddsgen with Connext Micro

	4.11 Threading Model
	4.11.1 Introduction
	4.11.2 Architectural Overview
	4.11.3 Threading Model
	OSAPI Threads
	UDP Transport Threads
	General Thread Configuration

	4.11.4 Thread-Safety
	Calling DDS APIs from listeners and callbacks
	Calling DDS APIs from a type-plugin

	4.12 Batching
	4.12.1 Overview
	4.12.2 Interoperability
	4.12.3 Performance
	4.12.4 Example Configuration

	4.13 Message Integrity Checking
	4.13.1 RTPS Checksum
	4.13.2 Configurations
	Selecting a checksum algorithm
	Configuring the DDS DomainParticipant

	4.13.3 Participant Discovery and Participant Compatibility
	4.13.4 Interoperability with Connext Professional

	4.14 Working With Sequences
	4.14.1 Introduction
	4.14.2 Working with Sequences
	Overview
	Working with IDL Sequences
	Working with Application Defined Sequences

	4.15 Debugging
	4.15.1 Overview
	4.15.2 Configuring Logging
	4.15.3 Log Message Kinds
	4.15.4 Interpreting Log Messages and Error Codes

	4.16 Connext Micro Hardcoded Resource Limits
	4.16.1 Introduction
	4.16.2 Summary
	4.16.3 Operating Services API (OSAPI)
	4.16.4 DDS C API
	4.16.5 Dynamic Discovery Plugin (DPDE)
	4.16.6 Static Discovery Plugin (DPSE)
	4.16.7 RTPS Protocol Implementation (RTPS)

	4.17 Building Against FACE Conformance Libraries
	4.17.1 Requirements
	Connext Micro Source Code
	FACE Conformance Tools
	CMake

	4.17.2 FACE Golden Libraries
	Building the FACE Golden Libraries

	4.17.3 Building the Connext Micro Source

	5 Building and Porting Connext Micro
	5.1 RTI Connext Micro Platforms
	5.1.1 Reference Platforms
	5.1.2 Known Customer Platforms

	5.2 Building the Connext Micro Source
	5.2.1 Introduction
	5.2.2 The Host and Target Environment
	The Host Environment
	The Target Environment

	5.2.3 Overview of the Connext Micro Source
	Directory Structure

	5.2.4 Compiling Connext Micro
	Building Connext Micro with rtime-make
	Manually Building with CMake

	5.2.5 Connext Micro Compile Options
	Connext Micro Debug Information
	Connext Micro Platform Selection
	Connext Micro Compiler Selection
	Connext Micro UDP Options

	5.2.6 Cross-Compiling Connext Micro
	5.2.7 Custom Build Environments
	Importing the Connext Micro Code

	5.3 Connext Micro for QNX
	5.3.1 Introduction
	5.3.2 QNX Platform Notes
	Heap
	Mutex
	Semaphores
	Timers
	Time
	Threads
	Sockets

	5.3.3 OS Resource Usage
	5.3.4 Build environment
	5.3.5 Compiling with rtime-make

	5.4 Building the Connext Micro Source for FreeRTOS
	5.4.1 Introduction
	5.4.2 Overview
	5.4.3 Configuration
	5.4.4 CMake Support

	5.5 Building the Connext Micro Source for ThreadX
	5.5.1 Introduction
	5.5.2 Overview
	5.5.3 Configuration
	5.5.4 CMake Support

	5.6 Connext Micro on AUTOSAR
	5.6.1 Introduction
	5.6.2 AUTOSAR Configuration
	Properties
	Tasks
	Critical Sections
	TCP/IP Configuration
	Events
	Semaphores
	Memory

	5.6.3 AUTOSAR Port Details
	Logging
	WaitSets
	UDP Automatic Configuration

	5.6.4 Compiling
	Building Connext Micro with rtime-make
	Importing the Connext Micro Source Code

	5.6.5 Interoperability
	5.6.6 Compiling Applications

	5.7 Porting RTI Connext Micro
	5.7.1 Updating from Connext Micro 2.4.8 and earlier
	5.7.2 Directory Structure
	5.7.3 OS and CC Definition Files
	5.7.4 Heap Porting Guide
	5.7.5 Mutex Porting Guide
	5.7.6 Semaphore Porting Guide
	5.7.7 Process Porting Guide
	5.7.8 System Porting Guide
	Migrating a 2.2.x port to 2.3.x

	5.7.9 Thread Porting Guide

	5.8 Port Validation
	5.8.1 Introduction
	5.8.2 Overview
	5.8.3 Building the Port Validation Tests
	Building with rtime-make
	Manually building with CMake
	Custom Build Environments

	5.8.4 Running the Tests
	Setting Up a Config File
	Running the tests using a configuration file
	Test Results
	Troubleshooting

	5.8.5 Embedded Platforms
	AUTOSAR Systems
	FreeRTOS Systems

	5.8.6 Porting UTEST

	5.9 Building Connext Micro with compatibility for Connext Cert

	6 Working with RTI Connext Micro and RTI Connext
	6.1 Development Environment
	6.2 Non-standard APIs
	6.3 QoS Policies
	6.4 Standard APIs
	6.5 IDL Files
	6.6 Interoperability
	6.6.1 Discovery
	6.6.2 Transports

	6.7 Connext Tools
	6.7.1 Admin Console
	6.7.2 Distributed Logger
	6.7.3 LabVIEW
	6.7.4 Monitor
	6.7.5 Recording Service
	RTI Recorder
	RTI Replay
	RTI Converter

	6.7.6 Wireshark
	6.7.7 Persistence Service

	7 API Reference
	8 Release Notes
	8.1 Supported Platforms and Programming Languages
	8.2 What’s New in 2.4.14.2
	8.2.1 New multicast feature available on AUTOSAR platforms

	8.3 What’s Fixed in 2.4.14.2
	8.3.1 DataReader on a Topic using an appendable type may receive samples with incorrect value
	8.3.2 Building for FreeRTOS failed when using RTIME_CERT flag
	8.3.3 Potential segmentation fault while creating entities
	8.3.4 Incorrect generated code when using IDL whose name starts with a number
	8.3.5 Code Generator could not parse a file preprocessed with GCC 11
	8.3.6 Race condition and memory corruption in logger
	8.3.7 Generated example CMakeLists.txt required -udp_intf option to be specified

	8.4 Previous Releases
	8.4.1 What’s New in 2.4.14.1
	Important Interoperability Changes

	8.4.2 What’s Fixed in 2.4.14.1
	Invalid samples in batched data did not count as ‘lost samples’
	Local variables in header file may have caused compiler warning
	Non-default timer resolutions may have caused an incorrect timeout
	Missing checks for max_routes_per_reader and max_routes_per_writer
	Missing NULL checks for enabled_transports
	Possible exception due to misaligned RTPS header
	DDS_SubscriptionBuiltinTopicData_copy did not copy the PresentationQosPolicy
	Possible failure to start timer
	Sample timestamp now set to 0 if timestamp cannot be retrieved
	Qos_copy functions did not validate input arguments
	Unused parameter DOMAIN_PARTICIPANT_RESOURCE_LIMITS.matching_reader_writer_pair_allocation removed
	DDS_DomainParticpant_add_peer may have returned success on failure
	DDS_StringSeq_copy did not validate input arguments
	Memory leak in C++ classes for builtin topic data types and certain QoSes
	Possible NULL pointer exception in generated code if the system was out of memory
	A DataWriter could run out of resources if sample was not added to cache
	Missing source code files
	Possible serialization beyond stream buffer
	RELIABILITY.max_blocking_time must be zero
	Possible DataReader or DataWriter creation failure with multiple DomainParticipants
	Incorrect lease_duration may have been used for a discovered participant
	Missing consistency check for DESTINATION_ORDER.source_timestamp_tolerance
	Improved error detection for unresolved addresses
	DDS_StatusCondition_set_enabled_statuses did not trigger if an active condition was enabled
	Race condition in DDS enable APIs
	DDS WaitSet may have timed out later than timeout value
	SYSTEM_RESOURCE_LIMITS.max_components QoS policy cannot be changed
	Incorrect heartbeat sent before first sample when first_write_sequence_number is not 1
	Robustness check added to verify that participant GUIDs are unique within a DomainParticipantFactory
	DDS_Entity_enable was not thread-safe for a DomainParticipant
	Missing input verification for API functions
	Incorrect return values from REDA_String
	Incorrect return values from QoS APIs
	DDS_Wstring_cmp did not match the implementation name DDS_Wstring_compare
	Race condition during participant discovery
	A DataWriter with BEST_EFFORT and TRANSIENT_LOCAL may run out of resources
	Connext Micro may have repeated requesting a sample that was no longer available from a DataWriter
	DDS_Subscriber_lookup_datareader may return a DataReader that was created by a different Subscriber
	DDS_Publisher_lookup_datawriter may return a DataWriter that was created by a different Publisher
	A reliable DataWriter may ignore requests to resend samples
	Compiler warning due to reliance on deprecated implicit copy constructor for C++
	RTPS message may have been rejected
	Warning about hostname not supported in posixSystem.c
	False positive compiler warning

	8.4.3 What’s New in 2.4.14
	Important Interoperability Changes
	DataWriter’s Default Reliability Changed to Reliable
	Support for AUTOSAR Classic
	Support for detecting corrupted RTPS messages
	Port Validation for Connext Micro
	New Documentation on Compiling Connext Micro for Connext Cert Compatibility
	ThreadX CMake Files and New Documentation on Building Connext Micro for ThreadX + NetX
	Updated Example CMakeLists.txt to Automatically Regenerate Code when IDL or XML File Changes
	Message Logged when Samples Received Out of Order
	Message Logged when Sequence Numbers Received More than Once
	Ability to Send Logs over UDP
	rtime-make Provides Help for a Specific Target
	FreeRTOS CMake Files
	Improved Documentation on Building Connext Micro for AUTOSAR Systems
	Examples Used Undocumented APIs
	New CMake Option to Enable Real-Time Timers on QNX and Linux Systems
	New -showTemplates and -exampleTemplate options for Code Generator
	Dynamic memory allocations removed from Dynamic Discovery Plugin
	Reduced default socket send/receive buffer size for QNX systems

	8.4.4 What’s Fixed in 2.4.14
	Small Enums Caused Serialization Errors
	-Wcast-function-type and -Wdeprecated Compiler Warnings
	Documentation did not list all Entities that Support Transport QosPolicy
	Generated Examples Registered Wrong Type Name
	For C++ Types Generated by rtiddsgen that have Inheritance, the ParentCclass was also Declared in the Class as Another Member
	DomainParticipant not Rediscovered if Terminated and Restarted Before its Lease Duration Expired
	OSAPI_Log_clear did not Zero Out Log Buffer Memory
	Error in Generated C/C++ Code when Two Members of Different Enumerations had Same Name
	Incorrect Documentation Regarding Changeability of QoS
	Unexpected Behavior when Copying a DDS_UnsignedShortSeq with 0 Length
	Incorrect Range Documented for DDS_ResourceLimitsQosPolicy.max_samples
	Wrong Compiler Option for AUTOSAR Elektrobit Platform caused ‘double’ to Compile as 4 Bytes instead of 8
	Log Message with Random Characters Printed
	Event Masks of Semaphores in AUTOSAR Port were Calculated Incorrectly
	PUBLICATION_MATCHED_STATUS and SUBSCRIPTION_MATCHED_STATUS may never have triggered a WaitSet if the status was enabled after the DomainParticipant was enabled
	Unicast DataReader stopped receiving samples after DataWriter matched with a multicast DataReader
	A RTPS max_window_size not divisible by 32 may have resulted in retransmission of wrong sequence number
	POSIX mutex implementation did not conform with FACE Safety Profile
	Waitset with timeout of 0 did not return immediately
	For AUTOSAR the IP address is now used to generate a unique DomainParticipant ID

	8.4.5 What’s New in 2.4.12
	Shared UDP port for discovery and user-data in a DomainParticipant
	DomainParticipants no longer allocate dynamic memory during deletion
	New QoS parameter to set maximum outstanding samples allowed for remote DataWriter
	New QoS parameter to adjust preemptive ACKNACK period
	Deserialization of Presentation QoS policy

	8.4.6 What’s Fixed in 2.4.12
	Examples used DomainParticipant_register_type instead of FooTypeSupport_register_type
	A DataReader and DataWriter with incompatible liveliness kind and infinite lease_duration matched
	Warning at compilation time for FreeRTOS port
	Using DDS_NOT_ALIVE_INSTANCE_STATE caused compilation error in C and C++
	Seq_copy() did not work when the source sequence is a loaned/discontiguous sequence
	Warnings when compiling the example generated by Code Generator
	Unable to generate code for XML or XSD defined types
	Linker error in C++ application when C types were used
	Failure to link for VxWorks RTP using shared libraries compiled with CMake
	rtiddsgen may have failed on Windows systems when -jre was specified
	rtime-make did not work when it was started from different shell than Bash
	Linker error when using shared libraries on VxWorks systems
	A run-time error may have occurred on Windows or when compiling for FACE when using hostnames in the peer list
	Entity ID generation was not thread-safe
	DomainParticipant creation failed if active interface had invalid IP
	rtime-make did not work when there was a space in the installation path
	Sample filtering methods were always added to the subscriber code for C
	‘Failure to give mutex’ error
	UDP interface warning using valid interfaces
	A DataReader May Stop Receiving Samples When Filtering Callbacks Are Used
	DDS_WaitSet_wait() returned DDS_RETCODE_ERROR if unblocked with no active conditions
	Large timeout values may have caused segmentation fault
	HelloWorld_dpde_waitset C++ example uses wrong loop variable for printing data
	WaitSet_wait returned generic error when returned condition sequence exceeded capacity
	Publication handle not set in SampleInfo structure when on_before_sample_commit() called
	Duplicate DATA messages are sent to multicast in some cases
	GUID generation on QNX for processes run one after another may lead to duplicate GUIDs
	Read/take APIs returned more than depth samples if an instance returned to alive without application reading NOT_ALIVE sample
	Segmentation fault if OSAPI_Semaphore_give() was called from one thread while another called OSAPI_Semaphore_delete()
	Communication problems between Connext DDS Professional 6 and Connext DDS Micro 2.4.11
	OSAPI_System_get_ticktime() not implemented for FreeRTOS

	8.4.7 What’s New in 2.4.11
	Support for ThreadX/NetX
	Batching (reception only)
	UDP Transformations
	Optionally exclude builtin UDP Transport from compilation
	Publication handle of DataWriter now provided upon DataReaderListener sample loss
	DataWriters offer TOPIC presentation
	New warning if a configured UDP transport does not have any interface

	8.4.8 What’s Fixed in 2.4.11
	MICRO-1814 Incorrect thread ID returned for VxWorks RTP
	NULL listener and non-empty status mask not allowed for C++ DataReader
	accept_unknown_peers did not work when Shared Memory transport was enabled in RTI Connext DDS Pro
	Calling FooSeq_set_maximum() repeatedly with the same maximum size results in seg-fault
	CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used
	OS error code (errno) not logged if sendto() returned error
	Codegen might generate an incorrect pub/sub example if opction “-create typefiles” is not used
	Generated examples use always the last structure in the idl
	Instance might not have been disposed or unregistered under some conditions
	Reliable Endpoints with only multicast locators may not communicate
	Access to DDSEntity instance handles from C++ API
	Syntax changed for initial peer participant index range
	lookup_instance() is not thread safe
	CMakeLists.txt and README.txt created when they should not
	No communication when DomainParticipant used same GUID as another DomainParticipant in different domain
	Compiler error might happen when lwIP is used
	Wrong C++ code generated for unkeyed types when using IDL modules and -namespace option
	DDS_WaitSet_wait does not work if OSAPI_Semaphore_take() returns an error
	Log buffer could overflow on 64-bit architectures, causing application crash
	Fix API realloc in Windows OSAPI
	New samples for an instance may not be received if an instance goes back to ALIVE when using read()
	INTRA transport caused subscription matches to use additional resources
	Resolved memory leak in class RTRegistry
	Windows Debug DLLs are built without debug information
	Use hardcoded build ID when not compiling with CMake
	Example makefiles do not support 64bit compilation
	Compilation error might happen when code is generated using option -namespace

	8.4.9 What’s New in 2.4.10.4
	Batching (reception only)
	C++ examples

	8.4.10 What’s Fixed in 2.4.10.4
	Improve KEEP_LAST
	Locator might be duplicated when NAT is configured
	Segmentation fault might happen when a DataReader cannot be created
	CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used
	Wrong TUDP locator kind sent when using UDP transformations
	Compile shipped examples for a 64 bits architecture
	OSAPI_Heap_realloc() Windows implementation fixed
	Use API DDSDomainParticipant::delete_contained_entities() in C++ examples
	Memory leak in shipped examples fixed
	C++ shipped examples might release an object twice.

	8.4.11 What’s New in 2.4.10.1
	UDP Transformations

	8.4.12 What’s Fixed in 2.4.10.1
	Race Condition when Log Buffer is Full and a Custom Log-handler is Installed

	8.4.13 What’s New in 2.4.10
	Generate Example Application with rtiddsgen
	BY_SOURCE_TIMESTAMP_DESTINATIONORDER Support on DataWriter

	8.4.14 What’s Fixed in 2.4.10
	Linker Warning for Missing PDB Files
	Linking with Dynamic Windows C Run-Time (CRT)
	DDS_Publisher_create_datawriter() May Fail to Create a New Datawriter
	DataReader May Not Reclaim NOT_ALIVE Instances when DataWriter Deleted or Liveliness Lost
	A Datawriter may fail to release instance resources if a peer is inactive while the Participant liveliness expires
	A Reliable DataWriter With max_samples_per_instance = 1 May Run Out of Resources After Multiple Unregistrations of Single Instance
	Connext Micro Fails to Discover Endpoints created by Connext Core if the Endpoints are Deleted or Modified
	Incorrect Log Output in a Complete Log Message could not be Stored
	Possible Segmentation Fault when Unregistering TRANSIENT_LOCAL Instance
	Support to map IDL modules to C++ namespaces in generated type-plugins
	Possible Memory Access Violation when Receiving Malformed RTPS Message
	In Some Cases an Incorrect Timeout Calculation Caused 100% CPU Load

	8.4.15 What’s New in 2.4.9
	Improved Support for adding new Ports
	Updated Build Environment to Build RTI Connext Micro
	Example CMake Tool-chain Files for Cross-Compilation
	Host Bundle without the Java RunTime Available
	Support for 64-bit Platforms
	POSIX Compliance Improvements
	C++ Support for find_topic()
	Types Are Automatically Unregistered Upon Deleting Contained Entities

	8.4.16 What’s Fixed in 2.4.9
	Improved Documentation
	Losing Participant Liveliness Stops Communication
	DDSTopic::narrow() Returned Incorrect Value in C++
	PRECONDITION_NOT_MET Returned by deleted_topic() When Topic Is Not Use
	Instance Resources Not Reclaimed When Unregistered
	Invalid Memory Read Reported in Log.c
	Unsupported Functions When Compiling With RTI_CERT Has Been Removed From Generated Code
	The HelloWorld_cert Example Now Compiles When Linked Against a Library Built With RTI_CERT
	Hostnames Are No Longer Validated
	A Participant May Not Be Rediscovered In Case Of Asymmetric Liveliness Loss
	A Non-keyed Endpoint Matches a Keyed Endpoint

	8.4.17 What’s New in 2.4.8
	8.4.18 What’s Fixed in 2.4.8
	Consistent support for assignment operator in C++
	DPSE API renamed to avoid conflict with assert()

	8.4.19 What’s New in 2.4.7
	8.4.20 What’s Fixed in 2.4.7
	Statuses are passed as pointers instead of references to DDSDomainParticipantListeners
	Missing assignment operator = in RT_ComponentFactoryId
	CMAKE_C_FLAGS_ORIGINAL in CMakeLists.txt misspelled
	Missing const qualifier for the sequence [] operator
	Missing primitive IDL sequences in C++

	8.4.21 What’s New in 2.4.6
	Important API Changes
	Run-time Memory Footprint Has Been Significantly Reduced
	New FooTypeSupport operations
	All public C API now natively available to C++ users
	Status data passed by reference to C++ listeners
	TheParticipantFactory now available to C++ users
	Status types now available in DDS:: C++ namespace
	Foo::copy_data() takes const argument
	ConditionSeq added to C++ DDS namespace
	First 2-Bytes Of GUID Assigned to Vendor ID

	8.4.22 What’s Fixed in 2.4.6
	POSIX Threads Were Created Without Names
	Prerequisite for HelloWorld_android updated in README.txt
	CPP/HelloWorld_dpde example does not overwrite RTIMEHOME
	Transport Not Supporting Multicast Did Not Ignore Multicast
	Discovery Messages Incorrectly Dropped When Containing Non-Standard Locators
	HEARTBEAT Not Sent in Response To Initial ACKNACK
	Incorrect Return Code From DataReader’s Read or Take APIs When Max_Outstanding_Reads Exceeded
	DataReader Did Not Replace Historical Samples When max_samples_per_instance Equaled History Depth
	A Disposed Instance Could Be Updated By A DataWriter That Is Not Its Exclusive Owner
	Fixed code generation for user-defined enum constants.
	Hostname is verified as specified in RFC-952 and RFC-1123
	DDS_<Foo>Seq APIs Were Missing
	DataReader Could Reject All Subsequent Samples From a DataWriter
	POSIX Thread Priorities Not Changeable
	RTPS DATA Submessages with K-flag Set Were Dropped

	8.5 Known Issues
	8.5.1 AUTOSAR ErrorHook may create CPU overhead
	8.5.2 Failure to interoperate with other DDS implementations if default multicast locator specified
	8.5.3 Maximum number of components limited to 58
	8.5.4 Endpoint discovery requires unique object IDs across all remote endpoints
	8.5.5 Compiler warnings on VxWorks
	8.5.6 OSAPI does not always detect endianess

	9 Benchmarks
	10 Copyrights
	11 Third-Party Software
	11.1 Connext Micro Libraries
	11.1.1 crc32c.c
	11.1.2 MD5

	11.2 Third-Party Software used by the RTIDDSGEN Code-Generation Utility
	11.2.1 ANTLR
	11.2.2 Apache Commons Lang
	11.2.3 Apache Log4j 2
	11.2.4 Apache Velocity
	11.2.5 AdoptOpenJDK JRE
	11.2.6 Gson

	11.3 Appendix – Open Source Software Licenses
	11.3.1 Apache License version 2.0, January 2004 (http://www.apache.org/licenses/)
	11.3.2 GNU GENERAL PUBLIC LICENSE Version 2, June 1991

	12 Contact Support
	13 Join the Community

