RTI Connext DDS Micro

User’s Manual

Version 2.4.14.0

Your systems.
Working as one.

Contents

1 Introduction

1.1

1.2

1.3

14
1.5
1.6

2 Installation

What is RTI Connext DDS Micro?
1.1.1 RTT Connext DDS Micro Cert versus RTI Connext DDS Micro
1.1.2 Optional Certification Package
1.1.3 Publish-Subscribe Middleware
Supported DDS Features
1.2.1 DDS Entity Support
1.2.2 DDS QoS Policy Support
Standards and Interoperability oL o
1.3.1 DDS Wire Compatibility o
1.3.2 Profile / Feature
1.3.3 DDS API Support
RTI Connext DDS Documentation
OMG DDS Specification
Other Products e

2.1 Installing the RTI Connext DDS Micro Package
2.2 Setting Up Your Environment o o
2.3 Building Connext DDS Micro o
3 Getting Started
3.1 Define a Data Type o
3.2 Generate Type Support Code with rtiddsgen
3.3 Configure UDP Transport
3.4 Create DomainParticipant, Topic, and Type
3.4.1 Register Type e
3.4.2 Create Topic of Registered Type,
3.4.3 DPSE Discovery: Assert Remote Participant
3.5 Create Publisher
3.6 Create DataWriter
3.6.1 DPSE Discovery: Assert Remote Subscription
3.6.2 Writing Samples oL
3.7 Create Subscriber L
3.8 Create DataReader
3.8.1 DPSE Discovery: Assert Remote Publication
3.8.2 Receiving Sampleso

10
10
11
11

13
13
13
15
16
17
17
18
18
19
20
20
21
21
23
24

3.8.3 Filtering Sampleso 26

3.9 Examples e 27
3.10 Example Generation 28
3.10.1 Description of Examples 29
3.10.2 How to Compile the Generated Examples 30
3.10.3 How to Run the Generated Examples 31
User’s Manual 32
4.1 Data Types o o o e 32
4.1.1 Introduction to the Type System 33
SEqUENCES e e e e 34

Strings and Wide Stringso 35

4.1.2 Creating User Data Types with IDL. 37

4.1.3 Working with DDS Data Samples 37

4.2 DDS Entities e 38
4.3 Sending Data 39
4.3.1 Preview: Steps to Sending Data 0oL 39

4.3.2 Publishers e 40

4.3.3 DataWriters 40

4.3.4 Publisher QosPolicies 41

4.3.5 DataWriter QosPolicies. 41

4.4 Receiving Data e 41
4.4.1 Preview: Steps to Receiving Data L0 41

4.4.2 Subscribers 43

4.4.3 DataReaders. 44

4.4.4 Using DataReaders to Access Data (Read & Take) 44

4.4.5 Subscriber QosPolicies 44

4.4.6 DataReader QosPolicies 44

4.5 DDS Domains e e e 44
4.5.1 Fundamentals of DDS Domains and DomainParticipants 44

4.5.2 Discovery Announcements 47

4.6 Transportso 47
4.6.1 Introduction L 48

4.6.2 Transport Registration o 0. 48

4.6.3 Transport Addresses 49

4.6.4 Transport Port Number, 50

4.6.5 RTPS e 50
Registration of RTPS 50

Overriding the Builtin RTPS Checksum Functions 52

Example 53

4.6.6 INTRA Transport it 55
Registering the INTRA Transport 55

Reliability and Durability oo 56

Threading Model o 56

4.6.7 UDP Transport e 56
Registering the UDP Transport 57

Threading Model 58

UDP Configuration 60

4.7

4.8

4.9

4.10

4.11

UDP Transformations e 64

Discovery L 93
4.7.1 What is Discovery? 93
Simple Participant Discovery 94
Simple Endpoint Discovery 94
4.7.2 Configuring Participant Discovery Peers 95
peer_desc_string L. 95
4.7.3 Configuring Initial Peers and Adding Peers 96
4.74 Discovery Plugins 96
Dynamic Discovery Plugin 97
Static Discovery Plugino 97
Configuring Resource Limits L 100
4.8.1 Introduction 100
4.8.2 Resource Limitso 100
DomainParticipantFactoryQos oo o 100
DomainParticipantQos 100
DataReaderQos L 100
DataWriterQos 101
OSAPT . . . e 101
UDP Transport o e 101
Dynamic Participant Static Endpoint (DPSE) 101
Dynamic Participant Dynamic Endpoint (DPDE). 101
Memory Map o . o 102
4.8.3 Dynamic Memory Allocation 103
4.8.4 Internal Resource Allocation 103
Generating Type Support with rtiddsgen 104
4.9.1 Why Use rtiddsgen? e 104
4.9.2 IDL Type Definition oL 104
4.9.3 Generating Type Support 105
C o e 105
Gt o e 105
Notes on Command-Line Options 105
Generated Type Support Files 106
4.9.4 Using custom data-types in Connext DDS Micro Applications 106
4.9.5 Customizing generated code Lo 107
4.9.6 Unsupported Features of rtiddsgen with Connext DDS Micro 107
Threading Model 107
4.10.1 Introduction e 107
4.10.2 Architectural Overview 108
4.10.3 Threading Model 108
OSAPI Threads e 108
UDP Transport Threads 109
General Thread Configuration 111
4.10.4 Critical Sections 111
Calling DDS APIs from listeners 111
Batching 111
4111 OVErviewo e e e e e e e 112
4.11.2 Interoperability L 112

4.11.3 Performance e e 112

4.11.4 Example Configuration L oo 112

4.12 Message Integrity Checking 114
4.12.1 RTPS Checksum 114
4.12.2 Configurations. e 115
Selecting a checksum algorithm 0oL 115

Configuring the DDS DomainParticipant 115

4.12.3 Participant Discovery and Participant Compatibility 116
4.12.4 Interoperability with Connext DDS Professional 117

4.13 Working With Sequences e 117
4.13.1 Introduction L 117
4.13.2 Working with Sequences Lo 117
Overview e 117

Working with IDL Sequences 119

Working with Application Defined Sequences 121

4.14 Debugging e 122
4.14.1 OVerviewo e e e e e e 122
4.14.2 Configuring Logging L 122
4.14.3 Log Message Kinds L 123
4.14.4 Interpreting Log Messages and Error Codes 123

4.15 Connext DDS Micro Hardcoded Resource Limits 124
4.15.1 Introduction L 124
4.15.2 SUummaryo e e e e e e e e e e e 124
4.15.3 Operating Services API (OSAPI) 125
4.15.4 DDS C API e 125
4.15.5 Dynamic Discovery Plugin (DPDE) 126
4.15.6 Static Discovery Plugin (DPSE), 126
4.15.7 RTPS Protocol Implementation (RTPS), 126

4.16 Building Against FACE Conformance Libraries 126
4.16.1 Requirementso 126
Connext DDS Micro Source Code 126

FACE Conformance Tools 127

CMake e 127

4.16.2 FACE Golden Libraries 127
Building the FACE Golden Libraries 127

4.16.3 Building the Connext DDS Micro Source 127

5 Building and Porting Connext DDS Micro 130
5.1 RTI Connext DDS Micro Supported Platforms 130
5.1.1 Reference Platforms 130

5.1.2 Known Customer Platforms 131

5.2 Building the Connext DDS Micro Source 131
5.2.1 Introduction L 131

5.2.2 The Host and Target Environment 132

The Host Environment o o 132

The Target Environment o L. 133

5.2.3 Overview of the Connext DDS Micro Source 133
Directory Structure 134

5.3

5.4

5.5

5.6

0.7

5.2.4 Compiling Connext DDS Micro 135

Building Connext DDS Micro with rtime-make 135
Manually Building with CMake 136
5.2.5 Connext DDS Micro Compile Options 140
Connext DDS Micro Debug Information 140
Connext DDS Micro Platform Selection 141
Connext DDS Micro Compiler Selection 141
Connext DDS Micro UDP Options 142
5.2.6 Cross-Compiling Connext DDS Micro 142
5.2.7 Custom Build Environments 0oL 143
Importing the Connext DDS Micro Code 143
Compiling the Connext DDS Micro Source for QNX™ 144
5.3.1 Introduction L 144
5.3.2 Build environment Lo 144
5.3.3 Compiling with rtime-make 144
5.3.4 Required QNX kernel configuration 144
Building the Connext DDS Micro Source for FreeRTOS 145
5.4.1 Introduction 145
5.4.2 Overview e 145
5.4.3 Configuration 145
5.4.4 CMake Support e 151
Building the Connext DDS Micro Source for ThreadX 151
5.5.1 Introduction L 151
5.5.2 OVerview 152
5.5.3 Configuration 152
5.5.4 CMake Support 152
Compiling the Connext DDS Micro Source for AUTOSAR 153
5.6.1 Introduction 153
5.6.2 AUTOSAR Configuration 153
Properties 153
Tasks o e 155
Critical Sections L 157
TCP/IP Configuration 159
Events 160
Semaphores 160
Memory o 161
5.6.3 AUTOSAR Port Details 161
Logging e 161
WaitSets L 162
UDP Automatic Configuration, 162
5.6.4 Compiling L 162
Building Connext DDS Micro with rtime-make 162
Importing the Connext DDS Micro Source Code 163
5.6.5 Interoperability L 164
Porting RTI Connext DDS Micro 164
5.7.1 Updating from Connext DDS Micro 2.4.8 and earlier 164
5.7.2 Directory Structure 165
5.7.3 OS and CC Definition Files 166

5.7.4 Heap Porting Guide

5.7.5 Mutex Porting Guide Lo
5.7.6 Semaphore Porting Guide Lo
5.7.7 Process Porting Guide
5.7.8 System Porting Guide
Migrating a 2.2.x port to 2.3.xo Lo
5.7.9 Thread Porting Guideo
5.8 Port Validation L L
5.8.1 Introduction
5.82 OVerviewo e
5.8.3 Building the Port Validation Tests
Building with rtime-make
Manually building with CMake
Custom Build Environments L.
5.8.4 Running the Tests
Setting Up a Config File
Running the tests using a configuration file
Test Results e
Troubleshooting
5.8.5 Embedded Platforms
AUTOSAR Systems
FreeRTOS Systems o
5.8.6 Porting UTEST
5.9 Building Connext DDS Micro with compatibility for Connext DDS Micro Cert . . .
Working with RTI Connext DDS Micro and RTI Connext DDS
6.1 Development Environment o
6.2 Non-standard APIs
6.3 QoS Policies e
6.4 Standard APIs
6.5 IDL Files e
6.6 Admin Console
6.7 Distributed Logger L
6.8 LabVIEW o .
6.9 Monitor e e e
6.10 Recording Service L L
6.10.1 RTI Recorder e
6.10.2 RTI Replay e
6.10.3 RTI Converter. e e
6.11 Spreadsheet Addin
6.12 Wireshark oL L
6.13 Persistence Service L
API Reference
Release Notes
8.1 Supported Platforms and Programming Languages
8.2 What’'s New in 2.4.14 e

189

190
190
192

vi

8.2.1 Important Interoperability Changes 192

DataWriter’s Default Reliability Changed to Reliable 192
8.2.2 Port Validation for Connext DDS Micro 192
8.2.3 New Documentation on Compiling Connext DDS Micro for Connext DDS
Micro Cert Compatibility 192
8.2.4 ThreadX CMake Files and New Documentation on Building Connext DDS
Micro for ThreadX + NetX 192
8.2.5 Updated Example CMakeLists.txt to Automatically Regenerate Code when
IDL or XML File Changes 192
8.2.6 Message Logged when Samples Received Out of Order 193
8.2.7 Message Logged when Sequence Numbers Received More than Once 193
8.2.8 Ability to Send Logs over UDP 193
8.2.9 rtime-make Provides Help for a Specific Target 193
8.2.10 FreeRTOS CMake Files 193
8.2.11 Improved Documentation on Building Connext DDS Micro for AUTOSAR
SYStems 193
8.2.12 Examples Used Undocumented APIs 193

8.2.13 New CMake Option to Enable Real-Time Timers on QNX and Linux Systems194
8.2.14 New -showTemplates and -exampleTemplate options for Code Generator . . 194

What'’s Fixed in 2.4.14 e 194
8.3.1 Small Enums Caused Serialization Errors 194
8.3.2 -Wecast-function-type and -Wdeprecated Compiler Warnings 195
8.3.3 Documentation did not list all Entities that Support Transport QosPolicy . 195
8.3.4 Generated Examples Registered Wrong Type Name 195
8.3.5 For C++ Types Generated by rtiddsgen that have Inheritance, the Par-

entCclass was also Declared in the Class as Another Member 196
8.3.6 DomainParticipant not Rediscovered if Terminated and Restarted Before

its Lease Duration Expired L oL 196
8.3.7 OSAPI_Log_clear did not Zero Out Log Buffer Memory 197
8.3.8 Error in Generated C/C++ Code when Two Members of Different Enumer-

ations had Same Name L oL 197
8.3.9 Incorrect Documentation Regarding Changeability of QoS 200

8.3.10 Unexpected Behavior when Copying a DDS_ UnsignedShortSeq with 0 Length200
8.3.11 Incorrect = Range Documented for DDS_ ResourceLimitsQosPol-

icymax_ samples Lo 200

8.3.12 Wrong Compiler Option for AUTOSAR Elektrobit Platform caused ‘double’
to Compile as 4 Bytes instead of 8, 200
8.3.13 Log Message with Random Characters Printed 201
8.3.14 Event Masks of Semaphores in AUTOSAR Port were Calculated Incorrectly 201
Previous Releases 201
8.4.1 What's New in 2.4.12.1. e 201
Dynamic memory allocations removed from Dynamic Discovery Plugin 201
Support for AUTOSAR Classic 202
Support for detecting corrupted RTPS messages 202
Reduced default socket send /receive buffer size for QNX systems 202

For AUTOSAR the IP address is now used to generate a unique DomainPar-
ticipant ID oL 202
8.4.2 What’s Fixed in 2.4.12.1 202

vii

8.4.3

8.4.4

PUBLICATION_MATCHED__STATUS and SUBSCRIP-
TION_MATCHED_ STATUS may never have triggered a WaitSet
if the status was enabled _after the DomainParticipant was enabled 202
Unicast DataReader stopped receiving samples after DataWriter matched

with a multicast DataReader 203
A RTPS max_ window__size not divisible by 32 may have resulted in retrans-
mission of wrong sequence number 203
POSIX mutex implementation did not conform with FACE Safety Profile . . 203
Waitset with timeout of 0 did not return immediately 203
What’s New in 2.4.12 203
Shared UDP port for discovery and user-data in a DomainParticipant 203
DomainParticipants no longer allocate dynamic memory during deletion . . . 204
New QoS parameter to set maximum outstanding samples allowed for remote
DataWriter 204
New QoS parameter to adjust preemptive ACKNACK period 204
Deserialization of Presentation QoS policy 204
What’s Fixed in 2.4.12 e 204
Examples used DomainParticipant_register type instead of FooTypeSup-
port_register _type Lo 204
A DataReader and DataWriter with incompatible liveliness kind and infinite
lease duration matched L. 205
Warning at compilation time for FreeRTOS port 205
Using DDS NOT ALIVE INSTANCE_STATE caused compilation error
inCand C++ e 205
Seq_copy() did not work when the source sequence is a loaned/discontiguous
SEQUEIICE . .+« v v v e e e e e e e e e e e e e e e 205
Warnings when compiling the example generated by Code Generator 206
Unable to generate code for XML or XSD defined types 206
Linker error in C++ application when C types were used 206
Failure to link for VxWorks RTP using shared libraries compiled with CMake 206
rtiddsgen may have failed on Windows systems when -jre was specified 206
rtime-make did not work when it was started from different shell than Bash . 206
Linker error when using shared libraries on VxWorks systems 207
A run-time error may have occurred on Windows or when compiling for FACE
when using hostnames in the peer list 207
Entity ID generation was not thread-safe 207
DomainParticipant creation failed if active interface had invalid IP 207
rtime-make did not work when there was a space in the installation path . . 207
Sample filtering methods were always added to the subscriber code for C . . 207
‘Failure to give mutex’ erroro 208
UDP interface warning using valid interfaces 208
A DataReader May Stop Receiving Samples When Filtering Callbacks Are
Used . . . 208
DDS_WaitSet_ wait() returned DDS_RETCODE_ERROR if unblocked
with no active conditionso 208
Large timeout values may have caused segmentation fault 208
HelloWorld__dpde_ waitset C++ example uses wrong loop variable for print-
ingdata. 209

8.4.5

8.4.6

WaitSet_ wait returned generic error when returned condition sequence ex-

ceeded capacity 209
Publication handle not set in Samplelnfo structure when on_ before sam-
ple_commit() called Lo o 209
Duplicate DATA messages are sent to multicast in some cases 209
GUID generation on QNX for processes run one after another may lead to
duplicate GUIDs 209
Read/take APIs returned more than depth samples if an instance returned
to alive without application reading NOT _ALIVE sample 209
Segmentation fault if OSAPI _Semaphore__give() was called from one thread
while another called OSAPI_Semaphore__delete() 210
Communication problems between Connext DDS Professional 6 and Connext
DDS Micro 2.4.11 210
OSAPI_System_ get_ ticktime() not implemented for FreeRTOS 210
What’s New in 2.4.11 e 210
Support for ThreadX/NetX 210
Batching (reception only) 210
UDP Transformations 210
Optionally exclude builtin UDP Transport from compilation 211
Publication handle of DataWriter now provided upon DataReaderListener
sampleloss 211
DataWriters offer TOPIC presentation 211
New warning if a configured UDP transport does not have any interface . . . 211
What's Fixed in 2.4.11 e 211
MICRO-1814 Incorrect thread ID returned for VxWorks RTP 211

NULL listener and non-empty status mask not allowed for C4++ DataReader 212
accept_ unknown_ peers did not work when Shared Memory transport was

enabled in RTI Connext DDSPro 212
Calling FooSeq_set_ maximum() repeatedly with the same maximum size

results in seg-fault L 212
CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 isused 212
OS error code (errno) not logged if sendto() returned error 212
Codegen might generate an incorrect pub/sub example if opction “-create

typefiles” isnot used Lo 213
Generated examples use always the last structure in theidl 213
Instance might not have been disposed or unregistered under some conditions 213
Reliable Endpoints with only multicast locators may not communicate 213
Access to DDSEntity instance handles from C+4+ APT 213
Syntax changed for initial peer participant index range 214
lookup__instance() is not thread safe 214
CMakeLists.txt and README.txt created when they should not 214
No communication when DomainParticipant used same GUID as another

DomainParticipant in different domain 214
Compiler error might happen when lwIP isused 215
Wrong C++ code generated for unkeyed types when using IDL modules and

-namespace option 215
DDS_ WaitSet_ wait does not work if OSAPI__Semaphore__take() returns an

ETTOT . o« v v v v e e e e e e e e e e e e e e e e 215

Log buffer could overflow on 64-bit architectures, causing application crash . 215

Fix API realloc in Windows OSAPI 215
New samples for an instance may not be received if an instance goes back to
ALIVE when using read() 216
INTRA transport caused subscription matches to use additional resources . . 216
Resolved memory leak in class RTRegistry 216
Windows Debug DLLs are built without debug information 216
Use hardcoded build ID when not compiling with CMake 216
Example makefiles do not support 64bit compilation 217
Compilation error might happen when code is generated using option
SNAINESPACE .+« ¢ e e e e e e e e e e e e e 217
8.4.7 What’s New in 2.4.10.4 217
Batching (reception only) 217
CH+ examples e e 217
8.4.8 What’s Fixed in 2.4.10.4 217
Improve KEEP_LAST 217
Locator might be duplicated when NAT is configured 218
Segmentation fault might happen when a DataReader cannot be created . . . 218
CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 isused 218
Wrong TUDP locator kind sent when using UDP transformations 218
Compile shipped examples for a 64 bits architecture 218
OSAPI_Heap_ realloc() Windows implementation fixed 219
Use API DDSDomainParticipant::delete_contained entities() in C++ ex-
amples 219
Memory leak in shipped examples fixed 219
C++ shipped examples might release an object twice. 219
8.4.9 What’'s New in 2.4.10.1. 220
UDP Transformations i 220
8.4.10 What’s Fixed in 2.4.10.1 220
Race Condition when Log Buffer is Full and a Custom Log-handler is Installed220
8.4.11 What’s New in 2.4.10 220
Generate Example Application with rtiddsgen 220
BY_SOURCE_TIMESTAMP_DESTINATIONORDER Support on
DataWritero 221
8.4.12 What’s Fixed in 2.4.10 221
Linker Warning for Missing PDB Files 221
Linking with Dynamic Windows C Run-Time (CRT) 221

DDS_ Publisher_ create_ datawriter() May Fail to Create a New Datawriter . 222
DataReader May Not Reclaim NOT__ALIVE Instances when DataWriter

Deleted or Liveliness Lost 222
A Datawriter may fail to release instance resources if a peer is inactive while

the Participant liveliness expires 222
A Reliable DataWriter With max_ samples_ per_instance = 1 May Run Out

of Resources After Multiple Unregistrations of Single Instance . . . 223
Connext Micro Fails to Discover Endpoints created by Connext Core if the

Endpoints are Deleted or Modified 223
Incorrect Log Output in a Complete Log Message could not be Stored 223

Possible Segmentation Fault when Unregistering TRANSIENT _LOCAL In-
stance Lo L L e 223
Support to map IDL modules to C++ namespaces in generated type-plugins 223
Possible Memory Access Violation when Receiving Malformed RTPS Message 224
In Some Cases an Incorrect Timeout Calculation Caused 100% CPU Load . . 224

8.4.13 What’'s New in 2.4.9 225
Improved Support for adding new Ports 225
Updated Build Environment to Build RTT Connext Micro 225
Example CMake Tool-chain Files for Cross-Compilation 225
Host Bundle without the Java RunTime Available 225
Support for 64-bit Platforms 226
POSIX Compliance Improvements 226
C++ Support for find_topic() 227
Types Are Automatically Unregistered Upon Deleting Contained Entities . . 227

8.4.14 What’s Fixed in 2.4.9. 227
Improved Documentation 227
Losing Participant Liveliness Stops Communication 227
DDSTopic::narrow() Returned Incorrect Value in C+4. 228
PRECONDITION_NOT_MET Returned by deleted_ topic() When Topic

IsNot Use e 228
Instance Resources Not Reclaimed When Unregistered 228
Invalid Memory Read Reported in Log.c 228
Unsupported Functions When Compiling With RTI CERT Has Been Re-

moved From Generated Code 228
The HelloWorld_ cert Example Now Compiles When Linked Against a Li-

brary Built With RTI_CERT 229
Hostnames Are No Longer Validated 229
A Participant May Not Be Rediscovered In Case Of Asymmetric Liveliness

Loss e 229
A Non-keyed Endpoint Matches a Keyed Endpoint 229

8.4.15 What’s New in 2.4.8 e 230

8.4.16 What’s Fixed in 2.4.8. 230
Consistent support for assignment operator in C+4+ 230
DPSE API renamed to avoid conflict with assert() 230

8.4.17 What’s New in 2.4.7 e 231

8.4.18 What’s Fixed in 2.4.7. 231
Statuses are passed as pointers instead of references to DDSDomainPartici-

pantListeners o 231
Missing assignment operator = in RT__ComponentFactoryld 231
CMAKE_C_FLAGS_ORIGINAL in CMakeLists.txt misspelled 231
Missing const qualifier for the sequence [| operator 231
Missing primitive IDL sequences in C+4+ 232

8.4.19 What’s New in 2.4.6 232
Important API Changes 232
Run-time Memory Footprint Has Been Significantly Reduced 233
New FooTypeSupport operations 233
All public C API now natively available to C++ users 233
Status data passed by reference to C++ listeners 234

xi

TheParticipantFactory now available to C4++ users 234

Status types now available in DDS:: C+4 namespace 234
Foo::copy data() takes const argument 234
ConditionSeq added to C++ DDS namespace 234
First 2-Bytes Of GUID Assigned to Vendor ID 234
8.4.20 What’s Fixed in 2.4.6 234
POSIX Threads Were Created Without Names 234
Prerequisite for HelloWorld__android updated in README.txt 235
CPP /HelloWorld__dpde example does not overwrite RTIMEHOME 235
Transport Not Supporting Multicast Did Not Ignore Multicast 235
Discovery Messages Incorrectly Dropped When Containing Non-Standard Lo-
cators 235
HEARTBEAT Not Sent in Response To Initial ACKNACK 235
Incorrect Return Code From DataReader’s Read or Take APIs When
Max_ Outstanding Reads Exceeded 236
DataReader Did Not Replace Historical Samples When max sam-
ples_ per_instance Equaled History Depth 236
A Disposed Instance Could Be Updated By A DataWriter That Is Not Its
Exclusive Owner 236
Fixed code generation for user-defined enum constants. 237
Hostname is verified as specified in RFC-952 and RFC-1123 237
DDS_ <Foo>Seq APIs Were Missing 237
DataReader Could Reject All Subsequent Samples From a DataWriter 237
POSIX Thread Priorities Not Changeable 237
RTPS DATA Submessages with K-flag Set Were Dropped 238
8.5 Known Issues. e e 238
8.5.1 Maximum Number of Components Limited to 58 238
8.5.2 CMake version 3.6 or Higher is Required to Build VxWorks with CMake . . 238
8.5.3 Endpoint Discovery Requires Unique Object IDs Across All Remote Endpoints238
8.5.4 Compiler warnings on VxWorks 0oL 238
8.5.5 OSAPI Does Not Always Detect Endianess 239
8.5.6 Missing Checks for max_ routes_ per reader and max_ routes_ per_writer . 239
9 Benchmarks 240
9.1 Latency Benchmarks 240
9.1.1 Xeono 241
C++ Best Effort Keyed 1 Gbpso 241
C++ Best Effort Unkeyed 1 Gbps 242
C++ Reliable Keyed 1 Gbps 242
C++ Reliable Unkeyed 1 Gbps 242
9.1.2 Raspberry Pi 243
C++ Best Effort Keyed 1 Gbps 243
C++ Best Effort Unkeyed 1 Gbps oL 243
C++ Reliable Keyed 1 Gbps 244
C++ Reliable Unkeyed 1 Gbps 244
9.2 Throughput Benchmark oo o 244
9.2.1 Xeon 245
C++ Best Effort Keyed 1 Gbps 245

xii

9.3

9.4
9.5
9.6

C++ Best Effort Unkeyed 1 Gbps oL
9.2.2 Raspberry Pi
C++ Best Effort Keyed 1 Gbps
C++ Best Effort Unkeyed 1 Gbps L.
C++ Reliable Keyed 1 Gbps
C++ Reliable Unkeyed 1 Gbps
Heap Benchmarks
9.3.1 Heap Usage
Calculating Memory Usage for DDS Entities
9.3.2 Dynamic Discovery (DPDE) Heap Usage Information
9.3.3 Static Discovery (DPSE) Heap Usage Information
Source Line Count L
Library Sizes
Threads e

10 Copyrights

11 Contact Support

12 Join the Community

255

257

258

xiii

RTI Connext DDS Micro Documentation, Version 2.4.14.0

RTI® Connext® DDS Micro provides a small-footprint, modular messaging solution for
resource-limited devices that have limited memory and CPU power, and may not even be running
an operating system. It provides the communications services that developers need to distribute
time-critical data. Additionally, Connext DDS Micro is designed as a certifiable component in
high-assurance systems.

Key benefits of Connext DDS Micro include:
e Accommodations for resource-constrained environments.
e Modular and user extensible architecture.
e Designed to be a certifiable component for safety-critical systems.

o Seamless interoperability with RTI Connext DDS Professional.

Contents 1

Chapter 1

Introduction

1.1 What is RTI Connext DDS Micro?

RTI Connext DDS Micro is network middleware for distributed real-time applications. It provides
the communications service programmers need to distribute time-critical data between embedded
and/or enterprise devices or nodes. Connext DDS Micro uses the publish-subscribe communications
model to make data distribution efficient and robust. Connext DDS Micro simplifies application de-
velopment, deployment and maintenance and provides fast, predictable distribution of time-critical
data over a variety of transport networks. With Connext DDS Micro, you can:

e Perform complex one-to-many and many-to-many network communications.

o Customize application operation to meet various real-time, reliability, and quality-of-service
goals.

e Provide application-transparent fault tolerance and application robustness.

o Use a variety of transports.

Connext DDS Micro implements the Data-Centric Publish-Subscribe (DCPS) API within the
OMG’s Data Distribution Service (DDS) for Real-Time Systems. DDS is the first standard de-
veloped for the needs of real-time systems. DCPS provides an efficient way to transfer data in a
distributed system.

With Connext DDS Micro, systems designers and programmers start with a fault-tolerant and
flexible communications infrastructure that will work over a wide variety of computer hardware,
operating systems, languages, and networking transport protocols. Connext DDS Micro is highly
configurable so programmers can adapt it to meet the application’s specific communication require-
ments.

RTI Connext DDS Micro Documentation, Version 2.4.14.0

1.1.1 RTI Connext DDS Micro Cert versus RTI Connext DDS Micro

RTI Connext DDS Micro and RTI Connext DDS Micro Cert originate from the same source base,
but as of Connext DDS Micro 2.4.6 the two are maintained as two independent releases. The
latest release with certification evidence is Connext DDS Micro Cert 2.4.5. However, features that
exist in Connext DDS Micro and Connext DDS Micro Cert behave identically and the source code
is written following identical guidelines. Connext DDS Micro Cert only supports a subset of the
features found in Connext DDS Micro. In the API reference manuals, APIs that are supported by
Connext DDS Micro Cert are clearly marked.

1.1.2 Optional Certification Package

An optional Certification Package is available for systems that require certification to DO-178C or
other safety standards. This package includes the artifacts required by a certification authority.
The Certification Package is licensed separately from Connext DDS Cert.

To use an existing Certification Package, an application must be linked against the same libraries
included in the Certification Package. Contact RTI Support, support@rti.com, for details.

1.1.3 Publish-Subscribe Middleware

Connext DDS Micro is based on a publish-subscribe communications model. Publish-subscribe
(PS) middleware provides a simple and intuitive way to distribute data. It decouples the software
that creates and sends data—the data publishers—from the software that receives and uses the
data—the data subscribers. Publishers simply declare their intent to send and then publish the
data. Subscribers declare their intent to receive, then the data is automatically delivered by the
middleware. Despite the simplicity of the model, PS middleware can handle complex patterns of
information flow. The use of PS middleware results in simpler, more modular distributed appli-
cations. Perhaps most importantly, PS middleware can automatically handle all network chores,
including connections, failures, and network changes, eliminating the need for user applications to
program of all those special cases. What experienced network middleware developers know is that
handling special cases accounts for over 80% of the effort and code.

1.2 Supported DDS Features

Connext DDS Micro supports a subset of the DDS DCPS standard. A brief overview of the
supported features are listed here. For a detailed list, please refer to the C API Reference and
C++ API Reference.

1.2. Supported DDS Features 3

mailto:support@rti.com
../api_c/html/index.html
../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

1.2.1 DDS Entity Support
Connext DDS Micro supports the following DDS entities. Please refer to the documentation for
details.

e DomainParticipantFactory

e DomainParticipant

e Topic

o Publisher

e Subscriber

e DataWriter

o DataReader

1.2.2 DDS QoS Policy Support

Connext DDS Micro supports the following DDS Qos Policies. Please refer to the documentation
for details.

« DDS_ DataReaderProtocolQosPolicy

« DDS_ DataReaderResourceLimitsQosPolicy
o« DDS_DataWriterProtocolQosPolicy

« DDS_DataWriterResourceLimitsQosPolicy
e DDS_ DeadlineQosPolicy

e DDS _DiscoveryQosPolicy

e DDS_ DomainParticipantResourceLimitsQosPolicy
o DDS_ DurabilityQosPolicy

e DDS DestinationOrderQosPolicy

« DDS_ EntityFactoryQosPolicy

o DDS_ HistoryQosPolicy

e DDS _LivelinessQosPolicy

e« DDS_ OwnershipQosPolicy

e DDS_ OwnershipStrengthQosPolicy

e« DDS_ ReliabilityQosPolicy

e« DDS_ ResourceLimitsQosPolicy

e DDS RtpsReliableWriterProtocol t

o DDS_ SystemResourceLimitsQosPolicy

1.2. Supported DDS Features 4

../api_c/html/group__DDSDomainParticipantFactoryModule.html
../api_c/html/group__DDSDomainParticipantModule.html
../api_c/html//group__DDSTopicEntityModule.html
../api_c/html/group__DDSPublisherModule.html
../api_c/html/group__DDSSubscriberModule.html
../api_c/html/group__DDSWriterModule.html
../api_c/html/group__DDSReaderModule.html
../api_c/html/structDDS__DataReaderProtocolQosPolicy.html
../api_c/html/structDDS__DataReaderResourceLimitsQosPolicy.html
../api_c/html/structDDS__DataWriterProtocolQosPolicy.html
../api_c/html/structDDS__DataWriterResourceLimitsQosPolicy.html
../api_c/html/structDDS__DeadlineQosPolicy.html
../api_c/html/structDDS__DiscoveryQosPolicy.html
../api_c/html/structDDS__DomainParticipantResourceLimitsQosPolicy.html
../api_c/html/structDDS__DurabilityQosPolicy.html
../api_c/html/structDDS__DestinationOrderQosPolicy.html
../api_c/html/structDDS__EntityFactoryQosPolicy.html
../api_c/html/structDDS__HistoryQosPolicy.html
../api_c/html/structDDS__LivelinessQosPolicy.html
../api_c/html/structDDS__OwnershipQosPolicy.html
../api_c/html/structDDS__OwnershipStrengthQosPolicy.html
../api_c/html/structDDS__ReliabilityQosPolicy.html
../api_c/html/structDDS__ResourceLimitsQosPolicy.html
../api_c/html/structDDS__RtpsReliableWriterProtocol__t.html
../api_c/html/structDDS__SystemResourceLimitsQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e DDS_ TransportQosPolicy
« DDS_ UserTrafficQosPolicy
« DDS_ WireProtocolQosPolicy

1.3 Standards and Interoperability

Connext DDS Micro implements the Object Management Group (OMG) Data Distribution Service
(DDS) standard (version 1.4), and the Real-Time Publish-Subscribe (RTPS) wire interoperabilty
protocol standard (version 2.2).

Connext DDS Micro supports a subset of the submessages defined by the Real-Time
Publish-Subscribe (RTPS) interoperability specification. Data fragment submessages are not sup-
ported. The messages are compatible with Wireshark and its RTPS packet dissector.

Connext DDS Micro, RT1 Connext DDS Micro, and Connext DDS are wire-interoperable, unless
stated otherwise (see below), and API compatible for APIs specified by the DDS standard. For
non-standard APIs, Connext DDS Micro, RT1 Connext DDS Micro, and Connext DDS are incom-
patible. Please refer to Working with RTI Connext DDS Micro and RTI Connext DDS for more
information.

1.3.1 DDS Wire Compatibility

Connext DDS Micro is compliant with RTPS 2.2, but does not support and ignore the following
RTPS sub-messages:

Submessage Supported | DDS Standard | Connext DDS Core
DATA FRAG No Yes Yes
NACK FRAG No Yes Yes
HEARTBEAT_ FRAG | No Yes No
INFO SRC No Yes Yes
INFO REPLY No Yes Yes
INFO_REPLY_IPV4 | No Yes Yes

1.3.2 Profile / Feature

Connext DDS Micro does not support mutable Qos policies.

Submessage Supported DDS Standard | Connext DDS Core
USER__DATA No Yes Yes
TOPIC DATA No Yes Yes
DURABILITY Partially (1) Yes Yes
PRESENTATION Partially (2) Yes Yes
DEADLINE Yes Yes Yes

continues on next page

1.3. Standards and Interoperability 5

../api_c/html/structDDS__TransportQosPolicy.html
../api_c/html/structDDS__UserTrafficQosPolicy.html
../api_c/html/structDDS__WireProtocolQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Table 1.1 — continued from previous page

Submessage Supported DDS Standard | Connext DDS Core
LATENCY BUDGET No Yes Yes
LIVELINESS Partially (3) Yes Yes
TIME_BASED_FILTER No Yes Yes
PARTITION No Yes Yes
RELIABILITY Yes (4) Yes Yes
TRANSPORT_PRIORITY No Yes Yes
LIFESPAN No Yes Yes
DESTINATION__ORDER Partially (5) Yes Yes
HISTORY Partially (6) Yes Yes
RESOURCE_LIMITS Yes (7) Yes Yes
ENTITY FACTORY Yes Yes Yes
WRITER,_DATA_LIFECYCLE No Yes Yes
READER_DATA_LIFECYCLE No Yes Yes
OWNERSHIP Yes Yes Yes
OWNERSHIP STRENGTH Yes Yes Yes
DURABILITY_ SERVICE No Yes Yes
ContentFiltered Topic No Yes Yes
QueryCondition No Yes Yes
MultiTopic No Yes No
ASYNCHRONOUS_PUBLISHER No No Yes
AVAILABILITY No No Yes
BATCH Only reception | No Yes
DATA READER_ PROTOCOL rtps_object_id | No Yes
DATA_WRITER_PROTOCOL Partially (8) No Yes
DISCOVERY Yes No Yes
DISCOVERY__CONFIG No No Yes
ENTITY_NAME Partially (9) No Yes
EVENT No No Yes
LOCATORFILTER No No Yes
LOGGING No No Yes
MULTICHANNEL No No Yes
PROPERTY No No Yes
PUBLISH_MODE No No Yes
RECEIVER POOL No No Yes
SERVICE No No Yes
TYPE_CONSISTENCY_ENFORCEMENT | No No Yes
TYPESUPPORT Yes No Yes
WIRE PROTOCOL Yes No Yes

NOTES:

1. VOLATILE and TRANSIENT LOCAL

2. No, DW offers access_scope = TOPIC, coherent_access = FALSE and ordered_ access =
TRUE DR requests access_scope = INSTANCE, coherent_ access = FALSE and ordered_ ac-

1.3. Standards and Interoperability

RTI Connext DDS Micro Documentation, Version 2.4.14.0

cess = FALSE

3. AUTOMATIC (infinite only), MANUAL BY PARTICIPANT (infinite only), MAN-
UAL_BY_TOPIC (finite and infinite)

BEST EFFORT and RELIABLE, only max_ blocking time=0
DataWriter: Yes, DataReader only supports BY _ RECEPTION__TIMESTAMP
Only KEEP_LAST

Only finite resource limits

® N o oo

The following are supported:
e heartbeat period
e heartbeats_per_ max_ samples
e max_heartbeat_retries
e max_send window_size
e rtps_object_id

9. DomainParticipant only

1.3.3 DDS API Support

For supported APIs, please refer to:
o C API Reference
e C++ API Reference

1.4 RTI Connext DDS Documentation

Throughout this document, we may suggest reading sections in other RTI Connext DDS
documents. These documents are in your RTI Connext DDS installation directory under
rti-connext-dds-<version>/doc/manuals. A quick way to find them is from RTI Launcher’s
Help panel, select “Browse Connext Documentation”.

Since installation directories vary per user, links are not provided to these documents on your local
machine. However, we do provide links to documents on the RTI Documentation site for users with
Internet access.

New users can start by reading Parts 1 (Introduction) and 2 (Core Concepts) in the RTI Connext
DDS Core Libraries User’s Manual. These sections teach basic DDS concepts applicable to all RTI
middleware, including RTI Connext DDS Professional and RTI Connext DDS Micro. You can
open the RTI Connext DDS Core Libraries User’s Manual from RTI Launcher’s Help panel.

The RTI Community provides many resources for users of DDS and the RTI Connext family of
products.

1.4. RTI Connext DDS Documentation 7

../api_c/html/index.html
../api_cpp/html/index.html
https://community.rti.com/documentation
https://community.rti.com/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

1.5 OMG DDS Specification

For the original DDS reference, the OMG DDS specification can be found in the OMG Specifications
under “Data Distribution Service”.

1.6 Other Products

RTI Connext DDS Micro is one of several products in the RTI Connext family of products:

RTI Connext DDS Micro Cert is a subset of RTI Connext DDS Micro. Connext DDS Micro Cert
does not include the following features because Certification Evidence is not yet available for them.
If you require Certification Evidence for any of these features, please contact RTI.

e C++ language API.

e Multi-platform support.

e Dynamic endpoint discovery.

o delete() APIs (e.g. delete_datareader()).
o Batching.

e UDP Transformations.

RTI Connext DDS Professional addresses the sophisticated databus requirements in complex sys-
tems including an API compliant with the Object Management Group (OMG) Data Distribution
Service (DDS) specification. DDS is the leading data-centric publish/subscribe (DCPS) messag-
ing standard for integrating distributed real-time applications. Connext DDS Professional is the
dominant industry implementation with benefits including:

e OMG-compliant DDS API
o Advanced features to address complex systems
o Advanced Quality of Service (QoS) support
e Comprehensive platform and network transport support
e Seamless interoperability with rtime
RTI Connext DDS Professional includes rich integration capabilities:
e Data transformation

o Integration support for standards including JMS, SQL databases, file, socket, Excel, OPC,
STANAG, LabVIEW, Web Services and more

o Ability for users to create custom integration adapters
e Optional integration with Oracle, MySQL and other relational databases
o Tools for visualizing, debugging and managing all systems in real-time

RTI Connext DDS Professional also includes a rich set of tools to accelerate debugging and testing
while easing management of deployed systems. These components include:

1.5. OMG DDS Specification 8

https://www.omg.org/spec

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e Administration Console
e Distributed Logger

o Monitor

e Monitoring Library

¢ Recording Service

1.6. Other Products 9

Chapter 2

Installation

2.1 Installing the RTI Connext DDS Micro Package

RTI Connext DDS Micro is provided in two zip archives:
e rti_ connext_dds_micro-<version>-Unix.zip
e rti_connext_ dds_micro-<version>-Windows.zip
where <version> matches the product version, such as 2.4.14.0.

The only difference between the two archives is the line endings in the source code. The archive
ending in Unix uses LFline endings, and the archive ending in Windows CRLF line endings.

RTI Connext DDS Micro requires a Java Run-Time Environment (JRE) to run rtiddsgen and
version 1.8.121 or better is required. Note that JRE 1.9 and higher is not supported. If a compatible
JRE run-time environment is not already installed a compatible JRE can be installed from one of
the following bundles:

e rti_connext_ dds_micro-<version>-jre-darwin.zip — JRE for Darwin 32 and 64 Bit
e rti_ connext_ dds micro-<version>-jre-i86Linux.zip — JRE for 32 bit Linux

e rti_connext_ dds_micro-<version>-jre-i86Win32.zip — JRE for 32 bit Windows

e rti_connext_ dds micro-<version>-jre-x64Linux.zip — JRE for 64 bit Linux

e rti_connext_ dds_micro-<version>-jre-x64Win64.zip — JRE for 64 bit Windows

Once installed, you will see a directory /me_bundle_name/-<version>. in the installation direc-
tory. This installation directory contains this documentation, the rtiddsgen code generation tool,
examples, and source code.

10

RTI Connext DDS Micro Documentation, Version 2.4.14.0

2.2 Setting Up Your Environment

The RTIMEHOME environment variable must be set to the installation directory path for RTIT Connext
DDS Micro.

2.3 Building Connext DDS Micro

This section is for users who are already familiar with CMake and may have built earlier versions
of Connext DDS Micro. The sections following describe the process in detail and are recommended
for everyone building Connext DDS Micro.

This section assumes that the Connext DDS Micro source-bundle has been downloaded and installed
and that CMake is available.

1. Make sure CMake is installed and available.
2. Run rtime-make.

On UNIX®, Linux®, and macOS® systems:

cd <install directory>
you should see directories such as rtiddsgen/ doc/ src/ include/
and a file CMakeLists.txt

resource/scripts/rtime-make --target self --name i86Linux4gcc7.3.0 \
-G "Unix Makefiles" --build

On Windows® systems:

cd <install directory>
you should see directories such as rtiddsgen\ doc\ src\ include\
and a file CMakeLists.txt

resource\scripts\rtime-make --target self --name i86Win32VS2015 \
-G "NMake Makefiles" --build

3. You will find the compiled Connext DDS Micro libraries here:
On UNIX-based systems:

<rti_me install directory>/1ib/i86Linux4gcc7.3.0

On Windows systems:

<rti_me install directory>\1ib\i86Win32VS2015

NOTE: rtime-make uses the platform specified with --name to determine a few settings needed by
Connext DDS Micro. Please refer to Preparing for a Build for details.

For help, enter:

2.2. Setting Up Your Environment 11

https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

resource\scripts\rtime-make --help

To list available targets, enter:

resource\scripts\rtime-make --list

For help for a specific target, except self, enter:

resource\scripts\rtime-make --target <target> --help

2.3. Building Connext DDS Micro 12

Chapter 3

Getting Started

3.1 Define a Data Type

To distribute data using Connext DDS Micro, you must first define a data type, then run the
rtiddsgen utility. This utility will generate the type-specific support code that Connext DDS Micro
needs and the code that makes calls to publish and subscribe to that data type.

Connext DDS Micro accepts types definitions in Interface Definition Language (IDL) format.

For instance, the HelloWorld examples provided with Connext DDS Micro use this simple type,
which contains a string “msg” with a maximum length of 128 chars:

struct HelloWorld
{

string<128> msg;
};

For more details, see Data Types in the User’s Manual.

3.2 Generate Type Support Code with rtiddsgen

You will provide your IDL as an input to rtiddsgen. rtiddsgen supports code generation for the
following standard types:

e octet, char, wchar
e short, unsigned short
e long, unsigned long

o long long, unsigned long long float

13

RTI Connext DDS Micro Documentation, Version 2.4.14.0

double, long double
boolean

string

struct

array

enum

wstring

sequence

union

typedef

value type

The script to run rtiddsgen is in <your__top_ level _dir> /rtiddsgen/scripts.

To generate support code for data types in a file called HelloWorld.idl:

rtiddsgen -micro -language C -replace HelloWorld.idl

Run rtiddsgen -help to see all available options. For the options used here:

The -micro option is necessary to generate support code specific to Connext DDS Micro,
as rtiddsgen is also capable of generating support code for Connext DDS, and the generated
code for the two are different. Note that RTT Connext DDS Micro and Connext DDS Micro
use the same rtiddsgen and similar code is generated. However, when the generated code is
compiled with RTT__CERT certain APIs are excluded.

The -language option specifies the language of the generated code. Connext DDS Micro
supports C and C++ (with -language C++).

The -replace option specifies that the new generated code will replace, or overwrite, any
existing files with the same name.

rtiddsgen generates the following files for an input file HelloWorld.idl:

HelloWorld.h and HelloWorld.c. Operations to manage a sample of the type, and a DDS
sequence of the type.

HelloWorldPlugin.h and HelloWorldPlugin.c. Implements the type-plugin interface
defined by Connext DDS Micro. Includes operations to serialize and deserialize a sample of
the type and its DDS instance keys.

HelloWorldSupport.h and HelloWorldSupport.c. Support operations to generate a
type-specific a DataWriter and DataReader, and to register the type with a DDS Domain-
Participant.

3.2

Generate Type Support Code with rtiddsgen 14

RTI Connext DDS Micro Documentation, Version 2.4.14.0

3.3

Configure UDP Transport

You may need to configure the UDP transport component that is pre-registered by RTI Connext
DDS Micro. To change the properties of the UDP transport, first the UDP component has be un-
registered, then the properties have to be updated, and finally the component must be re-registered
with the updated properties.

Example code:

Unregister the pre-registered UDP component:

/* Unregister the pre-registered UDP component */
if (!RT_Registry_unregister(registry, "_udp", NULL, NULL))
{
/* fatlure */
b

Configure UDP transport properties:

struct UDP_InterfaceFactoryProperty *udp_property = NULL;

udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof (struct UDP_InterfaceFactoryProperty));

if (udp_property != NULL)

{
*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* allow_interface: Names of network interfaces allowed to send/receive.
* Allow one loopback (lo) and one NIC (ethO).
*/
REDA_StringSeq_set_maximum(&udp_property->allow_interface,2);
REDA_StringSeq_set_length(&udp_property->allow_interface,?2);

*REDA_StringSeq_get_reference (&udp_property->allow_interface,0) = DDS_String_
—dup("lo");

«REDA_StringSeq_get_reference (&udp_property->allow_interface,1)
—dup("eth0");
}
else

{

DDS_String_

/* fatlure */
}

Re-register UDP component with updated properties:

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)udp_property, NULL))

/* failure */

For more details, see the Transports section in the User’s Manual.

3.3.

Configure UDP Transport 15

RTI Connext DDS Micro Documentation, Version 2.4.14.0

3.4 Create DomainParticipant, Topic, and Type

A DomainParticipantFactory creates DomainParticipants, and a DomainParticipant itself is the
factory for creating Publishers, Subscribers, and Topics.

When creating a DomainParticipant, you may need to customize DomainParticipantQos, notably
for:

¢ Resource limits. Default resource limits are set at minimum values.
e Initial peers.

o Discovery. The name of the registered discovery component (typically “dpde” or “dpse”)
must be assigned to DiscoveryQosPolicy’s name. Please note that in Connext DDS Micro
Cert, only the DPSE discovery plugin is supported.

e Participant Name. Every DomainParticipant is given the same default name. Must be
unique when using DPSE discovery.

Example code:

e Create a DomainParticipant with configured DomainParticipantQos:

DDS_DomainParticipant *participant = NULL;
struct DDS_DomainParticipantQos dp_qos =
DDS_DomainParticipantQos_INITIALIZER;

/* DDS domain of DomatinParticipant */
DDS_Long domain_id = O;

/* Name of your regtistered Discovery component */
if (!RT_ComponentFactoryIld_set_name(&dp_qos.discovery.discovery.name, "dpde"))
{
/* failure */
}

/* Initial peers: use only default multicast peer */

DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers,1);

DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers,1);

*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers,0) =
DDS_String_dup("239.255.0.1");

/* Resource limits */
dp_qos.resource_limits.max_destination_ports = 32;
dp_qos.resource_limits.max_receive_ports = 32;
dp_qos.resource_limits.local_topic_allocation = 1;
dp_qos.resource_limits.local_type_allocation = 1;
dp_qos.resource_limits.local_reader_allocation = 1;
dp_qos.resource_limits.local_writer_allocation = 1;
dp_qos.resource_limits.remote_participant_allocation = 8;

(continues on next page)

3.4. Create DomainParticipant, Topic, and Type 16

../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/structDDS__DomainParticipantQos.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DomainParticipantQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

dp_qos.resource_limits.remote_reader_allocation
dp_qos.resource_limits.remote_writer_allocation

8;
8;

/* Participant name */
strcpy(dp_qos.participant_name.name, "Participant_1");

participant =
DDS_DomainParticipantFactory_create_participant(factory,
domain_id,
&dp_qos,
NULL,
DDS_STATUS_MASK_NONE) ;
if (participant == NULL)
{
/* failure */
b

3.4.1 Register Type

Your data types that have been generated from IDL need to be registered with the DomainPar-
ticipants that will be using them. Each registered type must have a unique name, preferably the
same as its IDL defined name.

DDS_ReturnCode_t retcode;

retcode = DDS_DomainParticipant_register_type(participant,
"HelloWorld",
HelloWorldTypePlugin_get());
if (retcode !'= DDS_RETCODE_OK)
{
/* failure */
}

3.4.2 Create Topic of Registered Type
DDS Topics encapsulate the types being communicated, and you can create Topics for your type
once your type is registered.

A topic is given a name at creation (e.g. “Example HelloWorld”). The type associated with the
Topic is specified with its registered name.

DDS_Topic *topic = NULL;

topic = DDS_DomainParticipant_create_topic(participant,
"Example HelloWorld",
"HelloWorld",
&DDS_TOPIC_QOS_DEFAULT,
NULL,

(continues on next page)

3.4. Create DomainParticipant, Topic, and Type 17

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

DDS_STATUS_MASK_NONE) ;

if (topic == NULL)
{

/* failure */
}

3.4.3 DPSE Discovery: Assert Remote Participant

DPSE Discovery relies on the application to specify the other, or remote, DomainParticipants that
its local DomainParticipants are allowed to discover. Your application must call a DPSE API
for each remote participant to be discovered. The API takes as input the name of the remote
participant.

/* Enable discovery of remote participant with name Participant_2 */
retcode = DPSE_RemoteParticipant_assert(participant, "Participant_2");
if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

For more information, see the DDS Domains section in the User’s Manual.

3.5 Create Publisher

A publishing application needs to create a DDS Publisher and then a DataWriter for each Topic
it wants to publish.

In Connext DDS Micro, PublisherQos in general contains no policies that need to be customized,
while DataWriterQos does contain several customizable policies.

e Create Publisher:

DDS_Publisher *publisher = NULL;

publisher = DDS_DomainParticipant_create_publisher(participant,
&DDS_PUBLISHER_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE) ;

if (publisher == NULL)

{

/* fatlure */

}

For more information, see the Sending Data section in the User’s Manual.

3.5. Create Publisher 18

../../api_c/html/group__DPSEModule.html
../../api_c/html/structDDS__PublisherQos.html
../../api_c/html/structDDS__DataWriterQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

3.6 Create DataWriter

DDS_DataWriter *datawriter = NULL;
struct DDS_DataWriterQos dw_qos = DDS_DataWriterQos_INITIALIZER;
struct DDS_DataWriterListener dw_listener = DDS_DataWriterListener_ INITIALIZER;

/* Configure writer Qos */

dw_qgos.protocol.rtps_object_id = 100;

dw_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

dw_qos.resource_limits.max_samples_per_instance = 2;

dw_qos.resource_limits.max_instances = 2;

dw_qos.resource_limits.max_samples =
dw_qgos.resource_limits.max_samples_per_instance * dw_qos.resource_limits.max_

—instances;

dw_qos.history.depth = 1;

dw_qos.durability.kind = DDS_VOLATILE_DURABILITY_QOS;

dw_qos.protocol.rtps_reliable_writer.heartbeat_period.sec = O;

dw_qos.protocol.rtps_reliable_writer.heartbeat_period.nanosec = 250000000;

/* Set enabled listener callbacks */
dw_listener.on_publication_matched = HelloWorldPublisher_on_publication_matched;

datawriter =
DDS_Publisher_create_datawriter (publisher,
topic,
&dw_qos,

&dw_listener,
DDS_PUBLICATION MATCHED_ STATUS);
if (datawriter == NULL)
{
/* failure */
}

The DataWriterListener has its callbacks selectively enabled by the DDS status mask. In the exam-
ple, the mask has set the on_ publication_matched status, and accordingly the DataWriterListener
has its on_ publication_ matched assigned to a callback function.

void HelloWorldPublisher_on_publication_matched(void *listener_data,
DDS_DataWriter * writer,
const struct DDS_
—PublicationMatchedStatus *status)

{
/* Print on match/unmatch */
if (status->current_count_change > 0)
{
printf ("Matched a subscriber\n");
}
else
{
printf ("Unmatched a subscriber\n");
}
¥

3.6. Create DataWriter 19

../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/structDDS__DataWriterListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

3.6.1 DPSE Discovery: Assert Remote Subscription

A publishing application using DPSE discovery must specify the other DataReaders that its
Data Writers are allowed to discover. Like the API for asserting a remote participant, the DPSE API
for asserting a remote subscription must be called for each remote DataReader that a DataWriter
may discover.

Whereas asserting a remote participant requires only the remote Participant’s name, asserting a
remote subscription requires more configuration, as all QoS policies of the subscription necessary
to determine matching must be known and thus specified.

struct DDS_SubscriptionBuiltinTopicData rem_subscription_data =
DDS_SubscriptionBuiltinTopicData_INITIALIZER;

/* Set Reader's protocol.rtps_object_id */
rem_subscription_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 200;

rem_subscription_data.topic_name = DDS_String_dup("Example HelloWorld");
rem_subscription_data.type_name = DDS_String_dup("HelloWorld");

rem_subscription_data.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

retcode = DPSE_RemoteSubscription_assert(participant,
"Participant_2",
&rem_subscription_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

—get(),
NULL)));
if (retcode !'= DDS_RETCODE_OK)
{
/* failure */
}

3.6.2 Writing Samples

Within the generated type support code are declarations of the type-specific Data Writer. For the
HelloWorld type, this is the HelloWorldDataWriter.

Writing a HelloWorld sample is done by calling the write API of the HelloWorldDataWriter.

HelloWorldDataWriter *hw_datawriter;
DDS_ReturnCode_t retcode;
HelloWorld *sample = NULL;

/* Create and set sample */
sample = HelloWorld_create();
if (sample == NULL)
{
/* failure */
}
sprintf (sample->msg, "Hello World!");

(continues on next page)

3.6. Create DataWriter 20

../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

/* Write sample */
hw_datawriter = HelloWorldDataWriter_narrow(datawriter) ;

retcode = HelloWorldDataWriter_write(hw_datawriter, sample, &DDS_HANDLE_NIL);
if (retcode !'= DDS_RETCODE_OK)
{
/* failure */
}

For more information, see the Sending Data section in the User’s Manual.

3.7 Create Subscriber

A subscribing application needs to create a DDS Subscriber and then a DataReader for each Topic
to which it wants to subscribe.

In Connext DDS Micro, SubscriberQos in general contains no policies that need to be customized,
while DataReaderQos does contain several customizable policies.

DDS_Subscriber *subscriber = NULL;

subscriber = DDS_DomainParticipant_create_subscriber(participant,
&DDS_SUBSCRIBER_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE) ;

if (subscriber == NULL)

{

/* failure */
}

For more information, see the Receiving Data section in the User’s Manual.

3.8 Create DataReader

DDS_DataReader *datareader = NULL;
struct DDS_DataReaderQos dr_qos = DDS_DataReaderQos_INITIALIZER;
struct DDS_DataReaderListener dr_listener = DDS_DataReaderListener_ INITIALIZER;

/* Configure Reader Qos */
dr_qos.protocol.rtps_object_id = 200;
dr_qos.resource_limits.max_instances = 2;
dr_qos.resource_limits.max_samples_per_instance = 2;
dr_qos.resource_limits.max_samples =

(continues on next page)

3.7. Create Subscriber 21

../../api_c/html/structDDS__SubscriberQos.html
../../api_c/html/structDDS__DataReaderQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

dr_qos.resource_limits.max_samples_per_instance * dr_qos.resource_limits.max_
—instances;
dr_qos.reader_resource_limits.max_remote_writers = 10;
dr_qos.reader_resource_limits.max_remote_writers_per_instance = 10;
dr_qos.history.depth = 1;
dr_qos.durability.kind = DDS_VOLATILE_DURABILITY_QOS;
dr_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

/* Set listener callbacks */
dr_listener.on_data_available = HelloWorldSubscriber_on_data_available;
dr_listener.on_subscription_matched = HelloWorldSubscriber_on_subscription_matched;

datareader = DDS_Subscriber_create_datareader (subscriber,
DDS_Topic_as_topicdescription(topic),
&dr_qos,
&dr_listener,
DDS_DATA_AVAILABLE_STATUS | DDS_

—+SUBSCRIPTION_MATCHED_STATUS) ;

if (datareader == NULL)

{

/* failure */
}

The DataReaderListener has its callbacks selectively enabled by the DDS status mask.
In the example, the mask has set the DDS SUBSCRIPTION_MATCHED_STATUS and
DDS_DATA_AVAILABLE_STATUS statuses, and accordingly the DataReaderListener has its
on_ subscription_matched and on_ data_ available assigned to callback functions.

void HelloWorldSubscriber_on_subscription_matched(void *listener_data,
DDS_DataReader * reader,
const struct DDS_
—SubscriptionMatchedStatus *status)

{
if (status->current_count_change > 0)
{
printf("Matched a publisher\n");
¥
else
{
printf ("Unmatched a publisher\n");
}
}

void HelloWorldSubscriber_on_data_available(void* listener_data,
DDS_DataReader* reader)
{
HelloWorldDataReader *hw_reader = HelloWorldDataReader_ narrow(reader) ;
DDS_ReturnCode_t retcode;
struct DDS_SampleInfo *sample_info = NULL;
HelloWorld *sample = NULL;

(continues on next page)

3.8. Create DataReader 22

../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/group__DDSStatusTypesModule.html
../../api_c/html/group__DDSStatusTypesModule.html
../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

struct DDS_SampleInfoSeq info_seq =
DDS_SEQUENCE_INITIALIZER(struct DDS_SampleInfo);

struct HelloWorldSeq sample_seq =
DDS_SEQUENCE_INITIALIZER (HelloWorld) ;

const DDS_Long TAKE_MAX_SAMPLES = 32;
DDS_Long 1i;

retcode = HelloWorldDataReader_take(hw_reader,
&sample_seq, &info_seq, TAKE_MAX_SAMPLES,
DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

if (retcode != DDS_RETCODE_OK)

{
printf("failed to take data: %d\n", retcode);
goto done;

}

/* Print each wvalid sample taken */
for (i = 0; i < HelloWorldSeq_get_length(&sample_seq); ++i)

{
sample_info = DDS_SampleInfoSeq_get_reference(&info_seq, 1i);
if (sample_info->valid_data)
{
sample = HelloWorldSeq_get_reference(&sample_seq, 1i);
printf ("\nSample received\n\tmsg: %s\n", sample->msg);
X
else
{
printf("not valid data\n");
X
3

HelloWorldDataReader_return_loan(hw_reader, &sample_seq, &info_seq);

done:
HelloWorldSeq_finalize(&sample_seq);
DDS_SampleInfoSeq_finalize(&info_seq) ;

3.8.1 DPSE Discovery: Assert Remote Publication

A subscribing application using DPSE discovery must specify the other DataWriters that its
DataReaders are allowed to discover. Like the APT for asserting a remote participant, the DPSE API
for asserting a remote publication must be called for each remote Data Writer that a DataReader
may discover.

3.8. Create DataReader 23

../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

struct DDS_PublicationBuiltinTopicData rem_publication_data =
DDS_PublicationBuiltinTopicData_INITIALIZER;

/* Set Writer's protocol.rtps_object_id */
rem_publication_data.key.value[DDS_BUILTIN_TOPIC_KEY OBJECT_ID] = 100;

rem_publication_data.topic_name = DDS_String_dup("Example HelloWorld");
rem_publication_data.type_name = DDS_String_dup("HelloWorld");

rem_publication_data.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

retcode = DPSE_RemotePublication_assert(participant,
"Participant_1",
&rem_publication_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

—get(),
NULL)));
if (retcode !'= DDS_RETCODE_OK)
{
/* failure */
¥

Asserting a remote publication requires configuration of all QoS policies necessary to determine
matching.

3.8.2 Receiving Samples

Accessing received samples can be done in a few ways:
e Polling. Do read or take within a periodic polling loop.

e Listener. When a new sample is received, the DataReaderListener’s on_ data_ available is
called. Processing is done in the context of the middleware’s receive thread. See the above
HelloWorldSubscriber _on_ data__available callback for example code.

o« Waitset. Create a waitset, attach it to a status condition with the data_ available status
enabled, and wait for a received sample to trigger the waitset. Processing is done in the
context of the user’s application thread. (Note: the code snippet below is taken from the
shipped HelloWorld_dpde_ waitset example).

DDS_WaitSet *waitset = NULL;

struct DDS_Duration_t wait_timeout = { 10, 0 }; /* 10 seconds */

DDS_StatusCondition *dr_condition = NULL;

struct DDS_ConditionSeq active_conditions =
DDS_SEQUENCE_INITIALIZER(struct DDS_ConditionSeq) ;

if (!DDS_ConditionSeq_initialize(&active_conditions))
{

/* failure */
}

(continues on next page)

3.8. Create DataReader 24

../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

if (!DDS_ConditionSeq_set_maximum(&active_conditions, 1))
{

/* failure */
}

waitset = DDS_WaitSet _new();
if (waitset == NULL)
{
/* fatilure */
}

dr_condition = DDS_Entity_get_statuscondition(DDS_DataReader_as_entity(datareader));

retcode = DDS_StatusCondition_set_enabled_statuses(dr_condition,
DDS_DATA_AVAILABLE_STATUS);
if (retcode !'= DDS_RETCODE_OK)
{
/* failure */
}

retcode = DDS_WaitSet_attach_condition(waitset,
DDS_StatusCondition_as_condition(dr_condition));
if (retcode != DDS_RETCODE_OK)
{
/* fatilure */
}

retcode = DDS_WaitSet_wait(waitset, active_conditions, &wait_timeout);

switch (retcode) {

case DDS_RETCODE_OK:

{

/* This WaitSet only has a single condition attached to it

so we can implicitly assume the DataReader's status condition
to be active (with the enabled DATA_AVAILABLE status) upon
successful return of wait().
If more than one conditions were attached to the WatitSet,
the returned sequence must be examined using the
commented out code instead of the following.

* %X X X % *

*/
HelloWorldSubscriber_take_data(HelloWorldDataReader_narrow(datareader));

/%
DDS_Long active_len = DDS_ConditionSeq_get_length(&active_conditions);
for (¢ = active_len - 1; ¢ >= 0; --1)
{
DDS Condition *active_condition =
*DDS_ConditionSeq_get_reference(&active_conditions, 1);

if (active_condition ==

(continues on next page)

3.8. Create DataReader 25

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

DDS_StatusCondition_as_condition(dr_condition))

{
total_samples += HelloWorldSubscriber_take_data(
HelloWorldDataReader_narrow(datareader));
}
else i1f (active_condition == some_other_condition)
{
do_something_else();
}
}
*/
break;
}
case DDS_RETCODE_TIMEQUT:
{
printf("WaitSet_wait timed out\n");
break;
}
default:
{
printf ("ERROR in WaitSet_wait: retcode=%d\n", retcode);
break;
}

3.8.3 Filtering Samples

In lieu of supporting Content-Filtered Topics, a DataReaderListener in Connext DDS Micro pro-
vides callbacks to do application-level filtering per sample.

e on_ before_sample_ deserialize. Through this callback, a received sample is presented
to the application before it has been deserialized or stored in the DataReader’s queue.

e on_ before_sample__commit. Through this callback, a received sample is presented to the
application after it has been deserialized but before it has been stored in the DataReader’s
queue.

You control the callbacks’ sample_ dropped parameter; upon exiting either callback, the DataReader
will drop the sample if sample_dropped is true. Consequently, dropped samples are not stored in
the DataReader’s queue and are not available to be read or taken.

Neither callback is associated with a DDS Status. Rather, each is enabled when assigned, to a
non-NULL callback.

NOTE: Because it is called after the sample has been deserialized, on_ before sample commit
provides an additional sample_info parameter, containing some of the usual sample information
that would be available when the sample is read or taken.

The HelloWorld__dpde example’s subscriber has this on_ before_sample commit callback:

3.8. Create DataReader 26

../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__SampleLostStatus.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

DDS_Boolean HelloWorldSubscriber_on_before_sample_commit (
void *listener_data,
DDS_DataReader *reader,
const void *const sample,
const struct DDS_SampleInfo *const sample_info,
DDS_Boolean *dropped)

{
HelloWorld *hw_sample = (HelloWorld *)sample;
/* Drop samples with even-numbered count in msg */
HelloWorldSubscriber_filter_sample(hw_sample, dropped);
if (*dropped)
{
printf ("\nSample filtered, before commit\n\tDROPPED - msg: %s\n",
hw_sample->msg) ;
}
return DDS_BOOLEAN_TRUE;
}

dr_listener.on_before_sample_commit =
HelloWorldSubscriber_on_before_sample_commit;

For more information, see the Receiving Data section in the User’s Manual.

3.9 Examples

Connext DDS Micro provides buildable example applications, in the example/ directory. Each
example comes with instructions on how to build and run an application.

In addition to the provided examples, the RTT Code Generator available with Connext DDS Micro
can generate example DDS applications with a type definition file as input. For more information
read the guide in Ezample Generation.

Note that by default, all the examples link against release libraries. To build release libraries:

./resource/scripts/rtime-make --name x64Darwinl7clang9.0 --target self --build --config;
—Release

To build the examples against the debug libraries, specify the DEBUG option:

make DEBUG=Y

o« HelloWorld_ transformations. Same as HelloWorld dpde, except it uses UDP transfor-
mations to send encrypted packets using OpenSSL.

3.9. Examples 27

RTI Connext DDS Micro Documentation, Version 2.4.14.0

« RTPS. Example of an RTPS emitter that bypasses the DDS module and APIs to send RTPS
discovery and user data.

e Latency. Measures the end-to-end latency of Connext DDS Micro.
e Throughput. Measures the end-to-end throughput of Connext DDS Micro.

3.10 Example Generation

The RTI Code Generator available with Connext DDS Micro can generate DDS example applica-
tions with a type definition file as input.

Note that before running rtiddsgen, you might need to add <Connext DDS Micro install
folder> /rtiddsgen/scripts to your path environment variable folder.

To generate an example:

rtiddsgen -example -language <C|C++> [-namespace] <file with type definition>

This command generates an example using the default example template, which uses the Dynamic
Participant Dynamic Endpoint (DPDE) discovery plugin.

rtiddsgen accepts the following options:
o -example: Generates type files, example files, and CMakelists files.
o -language <C|C++>: Generates C or C++ code.
e -namespace: Enables C+4 namespaces when the language option is C++.

The generated example can be compiled using CMake <https://cmake.org/>_ and the CMake-
lists.txt file generated by the RTI Code Generator. A README.txt file is also generated with a
description of the example and instructions for how to compile and run the examples.

The RTI Code Generator can also generate examples using custom templates by using the option
—exampleTemplate <templateName>.

To generate an example using a custom template instead of the default one:

rtiddsgen -example -exampleTemplate <template name> -language <C|C++> [-namespace] <file
—with type definition>

To see the list of the available templates, use the following command:

rtiddsgen -showTemplates

The output from the command will look similar to this:

List of example templates per language:
- C:
- cert

(continues on next page)

3.10. Example Generation 28

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

- dpse
- static_udp
- waitsets

- dpse

- waitsets
- C++ Namespace:

- dpse

- waitsets

The following command will generate an example in the C language, using the ‘waitsets’ custom
template instead of the default template:

rtiddsgen -example -exampleTemplate waitsets -language C <file with type definition>

3.10.1 Description of Examples

All examples consist of a publication and subscription pair to send and receive the type provided
by user. Two applications are compiled: one to send samples and another to receive samples.

e Default template Discovery of endpoints is done with the dynamic-endpoint discovery.
Only the UDP and INTRA transports are enabled. The subscriber application creates
a DataReader, which uses a listener to receive notifications about new samples and
matched publishers. These notifications are received in the middleware thread (instead
of the application thread).

e cert An example that only uses APIs that are compatible with Connext DDS Micro Cert.

e dpse The only difference from the default template is that the discovery of endpoints is done
with static-endpoint discovery. Static-endpoint discovery uses function calls to statically
assert information about remote endpoints belonging to remote DomainParticipants.

o static_ udp The only difference from the default template is that this example uses a static
UDP interface configuration. Using this API, the UDP transport is statically configured.
This is useful in systems that are not able to return the installed UDP interfaces (name,
IP address, mask...).

o waitsets The only difference from the default template is that the Subscriber application
creates a DataReader that uses a Waitset (instead of a listener) to receive notifications
about new samples and matched publishers. These notifications are received in the
middleware thread (instead of the application thread).

3.10. Example Generation 29

RTI Connext DDS Micro Documentation, Version 2.4.14.0

3.10.2 How to Compile the Generated Examples
Before compiling, set the environment variable RTIMEHOME to the Connext DDS Micro instal-
lation directory.

Depending on the number of network interfaces installed on the local machine, you might need to
restrict which interfaces are used by Connext DDS Micro.

Use the option -udp_interface <interface name> when running the example.

The Connext DDS Micro source bundle includes rtime-make (on Linux and macOS systems) or
rtime-make.bat (on Windows systems) to simplify invocation of CMake. This script is a convenient
way to invoke CMake with the correct options. For example:

Linux

cd "<${envMap.idlFileName}Application directory>"

rtime-make --config <Debug|Release> --build --name x64Linux3gcc4.8.2 --target Linux --
—source-dir . \
-G "Unix Makefiles" --delete [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true]

macOS

cd "<${envMap.idlFileName}Application directory>"

rtime-make --config <Debug|Release> --build --name x64Darwinl7.3.0Clang9.0.0 --target
—Darwin --source-dir . \
-G "Unix Makefiles" --delete [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true]

Windows

cd "<${envMap.idlFileName}Application directory>"

rtime-make.bat --config <Debug|Release> --build --name i86Win32VS2010 --target Windows --
—source-dir . \

-G "Visual Studio 10 2010" --delete [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE_eq_
—true]

The executable can be found in the directory ‘objs’.

It is also possible to compile using CMake, e.g., when the Connext DDS Micro source bundle is not
installed.

Linux

cmake [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true] [-DCMAKE_BUILD_TYPE=
—<Debug|Release>] -G "Unix Makefiles" \
-B./<your build directory> -H. -DRTIME_TARGET_NAME=x64Linux3gcc4.8.2"

cmake --build ./<your build directory> [--config <Debug|Release>]

macOS

3.10. Example Generation 30

RTI Connext DDS Micro Documentation, Version 2.4.14.0

cmake [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true] [-DCMAKE_BUILD_TYPE=
—<Debug|Release>] -G "Unix Makefiles" \
-B./<your build directory> -H. -DRTIME_TARGET_NAME=x64Darwinl7.3.0Clang9.0.0"

cmake --build ./<your build directory> [--config <Debug|Release>]

Windows

cmake [-DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true] [-DCMAKE_BUILD_TYPE=
—<Debug|Release>] -G "Visual Studio 10 2010" \
-B./<your build directory> -H. -DRTIME_TARGET_NAME=i86Win32VS2010"

cmake --build .\<your build directory> [--config <Debug|Release>]

The executable can be found in the directory ‘objs’.
The following options are accepted:

e -DRTIME_IDL_ADD_REGENERATE_TYPESUPPORT_RULE=true adds a rule to regenerate type sup-
port plugin source files if the input file with the type definition changes. Default value is ‘false’.

3.10.3 How to Run the Generated Examples

By default, the example uses all available interfaces to receive samples. This can cause commu-
nication problems if the number of available interfaces is greater than the maximum number of
interfaces supported by Connext DDS Micro. For this reason, it is recommended to restrict the
number of interfaces used by the application.

Use the option —udp_interface <interface name> when running the example.

For example, if the example has been compiled for Linux i86Linux2.6gcc4.4.5, run the subscriber
with this command:

objs/x64Linux3gcc4.8.2/<Type definition file name>_subscriber [-domain <Domain_ID>] [-
—peer <address>] \
[-sleep <sleep_time>] [-count <seconds_to_run>] [-udp_intf <interface name>]

and run the publisher with this command:

objs/x64Linux3gcc4.8.2/<Type definition file name>_publisher [-domain <Domain_ID> -peer
—<address>] \
[-sleep <sleep_time>] [-count <seconds_to_run>] [-udp_intf <interface name>]

3.10. Example Generation 31

Chapter 4

User’s Manual

4.1 Data Types

How data is stored or laid out in memory can vary from language to language, compiler to com-
piler, operating system to operating system, and processor to processor. This combination of lan-
guage/compiler/operating system/processor is called a platform. Any modern middleware must be
able to take data from one specific platform (for example, C/gcc.7.3.0/Linux®/PPC) and transpar-
ently deliver it to another (for example, C/gcc.7.3.0/Linux/Arm® v8). This process is commonly
called serialization/deserialization, or marshalling/demarshalling.

Connext DDS Micro data samples sent on the same Connext DDS Micro topic share a data type.
This type defines the fields that exist in the DDS data samples and what their constituent types
are. The middleware stores and propagates this meta-information separately from the individual
DDS data samples, allowing it to propagate DDS samples efficiently while handling byte ordering
and alignment issues for you.

To publish and/or subscribe to data with Connext DDS Micro, you will carry out the following
steps:

1. Select a type to describe your data and use the RTI Code Generator to define a type at
compile-time using a language-independent description language.

The RTI Code Generator accepts input in the following formats:

« OMG IDL. This format is a standardized component of the DDS specification. It
describes data types with a C++-like syntax. A link to the latest specification can be
found here: https://www.omg.org/spec/IDL.

e XML in a DDS-specific format. This XML format is terser, and therefore eas-
ier to read and write by hand, than an XSD file. It offers the general benefits of
XML-extensibility and ease of integration, while fully supporting DDS-specific data
types and concepts. A link to the latest specification, including a description of the
XML format, can be found here: https://www.omg.org/spec/DDS-XTypes/.

32

https://www.omg.org/spec/IDL
https://www.omg.org/spec/DDS-XTypes/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

o XSD format. You can describe data types with XML schemas (XSD). A link to
the latest specification, including a description of the XSD format, can be found here:
https://www.omg.org/spec/DDS-XTypes/.

Define a type programmatically at run time.

This method may be appropriate for applications with dynamic data description needs: ap-
plications for which types change frequently or cannot be known ahead of time.

2. Register your type with a logical name.
3. Create a Topic using the type name you previously registered.

If you've chosen to use a built-in type instead of defining your own, you will use the API
constant corresponding to that type’s name.

4. Create one or more DataWriters to publish your data and one or more DataReaders to
subscribe to it.

The concrete types of these objects depend on the concrete data type you've selected, in order
to provide you with a measure of type safety.

Whether publishing or subscribing to data, you will need to know how to create and delete (only
in Connext DDS Micro DDS data samples and how to get and set their fields. These tasks are
described in the section on Working with DDS Data Samples in the RTI Connext DDS Core
Libraries User’s Manual (available here if you have Internet access).

4.1.1 Introduction to the Type System

A user data type is any custom type that your application defines for use with RTI Connext DDS
Micro. Tt may be a structure, a union, a value type, an enumeration, or a typedef (or language
equivalents).

Your application can have any number of user data types. They can be composed of any of the
primitive data types listed below or of other user data types.

Only structures, unions, and value types may be read and written directly by Connext DDS Micro;
enums, typedefs, and primitive types must be contained within a structure, union, or value type. In
order for a DataReader and Data Writer to communicate with each other, the data types associated
with their respective Topic definitions must be identical.

e octet, char, wchar

 short, unsigned short

e long, unsigned long

e long long, unsigned long long
o float

¢ double, long double

e boolean

o enum (with or without explicit values)

4.1. Data Types 33

https://www.omg.org/spec/DDS-XTypes/
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Working_with_DDS_Data_Samples.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e bounded string and wstring
The following type-building constructs are also supported:
» module (also called a package or namespace)
e pointer
e array of primitive or user type elements

e bounded sequence of elements—a sequence is a variable-length ordered collection, such as a
vector or list

o typedef

e union

e struct

o value type, a complex type that supports inheritance and other object-oriented features

To use a data type with Connext DDS Micro, you must define that type in a way the middleware
understands and then register the type with the middleware. These steps allow Connext DDS
Micro to serialize, deserialize, and otherwise operate on specific types. They will be described in
detail in the following sections.

Sequences

A sequence contains an ordered collection of elements that are all of the same type. The operations
supported in the sequence are documented in the C API Reference and C++ API Reference HTML
documentation.

Elements in a sequence are accessed with their index, just like elements in an array. Indices start
at zero in all APIs. Unlike arrays, however, sequences can grow in size. A sequence has two sizes
associated with it: a physical size (the “maximum”) and a logical size (the “length”). The physical
size indicates how many elements are currently allocated by the sequence to hold; the logical size
indicates how many valid elements the sequence actually holds. The length can vary from zero up
to the maximum. Elements cannot be accessed at indices beyond the current length.

A sequence must be declared as bounded. A sequence’s “bound” is the maximum number of
elements that the sequence can contain at any one time. A finite bound is very important because
it allows RTI Connext DDS Micro to preallocate buffers to hold serialized and deserialized samples
of your types; these buffers are used when communicating with other nodes in your distributed
system.

The bound is either excplict or implicit:

1. An explicit bound is given directly in the IDL:

struct MyType
{
//Maximum of 32 longs
sequence<32> a_long_seq;
X

4.1. Data Types 34

../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

. An implicit bound uses the unbounded notation in IDL, but relies on the -sequenceSize

parameter passed to rtiddsgen for the maximum length:

struct MyType
{
sequence<long> a_long_seq;

}

By default, any unbounded sequences found in an IDL file will be given

a default bound of 100 elements. This default value can be overwritten

using *RTI Code Generator ‘s* **-sequenceSize** command-line argument

(see |rtiddsgen_um_cmdlineargs_verbose| in

the *RTI Code Generator User's Manual*, available |rtiddsgen_um_cmdlineargs| _
if you have Internet access).

Strings and Wide Strings

Connext DDS Micro supports both strings consisting of single-byte characters (the IDL string type)
and strings consisting of wide characters (IDL wstring). The wide characters supported by Connext
DDS Micro are large enough to store 4-byte Unicode/UTF16 characters.

Like sequences, strings must be bounded. A string’s “bound” is its maximum length (not counting
the trailing NULL character in C and C++).

In C and Traditional C++, strings are mapped to char*. Optionally, the mapping in Traditional
C++ can be changed to std::string by generating code with the option -useStdString.

The bound is either excplict or implicit:

1.

An explicit bound is given directly in the IDL:

struct MyType

{
//Maximum of 32 bytes + NUL termination
string<32> a_string;

. An implicit bound uses the unbounded notation in IDL, but relies on the -stringSize parameter

passed to rtiddsgen for the maximum length:

struct MyType

{
// Unbounded notation, but not unbounded. Bound determined
// by the -stringSize parameter to rtiddsgen
string a_string;

By default, any unbounded string found in an IDL file will be given a
default bound of 255 elements. This default value can be overwritten
using *RTI Code Generator‘s* **-stringSize** command-line argument
(see |rtiddsgen_um_cmdlineargs_verbose| in the

(continues on next page)

4.1.

Data Types 35

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

RTI Code Generator User's Manual, available |rtiddsgen_um_cmdlineargs| _
if you have Internet access).

IDL String Encoding

The “Extensible and Dynamic Topic Types for DDS specification” (https://www.omg.org/spec/
DDS-XTypes/) standardizes the default encoding for strings to UTF-8. This encoding shall be
used as the wire format. Language bindings may use the representation that is most natural in
that particular language. If this representation is different from UTF-8, the language binding shall
manage the transformation to/from the UTF-8 wire representation.

As an extension, Connext DDS Micro offers ISO__8859 1 as an alternative string wire encoding.

This section describes the encoding for IDL strings across different languages in Connext DDS
Micro and how to configure that encoding.

o C, Traditional C++ (only in Connext DDS Micro)

IDL strings are mapped to a NULL-terminated array of DDS Char_ (char*). Users are
responsible for using the right character encoding (UTF-8 or ISO__8859 1) when populating
the string values. This applies to all generated code, DynamicData, and Built-in data types.
The middleware does not transform from the language binding encoding to the wire encoding.

IDL Wide Strings Encoding

The “Extensible and Dynamic Topic Types for DDS specification” (https://www.omg.org/spec/
DDS-XTypes/) standardizes the default encoding for wide strings to UTF-32. This encoding shall
be used as the wire format.

Wide-string characters have a size of 4 bytes on the wire with UTF-32 encoding.

Language bindings may use the representation that is most natural in that particular language. If
this representation is different from UTF-32, the language binding shall manage the transformation
to/from the UTF-32 wire representation.

o C, Traditional C++

IDL wide strings are mapped to a NULL-terminated array of DDS Wechar (DDS_Wchar*).
DDS_ WChar is an unsigned 4-byte integer. Users are responsible for using the right character
encoding (UTF-32) when populating the wide-string values. This applies to all generated
code, DynamicData, and Built-in data types. Connext DDS Micro does not transform from
the language binding encoding to the wire encoding.

4.1. Data Types 36

https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
../../api_c/html/group__DDSCdrTypesModule.html
../../api_c/html/group__DDSCdrTypesModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Sending Type Information on the Network

Connext DDS Micro can send type information the network using a concept called type objects. A
type objects is a description of a type suitable to network transmission, and is commonly used by
for example tools to visualize data from any application.

However, please note that Connext DDS Micro does not support sending type information on
the network. Instead, tools can load type information from XML files generated from IDL using
rtiddsgen. Please refer to the RTI Code Generator’s User’s Manual for more information (available
here if you have Internet access).

4.1.2 Creating User Data Types with IDL

You can create user data types in a text file using IDL (Interface Description Language). IDL is
programming-language independent, so the same file can be used to generate code in C and Tradi-
tional C++ (only Connext DDS Micro). RTI Code Generator parses the IDL file and automatically
generates all the necessary routines and wrapper functions to bind the types for use by Connext
DDS Micro at run time. You will end up with a set of required routines and structures that your
application and Connext DDS Micro will use to manipulate the data.

Please refer to the section on Creating User Data Types with IDL in the RTI Connext DDS Core
Libraries User’s Manual for more information (available here if you have Internet access).

Note: Not all features in RTI Code Generator are supported when generating code for Connext
DDS Micro, see Unsupported Features of rtiddsgen with Connext DDS Micro.

4.1.3 Working with DDS Data Samples

You should now understand how to define and work with data types. Now that you have chosen
one or more data types to work with, this section will help you understand how to create and
manipulate objects of those types.

In C:

You create and delete your own objects from factories, just as you create Connext DDS Micro
objects from factories. In the case of user data types, the factory is a singleton object called the
type support. Objects allocated from these factories are deeply allocated and fully initialized.

/* In the generated header file: */
struct MyData {
char* myString;
+;
/* In your code: */
MyData* sample = MyDataTypeSupport_create_data();
char* str = sample->myString; /*empty, non-NULL string*/

/* not support in Micro Cert */
MyDataTypeSupport_delete_data(sample) ;

4.1. Data Types 37

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/code_generator/html_files/RTI_CodeGenerator_UsersManual/index.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Creating_User_Data_Types_with_IDL.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.0

In Traditional C++:

Without the -constructor option, you create and delete objects using the TypeSupport factories.

MyData* sample = MyDataTypeSupport::create_data();
char* str = sample->myString; // empty, non-NULL string
/] ...

MyDataTypeSupport: :delete_data(sample);

Please refer to the section on Working with DDS Data Samples in the RTI Connext DDS Core
Libraries User’s Manual for more information (available here if you have Internet access).

4.2 DDS Entities

The main classes extend an abstract base class called a DDS Entity. Every DDS Entity has a set of
associated events known as statuses and a set of associated Quality of Service Policies (QosPolicies).
In addition, a Listener may be registered with the Entity to be called when status changes occur.
DDS FEntities may also have attached DDS Conditions, which provide a way to wait for status
changes. Figure 4.1: Overview of DDS Entities presents an overview in a UML diagram.

DomainParticipantFactory

ContentFilteredTopic

=<create=> (__'L:_C-re-?t:sffﬂ_:?

DomainParticipant | weereate>>

T3 MultiTopic

/

<<create>> .-

J <<creates> .
/ <<=greate=>
isher | / = -iber
Publisher e<oreate> V Subscriber
, ,—/'

™. Topic o~ =oreates |

- ., e H
<epreates> o]

. -
\\ f-‘/
. =ecreates: <<creaters .
Datallriter | ™~ - DataReader
. ‘-‘\ L ~
<<preate=> .. . - .
T ., e e =create=s
. o 7
e A £ |
) e . -
StatusCondition ReadCondition ==createss
QuervConditon

Figure 4.1: Overview of DDS Entities

Please note that RTI Connext DDS Micro does not support the following:
e MultiTopic
e ContentFilteredTopic

4.2. DDS Entities 38

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Working_with_DDS_Data_Samples.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e ReadCondition

¢ QueryConditions

For a general description of DDS FEntities and their operations, please refer to the DDS Entities
chapter in the RTI Connext DDS Core Libraries User’s Manual (available here if you have Internet
access). Note that RTI Connext DDS Micro does not support all APIs and QosPolicies; please
refer to the C API Reference and C++ API Reference documentation for more information.

4.3 Sending Data

This section discusses how to create, configure, and use Publishers and DataWriters to send data.
It describes how these FEntities interact, as well as the types of operations that are available for

them.

The goal of this section is to help you become familiar with the Entities you need for sending data.
For up-to-date details such as formal parameters and return codes on any mentioned operations,
please see the C API Reference and C++ API Reference documentation.

4.3.1 Preview: Steps to Sending Data

To send DDS samples of a data instance:

1. Create and configure the required Entities:

a. Create a DomainParticipant.

b. Register user data types with the DomainParticipant. For example, the

‘FooDataType’

. Use the DomainParticipant to create a Topic with the registered data type.
. Use the DomainParticipant to create a Publisher.
. Use the Publisher or DomainParticipant to create a Data Writer for the Topic.

. Use a type-safe method to cast the generic DataWriter created by the Publisher to a

type-specific DataWriter. For example, ‘FooDataWriter’. Optionally, register data
instances with the DataWriter. If the Topic’s user data type contain key fields, then
registering a data instance (data with a specific key value) will improve performance
when repeatedly sending data with the same key. You may register many different data
instances; each registration will return an instance handle corresponding to the specific
key value. For non-keyed data types, instance registration has no effect.

2. Every time there is changed data to be published:

a. Store the data in a variable of the correct data type (for instance, variable ‘Foo’ of the

type ‘FooDataType’).

b. Call the FooDataWriter’s write() operation, passing it a reference to the variable

‘Foo’.

4.3. Sending Data 39

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/DDS_Entities.htm
../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e For non-keyed data types or for non-registered instances, also pass in DDS__HAN-
DLE_ NIL.

e For keyed data types, pass in the instance handle corresponding to the instance
stored in ‘Foo’, if you have registered the instance previously. This means that the
data stored in ‘Foo’ has the same key value that was used to create instance handle.

c. The write() function will take a snapshot of the contents of ‘Foo’ and store it in Connext
DDS internal buffers from where the DDS data sample is sent under the criteria set by
the Publisher’s and DataWriter’s QosPolicies. If there are matched DataReaders, then
the DDS data sample will have been passed to the physical transport plug-in/device
driver by the time that write() returns.

4.3.2 Publishers

An application that intends to publish information needs the following Entities: DomainParticipant,
Topic, Publisher, and DataWriter. All Entities have a corresponding specialized Listener and a set
of QosPolicies. A Listener is how Connext DDS notifies your application of status changes relevant
to the Entity. The QosPolicies allow your application to configure the behavior and resources of
the Entity.

e A DomainParticipant defines the DDS domain in which the information will be made avail-
able.

o A Topic defines the name under which the data will be published, as well as the type (format)
of the data itself.

e An application writes data using a DataWriter. The DataWriter is bound at creation time
to a Topic, thus specifying the name under which the Data Writer will publish the data and
the type associated with the data. The application uses the Data Writer’s write() operation
to indicate that a new value of the data is available for dissemination.

o A Publisher manages the activities of several Data Writers. The Publisher determines when
the data is actually sent to other applications. Depending on the settings of various QosPoli-
cies of the Publisher and DataWriter, data may be buffered to be sent with the data of other
DataWriters or not sent at all. By default, the data is sent as soon as the DataWriter’s
write() function is called.

You may have multiple Publishers, each managing a different set of Data Writers, or you may
choose to use one Publisher for all your Data Writers.

4.3.3 DataWriters

To create a DataWriter, you need a DomainParticipant, Publisher, and a Topic.

You need a Data Writer for each Topic that you want to publish. For more details on all operations,
see the C API Reference and C++ API Reference documentation.

For more details on creating, deleting, and setting up Data Writers, see the DataWriters section in
the RTI Connext DDS Core Libraries User’s Manual (available here if you have Internet access).

4.3. Sending Data 40

../../api_c/html/index.html
../../api_cpp/html/index.html
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/DataWriters.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.3.4 Publisher QosPolicies

Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.3.5 DataWriter QosPolicies

Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.4 Receiving Data

This section discusses how to create, configure, and use Subscribers and DataReaders to receive
data. It describes how these objects interact, as well as the types of operations that are available
for them.

The goal of this section is to help you become familiar with the Entities you need for receiving data.
For up-to-date details such as formal parameters and return codes on any mentioned operations,
please see the C API Reference and C++ API Reference documentation.

4.4.1 Preview: Steps to Receiving Data

There are three ways to receive data:

» Your application can explicitly check for new data by calling a DataReader’s read() or take()
operation. This method is also known as polling for data.

e Your application can be notified asynchronously whenever new DDS data samples arrive—this
is done with a Listener on either the Subscriber or the DataReader. RTI Connext DDS
Micro will invoke the Listener’s callback routine when there is new data. Within the callback
routine, user code can access the data by calling read() or take() on the DataReader. This
method is the way for your application to receive data with the least amount of latency.

e Your application can wait for new data by using Conditions and a WaitSet, then calling
wait(). Connext DDS Micro will block your application’s thread until the criteria (such as
the arrival of DDS samples, or a specific status) set in the Condition becomes true. Then
your application resumes and can access the data with read() or take().

The DataReader’s read() operation gives your application a copy of the data and leaves the data
in the DataReader’s receive queue. The DataReader’s take() operation removes data from the
receive queue before giving it to your application.

To prepare to receive data, create and configure the required Entities:
1. Create a DomainParticipant.
2. Register user data types with the DomainParticipant. For example, the ‘FooDataType’.

3. Use the DomainParticipant to create a Topic with the registered data type.

4.4. Receiving Data 41

../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4. Use the DomainParticipant to create a Subscriber.

5. Use the Subscriber or DomainParticipant to create a DataReader for the Topic.

6. Use a type-safe method to cast the generic DataReader created by the Subscriber to a

type-specific DataReader. For example, ‘FooDataReader’.

Then use one of the following mechanisms to receive data.

o To receive DDS data samples by polling for new data:

— Using a FooDataReader, use the read() or take() operations to access the DDS data
samples that have been received and stored for the DataReader. These operations can
be invoked at any time, even if the receive queue is empty.

To receive DDS data samples asynchronously:

— Install a Listener on the DataReader or Subscriber that will be called back by an internal
Connext DDS Micro thread when new DDS data samples arrive for the DataReader.

. Create a DDSDataReaderListener for the FooDataReader or a DDSSubscriberListener for

Subscriber. In C4++ you must derive your own Listener class from those base classes. In C,
you must create the individual functions and store them in a structure.

If you created a DDSDataReaderListener with the on_ data_ available() callback
enabled: on__data__available() will be called when new data arrives for that
DataReader.

If you created a DDSSubscriberListener with the on__data__on__readers() callback
enabled: on__data__on__readers() will be called when data arrives for any DataReader
created by the Subscriber.

. Install the Listener on either the FooDataReader or Subscriber.

For the DataReader, the Listener should be installed to handle changes in the
DATA__AVAILABLE status.

For the Subscriber, the Listener should be installed to handle changes in the
DATA_ON_READERS status.

. Only 1 Listener will be called back when new data arrives for a DataReader.

Connext DDS Micro will call the Subscriber’s Listener if it is installed. Otherwise, the
DataReader’s Listener is called if it is installed. That is, the on__data__on__readers()
operation takes precedence over the on__data__available() operation.

If neither Listeners are installed or neither Listeners are enabled to handle their respective
statuses, then Connext DDS Micro will not call any user functions when new data arrives for
the DataReader.

. In the on__data__available() method of the DDSDataReaderListener, invoke read() or

take() on the FooDataReader to access the data.

If the on__data__on__readers() method of the DDSSubscriberListener is called, the
code can invoke read() or take() directly on the Subscriber’s DataReaders that have re-
ceived new data. Alternatively, the code can invoke the Subscriber’s notify__dataread-
ers() operation. This will in turn call the on__data__available() methods of the

4.4,

Receiving Data 42

RTI Connext DDS Micro Documentation, Version 2.4.14.0

DataReaderListeners (if installed and enabled) for each of the DataReaders that have
received new DDS data samples.

To wait (block) until DDS data samples arrive:

1. Use the DataReader to create a StatusCondition that describes the DDS samples for which
you want to wait. For example, you can specify that you want to wait for never-before-seen
DDS samples from DataReaders that are still considered to be ‘alive’

2. Create a WaitSet.
3. Attach the StatusCondition to the WaitSet.

4. Call the WaitSet’s wait() operation, specifying how long you are willing to wait for the
desired DDS samples. When wait() returns, it will indicate that it timed out, or that the
attached Condition become true (and therefore the desired DDS samples are available).

5. Using a FooDataReader, use the read() or take() operations to access the DDS data
samples that have been received and stored for the DataReader.

4.4.2 Subscribers

An application that intends to subscribe to information needs the following Entities: DomainPar-
ticipant, Topic, Subscriber, and DataReader. All Entities have a corresponding specialized Listener
and a set of QosPolicies. The Listener is how RTI Connext DDS Micro notifies your application
of status changes relevant to the Entity. The QosPolicies allow your application to configure the
behavior and resources of the Entity.

e The DomainParticipant defines the DDS domain on which the information will be available.

o The Topic defines the name of the data to be subscribed, as well as the type (format) of the
data itself.

e The DataReader is the Entity used by the application to subscribe to updated values of the
data. The DataReader is bound at creation time to a Topic, thus specifying the named and
typed data stream to which it is subscribed. The application uses the Data Writer’s read()
or take() operation to access DDS data samples received for the Topic.

e The Subscriber manages the activities of several DataReader entities. The application re-
ceives data using a DataReader that belongs to a Subscriber. However, the Subscriber will
determine when the data received from applications is actually available for access through
the DataReader. Depending on the settings of various QosPolicies of the Subscriber and
DataReader, data may be buffered until DDS data samples for associated DataReaders are
also received. By default, the data is available to the application as soon as it is received.

For more information on creating and deleting Subscribers, as well as setting QosPolicies, see the
Subscribers section in the RTI Connext DDS Core Libraries User’s Manual (available here if you
have Internet access).

4.4. Receiving Data 43

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Subscribers.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.4.3 DataReaders

To create a DataReader, you need a DomainParticipant, a Topic, and a Subscriber. You need at
least one DataReader for each Topic whose DDS data samples you want to receive.

For more details on all operations, see the C API Reference and C++ API Reference HTML
documentation.

4.4.4 Using DataReaders to Access Data (Read & Take)

For user applications to access the data received for a DataReader, they must use the type-specific
derived class or set of functions in the C API Reference. Thus for a user data type ‘Foo’, you must
use methods of the FooDataReader class. The type-specific class or functions are automatically
generated if you use RTI Code Generator.

4.4.5 Subscriber QosPolicies

Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.4.6 DataReader QosPolicies

Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.5 DDS Domains

This section discusses how to use DomainParticipants. It describes the types of operations that
are available for them and their QosPolicies.

The goal of this section is to help you become familiar with the objects you need for setting up
your RTI Connext DDS Micro application. For specific details on any mentioned operations, see
the C API Reference and C++ API Reference documentation.

4.5.1 Fundamentals of DDS Domains and DomainParticipants

DomainParticipants are the focal point for creating, destroying (only in Connext DDS Micro),
and managing other RTI Connext DDS Micro objects. A DDS domain is a logical network of
applications: only applications that belong to the same DDS domain may communicate using
Connext DDS Micro. A DDS domain is identified by a unique integer value known as a domain ID.

An application participates in a DDS domain by creating a DomainParticipant for that domain
ID.

As seen in Figure 4.2: Relationship between Applications and DDS Domains, a single application
can participate in multiple DDS domains by creating multiple DomainParticipants with different
domain IDs. DomainParticipants in the same DDS domain form a logical network; they are isolated

4.5. DDS Domains 44

../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Application B
DDS Domain 1 . e —
Application A
DDS Domain 2 .
Application C

Figure 4.2: Relationship between Applications and DDS Domains
Applications can belong to multiple DDS domains—A belongs to DDS domains 1 and 2. Applications in
the same DDS domain can communicate with each other, such as A and B, or A and C. Applications in
different DDS domains, such as B and C, are not even aware of each other and will not exchange messages.

4.5. DDS Domains 45

RTI Connext DDS Micro Documentation, Version 2.4.14.0

from DomainParticipants of other DDS domains, even those running on the same set of physical
computers sharing the same physical network. DomainParticipants in different DDS domains will
never exchange messages with each other. Thus, a DDS domain establishes a “virtual network”
linking all DomainParticipants that share the same domain ID.

An application that wants to participate in a certain DDS domain will need to create a DomainPar-
ticipant. As seen in Figure 4.8: DDS Domain Module, a DomainParticipant object is a container
for all other Entities that belong to the same DDS domain. It acts as factory for the Publisher,
Subscriber, and Topic entities. (As seen in Sending Data and Receiving Data, in turn, Publishers
are factories for Data Writers and Subscribers are factories for DataReaders.) DomainParticipants
cannot contain other DomainParticipants.

Like all Entities, DomainParticipants have QosPolicies and Listeners. The DomainParticipant
entity also allows you to set ‘default’ values for the QosPolicies for all the entities created from it or
from the entities that it creates (Publishers, Subscribers, Topics, Data Writers, and DataReaders).

<<interface>> <<interface>> Enity DomainParticipantFactory
SubscriberListener PublisherLisiensr Q

create_participant()
delete_participant()

. P <=rreafer

<<interface>> DomainParticipant ereate lookup_participant()

TopicListener Joman i3 Domamid 1 :: :l::éme]

ignore_participant() get_gos()
ignore_publication() =
ignore_subscription()
creats_publisher()
<<interface>> 0.1 delete_publisher()
DomainParticipantlistensr ceimplicito> create_subscriber() z% z%
delete_subscriber()

get_builtin subseriber()
lookup_topicdescription()
QosPolicy * 408 create_ multitopic)
<<imphicit>> delete_multitopic()
craate_contentfilteredtopic()
delets_contentfiltersdtopic) £ 7
assert_liveliness() i ;
delete contained entities()

* DigmginEnrity <<implicit=> TopicDescription

[

3

Publisher Subscriber Topic

= e e

<<reated> ContentFilteredTopic

<Ioreatels

ignore_topic() . : £

default_publisher qos create_topic()
delete_topic()
default_subscriber_gos | find_topic()
get_discoversd_participants() <erreafer
get_discovered participant_data() <<greated™
get_discovered topics()
get_discoversd_topic_data))
conitaing_entity()
get_current_time()

MultiTopic

<<creater

default_topic_gos

default_participant qos

Figure 4.3: DDS Domain Module
Note: MultiTopics are not supported.

4.5. DDS Domains 46

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.5.2 Discovery Announcements

Each DomainParticipant announces information about itself, such as which locators other Domain-
Participants must use to communicate with it. A locator is an address that consists of an address
kind, a port number, and an address. Four locator types are defined:

e A unicast meta-traffic locator. This locator type is used to identify where unicast discov-
ery messages shall be sent. A maximum of four locators of this type can be specified.

e A multicast meta-traffic locator. This locator type is used to identify where multicast
discovery messages shall be sent. A maximum of four locators of this type can be specified.

e A unicast user-traffic locator. This locator type is used to identify where unicast
user-traffic messages shall be sent. A maximum of four locators of this type can be spec-
ified.

o A multicast user-traffic locator. This locator type is used to identify where multicast
user-traffic messages shall be sent. A maximum of four locators of this type can be specified.

It is important to note that a maximum of four locators of each kind can be sent in a DomainPar-
ticipant discovery message.

The locators in a DomainParticipant’s discovery announcement is used for two purposes:

e It informs other DomainParticipants where to send their discovery announcements to this
DomainParticipants.

e It informs the DataReaders and DataWriters in other DomainParticipants where to send
data to the DataReaders and DataWriters in this DomainParticipant unless a DataReader or
DataWriter specifies its own locators.

If a DataReader or DataWriter specifies their own locators, only user-traffic locators can be speci-
fied, then the exact same rules apply as for the DomainParticipant.

This document uses address and locator interchangeably. An address corresponds to the port and
address part of a locator. The same address may exist as different kinds, in which case they are
unique.

For more details about the discovery process, see the Discovery section.

4.6 Transports

4.6. Transports a7

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.6.1 Introduction

RTI Connext DDS Micro has a pluggable-transport architecture. The core of Connext DDS Micro
is transport agnostic — it does not make any assumptions about the actual transports used to send
and receive messages. Instead, Connext DDS Micro uses an abstract “transport API” to interact
with the transport plugins that implement that API. A transport plugin implements the abstract
transport API, and performs the actual work of sending and receiving messages over a physical
transport.

In Connext DDS Micro a Network Input/Output (NETIO) interface is a software layer that may
send and/or receive data from a higher and/or lower level locally, as well as communicate with
a peer. A transport is a NETIO interface that is at the lowest level of the protocol stack. For
example, the UDP NETIO interface is a transport.

A transport can send and receive on addresses as defined by the concrete transport. For example, the
Connext DDS Micro UDP transport can listen to and send to UDPv4 ports and addresses. In order
to establish communication between two transports, the addresses that the transport can listen to
must be determined and announced to other DomainParticipants that want to communicate with
it. This document describes how the addresses are reserved and how these addresses are used by
the DDS layer in Connext DDS Micro.

While the NETIO interface is not limited to DDS, the rest of this document is written in the context
of how Connext DDS Micro uses the NETIO interfaces as part of the DDS implementation.

Note that Connext DDS Micro does not support RTPS fragmentation and is limited to data types
less than or equal to 63000 bytes.

4.6.2 Transport Registration

RTI Connext DDS Micro supports different transports and transports must be registered with
RTI Connext DDS Micro before they can be used. A transport must be given a name when it
is registered and this name is later used when configuring discovery and user-traffic. A transport
name cannot exceed 7 UTF-8 characters.

The following example registers the UDP transport with RTI Connext DDS Micro and makes
it available to all DDS applications within the same memory space. Please note that each DDS
applications creates its own instance of a transport. Resources are not shared between instances of
a transport unless stated.

For example, to register two UDP transports with the names myudpl and myudp2, the following
code is required:

DDS_DomainParticipantFactory *factory;
RT_Registry_T *registry;
struct UDP_InterfaceFactoryProperty udp_property;

factory = DDS_DomainParticipantFactory_get_instance();
registry = DDS_DomainParticipantFactory_get_registry(factory);

(continues on next page)

4.6. Transports 48

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

/* Set UDP properties */
if (!RT_Registry_register(registry, "myudpl",
UDP_InterfaceFactory_get_interface(),
&udp_property._parent._parent,NULL))
{
return error;

}

/* Set UDP properties */

if (!RT_Registry_register(registry, "myudp2",
UDP_InterfaceFactory_get_interface(),
&udp_property._parent._parent,NULL))

return error;

Before a DomainParticipant can make use of a registered transport, it must enable it for use within
the DomainParticipant. This is done by setting the TransportQoS. For example, to enable only
myudpl, the following code is required (error checking is not shown for clarity):

DDS_StringSeq_set_maximum(&dp_qos.transports.enabled_transports,1);

DDS_StringSeq_set_length(&dp_qgos.transports.enabled_transports,1);

+«DDS_StringSeq_get_reference(&dp_qos.transports.enabled_transports,0) =
REDA_String_dup("myudpl");

To enable both transports:

DDS_StringSeq_set_maximum(&dp_qgos.transports.enabled_transports,?2) ;
DDS_StringSeq_set_length(&dp_qgos.transports.enabled_transports,2);
+*DDS_StringSeq_get_reference(&dp_qos.transports.enabled_transports,0) =
REDA_String_dup("myudpl");
+«DDS_StringSeq_get_reference(&dp_qos.transports.enabled_transports,l) =
REDA_String_dup("myudp2") ;

Before enabled transports may be used for communication in Connext DDS Micro, they must be
registered and added to the DiscoveryQos and UserTrafficQos policies. Please see the section on
Discovery for details.

4.6.3 Transport Addresses

Address reservation is the process to determine which locators should be used in the discovery
announcement. Which transports and addresses to be used is determined as described in Discovery.

When a DomainParticipant is created, it calculates a port number and tries to reserve this port on
all addresses available in all the transports based on the registration properties. If the port cannot
be reserved on all transports, then it release the port on all transports and tries again. If no free
port can be found the process fails and the DomainParticipant cannot be created.

4.6. Transports 49

../../../api_c/html/structDDS__TransportQosPolicy.html
../../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../../api_c/html/structDDS__UserTrafficQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

The number of locators which can be announced is limited to only the first four for each type
across all transports available for each policy. If more than four are available of any kind, these
are ignored. This is by design, although it may be changed in the future. The order in which the
locators are read is also not known, thus the four locators which will be used are not deterministic.

To ensure that all the desired addresses and only the desired address are used in a transport, follow
these rules:

e Make sure that no more than four unicast addresses and four multicast addresses can be
returned across all transports for discovery traffic.

e Make sure that no more than four unicast addresses and four multicast addresses can be
returned across all transports for user traffic.

e Make sure that no more than four unicast addresses and four multicast addresses can be re-
turned across all transports for user-traffic, for DataReader and Data Writer specific locators,
and that they do not duplicate any of the DomainParticipant’s locators.

4.6.4 Transport Port Number

The port number of a locator is not directly configurable. Rather, it is configured indirectly by the
DDS_ WireProtocolQosPolicy (rtps_well _known_ ports) of the DomainParticipant’s QoS, where
a well-known, interoperable RTPS port number is assigned.

4.6.5 RTPS

The RTPS transport encapsulates user-data in RTPS messages and parses received RTPS messages
for user-data. This chapter describes how to configure RTPS.

Registration of RTPS

RTPS is automatically registered when a DDS DomainParticipantFactory is initialized with
DDS _DomainParticipantFactory _get_instance(). In order to change the RTPS configuration, it
is necessary to first unregister it from the participant factory, set the properties, and then register
RTPS with the new properties. This process is identical to other plugins in Connext DDS Micro,
such as the UDP transport and discovery plugins.

The following code shows the steps:

int main(int argc,char *argv)

{
struct RTPS_InterfaceFactoryProperty *rtps_property = NULL;
DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;
struct RTPS_InterfaceFactoryProperty *rtps_property = NULL;

(continues on next page)

4.6. Transports 50

../../../api_c/html/structDDS__WireProtocolQosPolicy.html
../../../api_c/html/structDDS__WireProtocolQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

/* get the Domain Participant factory and registry*/
factory = DDS_DomainParticipantFactory_get_instance();

registry = DDS_DomainParticipantFactory_get_registry
(DDS_DomainParticipantFactory_get_instance());

/* unregister the RTPS transport */
if (!RT_Registry_unregister(registry, NETIO_DEFAULT_RTPS_NAME,
NULL,NULL))
{
printf("failed to unregister rtps\n");
return O;

}

rtps_property = (struct RTPS_InterfaceFactoryProperty *)
malloc(sizeof (struct RTPS_InterfaceFactoryProperty));

if (rtps_property == NULL)

{
printf("failed to allocate rtps properties\n");
return O;

}

/* Set the new properties and register RTPS again */

if (!RT_Registry_register(registry, NETIO_DEFAULT_RTPS_NAME,
RTPS_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)rtps_property,
NULL))

printf("failed to register rtps\n");
return O;

DDS_DomainParticipantFactory_create_participant(
factory, domain_id,&dp_qos, NULL,DDS_STATUS_MASK_NONE) ;

Please note that the RTPS properties must be valid for the entire life-cycle of the participant
factory because RTPS does not make an internal copy. This saves memory when properties are
stored in preallocated memory (for example in ROM).

4.6. Transports 51

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Overriding the Builtin RTPS Checksum Functions
Some applications may require specialized functions to guarantee message integrity or may have
special hardware that supports faster checksum calculations. Connext DDS Micro provides a way

for users to override the builtin checksum functions. Note that if a different checksum is calculated
it may prevent interoperability with other DDS implementations.

Checksum function definition

A checksum function must define a structure of the following type:

typedef struct RTPS_ChecksumClass
{

RTPS_ChecksumClassId_T class_id;

void *context;

RTPS_CalculateChecksum_T calculate_checksum;
} RTPS_ChecksumClass_T;

The type has three members:
1. class_id - The class ID must be:
e RTPS CHECKSUM CLASSID BUILTINS32 for the 32-bit checksum.
« RTPS CHECKSUM CLASSID BUILTING64 for the 64-bit checksum.
o« RTPS_CHECKSUM__CLASSID_BUILTIN128 for the 128-bit checksum.

2. context - An opaque object for you to provide context for this function. This context will be
passed to the calculate__checksum every time it is called.

3. checksum_ calculate - The function pointer to the checksum function. The function is defined
as

typedef RTI_BOOL

(*RTPS_ChecksumCalculate_T) (void *context,
const struct REDA_Buffer x*buf,
RTI_UINT32 buf_length,
RTPS_Checksum_T *checksum) ;

o context: Connext DDS Micro will pass in the context as defined in the class.

e buf: An array of REDA_ Buffer. Each REDA_ Buffer includes a pointer and
size of the buffer.

e buf length: The size of the array.

RTPS Checksum T checksum: This is the out parameter of this function. It is a
union defined as follows:

typedef union RTPS_Checksum
{

RTI_UINT32 checksum32;

(continues on next page)

4.6. Transports 52

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

RTI_UINT64 checksum64;
RTI_UINT8 checksum128[16];
} RTPS_Checksum_T;

Please note the following important information regarding the output values:
1. The number returned in checksum32 is assumed to be in host order endinaness.
2. The number returned in checksum64 is assumed to be in host order endinaness.

3. checksum128 is treated as an octet array.

Example

Below is an example implementation of a custom CRC-32 function using the Intel intrinsic functions.
It shows the QoS that needs to be set, as well as how to override the builtin checksum function.

RTI_BOOL

CrcClassTest_custom_crc32_other(void *context,
const struct REDA_Buffer xbuf,
unsigned int buf_length,
union RTPS_CrcChecksum *checksum)

RTI_UINT32 crc = O;

unsigned char *data = (unsigned char *) buf[0].pointer;
RTI_UINT32 length = buf[0].length;

int k;

UNUSED_ARG (k) ;

UNUSED_ARG (context) ;

UNUSED_ARG (buf _length) ;

for (k = 0; k < length; k++)

{

crc = _mm_crc32_u8(crc, datalk]);

3

checksum->checksum32 = crc;

return RTI_TRUE;

int main(int argc,char *argv)

struct DDS_DomainParticipantQos dp_qgos =
DDS_DomainParticipantQos_INITIALIZER;

struct RTPS_InterfaceFactoryProperty *rtps_property = NULL;
DDS_DomainParticipantFactory *factory = NULL;

RT_Registry_T *registry = NULL;

struct RTPS_InterfaceFactoryProperty *rtps_property = NULL;

(continues on next page)

4.6. Transports 53

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

{

};

{

}

{

*/

/* Instantiate a RTPS_CrcClass for your custom function*/
struct RTPS_ChecksumClass custom_crc32 =

RTPS_CHECKSUM_CLASSID BUILTIN32, /*class_id*/
NULL, /*contextx/
CrcClassTest_custom_crc32_other /*Custom function*/

/* get the Domain Participant factory and registry*/

factory = DDS_DomainParticipantFactory_get_instance();

registry = DDS_DomainParticipantFactory_get_registry
(DDS_DomainParticipantFactory_get_instance());

/* unregister the RTPS transport */
if (!RT_Registry_unregister(registry, NETIO_DEFAULT_RTPS_NAME,

printf("failed to unregister rtps\n");
return O;

rtps_property = (struct RTPS_InterfaceFactoryProperty *)
malloc(sizeof (struct RTPS_InterfaceFactoryProperty));

if (rtps_property == NULL)

printf("failed to allocate rtps properties\n");
return O;

/* the rtps property takes the structure with the custom
* function

*rtps_property = RTPS_INTERFACE_FACTORY_DEFAULT;
rtps_property->checksum.allow_builtin_override = RTI_TRUE;
rtps_property->checksum.builtin_checksum32_class = custom_crc32;

/* register the RTPS transport */

if (!RT_Registry_register(registry, NETIO_DEFAULT_RTPS_NAME,
RTPS_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)rtps_property,

printf("failed to register rtps\n");
return O;

NULL,NULL))

(continues on next page)

4.6. Transports

54

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

/* modify the domain participant qos */
dp_qgos.protocol.compute_crc = DDS_BOOLEAN_TRUE;
dp_qos.protocol.check_crc = DDS_BOOLEAN_TRUE;
dp_qos.protocol.require_crc = DDS_BOOLEAN_TRUE;
dp_qos.protocol.computed_crc_kind = DDS_CHECKSUM_BUILTIN32;
dp_qos.protocol.allowed_crc_mask = DDS_CHECKSUM_BUILTIN32;

/* use the qos and the factory to create a participant */

DDS_DomainParticipantFactory_create_participant(
factory, domain_id,&dp_qos, NULL,DDS_STATUS_MASK_NONE);

4.6.6 INTRA Transport

The builtin intra participant transport (INTRA) is a transport that bypasses RTPS and reduces
the number of data-copies from three to one for data published by a DataWriter to a DataReader
within the same participant. When a sample is published, it is copied directly to the data reader’s
cache (if there is space). This transport is used for communication between DataReaders and
DataWriters created within the same participant by default.

Please refer to Threading Model for important details regarding application constraints when using
this transport.

Registering the INTRA Transport

The builtin INTRA transport is a RTI Connext DDS Micro component that is automatically
registered when the DDS__ DomainParticipantFactory_get_ instance() method is called. By default,

data published by a Data Writer is sent to all DataReaders within the same participant using the
INTRA transport.

In order to prevent the INTRA transport from being used it is necessary to remove it as a transport
and a user-data transport. The following code shows how to only use the builtin UDP transport
for user-data.

struct DDS_DomainParticipantQos dp_qos =
DDS_DomainParticipantQos_INITIALIZER;

REDA_StringSeq_set_maximum(&dp_qos.transports.enabled_transports,1);

REDA_StringSeq_set_length(&dp_qos.transports.enabled_transports,1);

«REDA_StringSeq_get_reference(&dp_qos.transports.enabled_transports,0) =
REDA_String_dup(NETIO_DEFAULT_UDP_NAME) ;

/* Use only unicast for user-data traffic. */

(continues on next page)

4.6. Transports 55

../../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

REDA_StringSeq_set_maximum(&dp_qos.user_traffic.enabled_transports,1);

REDA_StringSeq_set_length(&dp_qos.user_traffic.enabled_transports,1);

+«REDA_StringSeq_get_reference(&dp_qos.user_traffic.enabled_transports,0) =
REDA_String_dup("_udp://");

Note that the INTRA transport is never used for discovery traffic internally. It is not possible to
disable matching of DataReaders and Data Writers within the same participant.

Reliability and Durability

Because a sample sent over INTRA bypasses the RTPS reliability and DDS durability queue, the
Reliability and Durability Qos policies are not supported by the INTRA transport. However, by
creating all the DataReaders before the Data Writers durability is not required.

Threading Model

The INTRA transport does not create any threads. Instead, a DataReader receives data over the
INTRA transport in the context of the Data Writer’s send thread.

This model has two important limitations:

o Because a DataReader’s on_data available() listener is called in the context of the
DataWriter’s send thread, a DataReader may potentially process data at a different pri-
ority than intended (the DataWriter’s). While it is generally not recommended to process
data in a DataReader’s on_ data_ available() listener, it is particularly important to not do
so when using the INTRA transport. Instead, use a DDS WaitSet or a similar construct to
wake up a separate thread to process data.

o Because a DataReader’s on_data available() listener is called in the context of the
DataWriter’s send thread, any method called in the on data available() listener is done
in the context of the Data Writer’s stack. Calling a Data Writer write() in the callback could
result in an infinite call stack. Thus, it is recommended not to call in this listener any Connext
DDS Micro APIs that write data.

4.6.7 UDP Transport
This section describes the builtin RTI Connext DDS Micro UDP transport and how to configure
it.

The builtin UDP transport (UDP) is a fairly generic UDPv4 transport. Connext DDS Micro
supports the following functionality:

o Unicast
o Manual configuration of network interfaces

o Allow/Deny lists to select which network interfaces can be used

4.6. Transports 56

../../../api_c/html/group__DDSReliabilityQosModule.html
../../../api_c/html/group__DurabilityQosPolicyModule.html
../../../api_c/html/structDDS__DataReaderListener.html
../../../api_c/html/structDDS__DataReaderListener.html
../../../api_c/html/structDDS__DataReaderListener.html
../../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e Configuration of receive threads
e Simple NAT configuration
o Multicast

o Automatic detection of available network interfaces

Registering the UDP Transport

The builtin UDP transport is a Connext DDS Micro component that is automatically registered
when the DDS_DomainParticipantFactory get_ instance() method is called. To change the UDP
configuration, it is necessary to first unregister the transport as shown below:

DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;

factory = DDS_DomainParticipantFactory_get_instance();
registry = DDS_DomainParticipantFactory_get_registry(factory);

/* The butiltin transport does not return any properties (3rd param) or
* listener (4th param)

*/
if (!RT_Registry_unregister(registry, "_udp", NULL, NULL))
{
/* ERROR */
}

When a component is registered, the registration takes the properties and a listener as the 3rd and
4th parameters. In general, it is up to the caller to manage the memory for the properties and the
listeners. There is no guarantee that a component makes a copy.

The following code-snippet shows how to register the UDP transport with new parameters.

struct UDP_InterfaceFactoryProperty *udp_property = NULL;

/* Allocate a property structure for the heap, it must be valid as long
* as the component is registered
*/
udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof (struct UDP_InterfaceFactoryProperty));
if (udp_property != NULL)
{
*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* Only allow network interface "ethO" to be used;

*/
REDA_StringSeq_set_maximum(&udp_property->allow_interface, 1);
REDA_StringSeq_set_length(&udp_property->allow_interface, 1);

*REDA_StringSeq_get_reference (&udp_property->allow_interface, 0) =
REDA_String_dup("eth0");

(continues on next page)

4.6. Transports 57

../../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

/* Register the transport again, using the builtin name

*/

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)udp_property,

NULL))
{
/* ERROR */

}
}
else
{

/* ERROR */
}

It should be noted that the UDP transport can be registered with any name, but all transport QoS
policies and initial peers must refer to this name. If a transport is referred to and it does not exist,
an error message is logged.

It is possible to register multiple UDP transports with a DomainParticipantFactory. It is also
possible to use different UDP transports within the same DomainParticipant when multiple network
interfaces are available (either physical or virtual).

When UDP transformations are enabled, this feature is always enabled and determined by the
allow_interface and deny interface lists. If any of the lists are non-empty the UDP transports will
bind each receive socket to the specific interfaces.

When UDP transformations are not enabled, this feature is determined by the value of the en-
able_interface_bind. If this value is set to RTI__TRUE and the allow__interface and/or deny_ in-
terface properties are non-empty, the receive sockets are bound to specific interfaces.

Threading Model
The UDP transport creates one receive thread for each unique UDP receive address and port. Thus,
by default, three UDP threads are created:
o A multicast receive thread for discovery data (assuming multicast is available and enabled)
o A unicast receive thread for discovery data
e A unicast receive thread for user data

Additional threads may be created depending on the transport configuration for a DomainPartic-
ipant, DataReader, and Data Writer. The UDP transport creates threads based on the following
criteria:

e Each unique unicast port creates a new thread

e Each unique multicast address and port creates a new thread

4.6. Transports 58

../../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

For example, if a DataReader specifies its own multicast receive address, a new receive thread will
be created.

Configuring UDP Receive Threads

All threads in the UDP transport share the same thread settings. It is important to note that
all the UDP properties must be set before the UDP transport is registered. Connext DDS Mi-
cro preregisters the UDP transport with default settings when the DomainParticipantFactory is
initialized. To change the UDP thread settings, use the following code.

struct UDP_InterfaceFactoryProperty *udp_property = NULL;
struct UDP_InterfaceFactoryProperty udp_property =
UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* Allocate a property structure for the heap, it must be wvalid as long
* as the component is registered
*/
udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof (struct UDP_InterfaceFactoryProperty));
*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* Please refer to OSAPI_ThreadOptions for possible options */
udp_property->recv_thread.options = ...;

/* The stack-size is platform dependent, it is passed directly to the 0S */
udp_property->recv_thread.stack_size =

/* The priority is platform dependent, it is passed directly to the 0S */
udp_property->recv_thread.priority =

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)udp_property,
NULL))

/* ERROR */

4.6. Transports 59

../../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

UDP Configuration

All the configuration of the UDP transport is done via the UDP__InterfaceFactoryProperty.

allow__interface

The allow__interface string sequence determines which interfaces are allowed to be used for com-
munication. Each string element is the name of a network interface, such as “en0” or “ethl”.

If this sequence is empty, all interface names pass the allow test. The default value is empty. Thus,
all interfaces are allowed.

deny__interface

The deny__interface string sequence determines which interfaces are not allowed to be used for
communication. Each string element is the name of a network interface, such as “en0” or “eth1”.

If this sequence is empty, the test is false. That is, the interface is allowed. Note that the deny list
is checked after the allow list. Thus, if an interface appears in both, it is denied. The default value
is empty, thus no interfaces are denied.

max_send__buffer_size

The max send buffer size is the maximum size of the send socket buffer and it must be at least
as big as the largest sample. Typically, this buffer should be a multiple of the maximum number
of samples that can be sent at any given time. The default value is 256 KB.

max__receive__buffer_size

The max_receive buffer size is the maximum size of the receive socket buffer and it must be at
least as big as the largest sample. Typically, this buffer should be a multiple of the maximum
number of samples that can be received at any given time. The default value is 256KB.

max__message__size

The max_ message_ size is the maximum size of the message which can be received, including any
packet overhead. The default value is 65507 bytes.

4.6. Transports 60

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

multicast__ttl

The multicast_ ttl is the Multicast Time-To-Live (TTL). This value is only used for multicast. It
limits the number of hops a packet can pass through before it is dropped by a router. The default
value is 1.

nat

Connext DDS Micro supports firewalls with NAT. However, this feature has limited use and only
supports translation between a private and public IP address. UDP ports are not translated. Fur-
thermore, because Connext DDS Micro does not support any hole punching technique or WAN
server, this feature is only useful when the private and public address mapping is static and known
in advance. For example, to test between an Android emulator and the host, the following config-
uration can be used:

UDP_NatEntrySeq_set_maximum(&udp_property->nat,2);
UDP_NatEntrySeq_set_length(&udp_property->nat,2);

/* Translate the local emulator ethO address 10.10.2.f:7410 to
* 127.0.0.1:7410. This ensures that the address advertised by the
* emulator to the host machine is the host's loopback interface, not
* the emulator's host interface
*/
UDP_NatEntrySeq_get_reference (4udp_property->nat,0)->
local_address.kind = NETIO_ADDRESS_KIND_UDPv4;
UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->
local_address.port = 7410;
UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->
local_address.value.ipv4.address = 0x0a00020f;

UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->

public_address.kind = NETIO_ADDRESS_KIND_UDPv4;
UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->

public_address.port = 7410;
UDP_NatEntrySeq_get_reference (4udp_property->nat,0)->

public_address.value.ipv4.address = 0x7£000001;

/* Translate the local emulator ethO address 10.10.2.f:7411 to
* 127.0.0.1:7411. This ensures that the address advertised by the
* emulator to the host machine is the host's loopback interface
*/
UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
local_address.kind = NETIO_ADDRESS_KIND_UDPv4;
UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
local_address.port = 7411;
UDP_NatEntrySeq_get_reference (4udp_property->nat,1)->
local_address.value.ipv4.address = 0x0a00020f;

UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
public_address.kind = NETIO_ADDRESS_KIND_UDPv4;

(continues on next page)

4.6. Transports 61

../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
public_address.port = 7411;
UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
public_address.value.ipv4.address = 0x7£000001;

if_table

The if table provides a method to manually configure which interfaces are available for use; for
example, when using IP stacks that do not support reading interface lists. The following example
shows how to manually configure the interfaces.

/* The arguments to the UDP_InterfaceTable_add_entry functions are:

* The 1f_table itself

* The network address of the interface

* The netmask of the interface

* The name of the interface

* Interface flags. Valid flags are:

* UDP_INTERFACE_INTERFACE_UP_FLAG - The interface ts UP

* UDP_INTERFACE_INTERFACE_MULTICAST_FLAG - The interface supports multicast

if (!UDP_InterfaceTable_add_entry(&udp_property->if_table,
0x7£000001,0x££000000, "loopback",
UDP_INTERFACE_INTERFACE_UP_FLAG |
UDP_INTERFACE_INTERFACE_MULTICAST_FLAG))

/* Error */

multicast__interface

The multicast_interface may be used to select a particular network interface to be used to send
multicast packets. The default value is any interface (that is, the OS selects the interface).

is__default_interface

The is_ default_ interface flag is used to indicate that this Connext DDS Micro network transport
shall be used if no other transport is found. The default value is RTI__TRUE.

4.6. Transports 62

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

disable__auto__interface__config

Normally, the UDP transport will try to read out the interface list (on platforms that support
it). Setting disable_auto_ interface_config to RTI__TRUE will prevent the UDP transport from
reading the interface list.

Note that in Connext DDS Micro Cert this value is ignored and interfaces must always be configured
manually.

recv__thread

The recv__thread field is used to configure all the receive threads. Please refer to Threading Model
for details.

enable__interface__bind

When this is set to TRUE the UDP transport binds each receive port to a specific interface when
the allow__interface/deny__interface lists are non-empty. This allows multiple UDP transports to
be used by a single DomainParticipant at the expense of an increased number of threads. This
property is ignored when transformations are enabled and the allow_ interface/deny interface lists
are non-empty.

source__rules

Rules for how to transform received UDP payloads based on the source address.

destination__rules

Rules for how to transform sent UDP payloads based on the destination address.

transform_udp__mode

Determines how regular UDP is supported when transformations are supported. When transforma-
tions are enabled the default value is UDP__TRANSFORM_UDP_ MODE_ DISABLED.

4.6. Transports 63

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

transform_locator_kind

The locator to use for locators that have transformations. When transformation rules have been
enabled, they are announced as a vendor specific locator. This property overrides this value.

NOTE: Changing this value may prevent communication.

UDP Transformations

The UDP transform feature enables custom transformation of incoming and outgoing UDP payloads
based on transformation rules between a pair of source and destination IP addresses. Some examples
of transformations are encrypted data or logging.

This section explains how to implement and use transformations in an application and is organized
as follows:

o Querview

e Creating a Transformation Library
o Creating Transformation Rules

o Interoperability

e FError Handling

e FEzxzample Code

o FEzamples

e 0S Configuration

Overview

The UDP transformation feature enables custom transformation of incoming and outgoing UDP
payloads. For the purpose of this section, a UDP payload is defined as a sequence of octets sent or
received as a single UDP datagram excluding UDP headers — typically UDP port numbers — and
trailers, such as the optional used checksum.

An outgoing payload is the UDP payload passed to the network stack. The transformation feature
allows a custom transformation of this payload just before it is sent. The UDP transport receives
payloads to send from an upstream layer. In Connext DDS Micro this layer is typically RTPS,
which creates payloads containing one or more RTPS messages. The transformation feature enables
transformation of the entire RTPS payload before it is passed to the network stack.

The same RTPS payload may be sent to one or more locators. A locator identifies a destination
address, such as an IPv4 address, a port, such as a UDP port, and a transport kind. The address
and port are used by the UDP transport to reach a destination. However, only the destination
address is used to determine which transformation to apply.

An incoming payload is the UDP payload received from the network stack. The transformation fea-
ture enables transformation of the UDP payload received from the network stack before it is passed

4.6. Transports 64

RTI Connext DDS Micro Documentation, Version 2.4.14.0

to the upstream interface, typically RTPS. The UDP transport only receives payloads destined for
one of its network interface addresses, but may receive UDP payloads destined for many different
ports. The transformation does not take a port into account, only the source address. In Connext
DDS Micro the payload is typically a RTPS payload containing one or more RTPS messages.

UDP transformations are registered with Connext DDS Micro and used by the UDP transport to
determine how to transform payloads based on a source or destination address. Please refer to
Creating a Transformation Library for details on how to implement transformations and Creating
Transformation Rules for how to add rules.

Transformations are local resources. There is no exchange between different UDP transports regard-
ing what a transformation does to a payload. This is considered a-priori knowledge and depends on
the implementation of the transformation. Any negotiation of e.g. keys must be handled before the
UDP transport is registered. Thus, if a sender and receiver do not apply consistent rules, they may
not be able to communicate, or incorrect data may result. Note that while information is typically
in the direction from a Data Writer to a DataReader, a reliable DataReader also send protocol data
to a DataWriter. These messages are also transformed.

Network Interface Selection

When a DomainParticipant is created, it first creates an instance of each transport configured
in the DomainParticipantQos::transports QoS policy. Thus, each UDP transport registered with
Connext DDS Micro must have a unique name (up to 7 characters). Each registered transport can be
configured to use all or some of the available interfaces using the allow__interface and deny__interface
properties. The registered transports may now be used for either discovery data (specified in
DomainParticipantQos::discovery), user_ traffic (specified in DomainParticipantQos::user__traffic)
or both. The DomainParticipant also queries the transport for which addresses it is capable of
sending to.

When a participant creates multiple instances of the UDP transport, it is important that instances
use non-overlapping networking interface resources.

Data Reception

Which transport to use for discovery data is determined by the DomainParticipantQos::discovery
QoS policy. For each transport listed, the DomainParticipant reserves a network address to listen to.
This network address is sent as part of the discovery data and is used by other DomainParticipants
as the address to send discovery data for this DomainParticipant. Because a UDP transformation
only looks at source and destination addresses, if different transformations are needed for discovery
and user-data, different UDP transport registrations must be used and hence different network
interfaces.

4.6. Transports 65

../../../api_c/html/structDDS__DomainParticipantQos.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structDDS__DomainParticipantQos.html
../../../api_c/html/structDDS__DomainParticipantQos.html
../../../api_c/html/structDDS__DomainParticipantQos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Data Transmission

Which address to send data to is based on the locators received as part of discovery and the peer
list.

Received locators are analyzed and a transport locally registered with a DomainParticipant is
selected based on the locator kind, address and mask. The first matching transport is selected. If
a matching transport is not found, the locator is discarded.

NOTE: A transport is not a matching criteria at the same level as a QoS policy. If a discovered
entity requests user data on a transport that doesn’t exist, it is not unmatched.

The peer list, as specified by the application, is a list of locators to send participant discovery
announcements to. If the transport to use is not specified, e.g. “udp1@192.168.1.1”, but instead
“192.168.1.17, then all transports that understand this address will send to it. Thus, in this case
the latter is used, and two different UDP transports are registered; they will both send to the same
address. However, one transport may send transformed data and the other may not depending on
the destination address.

Creating a Transformation Library

The transformation library is responsible for creating and performing transformations. Note that
a library is a logical concept and does not refer to an actual library in, for example, UNIX. A
library in this context is a collection of routines that together creates, manages, and performs
transformations. How these routines are compiled and linked with an application using Connext
DDS Micro is out of scope of this section.

The transformation library must be registered with Connext DDS Micro’s run-time and must
implement the required interfaces. This ensures proper life-cycle management of transformation
resources as well as clear guidelines regarding concurrency and memory management.

From Connext DDS Micro’s run-time point of view, the transformation library must implement
methods so that:

o A library can be initialized.
o A library can be instantiated.
e An instance of the library performs and manages transformations.

The first two tasks are handled by Connext DDS Micro’s run-time factory interface which is common
for all libraries managed by Connext DDS Micro. The third task is handled by the transformation
interface, which is specific to UDP transformations.

The following describes the relationship between the different interfaces:
o A library is initialized once when it is registered with Connext DDS Micro.
o A library is finalized once when it is unregistered from Connext DDS Micro.

e Multiple library instances can be created. If a library is used twice, for example registered
with two different transports, two different library contexts are created using the factory

4.6. Transports 66

RTI Connext DDS Micro Documentation, Version 2.4.14.0

interface. Connext DDS Micro assumes that concurrent access to two different instances is
allowed.

o Different instances of the library can be deleted independently. An instance is deleted using
the factory interface.

o A library instance creates specific source or destination transformations. Each transformation
is expected to transform a payload to exactly one destination or from one source.

The following relationship is true between the UDP transport and a UDP transformation library:
e Each registered UDP transport may make use of one or more UDP transformation libraries.
e A DDS DomainParticipant creates one instance of each registered UDP transport.

o Each instance of the UDP transport creates one instance of each enabled transformation
library registered with the UDP transport.

e Each Transformation rule created by the UDP transport creates one send or one receive
transformation.

Creating Transformation Rules

Transformation rules decide how a payload should be transformed based on either a source or
destination address. Before a UDP transport is registered, it must be configured with the trans-
formation libraries to use, as well as which library to use for each source and destination address.
For each UDP payload sent or received, an instance of the UDP transport searches for a matching
source or destination rule to determine which transformation to apply.

The transformation rules are added to the UDP__ InterfaceFactoryProperty before registration takes
place.

If no transformation rules have been configured, all payloads are treated as regular UDP packets.

If no send rules have been asserted, the payload is sent as is. If all outgoing messages are to be
transformed, a single entry is sufficient (address = 0, mask = 0).

If no receive rules have been asserted, it is passed upstream as is. If all incoming messages are to
be transformed, a single entry is sufficient (address = 0, mask = 0).

If no matching rule is found, the packet is dropped and an error is logged.

NOTE: UDP__InterfaceFactoryProperty is immutable after the UDP transport has been registered.

4.6. Transports 67

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Interoperability

When the UDP transformations has enabled at least one transformation, it will only inter-operate
with another UDP transport which also has at least one transformation.

UDP transformations does not interoperate with RTI Connext DDS Professional.

Error Handling

The transformation rules are applied on a local basis and correctness is based on configuration.
It is not possible to detect that a peer participant is configured for different behavior and errors
cannot be detected by the UDP transport itself. However, the transformation interface can return
errors which are logged.

Example Code

Example Header file MyUdpTransform.h:

#ifndef MyUdpTransform_h
#define MyUdpTransform_h

#include "rti_me_c.h"
#include "netio/netio_udp.h"
#include "netio/netio_interface.h”

struct MyUdpTransformFactoryProperty
{

struct RT_ComponentFactoryProperty _parent;
+;

extern struct RT_ComponentFactoryI*
MyUdpTransformFactory_get_interface(void);

extern RTI_BOOL
MyUdpTransformFactory_register (RT_Registry_T *registry,
const char *const name,
struct MyUdpTransformFactoryProperty *property) ;

extern RTI_BOOL

MyUdpTransformFactory_unregister (RT_Registry_T *registry,
const char *const name,
struct MyUdpTransformFactoryProperty *x);

#endif

Example Source file MyUdpTransform.c:

/*ce
* \file

(continues on next page)

4.6. Transports 68

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

\defgroup UDPTransformEzampleModule MyUdpTransform
\ingroup UserManuals_UDPTransform
\brief UDP Transform Ezample

\details
The UDP interface is implemented as a NETIO interface and NETIO interface

factory.
*/

* ¥ ¥ ¥ * x x x

/*ce \addtogroup UDPTransformEzampleModule
* 0f
*/

#include <stdio.h>

#include "MyUdpTransform.h"

/*ce
* \brief The UDP Transformation factory class
*
* \detatils
* All Transformation components must have a factory. A factory creates one
* instance of the component as needed. In the case of UDP transformations,
* \rtime creates one instance per UDP transport instance.
*/
struct MyUdpTransformFactory
{
/*ce
* \brief Base-class. All \rtime Factories must inherit from RT_ComponentFactory.
*/

struct RT_ComponentFactory _parent;

/*ce
* \brief A pointer to the properties of the factory.

\details

When a factory is registered with \rtime it can be registered with
properties specific to the component. However \rtime does not
make a copy (that would require additional methods). Furthermore, 4t
may mot be desirable to make a copy. Instead, this decision s
left to the implementer of the component. \rtime does mot access
any custom properties.
*/
struct MyUdpTransformFactoryProperty *property;

* %X X ¥ ¥ o % x x

};

/*ce
* \brief The custom UDP transformation class.
*

(continues on next page)

4.6. Transports 69

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

* \detatils
* The MyUdpTransformFactory creates one instance of this class for each
* UDP tinterface created. In this exzample one packet buffer (NETIO Packet_T),
* 15 allocated and a buffer to hold the transformed data (\ref buffer)
*
* Only one transformation can be done at a time and it %is synchronous. Thus,
* 4t 1is sufficient with one buffer to transform input and output per
* instance of the MyUdpTransform.
*/
struct MyUdpTransform
{
/*ce
* \brief Base-class. All UDP transforms must inherit from UDP_Transform
*/

struct UDP_Transform _parent;

/*ce \brief A reference to its own factory, if properties must be accessed
*/
struct MyUdpTransformFactory *factory;

/*ce \brief NETIO_ Packet to hold a transformed payload.
*

\details

\rtime uses a NETIO_Packet_T to abstract data payload and this s
what ts being passed betweem the UDP transport and the transformation.
The transformation must convert a payload into a NETIO_ Packet. This
15 done with NETIO_ Packet_initialize_from. This function saves all
state except the payload buffer.

*/
NETIO_Packet_T packet;

* %X ¥ ¥ * x %

/*ce \brief The payload to assign to NETIO Packet_T
*

\details

A transformation cannot do in-place transformations because the input
buffer may be sent multiple times (for exzample due to reliability).

A transformation instance can only transform one buffer at a time

(send or receive). The buffer must be large enough to hold a transformed
payload. When the the transformation is created it receives a

\ref UDP_TransformProperty. This property has the max send and

receive buffers for transport and can be used to sise the buffer.

Please refer to \ref UDP_InterfaceFactoryProperty::maz_send_message_size
and \ref UDP_InterfaceFactoryProperty::max_message_size.

*/

char *buffer;

¥ % ¥ ¥ * o %X *x X *X %

/*ce \brief The mazimum length of the buffer. NOTE: The buffer must
* be 1 byte larger than the largest buffer.
*/

(continues on next page)

4.6. Transports 70

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

RTI_SIZE_T max_buffer_length;
};

/*ce \brief Forward declaration of the interface implementation
*/
static struct UDP_TransformI MyUdpTransform_fv_Intf;

/*ce \brief Forward declaration of the interface factory implementation
*/
static struct RT_ComponentFactoryIl MyUdpTransformFactory_fv_Intf;

/*ce \brief Method to create an instance of MyUdpTransform

*

* \param[in] factory The factory creating this instance

* \param[in] property Generic UDP_Transform properties

*

* \return A pointer to MyUdpTransform on sucess, NULL on failure.

*/
RTI_PRIVATE struct MyUdpTransformx
MyUdpTransform_create(struct MyUdpTransformFactory *factory,

const struct UDP_TransformProperty *const property)
{
struct MyUdpTransform *t;

0SAPI_Heap_allocate_struct(&t, struct MyUdpTransform) ;
if (t == NULL)
{
return NULL;
}

/* All component instances must initialize the parent using this
* call.
*/
RT_Component_initialize(&t->_parent._parent,
&MyUdpTransform_fv_Intf._parent,
0,
(property 7 &property->_parent : NULL),
NULL) ;

t->factory = factory;

/* Allocate a buffer that is the larger of the send and receive
* size.
*/
t->max_buffer_length = property->max_receive_message_size;
if (property->max_send_message_size > t->max_buffer_length)
{
t->max_buffer_length = property->max_send_message_size;

}

/* Allocate 1 extra byte */

(continues on next page)

4.6. Transports 71

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

0SAPI_Heap_allocate_buffer (&t->buffer,t->max_buffer_length+1,
OSAPI_ALIGNMENT_DEFAULT) ;

if (t->buffer == NULL)

{
0SAPI_Heap_free_struct(t);
t = NULL;

}

return t;

}

/*ce \brief Method to delete an instance of MyUdpTransform
*

* \param[in] t Transformation instance to delete
*/
RTI_PRIVATE void
MyUdpTransform_delete(struct MyUdpTransform *t)
{
0SAPI_Heap_free_buffer(t->buffer);
0SAPI_Heap_free_struct(t);
}

/*ce \brief Method to create a transformation for an destination address
*

* \details
*
* For each asserted destination rTule a transform is created by the transformation
* instance. This method determines how a UDP payload is transformed before
* 4t 15 sent to an address that matches destination & netmask.
*
* \param[in] udptf UDP Transform instance that creates the transformation
* \param[out] context Pointer to a transformation context
* \param[in] destination Destination address for the transformation
\param[in] netmask The netmask to apply to this destination.
* \param[in] wuser_data The user_data the rule was asserted with
* \param[in] property UDP transform specific properties
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure

*/

RTI_PRIVATE RTI_BOOL

MyUdpTransform_create_destination_transform(
UDP_Transform_T *const udptf,
void **const context,
const struct NETIO_Address *const destination,
const struct NETIO_Netmask *const netmask,
void *user_data,
const struct UDP_TransformProperty *const property,
RTI_INT32 *const ec)

(continues on next page)

4.6. Transports 72

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
UNUSED_ARG (self);

UNUSED_ARG(destination) ;

UNUSED_ARG(user_data) ;

UNUSED_ARG (property) ;

UNUSED_ARG (ec) ;

UNUSED_ARG (netmask) ;

/* Save the user-data to determine which transform to apply later */
context = (void)user_data;

return RTI_TRUE;
}

/*ce \brief Method to delete a transformation for an destination address
*

*

* \param[in] wudptf UDP Transform instance that created the transformation
* \param[out] context Pointer to a transformation context

* \param[in] destination Destination address for the transformation

* \param[in] netmask The netmask to apply to this destination.

* \param[out] ec User defined error code

*

* \return RTI_TRUE on success, RTI_FALSE on failure

*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_delete_destination_transform(UDP_Transform_T *const udptf,
void *context,
const struct NETIO_Address *const destination,
const struct NETIO_Netmask *const netmask,
RTI_INT32 *const ec)

{
UNUSED_ARG (udptf) ;
UNUSED_ARG(context) ;
UNUSED_ARG(destination) ;
UNUSED_ARG (ec) ;
UNUSED_ARG (netmask) ;
return RTI_TRUE;
}
/*ce \brief Method to create a transformation for an source address
*
* \details
*
* For each asserted source rule a transform is created by the transformation
* instance. This method determines how a UDP payload ts transformed when
* 4t 15 received from an address that matches source & netmask.
*
* \param[in] udptf UDP Transform instance that creates the transformation
* \param[out] context Pointer to a transformation context

(continues on next page)

4.6. Transports 73

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

* \param[in] source Destination address for the transformation
\param[in] netmask The netmask to apply to this destination.

* \param[in] wuser_data The user_data the rule was asserted with

* \param[in] property UDP transform specific properties

* \param[out] ec User defined error code

*

* \return RTI_TRUE on success, RTI_FALSE on failure

*/

RTI_PRIVATE RTI_BOOL

MyUdpTransform_create_source_transform(UDP_Transform_T *const udptf,
void **const context,
const struct NETIO_Address *const source,
const struct NETIO_Netmask *const netmask,
void *user_data,
const struct UDP_TransformProperty *const property,
RTI_INT32 *const ec)

{
struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
UNUSED_ARG (self);
UNUSED_ARG (source) ;
UNUSED_ARG (user_data) ;
UNUSED_ARG (property) ;
UNUSED_ARG (ec) ;
UNUSED_ARG (netmask) ;
context = (void)user_data;
return RTI_TRUE;
}
/*ce \brief Method to delete a transformation for an source address
*
*
* \param[in] udptf UDP Transform instance that created the transformation
* \param[out] context Pointer to a transformation context
* \param[in] source Source address for the transformation
* \param[in] mnetmask The netmask to apply to this destination.
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure

*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_delete_source_transform(UDP_Transform_T *const udptf,
void *context,
const struct NETIO_Address *const source,
const struct NETIO_Netmask *const netmask,
RTI_INT32 *const ec)

UNUSED_ARG (udptf) ;
UNUSED_ARG (context) ;
UNUSED_ARG (source) ;

(continues on next page)

4.6. Transports 74

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

UNUSED_ARG(ec) ;
UNUSED_ARG (netmask) ;

return RTI_TRUE;

}
/*ce \brief Method to transform data based on a source address

*

* \param[in] wudptf UDP_Transform_T that performs the transformation

* \param[in] context Reference to context created by \ref MyUdpTransform_create_
—source_transform

* \param[in] source Source address for the transformation

* \param[in] in_packet The NETIO packet to transform
\param[out] out_packet The transformed NETIO packet
\param[out] ec User defined error code

* %X *x %

\return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_transform_source (UDP_Transform_T *const udptf,
void *context,
const struct NETIO_Address *const source,
const NETIO_Packet_T *const in_packet,
NETIO_Packet_T **out_packet,
RTI_INT32 *const ec)

struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
char *buf_ptr,*buf_end;

char *from_buf_ptr,*from_buf_end;

UNUSED_ARG(context) ;

UNUSED_ARG (source) ;

*ec = 0;

/* Assigned the transform buffer to the outgoing packet
* saving state from the incoming packet. In this case the
* outgoing length is the same as the incoming. How to buffer
* 45 filled in is of mo interest to \rtime. All it cares about s
* where it starts and where it ends.
*/
if (INETIO_Packet_initialize_from(
&self->packet,in_packet,
self->buffer,self->max_buffer_length,
0,NETI0_Packet_get_payload_length(in_packet)))
{
return RTI_FALSE;
}

*out_packet = &self->packet;

buf_ptr = NETIO_Packet_get_head(&self->packet);

(continues on next page)

4.6. Transports 75

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

buf_end = NETIO_Packet_get_tail (&self->packet);
from_buf_ptr = NETIO_Packet_get_head(in_packet);
from_buf_end = NETIO_Packet_get_tail(in_packet);

/* Perform a transformation based on the user-data */
while (from_buf_ptr < from_buf_end)

{
if (context == (voidx)1)
{
*buf_ptr = ~(*from_buf_ptr);
}
else if (context == (voidx)2)
{
xbuf_ptr = (*from_buf_ptr)+1;
¥
++buf _ptr;
++from_buf_ptr;
}
return RTI_TRUE;
}
/*ce \brief Method to transform data based on a destination address
*
* \param[in] wudptf UDP_Transform_T that performs the transformation
* \param[in] context Reference to contezt created by \ref MyUdpTransform_create_

—destination_transform

\param[in] destination Source address for the transformation
\param[in] in_packet The NETIO packet to transform
\param[out] packet_out The transformed NETIO packet
\param[out] ec User defined error code

*

* %X %X * %

\return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_transform_destination(UDP_Transform_T *const udptf,
void *context,
const struct NETIO_Address *const destination,
const NETIO_Packet_T *const in_packet,
NETIO_Packet_T **packet_out,
RTI_INT32 *const ec)

struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
char *buf_ptr,*buf_end;

char *from_buf_ptr,*from_buf_end;

UNUSED_ARG(context) ;

UNUSED_ARG(destination) ;

*ec = 0;

(continues on next page)

4.6. Transports 76

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

if (!NETIO_Packet_initialize_from(
&self->packet,in_packet,
self->buffer,8192,
0,NETIO_Packet_get_payload_length(in_packet)))

return RTI_FALSE;

*out_packet = &self->packet;

buf_ptr = NETIO_Packet_get_head(&self->packet);
buf_end = NETIO_Packet_get_tail (&self->packet);
from_buf_ptr = NETIO_Packet_get_head(in_packet);
from_buf_end = NETIO_Packet_get_tail(in_packet);

while (from_buf_ptr < from_buf_end)

{
if (context == (void*)1)
{
xbuf_ptr = ~(xfrom_buf_ptr);
}
else if (context == (void*)2)
{
*buf_ptr = (xfrom_buf_ptr)-1;
}
++buf _ptr;
++from_buf_ptr;
}
return RTI_TRUE;
}
/*ce \brief Definition of the transformation interface
*/
RTI_PRIVATE struct UDP_TransformI MyUdpTransform_fv_Intf =
{

RT_COMPONENTI_BASE,
MyUdpTransform_create_destination_transform,
MyUdpTransform_create_source_transform,
MyUdpTransform_transform_source,
MyUdpTransform_transform_destination,
MyUdpTransform_delete_destination_transform,
MyUdpTransform_delete_source_transform

};

/*ce \brief Method called by \rtime to create an instance of transformation
*/
MUST_CHECK_RETURN RTI_PRIVATE RT_Component T
MyUdpTransformFactory_create_component (struct RT_ComponentFactory *factory,
struct RT_ComponentProperty *property,

(continues on next page)

4.6. Transports 77

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

struct RT_ComponentListener *listener)

struct MyUdpTransform *t;
UNUSED_ARG(listener);

t = MyUdpTransform_create(
(struct MyUdpTransformFactory*)factory,
(struct UDP_TransformProperty*)property) ;

return &t->_parent._parent;

}

/*ce \brief Method called by \rtime to delete an instance of transformation
*/
RTI_PRIVATE void
MyUdpTransformFactory_delete_component (
struct RT_ComponentFactory *factory,
RT_Component_T *component)

UNUSED_ARG (factory) ;

MyUdpTransform_delete((struct MyUdpTransform*)component) ;
}

/*ce \brief Method called by \rtime when a factory is registered
*/
MUST_CHECK_RETURN RTI_PRIVATE struct RT_ComponentFactory*
MyUdpTransformFactory_initialize(struct RT_ComponentFactoryProperty* property,
struct RT_ComponentFactorylListener *listener)
{
struct MyUdpTransformFactory *fac;
UNUSED_ARG (property) ;
UNUSED_ARG(listener);

OSAPI_Heap_allocate_struct(&fac,struct MyUdpTransformFactory) ;

fac->_parent._factory = &fac->_parent;
fac->_parent.intf = &MyUdpTransformFactory_fv_Intf;
fac->property = (struct MyUdpTransformFactoryProperty*)property;

return &fac->_parent;

}

/*ce \brief Method called by \rtime when a factory is unregistered
*/
RTI_PRIVATE void
MyUdpTransformFactory_finalize(struct RT_ComponentFactory *factory,
struct RT_ComponentFactoryProperty **property,
struct RT_ComponentFactorylListener **listener)

struct MyUdpTransformFactory *fac =

(continues on next page)

4.6. Transports 78

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

(struct MyUdpTransformFactory*)factory;

UNUSED_ARG (property) ;
UNUSED_ARG(listener);

if (listener != NULL)

{
*listener = NULL;
¥
if (property != NULL)
{
property = (struct RT_ComponentFactoryProperty)fac->property;
Iy

0SAPI_Heap_free_struct(factory);

return;

}

/*ce \brief Definition of the factory interface
*/

RTI_PRIVATE struct RT_ComponentFactoryl MyUdpTransformFactory_fv_Intf =

{
UDP_INTERFACE_INTERFACE_ID,
MyUdpTransformFactory_initialize,
MyUdpTransformFactory_finalize,
MyUdpTransformFactory_create_component,
MyUdpTransformFactory_delete_component,
NULL

};

struct RT_ComponentFactoryI*
MyUdpTransformFactory_get_interface(void)

{
return &MyUdpTransformFactory_fv_Intf;
}
/*ce \brief Method to register this transformation in a registry
*/
RTI_BOOL

MyUdpTransformFactory_register (RT_Registry_T *registry,
const char *const name,
struct MyUdpTransformFactoryProperty *property)

{
return RT_Registry_register(registry, name,
MyUdpTransformFactory_get_interface(),
&property->_parent, NULL);
}

/*ce \brief Method to unregister this transformation from a Tegistry

(continues on next page)

4.6. Transports 79

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

*/
RTI_BOOL
MyUdpTransformFactory_unregister (RT_Registry_T *registry,
const char *const name,
struct MyUdpTransformFactoryProperty **property)

return RT_Registry_unregister(registry, name,
(struct RT_ComponentFactoryProperty**)property,
NULL) ;
}

/*!1 @} */

Example configuration of rules:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "common.h"

void

MyAppApplication_help(char *appname)

{
printf("%s [options]\n", appname);
printf ("options:\n");

printf("-h - This text\n");

printf ("-domain <id> - DomainId (default: 0)\n");

printf ("-udp_intf <intf> - udp interface (no default)\n");
printf ("-peer <address> - peer address (no default)\n");

printf ("-count <count> - count (default -1)\n");
printf("-sleep <ms> - sleep between sends (default 1s)\n");

printf("\n");

struct MyAppApplicationk*

MyAppApplication_create(const char *local_participant_name,
const char *remote_participant_name,
DDS_Long domain_id, char *udp_intf, char *peer,
DDS_Long sleep_time, DDS_Long count)

DDS_ReturnCode_t retcode;
DDS_DomainParticipantFactory *factory = NULL;
struct DDS_DomainParticipantFactoryQos dpf_qos =
DDS_DomainParticipantFactoryQos_INITIALIZER;
struct DDS_DomainParticipantQos dp_qos =
DDS_DomainParticipantQos_INITIALIZER;
DDS_Boolean success = DDS_BOOLEAN_FALSE;
struct MyAppApplication *application = NULL;
RT_Registry_T *registry = NULL;

(continues on next page)

4.6. Transports 80

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

struct UDP_InterfaceFactoryProperty *udp_property = NULL;

struct DPDE_DiscoveryPluginProperty discovery_plugin_properties =
DPDE_DiscoveryPluginProperty_ INITIALIZER;

UNUSED_ARG(local_participant_name) ;

UNUSED_ARG(remote_participant_name) ;

/* Uncomment to increase verbosity level:
OSAPILog_set_werbostty(0OSAPI_LOG VERBOSITY_ WARNING);
*/
application = (struct MyAppApplication *)malloc(sizeof(struct MyAppApplication));

if (application == NULL)

{
printf("failed to allocate application\n");
goto done;

application->sleep_time = sleep_time;
application->count = count;

factory = DDS_DomainParticipantFactory_get_instance();

if (DDS_DomainParticipantFactory_get_qos(factory,&dpf_qos) '= DDS_RETCODE_OK)
{

printf("failed to get number of components\n");

goto done;

dpf_qos.resource_limits.max_components = 128;

if (DDS_DomainParticipantFactory_set_qos(factory,&dpf_qos) != DDS_RETCODE_OK)
{

printf("failed to increase number of components\n");

goto done;

3

registry = DDS_DomainParticipantFactory_get_registry(
DDS_DomainParticipantFactory_get_instance());

if (!RT_Registry_register(registry, DDSHST_WRITER_DEFAULT_HISTORY_NAME,
WHSM_HistoryFactory_get_interface(), NULL, NULL))
{
printf("failed to register wh\n");
goto done;

}

if (!RT_Registry_register(registry, DDSHST_READER_DEFAULT_HISTORY_NAME,
RHSM_HistoryFactory_get_interface(), NULL, NULL))
{
printf("failed to register rh\n");
goto done;

(continues on next page)

4.6. Transports 81

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

}
if (!MyUdpTransformFactory_register(registry,"T0",NULL))
{
printf("failed to register TO\n");
goto done;
}
if (!MyUdpTransformFactory_register(registry,"T1" ,NULL))
{
printf("failed to register TO\n");
goto done;
}

/* Configure UDP transport's allowed interfaces */
if (!RT_Registry_unregister(registry, NETIO_DEFAULT_UDP_NAME, NULL, NULL))
{

printf("failed to unregister udp\n");

goto done;

3

udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof (struct UDP_InterfaceFactoryProperty));

if (udp_property == NULL)
{

printf("failed to allocate udp properties\n");

goto done;
}
*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* For additional allowed interface(s), increase maximum and length, and
set interface below:

*/

udp_property->max_send_message_size = 16384;

udp_property->max_message_size = 32768;

if (udp_intf != NULL)

{
REDA_StringSeq_set_maximum(&udp_property->allow_interface,1);
REDA_StringSeq_set_length(&udp_property->allow_interface,1);
+*REDA_StringSeq_get_reference (&udp_property->allow_interface,0) =
DDS_String_dup(udp_intf);
}

/* A rule that says: For payloads received from 192.168.10.%* (netmask is
* 0zffffffo0), apply transformation TO.
*/
if (!UDP_TransformRules_assert_source_rule(
&udp_property->source_rules,
0xc0a80ae8,0xff££££00,"TO", (void*)2))

(continues on next page)

4.6. Transports 82

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

printf("Failed to assert source rule\n");
goto done;

3

/* A rule that says: For payloads sent to 192.168.10.% (netmask is
* 0zffffffo0), apply transformation TO.
*/
if (!UDP_TransformRules_assert_destination_rule(
4udp_property->destination_rules,
0xc0a80ae8,0xff£ffff00,"TO", (void*)2))

printf("Failed to assert source rule\n");
goto done;

3

/* A rule that says: For payloads received from 192.168.20.* (netmask is
* Ozffffffo0), apply transformation T1.
*/
if (!UDP_TransformRules_assert_source_rule(
&udp_property->source_rules,
0xc0a81465,0xff£f£££00,"T1", (void*)1))

printf("Failed to assert source rule\n");
goto done;

3

/* A rule that says: For payloads received from 192.168.20.* (netmask is
* 0zffffffo0), apply transformation T1.
*/
if (!'UDP_TransformRules_assert_destination_rule(
&udp_property->destination_rules,
0xc0a81465,0xff££££00,"T1", (void*)1))

printf("Failed to assert source rule\n");
goto done;

}

if (!RT_Registry_register(registry, NETIO_DEFAULT_UDP_NAME,
UDP_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)udp_property, NULL))

printf("failed to register udp\n");
goto done;

}

DDS_DomainParticipantFactory_get_qos(factory, &dpf_qos);
dpf_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_FALSE;
DDS_DomainParticipantFactory_set_qos(factory, &dpf_qos);

if (peer == NULL)

(continues on next page)

4.6. Transports 83

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

{
peer = "127.0.0.1"; /* default to loopback */
}

if (!RT_Registry_register(registry,
"dpde",
DPDE_DiscoveryFactory_get_interface(),
&discovery_plugin_properties._parent,
NULL))

printf("failed to register dpde\n");
goto done;

}

if (!RT_ComponentFactoryId_set_name(&dp_qos.discovery.discovery.name, "dpde"))
{

printf("failed to set discovery plugin name\n");

goto done;

}

DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers,1);

DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers,1);

*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers,0) = DDS_String_
—dup (peer) ;

DDS_StringSeq_set_maximum(&dp_qos.discovery.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qgos.discovery.enabled_transports,1);

/* Use network interface 192.168.10.232 for discovery. TO is used for
* discovery
*/
*DDS_StringSeq_get_reference(&dp_qos.discovery.enabled_transports,0) = DDS_String_
—dup("_udp://192.168.10.232");

DDS_StringSeq_set_maximum(&dp_qos.user_traffic.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qos.user_traffic.enabled_transports,1);

/* Use network interface 192.168.20.101 for user-data. T1 %is used for
* this interface.
*/
*DDS_StringSeq_get_reference(&dp_qos.user_traffic.enabled_transports,0) = DDS_String_
—dup("_udp://192.168.20.101");

/* if there are more remote or local endpoints, you need to increase these limits */
dp_qos.resource_limits.max_destination_ports = 32;
dp_qgos.resource_limits.max_receive_ports = 32;
dp_qgos.resource_limits.local_topic_allocation = 1;
dp_qgos.resource_limits.local_type_allocation = 1;
dp_qos.resource_limits.local_reader_allocation = 1;
dp_qos.resource_limits.local_writer_allocation = 1;
dp_qgos.resource_limits.remote_participant_allocation = 8;

(continues on next page)

4.6. Transports 84

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

8;
8;

dp_qos.resource_limits.remote_reader_allocation
dp_qos.resource_limits.remote_writer_allocation

application->participant =
DDS_DomainParticipantFactory_create_participant (factory, domain_id,
&dp_qos, NULL,
DDS_STATUS_MASK_NONE) ;

if (application->participant == NULL)

{
printf("failed to create participant\n");
goto done;

}

sprintf (application->type_name, "HelloWorld");
retcode = DDS_DomainParticipant_register_type(application->participant,
application->type_name,
HelloWorldTypePlugin_get());
if (retcode != DDS_RETCODE_OK)
{
printf("failed to register type: %s\n", "test_type");
goto done;

}

sprintf (application->topic_name, "HelloWorld");
application->topic =
DDS_DomainParticipant_create_topic(application->participant,
application->topic_name,
application->type_name,
&DDS_TOPIC_QOS_DEFAULT, NULL,
DDS_STATUS_MASK_NONE) ;

if (application->topic == NULL)
{
printf("topic == NULL\n");
goto done;
success = DDS_BOOLEAN_TRUE;

done:

if (!success)

{
if (udp_property != NULL)
{
free(udp_property) ;
}
free(application);
application = NULL;
}

(continues on next page)

4.6. Transports 85

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

return application;

DDS_ReturnCode_t
MyAppApplication_enable(struct MyAppApplication * application)

{
DDS_Entity *entity;
DDS_ReturnCode_t retcode;
entity = DDS_DomainParticipant_as_entity(application->participant);
retcode = DDS_Entity_enable(entity);
if (retcode != DDS_RETCODE_OK)
{
printf("failed to enable entity\n");
}
return retcode;
}
void
MyAppApplication_delete(struct MyAppApplication *application)
{

DDS_ReturnCode_t retcode;
RT_Registry_T *registry = NULL;

retcode = DDS_DomainParticipant_delete_contained_entities(application->participant);
if (retcode != DDS_RETCODE_QK)
{

printf("failed to delete conteined entities (retcode=%d)\n",retcode);

3

if (DDS_DomainParticipant_unregister_type(application->participant,
application->type_name) != HelloWorldTypePlugin_get())
{
printf("failed to unregister type: %s\n", application->type_name);
return;

}

retcode = DDS_DomainParticipantFactory_delete_participant(
DDS_DomainParticipantFactory_get_instance(),
application->participant);

if (retcode != DDS_RETCODE_OK)

{
printf("failed to delete participant: %d\n", retcode);
return;

}

registry = DDS_DomainParticipantFactory_get_registry(

(continues on next page)

4.6. Transports 86

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

DDS_DomainParticipantFactory_get_instance());

if (!RT_Registry_unregister(registry, "dpde", NULL, NULL))
{
printf("failed to unregister dpde\n");
return;
}
if (!RT_Registry_unregister(registry, DDSHST_READER_DEFAULT_HISTORY_NAME, NULL,
—NULL))
{
printf("failed to unregister rh\n");
return;
}
if (!RT_Registry_unregister(registry, DDSHST_WRITER_DEFAULT_HISTORY_NAME, NULL,
—NULL))

{
printf("failed to unregister wh\n");
return;

}

free(application);

DDS_DomainParticipantFactory_finalize_instance();

Examples

The following examples illustrate how this feature can be used in a system with a mixture of
different types of UDP transport configurations.

For the purpose of the examples, the following terminology is used:
e Plain communication — No transformations have been applied.
o Transformed User Data — Only the user-data is transformed, discovery is plain.
e Transformed Discovery — Only the discovery data is transformed, user-data is plain.

o Transformed Data — Both discovery and user-data are transformed. Unless stated otherwise
the transformations are different.

A transformation Tn is a transformation such that an outgoing payload transformed with Tn can
be transformed back to its original state by applying Tn to the incoming data.

A network interface can be either physical or virtual.

4.6. Transports 87

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Plain Communication Between 2 Nodes

In this system two Nodes, A and B, are communicating with plain communication. Node A has
one interface, a0, and Node B has one interface, b0.

Node A:
e Register the UDP transport Ua with allow__interface = a0.

e DomainParticipantQos.transports.enabled_ transports = “Ua”

o DomainParticipantQos.discovery.enabled_transports = "Ua://”

o DomainParticipantQos.user__data.enabled__transports = "Ua://”
Node B:

o Register the UDP transport Ub with allow_ interface = b0.
e DomainParticipantQos.transports.enabled__transports = “Ub”
o DomainParticipantQos.discovery.enabled_ transports = "Ub://”

o DomainParticipantQos.user__data.enabled__transports = "Ub://”

Transformed User Data Between 2 Nodes

In this system two Nodes, A and B, are communicating with transformed user data. Node A has
two interfaces, a0 and al, and Node B has two interfaces, b0 and bl. Since each node has only one
peer, a single transformation is sufficient.

Node A:

o Add a destination transformation TO to Ua0, indicating that all sent data is transformed with
TO.

o Add a source transformation T1 to UaQ, indicating that all received data is transformed with
T1.

e Register the UDP transport Ua0 with allow_ interface = a0.

e Register the UDP transport Ual with allow_ interface = al.

¢ No transformations are registered with Ual.

e DomainParticipantQos.transports.enabled transports = “Ua0”,”Ual”

o DomainParticipantQos.discovery.enabled transports = "Ual://”

o DomainParticipantQos.user__traffic.enabled_transports = "Ua0://”
Node B:

o Add a destination transformation T1 to Ub0, indicating that all sent data is transformed with
T1.

4.6. Transports 88

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Add a source transformation TO to UbQ, indicating that all received data is transformed with
TO.

Register the UDP transport Ub0O with allow__interface = b0.

Register the UDP transport Ubl with allow__interface = bl.

No transformations are registered with Ubl.
DomainParticipantQos.transports.enabled_transports = “Ub0”,”Ub1”
DomainParticipantQos.discovery.enabled__transports = "Ubl://”

DomainParticipantQos.user__traffic.enabled_ transports = "Ub0://”

Ua0 and Ub0O perform transformations and are used for user-data. Ual and Ubl are used for
discovery and no transformations takes place.

Transformed Discovery Data Between 2 Nodes

In this system two Nodes, A and B, are communicating with transformed user data. Node A has
two interfaces, a0 and al, and Node B has two interfaces, b0 and bl. Since each node has only one
peer, a single transformation is sufficient.

Node A:

Add a destination transformation TO to Ua0, indicating that all sent data is transformed with
ToO.

Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

Register the UDP transport Ua0 with allow_ interface = a0.

Register the UDP transport Ual with allow_ interface = al.

No transformations are registered with Ual.
DomainParticipantQos.transports.enabled__transports = “Ua0”,”Ual”
DomainParticipantQos.discovery.enabled__transports = "Ua0://”

DomainParticipantQos.user data.enabled transports = "Ual://”

Node B:

Add a destination transformation T1 to UbQ, indicating that all sent data is transformed with
T1.

Add a source transformation TO to Ub0, indicating that all received data is transformed with
ToO.

Register the UDP transport Ub0O with allow__interface = b0.
Register the UDP transport Ubl with allow_ interface = bl.

No transformations are registered with Ubl.

4.6.

Transports 89

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Ual

DomainParticipantQos.transports.enabled__transports = “Ub0”,”Ub1”
DomainParticipantQos.discovery.enabled__transports = "Ub0://”

DomainParticipantQos.user data.enabled transports = "Ubl://”

and UbQO perform transformations and are used for discovery. Ual and Ubl are used for

user-data and no transformation takes place.

Transformed Data Between 2 Nodes (same transformation)

In this system two Nodes, A and B, are communicating with transformed data using the same
transformation for user and discovery data. Node A has one interface, a0, and Node B has one
interface, b0.

Node A:

Add a destination transformation TO to Ua0, indicating that all sent data is transformed with
ToO.

Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

Register the UDP transport Ua(with allow_ interface = a0.

¢ DomainParticipantQos.transports.enabled_ transports = “Ua0”

o DomainParticipantQos.discovery.enabled_transports = "Ua0://”

o DomainParticipantQos.user__data.enabled__transports = "Ua0://”
Node B:

Add a destination transformation T1 to UbQ, indicating that all sent data is transformed with
T1.

Add a source transformation TO to UbQ, indicating that all received data is transformed with
TO.

Register the UDP transport Ub0 with allow_ interface = b0.
DomainParticipantQos.transports.enabled_ transports = “Ub0”
DomainParticipantQos.discovery.enabled__transports = "Ub0://”

DomainParticipantQos.user__data.enabled__transports = "Ub0://”

Ua0 and Ub0 performs transformations and are used for discovery and for user-data.

4.6.

Transports 90

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Transformed Data Between 2 Nodes (different transformations)

In this system two Nodes, A and B, are communicating with transformed data using different
transformations for user and discovery data. Node A has two interfaces, a0 and al, and Node B
has two interfaces, b0 and bl.

Node A:

Add a destination transformation TO to Ua0, indicating that all sent data is transformed with
ToO.

Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

Add a destination transformation T2 to Ual, indicating that all sent data is transformed with
T2.

Add a source transformation T3 to Ual, indicating that all received data is transformed with
T3.

Register the UDP transport Ua0Q with allow__interface = a0.

Register the UDP transport Ual with allow_ interface = al.

e DomainParticipantQos.transports.enabled__transports = “Ua0”,”Ual”

o DomainParticipantQos.discovery.enabled transports = "Ua0://”

o DomainParticipantQos.user_data.enabled transports = "Ual://”
Node B:

Add a destination transformation T1 to UbO, indicating that all sent data is transformed with
T1.

Add a source transformation TO to Ub0, indicating that all received data is transformed with
ToO.

Add a destination transformation T3 to Ubl, indicating that all sent data is transformed with
T3.

Add a source transformation T2 to Ubl, indicating that all received data is transformed with
T2.

Register the UDP transport Ub0 with allow_interface = b0.

Register the UDP transport Ubl with allow_ interface = bl.
DomainParticipantQos.transports.enabled__transports = “Ub0”,”Ub1”
DomainParticipantQos.discovery.enabled__transports = "Ub0://”

DomainParticipantQos.user data.enabled transports = "Ubl://”

Ua0 and Ub0 perform transformations and are used for discovery. Ual and Ubl perform transfor-
mations and are used for user-data.

4.6.

Transports 91

RTI Connext DDS Micro Documentation, Version 2.4.14.0

OS Configuration

In systems with several network interfaces, Connext DDS Micro cannot ensure which network
interface should be used to send a packet. Depending on the UDP transformations configured, this
might be a problem.

To illustrate this problem, let’s assume a system with two nodes, A and B. Node A has two network
interfaces, a0 and al, and Node B has two network interfaces, b0 and bl. In this system, Node A
is communicating with Node B using a transformation for discovery and a different transformation
for user data.

Node A:

Add a destination transformation TO to Ua0, indicating that sent data to b0 is transformed
with TO.

Add a source transformation T1 to UaQ, indicating that received data from b0 is transformed
with T1.

Add a destination transformation T2 to Ual, indicating that sent data to bl is transformed
with T2.

Add a source transformation T3 to Ual, indicating that received data from bl is transformed
with T3.

Register the UDP transport Ua0Q with allow__interface = a0.
Register the UDP transport Ual with allow__interface = al.

¢ DomainParticipantQos.transports.enabled_transports = “Ua0”,”Ual”

o DomainParticipantQos.discovery.enabled transports = "Ua0://”

o DomainParticipantQos.user__data.enabled_transports = "Ual://”
Node B:

Add a destination transformation T1 to Ub0, indicating that sent data to a0 is transformed
with T1.

Add a source transformation T0O to UbO, indicating that received data from a0 transformed
with TO.

Add a destination transformation T3 to Ubl, indicating that sent data to al is transformed
with T3.

Add a source transformation T2 to Ubl, indicating that received data from al transformed
with T2.

Register the UDP transport Ub0 with allow__interface = b0.

Register the UDP transport Ubl with allow_ interface = bl.
DomainParticipantQos.transports.enabled__transports = “Ub0”,”Ub1”
DomainParticipantQos.discovery.enabled__transports = "Ub0://”

DomainParticipantQos.user_ data.enabled__transports = "Ubl://”

4.6.

Transports 92

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Node A sends a discovery packet to Node B to interface b0. This packet will be transformed using
TO as specified by Node A’s configuration. When this packet is received in Node B, it will be
transformed using either TO or T2 depending on the source address. Node’s A OS will use a0 or
al to send this packet but Connext DDS Micro cannot ensure which one will be used. In case the
OS sends the packet using al, the wrong transformation will be applied in Node B.

Some systems have the possibility to configure the source address that should be used when a
packet is sent. In POSIX systems, the command ip route add <string> dev <interface> can
be used.

By typing the command ip route add < b0 ip >/32 dev a0 in Node A, the OS will send all
packets to Node B’s b0 IP address using interface a0. This would ensure that the correct transfor-
mation is applied in Node B. The same should be done to ensure that user data is sent with the
right address ip route add < bl ip >/32 dev al. Of course, similar configuration is needed in
Node B.

4.7 Discovery

This section discusses the implementation of discovery plugins in RTI Connext DDS Micro. For a
general overview of discovery in RTI Connext DDS Micro, see What is Discovery?.

Connext DDS Micro discovery traffic is conducted through transports. Please see the Transports
section for more information about registering and configuring transports.

4.7.1 What is Discovery?

Discovery is the behind-the-scenes way in which RTI Connext DDS Micro objects (DomainPartici-
pants, Data Writers, and DataReaders) on different nodes find out about each other. Each Domain-
Participant maintains a database of information about all the active DataReaders and Data Writers
that are in the same DDS domain. This database is what makes it possible for Data Writers and
DataReaders to communicate. To create and refresh the database, each application follows a com-
mon discovery process.

This section describes the default discovery mechanism known as the Simple Discovery Protocol,
which includes two phases: Simple Participant Discovery and Simple Endpoint Discovery.

The goal of these two phases is to build, for each DomainParticipant, a complete picture of all the
entities that belong to the remote participants that are in its peers list. The peers list is the list of
nodes with which a participant may communicate. It starts out the same as the initial peers list
that you configure in the DISCOVERY QosPolicy. If the accept_ unknown_ peers flag in that same
QosPolicy is TRUE, then other nodes may also be added as they are discovered; if it is FALSE, then
the peers list will match the initial peers list, plus any peers added using the DomainParticipant’s
add__peer() operation.

The following section discusses how Connext DDS Micro objects on different nodes find out about
each other using the default Simple Discovery Protocol (SDP). It describes the sequence of messages
that are passed between Connext DDS Micro on the sending and receiving sides.

4.7. Discovery 93

../../api_c/html/group__DDSDiscoveryQosModule.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Note that this chapter is shared between Connext DDS Micro and Connext DDS Micro Cert.
However Connext DDS Micro Cert only supports static endpoint discovery described in Static
Discovery Plugin.

The discovery process occurs automatically, so you do not have to implement any special code. For
more information about advanced topics related to Discovery, please refer to the Discovery chapter
in the RTI Connext DDS Core Libraries User’s Manual (available here if you have Internet access).

Simple Participant Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Participant Discovery
Protocol (SPDP) and is common for both dynamic and static endpoint discovery.

During the Participant Discovery phase, DomainParticipants learn about each other. The Domain-
Participant’s details are communicated to all other DomainParticipants in the same DDS domain
by sending participant declaration messages, also known as participant DATA submessages. The
details include the DomainParticipant’s unique identifying key (GUID or Globally Unique ID de-
scribed below), transport locators (addresses and port numbers), and QoS. These messages are sent
on a periodic basis using best-effort communication.

Participant DATAs are sent periodically to maintain the liveliness of the DomainParticipant. They
are also used to communicate changes in the DomainParticipant’s QoS. Only changes to QosPolicies
that are part of the DomainParticipant’s built-in data need to be propagated.

When receiving remote participant discovery information, Connext DDS Micro determines if the
local participant matches the remote one. A ‘match’ between the local and remote participant
occurs only if the local and remote participant have the same Domain ID. This matching process
occurs as soon as the local participant receives discovery information from the remote one. If
there is no match, the discovery DATA is ignored, resulting in the remote participant (and all its
associated entities) not being discovered.

When a DomainParticipant is deleted, a participant DATA (delete) submessage with the Domain-
Participant’s identifying GUID is sent.

The GUID is a unique reference to an entity. It is composed of a GUID prefix and an Entity ID.
By default, the GUID prefix is calculated. The entityID is set by Connext DDS Micro (you may
be able to change it in a future version).

Once a pair of remote participants have discovered each other, they can move on to the Endpoint
Discovery phase, which is how Data Writers and DataReaders find each other.

Simple Endpoint Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Endpoint Discovery Pro-
tocol (SEDP).

During the Endpoint Discovery phase, DataWriters and DataReaders are matched. Information
(GUID, QoS, etc.) about your application’s DataReaders and DataWriters is exchanged by sending
publication/subscription declarations in DATA messages that we will refer to as publication DATAs
and subscription DATAs. The Endpoint Discovery phase uses reliable communication.

4.7. Discovery 94

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Discovery.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.0

These declarations or DATA messages are exchanged until each DomainParticipant has a complete
database of information about the participants in its peers list and their entities. Then the discovery
process is complete and the system switches to a steady state. During steady state, participant
DATAs are still sent periodically to maintain the liveliness status of participants. They may also
be sent to communicate QoS changes or the deletion of a DomainParticipant.

When a remote Data Writer/DataReader is discovered, Connext DDS Micro determines if the local
application has a matching DataReader/DataWriter. A ‘match’ between the local and remote
entities occurs only if the DataReader and Data Writer have the same Topic, same data type, and
compatible QosPolicies. Furthermore, if the DomainParticipant has been set up to ignore certain
DataWriters/DataReaders, those entities will not be considered during the matching process.

This ‘matching’ process occurs as soon as a remote entity is discovered, even if the entire database
is not yet complete: that is, the application may still be discovering other remote entities.

A DataReader and DataWriter can only communicate with each other if each one’s application has
hooked up its local entity with the matching remote entity. That is, both sides must agree to the
connection.

Please refer to the section on Discovery Implementation in the RTI Connext DDS Core Libraries
User’s Manual for more details about the discovery process (available here if you have Internet
access).

4.7.2 Configuring Participant Discovery Peers

An RTI Connext DDS Micro DomainParticipant must be able to send participant discovery an-
nouncement messages for other DomainParticipants to discover itself, and it must receive announce-
ments from other DomainParticipants to discover them.

To do so, each DomainParticipant will send its discovery announcements to a set of locators known
as its peer list, where a peer is the transport locator of one or more potential other DomainPartic-
ipants to discover.

peer_desc_string

A peer descriptor string of the initial peers string sequence conveys the interface and address of
the locator to which to send, as well as the indices of participants to which to send. For example:

DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers, 3);
DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers, 3);

*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 0) =
DDS_String_dup("_udp://239.255.0.1");

*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 1)
DDS_String_dup("[1-4]@_udp://10.10.30.101");

+*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 2)
DDS_String_dup("[2]@_udp://10.10.30.102");

4.7. Discovery 95

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Discovery_Implementation.htm
../../api_c/html/structDDS__DiscoveryQosPolicy.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

The peer descriptor format is:

[index@] [interface://]address

Remember that every DomainParticipant has a participant index that is unique within a DDS do-
main. The participant index (also referred to as the participant ID), together with the DDS domain
ID, is used to calculate the network ports on which DataReaders of that participant will receive
messages. Thus, by specifying the participant index, or a range of indices, for a peer locator, that
locator becomes one or more ports to which messages will be sent only if addressed to the entities of
a particular DomainParticipant. Specifying indices restricts the number of participant announce-
ments sent to a locator where other DomainParticipants exist and, thus, should be considered to
minimize network bandwidth usage.

In the above example, the first peer, “__udp://239.255.0.1,” has the default UDPv4 multicast peer
locator. Note that there is no [index@] associated with a multicast locator.

The second peer, “[1-4]@_udp://10.10.30.101,” has a unicast address. It also has indices in brackets,
[1-4]. These represent a range of participant indices, 1 through 4, to which participant discovery
messages will be sent.

Lastly, the third peer, “[2]@_udp://10.10.30.102,” is a unicast locator to a single participant with
index 2.

4.7.3 Configuring Initial Peers and Adding Peers

DiscoveryQosPolicy__initial _peers is the list of peers a DomainParticipant sends its participant
announcement messages, when it is enabled, as part of the discovery process.

DiscoveryQosPolicy_initial _peers is an empty sequence by default, so while DiscoveryQosPol-
icy__enabled_transports by default includes the DDS default loopback and multicast (239.255.0.1)
addresses, initial _peers must be configured to include them.

Peers can also be added to the list, before and after a DomainParticipant has been enabled, by
using DomainParticipant_ add_ peer.

The DomainParticipant will start sending participant announcement messages to the new peer as
soon as it is enabled.

4.7.4 Discovery Plugins

When a DomainParticipant receives a participant discovery message from another Do-
mainParticipant, it will engage in the process of exchanging information of user-created
DataWriter and DataReader endpoints.

RTI Connext DDS Micro provides two ways of determinig endpoint information of other
DomainParticipants: Dynamic Discovery Plugin and Static Discovery Plugin.

4.7. Discovery 96

../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/group__DDSDomainParticipantModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Dynamic Discovery Plugin

NOTE: The Dynamic Discovery Plugin is not available in Connext DDS Micro Cert.
The description is only included for completeness and comparison with the Static Dis-
covery Plugin.

Dynamic endpoint discovery uses builtin discovery Data Writers and DataReader to exchange mes-
sages about user created DataWriter and DataReaders. A DomainParticipant using dynamic par-
ticipant, dynamic endpoint (DPDE) discovery will have a pair of builtin Data Writers for sending
messages about its own user created Data Writers and DataReaders, and a pair of builtin DataRead-
ers for receiving messages from other DomainParticipants about their user created Data Writers and
DataReaders.

Given a DomainParticipant with a user Data Writer, receiving an endpoint discovery message for a
user DataReader allows the DomainParticipant to get the type, topic, and QoS of the DataReader
that determine whether the DataReader is a match. When a matching DataReader is discovered,
the DataWriter will include that DataReader and its locators as destinations for its subsequent
writes.

Static Discovery Plugin

Static endpoint discovery uses function calls to statically assert information about remote end-
points belonging to remote DomainParticipants. An application with a DomainParticipant using
dynamic participant, static endpoint (DPSE) discovery has control over which endpoints belonging
to particular remote DomainParticipants are discoverable.

Whereas dynamic endpoint-discovery can establish matches for all endpoint-discovery messages
it receives, static endpoint-discovery establishes matches only for the endpoint that have been
asserted programmatically. When a DomainParticipant receives a participant discovery message
from another DomainParticipant, it will engage in the process of matching previously asserted
user-created Data Writer and DataReader endpoints.

With DPSE, a user needs to know a priori the configuration of the entities that will need to be
discovered by its application. The user must know the names of all DomainParticipants within the
DDS domain and the exact QoS of the remote DataWriters and DataReaders.

Please refer to the C API Reference and C++4 API Reference for the following remote entity
assertion APIs:

e DPSE_RemoteParticipant_ assert
e DPSE RemotePublication assert

e« DPSE_RemoteSubscription_ assert

4.7. Discovery 97

../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Remote Participant Assertion

Given a local DomainParticipant, static discovery requires first the names of remote Domain-
Participants to be asserted, in order for endpoints on them to match. This is done by calling
DPSE_RemoteParticipant_assert with the name of a remote DomainParticipant. The name must
match the name contained in the participant discovery announcement produced by that Domain-
Participant. This has to be done reciprocally between two DomainParticipants so that they may
discover one another.

For example, a DomainParticipant has entity name “participant_ 17, while another DomainPartici-
pant has name “participant_ 2.” participant_ 1 should call DPSE_ RemoteParticipant_ assert(“par-
ticipant_2”) in order to discover participant_ 2. Similarly, participant_ 2 must also assert partici-
pant__1 for discovery between the two to succeed.

/* participant_1 is asserting (remote) participant_2 */
retcode = DPSE_RemoteParticipant_assert(participant_1,
"participant_2");
if (retcode != DDS_RETCODE_OK) {
printf("participant_1 failed to assert participant_2\n");
goto done;

Remote Publication and Subscription Assertion

Next, a DomainParticipant needs to assert the remote endpoints it wants to match that belong to an
already asserted remote DomainParticipant. The endpoint assertion function is used, specifying an
argument which contains all the QoS and configuration of the remote endpoint. Where DPDE gets
remote endpoint QoS information from received endpoint-discovery messages, in DPSE, the remote
endpoint’s QoS must be configured locally. With remote endpoints asserted, the DomainPartic-
ipant then waits until it receives a participant discovery announcement from an asserted remote
DomainParticipant. Once received that, all endpoints that have been asserted for that remote
DomainParticipant are considered discovered and ready to be matched with local endpoints.

Assume participant_ 1 contains a Data Writer, and participant_ 2 has a DataReader, both commu-
nicating on topic HelloWorld. participant_ 1 needs to assert the DataReader in participant_ 2 as
a remote subscription. The remote subscription data passed to the operation must match exactly
the QoS actually used by the remote DataReader:

/* Set participant_2's reader's QoS in remote subscription data */
rem_subscription_data.key.value [DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 200;
rem_subscription_data.topic_name = DDS_String_dup("Example HelloWorld");
rem_subscription_data.type_name = DDS_String_dup("HelloWorld");
rem_subscription_data.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

/* Assert reader as a remote subscription belonging to (remote) participant_2 */
retcode = DPSE_RemoteSubscription_assert(participant_1,
"participant_2",
&rem_subscription_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

—get(), NULL)); (continues on next page)

4.7. Discovery 98

../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

if (retcode != DDS_RETCODE_0K)

{
printf("failed to assert remote subscription\n");
goto done;

Reciprocally, participant_ 2 must assert participant_ 1’s Data Writer as a remote publication, also
specifying matching QoS parameters:

/* Set participant_1's writer's QoS in remote publication data */
rem_publication_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 100;
rem_publication_data.key.value.topic_name = DDS_String_ dup("Example HelloWorld");
rem_publication_data.key.value.type_name = DDS_String_ dup("HelloWorld");
rem_publication_data.key.value.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

/* Assert writer as a remote publication belonging to (remote) participant_1 */
retcode = DPSE_RemotePublication_assert(participant_2,
"participant_1",
&rem_publication_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_
—get(), NULL));
if (retcode !'= DDS_RETCODE_OK)
{
printf("failed to assert remote publication\n");
goto done;

When participant__1 receives a participant discovery message from participant_ 2, it is aware of par-
ticipant_ 2, based on its previous assertion, and it knows participant_ 2 has a matching DataReader,
also based on the previous assertion of the remote endpoint. It therefore establishes a match be-
tween its Data Writer and participant_ 2’s DataReader. Likewise, participant_ 2 will match partic-
ipant_ 1’s DataWriter with its local DataRead, upon receiving one of participant_ 1’s participant
discovery messages.

Note, with DPSE, there is no runtime check of QoS consistency between Data Writers and DataRead-
ers, because no endpoint discovery messages are exchanged. This makes it extremely important
that users of DPSE ensure that the QoS set for a local DataWriter and DataReader is the same
QoS being used by another DomainParticipant to assert it as a remote Data Writer or DataReader.

4.7. Discovery 99

../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.8 Configuring Resource Limits

4.8.1 Introduction

Connext DDS Micro is designed for use in real-time systems and uses a predictable and deterministic
memory manager to ensure that memory growth is not unbounded, OS memory fragmentation is
eliminated and memory usage can be determined a-priori. The advantage with this design is that
proper operation is ensured as soon as steady state has been reached. However, it also places an
additional burden on the system designer to properly configure each resource limit. The purpose of
this document is to describe all resource limits in Connext DDS Micro, what the behavioral impact
is, and what the impact on memory usage is.

4.8.2 Resource Limits
All resource limits in Connext DDS Micro are specified in a QoS policy or property. The properties
listed below are where the various resource limits are applied, and section Configuring Resource

Limits describes each user adjustable resource limit in more detail. See the Micro Memory Map
below for an overview of the memory used by each resource limit and where they apply.

DomainParticipantFactoryQos

See DomainParticipantFactoryQos for more detail.

DomainParticipantQos

The DomainParticipantQos controls resources that are applicable to the entire DomainParticipant.
All the resources specified in the DomainParticipantQos are allocated when the DomainParticipant
is created with the DDS__DomainParticipantFactory_ create_ participant() call.

DataReaderQos

The DataReaderQos controls the resources used by the DDS_ DataReader. Each DDS_ DataReader
allocates its own resources, even DDS_DataReader’s of the same DDS_ Topic. For this reason is
it advised to limit the number of DDS_ DataReader’s per DDS_ Topic to one.

4.8. Configuring Resource Limits 100

../../api_c/html/group__DDSUserManuals__ResourceModule.html
../../api_c/html/group__DDSUserManuals__ResourceModule.html
../../api_c/html/group__DDSUserManuals__ResourceModule__dpf.html
../../api_c/html/group__DDSUserManuals__ResourceModule__dp.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html#ga325cf8f97a2752b6f486b7b1c3faf5b8
../../api_c/html/group__DDSUserManuals__ResourceModule__drqos.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

DataWriterQos
The DataWriterQos controls the resources allocated by a DDS_ DataWriter. Each

DDS_ DataWriter allocates its own resources, even DDS_ DataWriters of the same DDS_ Topic.
For this reason is it advised to limit the number of DDS_ DataWriters per topic to one.

OSAPI

See OSAPI for more details.

UDP Transport

See UDP Transport for more details.

Dynamic Participant Static Endpoint (DPSE)

The Dynamic Participant Static Endpoint (DPSE) discovery plugin creates one DDS_ DataWriter
and one DDS_ DataReader for the ParticipantBuiltinTopicData. The memory for the plugin in-
cludes the memory allocated by the DDS_DataReader and DDS_ DataWriter. The memory allo-
cated by the properties must be added for total memory usage.

Dynamic Participant Dynamic Endpoint (DPDE)

The Dynamic Participant Dynamic Endpoint (DPDE) discovery plugin creates one
DDS_DataWriter and one DDS_ DataReader for each ParticipantBuiltinTopicData, Publication-
BuiltinTopicData, and SubscriptionBuiltinTopicData. The memory for the plugin includes the
memory allocated by these DDS_ DataReaders and DDS_ DataWriters. The memory allocated by
the properties must be added for total memory usage.

4.8. Configuring Resource Limits 101

../../api_c/html/group__DDSUserManuals__ResourceModule__dwqos.html
../../api_c/html/group__DDSUserManuals__ResourceModule__osapi.html
../../api_c/html/group__DDSUserManuals__ResourceModule__udp.html
../../api_c/html/group__DDSUserManuals__ResourceModule__dpse.html
../../api_c/html/group__DDSUserManuals__ResourceModule__dpde.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Memory Map

RTI Connext Micro Memory Map

DomainParticipantFactory

max_components

Component

OSAPI
max_buffer size

max receive ports

max destination ports

max_participants

DomainParticipant [15 KB]

local_topic_allocation local

NOTE: One receive-buffer

type_allocation is allocated per receive port
Topic Type UDP
topic_name type_name max_message_size

local publisher allocation

Publisher

local writer_allocation

DataWriter

DataWriter History

max sample

max_samples_per_ instance

remote participant_allocation
s
"Discovered” Participant

‘ Instance

| [sample | [sample |
max_instances
[instance | [sample |

max_route;

remote writer allocation
"Discovered" DataWriters

max_remote_readers
S _per reader

Remote

DataReader

local_subscriber_allecation

matching_reader writer_pair allocation
matching writer reader_ pair allocation

Subscriber

local_reader_allocation

DataReader

remote reader_allocation

DataReader History

max¥_instances

max_samples "Discovered” DataReader

max samples per instance

Instance

max_remote writers_per instance

| sample | [sample | [sample]

:| sample | | sample |

max_routes_per writer

The samples are allocated from max_samples
max remote writers

Remote DataWriter

sample | [sample | [sample |

max_samples_per remote writer

4.8.

Configuring Resource Limits

102

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.8.3 Dynamic Memory Allocation

Connext DDS Micro allocates heap memory to create internal data-structures. It is important to
know that Connext DDS Micro manages memory allocated from the system heap using its own
internal memory management, and only returns memory allocated from the system back to the
system when something is deleted. That is, if an application never deletes anything, no memory is
returned to the system.

As a rule of thumb, in Connext DDS Micro the only APIs that allocate heap memory are:
o DDS_ DomainParticipantFactory _get_ instance().
o Those that contain the word “new”, i.e. DDS_WaitSet_new/().

e Those that contain the word “create”, i.e. DDS_ DomainParticipantFactory create_partici-
pant().

And the only APIs that free memory are:
o DDS_ DomainParticipantFactory_ finalize_instance().
o Those that contain the word “delete”, i.e. OSAPI_Waitset_ delete().
o Those that contain the word “free”, i.e. DDS_ String_ free().

Connext DDS Micro does not support dynamically allocating resources beyond the initial config-
uration. That is, all resource limits must be finite. This restriction may be removed in a future
version.

4.8.4 Internal Resource Allocation

Connext DDS Micro allocates additional resources to entities based on internal needs. As a result,
resource limits set by the user will often appear to have increased by a constant when read back.
This is because Connext DDS Micro uses additional internal readers and other entities. Connext
DDS Micro takes the user-defined value and adds a constant depending on the resource limit, topic
and entity being used. For specific values, consult the table below.

See Heap Usage for further details on the amount of memory used by each resource limit in the
memory model.

4.8. Configuring Resource Limits 103

../../api_c/html/group__DDSDomainParticipantFactoryModule.html#gac874268715a20b82db24d26d7fbae965
../../api_c/html/group__DDSConditionsModule.html#ga5490c5e53e46790c2823d43310141c7b
../../api_c/html/group__DDSDomainParticipantFactoryModule.html#ga325cf8f97a2752b6f486b7b1c3faf5b8
../../api_c/html/group__DDSDomainParticipantFactoryModule.html#ga325cf8f97a2752b6f486b7b1c3faf5b8
../../api_c/html/group__DDSDomainParticipantFactoryModule.html#ga925b60f4abd015d1ecd3a389feebfa6c
../../api_c/html/group__DDSConditionsModule.html#ga06bf93bc3887f0f5b92ddcfa4f5bfa18
../../api_c/html/group__DDSStringClass.html#ga13074f0132f743923a4a36ee533997fe

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Table 4.1: Connext DDS Micro Internal resource limit Mod-

ifications

resource limit Modifications by Feature
local_topic_allocation DPSE! 1

DPDE? 3
local_type_allocation DPSE 1

DPDE 3
local_writer_allocation DPSE 1

DPDE 3
local_reader_allocation DPSE 1

DPDE 3
local_publisher_allocation DPSE 1

DPDE 1
local_subscriber_allocation DPSE 1

DPDE 1
matching writer_reader_pair_allocatignDPSE 1

DPDE remote_participant_allocation

*6

4.9 Generating Type Support with rtiddsgen

4.9.1 Why Use rtiddsgen?

For Connext DDS Micro to publish and subscribe to topics of user-defined types, the types have
to be defined and programmatically registered with Connext DDS Micro. A registered type is then
serialized and deserialized by Connext DDS Micro through a pluggable type interface that each
type must implement.

Rather than have users manually implement each new type, Connext DDS Micro provides the
rtiddsgen utility for automatically generating type support code.

4.9.2 IDL Type Definition

rtiddsgen for Connext DDS Micro accepts types defined in IDL. The HelloWorld examples included
with Connext DDS Micro use the following HelloWorld.idl:

struct HelloWorld
{

string<128> msg;
};

! Dynamic Participant Static Endpoint. Not used concurrently with DPDE.
2 Dynamic Participant Dynamic Endpoint. Not used concurrently with DPSE.

4.9. Generating Type Support with rtiddsgen 104

RTI Connext DDS Micro Documentation, Version 2.4.14.0

For further reference, see the section on Creating User Data Types with IDL in the RTI Connext
DDS Core Libraries User’s Manual (available here if you have Internet access).

4.9.3 Generating Type Support

Before running rtiddsgen, some environment variables must be set:
o RTIMEHOME sets the path of the Connext DDS Micro installation directory
o RTIMEARCH sets the platform architecture (e.g. i86Linux2.6gcc4.4.5 or i86Win32VS2010)
o JREHOME sets the path for a Java JRE

Note that a JRE is shipped with Connext DDS Micro on platforms supported for the execution
of rtiddsgen (Linux®, Windows®, and Mac® OS X®). It is not necessary to set JREHOME on these
platforms, unless a specific JRE is preferred.

C

Run rtiddsgen from the command line to generate C language type-support for a UserType.idl (and
replace any existing generated files):

. only:: not cert

> $rti__connext_micro_root/rtiddsgen/scripts/rtiddsgen -micro -language C -replace
UserType.idl

C++

Run rtiddsgen from the command line to generate C++ language type-support for a UserType.idl
(and replace any existing generated files):

> $rti_connext_micro_root/rtiddsgen/scripts/rtiddsgen -micro -language C++ -replace
—UserType.idl

Notes on Command-Line Options

In order to target Connext DDS Micro when generating code with rtiddsgen, the -micro option
must be specified on the command line.

To list all command-line options specifically supported by rtiddsgen for Connext DDS Micro, enter:

> rtiddsgen -micro -help

Existing users might notice that that previously available options, -language microC” ~and
““-language microC++, have been replaced by -micro -language C and "-micro -language
C++"", respectively. It is still possible to specify microC and microC++ for backwards compati-
bility, but users are advised to switch to using the -micro command-line option along with other
arguments.

4.9. Generating Type Support with rtiddsgen 105

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Creating_User_Data_Types_with_IDL.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Generated Type Support Files

rtiddsgen will produce the following header and source files for each IDL file passed to it:

o UserType.h and UserType.c (.cxx for C++) implement creation/intialization and deletion
(only for Connext DDS Micro of a single sample and a sequence of samples of the type (or
types) defined in the IDL description.

o UserTypePlugin.h and UserTypePlugin.c (.cxx for C++) implement the pluggable type in-
terface that Connext DDS Micro uses to serialize and deserialize the type.

o UserTypeSupport.h and UserTypeSupport.c(xx) define type-specific DataWriters and
DataReaders for user-defined types.

4.9.4 Using custom data-types in Connext DDS Micro Applications

A Connext DDS Micro application must first of all include the generated headers. Then it must
register the type with the DomainParticipant before a topic of that type can be defined. For
an example HelloWorld type, the following code registers the type with the participant and then
creates a topic of that type:

#include "HelloWorldPlugin.h"
#include "HelloWorldSupport.h"

/* ... x/

retcode = HelloWorldTypeSupport_register_type(application->participant,
"HelloWorld");
if (retcode != DDS_RETCODE_OK)
{
/* Log an error */
goto done;

}

application->topic = DDS_DomainParticipant_create_topic(
application->participant,
"Example HelloWorld",
"HelloWorld",
&DDS_TOPIC_QOS_DEFAULT, NULL,
DDS_STATUS_MASK_NONE) ;

if (application->topic == NULL)
{

/* Log an error */

goto done;

See the full HelloWorld examples for further reference.

4.9. Generating Type Support with rtiddsgen 106

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.9.5 Customizing generated code

rtiddsgen allows Connext DDS Micro users to select whether they want to generate code to subscribe
to and/or publish a custom data-type. When generating code for subscriptions, only those parts of
code dealing with deserialization of data and the implementation of a typed DataReader endpoint
are generated. Conversely, only those parts of code addressing serialization and the implementation
of a DataWriter are considered when generating publishing code.

Control over these options is provide by two command-line arguments:

o -reader generates code for deserializing custom data-types and creating DataReaders from
them.

e -writer generates code for serializing custom data-types and creating DataWriters from
them.

If neither of these two options are supplied to rtiddsgen, they will both be considered active and
code for both DataReaders and DataWriters will be generated. If only one of the two options is
supplied to rtiddsgen, only that one is enabled. If both options are supplied, both are enabled.

4.9.6 Unsupported Features of rtiddsgen with Connext DDS Micro

Connext DDS Micro supports a subset of the features and options in rtiddsgen. Use rtiddsgen
-micro -help to see the list of features supported by rtiddsgen for Connext DDS Micro.

4.10 Threading Model

4.10.1 Introduction

This section describes the threading model, the use of critical sections, and how to configure
thread parameters in RTI Connext DDS Micro. Please note that the information contained in this
document applies to application development using Connext DDS Micro. For information regarding
porting the Connext DDS Micro thread API to a new OS, please refer to Porting RTI Connext
DDS Micro.

This section includes:
e Architectural Overview
e Threading Model
e UDP Transport Threads

4.10. Threading Model 107

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.10.2 Architectural Overview

RTI Connext DDS Micro consists of a core library and a number of components. The core library
provides a porting layer, frequently used data-structures and abstractions, and the DDS API.
Components provide additional functionality such as UDP communication, DDS discovery plugins,
DDS history caches, etc.

to————— + \
| DDS_C | } C API
+———— + /
e + - + +-————- + +-————- + \
| DPSE | | DPDE | | WHSM | | RHSM | |
e et + - + 4 + 4 + |
+-————- + - + - + +--——— + +-———- + } Optional components
| LOoP | | UDP(*)| | RTPS | | DRI | | DWI | | (platform independent)
+———— + - + +-————- + +-————- + +-———- + |
/
to—————= + +—————— + == + == + \ Core Services (always
| REDA | | CDR | | DB | | RT | } present, platform
o R I I + / independent)
o + \
| 0SAPI | } Platform dependent module
o + /

(*) The UDP transport relies on a BSD socket API

4.10.3 Threading Model

RTI Connext DDS Micro is architected in a way that makes it possible to create a port of Connext
DDS Micro that uses no threads, for example on platforms with no operating system. Thus, the
following discussion can only be guaranteed to be true for Connext DDS Micro libraries from RTT.

OSAPI Threads

The Connext DDS Micro OSAPI layer creates one thread per OS process. This thread manages all
the Connext DDS Micro timers, such as deadline and liveliness timers. This thread is created by
the Connext DDS Micro OSAPI System when the OSAPI_System_ initialize() function is called.
When the Connext DDS Micro DDS API is used DomainParticipantFactory get instance() calls
this function once.

4.10. Threading Model 108

../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Configuring OSAPI Threads

The timer thread is configured through the OSAPI_SystemProperty structure and any changes
must be made before OSAPI System initialize() is called. In Connext DDS Micro, DomainPar-
ticipantFactory get_instance() calls OSAPI_System_ initialize(). Thus, if it is necessary to change
the system timer thread settings, it must be done before DomainParticipantFactory_get_ instance()
is called the first time.

Please refer to OSAPI_Thread for supported thread options. Note that not all options are sup-
ported by all platforms.

struct OSAPI_SystemProperty sys_property = OSAPI_SystemProperty_INITIALIZER;

if (!0SAPI_System_get_property(&sys_property))
{

/* ERROR */
}

/* Please refer to OSAPI_ThreadOptions for posstible options */
sys.property.timer_property.thread.options =;

/* The stack-size is platform dependent, it is passed directly to the 0S */
sys.property.timer_property.thread.stack_size =

/* The priority is platform dependent, it is passed directly to the 0S */
sys.property.timer_property.thread.priority =

if (!0SAPI_System_set_property(&sys_property))
{

/* ERROR */
}

UDP Transport Threads

Of the components that RTI provides, only the UDP component creates threads. The UDP trans-
port creates one receive thread for each unique UDP receive address and port. Thus, three UDP
threads are created by default:

o A multicast receive thread for discovery data (assuming multicast is available and enabled)
e A unicast receive thread for discovery data
o A unicast receive thread for user-data

Additional threads may be created depending on the transport configuration for a DomainPartic-
ipant, DataReader and DataWriter. The UDP transport creates threads based on the following
criteria:

e Each unique unicast port creates a new thread

o Each unique multicast address and port creates a new thread

4.10. Threading Model 109

../../api_c/html/structOSAPI__SystemProperty.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__OSAPI__ThreadClass.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

For example, if a DataReader specifies its own multicast receive address a new receive thread will
be created.

Configuring UDP Receive Threads

All threads in the UDP transport share the same thread settings. It is important to note that
all the UDP properties must be set before the UDP transport is registered. Connext DDS Mi-
cro pre-registers the UDP transport with default settings when the DomainParticipantFactory is
initialized. To change the UDP thread settings, use the following code.

RT_Registry_T *registry = NULL;
DDS_DomainParticipantFactory *factory = NULL;
struct UDP_InterfaceFactoryProperty *udp_property = NULL;

factory = DDS_DomainParticipantFactory_get_instance();

udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof (struct UDP_InterfaceFactoryProperty));
*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

registry = DDS_DomainParticipantFactory_get_registry(factory);

if (!RT_Registry_unregister(registry, "_udp", NULL, NULL))
{

/* ERROR */
}

/* Please refer to OSAPI_ThreadOptions for possible options */
udp_property->recv_thread.options = ...;

/* The stack-size is platform dependent, it is passed directly to the 0S */
udp_property->recv_thread.stack_size =

/* The priority is platform dependent, it is passed directly to the 0S */
udp_property->recv_thread.priority =

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)udp_property,
NULL))

/* ERROR */

4.10. Threading Model 110

../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

General Thread Configuration

The Connext DDS Micro architecture consists of a number of components and layers, and each layer
and component has its own properties. It is important to remember that the layers and components
are configured independently of each other, as opposed to configuring everything through DDS. This
design makes it possible to relatively easily swap out one part of the library for another.

All threads created based on Connext DDS Micro OSAPI APIs use the same OSAPI_ThreadProp-
erty structure.

4.10.4 Critical Sections

RTI Connext DDS Micro may create multiple threads, but from an application point of view there
is only a single critical section protecting all DDS resources. Note that although Connext DDS
Micro may create multiple mutexes, these are used to protect resources in the OSAPI layer and
are thus not relevant when using the public DDS APIs.

Calling DDS APIs from listeners
When DDS is executing in a listener, it holds a critical section. Thus it is important to return as
quickly as possible to avoid stalling network I/0.

There are no deadlock scenarios when calling Connext DDS Micro DDS APIs from a listener.
However, there are no checks on whether or not an API call will cause problems, such as deleting a
participant when processing data in on_ data_ available from a reader within the same participant.

4.11 Batching

This section is organized as follows:
o Overview
o Interoperability

e Performance

Ezxzample Configuration

4.11. Batching 111

../../api_c/html/structOSAPI__ThreadProperty.html
../../api_c/html/structOSAPI__ThreadProperty.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.11.1 Overview

Batching refers to a mechanism that allows RTI Connext DDS Micro to collect multiple user data
DDS samples to be sent in a single network packet, to take advantage of the efficiency of sending
larger packets and thus increase effective throughput.

Connext DDS Micro supports receiving batches of user data DDS samples, but does not support
any mechanism to collect and send batches of user data.

Receiving batches of user samples is transparent to the application, which receives the samples as
if the samples had been received one at a time. Note though that the reception sequence number
refers to the sample sequence number, not the RTPS sequence number used to send RTPS messages.
The RTPS sequence number is the batch sequence number for the entire batch.

A Connext DDS Micro DataReader can receive both batched and non-batched samples.

For a more detailed explanation, please refer to the BATCH QosPolicy section in the RTI Connext
DDS Core Libraries User’s Manual (available here if you have Internet access).

4.11.2 Interoperability

RTI Connext DDS Professional supports both sending and receiving batches, whereas RTI Connext
DDS Micro supports only receiving batches. Thus, this feature primarily exists in Connext DDS
Micro to interoperate with RTI Connext DDS applications that have enabled batching. An Connext
DDS Micro DataReader can receive both batched and non-batched samples.

4.11.3 Performance

The purpose of batching is to increase throughput when writing small DDS samples at a high rate.
In such cases, throughput can be increased several-fold, approaching much more closely the physical
limitations of the underlying network transport.

However, collecting DDS samples into a batch implies that they are not sent on the network
immediately when the application writes them; this can potentially increase latency. But, if the
application sends data faster than the network can support, an increased proportion of the network’s
available bandwidth will be spent on acknowledgements and DDS sample resends. In this case,
reducing that overhead by turning on batching could decrease latency while increasing throughput.

4.11.4 Example Configuration

This section includes several examples that explain how to enable batching in RTI Connext DDS
Professional. For more detailed and advanced configuration, please refer to the RTI Connext DDS
Core Libraries User’s Manual.

o This configuration ensures that a batch will be sent with a maximum of 10 samples:

4.11. Batching 112

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/BATCH_Qos.htm

RTI Connext DDS Micro Documentation, Version 2.4.14.0

<datawriter_qos>
<publication_name>
<name>HelloWorldDataWriter</name>
</publication_name>
<batch>
<enable>true</enable>
<max_samples>10</max_samples>
</batch>
</datawriter_qos>

e This configuration ensures that a batch is automatically flushed after the delay specified by
max_ flush_delay. The delay is measured from the time the first sample in the batch is
written by the application:

<datawriter_qos>
<publication_name>
<name>HelloWorldDataWriter</name>
</publication_name>
<batch>
<enable>true</enable>
<max_flush_delay>
<sec>1</sec>
<nanosec>0</nanosec>
</max_flush_delay>
</batch>
</datawriter_qos>

o The following configuration ensures that a batch is flushed automatically when
max_data_bytes is reached (in this example 8192).

<datawriter_qos>
<publication_name>
<name>HelloWorldDataWriter</name>
</publication_name>
<batch>
<enable>true</enable>
<max_data_bytes>8192</max_data_bytes>
</batch>
</datawriter_qos>

Note that max_ data_ bytes does not include the metadata associated with the batch samples.

Batches must contain whole samples. If a new batch is started and its initial sample causes the
serialized size to exceed max_ data_ bytes, RTI Connext DDS Professional will send the sample in
a single batch.

4.11. Batching 113

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.12 Message Integrity Checking

Connext DDS Micro uses the DDS-I/RTPS protocol for communication between DDS applications,
and RTPS messages are sent and received by a transport. When an RTPS message is sent across a
communication link, such as Ethernet, it is possible that some bits may change value. These errors
may cause communication failures or incorrect data to be received. In order to detect these types
of errors, transports such as UDP often include a checksum to validate the integrity of the data:
a sender adds the checksum to the transmitted data and the receiver validates that the calculated
checksum for the received data matches the checksum received from the sender. If the checksums
are different, a data corruption has occurred.

By default, Connext DDS Micro relies on the underlying transport, such as UDP, to handle data
integrity checking. However, the underlying transport may not provide sufficient integrity checking,
or may itself introduce errors that Connext DDS Micro must be able to detect regardless of the
transport.

In order to address both of these scenarios for any transport, Connext DDS Micro supports RTPS
message integrity checking by adding a checksum to the RTPS message itself. This chapter describes
the setup and default options to access this feature.

For information on how to write custom checksum functions, please refer to RTPS.

4.12.1 RTPS Checksum

Connext DDS Micro implements checksum validation on a complete RTPS message. A typical
RTPS message without a checksum has the following structure:

e e o e +

| Header | Submessage | submessages | Submessage |
fomm oo o oo +

When the message integrity checking feature is enabled, the structure of the RTPS message changes
as illustrated below:

e e e o Fom e +

| Header | Checksum | Submessage | .. submessages ..| Submessage |
fo—m Fmmmm o e o fommm o +

The sender calculates the checksum for the entire message with a checksum field set to 0 and places
the result in the checksum field.

The receiver saves the the received checksum, sets the received checksum field to 0, and calculates
the checksum for the entire message. It then compares the calculated checksum with the received
checksum. If the checksums differ, the entire RT'PS message is considered corrupted.

Note that the checksum is used only for error detection and not for error correction.

4.12. Message Integrity Checking 114

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.12.2 Configurations

You can configure your application to define which algorithms to use and validate as well as the
requirements enforced by the participant when communicating with other participants using the
DDS WireProtocolQosPolicy.

Configuring the message integrity checking consists of the two parts:
1. Selecting the checksum algorithm.

2. Configuring how a participant applies the checksums.

Selecting a checksum algorithm
Connext DDS Micro supports three built-in algorithms and can be configured to use any of the
following algorithms:

1. DDS_CHECKSUM_ BUILTIN32: CRC-32 As defined by ISO/IEC 13239:2002.

2. DDS__CHECKSUM_ BUILTIN64: CRC-64 As defined by ISO/IEC 13239:2002.

3. DDS__CRC_BUILTIN128: MD5 Message Digest

The CRC functions have the following properties:

Checksum | Polynom Initial Value | Input Reflected | Output Reflected | XOR Value
CRC-32 0x04c11db7 | 2732 -1 true true 2732 -1
CRC-64 0x1b 2764 -1 true true 2764 -1

In addition, four custom algorithms can implemented and used:
1. DDS_CHECKSUM__CUSTOM32
2. DDS__CHECKSUM_ CUSTOM64
3. DDS CHECKSUM CUSTOM128
4. DDS__CHECKSUM__CUSTOM256

Please refer to RTPS for information on how to implement custom checksum functions.

Configuring the DDS DomainParticipant

The RTPS message integrity feature is configured in the DDS WireProtocolQosPolicy for a par-
ticipant. This QoS determines which RTPS checksum should be allowed, and if checksums should
be sent and/or validated.

The following three fields determine how a participant uses RTPS checksums:

e compute_crc - This configures the participant to send a checksum with each RTPS message.
Which checksum to send is determined by computed_ crc_kind.

4.12. Message Integrity Checking 115

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e check__crc - This configures the participant to verify the checksum in each received RTPS
message if the checksum is present. If the checksum is valid, the message is accepted; other-
wise, the message is dropped. If a message is received without a checksum, it is accepted and
processed.

e require_crc - This configures the participant to require that a checksum is present in the
receiving packet. Messages without a checksum are dropped without further processing.
Note that this option is orthogonal to the check crc options. This option only requires that
a checksum is included, it does not validate it. To validate and only accept messages with a
checksum, both check_crc and require__crc must be true.

The following two fields determine which checksums are used:

e computed_crc_kind - The checksum type to include in each RTPS message when compute_crc
is true.

e allowed crc_mask - A mask of all checksum algorithms that the participant can verify. This
allows the participant to receive messages from other participants with a different com-
puted crc_kind. A participant will ignore a participant that is sending a checksum that
it cannot validate.

For example, the following snippet shows how to configure the participant to:

o Send all messages (except the participant announcements; see the Participant Discovery and
Participant Compatibility section below) with DDS CHECKSUM__BUILTING.

e Accept DDS CHECKSUM BUILTIN32, DDS CHECKSUM BUILTINGJ, and
DDS CHECKSUM BUILTIN128 algorithms.

struct DDS_DomainParticipantQos dp_qos =
DDS_DomainParticipantQos_INITIALIZER;

dp_qgos.protocol.computed_crc_kind = DDS_CHECKSUM_BUILTING64;
dp_qos.protocol.allowed_crc_mask = DDS_CHECKSUM_BUILTIN32

| DDS_CHECKSUM_BUILTIN32
| DDS_CHECKSUM_BUILTIN64;

4.12.3 Participant Discovery and Participant Compatibility

Connext DDS Micro ensures that participants establish communication with each other only when
they have compatible checksum configurations. If compute crc is true, all messages sent from
the participant are protected by a checksum. Since each participant can use a different type of
checksum, a mechanism is required to ensure that participants are compatible during discovery.

To bootstrap this mechanism, all participant announcements (if compute_ crc is set to true) in-
clude a checksum of type DDS_CHECKSUM__BUILTIN32. The participant announcement carries
information about the computed crc_kind (the checksum kind used by the participant) and the
allowed__crc_mask (the checksum kinds understood by the participant), and whether or not the
participant requires a checksum for each RTPS message (if require_crc is set to true). Please
note that messages with DDS CHECKSUM__BUILTIN32 checksum are always accepted to enable
discovering new participants.

4.12. Message Integrity Checking 116

RTI Connext DDS Micro Documentation, Version 2.4.14.0

For a Participant (A) to match with another Participant (B), the computed__crc__kind of Participant
(B) must be a strict subset of the allowed__crc_mask of Participant (A) and vice versa. If Partic-
ipant (B) does not send a checksum (compute crc is set to false), it can only match Participant
(A) if it does not set require__cre to true.

4.12.4 Interoperability with Connext DDS Professional

Connext DDS Professional supports a CRC 32-bit checksum. However, the RTPS submessage used
by Connext DDS Professional to include a checksum is different from the one used by Connext DDS
Micro and what has been standardized by the OMG. Connext DDS Micro always accepts Connext
DDS Professional’s CRC32 and treats it as a DDS _CHECKSUM__BUILTINS2. However, in order
to enable interoperability with Connext DDS Professional and enable Connext DDS Professional
to validate the checksum, it is necessary to change the transmit mode of Connext DDS Micro. Two
transmit modes are available:

e RTPS_CRC_TXMODE__OMG - Use the standard method as defined by the OMG. This
is the default mode. The checksums sent by Connext DDS Micro are not understood by

Connext DDS Professional, and Connext DDS Professional will accept the messages as not
having a CRC32.

e« RTPS CRC TXMODE RTICRC32 - CRC32 Mode. This mode sets the com-
puted__crc_kind to DDS _CRC _BUILTIN32. The checksum sent by Connext DDS Micro
is understood by Pro. Use this option only if the Connext DDS Professional application in
your system needs checksum validation and has set check__crc to true.

4.13 Working With Sequences

4.13.1 Introduction
RTI Connext DDS Micro uses IDL as the language to define data-types. One of the constructs
in IDL is the sequence: a variable-length vector where each element is of the same type. This

section describes how to work with sequences; in particular, the string sequence since it has special
properties.

4.13.2 Working with Sequences
Overview

Logically a sequence can be viewed as a variable-length vector with N elements, as illustrated below.
Note that sequences indices are 0 based.

o=t

o | T]|
+-——+

(continues on next page)

4.13. Working With Sequences 117

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

1 | T
st
2 | T |
+-——+
|
|
F———dt
N-1 | T |
+-——+

There are three types of sequences in Connext DDS Micro:

e Builtin sequences of primitive IDL types.

e Sequences defined in IDL using the sequence keyword.

e Sequences defined by the application.

The following builtin sequences exist (please refer to C API Reference and C++ API Reference for

the complete APT).

IDL Type Connext DDS Micro Type | Connext DDS Micro Sequence
octet DDS Octet DDS_ OctetSeq

char DDS Char DDS_ CharSeq

boolean DDS Boolean DDS_ BooleanSeq

short DDS_Short DDS_ ShortSeq

unsigned short DDS_ UnsignedShort DDS_ UnsignedShortSeq
long DDS_ Long DDS_ LongSeq

unsigned long DDS_ UnsignedLong DDS_ UnsignedLongSeq
enum DDS Enum DDS__EnumSeq

wchar DDS Wchar DDS_ WecharSeq

long long DDS_ LongLong DDS_ LongLongSeq
unsigned long long | DDS_ UnsignedLonglLong | DDS_ UnsignedLonglLongSeq
float DDS Float DDS_ FloatSeq

double DDS Double DDS_ DoubleSeq

long double DDS_ LongDouble DDS_ LongDoubleSeq

string DDS_ String DDS_ StringSeq

wstring DDS_ Wstring DDS_ WstringSeq

The following are important properties of sequences to remember:

e All sequences in Connext DDS Micro must be finite.

o All sequences defined in IDL are sized based on IDL properties and must not be resized. That
is, never call set__maximum/() on a sequence defined in IDL. This is particularly important
for string sequences.

o Application defined sequences can be resized using set__maximum() or ensure__length().

o There are two ways to use a DDS__StringSeq (they are type-compatible):

4.13. Working With Sequences 118

../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

— A DDS_ StringSeq originating from IDL. This sequence is sized based on maximum
sequence length and maximum string length.

— A DDS_ StringSeq originating from an application. In this case the sequence element
memory is unmanaged.

o All sequences have an initial length of 0.

Working with IDL Sequences

Sequences that originate from IDL are created when the IDL type they belong to is created. IDL
sequences are always initialized with the maximum size specified in the IDL file. The maximum
size of a type, and hence the sequence size, is used to calculate memory needs for serialization and
deserialization buffers. Thus, changing the size of an IDL sequence can lead to hard to find memory
corruption.

The string and wstring sequences are special in that not only is the maximum sequence size allo-
cated, but because strings are also always of a finite maximum length, the maximum space needed
for each string element is also allocated. This ensure that Connext DDS Micro can prevent memory
overruns and validate input.

Some typical scenarios with a long sequence and a string sequence defined in IDL is shown below:

/* In IDL */
struct SomelIdlType

{
// A sequence of 20 longs
sequence<long,20> long_seq;
// A sequence of 10 strings, each string has a maxzimum length of 255 bytes
// (excluding NUL)
sequence<string<255>,10> string_seq;
}

/* In C source */
SomeIdlType *my_sample = SomelIdlTypeTypeSupport_create_data()

DDS_LongSet_set_length(&my_sample->long_seq,5);
DDS_StringSeq_set_length(&my_sample->string_seq,5);

/* Assign the first 5 longs in long_seq */
for (i = 0; 1 < 5; ++1i)
{
*DDS_LongSeq_get_reference (&my_sample->long_seq,i) = i;
snprintf (xDDS_StringSeq_get_reference (&my_sample->string_seq,0),255, "SomeString %d",
<—>i) M

}

/* The delete call is _not_ available in Micro Cert */
SomeId1lTypeTypeSupport_delete_data(my_sample);

/* In C++ source */

(continues on next page)

4.13. Working With Sequences 119

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

SomeIdlType *my_sample = SomeIdlTypeTypeSupport::create_data()
/* Assign the first 5 longs in long_seq */

my_sample->long_seq.length(5);
my_sample->string_seq.length(5);

for (i = 0; 1 < 5; ++1i)
{

/* use method */

*DDSLongSeq_get_reference (&4my_sample->long_seq,i) = i;

snprintf (*DDSStringSeq_get_reference (&my_sample->string_seq,i),255,"SomeString %d",
<—>1) 5

/* or assignment */

my_sample->long_seqli] = i;

snprintf (my_sample->string_seq[i], 255, "SomeString %d",i);
}

/* The delete call is _not_ available in Micro Cert */
SomeId1lTypeTypeSupport: :delete_data(my_sample) ;

Note that in the example above the sequence length is set. The maximum size for each sequence is
set when my_ sample is allocated.

A special case is to copy a string sequence from a sample to a string sequence defined outside of the
sample. This is possible, but care must be taken to ensure that the memory is allocated properly:

Consider the IDL type from the previous example. A string sequence of equal size can be allocated
as follows:

struct DDS_StringSeq app_seq = DDS_SEQUUENCE_INITIALIZER;

/* This ensures that memory for the strings are allocated upfront */
DDS_StringSeq_set_maximum_w_max (&app_seq,10,255);

DDS_StringSeq_copy (&app_seq,&my_sample->string_seq);

If instead the following code was used, memory for the string in app__seq would be allocated as
needed.

struct DDS_StringSeq app_seq = DDS_SEQUUENCE_INITIALIZER;

/* This ensures that memory for the strings are allocated upfront */
DDS_StringSeq_set_maximum(&app_seq, 10) ;

DDS_StringSeq_copy (&app_seq,&my_sample->string_seq);

4.13. Working With Sequences 120

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Working with Application Defined Sequences

Application defined sequences work in the same way as sequences defined in IDL with two excep-

tions:

e The maximum size is 0 by default. It is necessary to call set__ maximum or ensure_ length

to allocate space.

e DDS_ StringSet_ set_ maximum does not allocate space for the string pointers.

The

memory must be allocated on a per needed basis and calls to __copy may reallocate memory
as needed. Use DDS__ StringSeq set_ maximum_ w__max or DDS__StringSeq_en-
sure__length__ w__max to also allocate pointers. In this case __copy will not reallocate

memory.

Note that it is not allowed to mix the use of calls that pass the max (ends in _ w__max) and

calls that do not. Doing so may cause memory leaks and/or memory corruption.

struct DDS_StringSeq my_seq = DDS_SEQUENCE_INITIALIZER;
DDS_StringSeq_ensure_length(&my_seq,10,20);

for (i = 0; i < 10; i++)
{

+*DDS_StringSeq_get_reference(&my_seq,i) = DDS_String dup("test");
}

/* The finalize call ts _not_ available in Micro Cert */
DDS_StringSeq_finalize(&my_seq) ;

DDS_ StringSeq_ finalize automatically frees memory pointed to by each element using
DDS_ String_ free. All memory allocated to a string element should be allocated using a

DDS_ String function.

It is possible to assign any memory to a string sequence element if all elements are released manually

first:

struct DDS_StringSeq my_seq = DDS_SEQUENCE_INITIALIZER;
DDS_StringSeq_ensure_length(&my_seq,10,20);

for (i = 0; i < 10; i++)
{

*DDS_StringSeq_get_reference(&my_seq,i) = static_stringl[il;
3

/* Work with the sequence */

for (i = 0; i < 10; i++)

{
*DDS_StringSeq_get_reference(&my_seq,i) = NULL;

}

DDS_StringSeq_finalize(&my_seq) ;

4.13. Working With Sequences

121

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.14 Debugging

Please note that this chapter applies to Connext DDS Micro and Connext DDS Micro Cert. How-
ever, in Connext DDS Micro Cert logging is only available in the Debug libraries.

4.14.1 Overview

Connext DDS Micro maintains a log of events occuring in a Connext DDS Micro application.
Information on each event is formatted into a log entry. Each entry can be stored in a buffer,
stringified into a displayable log message, and/or redirected to a user-defined log handler.

For a list of error codes, please refer to C Logging Reference or C++ Logging Reference.

4.14.2 Configuring Logging

By default, Connext DDS Micro sets the log verbosity to Error. It can be changed at any time by
calling OSAPI_ Log_ set__verbosity() using the desired verbosity as a parameter.

Note that when compiling with RTI CERT defined, logging is completely removed.

The Connext DDS Micro log stores new log entries in a log buffer.

The default buffer size is different for Debug and Release libraries. The Debug libraries are con-
figured to use a much larger buffer than the Release ones. A custom buffer size can be configured
using the OSAPI__Log_ set__property() function. For example, to set a buffer size of 128 bytes:

struct OSAPI_LogProperty prop = OSAPI_LogProperty_ INIITALIZER;

0SAPI_Log_get_property(&prop) ;
prop.max_buffer_size = 128;
0SAPI_Log_set_property(&prop) ;

Note that if the buffer size is too small, log entries will be truncated in order to fit in the available
buffer.

The function used to write the logs can be set during compilation by defining the macro OS-
API_LOG_WRITE_BUFFER. This macro shall have the same parameters as the function pro-
totype OSAPI__Log_ write_ buffer_ T.

It is also possible to set this function during runtime by using the function OS-
API_ Log_ set_ property():

struct OSAPI_LogProperty prop = OSAPI_LogProperty_ INIITALIZER;

0SAPI_Log_get_property(&prop) ;
prop.write_buffer = <pointer to user defined write function>;
0SAPI_Log_set_property(&prop) ;

4.14. Debugging 122

../../api_c/html/group__LoggingModule.html
../../api_cpp/html/group__LoggingModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

A user can install a log handler function to process each new log entry. The handler must conform
to the definition OSAPI_LogHandler_ T, and it is set by OSAPI__Log_ set_ log_ handler().

When called, the handler has parameters containing the raw log entry and detailed log information
(e.g., error code, module, file and function names, line number).

The log handler is called for every new log entry, even when the log buffer is full. An expected use
case is redirecting log entries to another logger, such as one native to a particular platform.

4.14.3 Log Message Kinds

Each log entry is classified as one of the following kinds:
e Error. An unexpected event with negative functional impact.

e Warning. An event that may not have negative functional impact but could indicate an
unexpected situation.

e Information. An event logged for informative purposes.

By default, the log verbosity is set to Error, so only error logs will be visible. To change the log
verbosity, simply call the function OSAPI__Log_ set__verbosity() with the desired verbosity
level.

4.14.4 Interpreting Log Messages and Error Codes

A log entry in Connext DDS Micro has a defined format.
Each entry contains a header with the following information:

e Length. The length of the log message, in bytes.

e Module ID. A numerical ID of the module from which the message was logged.

e FError Code. A numerical ID for the log message. It is unique within a module.
Though referred to as an “error” code, it exists for all log kinds (error, warning, info).
The module ID and error code together uniquely identify a log message within Connext DDS Micro.
Connext DDS Micro can be configured to provide additional details per log message:

e Line Number. The line number of the source file from which the message is logged.

o Module Name. The name of the module from which the message is logged.

e Function Name. The name of the function from which the message is logged.

When an event is logged, by default it is printed as a message to standard output. An example
error entry looks like this:

[943921909.645099999]ERROR: ModuleID=7 Errcode=200 X=1 E=0 T=1
dds_c/DomainFactory.c:163/DDS_DomainParticipantFactory_get_instance: kind=19

e X Extended debug information is present, such as file and line number.

4.14. Debugging 123

RTI Connext DDS Micro Documentation, Version 2.4.14.0

o F Exception, the log message has been truncated.
o T The log message has a valid timestamp (successful call to OSAPI_System_ get_ time()).

A log message will need to be interpreted by the user when an error or warning has occurred and its
cause needs to be determined, or the user has set a log handler and is processing each log message
based on its contents.

A description of an error code printed in a log message can be determined by following these steps:

o Navigate to the module that corresponds to the Module ID, or the printed module name in
the second line. In the above example, “ModuleID=7" corresponds to DDS.

e Search for the error code to find it in the list of the module’s error codes. In the example
above, with “Errcode=200,” search for “200” to find the log message that has the value
“(DDSC_LOG_BASE + 200)".

4.15 Connext DDS Micro Hardcoded Resource Limits

4.15.1 Introduction

Connext DDS Micro contains a few resource limits that are not configurable in a QoS policy or
property. Note that not every single constant used in Connext DDS Micro is addressed. The focus
is on resource limits that may prevent an application using Connext DDS Micro from behaving
correctly. For example, the maximum number of participants that can be discovered on a node
may impact an application. On the other hand, a resource limit that has no functional impact, for
example the maximum length of the discovery plugin name, is not described in this document.

When a resource limit is exceeded an error message is logged. An explanation can be found in the
documentation. Note that some resource limits may be exceeded when calling an API and others
may be exceeded as part of processing incoming data. Thus, it may be necessary to look at log
output to see the failure reason.

Although Connext DDS Micro can be compiled from source it is recommended to consult with RTT
before making any changes to the hard coded limits.

4.15.2 Summary

Resource Limit
Number of domain participants per OS process 8
Max topic name length 255
Max type name length 255

Max number of discovery plugins used by a domain participant

Max number of announced receive addresses for discovery data by a domain participant

Max number of announced receive addresses for user-data data by a domain participant

NNy I Y [

Max number of addresses that can be received (per meta-unicast, meta-multicast,
user-unicast, user-multicast)

4.15. Connext DDS Micro Hardcoded Resource Limits 124

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.15.3 Operating Services APl (OSAPI)

e The maximum number of object ids are 2732-1

— DDS objects require a unique object__id. The encoding dictated by the RTPS specifica-
tion limits the number of DDS objects within a domain participant to 2724.

— User impact - None.
e The Maximum number of timers that can be created is 8
— Each domain participant allocates 1 timer

x User impact - The maximum number of domain participants in a single OS process
is limited to 8. This limit is based on empirical data; only specialized applications
such as tools typically use more than 2 domain participants.

4.15.4 DDS C API

e Maximum Topic name length - 255 (including NUL termination)

— The limit is specified as 256 including NUL termination in the RTPS specification, refer
t0 9.6.2.2.2 in the RTPS specification (OMG formal/2009-01-05).

o Maximum Type name length - 255 (including NUL termination)

— The limit is specified as 256 including NUL termination in the RTPS specification, refer
t0 9.6.2.2.2 in the RTPS specification (OMG formal/2009-01-05).

o Maximum number of matched data-writers (per data-reader) - 100,000,000

— This limit determines how many data-writers each data-reader can match.
o Maximum number of matched data-readers (per data-writer) - 100,000,000

— This limit determines how many data-readers each data-writer can match.

e Maximum number of locators of each type which can be sent in the participant announcement
-4

— This limit determines the number of unique network address that can be advertised
as part of discovery. The limit is per locator type. That is, the limit is applicable to
discovery and user-data (total of 4 each)

e Maximum number of discovery plugins which can be used by the domain participant - 1

— User impact: Must choose either static or dynamic discovery.

4.15. Connext DDS Micro Hardcoded Resource Limits 125

RTI Connext DDS Micro Documentation, Version 2.4.14.0

4.15.5 Dynamic Discovery Plugin (DPDE)

e Maximum number of received locators - 4

— This limit determines the number of unique network address that can be advertised as
part of discovery.

— The limit is per locator type. That is, the same limit is applicable to discovery unicast,
discovery multicast, user-data unicast, and user-data multicast.

4.15.6 Static Discovery Plugin (DPSE)

e Maximum number of received locators - 4

— This limit determines the number of unique network address that can be advertised as
part of discovery.

— The limit is per locator type. That is, the same limit is applicable to discovery unicast,
discovery multicast, user-data unicast, and user-data multicast.

4.15.7 RTPS Protocol Implementation (RTPS)

e Unlimited max_samples is defined as 100000000
e Maximum number of external RTPS interfaces - 16
— This limits the number of participants to 16 per OS process.

— This limit is reduced to 8 due to the OS limit.

4.16 Building Against FACE Conformance Libraries

This section describes how to build Connext DDS Micro using the FACE™ conformance test tools.

4.16.1 Requirements
Connext DDS Micro Source Code

The Connext DDS Micro source code is available from RTT’s Support portal.

4.16. Building Against FACE Conformance Libraries 126

http://support.rti.com

RTI Connext DDS Micro Documentation, Version 2.4.14.0

FACE Conformance Tools

RTI does not distribute the FACE conformance tools.

CMake

The Connext DDS Micro source is distributed with a CMakeList.txt project file. CMake is an
easy to use tool that generates makefiles or project files for various build-tools, such has UNIX
makefiles, Microsoft® Visual Studio® project files, and Xcode.

CMake can be downloaded from https://www.cmake.org.

4.16.2 FACE Golden Libraries

The FACE conformance tools use a set of golden libraries. There are different golden libraries
for different FACE services, languages and profiles. Connext DDS Micro only conforms to the
safetyExt and safety profile of OSS using the C language.

Building the FACE Golden Libraries

The FACE conformance tools ship with their own set of tools to build the golden libraries. Please
follow the instructions provided by FACE. In order to build the FACE golden libraries, it is necessary
to port to the required platform. RTI has only tested Connext DDS Micro on Linux 2.6 systems
with GCC 4.4.5. The complete list of files modified by RTI are included below in source form.

4.16.3 Building the Connext DDS Micro Source

The following instructions show how to built the Connext DDS Micro source:

o Extract the source-code. Please note that the remaining instructions assume that only a
single platform is built from the source.

e In the top-level source directory, enter the following:

shell> cmake-gui .

This will start the CMake GUI where all build configuration takes place.
e Click the “Configure” button.
e Select UNIX Makefiles from the drop-down list.
e Select “Use default compilers” or “Specify native compilers” as required. Press “Done.”

o Click “Configure” again. There should not be any red lines. If there are, click “Configure”
again.

NOTE: A red line means that a variable has not been configured. Some options could add new
variables. Thus, if you change an option a new red lines may appear. In this case configure
the variable and press “Configure.”

4.16. Building Against FACE Conformance Libraries 127

https://www.cmake.org

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e Expand the CMAKE and RTIMICRO options and configure how to build Connext DDS
Micro:

CMAKE_BUILD_TYPE: Debug or blank. If Debug is used, the |me| debug
libraries are built.

RTIMICRO_BUILD_API: C or C++
C - Include the C API. For FACE, only C is supported.
C++ - Include the C++ API.

RTIMICRO_BUILD_DISCOVERY_MODULE: Dynamic | Static | Both
Dynamic - Include the dynamic discovery module.
Static - Include the static discovery module.

Both - Include both discovery modules.

RTIMICRO_BUILD_LIBRARY_BUILD:
Single - Build a single library.
RTI style - Build the same libraries RTI normally ships. This is useful
if RTI libraries are already being used and you want to use
the libraries built from source.

RTIMICRO_BUILD_LIBRARY_TYPE:
Static - Build static libraries.
Shared - Build shared libraries.

RTIMICRO_BUILD_LIBRARY_PLATFORM_MODULE: POSIX

RTIMICRO_BUILD_LIBRARY_TARGET_NAME: <target name>
Enter a string as the name of the target. This is also used as the
name of the directory where the built libraries are placed.
If you are building libraries to replace the libraries shipped by RTI,
you can use the RTI target name here. It is then possible to set
RTIMEHOME to the source tree (if RTI style is selected for
RTIMICRO_BUILD_LIBRARY_BUILD).

RTIMICRO_BUILD_ENABLE_FACE_COMPLIANCE: Select level of FACE compliance

None - No compliance required

General - Build for compliance with the FACE general profile

Safety Extended - Build for compliance with the FACE safety extended profile
Safety - Build for compliance with the FACE safety profile

RTIMICRO_BUILD_LINK_FACE_GOLDEBLIBS:
Check if linking against the static FACE conformance test libraries.
NOTE: This check-box is only available if FACE compliance is different
from "None".

RTIMICRO_BUILD_LINK_FACE_GOLDEBLIBS:
If the RTIMICRO_BUILD_LINK_FACE_GOLDEBLIBS is checked the path to the
top-level FACE root must be specified here.

e Click “Configure”.

e Click “Generate”.

4.16. Building Against FACE Conformance Libraries 128

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e Build the generated project.

e Libraries are placed in lib/<RTIMICRO_ BUILD_LIBRARY_ TAR-
GET NAME>.

4.16. Building Against FACE Conformance Libraries 129

Chapter 5

Building and Porting Connext DDS
Micro

5.1 RTI Connext DDS Micro Supported Platforms

RTI Connext DDS Micro is a source product and all platforms supported by RTI are supported.
However, RTI does not test and validate the libraries on all permutations of CPU types, compiler
version and OS version.

5.1.1 Reference Platforms
The following are reference platforms for which the platform-dependent layers provided with the
RTI Connext DDS Micro product are tested as part of standard product release:
o Windows®
e Linux®
e Unix™ (POSIX Compliant)
e Wind River® VxWorks®
e Express Logic® Thread X®
e FreeRTOS™
e macOS® X (Darwin)
e QNX® 6.6, 7
e AUTOSAR® 4.0.3, 4.2.2

130

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.1.2 Known Customer Platforms

RTI Connext DDS Micro has been ported to a number of platforms by our customers, such as:
o« uC/0OS™
e ulLinux
e Win32
e Android™
o iOS®
e TI's Stellaris® Arm® Cortex®-M3 and -M4 with only TI device drivers, no OS
e Baremetal - Arm Cortex-M4
o« INTEGRITY®-178
e VxWorks 653 2.x, 3.x
e DDC-I Deos™
e LynxOS®-178
o« VOS™

RTI Connext DDS Micro is known to run with the following network stacks: - BSD® socket-based
stack - Windows Socket library - VxWorks Network stack - ThreadX Network stack - RTNet® -
IwIP (event and blocking mode) - QNX Network stack - GHS IPFlite and general purpose stack

5.2 Building the Connext DDS Micro Source

5.2.1 Introduction

RTI Connext DDS Micro has been engineered for reasonable portability to common platforms and
environments, such as Darwin, iOS, Linux, and Windows. This document explains how to build
the Connext DDS Micro source-code. The focus of this document is building Connext DDS Micro
for an architecture supported by RTT (please refer to RTI Connext DDS Micro Supported Platforms
for more information). Please refer to Porting RTI Connext DDS Micro for documentation on how
to port Connext DDS Micro to an unsupported architecture.

This manual is written for developers and engineers with a background in software development.
It is recommended to read the document in order, as one section may refer to or assume knowledge
about concepts described in a preceding section.

5.2. Building the Connext DDS Micro Source 131

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.2.2 The Host and Target Environment
The following terminology is used to refer to the environment in which Connext DDS Micro is built
and run:

e The host is the machine that runs the software to compile and link Connext DDS Micro.

o The target is the machine that runs Connext DDS Micro.

e In many cases Connext DDS Micro is built and run on the same machine. This is referred to
as a self-hosted environment.

The environment is the collection of tools, OS, compiler, linker, hardware etc. needed to build and
run applications.

The word must describes a requirement that must be met. Failure to meet a must requirement
may result in failure to compile, use or run Connext DDS Micro.

The word should describes a requirement that is strongly recommended to be met. A failure to
meet a should recommendation may require modification to how Connext DDS Micro is built, used,
or run.

The word may is used to describe an optional feature.

The Host Environment

RTI Connext DDS Micro has been designed to be easy to build and to require few tools on the
host.

The host machine must:

o support long filenames (8.3 will not work). Connext DDS Micro does not require a case
sensitive file-system.

e have the necessary compiler, linkers, and build-tools installed.
The host machine should:

o have CMake (www.cmake.org) installed. Note that it is not required to use CMake to build
Connext DDS Micro, and in some cases it may also not be recommended. As a rule of thumb,
if RTI Connext DDS Micro can be built from the command-line, CMake is recommended.

o be able to run bash shell scripts (Unix type systems) or BAT scripts (Windows machines).
Typical examples of host machines are:

o a Linux PC with the GNU tools installed (make, gcc, g++, etc).

e a Mac computer with Xcode and the command-line tools installed.

e a Windows computer with Microsoft Visual Studio Express edition.

e a Linux, Mac or Windows computer with an embedded development tool-suite.

5.2. Building the Connext DDS Micro Source 132

https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

The Target Environment

Connext DDS Micro has been designed to run on a wide variety of targets. For example, Connext
DDS Micro can be ported to run with no OS, an RTOS, GNU libc or a non-standard C library
etc. This section only lists the minimum requirements. Please refer to Porting RTI Connext DDS
Micro for how to port Connext DDS Micro.

The target machine must:

o support 8, 16, 32 and 64-bit signed and unsigned integers. Note that a 16-bit CPU (or even
8-bit) is supported as long as the listed types are supported.

Connext DDS Micro supports 64-bit CPUs and uses native 64-bit arithmetic internally.
The target compiler should:

e have a C compiler that is C99 compliant. Note that many non-standard compilers work, but
may require additional configuration.

o have a C++ compiler that is C++98 compliant (Not required for only Connext DDS Micro
Cert since C++ is not supported).

The remainder of this manual assumes that the target environment is one supported by RTT:
o POSIX (Linux, Darwin, QNX®, VOS, iOS, Android).
e VxWorks 6.9 or later.
o Windows.

. QNX.

5.2.3 Overview of the Connext DDS Micro Source

The source-code is exactly the same as developed and tested by RTI. No filtering or modifications
are performed.

RTIMEHOME--+-- CMakeLists.txt

+-— build -- cmake --+-- Debug --+-- <ARCH> -- <project-files>
[|
| |

| +-- Release —-+-- <ARCH> -- <project-files>
+-- doc --

|

+-— example

|

+-- include

|

+-- 1lib +-- <ARCH> -- <libraries>

+-- resource ——+-- cmake

| +-- scripts

(continues on next page)

5.2. Building the Connext DDS Micro Source 133

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

|
+-- rtiddsgen
I
+-- rtiddsmag
|

+-— src

In this document, RTIMEHOME refers to the root directory where the rti_connext_ dds_ micro is
extracted and installed.

Directory Structure

The recommended directory structure is described below and should be used (1) because:

o the rtime-make script that is part of the installation expects this directory structure to run
CMake .

e this directory structure supports multiple architectures.

NOTE 1: This applies to builds using CMake. To build in a custom environment, please refer to
Custom Build Environments. Please note that Connext DDS Micro Cert can only be built with
cmake.

CMakeLists.txt is the main input file to CMake and is used to generate build files.

The RTIMEHOME /include directory contains the public header files. By default it is identical to
RTIMEHOME /include. However, custom ports will typically add files to this directory.

The RTIMEHOME/1ib directory is empty by default. All libraries successfully built with the CMake
generated build-files, regardless of which generator was used, will be copied to the RTIMEHOME/lib
directory.

The RTIMEHOME/src directory contains the Connext DDS Micro source files. RTI does not
support modifications to these files unless explicitly stated in the porting guide. A custom port
will typically add specific files to this directory.

The RTIMEHOME/build directory is empty by default. CMake generates one set of build-files
for each configuration. A build configuration can be an architecture, Connext DDS Micro options,
language selection, etc. This directory will contain CMake generated build-files per architecture per
configuration. By convention the Debug directory is used to generate build-files for debug libraries
and the Release directory is used for release libraries.

The following naming conventions are used regardless of the build-tool:
e Static libraries have a z suffix.
e Shared libraries do not have an additional suffix.
e Debug libraries have a d suffix.
e Release libraries do not have an additional suffix.

The following libraries are built:

5.2. Building the Connext DDS Micro Source 134

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e rti_me - the core library, including the DDS C API

e rti_me_discdpde - the Dynamic Participant Dynamic Endpoint plugin
e rti_me_discdpse - the Dynamic Participant Static Endpoint plugin

e rti_me_rhsm - the Reader History plugin

e rti_me_whsm - the Writer History plugin

e rti_me_cpp - the C++ API

Note: The names above are the Connext DDS Micro library names. Depending on the target
architecture, the library name is prefixed with /76 and the library suffix also varies between target
architectures, such as .so, .dylib, etc.

For example:
e rti_mezd indicates a static debug library

e rti_me indicates a dynamically linked release library

5.2.4 Compiling Connext DDS Micro

This section describes in detail how to compile Connext DDS Micro using CMake. It starts with
an example that uses the included scripts followed by a section showing how to build manually.

CMake, available from www.cmake.org, is the preferred tool to build Connext DDS Micro because
it simplifies configuring the Connext DDS Micro build options and generates build files for a variety
of environments. Note that CMake itself does not compile anything. CMake is used to generate
build files for a number of environments, such as make, Eclipse® CDT, Xcode® and Visual Studio.
Once the build-files have been generated, any of the tools mentioned can be used to build Connext
DDS Micro. This system makes it easier to support building Connext DDS Micro in different build
environments. CMake is easy to install with pre-built binaries for common environments and has
no dependencies on external tools.

NOTE: It is not required to use CMake. Please refer to Custom Build Environments for other ways
to build Connext DDS Micro.

Building Connext DDS Micro with rtime-make

The Connext DDS Micro source bundle includes a bash (UNIX) and BAT (Windows) script to
simplify the invocation of CMake. These scripts are a convenient way to invoke CMake with the
correct options.

On UNIX-based systems:

RTIMEHOME/resource/scripts/rtime-make --config Debug --target self \
--name i86Linux2.6gcc4.4.5 -G "Unix Makefiles" --build

On Windows systems:

5.2. Building the Connext DDS Micro Source 135

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

RTIMEHOME\resource\scripts\rtime-make --config Debug --target self \
--name i86Win32VS2010 -G "Visual Studio 10 2010" --build

Explanation of arguments:
o ——config Debug : Create Debug build.

o —-target <target>: The target for the sources to be built. “self” indicates that the host
machine is the target and Connext DDS Micro will be built with the options that CMake
automatically determines for the local compiler. Please refer to Cross-Compiling Connext
DDS Micro for information on specifying the target architecture to build for.

e —-name <name> : The name of the build, shall be a descriptive name following the recom-
mendation on naming described in section Preparing for a Build. If ——name is not specified,
the value for ——target will be used as the name.

e —-build: Build the generated project files.

e If gcc is part of the name, GCC is assumed.

o If clang is part of the name, clang is assumed.

o If Win32 is part of the name, a 32 bit Windows build is assumed.
o If Win64 is part of the name, a 64 bit Windows build is assumed.

To get a list of all the options:

rtime-make -h

To get help for a specific target:

rtime-make --target <target> --help

Manually Building with CMake

Preparing for a Build

As mentioned, it is recommended to create a unique directory for each build configuration. A
build configuration can be created to address specific architectures, compiler settings, or different
Connext DDS Micro build options.

RTT recommends assigning a descriptive name to each build configuration, using a common for-
mat. While there are no requirements to the format for functional correctness, the tool-chain
files in Cross-Compiling Connext DDS Micro uses the RTIME__TARGET_ NAME variable to
determine various compiler options and selections.

RTT uses the following name format:

{cpur{0S}{compiler}_{config}

In order to avoid a naming conflict with RTI, the following name format is recommended:

5.2. Building the Connext DDS Micro Source 136

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

{prefix}_{cpu}{0S}{compiler}_{config}

Some examples:

e acme_ ppc604FreeRTOSgccd.6.1 - Connext DDS Micro for a PPC 604 CPU running FreeR-
TOS compiled with gcc 4.6.1, compiled by acme.

e acme_i86Win32VS2015 - Connext DDS Micro for an i386 CPU running Windows XP or
higher compiled with Visual Studio 2015, compiled by acme.

e acme_ i86Linux4gcc4.4.5_ test - a test configuration build of Connext DDS Micro for an i386
CPU running Linux 3 or higher compiled with gcc 4.4.5, compiled by acme.

Files built by each build configuration will be stored under RTIMEHOME/build/[Debug | Re-
lease]/<name>. These directories are referred to as build directories or RTIMEBUILD. The structure
of the RTIMEBUILD depends on the generated build files and should be regarded as an intermediate
directory.

Creating Build Files for Connext DDS Micro Using the CMake GUI

Start the CMake GUI, either from a terminal window or a menu.

Please note that the Cmake GUI does not set the CMAKE__BUILD__TYPE variable. This
variable is used to determine the names of the Connext DDS Micro libraries. Thus, it is necessary
to add CMAKE_ BUILD__TYPE manually and specify either Debug or Release. To add this
variable manually, click the ‘Add Entry’ button, specify the name as a string type.

As an alternative, rtime-make’s —-gui option can be used. This option starts the CMake and also
adds the CMAKE__BUILD_ TYPE option when the CMake GUI exits.

Please note that when using Visual Studio or Xcode, it is important to build the same configuration
as was specified with rtime-make’s ——config option. While it is possible to build a different con-
figuration from the IDE, selecting a different configuration does not update the build configuration
generated for Connext DDS Micro.

The GUI should be started from the RTIMEHOME directory. If this is not the case, check that:
e The source directory is the location of RTIMEHOME.
e The binary directory is the location of RTIMEBUILD.
With the CMake GUI running;:
e Press ‘Configure’.
e Select a generator. You must have a compatible tool installed to process the generated files.
e Select ‘Use default native compilers’
e Press ‘Done’.
o Press ‘Configure’.

e Check ‘Grouped’.

5.2. Building the Connext DDS Micro Source 137

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e Expand RTIME and select your build options. All available build options for Connext DDS
Micro are listed here.

o Type a target name for RTIME__TARGET_ NAME. This should be the same as the
<name> used to create the RTIMEBUILD directory, that is the RTIMEBUILD should be on the
form <path>/<RTIME_TARGET NAME>.

e Press ‘Configure’. All red lines should disappear. Due to how CMake works, it is strongly
recommended to always press ‘Configure’ whenever a value is changed for a variable. Other
variables may depend on the modified variable and pressing ‘Configure’ will mark those with
a red line. No red lines means everything has been configured.

e Press ‘Generate’. This creates the build-files in the RTIMEBUILD directory. Whenever an
option is changed and Configure is re-run, press Generate again.

o Exit the GUL
Depending on the generator, do one of the following:

o For IDE generators (such as Eclipse, Visual Studio, Xcode) open the generated solu-
tion/project files and build the project/solution.

o For command-line tools (such as make, nmake, ninja) change to the RTIMEBUILD directory
and run the build-tool.

After a successful build, the output is placed in RTIMEHOME/lib/<name>.

The generated build-files may contain different sub-projects that are specific to the tool. For
example, when using Xcode or Visual Studio, the following targets are available:

o ALL_BUILD - Builds all the projects.

e rti_me_ <name> - Builds only the specific library. Note that that dependent libraries are
built first.

e ZERO_ CHECK - Runs CMake to regenerate project files in case something changed in the
build input. This target does not need to be built manually.

For command-line tools, try <tool> help for a list of available targets to build. For example, if
UNIX makefiles were generated:

make help

Creating Build Files for Connext DDS Micro Using CMake from the Command Line

Open a terminal window in the RTIMEHOME directory and create the RTIMEBUILD directory. Change
to the RTIMEBUILD directory and invoke cmake using the following arguments:

cmake -G <generator> -DCMAKE_BUILD_TYPE=<Debug | Release> \
-DCMAKE_TOOLCHAIN_FILE=<toolchain file> \
-DRTIME_TARGET_NAME=<target-name>

Depending on the generator, do one of the following;:

5.2. Building the Connext DDS Micro Source 138

https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

o For IDE generators (such as Eclipse, Visual Studio, Xcode) open the generated solu-
tion/project files and build the project/solution.

o For command-line tools (such as make, nmake, ninja) run the build-tool.
After a successful build, the output is placed in RTIMEHOME/lib/<name>.

The generated build-files may contain different sub-projects that are specific to the tool. For
example, in Xcode and Visual Studio the following targets are available:

e« ALL_ BUILD - Builds all the projects.

e rti_me_ <name> - Builds only the specific library. Note that that dependent libraries are
built first.

« ZERO CHECK - Runs CMake to regenerate project-files in case something changed in the
build input. This target does not need to be built manually.

For command-line tools, try <tool> help for a list of available targets to build. For example, if
UNIX makefiles were generated:

make help

CMake Flags used by Connext DDS Micro

The following CMake flags (-D) are understood by Connext DDS Micro and may be useful when
building outside of the source bundle installed by RTI. An example would be incorporating the

Connext DDS Micro source in a project tree and invoking cmake directly on the CMakeLists.txt
provided by Connext DDS Micro.

o -DRTIME_TARGET_NAME=\<name\> - The name of the target (equivalant to --name to
rtime-make). The default value is the name of the source directory.

e -DRTIME_CMAKE_ROOT=\<path\> - Where to place the CMake build files. The default value
is <source>/build/cmake.

e -DRTIME_BUILD_ROOT=\<path\> - Where to place the intermediate build files. The default
value is <source>/build.

o -DRTIME_SYSTEM_FILE=\<file\> or an empty string - This file can be used to set the PLAT-
FORM_ LIBS variable used by Connext DDS Micro to link with. If an empty string is
specified no system file is loaded. This option may be useful when cmake can detect all that
is needed. The default value is not defined, which means try to detect the system to build
for.

e -DRTI_NO_SHARED_LIB=true - Do not build shared libraries. The default is undefined, which
means shared libraries are built. NOTE: This flag must be undefined to build shared libraries.
Setting the value to false is not supported.

e -DRTI_MANUAL_BUILDID=true - Do not automatically generate a build ID. The default value
is undefined, which means generate a new build each time the libraries are built. Setting the
value to false is not supported. The build ID is in its own source and only forces a recompile
of a few files. Note that it is necessary to generate a build ID at least once (this is done

5.2. Building the Connext DDS Micro Source 139

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

automatically). Also, a build ID is not supported for cmake versions less than 2.8.11 because
the TIMESTAMP function does not exist.

5.2.5 Connext DDS Micro Compile Options
The Connext DDS Micro source supports compile-time options. These options are in general used
to control:

o Enabling/Disabling features.

o Inclusion/Exclusion of debug information.

o Inclusion/Exclusion of APIs.

o Target platform definitions.

e Target compiler definitions.

NOTE: It is no longer possible to build a single library using CMake. Please refer to Custom Build
Environments for information on customized builds.

Connext DDS Micro Debug Information
Please note that Connext DDS Micro debug information is independent of a debug build as defined
by a compiler. In the context of Connext DDS Micro, debug information refers to inclusion of:
o Logging of error-codes.
e Tracing of events.
o Precondition checks (argument checking for API functions).
Unless explicitly included/excluded, the following rule is used:

e For CMAKE_BUILD_TYPE = Release, the NDEBUG preprocessor directive is defined.
Defining NDEBUG includes logging, but excludes tracing and precondition checks. Please
note that all logging is disabled in Connext DDS Micro Cert release libraries.

e For CMAKE_ BUILD TYPE = Debug, the NDEBUG preprocessor directive is undefined.
With NDEBUG undefined, logging, tracing and precondition checks are included.

To manually determine the level of debug information, the following options are available:
« OSAPI_ENABLE_LOG (Include/Exclude/Default)
— Include - Include logging.
— Exclude - Exclude logging.
— Default - Include logging based on the default rule.
« OSAPI_ENABLE_TRACE (Include/Exclude/Default)
— Include - Include tracing.

— Exclude - Exclude tracing.

5.2. Building the Connext DDS Micro Source 140

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

— Default - Include tracing based on the default rule.

« OSAPI_ENABLE_PRECONDITION (Include/Exclude/Default)
— Include - Include tracing.
— Exclude - Exclude tracing.

— Default - Include precondition checks based on the default rule.

Connext DDS Micro Platform Selection

The Connext DDS Micro build system looks for target platform files in RTIMEHOME/include/os-
api. All files that match *osapi_os_ *.h are listed under RTIME__OSAPI__ PLATFORM. Thus,
if a new port is added it will automatically be listed and available for selection.

The default behavior, <auto detect>, is to try to determine the target platform based on
header-files. The following target platforms are known to work:

e Linux

« VOS

o« QNX

e Darwin

o Win32

o VxWorks 6.9 and later

However, for custom ports this may not work. Instead the appropriate platform definition file can
be selected here.

Connext DDS Micro Compiler Selection

The Connext DDS Micro build system looks for target compiler files in RTIMEHOME /include/os-
api. All files that match *osapi_cc_ *.h are listed under RTIME__OSAPI__COMPILER. Thus,
if a new compiler definition file is added it will automatically be listed and available for selection.

The default behavior, <auto detect>, is to try to determine the target compiler based on
header-files. The following target compilers are known to work:

« GCC (stdc)
o clang (stdc)
o MSVC (stdc)

However, for others compilers this this may not work. Instead the appropriate compiler definition
file can be selected here.

5.2. Building the Connext DDS Micro Source 141

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Connext DDS Micro UDP Options

Checking the RTIME__UDP__ ENABLE__ IPALIASES disables filtering out IP aliases. Note
that this currently only works on platforms where each IP alias has its own interface name, such
as eth0:1, eth1:2, etc.

Checking the RTIME__ UDP__ ENABLE__TRANSFORMS__DOC enables UDP transforma-
tions in the UDP transport.

Checking the RTIME__ UDP_ EXCLUDE_ BUILTIN excludes the UDP transport from being
built.

5.2.6 Cross-Compiling Connext DDS Micro

Cross-compiling the Connext DDS Micro source-code uses the exact same process described in
Compiling Connext DDS Micro, but requires a additonal tool-chain file. A tool-chain file is a
CMake file that describes the compiler, linker, etc. needed to build the source for the target.
Connext DDS Micro includes a few basic, generic tool-chain files for cross-compilation. In general
it is expected that users will provide their own cross-compilation tool-chain files.

To see a list of available targets, use --list :

rtime-make —-list

By convention, RTT only provides generic tool-chain files that can be used to build for a broad
range of targets. For example, the Linux target can be used to build for any Linux architecture as
long as it is a self-hosted build. The same is true for Windows and Darwin systems. The VxWorks
tool-chain file uses the Wind River environment variables to select the compiler.

For example, to build on a Linux machine with Kernel 2.6 and gcc 4.7.3:

rtime-make --target Linux --name i86Linux2.6gcc4.7.3 --config Debug --build

By convention, a specific name such as i86Linux2.6gcc4.4.5 is expected to only build for a spe-
cific target architecture. Note however that this cannot be enforced by the script provided by
RTI. To create a target specific tool-chain file, copy the closest matching file and add it to the
RTIMEHOME /source/Uniz/resource/CMake/architectures or RTIMEHOME/source/windows/re-

source/CMake/architectures directory.

Once a tool-chain file has been created, or a suitable file has been found, edit it as needed. Then
invoke rtime-make, specifying the new tool-chain file as the target architecture. For example:

rtime-make --target i186Linux2.6gcc4.4.5 --config Debug --build

5.2. Building the Connext DDS Micro Source 142

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.2.7 Custom Build Environments

The preferred method to build Connext DDS Micro is to use CMake. However, in some cases it
may be more convenient, or even necessary, to use a custom build environment. For example:

Embedded systems often have numerous compiler, linker and board specific options that are
easier to manage in a managed build.

The compiler cannot be invoked outside of the build environment, it may be an integral part
of the development environment.

Sometimes better optimization may be achieved if all the components of a project are built
together.

It is easier to port Connext DDS Micro.

Importing the Connext DDS Micro Code

The process for importing the Connext DDS Micro Source Code into a project varies depending on
the development environment. However, in general the following steps are needed:

Create a new project or open an existing project.

Import the entire Connext DDS Micro source tree from the file-system. Note that some
environments let you choose whether to make a copy only link to the original files.

Add the following include paths:
— <root>/include
— <root>/src/dds_c/domain
— <root>/src/dds__c/infrastructure
— <root>/src/dds_c/publication
— <root>/src/dds_c/subscription
— <root>/src/dds__c/topic
— <root>/src/dds_c/type

Add a compile-time definition ~-DRTIME_TARGET_NAME="target name" (note that the ” must
be included).

Add a compile-time definition ~DNDEBUG for a release build.

Add a compile-time definition of either -DRTI_ENDIAN_LITTLE for a little-endian platform or
-DRTI_ENDIAN_BIG for a big-endian platform.

If custom OSAPI definitions are used, add a compile-time definition
-DOSAPI_OS_DEF_H="my os_file".

If custom compiler definitions are wused, add a compile-time definition
-DOSAPI_CC_DEF_H="my_cc_file.h" .

5.2.

Building the Connext DDS Micro Source 143

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.3 Compiling the Connext DDS Micro Source for QNX™

5.3.1 Introduction

Connext DDS Micro is supported on the QNX operating system, and this chapter explains how to
compile Connext DDS Micro for QNX. Please note this documentation does not include information
regarding installation of QNX itself. Please consult your QNX documentation for how to install
QNX.

e Build environment

e Compiling with rtime-make

5.3.2 Build environment

Connext DDS Micro is typically cross-compiled for QNX from a Linux host machine. Before
Connext DDS Micro can be compiled with the supplied cmake files, it is required to run the QNX
setup script located in the QNX installation directory:

source gnxsdp-env.sh

5.3.3 Compiling with rtime-make

Connext DDS Micro includes cmake files for the following QNX architectures:
o armv7aQNX6.6.0qcc_cpp4.7.3
e i86QNX6.6qcc_cpp4.7.3
e armv8QNX7.0.0qcc_gpp5.4.0
o armv8QNX7.0.4qcc_gpp5.4.0

To compile for any of these architectures, execute the following command:

resource/scripts/rtime-make --target armv8QNX7.0.4qcc_gpp5.4.0 --build -- -j 4

5.3.4 Required QNX kernel configuration

5.3. Compiling the Connext DDS Micro Source for QNX™ 144

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.4 Building the Connext DDS Micro Source for FreeRTOS

5.4.1 Introduction
This section explains the environment used to run Connext DDS Micro on FreeRTOS + IwIP and
is organized as follows:

e QOverview

o Configuration

e CMake Support

5.4.2 Overview

Connext DDS Micro is known to run on the FreeRTOS operating system with the lwIP protocol
stack. STM32F7691-DISCO has been chosen as reference hardware. This development kit has a
STM32F769NIH6 microcontroller with 2 Mbytes of Flash memory and 512 Kbytes of RAM. For a
full description, please refer to the microcontroller documentation.

STM provides a toolchain called SW4STM32. SW4STM32 is a free multi-OS software environment
based on Eclipse, which supports the full range of STM32 microcontrollers and associated boards.
SW4STM32 includes the GCC C/C++ compiler, a GDB-based debugger, and an Eclipse-based
IDE.

STM also provides STM32CubeF7. STM32CubeF7 gathers all the generic embedded software com-
ponents required to develop an application on the STM32F7 microcontrollers in a single package.

STM32CubeF7 also includes many examples and demonstration applications. The example
LwIP _HTTP_ Server Socket RTOS is particularly useful as it provides a working FreeRTOS
+ IwIP configuration.

The following versions of the different components have been used:
o SW4STM32 version 2.1
e STM32Cube FW _F7 version V1.7.0
e FreeRTOS version V9.0.0
o 1wIP version V2.0.0

5.4.3 Configuration

Example lwIP and FreeRTOS configurations are provided below for reference. This configuration
must be tuned according to your needs. Details about how to configure these third-party compo-
nents can be found in the FreeRTOS and IwIP documentation.

« Example configuration for lwIP:

5.4. Building the Connext DDS Micro Source for FreeRTOS 145

RTI Connext DDS Micro Documentation, Version 2.4.14.0

#ifndef __LWIPOPTS_H__
#define __LWIPOPTS_H _

#include <limits.h>

#define NO_SYS 0

[k ——mm Memory options ——-——————= */
#define MEM_ALIGNMENT 4

#define MEM_SIZE (50%1024)
#define MEMP_NUM_PBUF 10

#define MEMP_NUM_UDP_PCB 6

#define MEMP_NUM_TCP_PCB 10

#define MEMP_NUM_TCP_PCB_LISTEN 5
#define MEMP_NUM_TCP_SEG 8

#define MEMP_NUM_SYS_TIMEOUT 10

/¥ ——mm—— Pbuf options —-——-——---- */

#define PBUF_POOL_SIZE 8

#define PBUF_POOL_BUFSIZE 1524

/¥ —mmm—— IPv options ———————---= */

#define LWIP_IPV/ 1

[* —mm— TCP options ————————-- */

#define LWIP_TCP 1

#define TCP_TTL 255

#define TCP_QUEUE_OOSEQ 0

#define TCP_MSS (1500 - 40) /* TCP_MSS = (Ethernet MTU - IP headery

< size — TCP header size) */

#define TCP_SND_BUF (4*TCP_MSS)

#define TCP_SND_QUEUELEN (2% TCP_SND_BUF /TCP_MSS)
#define TCP_WND (2*%TCP_MSS)

[* —m—— ICMP options —-—-———----—-— */

#define LWIP_ICMP 1

(continues on next page)

5.4. Building the Connext DDS Micro Source for FreeRTOS 146

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

/¥ ——mm————— DHCP options ——————---- */
#define LWIP_DHCP 1

[k —mmm UDP options ——-————--= */
#define LWIP_UDP 1

#define UDP_TTL 255

[k —mmmm—m— Statistics options ——————-—-= */

#define LWIP_STATS 0

/¥ —mmm— link callback options —————-——--- */
#define LWIP_NETIF LINK_ CALLBACK 1
/*

The STM32FT7zxz allows computing and verifying checksums by hardware
*/
#define CHECKSUM_BY_HARDWARE

#ifdef CHECKSUM_BY_ HARDWARE

/* CHECKSUM_GEN_IP==0: Generate checksums by hardware for outgoing IP packets.*/
#define CHECKSUM_GEN_IP 0

/* CHECKSUM_GEN_UDP==0: Generate checksums by hardware for outgoing UDP packets.*/
#define CHECKSUM_GEN_UDP 0

/* CHECKSUM_GEN_TCP==0: Generate checksums by hardware for outgoing TCP packets.*/
#define CHECKSUM_GEN_TCP 0

/* CHECKSUM_CHECK_IP==0: Check checksums by hardware for incoming IP packets.*/

#define CHECKSUM_CHECK_IP 0

/* CHECKSUM_CHECK_UDP==0: Check checksums by hardware for incoming UDP packets.*/
#define CHECKSUM_CHECK_UDP 0

/* CHECKSUM_CHECK_TCP==0: Check checksums by hardware for incoming TCP packets.*/
#define CHECKSUM_CHECK_TCP 0

/% CHECKSUM_CHECK_ICMP==0: Check checksums by hardware for incoming ICMP packets.*/
#define CHECKSUM_GEN_ICMP 0

#else

/* CHECKSUM_GEN_IP==1: Generate checksums in software for outgoing IP packets.*/
#define CHECKSUM_GEN_IP 1

/* CHECKSUM_GEN_UDP==1: Generate checksums in software for outgoing UDP packets.*/
#define CHECKSUM_GEN_UDP 1

/* CHECKSUM_GEN_TCP==1: Generate checksums in software for outgoing TCP packets.*/
#define CHECKSUM_GEN_TCP 1

/* CHECKSUM_CHECK_IP==1: Check checksums in software for incoming IP packets.*/

(continues on next page)

5.4. Building the Connext DDS Micro Source for FreeRTOS 147

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

#define CHECKSUM_CHECK_IP 1
/* CHECKSUM_CHECK_UDP==1: Check checksums in software for incoming UDP packets.*/
#define CHECKSUM_CHECK_UDP 1
/* CHECKSUM_CHECK_TCP==1: Check checksums in software for incoming TCP packets.*/
#define CHECKSUM_CHECK_TCP 1
/* CHECKSUM_CHECK_ICMP==1: Check checksums by hardware for incoming ICMP packets.*/
#define CHECKSUM_GEN_ICMP 1

#endaf

/*

*/

#define LWIP_NETCONN 1
/*

—————————— Socket options —————————-—

*/

#define LWIP_SOCKET 1
/*

—————————— 0S options ————————--

*/

#define TCPIP_THREAD NAME "TCP/IP"
#define TCPIP_THREAD STACKSIZE 1000
#define TCPIP_MBOX_SIZE 6
#define DEFAULT UDP_RECVMBOX_SIZE 2000
#define DEFAULT_ TCP_RECVMBOX_SIZE 2000
#define DEFAULT ACCEPTMBOX_SIZE 2000
#define DEFAULT_ THREAD STACKSIZE 500
#define TCPIP_THREAD_PRIO osPriorityHigh
/**

* LWIP_SO_RCVBUF==1: Enable SO_RCVBUF processing.

*/

#define LWIP_SO_RCVBUF 1
/**

* Instruct lwIP to use the errno provided by libc instead of the errno in lwIP.
* If your libc doesn't include errno, you might need to delete these macros.
*/

#undef LWIP_PROVIDE_ERRNO

#define LWIP_ERRNO_INCLUDE "errno.h"

(continues on next page)

5.4. Building the Connext DDS Micro Source for FreeRTOS 148

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

#endif /* __LWIPOPTS_H _ */

o Example configuration for FreeRTOS:

#ifndef FREERTOS CONFIG_H

#define FREERTOS CONFIG_H

Application specific definitions.

These definitions should be adjusted for your application Tequirements.

THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.

* %X X X ¥ ¥ x x

See http://www. freertos.org/a00110.html.

/* Ensure stdint is only used by the compiler, and not the assembler. */
#if defined(__ICCARM__) || defined(__CC_ARM) || defined(__GNUC__)
#include <stdint.h>

extern uint32_t SystemCoreClock;

#endaf

#define configUSE_PREEMPTION 1

#define configqUSE_IDLE_HOOK 0

#define configUSE_TICK_HOOK 0

#define configCPU_CLOCK_HZ (SystemCoreClock)
#define configTICK RATE HZ ((TickType_t)1000)
#define configMAX_PRIORITIES 7)

#define configMINIMAL_STACK_SIZE ((uint16_t)128)
#define configTOTAL_HEAP_SIZE ((size_t) (400 * 1024))
#define configMAX_TASK_NAME_LEN (16)

#define configUSE_TRACE_FACILITY 1

#define configUSE_16_BIT TICKS

#define configIDLE_SHOULD_YIELD
#define configqUSE_MUTEXES

#define configQUEUE_REGISTRY SIZE
#define configCHECK_FOR_STACK_OVERFLOW
#define confiqUSE_RECURSIVE_MUTEXES
#define confiqUSE_MALLOC_FAILED_ HOOK
#define confiqUSE_APPLICATION_TASK_TAG
#define confiqUSE_COUNTING SEMAPHORES
#define configGENERATE RUN_TIME_STATS

QR OO R OO0 RKO

/* Co-routine definitions. */
#define confiqUSE_CO_ROUTINES 0
#define configMAX_CO_ROUTINE_PRIORITIES (2)

(continues on next page)

5.4. Building the Connext DDS Micro Source for FreeRTOS 149

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

/* Software timer definitions. */

#define configUSE_TIMERS 1
#define configTIMER TASK_PRIORITY (2)
#define configTIMER_QUEUE_LENGTH 10

#define configTIMER_TASK_STACK_DEPTH 1280

/* Set the following definitions to 1 to include the API functiom, or zero
to exclude the API function. */

#define INCLUDE_vTaskPrioritySet 1

#define INCLUDE_uxzTaskPriorityGet 1

#define INCLUDE_vTaskDelete 1

#define INCLUDE_vTaskCleanUpResources 0

#define INCLUDE_vTaskSuspend 1

#define INCLUDE_vTaskDelayUntil 0

#define INCLUDE_vTaskDelay 1

#define INCLUDE_zTaskGetSchedulerState 1

/* Cortex-M specific definitions. */
#ifdef __NVIC_PRIO_BITS
/* __BVIC_PRIO BITS will be specified when CMSIS is being used. */

#define configPRIO_BITS __NVIC_PRIO_BITS
#else

#define configPRIO_BITS 4 /* 15 priority levels */
#endif

#define configLIBRARY LOWEST_INTERRUPT PRIORITY Ozf
#define configLIBRARY MAX_SYSCALL_INTERRUPT_PRIORITY 5

#define configKERNEL_INTERRUPT PRIORITY (configLIBRARY_LOWEST INTERRUPT PRIORITY <<,
< (8 - configPRIO_BITS))

#define configMAX_SYSCALL_INTERRUPT PRIORITY (configLIBRARY_ MAX_SYSCALL_INTERRUPT_
—PRIORITY << (8 - configPRIO_BITS))

#define configASSERT(=) if(() == 0) { taskDISABLE INTERRUPTS(); for(;;); }

#define vPortSVCHandler SVC_Handler
#define xzPortPendSVHandler PendSV_Handler

#endif /+ FREERTOS_CONFIG_H */

5.4. Building the Connext DDS Micro Source for FreeRTOS 150

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.4.4 CMake Support

Connext DDS Micro includes support to compile libraries for FreeRTOS using CMake . It is
assumed that the Connext DDS Micro source-bundle has been downloaded and installed and that
CMake is available.

1. Make sure CMake is in the path.

2. Define the following environment variables:
e CONFIG_PATH : Path where the FreeRTOSConfig.h and Iwipopts.h files are located.
e FREERTOS PATH : Path to FreeRTOS source code and header files.
e LWIP PATH : Path to IwIP source code and header files.

« PATH : Update your path with the location of the C and C++ compiler. By default
arm-none-eabi-gcc and arm-none-eabi-g-++ are used as C and C++ compilers.

3. Enter the following command:

cd <rti_me install directory>
resource/scripts/rtime-make --target FreeRTOS --name cortexm7FreeRT0S9.
—0gcc7.3.1 -G "Unix Makefiles" --build

4. The Connext DDS Micro libraries are available in:

<rti_me install directory>/1lib/cortexm7FreeRT0S9.0gcc7.3.1

NOTE: rtime-make uses the name specified with -name to determine a few settings needed by
Connext DDS Micro. Please refer to Preparing for a Build for details.

5.5 Building the Connext DDS Micro Source for ThreadX

5.5.1 Introduction
This section explains the environment used to run Connext DDS Micro on the Threadx® + NetX™
and is organized as follows:

e Querview

o Configuration

e CMake Support

5.5. Building the Connext DDS Micro Source for ThreadX 151

https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.5.2 Overview

Connext DDS Micro is known to run on the ThreadX operating system and NetX network stack.
The Renesas™ SK-S7G2 Starter Kit has been chosen as reference hardware. This starter kit
has a Synergy S7G2 microcontroller with 4 Mbytes of flash memory and 640 KBytes of SRAM.
For a full description, please refer to the microcontroller and starter kit documentation (https:
/ /www.renesas.com/us/en/products/synergy /hardware /kits /sk-s7g2.html).

Renesas provides an Eclipse-based integrated development environment (IDE) called e? studio.
The Synergy® Software Package (SSP) provides several middleware components like ThreadX and
NetX. e? studio and the SSP allow you to create solutions based on ThreadX and NetX for the
Renesas SK-S7G2.

Renesas provides several examples for the SK-S7G2 and e? studio. The DHCP client example is
particularly useful, as it provides a working ThreadX and NetX configuration.

We used the following components to build the Connext DDS Micro application:
« ¢? studio version 5.4.0.018
e SSP version 1.2.0
e ThreadX 5.7
e NetX 5.8

5.5.3 Configuration
e? studio allows you to configure ThreadX and NetX. Connext DDS Micro expects two variables
to be configured in NetX with the following default names:

e g ip0: This is the expected name of the NetX IP instance.

e g packet_pool0 : This is the expected name of the NextX packet pool instance.

5.5.4 CMake Support

Connext DDS Micro includes support to compile libraries for ThreadX/NetX using CMake . It is
assumed that the Connext DDS Micro source-bundle has been downloaded and installed and that
CMake is available.

1. Make sure CMake is in the path.
2. Define the following environment variables:

e SYNERGY_PATH : Path to your Synergy project. This is needed to add the include
paths to the ThreadX and NetX public header files, and other header files used by the
ThreadX and NetX public header files.

« PATH : Update your path with the location of the C and C++ compilers. By default
arm-none-eabi-gcc and arm-none-eabi-g++ are used as C and C++ compilers.

3. Enter the following command:

5.5. Building the Connext DDS Micro Source for ThreadX 152

https://www.renesas.com/us/en/products/synergy/hardware/kits/sk-s7g2.html
https://www.renesas.com/us/en/products/synergy/hardware/kits/sk-s7g2.html
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

cd <rti_me install directory>
resource/scripts/rtime-make —-target ThreadX --name cortexm4ThreadX5.8gcc4.
9.3 -G "Unix Makefiles" --build

4. The Connext DDS Micro libraries are available in:

<rti_me install directory>/lib/cortexm4ThreadX5.8gcc4.9.3

NOTE: rtime-make uses the name specified with —name to determine a few settings needed by
Connext DDS Micro. Please refer to Preparing for a Build for details.

5.6 Compiling the Connext DDS Micro Source for AUTOSAR

5.6.1 Introduction

Connext DDS Micro includes support for AUTOSAR™ and enables Connext DDS Micro applica-
tions to run on AUTOSAR systems. The support has been tested on the Infineon™ AURIX™ Ap-
plication Kit TC297 TFT development board with Elektrobit™ (EB) AUTOSAR implementation
version 4.0.3 and Mentor™ AUTOSAR implementation version 4.2.2 and compiler TASKING™
v6.2r2.

Note that Connext DDS Micro requires the C-type “double” to be 64 bits. Any compiler option
that treats a “double” as a “float” must not be enabled.

This manual explains how to compile and configure Connext DDS Micro to run on AUTOSAR
systems and the AUTOSAR configuration needed by Connext DDS Micro.

o AUTOSAR Configuration
o AUTOSAR Port Details

e Compiling

o Interoperability

5.6.2 AUTOSAR Configuration

Properties

AUTOSAR port properties must be set before any call to a Connext DDS Micro API. This is done
by using OSAPI _System__get_property() followed by OSAPI _System__set_property():

/* Example application with two areas in the heap */

#define NUMBER_OF_HEAP_AREAS 2
#define HEAP_AREA 1 _SIZE 10%1024
#define HEAP_AREA 2 _SIZE 130%1024

(continues on next page)

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 153

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

const RTI_PRIVATE uint32 heap_area_size[NUMBER_OF_HEAP_AREAS] =
{

HEAP_AREA_1_SIZE,

HEAP_AREA_2_SIZE
};

RTI_PRIVATE char heap_areal [HEAP_AREA_1_SIZE];
RTI_PRIVATE char heap_area2[HEAP_AREA_2_SIZE];

RTI_PRIVATE char* const heap_area[NUMBER_OF_HEAP_AREAS] =
{

heap_areal,

heap_area2

};

static Std_ReturnType
Application_get_socket(
TcpIp_DomainType domain,
TcplIp_ProtocolType protocol,
P2VAR(TcpIp_SocketIdType, AUTOMATIC, TCPIP_APPL_DATA) socket_id)

{
/* The name of this call depends on the SocketAdaptor name configured
* in the AUTOSAR project
*/
return TcpIp_TcpIpSocketOwner_OGetSocket (domain, protocol, socket_id);
3
RTI_BOOL
Application_set_system_properties(void)
{

struct OSAPI_SystemProperty system_property;

if (!0SAPI_System_get_property(&system_property))
{
printf("failed to get system properties\n");
return RTI_FALSE;
}

/* Task OSAPI_SystemAutosar_timer_task is configured to run every 10 ms */
system_property.port_property.timer_resolution_ms = 10;

system_property.port_property.number_of_heap_areas = NUMBER_OF_HEAP_AREAS;
system_property.port_property.heap_area_size = heap_area_size;
system_property.port_property.heap_area = heap_area;

/* Connext DDS Micro will use Resources as synchronization method */
system_property.port_property.sync_type = O0SAPI_AUTOSAR_SYNCKIND_RESOURCES;
system_property.port_property.first_resource_id = RTIME_Resource01;
system_property.port_property.last_resource_id = RTIME_Resource26;

#if RTIME_AUTOSAR_SPINLOCK_ENABLED

(continues on next page)

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 154

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

system_property.port_property.spinlock_id = O;
#endif /* RTI_CERT */

system_property.port_property.semaphore_max_count = 2;

system_property.port_property.first_give_event = RTIME_Semaphore_Give_
—Event;

system_property.port_property.first_timeout_event = RTIME_Semaphore_
—Timeout_Event;

system_property.port_property.first_alarm = RTIME_Semaphore_Alarm;

system_property.port_property.use_socket_owner = TRUE;
system_property.port_property.max_receive_sockets = 2;
system_property.port_property.number_of_rcv_buffers = O;
system_property.port_property.rcv_buffer_size = 0;
system_property.port_property.get_socket = Application_get_socket;
system_property.port_property.send_data = NULL;
system_property.port_property.local_addr_id = O;

system_property.port_property.use_udp_thread = FALSE;
system_property.port_property.udp_receive_task_id = O;

system_property.port_property.udp_packet_received_event = O;

if (!'0SAPI_System_set_property(&system_property))

{
printf("failed to set system properties\n");
return RTI_FALSE;
}
return RTI_TRUE;
}
Tasks

Micro Timer Task

Connext DDS Micro uses a timer task, which manages all the Connext DDS Micro timers, such
as deadline and liveliness timers. This task must be started before the first call to DDS Domain-
ParticipantFactory_get_ instance(). This task must be run at a constant period, e.g., every 10 ms.
Note that the priority of this task must be set based on the required system behavior.

It is important that the port properties are configured with the value of OSAPI PortProp-
erty::timer__resolution__ms equal to the Timer Task period.

This task needs at least 5 KB stack. The name of this task is OSAPI _SystemAutosar__timer_task.
The task implementation can be found in the file autosarSystem.c.

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 155

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Micro UDP Task

Connext DDS Micro provides a callback function that must be called when a UDP packet is
received. These callback functions are NETIO _Autosar _Teplp__udp _rz_indication() and NE-
TIO _Autosar_Teplp__pdu__callout(). It is very important that one of these functions is called for
the on-packet reception. Typically NETIO _Autosar_Teplp _udp_rx_indication() is called when a
SocketOwner is configured in the AUTOSAR configuration and NETIO _Autosar_Tcplp__pdu_call-
out() is typically used when SocketOwner is not configured in the AUTOSAR configuration.

It is important that the port properties are configured with a correct value in OSAPI _PortProp-
erty::use__socket__owner. Set this field to TRUE only if you have configured SocketOwner in the
AUTOSAR Teplp configuration.

When Connext DDS Micro receives an on-packet reception notification, the packet can be processed
in the notification callback or in a different task. If OSAPI PortProperty::use_udp_thread is set
to TRUE, the packet is copied to an internal buffer, the “UDP Packet received event” is set, and
the packet will be processed in a different task. Otherwise the packet is processed immediately.

The configuration of the OSAPI PortProperty::use_udp thread, OSAPI PortProperty::udp_re-
cetve__task_id and OSAPI _PortProperty::udp_packet__received__event is the responsibility of the
application.

Normally a UDP packet can be processed in the notification callback if the function OSAPI _Au-
tosar_Tclp_udp_rx_indication() or NETIO__Autosar__Teplp_ pdu_callout() is called from another
task. The UDP task is normally only needed in case OSAPI_Autosar_Tclp_udp_rz__indication()
or NETIO__Autosar_Tceplp_pdu__callout() is called from an ISR.

This task should be started only once. Note that this is not a periodic task and the task never
completes.

The UDP task waits for a “UDP Packet received event.” When this event is received, the task
reads the packet from the internal buffer, processes it and waits again for the event.

This task must have at least 5 KB stack and must be configured as an extended task (only extended
tasks can wait for an event).

The priority of this task must be assigned based on system requirements.

The name of this task is NETIO__Autosar _udp_receive_task and the task implementation can be
found in the file autosarSocket.c.

The task configuration must include all necessary references to the event used to notify a UDP
packet reception.

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 156

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Application Task

The application task defines the DDS entities required by the application.

Critical Sections

Connext DDS Micro can be configured to use different synchronization methods to protect critical
sections. These critical sections synchronize access to objects shared among the different tasks
(Timer task, UDP task, and user tasks).

First, configure the OSAPI PortProperty::sync_type in the AUTOSAR port properties. For ex-
ample, if Connext DDS Micro is configured with tasks running on different cores, a Spinlock must
be used.

The supported methods, and how to configure Connext DDS Micro to use them, are described
below:

e Resources
o Spinlock

For a cert build, the only synchronization method supported is Resources.

Resources

With this synchronization method, Connext DDS Micro uses AUTOSAR resources to protect
critical sections.

Only use this configuration if Connext DDS Micro will be executed from one core.

All AUTOSAR resources used by Connext DDS Micro must have consecutive IDs. Configure OS-
API _PortProperty::first_resource_id and OSAPI _PortProperty::last_resource_id with the “ID”
of the first and last resource used by Connext DDS Micro.

The number of resources needed depends on the number of DataWriter and DataReader objects
that are created, the discovery plugin that is used, the AUTOSAR Configuration and the build
configuration (whether the Log Module is excluded or not).

The following APIs and modules use one or more resources to protect critical sections:

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 157

RTI Connext DDS Micro Documentation, Version 2.4.14.0

API Number of resources needed
AUTOSAR OSAPI 1

Heap module

AUTOSAR OSAPI 1

Mutex module

AUTOSAR NETIO UDP
module

1 or 2. If the UDP task is used, by setting OSAPI Port-
Property::use__udp__thread to TRUE, one additional resource
is needed to synchronize socket internal buffers.

DPDE discovery
plugin

11

DPSE discovery
plugin

DDS_DomainParticipa

ntRachotfytiget.amatadide (3 included in the compilation one
additional resource is needed.

DDS_DomainParticipa

n2Factory_create_participant ()

DDS_DomainParticipa

nt_create_topic()

DDS_DomainParticipdg

nt_create_publisher()

DDS_DomainParticipq

nt_create_subscriber()

DDS_Publisher_creat

eldatawriter ()

DDS_Publisher_creat

eldatareader ()

DDS_WaitSet_new()

1

A basic Connext DDS Micro application using the DPDE discovery plugin and one Data Writer
uses 24 resources

Table 5.1: Basic application using DPDE discovery plugin
API Number of resources needed
AUTOSAR OSAPI Heap module 1
AUTOSAR OSAPI Mutex module 1
AUTOSAR NETIO UDP module 1

DPDE discovery plugin

11

DDS_DomainParticipantFactory_get_instance()

5 (Log module included in the compila-

tion)
DDS_DomainParticipantFactory_create_participantX)
DDS_DomainParticipant_create_topic() 1
DDS_DomainParticipant_create_publisher () 1
DDS_Publisher create datawriter() 1

A basic Connext DDS Micro application using DPSE discovery plugin and one Data Writer uses 18
resources:

5.6. Compiling the Connext DDS Micro Source for AUTOSAR

158

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Table 5.2: Basic application using DPSE discovery plugin

API Number of resources needed

AUTOSAR OSAPI Heap module 1

AUTOSAR 0SAPI Mutex module 1

AUTOSAR NETIO UDP module 1

DPSE discovery plugin 5 (Log module included in the compila-
tion)

DDS_DomainParticipantFactory_get_instance() 5

DDS_DomainParticipantFactory_create_participantX)

DDS_DomainParticipant_create_topic() 1

DDS_DomainParticipant_create_publisher () 1

DDS_Publisher_create_datawriter() 1

To configure Connext DDS Micro to use the resources to protect critical sections,
set OSAPI_PortProperty::sync_type equal to OSAPI Autosar_ SyncKind T::OSAPI_AU-
TOSAR_SYNCKIND RESOURCES.

Spinlock

When the spinlock synchronization method is used, Connext DDS Micro uses an OSEK spinlock
to protect critical sections.

Only use this configuration if Connext DDS Micro will be used from more than one core.

To configure Connext DDS Micro to use spinlock to protect critical sections set OS-
API _PortProperty::sync__type equal to OSAPI _Autosar_SyncKind_T::OSAPI _AU-
TOSAR_SYNCKIND SPINLOCK.

TCP/IP Configuration

A CDD socket owner can be optionally used. Set OSAPI _PortProperty::use_socket_owner to
TRUE only if a SocketOwner is configured in the AUTOSAR Tcplp configuration. If a Socke-
tOwner is used, a pointer to the Teplp <Up>GetSocket must be configured in OSAPI_PortProp-
erty::get__socket. If a SocketOwner is not used, a pointer to a function which can send data must
be configured in OSAPI _PortProperty::send__data.

Depending on the DDS discovery configuration, a maximum of 3 UDP sockets are needed for each
participant created. All function declarations needed to configure the SocketOwner can be found
in the file osapi_os_ autosar.h and are:

o NETIO_Autosar_Tcplp__pdu__callout()
o NETIO__Autosar_Tcplp_udp_rz_indication()

It is very important that the on-packet reception function OSAPI Autosar Tclp _udp rz_indi-
cation() or NETIO _Autosar Tcplp pdu callout() is called. If there is an OS configuration error,
this function might not be called.

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 159

RTI Connext DDS Micro Documentation, Version 2.4.14.0

It is important to note that the IP address identifier representing the local IP address and the EthIf
controller used to bind the socket to can be configured in the property OSAPI _PortProperty::lo-
cal__addr_id. This should be configured in Elektrobit Tresos as a TCPIP_UNICAST TcplpAd-
dressType.

It is possible to configure Connext DDS Micro to not use a SocketOwnwer. If a SocketOwner
is not used, it is important to configure AUTOSAR such that one of the functions OSAPI Au-
tosar_Telp_udp _rx_indication() or NETIO__Autosar__Teplp _pdu_callout() is called when a UDP
packet is received.

Only unicast receive sockets are supported.

It is very important that the TCP/IP interface is running and an IP address is assigned before a
DomainParticipant is created, otherwise the DomainParticipant creation might fail because sockets
cannot be created.

Events

Depending on the configuration, only one event might be used. One event is required by the UDP
receive callback to notify the UDP receive task that a UDP packet is available.

The ID of this event can be configured in OSAPI _PortProperty::udp__packet_received__event.

This event is only needed if OSAPI _PortProperty::use_udp_thread is set to TRUE. Please refer
to Micro UDP Task for details.

DDS WaitSets require more events; please refer to Semaphores for details.

Semaphores

Connext DDS Micro uses semaphores only to create WaitSets. OSEK and AUTOSAR do not define
any semaphore objects. For this reason, semaphores are implemented using events and alarms. For
each semaphore, two events and one alarm must be added to the AUTOSAR configuration.

For each WaitSet, two semaphores are needed.
WaitSet.wait() can be called only from the task that created the WaitSet.

If WaitSets are not used, you do not need to allocate any resources and alarms for semaphores. In
this case set the following properties to 0:

e OSAPI _PortProperty::semaphore_max__count
e OSAPI _PortProperty::first_give__event

o OSAPI _PortProperty::first_timeout__event

e OSAPI_PortProperty::first_alarm

The semaphore implementation uses two events and one alarm for each semaphore that is created
(a total of four events and two alarms are needed for each WaitSet).

One event, the give event, is set in the OSAPI_Semaphore__give() method. The other event, the
timeout event, is used to signal a timeout in the semaphore. The alarm must be configured to set

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 160

RTI Connext DDS Micro Documentation, Version 2.4.14.0

the give event. The OSAPI _Semaphore_take() method starts the alarm and waits for either of the
two events to occur.

Give events must have consecutive event IDs, starting at OSAPI _PortProperty::first_give__event
(e.g., 1, 2, 4). Timeout events must have consecutive event I1Ds starting at OSAPI _PortProp-
erty::first__timeout__event (e.g., 8, 16, 32). Alarms must have consecutive IDs starting at OS-
API_PortProperty::first_alarm (e.g., 1, 2, 3). So an alarm with ID 1 must set timeout event 8;
alarm ID 2 must set timeout event 16, and so on.

The alarm for semaphore implementation must be configured as ‘RELATIVE’ The counter used
to trigger the alarm must be configured with one tick per millisecond. If this is not done properly,
the semaphore timeout will occur sooner or later than expected.

Memory

Connext DDS Micro uses a buffer for all its memory allocations. The buffer can span across
several non-adjacent areas. The number of areas can be configured in OSAPI _PortProperty::num-
ber_of heap__areas. The size required for this buffer depends on the number of DDS entities created
and their QoS. The size of each area can be configured in OSAPI _PortProperty::heap__area__ size.
The start address for each of the areas can be configured in OSAPI PortProperty::heap__area.

This buffer location and size can be modified, but it is recommended to use a buffer of at least 100
KB.

All allocations within Connext DDS Micro are protected by a critical section. For more information
see Critical Sections.

5.6.3 AUTOSAR Port Details

Logging

Connext DDS Micro can optionally use the AUTOSAR Det module:

o Set the right log verbosity in Connext DDS Micro by calling OSAPI_Log__set_verbosity().
The default verbosity is OSAPI _LOG_VERBOSITY ERROR.

o Set the AUTOSAR log display handler by calling OSAPI Log_set_display__handler(OS-
API_AutosarLog__default_display, NULL). The file osapi_autosar.h contains the declaration
of the function OSAPI _AutosarLog__default_display/().

o Connext DDS Micro calls Det_ReportError() with the module ID RTIME _DDS MOD-
ULE ID and the instance ID RTIME DDS INSTANCE ID. These can be found in file
osapi_os_ autosar.h.

Connext DDS Micro logging can be disabled by adding the following options when compiling with
CMake:

o -DRTIME_OSAPI_ENABLE_LOG=Exclude (when compiling on a Windows system, re-
place the symbol = with __eq).

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 161

RTI Connext DDS Micro Documentation, Version 2.4.14.0

If the Connext DDS Micro sources are not compiled with CMake, logging can be disabled by adding
the compiler flags OSAPI ENABLE TRACE=0 and OSAPI ENABLE LOG=0.

The function wused to write logs can be configured wusing the macro OS-
API LOG_WRITE BUFFER in the file osapi_os_autosar.h. The default value for this
macro is printf(), which on some platforms will write on the serial port. This can be useful for
debugging purposes, but it can be slow, causing tasks to have longer execution times than allowed.
If this is the case, it is recommended that you disable logging or use a different function by calling
OSAPI_AutosarLog__default__display/().

WaitSets

For each WaitSet that will be created, you need to adjust the configuration to have two semaphores.
The semaphore implementation needs two events and one alarm.

A WaitSet wait operation can only be called from the task that created the WaitSet.

Note that events cannot be set for a task that is in the suspended state. As semaphore imple-
mentation is based on events, the task that reads all received samples must be running before any
sample is received.

UDP Automatic Configuration

UDP automatic configuration is not currently supported. See the HelloWorld__static_ dpde example
to learn how to statically configure the UDP transport.

5.6.4 Compiling

This section explains how to build the Connext DDS Micro source-code for AUTOSAR.

Building Connext DDS Micro with rtime-make

The Connext DDS Micro source bundle includes a bash (on Linux and macOS systems) or BAT
(on Windows systems) script to simplify the invocation of cmake called rtime-make. These scripts
provide a convenient way to invoke cmake with the correct options.

On Linux and macOS systems, the script is located in:

resource/scripts/rtime-make

On Windows systems, the script is located in:

resource\scripts\rtime-make

The following environment variables are needed to compile for an Elektrobit implementation:

e OSEK_TOOLCHAIN_PATH : Path to the toolchain used to compile. E.g., TASKING install
folder.

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 162

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e OSEK_PATH : Path to AUTOSAR implementation installation.

Environment variables example to compile Connext DDS Micro libraries for an Elektrobit AU-
TOSAR implementation:

o« OSEK_TOOLCHAIN_PATH : /c¢/TASKING/TriCorev6.2r2
o« OSEK PATH : /c/eb

Environment variables example to compile Connext DDS Micro libraries for a Mentor™ implemen-
tation:

« OSEK_TOOLCHAIN_PATH : /c/TASKING /TriCorev6.2r2
« OSEK_PATH : /c/AUTOSAR

cmake toolchain files are included to compile Connext DDS Micro for Elektrobit and Mentor AU-
TOSAR implementations. Example commands to build AUTOSAR libraries:

o Libraries for Elektrobit using a Windows prompt and Unix Makefile generator (that uses
Tasking mktc.exe as the make program):

<path-to-rtime-make>/rtime-make --target Autosar --name
—tc29xt0sekCoreTasking6.2r2 --build --config Debug -G "Unix Makefiles"
—

e Libraries for Elektrobit using a Windows prompt and a Ninja generator:

<path-to-rtime-make>/rtime-make --target Autosar --name
—tc29xt0sekCoreTasking6.2r2 —-build --config Debug -G "Ninja'

o Libraries for Mentor using MSys and a Unix Makefile generator:

<path-to-rtime-make>/rtime-make --target Autosar --name
—tc29xtVSTARTasking6.2r2 --build --config Debug -G "Unix Makefiles'"

—

Importing the Connext DDS Micro Source Code
Read the general rules for importing the Connext DDS Micro source code in Building the Connext
DDS Micro Source.
To build the AUTOSAR port, either define -D___autosar___ or:
e -DOSAPI_OS_DEF_H="o0sapi_os_ autosar.h”
e -DOSAPI_CC_DEF_H="osapi_cc_ autosar.h”

5.6. Compiling the Connext DDS Micro Source for AUTOSAR 163

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.6.5 Interoperability

The Connext DDS Micro AUTOSAR port does not have any additional restrictions regarding in-
teroperability. The same interoperability considerations as for other ports apply to the AUTOSAR

port. For more information, please refer to Working with RTI Connext DDS Micro and RTI Connext
DDS.

5.7 Porting RTI Connext DDS Micro

RTI Connext DDS Micro has been engineered for reasonable portability to platforms and environ-
ments which RTT does not have access to. This porting guide describes the features required by
Connext DDS Micro to run. The target audience is developers familiar with general OS concepts,
the standard C library, and embedded systems.

Connext DDS Micro uses an abstraction layer to support running on a number of platforms. The
abstraction layer, OSAPI, is an abstraction of functionality typically found in one or more of the
following libraries and services:

e Operating System calls
e Device drivers
o Standard C library

The OSAPI module is designed to be relatively easy to move to a new platform. All functionality,
with the exception of the UDP transport which must be ported, is contained within this single
module. It should be noted that although some functions may not seem relevant on a particular
platform, they must still be implemented as they are used by other modules. For example, the port
running on Stellaris with no OS support still needs to implement a threading model.

Please note that the OSAPI module is not designed to be a general purpose abstraction layer; its
sole purpose is to support the execution of Connext DDS Micro.

5.7.1 Updating from Connext DDS Micro 2.4.8 and earlier
In RTI Connext DDS Micro 2.4.9, a few changes were made to simplify incorporating new ports.
To upgrade an existing port to work with 2.4.9, follow these rules:

o Any changes to osapi_ config.h should be placed in its own file (see Directory Structure).

o Define the OSAPI_OS_DEF_H preprocessor directive to include the file (refer to OS and
CC Definition Files).

o For compiler-specific definitions, please refer to OS and CC Definition Files.

o Please refer to Heap Porting Guide for changes to the Heap routines that need to be ported.

5.7. Porting RTI Connext DDS Micro 164

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.7.2 Directory Structure

The source shipped with Connext DDS Micro is identical to the source developed and tested
by RTI (with the exception of the the line-endings difference between the Unix and Windows
source-bundles).

The source-bundle directory structure is as follows:

RTIMEHOME--+-- CmakeLists.txt

+-- build -- cmake --+-- Debug --+-- <ARCH> -- <project-files>
| |
| |

| +-- Release —-+-- <ARCH> -- <project-files>
+-- doc —-

|

+-— example

|

+-- include

|

+-- 1lib +-- <ARCH> -- <libraries>

+-—- resource ——+-— cmake

| I

| +-- scripts
+-- rtiddsgen

+-- rtiddsmag

+-— src

The include directory contains the external interfaces, those that are available to other modules.
The src directory contains the implementation files. Please refer to Building the Connext DDS
Micro Source for how to build the source code.

The remainder of this document focuses on the files that are needed to add a new port. The
following directory structure is expected:

--—+-- include --+-- osapi --+-- osapi_os_\<port\>.h

|

| +-- osapi_cc_<compiler>.h
|

+-- src -—+-- osapi --+-- common -- <common files>
|
+-— <port> --+-- <port>Heap.c
+-- <port>Mutex.c

+-— <port>Process.c

+-- <port>Semaphore.c

(continues on next page)

5.7. Porting RTI Connext DDS Micro 165

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

+-—- <port>String.c
+-- <port>System.c
+-- <port>Thread.c
+-- <port>shmSegment.c

+-- <port>shmMutex.c

The osapi_os__<port>.h file contains OS specific definitions for various data-types. The <port>
name should be short and in lower case, for example myos.

The osapi_cc__<compiler>.h file contains compiler specific definitions. The <compiler> name
should be short and in lower case, for example mycc. The osapi_cc_stdc.h file properly detects
GCC and MSVC and it is not necessary to provide a new file if one of these compilers is used.

The <port>Heap.c, <port>Mutex.c, <port>Process.c, <port>Semaphore.c, <port>String.c and
<port>System.c files shall contain the implementation of the required APIs.

NOTE: It is not recommended to modify source files shipped with Connext DDS Micro. Instead
if it is desired to start with code supplied by RTI it is recommended to copy the corresponding
sub-directory, for example posix, and rename it. This way it is easier to upgrade Connext DDS
Micro while keeping existing ports.

5.7.3 OS and CC Definition Files

The include/osapi/osapi_os_<port>.h file contains OS and platform specific definitions used by
OSAPI and other modules. To include the platform specific file, define OSAPI_OS_DEF_H
as a preprocessor directive.

-DOSAPI_0S_DEF_H=\"osapi_os_<port>.h\"

It should be noted that Connext DDS Micro does not use auto-detection programs to detect the
host and target build environment and only relies on predefined macros to determine the target
environment. If Connext DDS Micro cannot determine the target environment, it is necessary to
manually configure the correct OS definition file by defining OSAPI__OS__DEF__H (see above).

The include/osapi/osapi_cc__<compiler>.h file contains compiler specific definitions used by OS-
API and other modules. To include the platform specific file, define OSAPI_CC_DEF_H as a
preprocessor directive.

-DOSAPI_CC_DEF_H=\"osapi_cc_<compiler>.h\"

Endianness of some platforms is determined automatically via the platform specific file, but for
others either RTI_ENDIAN__LITTLE or RTI__ENDIAN_ BIG must be defined manually
for little-endian or big-endian, respectively.

5.7. Porting RTI Connext DDS Micro 166

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.7.4 Heap Porting Guide

Connext DDS Micro uses the heap to allocate memory for internal data-structures. With a few
exceptions, Connext DDS Micro does not return memory to the heap. Instead, Connext DDS Micro
uses internal pools to quickly allocate and free memory for specific types. Only the initial memory
is allocated directly from the heap. The following functions must be ported:

e OSAPI Heap_ allocate buffer
e OSAPI_Heap_ free buffer

However, if the OS and C library supports the standard malloc and free APIs define the following
in the osapi_os_<port>.h file:

#define OSAPI_ENABLE STDC_ALLOC (1)
#define OSAPI_ENABLE STDC_REALLOC (1)
#define OSAPI_ENABLE STDC_FREE (1)

Please refer to the OSAPI__Heap API for definition of the behavior. The available source code
contains implementation in the file osapi/<port>/<port>Heap.c.

5.7.5 Mutex Porting Guide
Connext DDS Micro relies on mutex support to protect internal data-structures from corruption
when accessed from multiple threads.
The following functions must be ported:
e OSAPI Mutex new
e OSAPI Mutex delete
e OSAPI Mutex take os
e OSAPI_Mutex_ give os

Please refer to the OSAPI Mutex API for definition of the behavior. The available source code
contains implementation in the file osapi/<port>/<port>Mutex.c

5.7.6 Semaphore Porting Guide

Connext DDS Micro relies on semaphore support for thread control. If Connext DDS Micro is
running on a non pre-emptive operating system with no support for IPC and thread synchronization,
it is possible to implement these functions as no-ops. Please refer to Thread Porting Guide for details
regarding threading.

The following functions must be ported:
e OSAPI_Semaphore new
e OSAPI_Semaphore_delete
e OSAPI_Semaphore_ take

5.7. Porting RTI Connext DDS Micro 167

../../api_c/html/group__OSAPI__HeapClass.html
../../api_c/html/group__OSAPI__HeapClass.html
../../api_c/html/group__OSAPI__HeapClass.html
../../api_c/html/group__OSAPI__MutexClass.html
../../api_c/html/group__OSAPI__MutexClass.html
../../api_c/html/group__OSAPI__MutexClass.html
../../api_c/html/group__OSAPI__MutexClass.html
../../api_c/html/group__OSAPI__MutexClass.html
../../api_c/html/group__OSAPI__SemaphoreClass.html
../../api_c/html/group__OSAPI__SemaphoreClass.html
../../api_c/html/group__OSAPI__SemaphoreClass.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e« OSAPI_Semaphore_give

Please refer to the OSAPI_Semaphore API for definition of the behavior. The available source
code contains implementation in the file osapi/<port>/<port>Semaphore.c.

5.7.7 Process Porting Guide

Connext DDS Micro only uses the process API to retrieve a unique ID for the applications.
The following functions must be ported:
e OSAPI_Process_ getpid

Please refer to the OSAPI_ Process_ getpid API for definition of the behavior. The available source
code contains implementation in the file osapi/<port>/<port>Process.c.

5.7.8 System Porting Guide

The system API consists of functions which are more related to the hardware on which Connext
DDS Micro is running than on the operating system. As of Connext DDS Micro 2.3.1, the system
API is implemented as an interface as opposed to the previous pure function implementation. This
change makes it easier to adapt Connext DDS Micro to different hardware platforms without having
to write a new port.

The system interface is defined in OSAPI_ Systeml, and a port must implement all the methods
in this structure. In addition, the function OSAPI_System_get native interface must be imple-
mented. This function must return the system interface for the port (called the native system
interface).

The semantics for the methods in the interface are exactly as defined by the corresponding sys-
tem function. For example, the method OSAPI_Systeml::get_ time must behave exactly as that
described by OSAPI_System_ get_ time.

The following system interface methods must be implemented in the OSAPI_Systeml structure:
e OSAPI_Systeml::get_timer_resolution
e OSAPI_Systeml::get_ time
e OSAPI_Systeml::start_ timer
e OSAPI_Systeml::stop_ timer
e OSAPI_Systeml::generate uuid
e OSAPI_Systeml::get hostname
e OSAPI_Systeml::initialize
e OSAPI_Systeml::finalize

Please refer to the OSAPI_System API for definition of the behavior. The available source code
contains implementation in the file: osapi/<port>/<port>System.c.

5.7. Porting RTI Connext DDS Micro 168

../../api_c/html/group__OSAPI__SemaphoreClass.html
../../api_c/html/group__OSAPI__SemaphoreClass.html
../../api_c/html/osapi__process_8h.html
../../api_c/html/osapi__process_8h.html
../../api_c/html/structOSAPI__SystemI.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/structOSAPI__SystemI.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Migrating a 2.2.x port to 2.3.x

In Connext DDS Micro 2.3.x, changes where made to how the system API is implemented. Because
of these changes, existing ports must be updated, and this section describes how to make a Connext
DDS Micro 2.2.x port compatible with Connext DDS Micro 2.3.x.

If you have ported Connext DDS Micro 2.2.x the following steps will make it compatible with
version 2.3.x:

e Rename the following functions and make them private to your source code. For example,
rename OSAPI_ System_ get_time to OSAPI__MyPortSystem_ get_ time etc.

— OSAPI_System_ get_ time

— OSAPI_System_ get_timer resolution

OSAPI_System_ start_ timer

OSAPI_System_ stop_ timer
— OSAPI_System_ generate uuid
e Implement the following new methods.
— OSAPI_Systeml::get_ hostname
— OSAPI_ Systeml::initialize
— OSAPI_ Systeml::finalize

e Create a system structure for your port using the following template:

struct OSAPI_MyPortSystem

{
struct OSAPI_System _parent;

Your system variable

s
static struct OSAPI_MyPortSystem OSAPI_System_g;

/* OSAPI_System_gv_system is a global system variable used by the
* generic system API. Thus, the name must be exactly as
* shown here.
*/
struct OSAPI_System * OSAPI_System_gv_system = &0SAPI_System_g._parent;

o Implement OSAPI_ System get native interface method and fill the OSAPI_Systeml
structure with all the system methods.

5.7. Porting RTI Connext DDS Micro 169

../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/structOSAPI__SystemI.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.7.9 Thread Porting Guide

The thread APIis used by Connext DDS Micro to create threads. Currently only the UDP transport
uses threads and it is a goal to keep the generic Connext DDS Micro core library free of threads.
Thus, if Connext DDS Micro is ported to an environment with no thread support, the thread API
can be stubbed out. However, note that the UDP transport must be ported accordingly in this case;
that is, all thread code must be removed and replaced with code appropriate for the environment.

The following functions must be ported:
e OSAPI Thread create
e OSAPI_Thread_ sleep

Please refer to the OSAPI Thread API for definition of the behavior. The available source code
contains implementation in the file sreC/osapi/<platform>/Thread.c.

5.8 Port Validation

5.8.1 Introduction

This section explains how to build and run the Connext DDS Micro Port Validation and is organized
as follows:

e Querview

Building the Port Validation Tests

Running the Tests
e Embedded Platforms
e Porting UTEST

5.8.2 Overview

After porting Connext DDS Micro, it is important to confirm that your code works as expected.
For this, Connext DDS Micro comes with a suite of tests that you compile and run to validate your
port.

The tests only cover the functionality described in the porting instructions earlier in this chapter
Porting RTI Connext DDS Micro.

The tests are a subset of the tests RTT runs internally. They are just exported for your use. RTI
does not support any changes to the tests. The tests are built with RTIT’s internal unit testing
framework, ‘UTEST’. Everything needed to run the tests is shipped along with the rest of Connext
DDS Micro. The directory layout is as follows:

5.8. Port Validation 170

../../api_c/html/group__OSAPI__ThreadClass.html
../../api_c/html/group__OSAPI__ThreadClass.html
../../api_c/html/group__OSAPI__ThreadClass.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

RTIMEHOME/----+---- CMakeLists.txt
|
+--—- include
|
+---- src
|
+---- resource
|
+---- 1lib
|
+---- build
|
+-—-—— test --+-- test --+-- setting --- <UTEST-SRC>

|
+-- osapi --+-- common -- <OSAPI-TEST-SRC>
I |

| +-— test -—--- <0SAPITester>

l-- netio --+-- autosar ---- <NETIO-TEST-SRC>
: l—— common ———-- <NETIO-TEST-SRC>
: l—— test —————- <NETIOTester>

: l—— udp -——————- <NETIO-TEST-SRC>
l—— include --—- test ---- <UTEST-HDR>

The test folder includes four sub-folders. The ‘test’ and ‘include’ folders contain the UTEST
framework that is required to run the unit tests. ‘osapi’ and ‘netio’ both contain common folders
(containing the test source), as well as test folders (containing the test files).

5.8.3 Building the Port Validation Tests

By default, the port validation tests are not built. We recommend that you review Building the
Connext DDS Micro Source, since the same rules and considerations apply when building the port
validation tests.

If you will be using the ctest (CMake test driver program) set the domain ID used to run the tests
using this environment variable in your terminal:

On Linux and macOS systems:

export RTIME_TEST_CONFIG_ID="<your domain ID #>"

On Windows systems:

set RTIME_TEST_CONFIG_ID="<your domain ID #>"

5.8. Port Validation 171

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Building with rtime-make

)

Use the option --test when running ‘rtime-make’.

On Linux and macOS systems:

<RTIMEHOME>/resource/scripts/rtime-make --config Debug --target self \
--name i86Linux2.6gcc4.4.5 -G "Unix Makefiles" --build --test

On Windows systems:

<RTIMEHOME>\resource\scripts\rtime-make.bat --config Debug --target self \
—--name i86Win32VS2010 -G "Visual Studio 10 2010" --build --test

Explanation of arguments:
e —-test : Build the port validation tests.
e ——config Debug : Create a Debug build.

e —-target <target>: The target for the source files to be built. See Building Connext DDS
Micro with rtime-make for information on specifying the target architecture. “self” indicates
that the host machine is also the target and Connext DDS Micro will be built with the options
that CMake automatically determines for the local compiler.

e --name <name> : The name of the build. Use a descriptive name following the recommen-
dations on naming in section Preparing for a Build. If -—name is not specified, the value for
--target will be used as the name.

e —-build: Build the generated project files.

Manually building with CMake

The process for building the port validation tests manually with CMake is the same as building
the Connext DDS Micro libraries manually with CMake. Follow the instructions in Manually
Building with CMake. To build the port validation tests, you just need to ensure that the flag
RTI_BUILD_UNITTESTS is set to true, so use -DRTI_BUILD_UNITTESTS=true when invoking
CMake.

Custom Build Environments

The preferred method to build Connext DDS Micro is to use CMake. However, in some cases it
may be more convenient, or even necessary, to use a custom build environment. Please refer to
Custom Build Environments to learn how to import Connext DDS Micro code.

Additionally, in order to build the port validation tests the following steps are needed:
o Add compile-time definition ‘ autosar ’ (Only for AUTOSAR Systems).
o Add compile-time definition ‘___ freertos__’ (Only for FreeRTOS Systems).
o Add the following include paths:

5.8. Port Validation 172

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

— <RTIMEHOME> /test/include

— <RTIMEHOME> /test /netio/autosar (Only for AUTOSAR Systems).

— <RTIMEHOME> /test/netio/common

— <RTIMEHOME> /test/netio/test

— <RTIMEHOME > /test /netio/udp

— <RTIMEHOME> /test/osapi/common

— <RTIMEHOME> /test/osapi/test
o Import all source files from the folder <RTIMEHOME > /test /test
o To build the NETIO test, import all source files from the folder <RTIMEHOME> /test /netio
o To build the OSPIA test, import all source files from the folder <RTIMEHOME> /test /osapi

As explained above, you need to build and run two images, one with NETIO tests and another one
with OSAPI tests.

5.8.4 Running the Tests
Setting Up a Config File

Since both OSAPI and NETIO run system tests, a config file is required. A template file for the
unit-test configuration can be found in:

<RTIMEHOME>/resource/test/test.cfg

The template looks like this:

property

{
netio.udp.allow_interface_multicast=1;

}

property user = "test"

{
netio.udp.allow_interface="1lo";
netio.udp.allow_interface_address=0x7F000001;
netio.udp.allow_interface_netmask=0xffffff00;
netio.udp.multicast_if="1lo";
osapi.system.my_hostname="my_hostname";

}

Update the fields to reflect:
e Interface name, interface address and interface netmask

e Multicast

5.8. Port Validation 173

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Running the tests using a configuration file

For systems with CMake, after compiling the tests you can simply run this command:

“ctest”

For extended output, run:

“ctest -V°

You need to run this command from the CMake build directory, that would be <RTIME-
HOME> /build /cmake/Debug|Release /<arch>.

Otherwise you can run the executables directly with the following commands:

./test/bin/<arch>/osapiTester(d) -id <domain id> -config "./resource/test/test.cfg" -
—user test

./test/bin/<arch>/netioTester(d) -id <domain id> -config "./resource/test/test.cfg" -
—user test

Note: The environment variable RTIME_TEST CONFIG_ID is only used when running the
tests with ‘ctest’. When running the test executables directly, use the parameter —-id to indicate
the domain ID.

Running the tests on platforms without a file system

On platforms without a file system, it is not possible to use a configuration file to run the port
validation tests. In this case, the configuration can be passed as parameters to the test application,
like this:

./test/bin/<arch>/osapiTester -id <domain id>

-property osapi.system.my_hostname=<hostname>

-property netio.udp.allow_interface=<Interface name>

-property netio.udp.allow_interface_address=<Interface IP address>
-property netio.udp.allow_interface_netmask=<Interface mask>
-property netio.udp.allow_interface_multicast=<1\|0>

-property netio.udp.multicast_if=<Multicast Interface name>

./test/bin/<arch>/netioTester -id <domain id>

-property osapi.system.my_hostname=<hostname>

-property netio.udp.allow_interface=<Interface name>

—-property netio.udp.allow_interface_address=<Interface IP address>
-property netio.udp.allow_interface_netmask=<Interface mask>
-property netio.udp.allow_interface_multicast=<1\|0>

-property netio.udp.multicast_if=<Multicast Interface name>

5.8. Port Validation 174

https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Test Results

After running ‘ctest -V’, the output should be as follows:

test 1
Start 1: osapi

1: Test command: /Users/garrett/workspace/RTI/connextmicro/rti/build/release/
—»connextmicro/2.4.14/source/unix/build/cmake/unix/lib/osapiTesterzd "-id" "67" "-config
<" "./resource/test/test.cfg"

1: Test timeout computed to be: 9.99988e+06

1: hostname is Foothill.local

1: property netio.udp.allow_interface_multicast already exists

1: time/interface it Passed
1: time/performanceiitiiiiiiaiieae.....: Passed
1: system/hostnameiiiiiiiaiaeaea......: Passed
1: system/luat i i, Passed
1: mutex/basic Passed
1: mutex/lua Passed
1: semaphore/basic Passed
1: semaphore/threadiuiiueueuaeeneeao.....: Passed
1: semaphore/timeoutciiiiiiiaeea......: Passed
1: semaphore/timeout_mt ...: Passed
1: semaphore/luaiiitiiiiiiiiiiia......: Passed
1: thread/basict Passed
1: thread/advancedt iuiieuuaeeane.....: Passed
1: thread/priorityiitiitiueueaeaeaea.....: Passed
1: thread/luaitiiuiin it ... Passed
1: timer/1s Passed
1: timer/3s Passed
1: timer/MICRO-221t iitiiiiiaieuaaeennae.....: Passed
1: timer/MICRO-240ttt ... Passed
1: timer/MICRO-839ttt Passed
1: timer/MICRO-1617ttt ...t Passed
1: timer/SecC_NSeCeuuiiuuuiiieeeeaaaaaaaaaaeee....: Passed
1: timer/lua e e ... Passed
1: process/pid_as_string: Passed
1: process/getpid Passed
1: osapi:TESTS COMPLETED

1/2 Test #1: 0SAPT « v oot Passed 73.49 sec

test 2

Start 2: netio

2: Test command: /Users/garrett/workspace/RTI/connextmicro/rti/build/release/
—connextmicro/2.4.14/rti_me.2.0/source/unix/build/cmake/unix/lib/netioTesterzd "-id"
—~"67" "-config" "./resource/test/unittest.cfg"

2: Test timeout computed to be: 9.99988e+06

2: hostname is Foothill.local

2: property netio.udp.allow_interface_multicast already exists

2: address/parseri.iiiiiiiiiiiiiea.. ... Passed
2: address/resolveriiiiiitiiaa....: Passed
2: address/ifname ittt Passed
2: route/preconditionttt: Passed

(continues on next page)

5.8. Port Validation 175

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

2/2 Test #2: Netio .. Passed 80.75 sec

100% tests passed, O tests failed out of 2

2: route/lua: Passed
2: route/precondition: Passed
2: route/route Passed
2: route/default _mc_routeiiiiiiiiieeea.....: Passed
2: route/lua Passed
2: udp/route Passed
2: udp/iftable i,: Passed
2: udp/unicastl e Passed
2: udp/multicast i, ... Passed
2: udp/multicast_reservec.iiiiiiiiieiaaee......: Passed
2: udp/mat Passed
2: udp/max_message_size: Passed
2: udp/strrchr Passed
2: udp/lua ... i,: Passed
2: packet/set_head_tail ...: Passed
2: netio:TESTS COMPLETED

When a test fails, the output will be as follows:

1: system/hostnameuiiinan.... ...t Failed (FAILURE:

—SystemTester.c:523 osapi.system.my_hostname not set)

2: udp/iftablet Failed (FAILURE:

—UDPInterfaceTester.c:2397 netio.udp.allow_interface property not found)

If a test fails, the test execution stops and any following tests will not run. In the above example,
you can see that the tests OSAPI ‘system/hostname’ and NETIO ‘udp/iftable’ failed.

Troubleshooting

If the tests fail on hostname and iftable such as:

1: system/hostname :
< (FAILURE: SystemTester.c:523 osapi.system.my_hostname not set)

20 udp/iftable

Failedu

— (FAILURE: UDPInterfaceTester.c:2397 netio.udp.allow_interface property not found)

then you have incorrectly declared your domain ID. Refer to Setting Up a Config File for more

information.

5.8. Port Validation

176

RTI Connext DDS Micro Documentation, Version 2.4.14.0

5.8.5 Embedded Platforms

When developing for an embedded platform, you will commonly need to create an image with all
the software: OS, BSP, middleware, user application, etc. In this situation, you must create static
libraries only, instead of executables.

Two static libraries are generated, one with the OSAPI tests and another with the NETIO tests.
These are osapiTesterz(d) and netioTesterz(d) (the d suffix indicates whether it is a debug library
if present or a release library if not present).

You need to build two images, one using the OSAPI test library and another using the NETIO test
library. We recommend building and running one release image using the release libraries and one
debug image using the debug libraries.

There is a third static library, rti_me_ testz(d), which contains the UTEST framework. This library
is needed to build both the OSAPI and NETIO tests.

For example, to build NETIO tests, use the following libraries:
o netioTesterz(d)
o rti_me_testz(d)

o librti mez(d)

AUTOSAR Systems

Before continuing, you should become familiar with the configuration needed to run Connext DDS
Micro on an AUTOSAR system. We recommend that you review Compiling the Connext DDS
Micro Source for AUTOSAR.

The file <RTIMEHOME > /test/include/test/test_autosar.h contains the string definitions with all
the properties that are used to run the port validation tests. That is, the following definition:

#define DEVICE_ETH IP_STR "0xc0000002"

can be used when the IP address configured on an AUTOSAR system is 192.0.0.2. In your build
system, you need to define the properties that do not match with your configuration. That is, you
need to define DEVICE_ETH_IP_STRin your build system to use a different IP address.

You need to add compile-time definition ‘°__ autosar "

The specific configuration needed to run the port validation tests on an AUTOSAR system includes
the following:

e The default timer task period used to run the AUTOSAR port validation tests is 10 ms. If your
timer task is configured with a different periodicity, define ‘TIMER,_ TASK_ PERIOD_MS’
with that periodicity value, in ms.

e The default IP address used by the AUTOSAR port validation tests is “0xc0000002”. If your
AUTOSAR configuration uses a different IP address, define ‘DEVICE_ETH_IP_STR’ with
the string representation of that IP address.

5.8. Port Validation 177

RTI Connext DDS Micro Documentation, Version 2.4.14.0

The default IP mask used by the AUTOSAR port validation tests is “Oxffffff00”. If your
AUTOSAR configuration uses a different IP mask, define ‘DEVICE_ETH_IP_STR’ with
the string representation of that IP mask.

The AUTOSAR port validation tests need at least 140 KB of RAM to run. AUTOSAR system
properties (OSAPI_SystemProperty) must be configured correctly with at least this amount
of memory in the heap. You need to define variables ‘const uint32 heap_ area_ size[NUM-
BER_OF_HEAP_AREAS];” and ’char* const heap area]NUMBER_OF_HEAP_AR-
EAS];. It is also possible to define NUMBER,__OF_HEAP__AREAS in your build system
(default value is 2).

The AUTOSAR port validation tests use 2 semaphores. 2 timeout events, 2 give events
and 2 alarms are needed. You need to define ‘RTIME_ Semaphore Give_Event’ with the
ID of the first semaphore give event, ‘RTIME_Semaphore Timeout_Event’ with the ID of
the first semaphore timeout event, and ‘RTIME__Semaphore_ Alarm’ with the ID of the first
semaphore alarm.

The AUTOSAR port validation tests can be configured to either use resources (for single
core) or spinlock (for multicore) synchronization. The default is to use resources. You need
to define ‘RTIME__SYNC_ TYPE’ with a different value in your build system.

If using resources synchronization: the AUTOSAR port validation tests use 26 AUTOSAR
resources. You need to define ‘RTIME Resource0l’ with the ID of the first resource and
‘RTIME Resource26’ with the ID of the last resource.

If using spinlock synchronization: you need to define ‘RTIME_ Spinlock’ with the spinlock
ID.

3 UDP sockets are created. The AUTOSAR configuration must allow that.

The AUTOSAR port validation tests use SocketOwner ID 1 to create sockets. If
your AUTOSAR configuration uses a different SocketOwner, you need to define
‘RTIME_SOCK_ OWNER ID’ with the ID of the SocketOwner that can be used to cre-
ate sockets.

The AUTOSAR port validation tests use ID 0 as the IP address identifier representing the
local TP address and EthIf controller to bind the socket to. If your AUTOSAR configuration
uses a different ID, you need to define ‘RTIME_LOCAL__ADDR,_ ID’ with the correct value.

The ‘UDP receive task’ and ‘UDP receive event’ are mandatory. Some tests use them while
some others don’t. You need to define their IDs using the macros ‘NETIO_ Autosar_udp_ re-
ceive task’ and ‘RTIME UDP Receive Event’

The AUTOSAR port does not provide and does not need a ‘OSAPI__Thread_sleep()’ func-
tion. But the AUTOSAR port validation tests do need that functionality. The implemen-

tation is based on an alarm and an event. OSAPI Thread sleep() sets an alarm with ID
‘RTIME_ Sleep_ Alarm’ and waits until the event with ID ‘RTIME_ Sleep_ Event’ is set.

An alarm must be configured to set an event when it expires. It is important that the alarm
is triggered by a counter based on a 1 ms tick and when the alarm expires. You need to
define in your build system the alarm ID and the event ID using ‘RTIME_ Sleep_ Alarm’ and
‘RTIME_ Sleep_ Event’.

5.8.

Port Validation 178

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e A task with the name ‘Micro_ UnitTests_Task’ must be configured in the AUTOSAR con-
figuration. This is the task that runs the port validation tests. The task shall have at least
32 KB stack. The implementation of this task is provided by the AUTOSAR port validation
tests.

o Test results will be printed to the standard output used by ‘printf()’

FreeRTOS Systems

Before continuing, you should become familiar with the configuration needed to run Connext DDS
Micro on a FreeRTOS system. We recommend that you review Building the Connext DDS Micro
Source for FreeRTOS.

The file <RTIMEHOME> /test /include/test/test__freertos.h contains the string definitions with all
the properties that are used to run the port validation tests. That is, the following definition:

#define DEVICE_ETH IP_STR "0xc0000002"

can be used when the IP address configured on a FreeRTOS system is 192.0.0.2. In your build
system, you need to define the properties that do not match with your configuration. That is, you
need to define DEVICE_ETH_IP_STRin your build system to use a different IP address.

Some NETIO tests send UDP packet to the local IP address. For that reason it is necessary to set
the following IwIP flag:

#define LWIP_NETIF_LOOPBACK 1

)

You need to add compile-time definition ‘_ freertos__ .

We recommend that you create a separate thread and call the UTEST main function
(UTEST main()) for platforms without dynamic linking. This thread should have at least 32
KB of stack.

An example implementation of that thread is:

void UTEST_freertos_main(void *param)

{
/* Avoid compiler warning */
(void)param;

/* Wait until network is available */
#ifdef USE_DHCP
while (DHCP_state != DHCP_ADDRESS_ASSIGNED)

{
OSAPI_Thread_sleep(1000);
+
#else
vTaskDelay (5000 / portTICK_RATE_MS);
#endif

(void)UTEST_main();

(continues on next page)

5.8. Port Validation 179

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

vTaskDelete (NULL) ;

5.8.6 Porting UTEST

If you wrote a new Connext DDS Micro port, you will also need to port the porting validation
module. Most of the changes needed are only in the file <RTIMEHOME> /include/test /test__set-
ting.h.

1. Check for a compiler flag that identifies your platform. For example, Linux would be
linux . If your compiler does not provide such a flag, you can add a flag to your
build system, i.e. my__platform.

2. As explained in Running the tests on platforms without a file system, you can pass the test
configuration through a file or through a string. Write a new section in the file <RTIME-
HOME> /include/test/test setting.h where you configure this. After this comment at the
beginning of the file:

/* If the platform has not been specified, attempt to determine it. */

Write a section like the following:

#if __my_platform__

#ifndef MYCOMPANY_MYPLATFORM
#define MYCOMPANY_MYPLATFORM
#endif /* MYCOMPANY_MYPLATFORM */
#include "test_myplatform.h"
#define HAVE_CONFIG_FILE O
#define HAVE_ARG_STRING 1
#ifdef HAVE_TEST RESULTS_FILE
#undef HAVE_TEST RESULTS_FILE
#endi f

#define HAVE_TEST RESULTS_FILE 0
#endif /* __my_platform__ */

The file “test_ myplatform.h” is optional. You can create it to add any definitions that are
useful for your tests.

If your platform does not have a file system, the value of HAVE CONFIG _FILE shall
be 0 and the value of HAVE ARG STRING shall be 1. You also need to undef
HAVE _TEST RESULTS FILE. If your platform has a file system, you might need to change
the logic, but that is optional.

3. In the file <RTIMEHOME> /include/test/test_setting.h, define the maximum length of the
system name, so the new platform is recognized by UTEST. For example:

#elif defined(RTI_AUTOSAR)
#define UTEST SYSTEM_NAME_MAX_LENGTH 255

(continues on next page)

5.8. Port Validation 180

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

#elif defined (MYCOMPANY_MYPLATFORM)

#define UTEST_SYSTEM_NAME_MAX_LENGTH 255

#else

#error "Unknown platform. Please port UT_System.c to this platform."
#endi f

The third and fourth lines are new. You can also include any platform header file in this new
code.

4. If you have defined HAVE_ARG_STRINGas 1, you need to provide the string that will be used
as an argument. Create the file <RTIMEHOME> /include/test/test_ myplatform.h with the
following content:

#define UTEST_ARG_STRING(argv0_) \
"-property netio.udp.allow_interface_multicast=1 " \
"-property netio.udp.allow_interface=ethO " \
"-property netio.udp.allow_interface_address=" DEVICE_ETH_IP_STR " " \
"-property netio.udp.allow_interface_netmask=" DEVICE_MASK_STR " " \
"-property netio.udp.multicast_if=ethO " \
"-property osapi.system.my_hostname=Myplatform-host " \
"-id 80 "

Depending on your platform, the property values might be different. For instance, if your plat-
form doesn’t have multicast you will need to set netio.udp.allow_interface_multicast=0.

5. If your new platform supports dynamic linking, executable binaries with OSAPI and NETIO
tests are generated when you build the port validation tests.

6. If your new platform does not support dynamic linking, only static libraries with OSAPI and
NETIO tests are generated when you build the port validation tests. These libraries provide
a UTEST main() function. We recommend that you create a separate thread and call that
UTEST__main() function from that thread. This thread should have at least 32 KB of stack.

5.9 Building Connext DDS Micro with compatibility for Connext DDS
Micro Cert

It is possible to compile Connext DDS Micro to support only the same set of APIs and features
as Connext DDS Micro Cert. This is useful to enable the development of a safety-certified project
using Connext DDS Micro before the certification of Connext DDS Micro Cert is completed. Once
Connext DDS Micro Cert certification is finished, it will be easier to switch from Connext DDS
Micro to Connext DDS Micro Cert if Connext DDS Micro has been compiled with compatibility
for Connext DDS Micro Cert.

When compiling Connext DDS Micro with compatibility for Connext DDS Micro Cert, the following
restrictions apply:

e The C++ API is not supported.

5.9. Building Connext DDS Micro with compatibility for Connext DDS Micro Cert 181

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Dynamic Participant Dynamic Endpoint (DPDE) discovery is not compiled by default. To
make application development easier, DPDE can be enabled (any application using this dis-
covery cannot be certified). DPDE discovery is not certified.

Memory deallocation is not possible.

Any API that deallocates memory is mnot supported. In other words,
any API whose name includes “finalize”, “free”, or “delete” is mnot sup-
ported (such as DDS_DomainParticipantFactory_delete_participant(),

DDS_DomainParticipantQos_finalize(), O0SAPI_Heap_free()).

Only POSIX®-compliant systems (Linux, macOS, QNX, etc.), VxWorks and AUTOSAR are
supported (Windows systems are not supported).

Only static libraries are compiled. Dynamic libraries are not supported.

Only one static library is built. While Connext DDS Micro consists of different libraries
for discovery, reader and writer history, etc, Connext DDS Micro Cert consists of only one
library.

Code generated by the Connext DDS Micro code generator is compatible with Connext DDS
Micro Cert, but the code must be generated again with the Connext DDS Micro Cert code
generator.

The Log module is only available in the debug build.

The UDP transport shall be configured statically by using the API
UDP_InterfaceTable_add_entry() and setting ~ UDP_InterfaceFactoryProperty.
disable_auto_interface_config equal to RTI_TRUE.

0SAPI_Thread_sleep() is not available.
Batching reception is not supported.

UDP Transformations are not supported.

To compile Connext DDS Micro with compatibility with Connext DDS Micro Cert, you only need to
set the CMake flag RTIME__CERT when compiling. For example, the following command compiles
Connext DDS Micro on a Linux system with Connext DDS Micro Cert compatibility:

resource/scripts/rtime-make --target Linux --name x64Linux4gcc9.3.0
--build --config Debug -DRTIME_CERT=1

The CMake flag RTIME_CERT instructs the build system to build Connext DDS Micro with
Connext DDS Micro Cert compatibility. In the previous example, a 64-bit debug library is generated
in the directory 1ib/x64Linux4gcc9.3.0.

Instead of using the flag -DRTIME_CERT=1, it is also possible to add the suffix “_ cert” to the
build name, and the build system will automatically set the RTIME__CERT flag. For example:

resource/scripts/rtime-make --target Linux --name
x64Linux4gcc9.3.0_cert --build --config Release

The previous command compiles a 64-bit release library in the directory 1ib/x64Linux4gcc9.3.
O_cert.

5.9.

Building Connext DDS Micro with compatibility for Connext DDS Micro Cert 182

../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPDEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

As mentioned earlier, it is possible to enable DPDE (Dynamic Participant Dynamic Endpoint)
discovery, but this discovery is not certified so any application using it cannot be certified. To enable
DPDE discovery when building Connext DDS Micro with Connext DDS Micro Cert compatibility,
simply add the following flag when compiling: -DRTIME__ EXCLUDE__ DPDE=0.

5.9. Building Connext DDS Micro with compatibility for Connext DDS Micro Cert 183

../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPDEModule.html

Chapter 6

Working with RTI Connext DDS
Micro and RTI Connext DDS

In some cases, it may be necessary to write an application that is compiled against both RTI
Connext DDS Micro, RTI Connext DDS Micro Cert, and RTI Connext DDS. In general this is not
easy to do because RTI Connext DDS Micro and RTI Connext DDS Micro Cert supports a very
limited set of features compared to RTI Connext DDS. However, while RTI Connext DDS Micro
Cert is subset of RTT Connext DDS Micro, it is relatively easy to write applications that support
both.

Due to the nature of the DDS APT and the philosophy of declaring behavior through QoS profiles
instead of using different APIs, it may be possible to share common code. In particular, RTI
Connext DDS supports configuration through QoS profile files, which eases the job of writing
portable code.

Please refer to Introduction for an overview of features and what is supported by RTI Connext
DDS Micro. Note that RTI Connext DDS supports many extended APIs that are not covered by
the DDS specification, for example APIs that create DDS entities based on QoS profiles.

6.1 Development Environment

There are no conflicts between RTI Connext DDS Micro and RTI Connext DDS with respect to
library names, header files, etc. It is advisable to keep the two installations separate, which is the
normal case.

RTI Connext DDS Micro uses the environment variable RTIMEHOME to locate the root of the
RTI Connext DDS Micro installation.

RTI Connext DDS uses the environment variable NDDSHOME to locate the root of the RTT
Connext DDS installation.

184

RTI Connext DDS Micro Documentation, Version 2.4.14.0

6.2 Non-standard APls

The DDS specification omits many APIs and policies necessary to configure a DDS application,
such as transport, discovery, memory, logging, etc. In general, RTI Connext DDS Micro and RTI
Connext DDS do not share APIs for these functions.

It is recommended to configure RTI Connext DDS using QoS profiles as much as possible.

6.3 QoS Policies

QoS policies defined by the DDS standard behave the same between RTI Connext DDS Micro and
RTI Connext DDS. However, note that RTI Connext DDS Micro does not always support all the
values for a policy and in particular unlimited resources are not supported.

Unsupported QoS policies are the most likely reason for not being able to switch between RTIT
Connext DDS Micro and RTI Connext DDS.

6.4 Standard APIs

APIs that are defined by the standard behave the same between RTI Connext DDS Micro and RTI
Connext DDS.

6.5 IDL Files

RTI Connext DDS Micro and RTI Connext DDS use the same IDL compiler (rtiddsgen) and RTT
Connext DDS Micro typically ships with the latest version. However, RTI Connext DDS Micro
and RTI Connext DDS use different templates to generate code and it is not possible to share the
generated code. Thus, while the same IDL can be used, the generated output must be saved in
different locations.

@section microcore__interop Interoperability

In general, RTI Connext DDS Micro and RTI Connext DDS are wire interoperable, unless noted
otherwise.

All RTT products, aside from RTI Connext DDS Micro, are based on RTI Connext DDS. Thus, in
general RTI Connext DDS Micro is compatible with RTT tools and other products. The following
sections provide additional information for each product.

When trying to establish communication between an RTI Connext DDS Micro application that
uses the Dynamic Participant / Static Endpoint (DPSE) discovery module and an RTI product
based on RTI Connext DDS, every participant in the DDS system must be configured with a unique
participant name. While the static discovery functionality provided by RTI Connext DDS allows
participants on different hosts to share the same name, RTI Connext DDS Micro requires every
participant to have a different name to help keep the complexity of its implementation suitable for
smaller targets.

6.2. Non-standard APls 185

RTI Connext DDS Micro Documentation, Version 2.4.14.0

6.6 Admin Console

Admin Console can discover and display RTI Connext DDS Micro applications that use full dynamic
discovery (DPDE). When using static discovery (DPSE), it is required to use the Limited Bandwidth
Endpoint Discovery (LBED) that is available as a separate product for RTI Connext DDS. With
the library a configuration file with the discovery configuration must be provided (just as in the
case for products such as Routing Service, etc.). This is provided through the QoS XML file.

Data can be visualized from RTI Connext DDS Micro DataWriters. Keep in mind that RTI
Connext DDS Micro does not currently distribute type information and the type information has
to be provided through an XML file using the “Create Subscription” dialog. Unlike some other
products, this information cannot be provided through the QoS XML file. To provide the data
types to Admin Console, first run the code generator with the —convertToXml option:

rtiddsgen -convertToXml <file>

Then click on the “Load Data Types from XML file” hyperlink in the “Create Subscription” dialog
and add the generated IDL file.

Other Features Supported:
e Match analysis is supported.
e Discovery-based QoS are shown.

The following resource limits in RTI Connext DDS Micro must be incremented as follows when
using Admin Console:

o Add 24 to DDS_ DomainParticipantResourceLimitsQosPolicy::remote_reader_ allocation
e Add 24 to DDS_ DomainParticipantResourceLimitsQosPolicy::remote_ writer_ allocation
e Add 1 to DDS_DomainParticipantResourceLimitsQosPolic::remote_participant_ allocation

e Add 1 to DDS_ DomainParticipantResourceLimitsQosPolicy::remote_ participant_ allocation
if data-visualization is used

RTI Connext DDS Micro does not currently support any administration capabilities or services,
and does not match with the Admin Console DataReaders and DataWriters. However, if matching
DataReaders and DataWriters are created, e.g., by the application, the following resource must be
updated:

e Add 48 to DDS_ DomainParticipantResourceLimitsQosPolicy::match-
ing writer_reader_ pair_ allocation

6.6. Admin Console 186

RTI Connext DDS Micro Documentation, Version 2.4.14.0

6.7 Distributed Logger

This product is not supported by RTI Connext DDS Micro.

6.8 LabVIEW

The LabVIEW toolkit uses RTI Connext DDS, and it must be configured as any other RTI Con-
next DDS application. A possible option is to use the builtin RTI Connext DDS profile: Builtin-
QosLib::Generic.ConnextMicroCompatibility.

6.9 Monitor

This product is not supported by RTI Connext DDS Micro.

6.10 Recording Service

6.10.1 RTI Recorder

RTTI Recorder is compatible with RTI Connext DDS Micro in the following ways:

If static endpoint discovery is used, Recorder is compatible starting with version 5.1.0.3 and
onwards.

If dynamic endpoint discovery is used (not supported by Connext DDS Micro Cert), Recorder
is compatible with RTI Connext DDS Micro the same way it is with any other DDS applica-
tion.

In both cases, type information has to be provided via XML. Read Recording Data with RTT
Connext DDS Micro for more information.

6.10.2 RTI Replay

RTTI Replay is compatible with RTI Connext DDS Micro in the following ways:

If static endpoint discovery is used, Replay is compatible starting with version 5.1.0.3 and
onwards.

If dynamic endpoint discovery is used (not supported by Connext DDS Micro Cert), Replay is
compatible with RTI Connext DDS Micro the same way it is with any other DDS application.

In both cases, type information has to be provided via XML. Read Recording Data with RTT
Connext DDS Micro for more information on how to convert from IDL to XML.

6.7.

Distributed Logger 187

https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service"
https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service"
https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service"
https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service"

RTI Connext DDS Micro Documentation, Version 2.4.14.0

6.10.3 RTI Converter

Databases recorded with RTI Connext DDS Micro contains no type information in the DCPSPub-
lication table, but the type information can be provided via XML. Read Recording Data with RTT
Connext DDS Micro for more information on how to convert from IDL to XML.

6.11 Spreadsheet Addin

RTI Connext DDS Micro can be used with Spreadsheet Add-in starting with version 5.2.0. The
type information must be loaded from XML files.

6.12 Wireshark

Wireshark fully supports RTI Connext DDS Micro.

6.13 Persistence Service

RTI Connext DDS Micro only supports VOLATILE and TRANSIENT LOCAL durability and
does not support the use of Persistence Service.

6.11. Spreadsheet Addin 188

https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service"
https://community.rti.com/kb/recording-topics-rti-connext-dds-micro-applications-rti-recording-service"

Chapter 7

API Reference

RTI Connext DDS Micro features API support for C and C++. Select the appropriate language
below in order to access the corresponding API Reference HTML documentation.

e C API Reference
e C+-+ API Reference

189

../../api_c/html/index.html
../../api_cpp/html/index.html

Chapter 8

Release Notes

8.1 Supported Platforms and Programming Languages

Connext DDS Micro supports the C and traditional C++ language bindings.

Note that RTT only tests on a subset of the possible combinations of OSs and CPUs. Please refer
to the following table for a list of specific platforms and the specific configurations that are tested
by RTL.

190

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Table 8.1: Tested Platforms
(ON) CPU Com- RTI Architecture Abbreviation
piler
Elektrobit™ AUTOSAR™ | Infi- Task- tc29xtOsekCoreTasking6.2r2
4.0.3 neon™ | ing
AU- 6.2r2
RIXTM
Tri-
Core™
TC297
Mentor™ AUTOSAR 4.2.2 Infi- Task- tc29xtVSTA RTasking6.2r2
neon ing
AU- 6.2r2
RIX
Tri-
Core
TC297
Red Hat® Enterprise Linux® | x86 gce i86Linux2.6gcc4.4.5
6.0, 6.1 (Kernel version 2.6) 4.4.5
Ubuntu® 18.04 (Kernel version | x64 gee x64Linux4gcc7.3.0
4) 7.3.0
Ubuntu 16.04 (Kernel version 3) | x86 gee i86Linux3gcch.4.0
5.4.0
PPC Linux (Kernel version 3) ppced00mgcc ppce500mceLinux3gecd. 7.2
4.7.2
macOS® 10.16 x64 clang x64Darwinl6clang8.0
8.0
QNX® 7.0 armv8 | qcc armv8QNX7.0.0qcc_ gppH.4.0
5.4.0
QNX 6.6 armv7a | qcc armv7aQNX6.6.0qcc__cpp4.7.3
4.7.3
QNX 6.6 i86 qce i86QNX6.6qcc_ cpp4.7.3
4.7.3
Windows® 7 x86 Visual | i86Win32VS2010
Stu-
dio®
2010
Windows® 7 x64 Visual | x64Win64VS2015
Stu-
dio®
2015
VxWorks 6.9 ppc604 | gece ppc604Vx6.9gccd.3.3 and
4.3.3 ppc604Vx6.9gccd.3.3_rtp
8.1. Supported Platforms and Programming Languages 191

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.2 What'’s New in 2.4.14

8.2.1 Important Interoperability Changes
DataWriter’s Default Reliability Changed to Reliable

The default reliability for a DataWriter has been changed from best-effort to reliable.

This solves interoperability problems when the remote DomainParticipant does not send the QoS
value if configured with its default value. However, this may cause interoperability problems with
previous releases if the former default reliability QoS is used.

8.2.2 Port Validation for Connext DDS Micro

After porting Connext DDS Micro, it is important to confirm that your code works as expected.
For this purpose, Connext DDS Micro comes with a suite of tests that you can compile and run to
validate your port.

8.2.3 New Documentation on Compiling Connext DDS Micro for Connext DDS Micro
Cert Compatibility

This release includes a new chapter on how to compile Connext DDS Micro with for compatibility
with Connext DDS Micro Cert. See Building Connext DDS Micro with compatibility for Connext
DDS Micro Cert.

8.2.4 ThreadX CMake Files and New Documentation on Building Connext DDS Micro
for ThreadX + NetX

Connext DDS Micro libraries can now be compiled using rtime-make and CMake for ThreadX +
NetX. There is a new section in the documentation on building for the ThreadX operating system
and NetX network stack, including example configurations. See Building the Connext DDS Micro
Source for ThreadX.

8.2.5 Updated Example CMakelLists.txt to Automatically Regenerate Code when IDL
or XML File Changes

The CMakeLists.txt generated by the Code Generator now has a rule that will regenerate
type-support files if the IDL or XML file with the type definition changes. The rule is conditional:
it is only added if the option RTIME_IDL_ADD REGENERATE_TYPESUPPORT_RULE is
set to TRUE when invoking CMake.

8.2. What's New in 2.4.14 192

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.2.6 Message Logged when Samples Received Out of Order
This release logs an additional message when a sample is received out of order and reliability is

enabled. This will occur if a reliable sample with a data submessage is received with a sequence
number higher than the lowest, next expected sequence number.

8.2.7 Message Logged when Sequence Numbers Received More than Once

This release logs an additional message if a sample is received more than once when reliability is
enabled. This means that a sample with the same sequence number has already been received.

8.2.8 Ability to Send Logs over UDP

This release includes support for sending logs over UDP. The destination IP address and UDP port
can be configured in the AUTOSAR port properties.

8.2.9 rtime-make Provides Help for a Specific Target

The help output from the script rtime-make has been improved to show that is possible to get help
for a specific target.

Use the command “rtime-make —target <target> —help” to print help for the target.

8.2.10 FreeRTOS CMake Files

The Connext DDS Micro libraries can now be compiled using rtime-make and CMake for FreeRTOS.

8.2.11 Improved Documentation on Building Connext DDS Micro for AUTOSAR Sys-
tems

The documentation on building Connext DDS Micro for AUTOSAR systems has been improved
with information about the number of resources needed. See Resources.

8.2.12 Examples Used Undocumented APlIs

The provided examples, and those created by the Code Generator, were using Foo_ create() and
Foo__delete() to create and delete samples. Those APIs are not documented and should not be
used. The examples have been changed to use FooTypeSupport_ create_data() and FooTypeSup-
port_ delete_ data() instead.

8.2. What's New in 2.4.14 193

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.2.13 New CMake Option to Enable Real-Time Timers on QNX and Linux Systems

Connext DDS Micro has supported POSIX.4 real-time timers as a way to run the its internal
timers. However, this feature has only been available by updating the osapi_os_ posix.h header
file and has been disabled by default because it relies on POSIX signals that may interfere with an
application, such as if an application uses fork() and one of the exec system calls without setting
the signal mask.

Connext DDS Micro uses the signal SIGRTMIN by default. To change this, it is necessary to
modify the constant OSAPISYSTEM_POSIX4 TIMER_ SIGNAL at the beginning of src/os-
api/posix/posixSystem.c. Please note that the number of signals available varies between systems.

To enable this feature on a QNX or Linux system, pass the following additional option to cmake
or rtime-make:

8.2.14 New -showTemplates and -exampleTemplate options for Code Generator
This release introduces two new Code Generator command-line options, -showTemplates and
-exampleTemplates.

The -showTemplates option prints and generates an XML file containing a list of available example
templates in your Connext DDS installation, organized per language.

When you use the -exampleTemplate option, you can specify one of these example templates, which
are in SRTIMEHOME /rtiddsgen/resource/templates/example/<language>/<templateName> /.
You may also create your own templates and place them in this directory.

To use -exampleTemplates, you must also use one of the following command-line options:
e -create examplefiles
e -update examplefiles
e -example

When you use the -exampleTemplates option, Code Generator will generate the example you spec-
ified, instead of the default one. For example:

rtiddsgen -language C++ -example -exampleTemplate <exampleTemplateName> foo.idl

8.3 What'’s Fixed in 2.4.14

8.3.1 Small Enums Caused Serialization Errors

In previous releases, enum types that were represented internally as 1 or 2 byte values caused
serialization and deserialization errors. This problem has been resolved by adding support for
enum types with 1 or 2 byte internal memory representations. The wire representation for enums
is unchanged at 4 bytes.

[RTT Issue ID MICRO-2249]

8.3. What's Fixed in 2.4.14 194

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.3.2 -Wcast-function-type and -Wdeprecated Compiler Warnings

This release fixes two different compiler warnings:

o When compiling Connext DDS Micro with GCC8 (or later versions) and
-Wcast-function-type, the compiler printed warnings such as:

cast between incompatible function types

e When compiling Connext DDS Micro with a C++11 compiler and -Wdeprecated, the com-
piler printed warnings such as:

warning: definition of implicit copy constructor

Both of these issues have been fixed. Note that neither issue caused incorrect behavior.

[RTT Issue ID MICRO-2488]

8.3.3 Documentation did not list all Entities that Support Transport QosPolicy
The previous documentation did not list all the entities that support the DDS_ TransportQosPolicy.
This problem has been fixed.

The DDS entities that support the DDS_ TransportQosPolicy are the DomainParticipant,
DataWriter and DataReader.

[RTT Issue ID MICRO-2503]
8.3.4 Generated Examples Registered Wrong Type Name

The generated code for Connext DDS Micro may have registered the wrong type name if you used
the option -create examplefiles and IDL such as:

module My_Module {
struct My_Entity {
long id; //@key
};
};

This generated an example that registered a type with a name that was incompatible with the type
name used by other DDS tools that were configured with the same IDL file. This issue has been
fixed.

[RTT Issue ID MICRO-2605]

8.3. What's Fixed in 2.4.14 195

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.3.5 For C++4 Types Generated by rtiddsgen that have Inheritance, the ParentCclass
was also Declared in the Class as Another Member

Consider the following Foo.idl file, used to generate code with rtiddsgen:

struct Base

{
long x;

};

struct Foo: Base {
long y;
};

This generated the following Foo.h file:

class Base

{
long x;
};
class Foo: public Base
{
Base parent;
long y;
3

Note that the class Foo inherited from the class Base, and its first field was a ‘parent’ field of type
‘Base’. This should not happen, since it results in extra space being taken for each sample that will
not be used.

This problem has been fixed. The generated Foo class no longer has a ‘parent’ field of type ‘Base’.
[RTT Issue ID MICRO-2633]

8.3.6 DomainParticipant not Rediscovered if Terminated and Restarted Before its
Lease Duration Expired

A DomainParticipant was not rediscovered if it was terminated and restarted before its lease du-
ration expired. For example, if an application with a DomainParticipant was terminated with
Control-C and restarted before the DomainParticipant’s lease duration expired, the DomainPartic-
ipant would not be rediscovered. However, if the DomainParticipant was deleted with delete_ par-
ticipant() this problem would not occur. This issue has been resolved.

[RTT Issue ID MICRO-2672]

8.3. What's Fixed in 2.4.14 196

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.3.7 OSAPI_Log_clear did not Zero Out Log Buffer Memory

OSAPI_Log_clear() did not zero out the log buffer memory. This problem has been resolved. Now
it will set the buffer memory to zero when it resets the buffer head.

[RTT Issue ID MICRO-2678|

8.3.8 Error in Generated C/C++ Code when Two Members of Different Enumerations
had Same Name

The generated C/C++ code for an IDL file containing enumerations with members that had the
same name would not compile. For example, consider this IDL:

module a {

module b {
enum Foo {
GREEN, RED
3
s 4
}
module ¢ {
module d {
enum Bar {
GREEN, YELLOW
};
}
};

The above IDL produced the following code:

typedef enum c_d_Foo

{
GREEN ,
RED

} c_d_Foo;

typedef enum c_d_Bar

{
GREEN ,
YELLOW
} c_d_Bar;

And it produced an error similar to this when trying to compile it:

test.h:82: error: redeclaration of enumerator ‘GREEN’
test.h:25: error: previous definition of ‘GREEN’ was here

This release introduces a mnew command-line option in RTI Code Generator,
-qualifiedEnumerator, which allows you to generate fully qualified enumerator names.
This avoids having conflicting names in C/C++.

8.3. What's Fixed in 2.4.14 197

RTI Connext DDS Micro Documentation, Version 2.4.14.0

For example, given this IDL:

module myModule{
enum Color2 {
GREEN,
RED
};

union MyUnion switch (Color2){
case GREEN:
long mil;
case RED:
long m2;
s
I

The following table shows the code that will be generated without the new option and with it:

Table 8.2: Effect of using -qualifiedEnumerator

} myModule_Color2;

myModule_Color2 _d;
struct myModule_MyUnion_u

{
DDS_Long ml ;
DDS_Long m2 ;
}_u;

} myModule_MyUnion ;

typedef struct myModule_MyUnion {

Lan- without -qualifiedEnumerator (default) with -qualifiedEnumerator
guage
C
typedef enum myModule_Color2 typedef enum myModule_Color2
{ {
GREEN , myModule_Color2_GREEN ,
RED

myModule_Color2_RED
} myModule_Color2;

typedef struct myModule_MyUnion {
myModule_Color2 _d;
struct myModule_MyUnion_u
{
DDS_Long ml ;
DDS_Long m2 ;
}_u;

} myModule_MyUnion ;

continues on next page

8.3. What's Fixed in 2.4.14

198

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Table 8.2 — continued from previous page

{
GREEN ,
RED

} Color2;

typedef struct MyUnion {
typedef struct MyUnionSeq,

—Seq;
myModule: :Color2 _d;
struct MyUnion_u
{
DDS_Long ml ;
DDS_Long m2 ;
}_u;
} MyUnion ;
s

Lan- without -qualifiedEnumerator (default) with -qualifiedEnumerator
guage
Ct++
typedef enum myModule_Color2 typedef enum myModule_Color2
{ {
GREEN , myModule_Color2_GREEN ,
RED myModule_Color2_RED
} myModule_Color2; } myModule_Color2;
typedef struct myModule_MyUnion { typedef struct myModule_MyUnion {
typedef struct myModule_ typedef struct myModule_
—MyUnionSeq Seq; —MyUnionSeq Seq;
myModule_Color2 _d; myModule_Color2 _d;
struct myModule_MyUnion_u struct myModule_MyUnion_u
{ {
DDS_Long ml ; DDS_Long ml ;
DDS_Long m2 ; DDS_Long m2 ;
}u; }_u;
} myModule_MyUnion ; } myModule_MyUnion ;
C++
Names- namespace myModule { namespace myModule {
pace typedef enum Color2 typedef enum Color

{
Color_GREEN ,
Color_BLUE

} Color;

typedef struct MyUnion {
typedef struct MyUnionSeq,

—Seq;
myModule: :Color2 _d;
struct MyUnion_u
{
DDS_Long ml ;
DDS_Long m2 ;
}_u;
} MyUnion ;
Y

[RTT Issue ID MICRO-2718]

8.3. What's Fixed in 2.4.14

199

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.3.9 Incorrect Documentation Regarding Changeability of QoS
The previous release’s documentation incorrectly stated that some QoS are changeable, when they
are not. This has been fixed.

The DomainParticipantFactory. EntityFactoryQosPolicy is always changeable. The following are
changeable until the entity is enabled:

e DomainParticipant. EntityFactoryQosPolicy
e Publisher.EntityFactoryQosPolicy
e Subscriber.EntityFactoryQosPolicy

[RTT Issue ID MICRO-2749]

8.3.10 Unexpected Behavior when Copying a DDS__UnsignedShortSeq with 0 Length
When copying a DDS_ UnsignedShortSeq with 0 length, the destination sequence length was not

set to 0. This issue has been fixed.

[RTT Issue ID MICRO-2756]

8.3.11 Incorrect Range Documented for DDS__ResourceLimitsQosPolicy.max_samples
The range for DDS_ ResourceLimitsQosPolicy.max samples was incorrectly documented as
max_samples >= max_instances * max_samples_per_instance.

While that is correct for Connext DDS Micro Cert, the correct range for Connext DDS Micro is
max_samples >= max_instances.

The documentation has been corrected.

[RTT Issue ID MICRO-2757]

8.3.12 Wrong Compiler Option for AUTOSAR Elektrobit Platform caused ‘double’ to
Compile as 4 Bytes instead of 8

CMake files include an option to optimize doubles as floats when compiling for the AUTOSAR
classic Elektrobit platform. This caused the serialization and deserialization of type double to fail.

This optimization has been removed; now the size of type ‘double’ is 8 bytes when compiling for
the AUTOSAR classic Elektrobit platform.

[RTT Issue ID MICRO-2823]

8.3. What's Fixed in 2.4.14 200

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.3.13 Log Message with Random Characters Printed

In some cases, a log message was printed with random characters. For example:

$ Alignment32 id\:000000\,sig\:06\,src\:000000\,op\:flip1\,pos\:1

[1612981807.603703999]ERROR: ModuleID=5 Errcode=20021 X=1 E=1 T=1
hVF~ycV{/:0/:

This issue has been resolved.

[RTT Issue ID MICRO-2877]

8.3.14 Event Masks of Semaphores in AUTOSAR Port were Calculated Incorrectly
Event masks of semaphores in the AUTOSAR port were calculated incorrectly. This only affected
semaphore implementation and Waitsets. This issue has been resolved.

[RTT Issue ID MICRO-2953]

8.4 Previous Releases

8.4.1 What’s New in 2.4.12.1

Dynamic memory allocations removed from Dynamic Discovery Plugin

The dynamic discovery plugin in Connext DDS Micro allocated memory dynamically for discovered
topic and type names after the DomainParticipant was enabled. This release includes improvements
that make it possible to avoid all memory allocations.

Dynamic memory allocations are avoided by creating the DomainParticipant in a disabled state
and creating all local endpoints before the DomainParticipant is enabled. A DomainParticipant is
created in a disabled state by setting

DomainParticipantFactoryQos.entity_factory.autoenable_created__entities =

DDS_BOOLEAN_TRUE

before calling create_participant(). When all entities have been created, call enable() on the Do-
mainParticipantFactory to enable all entities.

8.4. Previous Releases 201

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Support for AUTOSAR Classic

This release includes support for Elektrobit AUTOSAR 4.0.3 and Mentor AUTOSAR 4.2.2 on
Infineon AURIX TriCore TC297. Please refer to Compiling the Connext DDS Micro Source for
AUTOSAR for details.

Support for detecting corrupted RTPS messages

This release includes support for detecting and discarding corrupted RTPS messages. A checksum
is computed over the DDS RTPS message including the RTPS Header. This checksum is sent as
a new RTPS submessage. The subscribing application detects this new submessage and validates
the contained checksum. When a corrupted RTPS message is detected, the message is dropped.

To enable the use of a checksum in a DomainParticipant, there are three new fields in the Wire-
ProtocolQosPolicy: compute_ crc, check_ crc, and require_ crc:

e To send the checksum, enable compute crc at the sending application.
e To drop corrupted messages, enable check _cre.
e To ignore a participant with compute_ crc set to false, enable require_ cre.

Please refer to Message Integrity Checking in the Connext DDS Micro User’s Manual for details.

Reduced default socket send/receive buffer size for QNX systems

Some QNX kernels have a maximum send and receive socket buffer size smaller than the default
value used by Connext DDS Micro. The default send and receive socket buffer size has been changed
to 64 Kbytes in Connext DDS Micro for QNX builds.

For AUTOSAR the IP address is now used to generate a unique DomainParticipant ID

In previous versions of Connext DDS Micro for AUTOSAR the timestamp was used to generate a
unique DomainParticipant ID. This release uses the IP address from the Autosar configuration by
default.

8.4.2 What's Fixed in 2.4.12.1

PUBLICATION_MATCHED_STATUS and SUBSCRIPTION_MATCHED_STATUS may
never have triggered a WaitSet if the status was enabled _after__ the DomainParticipant
was enabled

A StatusCondition with ~ PUBLICATION_MATCHED_STATUS or SUBSCRIP-
TION_MATCHED_STATUS enabled may never have triggered a WaitSet, if the status
was enabled after the DomainParticipant was enabled. This issue has been resolved.

[RTT Issue ID MICRO-2219]

8.4. Previous Releases 202

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Unicast DataReader stopped receiving samples after DataWriter matched with a multicast
DataReader

A DataReader with a unicast locator stopped receiving samples from a matched DataWriter when
another DataReader with a multicast locator matched with that DataWriter.

This problem has been resolved. Now all matched DataReaders will receive samples, regardless of
whether their locators are unicast or multicast.

[RTT Issue ID MICRO-2369]

A RTPS max_window_size not divisible by 32 may have resulted in retransmission of wrong
sequence number

An RTPS max_window_ size not divisible by 32 may have caused retransmission of a sequence
number not being requested. Note that the default value is divisible by 32. This issue has been
fixed.

[RTT Issue ID MICRO-2287]

POSIX mutex implementation did not conform with FACE Safety Profile

The POSIX mutex implementation did not conform with the FACE Safety Profile. This release
conforms to the FACE Safety profile for single-core CPU architectures.

[RTT Issue ID MICRO-2275]

Waitset with timeout of 0 did not return immediately
A Waitset with a 0 timeout did not return immediately, but was rounded up to one clock period.
This issue has been fixed.

[RTT Issue ID MICRO-2264]

8.4.3 What’s New in 2.4.12
Shared UDP port for discovery and user-data in a DomainParticipant
This release allows sharing a UDP port per DomainParticipant for discovery and user-traffic. The

advantage is that Connext DDS Micro will create a single receive thread for unicast instead of two.

The disadvantage is that this port mapping is not compliant with the DDS Interoperability Wire
Protocol and communication with other DDS implementations might not be possible.

This feature may only be used if multicast or unicast is used for both discovery and user traffic. If
both unicast and multicast are enabled this feature cannot be used.

To enable this feature assign the same value to both builtin and user port offsets in RtpsWell-
KnownPorts_ t.

8.4. Previous Releases 203

RTI Connext DDS Micro Documentation, Version 2.4.14.0

DomainParticipants no longer allocate dynamic memory during deletion

DomainParticipants will no longer allocate dynamic memory during deletion.

New QoS parameter to set maximum outstanding samples allowed for remote DataWriter

A new QoS parameter has been exposed for the endpoint discovery endpoints in the dy-
namic endpoint discovery plugin (DPDE). The new field, max_samples_per_remote__builtin__end-
point_writer in DPDE_ DiscoveryPluginProperty, can be set to increase the number of samples a
remote writer may have per builtin endpoint reader and thus decrease network traffic. Please refer
to the DPDE for a description of this new parameter.

New QoS parameter to adjust preemptive ACKNACK period
A new QoS parameter has been introduced to expose the preemptive ACKNACK period on
DataReaders. The new parameter is configured with:

e DDS DataReaderQos.protocol.rtps_reliable reader.nack_period for user data readers

e builtin__endpoint_reader_nack__period for the builtin discovery endpoints in the Dynamic
discovery plugin

Please refer to API Reference API for details.

Deserialization of Presentation QoS policy

This release provides better support for the Presentation QoS policy. Previously this QoS policy
was not supported by the DataWriter; the default value was assumed for a discovered DataReader,
which caused an “Unknown QoS” warning when it was received. In this release, DataWriters will
deserialize the Presentation QoS policy and check for compatibility.

8.4.4 What's Fixed in 2.4.12
Examples used DomainParticipant_register_type instead of FooTypeSupport_register_type

In previous versions the examples registered types using “DDS_DomainParticipant_ regis-
ter__type()” instead of the recommended “FooTypeSupport_register type()”. This version has

updated the examples to use the recommended “FooTypeSupport_ register_type()” instead.
[RTT Issue ID MICRO-1922]

8.4. Previous Releases 204

../../api_c/html/group__DPDEModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

A DataReader and DataWriter with incompatible liveliness kind and infinite lease_duration
matched

In previous versions Connext DDS Micro allowed a DataWriter to match a DataReader if the
liveliness kind was incompatible but the liveliness duration was infinite. However, the OMG DDS
specification mandates stricter matching rules and in this version a DataReader and DataWriter
will only match when both the liveliness duration and kind are compatible:

1. Requested Liveliness Lease duration is greater than or equal to the Offered lease duration.

2. Requested Liveliness kind is less than or equal to the Offered Liveliness kind where AUTO-
MATIC _LIVELINESS KIND < MANUAL_ BY_ PARTICIPANT_LIVELINESS KIND <
MANUAL_BY_ TOPIC_LIVELINESS KIND.

Note that this did not affect communication between Connext DDS Micro applications since with
an infinite liveliness duration, the liveliness will never expire, regardless of kind.

[RTT Issue ID MICRO-2007]

Warning at compilation time for FreeRTOS port

An incompatible pointer type warning was printed at compilation time when compiling for FreeR-
TOS. This issue has been resolved.

[RTT Issue ID MICRO-2090]

Using DDS_NOT_ALIVE_INSTANCE_STATE caused compilation error in C and C++

Using the constant DDS__NOT _ALIVE_INSTANCE_STATE caused a linker error due to a miss-
ing definition. This issue has been resolved.

[RTT Issue ID MICRO-2243]

Seq__copy() did not work when the source sequence is a loaned/discontiguous sequence

Calling FooSeq _copy() on a loaned or discontiguous sequence did not work correctly. This issue
has been fixed.

[RTT Issue ID MICRO-2053]

8.4. Previous Releases 205

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Warnings when compiling the example generated by Code Generator

When compiling the example generated by rtiddsgen, the compiler may have given warnings about
unused variables. The generated code has been updated to avoid these warnings.

[RTT Issue ID MICRO-1700]
Unable to generate code for XML or XSD defined types

Previous releases of Connext DDS Micro did not include the XML and XSD schemas required to
generate type-support code from XML or XSD files. This issue has been resolved.

[RTT Issue ID MICRO-1709]
Linker error in C4++ application when C types were used

Compiling generated C type-support code as C++ caused compilation errors. This issue has been
resolved.

[RTT Issue ID MICRO-1750]

Failure to link for VxWorks RTP using shared libraries compiled with CMake

Due to use of incorrect compiler and linker options for VxWorks RTP mode a linker error occurred
when compiling projects generated with CMake®. This issue has been resolved.

[RTT Issue ID MICRO-1909]

rtiddsgen may have failed on Windows systems when -jre was specified

The rtiddsen -jre option did not accept paths with spaces. This issue has been resolved.
[RTT Issue ID MICRO-1952]

rtime-make did not work when it was started from different shell than Bash

rtime-make requires Bash on Unix systems. However it did not explicitly launch Bash and would
fail if started from a Bash incompatible shell. This has been fixed.

[RTT Issue ID MICRO-2013]

8.4. Previous Releases 206

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Linker error when using shared libraries on VxWorks systems
There was a linker error when compiling the examples for ppc604Vx6.9gcc4.3.3 using shared li-
braries. The compiler reported that the libraries could not be found. This issue has been resolved.

[RTT Issue ID MICRO-1841]

A run-time error may have occurred on Windows or when compiling for FACE when using
hostnames in the peer list

Due to incorrect use of the getaddrinfo() API on Windows or POSIX when compiling for FACE, a
run-time error may have occured when resolving hostnames. This issue has been fixed.

[RTT Issue ID MICRO-1957]

Entity ID generation was not thread-safe

Entity ID generation for DataReaders and DataWriters was not thread-safe and may have lead to
duplicate entity IDs. This problem has been resolved.

[RTT Issue ID MICRO-2104]

DomainParticipant creation failed if active interface had invalid IP

An active interface without a valid IP address assigned may have caused DomainParticipant creation
to fail. This problem has been resolved. Now if an interface with an invalid IP address is used, it
will be ignored and the DomainParticipant will still be created.

[RTT Issue ID MICRO-1602]

rtime-make did not work when there was a space in the installation path
The rtime-make script did not work when Connext DDS Micro was installed in a directory path
containing spaces. This issues has been resolved.

[RTT Issue ID MICRO-1622]

Sample filtering methods were always added to the subscriber code for C

The generated subscriber example code always included code to filter sample-based fields in the
IDL type. However, if the generated IDL file was modified to exclude these fields, the code would
fail to compile. The generated code now includes instructions for how to filter instead.

[RTT Issue ID MICRO-1980]

8.4. Previous Releases 207

RTI Connext DDS Micro Documentation, Version 2.4.14.0

‘Failure to give mutex’ error

In Connext DDS Micro 2.4.11, a subtle race condition may have occurred on multi-core machines.
When this happened, an error message about failing to give a mutex would be printed: error code
(EC) 44 in module 1 (OSAPI). This problem has been resolved.

[RTT Issue ID MICRO-2095]

UDP interface warning using valid interfaces

Connext DDS Micro logged a warning if no new interfaces were added for each address listed
in enabled_ transports. This applied to the enabled_ transports field in the DiscoveryQosPolicy
and UserTrafficQosPolicy in the DomainParticipantQos, and the DDS_ TransportQosPolicy in the
DataReaderQos and DataWriterQos. This problem has been resolved. Now Connext DDS Micro
will only log a warning if no new interfaces are added per enabled transport.

[RTT Issue ID MICRO-2018]

A DataReader May Stop Receiving Samples When Filtering Callbacks Are Used

When using on__before__deserialize() or on__before__commit() to drop samples the DataReader may
have been depleted of resources and stop receiving data. This issue has been fixed.

[RTT Issue ID MICRO-1930]

DDS_ WaitSet_wait() returned DDS_RETCODE_ERROR if unblocked with no active condi-
tions

An application that used a combination of polling a DataReader and blocking on a DDS_ WaitSet
may have caused DDS_WaitSet_wait() to return DDS_RETCODE__ERROR. This happened if
the DDS_ WaitSet was unblocked by an attached condition, but there were no active conditions.
This problem has been resolved.

[RTT Issue ID MICRO-2115]

Large timeout values may have caused segmentation fault

Timeout values larger than 2000s may have caused a segmentation fault during creation of DDS
entities. This issue has been fixed.

[RTT Issue ID MICRO-2192]

8.4. Previous Releases 208

RTI Connext DDS Micro Documentation, Version 2.4.14.0

HelloWorld_dpde_waitset C++4 example uses wrong loop variable for printing data

When multiple samples are loaned by calling take, the HelloWorld_ dpde_ waitset C++ example
uses the wrong loop variable, 7, with data__seq instead of the correct index b. This issue has been
resolved.

[RTT Issue ID MICRO-2158]

WaitSet_wait returned generic error when returned condition sequence exceeded capacity

If the number of returned conditions exceeded the maximum size of the returned condition se-
quence, a generic error, DDS__RETCODE__ERROR, was returned instead of the expected error,
DDS_RETCODE_OUT_OF_RESOURCES. This problem has been resolved.

[RTT Issue ID MICRO-1933]

Publication handle not set in Samplelnfo structure when on_before_sample__commit() called
The publication__handle member of the DDS_Samplelnfo structure passed to a DataReader’s
on__before__sample__commit() function was not set. This issue has been fixed.

[RTI Tssue ID MICRO-2121]

Duplicate DATA messages are sent to multicast in some cases
Duplicate DATA messages were sent to multicast when multiple DataReaders were configured with
multicast and unicast receive addresses. This issue has been fixed.

[RTT Issue ID MICRO-2043]

GUID generation on QNX for processes run one after another may lead to duplicate GUIDs

On QNX systems, two processes run one after another in quick order may end up with the same
GUID. The probability of GUID reuse has been reduced in this release.

[RTT Issue ID MICRO-2109]

Read/take APIs returned more than depth samples if an instance returned to alive without
application reading NOT_ALIVE sample

If an instance transitioned from NOT ALIVE NO_WRITERS or NOT ALIVE DISPOSED to
ALIVE and the application did not read/take the sample indicating NOT _ALIVE _NO_WRIT-
ERS or NOT _ALIVE_DISPOSED, the number of samples returned would exceed the depth set
by the History QoS policy. This issue has been fixed.

[RTT Issue ID MICRO-2196]

8.4. Previous Releases 209

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Segmentation fault if OSAPI_Semaphore_give() was called from one thread while another
called OSAPI_Semaphore__delete()

An application may have terminated with a segmentation fault if OSAPI _Semaphore__give() was

called from one thread while another called OSAPI_Semaphore_delete() on Unix-like systems.
This issue has been resolved.

[RTT Issue ID MICRO-2209]

Communication problems between Connext DDS Professional 6 and Connext DDS Micro 2.4.11
Connext DDS Professional 6 advertises support for RTPS protocol version 2.3, while Connext DDS
Micro 2.4.11 and earlier only accepted RTPS 2.1. Therefore tools such as Admin Console 6.0.0 did
not properly discover entities from a Micro 2.4.11 application. This release of Connext DDS Micro

complies with RTPS 2.1 and later minor versions (such as 2.3). Unsupported RTPS messages are
ignored.

[RTT Issue Id MICRO-2008]
OSAPI_System_get__ticktime() not implemented for FreeRTOS

OSAPI_System__get_ ticktime() was not implemented for FreeRTOS. An application using a finite
DDS deadline or liveliness would have a run-time failure. This issue has been resolved.

[RTT Issue ID MICRO-2240]

8.4.5 What’s New in 2.4.11
Support for ThreadX/NetX

Support for the ThreadX operating system, version 5.7, and the NetX TCP/IP network stack,
version 5.9.

Batching (reception only)

Batching reception. Please refer to the new user’s manual UserManuals_ Batching for details.

UDP Transformations

Please refer to the new user’s manual ref UserManuals UDPTransform for details.

8.4. Previous Releases 210

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Optionally exclude builtin UDP Transport from compilation

Setting the flag -DRTIME__UDP_ EXCLUDE_ BUILTIN=1 excludes the UDP transport from be-
ing built. This setting can be useful if communication is done using only shared memory, INTRA,
or a custom UDP transport.

Publication handle of DataWriter now provided upon DataReaderListener sample loss

When the DDS_ DataReaderListener’s on__sample_ lost event is triggered, the returned DDS_ Sam-
pleLostStatus.sample__info now contains the publication__handle of the DataWriter that originally
wrote the lost sample(s).

DataWriters offer TOPIC presentation

Connext DDS Micro DataWriters now offer the DDS_TOPIC_PRESENTATION__QOS presen-
tation (when coherent_access = FALSE). This presentation is compatible with any reader using
DDS_TOPIC_PRESENTATION__QOS and DDS_INSTANCE_PRESENTATION__QOS, when
ordered_access = TRUE and ordered_access = FALSE.

Micro readers will remain unchanged and will only support DDS INSTANCE_ PRESENTA-
TION__ QOS when ordered__access = FALSE.

New warning if a configured UDP transport does not have any interface

A warning in logs has been added to notify you when a configured UDP transport does not have
any interface. This condition normally indicates a wrong UDP configuration, which might result
in discovery and/or communication failure.

8.4.6 What's Fixed in 2.4.11
MICRO-1814 Incorrect thread ID returned for VxWorks RTP

The function OSAPI_Thread_ self() when called by a VxWorks Real-Time Process (RTP) always
returned the (process) ID of the RTP, even for tasks spawned by the RTP. This issue has been
fixed.

[RTT Issue ID MICRO-1814]

8.4. Previous Releases 211

RTI Connext DDS Micro Documentation, Version 2.4.14.0

NULL listener and non-empty status mask not allowed for C++ DataReader

A C++ DataReader was incorrectly not allowed to be created with a NULL DataReaderListener
and a non-empty status mask (i.e., not DDS__STATUS_MASK_NONE).

[RTT Issue ID MICRO-1807]

accept__unknown_peers did not work when Shared Memory transport was enabled in RTI
Connext DDS Pro

When Connext DDS Micro discovered a RTI Connext DDS Pro application with Shared Memory
transport enabled, Connext DDS Micro failed to correctly use the UDPv4 locators instead.

This issue has been fixed.

[RTT Issue ID MICRO-1798]

Calling FooSeq_set__maximum() repeatedly with the same maximum size results in seg-fault

In RTT Connext DDS Micro 2.4.10.x and earlier, calling FooSeq set_ maximum() repeatedly with
the same maximum size on an IDL sequence type containing non-primitive types (such as enums
or other structures) caused a segmentation fault.

This issue has been fixed.

[RTT Issue ID MICRO-1786]

CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used

Connext DDS Micro buildable sources can not be compiled with CMake versions 2.8.10.1 or 2.8.10.2.
This issue has been fixed.

[RTT Issue ID MICRO-1748]

OS error code (errno) not logged if sendto() returned error

The OS error code (errno) was not correctly logged if sendto() returned an error.
This issue has been fixed.

[RTT Issue ID MICRO-1712]

8.4. Previous Releases 212

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Codegen might generate an incorrect pub/sub example if opction “-create typefiles” is not

used

Wrong example code is generated in case rtiddsgen is executed with option -create examplefiles and
option -create typefiles is NOT used.

This issue has been fixed.

[RTT Issue ID MICRO-1696]

Generated examples use always the last structure in the idl
Examples generated using Codegen use always the last structure in the idl file, even if it is not
top-level.

This issue has been fixed.

[RTT Issue ID MICRO-1694]

Instance might not have been disposed or unregistered under some conditions

Unregistered or disposed samples were not processed when preceded by a GAP sub-message within
the same RTPS message.

This issue has been fixed.

[RTT Issue ID MICRO-1692]

Reliable Endpoints with only multicast locators may not communicate

A reliable DataReader configured with only multicast (no unicast) locator(s) may have failed to dis-
cover or communicate with a reliable DataWriter. Both built-in discovery endpoints and user-data
endpoints were affected.

This issue has been fixed.

[RTT Issue ID MICRO-1687]

Access to DDSEntity instance handles from C++ API

Users of RTT Connext DDS Micro’s C++ API can now access instance handles of any DDS entity
using method DDSEntity::get_instance handle.

[RTT Issue ID MICRO-1681]

8.4. Previous Releases 213

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Syntax changed for initial peer participant index range

When configuring the initial peers of a DomainParticipant (e.g. DDS_DomainParticipantQos.dis-
covery.initial _peers), the syntax for specifying a range of participant indices for a peer locator has
changed: a hyphen is now the separator, replacing a comma. In general, a peer “[x-y|@<address>"
means that participant discovery messages will be sent to the address for participant indices x
through y.

[RTT Issue ID MICRO-1680]

lookup_instance() is not thread safe

The lookup_ instance() was not thread safe in Connext DDS Micro 2.4.10.x and earlier. If an
application was calling lookup__instance() from both a listener and a WaitSet/polling thread at the
same time, the instance handle could be corrupted.

This issue has been fixed.

[RTT Issue ID MICRO-1679]

CMakelists.txt and README.txt created when they should not

Codegen generates project files CMakeLists.txt and README.txt are generated even when project
files are not generated.

This issue has been fixed.

[RTT Issue ID MICRO-1673]

No communication when DomainParticipant used same GUID as another DomainParticipant
in different domain

Given an application that creates DomainParticipants in different DDS domains, a DomainPar-
ticipant created with the same Participant GUID (i.e., the GUID Prefix portion of the GUID) as
created for a DomainParticipant in a different domain will fail to discover or communicate with
other endpoints within its own domain. A workaround would be for the application to assign unique
GUIDs for all DomainParticipants across all domains. This issue has been fixed.

This issue has been fixed.

[RTT Issue ID MICRO-1671]

8.4. Previous Releases 214

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Compiler error might happen when IwlP is used

An incorrectly defined compiler macro causes a compilation error when lwIP stack is used and
LWIP DNS is defined.

This issue has been fixed.

[RTT Issue ID MICRO-1664]

Wrong C++ code generated for unkeyed types when using IDL modules and -namespace option
Code generated with the following command failed if a struct with the same name was defined in
two namespaces, and the first namespace did not have any key:

rtiddsgen -micro -example HelloWorld.idl -replace -language C++ -namespace

This issue has been fixed.

[RTT Issue ID MICRO-1663]

DDS_ WaitSet_wait does not work if OSAPI_Semaphore_take() returns an error

DDS_ WaitSet_wait does not work if OSAPI_Semaphore_ take() returns an error; RET-
CODE_PRECONDITION_NOT_MET is always returned.

This issue has been fixed.

[RTT Issue ID MICRO-1658]

Log buffer could overflow on 64-bit architectures, causing application crash

The log buffer may have overflowed on 64-bit architectures and caused an application crash.
This issue has been fixed.

[RTT Issue ID MICRO-1657]

Fix API realloc in Windows OSAPI

Windows implementation of function realloc did not allow a NULL input pointer, this is wrong and
posix implementation and Windows API allow it. This has the effect that function DDS_ String_ re-
place() fails when the input string is a NULL pointer.

This issue has been fixed.

[RTT Issue ID MICRO-1655]

8.4. Previous Releases 215

RTI Connext DDS Micro Documentation, Version 2.4.14.0

New samples for an instance may not be received if an instance goes back to ALIVE when
using read()

Due to an issue in the resource calculation for the DataReader, new samples for an instance may
not have been received if the instance went back to ALIVE when using any of the read() APIs.

This issue has been fixed.

[RTT Issue ID MICRO-1651]

INTRA transport caused subscription matches to use additional resources

An issue in the matching between a reader and writer caused a reader to be matched with the same
writer twice if auto enable was set to FALSE.

This issue has been fixed.

[RTT Issue ID MICRO-1650]

Resolved memory leak in class RTRegistry

When using previous versions of Connext DDS Micro, C++ applications might have experienced
resource leakage upon finalization of middleware resources using the method DDSDomainPartic-
ipantFactory::finalize__instance. The leaks were caused by unfreed memory blocks still owned by
the class RTRegistry, and they have now been resolved. No additional action is required of users.

This issue has been fixed.

[RTT Issue ID MICRO-1637]

Windows Debug DLLs are built without debug information

Windows Debug DLLs are built without debug information what prevents debugging. This is
happening when building with CMake or the rtime-make script.

This issue has been fixed.

[RTT Issue ID MICRO-1634]

Use hardcoded build ID when not compiling with CMake

When compiling using CMake or the script rtime-make, Connext DDS Micro libraries have a build
ID (buildid), which consist of the current time and date. A hardcoded constant ID is used as the
build ID when compilation is not done using CMake or the script rtime-make.

This issue has been fixed.

[RTT Issue ID MICRO-1632]

8.4. Previous Releases 216

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Example makefiles do not support 64bit compilation

Example makefiles used always option -m32. This has been changed to use -m32 or -m64 depending
on the platform configuration.

Examples can be compiled now for 32 and 64 bits platforms.
This issue has been fixed.

[RTT Issue ID MICRO-1628]

Compilation error might happen when code is generated using option -namespace

Compilation error fixed in generated source code when option -namespace is used and IDL file has
modules and compilation uses shared libraries.

This issue has been fixed.

[RTT Issue ID MICRO-1620]

8.4.7 What’s New in 2.4.10.4

Batching (reception only)

This release includes batching reception. Please refer to the new user manual for Batching for
details.

C++ examples

A new C++ example using Waitsets (HelloWorld__dpde_ waitset) is included.

8.4.8 What'’s Fixed in 2.4.10.4
Improve KEEP__LAST

To reclaim resources in version 2.4.10 and earlier the DataReader cache tries to remove the oldest
sample only. If that is on loan it cannot be removed and in case a new sample is received it cannot
be added to the DataReader cache.

This issue has been fixed.

[RTT Issue ID MICRO-1754]

8.4. Previous Releases 217

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Locator might be duplicated when NAT is configured

When Network Address Translation (NAT) is configured in the transport UDP properties, a dupli-
cated locator might be sent in discovery packets.

This issue has been fixed.

[RTT Issue ID MICRO-1756]

Segmentation fault might happen when a DataReader cannot be created

If the creation of a DataReader fails before all fields in the DataReader structure are initialized, a
NULL pointer access may have occur while finalizing the already created objects.

This issue has been fixed.

[RTT Issue ID MICRO-1755]

CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used

RTTI Connext DDS Micro buildable sources could not be compiled with CMake 2.8.10.1 or 2.8.10.2.
This issue has been fixed.

[RTT Issue ID MICRO-1748]

Wrong TUDP locator kind sent when using UDP transformations

When using UDP transformations the locator kind was always set as 0, intead of the configured
value in ref UDP_ InterfaceFactoryProperty.transform_ locator_ kind

This issue has been fixed.

[RTT Issue ID MICRO-1685]

Compile shipped examples for a 64 bits architecture

Before this release shipped examples makefiles could only compile 32 bits architectures. Makefiles
have been modified to support also 64 bits architectures.

This issue has been fixed.

[RTT Issue ID MICRO-1628]

8.4. Previous Releases 218

RTI Connext DDS Micro Documentation, Version 2.4.14.0

OSAPI_Heap_realloc() Windows implementation fixed

The Windows implementation of function OSAPI_Heap_ realloc() had a precondition to check for
a NULL pointer as input parameter. This is wrong as in this case the function shall allocate a new
buffer (equivalent to malloc()).

This issue has been fixed.

[RTT Issue ID MICRO-1655]

Use APl DDSDomainParticipant::delete_contained_entities() in C4++ examples

Shipped C++ examples now use DDSDomainParticipant::delete_contained_ entities() to delete
all DSS entities in a DDS Participant. = This is easier than using DDSDomainPartici-
pant::delete_ topic(), DDSDomainParticipant::unregister_ type(), etc.

This issue has been fixed.

[RTT Issue ID MICRO-1656]

Memory leak in shipped examples fixed

Shipped examples were not releasing correctly some of the allocated structures when application
finalized.

This issue has been fixed.

[RTT Issue ID MICRO-1676]

C++ shipped examples might release an object twice.

C++ shipped examples might release an object twice in case of error.
This issue has been fixed.

[RTT Issue ID MICRO-1677]

Backwards Compatability
Change in on_before__sample__deserialize callback.

In 2.4.10 and earlier the stream passed to on__before_sample_deserialize callback started
at the encapsulation header followed by user data. However, with the added support for batched
samples this is no longer possible. Instead the stream now starts at the user-data payload. Note
that the only supported encapsulation format for user-data is CDR. This may change in future
versions.

The examples have been updated to reflect the change. Please refer to the examples for details.

8.4. Previous Releases 219

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.4.9 What's New in 2.4.10.1

UDP Transformations

This release includes UDP Transformations which enables regular UDP sockets to be used with
custom payload transformations. Please refer to ref UserManuals_ UDPTransform for details. The
UDP Transformation feature is enabled by default in this release. However, future releases may
disable the feature by default. Thus, it is advised to always compile with the UDP Transformation
feature enabled (-DRTIME_UDP_ENABLE_TRANSFORMS=1 to cmake).

NOTE: In the the EAR for 2.4.10.1 the default behavior was to allow both plain UDP and trans-
formed UDP traffic when transformations was compiled in. This has changed. The default is to dis-
able regular UDP. In order to support it the transform_ udp_ mode must be set to UDP_ TRANS-
FORM_UDP_MODE_ENABLED. Since this may change in future release it is advised to always
set the correct mode of operation.

8.4.10 What'’s Fixed in 2.4.10.1

Race Condition when Log Buffer is Full and a Custom Log-handler is Installed

A race condition existed when a custom log handler was installed and the log buffer was full. A
temporary message was created to hold the minimum log data and when the custom log handler
was called it was possible that a new log entry was added while the custom log handler parsed the
temporary message.

This has been fixed in this version.

[RTT Issue ID MICRO-1641]

8.4.11 What’s New in 2.4.10

Generate Example Application with rtiddsgen

It is now possible to generate an example application for RTI Connext Micro using rtiddsgen. To
generate an example:

:: rtiddsgen -language C | C++ -micro -example <IDL File>

A CMakeLists.txt file is generated that can be used with rtime-make:

:: rtime-make [options] —srcdir <path to CMakeLists.txt>

Please refer to the generated README.txt file for details.

8.4. Previous Releases 220

RTI Connext DDS Micro Documentation, Version 2.4.14.0

BY_SOURCE_TIMESTAMP_DESTINATIONORDER Support on DataWriter

The DataReader and DataWriter Qos policy now includes the DDS_ DestinationOrderQosPolicy:

o The DDS DataReader only supports BY RECEPTION_DESTINATION__ORDER (the de-
fault value).

e The DDS DataWriter supports BY RECEPTION_TIMESTAMP_DESTINATION_ OR-
DER and BY_SOURCE_TIMESTAMP_DESTINATION__ORDER.

Please refer to the DDS reference manual for details.

[RTT Issue ID MICRO-1597]

8.4.12 What's Fixed in 2.4.10

Linker Warning for Missing PDB Files
The i86Win32VS2010 libraries shipped with Connext DDS Micro did not include PDB files. For
this reason, when compiling an application a warning similar to the following may have been shown:

2 rti__mezd.lib(BuiltinTopicData.obj) : warning LNK4099: PDB ‘dds_czd.pdb’ was not found
with ‘rti_mezd.lib(BuiltinTopicData.obj)’ or at ‘<path>\dds_ czd.pdb’; linking object as if
no debug info

The warning was harmless and only indicates that debug information was missing for the linked
libraries.

[RTT Issue ID MICRO-1556]

Linking with Dynamic Windows C Run-Time (CRT)

All shipped Connext DDS Micro libraries for Windows platforms (static release/debug, dynamic
release/debug) now link with the dynamic Windows C Run-Time (CRT). Previously, the static
Connext DDS Micro libraries statically linked the CRT.

An existing Windows project that is linking with the Connext DDS Micro static libraries must
update the RunTime Library settings.

In Visual Studio, select C/C++, Code Generation, Runtime Library, select:
o Multi-threaded DLL (/MD) instead of Multi-threaded (/MT) for static release libraries.

o Multi-threaded Debug DLL (/MDd) instead of Multi-threaded Debug (/MTd) for static debug
libraries.

For command-line compilation, use:
o /MD instead of /MT for static release libraries.
o /MDd instead of /MTd for static debug libraries.

8.4. Previous Releases 221

RTI Connext DDS Micro Documentation, Version 2.4.14.0

In addition, it may be necessary to ignore the static run-time libraries in their static configurations.
In Visual Studio, select Linker, Input in the project properties and add libcmtd;libemt to the ‘Ignore
Specific Default Libraries’ entry.

For command-line linking, add /NODEFAULTLIB:”libcmtd” /NODEFAULTLIB:”libcmt” to the
linker options.

[RTT Issue ID MICRO-1572]

DDS__Publisher_create_datawriter() May Fail to Create a New Datawriter

When an application reaches the local writer_allocation resource limit, where subsequent calls
to DDS_ Publisher_ create_datawriter() fail to create a new DataWriter, calling DDS_Pub-
lisher _delete datawriter() should reclaim resources of the deleted DataWriter and allow the cre-
ation of a new DataWriter. However, in the previous release, in certain cases there was a problem
with reclaiming DataWriter resources that prevented the creation of a new DataWriter.

Deleting a DataWriter or DataReader involves acknowledgements from matched applications. Thus,
calling DDS_ Publisher_delete_ datawriter() is not an instantaneous operation so resources may
not be available immediately. When this case occurs, calling DDS_ Publisher_ create_ datawriter()
after a short duration may be successful. The maximum time for a resource to be released is the
maximum time a response is expected from a matched application based on the DPDE discovery
plugin configuration for the built-in discovery endpoints.

[RTT Issue ID MICRO-1579]

DataReader May Not Reclaim NOT_ALIVE Instances when DataWriter Deleted or Liveliness
Lost

Applications using read()/take() in on_data_available may not have received
NOT_ALIVE_NO_ WRITERS for instances that changed state to NOT _ALIVE_NO_ WRIT-
ERS when a deleted data writer or data reader lost liveliness with a data writer caused the change.
This has been fixed.

[RTT Issue ID MICRO-1580]

A Datawriter may fail to release instance resources if a peer is inactive while the Participant
liveliness expires

A reliable DataWriter can mark a matched DataReader as inactive if the DataReader fails to re-
spond to heartbeats, as configured by max_ heartbeat_ retries. However, if a DataReader is marked
as inactive and the Participant liveliness for the DataReader’s Participant expires, a DataWriter
afterwards may have failed to reclaim instances resources if unregister_instance() was called. This
has been fixed.

[RTT Issue ID MICRO-1581]

8.4. Previous Releases 222

RTI Connext DDS Micro Documentation, Version 2.4.14.0

A Reliable DataWriter With max_samples_per_instance = 1 May Run Out of Resources After
Multiple Unregistrations of Single Instance

A reliable DataWriter with max_ samples_ per__instance = 1 may have run out of instance resources
if the same instance is unregistered multiple times before an acknowledgement is received from a
matched DataReader. This has been fixed.

[RTT Issue ID MICRO-1583]

Connext Micro Fails to Discover Endpoints created by Connext Core if the Endpoints are
Deleted or Modified

If an application developed with RTI Connext Core used set_qos() on an enabled endpoint or
deleted and created new endpoints before Connext DDS Micro had discovered the deleted endpoints,
Connext DDS Micro failed to discovery new endpoints. This has been fixed.

[RTT Issue ID MICRO-1588]

Incorrect Log Output in a Complete Log Message could not be Stored

If there was insufficient space to store a complete log-message, the default display function would
incorrectly try to print log-data beyond the log-buffer. This has been fixed.

[RTT Issue ID MICRO-1589]

Possible Segmentation Fault when Unregistering TRANSIENT_LOCAL Instance

Calling unregister__instance() on the same TRANSIENT _LOCAL instance may have caused a seg-
mentation fault. The segmentation fault occured when a call to unregister instance() is acknowl-
edged and a later call on unregister__instance() for the same instance had not been acknowledged
yet. For the segmentation fault to occur there must be more than 1 call to unregister_instance()
within the history depth. This has been fixed.

[RTT Issue ID MICRO-1590]
Support to map IDL modules to C++ namespaces in generated type-plugins

The rtiddsgen included by this release will correctly generate C++ code for data types defined
within IDL modules, when passed the “-namespace” argument. Consider the following IDL:

module A {
struct Foo {
long bar;
};
};

module B {

(continues on next page)

8.4. Previous Releases 223

RTI Connext DDS Micro Documentation, Version 2.4.14.0

(continued from previous page)

struct Foo {
long bar;
}s
};

C++ code generated by previous releases of rtiddsgen for this IDL input would fail to build if the
“-namespace” argument was used to map each IDL module to a C+4 namespace.

Some of the automatically generated data types were incorrectly being exported with C linkage,
effectively disabling the C++ namespaces. This would cause duplicate symbols to be detected if
two types with the same name were defined in two different modules.

[RTT Issue ID MICRO-1600]

Possible Memory Access Violation when Receiving Malformed RTPS Message

When a received RTPS message had its message and submessage headers processed, Connext DDS
Micro incorrectly did not validate for all cases that there was sufficient space in the message’s
receive buffer before accessing a field of a header. Consequently, reception of certain malformed
messages could have resulted in memory access violations. The problem has been fixed by always
validating for sufficient buffer. This has been fixed.

[RTT Issue ID MICRO-1614]

In Some Cases an Incorrect Timeout Calculation Caused 100% CPU Load

Some combinations of timeouts, clock resolution and resource-limits may have caused an incorrect
timeout to be scheduled causing an infinite loop in the timer thread.

If multiple timers expires at the same time and the timeout is exactly:

:t (dp__qos.resource_ limits.remote_ participant_ allocation — + (3*dp__qos.resource__limits.lo-
cal_writer_ allocation) + (3*dp_ qos.resource_limits.local_reader_allocation) + 1) / 2 *
timer resolution

the next timeout may be scheduled for immediate timeout, causing the timer thread to consume
excessive CPU.

[RTT Issue ID MICRO-1617]

8.4. Previous Releases 224

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.4.13 What’s New in 2.4.9

Improved Support for adding new Ports

Some changes were made to how Connext DDS Micro includes different ports. In versions before
2.4.9 new ports would typically update osapi_ config.h and add a new directory with an implemen-
tation for the required OSAPI functions. As of 2.4.9 osapi_config.h was re-factored and OS and
compiler specific functions were moved to two new files:

e osapi_os_<osname>.h This file contains OS specific information. RTI ships three files:
osapi_os_posix.h, osapi_os_windows.h and osapi_os_ vxworks.h. It is recommended to add
a new osapi_os_ <osname>.h file when a new OS is added.

e osapi_cc_<osname>.h This file contains compiler specific informations. RTI ship os-
api__cc_stds.c which works with Microsoft Visual Studio, clang and GCC.

Please refer to ref OSAPIUserManuals_ PortingModule for details.

Updated Build Environment to Build RTI Connext Micro

Connext DDS Micro now includes better support for adding CMake tool-chain files and also in-
cludes a better infrastructure to manage multiple builds of Connext DDS Micro. It is strongly
encouraged to read ref OSAPIUserManuals_ SourceModule for details to get familiar with the new
build environment.

Example CMake Tool-chain Files for Cross-Compilation

Connext DDS Micro ships with a more cmake tool-chain files for Linux, Darwin, Windows and
VxWorks. Please refer to ref OSAPIUserManuals SourceModule for details.

[RTT Issue ID MICRO-706]

Host Bundle without the Java RunTime Available
A new smaller host bundle that does not include Java Runtime Environments (JRE) is now available
for download. A host bundle with JREs included is still available.

With Java being necessary for the rtiddsgen utility, rtiddsgen now picks Java based on the following
order:

e New rtiddsgen command line option -jre
« JREHOME environment variable

e JAVA HOME environment variable

e JRE shipped with the host bundle

e PATH environment variable

[RTT Issue ID MICRO-1520]

8.4. Previous Releases 225

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Support for 64-bit Platforms

Connext DDS Micro was written for 32 bit architectures and is for all practical purposes a 32 bit
application. There is no advantage to compiling Connext DDS Micro for a 64 bit architecture and
the only reason to do so is if Connext DDS Micro must execute in a 64 bit environment for other
reasons, such as other applications being 64 bit or 64 bit libraries not being available.

Connext DDS Micro is compiled and tested on various 64 bit architectures (i0S, MacOS, Windows,
Linux, VxWorks). However, when doing so the following must be kept in mind:

o Connext DDS Micro does not work with any data-type larger than what the transport sup-
ports and up to a maximum of 2 GB.

o Timestamps in Connext DDS Micro are limited to seconds encoded as a signed 32 bit integer.

POSIX Compliance Improvements
Connext DDS Micro supports various POSIX like operating systems. Due to small differences in
the implementations not all POSIX like are equal and OS specific adaptations are necessary.
As of 2.4.9 Connext DDS Micro’s POSIX OSAPI implementation conforms to:
o POSIX Std 1003.1, 2004 Edition (_POSIX_C_SOURCE 200112L)
o X/Open 6 (_XOPEN_SOURCE 600)

The Connext DDS Micro UDP transport uses ioctl calls to enable certain socket features. The
required flags are in non-standard header-files on some operating system. In addition, not all
POSIX-like operating systems support all the features. Connext DDS Micro checks which OS it
is compiled for by testing the presence of preprocessor flags. As of 2.4.9 Connext DDS Micro has
been built and tested on the following operating systems that supports a POSIX API (osapi_os.h):

e Linux (_linux_)

« Mac OS X (10.6 and later) ((_APPLE) && defined(MACH.))
« QNX 6.x (_QNXNTO)

« VOS (_VOS)

« i0S (((_APPLE) && defined(MACH_))

e Android (_linux_ && _ANDROID_)

NOTE: An additional compile option to enable certain non-POSIX features can be enabled to
unchecking the RTIME__OSAPI_ENABLE_STRICT_POSIX option in the cmake-gui or by defin-
ing the C preprocessor flag -DOSAPI_ENABLE_STRICT_POSIX=1

8.4. Previous Releases 226

RTI Connext DDS Micro Documentation, Version 2.4.14.0

C++ Support for find_topic()

The operation DDS_DomainParticipant__find__topic() is now natively supported by the C++ API
as DDSDomainParticipant::find_ topic().

Types Are Automatically Unregistered Upon Deleting Contained Entities

In previous releases, types must be unregistered manually from a DomainParticipant before the
participant can be deleted. Now in this release, all registered types are automatically unregistered
when calling DDS_DomainParticipant_ delete_ contained__entitites().

NOTE: It is legal to register the same type multiple times as long as it is registered with the same
type-plugin. If manually unregistering a type, the type must be unregistered the same number
of times as it was registered. DDS_ DomainParticipant_ delete_contained__entitites() ignores the
number of times a type has been registered since all entities using a type are deleted first.

8.4.14 What's Fixed in 2.4.9

Improved Documentation

The Connext DDS Micro documentation has been improved for the following topics:
o Compiling the Connext DDS Micro source (ref OSAPIUserManuals SourceModule)
o Filtering of samples by a DDS DataReader (ref UserManuals_ MicroAndCore)
o How to use Connext DDS Micro with RTI Recorder (ref UserManuals MicroAndCore)

o Compatibility between Connext DDS Micro and other RTT Products (ref UserManuals Mi-
croAndCore)

[RTT Issue ID MICRO-711, MICRO-1521, MICRO-1538, MICRO-1555]

Losing Participant Liveliness Stops Communication

Previously, given a DomainParticipant “P1” whose endpoints are communicating with other end-
points belonging to other DomainParticipants, when P1 detected liveliness lost with one other
DomainParticipant, communication incorrectly stopped with endpoints belonging to other Do-
mainParticipants as well.

[RTT Issue ID MICRO-1543]

8.4. Previous Releases 227

RTI Connext DDS Micro Documentation, Version 2.4.14.0

DDSTopic::narrow() Returned Incorrect Value in C++

The function lookup_ topicdescription() returned a DDSTopicDescription that caused
DDSTopic::narrow() to segmentation fault when this DDSTopicDescription was passed to
other functions.

DDSTopic::narrow() now correctly returns a DDSTopic when passed a DDSTopicDescription found
with lookup__topicdescription().

[RTT Issue ID MICRO-1544]

PRECONDITION_NOT_MET Returned by deleted_topic() When Topic Is Not Use

delete__topic() incorrectly returned PRECONDITION_NOT_MET if there where multiple refer-
ences to it (for example via find__topic()). This has been corrected and delete_topic() now returns
DDS_RETCODE_ OK if there are multiple references, but the reference count can be decremented.

[RTT Issue ID MICRO-1545]

Instance Resources Not Reclaimed When Unregistered

When an instance is unregistered on the data writer that is best-effort with infinite deadline or
using TRANSIENT LOCAL durability, the data writer fails to free the resources being used. As a
result, new instances cannot be written. This has been fixed and when an instance is unregistered
all resources associated with the key is released.

[RTT Issue ID MICRO-1546]

Invalid Memory Read Reported in Log.c
Some memory profile tools reported an invalid read in Log.c. This was caused by an invalid pointer
access when the log buffer was full and has been corrected.

[RTT Issue ID MICRO-1550]

Unsupported Functions When Compiling With RTI_CERT Has Been Removed From Generated
Code

Code generated by rtiddsgen to support user data types has been updated to properly sup-
port compilation with the flag RTI_CERT. All unsupported operations (e.g. FooTypeSup-
port_ delete_data) are now excluded when RTI_CERT is specified.

[RTT Issue ID MICRO-1558]

8.4. Previous Releases 228

RTI Connext DDS Micro Documentation, Version 2.4.14.0

The HelloWorld_cert Example Now Compiles When Linked Against a Library Built With
RTI_CERT

The HelloWorld_ cert called functions that were not supported by libraries built with RTI_CERT.
This has been corrected.

[RTT Issue ID MICRO-1561]

Hostnames Are No Longer Validated

Previously in Connext DDS Micro 2.4.6, a function to validate IP hostnames as defined by RFC-952
was added and called before passing them to the OS. However, this function was too restrictive
and excluded valid service names. Hostname validation is now only done directly by the OS.

[RTT Issue ID MICRO-1563]

A Participant May Not Be Rediscovered In Case Of Asymmetric Liveliness Loss

This problem was only present when using dynamic discovery.

Consider two participants A and B. In the previous release, if A lost liveliness with B, but B
did not lose liveliness with A, then A did not completely rediscover B when their connection was
reestablished. The problem was that since B had not lost liveliness with A, when a connection
was reestablished, B thought A was already up to date on endpoint discovery. Hence, A did not
rediscover the endpoints in B. This release has fixed this issue.

[RTT Issue ID MICRO-1571]

A Non-keyed Endpoint Matches a Keyed Endpoint

When performing matching between A DataReader and DataWriter the entity kind was not checked.
This means a keyed DataReader would match a non-keyed DataWriter and a non-keyed DataReader
would match an keyed DataWriter.

This issue would can happen if two different IDLs files are used to create DataReaders and
DataWriters of the same topic and type.

Note that Connext DDS Micro does not support type validation. If two (or more) IDLs are used
to describe the same keyed type there is no check that the key-fields are the same. Thus, even with
this issue resolved there are still potential pitfalls with multiple IDLs for the same type.

[RTT Issue ID MICRO-1574]

8.4. Previous Releases 229

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.4.15 What’s New in 2.4.8

2.4.8 is a maintenance release with no new features.

8.4.16 What’s Fixed in 2.4.8

Consistent support for assighment operator in C++
The assignment operator for the DDS Qos, Qos policy and Status structures were not consistently
supported. This has been fixed in this release as follows:
e All QoS structures support the default generated C++ assignment operator.
o All QoS policy structures support the default generated C++ assignment operator.
o All Status structures support the default generated C++ assignment operator.
In addition, all QoS structures support the == and != operators.

[RTT Issue ID MICRO-1541]

DPSE API renamed to avoid conflict with assert()

The DPSE C++ API had methods called assert. However, this conflicts with the C assert() macro.
This has been fixed in this release by updating the DPSE C++ API to be inline with the C API.
The new API is:

class DDSCPPD11Export DPSEDiscoveryPlugin
{
public:
static DDS_ReturnCode_t
RemoteParticipant_assert(DDSDomainParticipant *const participant,
const char *rem_participant_name) ;

static DDS_ReturnCode_t

RemotePublication_assert (DDSDomainParticipant * const participant,
const char *const rem_participant_name,
const struct DDS_PublicationBuiltinTopicData *const data,
NDDS_TypePluginKeyKind key_kind) ;

static DDS_ReturnCode_t
RemoteSubscription_assert (DDSDomainParticipant * const participant,
const char *const rem_participant_name,
const struct DDS_SubscriptionBuiltinTopicData *const data,
NDDS_TypePluginKeyKind key_kind);
};

[RTT Issue ID MICRO-1539]

8.4. Previous Releases 230

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.4.17 What’s New in 2.4.7

2.4.7 is a maintenance release with no new features.

8.4.18 What’s Fixed in 2.4.7

Statuses are passed as pointers instead of references to DDSDomainParticipantListeners

The statuses in the DDSDomainParticipantListener methods are now passed by reference instead
of by pointer.

[RTT Issue ID MICRO-1524]
Missing assignment operator = in RT_ComponentFactoryld

The C++ API did not include the assignment operator for the RT ComponentFactoryld type.
The following assignment operators have been added:

RT_ComponentFactoryIld& operator=(const char *const name) ;
RT_ComponentFactoryId& operator=(const RT_ComponentFactoryId& from);
const RT_ComponentFactoryId& operator=(const RT_ComponentFactoryId& from) const;

[RTT Issue ID MICRO-1525]

CMAKE_C_FLAGS_ORIGINAL in CMakelLists.txt misspelled

The CMAKE_C_FLAGS_ORIGINAL variable in the CMakeLists.txt file was misspelled causing
the original C__FLAGS to be ignored. This has been corrected in this release.

[RTT Issue ID MICRO-1526]
Missing const qualifier for the sequence [] operator

The C++ API was missing the const qualifier for the sequence [| operator. This has been corrected
in this release with these operators:

T& operator[] (RTI_INT32 index);
const T& operator[] (RTI_INT32 index) const;

[RTT Issue ID MICRO-1527]

8.4. Previous Releases 231

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Missing primitive IDL sequences in C++

The C++ API did not include sequence of the primitive IDL types. This has been corrected in
this release. Please refer to ref DDSUserManuals_ SequenceModule for more information about the
sequence API.

[RTT Issue ID MICRO-1529]

8.4.19 What’s New in 2.4.6

Important APl Changes

This version of Connext DDS Micro includes a number of API changes to improve compatibility
with rticore and make the API more robust to input argument errors such as string length violations.
Please note that some of the changes are incompatible with earlier version of Connext DDS Micro.

Changed and Incompatible APIs:

o DDS_SEQUENCE_INITIALIZER(t) has changed to DDS_SEQUENCE_ INITIALIZER.
That is, the sequence element type is no longer passed in.

e Foo_seq get_ contiguous_ buffer replaces Foo_seq get_ buffer.

o DDSTopic now uses multiple inheritance. Thus, it is no longer necessary to explicitly convert
a topic to a topic description with the as_ topicdescription() method when creating calling
create_datareader() in C++.

e The idref DiscoveryComponent_name value has changed type from a char pointer to a
RT ComponentFactoryld T type. Use ref RT ComponentFactoryld set_name to set the
name of the discovery plugin name.

e All C++ statuses are passed as a const reference instead of a const pointer to the listeners.
New APlIs:

e By default the full sequence API has been enabled. In previous versions only a limited subset
was enabled. NOTE: For RTI_CERT the default sequence API is still the limited API.

o The following new sequence methods have been added to the full sequence API (excluding
the DDSConditionSeq):

— ensure_ length

to__array

from_ array

operator[] in C++ is equivalent to get_ reference()
— operator= is equivalent to _copy/()

— operator== is equivalent to _is_equal()

— operator!= is equivalent to ! _is_equal()

e The following new sequence methods have been added to the DDSConditionSeq:

8.4. Previous Releases 232

RTI Connext DDS Micro Documentation, Version 2.4.14.0

— ensure_ length

— operator[] in C++ is equivalent to get_ reference()
— operator= is equivalent to _copy()

— operator== is equivalent to _is_equal()

— operator!= is equivalent to ! is equal()

o RTIBool has been added (it is used by rticore) and is equivalent to RTI BOOL in Connext
DDS Micro.

e A new method idref EntityNameQosPolicy set_ name has been added to set the idref En-
tityNameQosPolicy_name field.

¢ Please refer to ref rl _new 246 MICRO-1512 for new C+-+ APIs.

Run-time Memory Footprint Has Been Significantly Reduced
The internal representation of state information has been refactored, significantly reducing run-time
memory usage.

Please refer to the ref DDSUserManuals_ ResourceModule guide for details.

New FooTypeSupport operations
The FooTypeSupport code generated for a user-defined Foo data type now includes three additional
operations:
e FooTypeSupport::get_ type_name
e FooTypeSupport::create_ data
e FooTypeSupport::delete_data
These operations are available to users of both the C and C++ APIs.

All public C API now natively available to C++ users
The missing parts of RTI Connext Micro’s public C API have now been added to the public C4++
API, so that C++ users don’t have to rely on C operations to implement their applications.

C++ developers are also not required to include any C header file anymore, but they must instead
rely on newly available C++ header files.

Please refer to ref CPPApiModule for a list of APIs.

8.4. Previous Releases 233

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Status data passed by reference to C++ listeners
All callbacks exposed by the DDS listeners of the C++ API (DDSDataReaderListener, DDS-

DataWriterListener, DDSTopicListener, and other derived classes) now accept the status data
passed in by the middleware as a C++ reference, rather than a pointer.

TheParticipantFactory now available to C++ users

The variable TheParticipantFactory is now available to users of the C++4 API to reference the
singleton instance of DDSDomainParticipantFactory.

Status types now available in DDS:: C++4 namespace

All the status types (e.g. DDS_ SubscriptionMatchedStatus) have been exposed to C++ users as
part of the DDS:: namespace (e.g. DDS::SubscriptionMatchedStatus).

Foo::copy_data() takes const argument

The pointer specifying the source sample passed to the generated operation Foo::copy_ data() (C++
API) is now of “const” type.

ConditionSeq added to C++ DDS namespace

C++ developers can now refer to data type DDS_ ConditionSeq as DDS::ConditionSeq.

First 2-Bytes Of GUID Assigned to Vendor ID

In order to be interoperable with the Real-Time Publish-Subscribe Wire Protocol DDS Inter-
operability Wire Protocol (DDSI-RTPS), version 2.2, the first 2-bytes of every GUID are now
automatically assigned to the OMG-specified Vendor ID.

8.4.20 What's Fixed in 2.4.6
POSIX Threads Were Created Without Names

Previous releases on POSIX platforms created threads with no names. In this release, if thread
naming is supported, a POSIX thread created with the Connext DDS Micro OSAPI_Thread_new()
function will have its thread name set.

[RTT Issue ID MICRO-638]

8.4. Previous Releases 234

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Prerequisite for HelloWorld__android updated in README.txt

The README.txt file for Android did not clarify that is it necessary to install the NDK tool-chain
as a standalone toolchain. This has been fixed.

[RTT Issue ID MICRO-807]

CPP/HelloWorld_dpde example does not overwrite RTIMEHOME

In previous releases of Connext DDS Micro, the CPP/HelloWorld_dpde example overwrote the
RTIMEHOME environment variable, making it impossible for developers to point it to any custom
value.

This error was fixed and the example can now be compiled with any valid value of RTIMEHOME.
[RTT Issue ID MICRO-834]

Transport Not Supporting Multicast Did Not Ignore Multicast

Previously, if a multicast address was specified as a discovery or user_ traffic address, it was not
correctly ignored by transports that did not support multicast. Consequently, an application may
have failed to create a DomainParticipant. This has been fixed in this release.

[RTT Issue ID MICRO-1153]

Discovery Messages Incorrectly Dropped When Containing Non-Standard Locators

When a discovery message was received with a non-standard locator, such as for an unsupported
transport, rather than just ignore the locator, the entire discovery message was discarded. This
incorrect behavior prevented discovery of the entity that sent the discovery message. This issue
has been fixed in this release.

[RTT Issue ID MICRO-1270]

HEARTBEAT Not Sent in Response To Initial ACKNACK

In Connext DDS Micro, a newly matched reliable DataReader will send an initial ACKNACK
submessage to the matching DataWriter in order to expedite reliable communication. The initial
ACKNACK is zero-valued, and a DataWriter receiving it will not resend any samples but instead
will send a HEARTBEAT that the DataReader will respond with a proper ACKNACK.

In the previous release, however, a DataWriter receiving this initial ACKNACK did not respond
with a HEARTBEAT. Consequently, reliable resend of historical samples did not start as soon as it
should have, and instead would start with the next HEARTBEAT sent by the DataWriter, either a
periodic HEARTBEAT or a piggyback HEARTBEAT sent with newly written samples. This issue
has been fixed in this release.

[RTT Issue ID MICRO-1443]

8.4. Previous Releases 235

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Incorrect Return Code From DataReader’s Read or Take APIls When Max_ Outstanding__Reads
Exceeded

When a DataReader’s read or take APIs are called, depending on the input parameters of the sample
sequence and sample-info sequence, the DataReader may loan to the caller its memory contain-
ing sample and sample-info entries. A resource limit, DATA_READER,_RESOURCE_ LIMITS
max_ outstanding_ reads, sets the maximum number of samples (and corresponding sample-info
entries) that may be loaned.

In previous releases, when max_oustanding_reads was exceeded, the read/take APIs incorrectly
returned DDS__ RETCODE_NO_ DATA instead of DDS_RETCODE__OUT__OF_RESOURCES.
This bug has been fixed in this release.

[RTT Issue ID MICRO-1460]

DataReader Did Not Replace Historical Samples When max_samples_per_instance Equaled
History Depth

Previously, given a DataReader with RESOURCE_ LIMITS max_samples_ per_instance equal to
HISTORY depth, when the DataReader exceeded its depth (or max samples per instance), it
incorrectly did not replace the oldest historical sample with the newest sample. Instead, the oldest
historical sample was kept in the queue, and subsequent calls to read() could return it. Note, calls
to take() would remove all taken sample from the queue.

This issue has been fixed in this release.

[RTT Issue ID MICRO-1463]

A Disposed Instance Could Be Updated By A DataWriter That Is Not Its Exclusive Owner

When EXCLUSIVE _OWNERSHIP was used, a disposed instance could incorrectly be updated
by a DataWriter with a lower strength than the DataWriter that disposed the instance, even if
that DataWriter had not unregistered the instance. This has been corrected: when an instance
is disposed, a lower strength DataWriter is not allowed to update the instance as long as the
DataWriter that disposed the instance is still registered as an updater for the instance. Only when
the DataWriter unregisters from the instance can a lower strength DataWriter update the instance
again.

[RTT Issue ID MICRO-1464]

8.4. Previous Releases 236

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Fixed code generation for user-defined enum constants.

The previous version of rtiddsgen shipped with Connext DDS Micro contained a bug which pre-
vented the numerical constants assigned to an enum'’s values to be correctly handled in the generated
code.

This error has been fixed and IDL enum types are now correctly translated into C/C++ data types
with the correct constants.

[RTT Issue ID MICRO-1483]

Hostname is verified as specified in RFC-952 and RFC-1123

Connext DDS Micro relied on gethostbyname() to resolve hostnames. However, if a name resolver
was not available it was possible to specify illegal names.

This has been corrected and only legal names, as defined by RFC-952 and RFC-1123, are resolved.
[RTT Issue ID MICRO-1489]

DDS_<Foo>Seq APIs Were Missing

The DDS sequence APIs for the built-in DDS types, such as DDS_ LongSeq etc, were missing. The
workaround was to use CDR_ <Foo>Seq instead.

This issue has been corrected in this release, with the missing sequence APIs now included.

[RTT Issue ID MICRO-1493]

DataReader Could Reject All Subsequent Samples From a DataWriter

In the previous release, given a DataReader receiving samples from a DataWriter, after the
DataWriter had written approximately (2732) - max_samples_per_remote_ writer number of sam-
ples, no more samples from that DataWriter would be received by the DataReader. Instead, every
subsequent sample from the DataWriter would be rejected. This was caused by an incorrect update
of an internal counter of the DataReader.

[RTT Issue ID MICRO-1500]

POSIX Thread Priorities Not Changeable

It was not possible to change the priority of POSIX threads created in previous releases of Connext
DDS Micro. Instead, a POSIX thread inherited the priority of its parent. This has been fixed in
this release.

[RTT Issue ID MICRO-1502]

8.4. Previous Releases 237

RTI Connext DDS Micro Documentation, Version 2.4.14.0

RTPS DATA Submessages with K-flag Set Were Dropped

Previously, RTPS DATA submessages with the K-flag set (indicating a serialized key payload)
were not processed and instead dropped by a DataReader. This has been fixed and such DATA
submessages are now processed and accepted.

[RTT Issue ID MICRO-1511]

8.5 Known lIssues

8.5.1 Maximum Number of Components Limited to 58

The maximum number of components that can be registered is limited to 58.

8.5.2 CMake version 3.6 or Higher is Required to Build VxWorks with CMake

Limitations in CMake prior to 3.6 required forcing the compiler to a specific path. However, this
resulted in warnings from CMake 3.6 and higher that this feature has been deprecated and instead
the CMAKE_TRY_COMPILE_TARGET_TYPE should be used to prevent linking.

Unless there are specific needs,there are no plans to support CMake prior to 3.6 when building for
VxWorks.

8.5.3 Endpoint Discovery Requires Unique Object IDs Across All Remote Endpoints

When using static endpoint discovery (DPSE), RTI Connext Micro requires that the object_id for
statically asserted remote endpoints must be unique across all remote endpoints, as opposed to
just between remote endpoints within the same participant. Note, this restriction was incorrectly
documented as removed in version 2.4.1.

8.5.4 Compiler warnings on VxWorks

When compiling for VxWorks 6.9 with the -Wconversion flag there are compiler warnings of the
type:

warning: conversion to 'DDS_Boolean' from 'int' may alter its value

These compiler warnings seem to be an issue with GCC for VxWorks and can be ignored. The
problem is that returning a value from a expression seems to always be treated as an unbounded
int as opposed to an int with a value of 0 or 1 as the C standard dictates.

8.5. Known Issues 238

RTI Connext DDS Micro Documentation, Version 2.4.14.0

8.5.5 OSAPI Does Not Always Detect Endianess

osapi_cc_stdc.h detects the CPU endianness by checking GCC predefined macros, such as
~ BYTE ORDER . However, some versions of GCC does not set these macros, for exam-
ple GCC for VxWorks. If osapi_cc_stdc.h does not find any of the flags, it incorrectly sets the
CPU to little endian.

In this case it is émportant that one of the following preprocessor macros are defined:
o« RTI_ENDIAN_BIG The CPU is big-endian
e RTI_ENDIAN_LITTLE The CPU is little-endian

NOTE: The VxWorks cmake toolchain file from RTI set these based on CPU type in the target
name (—name option).

8.5.6 Missing Checks for max_routes_per reader and max_routes_per_writer

The DDS_DataReader(Qos.reader_resource_limits.max_routes_per_writer and
DDS_DataWriterQos.writer_resource_limits.max_routes_per_reader fields are missing
a check that the values are in the range [1,2000]. The fields are also missing from the methods
DDS_DataReaderQos_is_equal and DDS_DataWriterQos_is_equal, respectively.

8.5. Known Issues 239

Chapter 9

Benchmarks

The benchmark section provides metrics for Connext DDS Micro. The information contained here
is only meant as guidance and actual numbers will vary across different hardware and compilers.
Please note that the numbers are generated before the final release and the source-code line count
and library sizes may vary slightly. Performance numbers are always valid for the final release.

9.1 Latency Benchmarks

Latency measurements are provided for two different environments:

o Xeon — End-to-End latency measured on high-performance Xeon machines in a dedicated
network using the RTT Connext DDS Performance Test tool.

e Raspberry Pi — Round-trip latencies measured on stock Raspberry Pi’s in a dedicated network
using the RTI Connext DDS Performance Test tool.

The latency is measured by sending one PING sample and wait for the Echoer to return the PONG
sample. The sender records the time it took to receive the PONG sample and divides the result
by 2. The test is repeated a number of times for each size. Note that the end-to-end latency is
measured.

Interpretation of the measurements (all numbers are reported in micro-seconds):
o Length - The size of the DDS sample payload (UDP overhead is _not__ included) in bytes.
o Ave - Average latency
e Std - Standard deviation
e Min - The minimum latency
¢ Max - The maximum latency
e 50% - The 50th percentile latency
e 90% - The 90th percentile latency

240

https://community.rti.com/downloads/rti-connext-dds-performance-test
https://community.rti.com/downloads/rti-connext-dds-performance-test

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e 99% - The 99th percentile latency
e 99.99% - The 99.99th percentile latency

9.1.1 Xeon
The end-to-end latency is measured between two identical machines using the test configuration
below and running the RTT Connext DDS Performance Test tool.
The test environment consists of:

e x86 64 CentOS Linux release 7.1.1503

o RTI Perftest 3.0

e Switch Configuration: D-Link DXS-3350 SR:

— 176Gbps Switching Capacity

Dual 10-Gig stacking ports and optional 10-Gig uplinks

Stacks up to 8 units per stack
— 4MB (Packet Buffer Size)
— 48 x 10/100/1000BASE-T ports
e Machine:
— Intel 1350 Gigabit NIC
— Intel Core i7 CPU:
* 12MB cache
% 6 Cores (12 threads)
* 3.33 GHz CPU speed
— 12GB memory

C++ Best Effort Keyed 1 Gbps

Length | Ave (us) | Std | Min (us) | Max (us) | 50% | 90% | 99% | 99.99%
32 25 0.6 | 23 83 25 25 26 28

64 25 0.5 | 24 295 25 25 26 28

128 26 0.5 | 25 80 26 27 28 30

256 30 0.7 | 28 316 29 30 31 33
1024 44 0.6 | 43 334 44 44 46 49
4096 76 1.0 | 75 360 7 7 78 81
8192 114 0.8 | 112 363 114 | 114 | 115 | 118
63000 | 605 1.1 | 603 659 605 | 606 | 608 | 623

9.1. Latency Benchmarks 241

https://community.rti.com/downloads/rti-connext-dds-performance-test

RTI Connext DDS Micro Documentation, Version 2.4.14.0

C++4 Best Effort Unkeyed 1 Gbps

Length | Ave (us) | Std | Min (us) | Max (us) | 50% | 90% | 99% | 99.99%
32 24 0.5 | 23 299 24 24 25 27

64 25 0.6 | 23 308 25 25 26 28

128 26 0.6 | 24 276 26 26 27 29

256 28 0.6 | 27 316 28 28 30 32
1024 43 0.5 | 42 312 43 43 44 47
4096 76 0.8 | 74 434 7 7 78 81
8192 113 0.7 | 112 360 113 | 114 | 115 | 118
63000 | 604 1.3 | 603 790 604 | 606 | 607 | 624

C++ Reliable Keyed 1 Gbps

Length | Ave (us) | Std | Min (us) | Max (us) | 50% | 90% | 99% | 99.99%
32 27 1.4 | 25 309 27 30 31 33

64 28 1.9 | 26 590 27 31 33 35

128 30 1.3 | 27 312 29 32 33 35

256 33 1.3 |29 313 32 35 36 39
1024 47 1.3 | 45 527 47 49 50 54
4096 80 1.8 | 78 594 80 80 82 86
8192 117 1.8 | 115 605 117 | 119 | 120 | 123
63000 | 610 1.3 | 605 667 610 | 612 | 613 | 628

C++ Reliable Unkeyed 1 Gbps

Length | Ave (us) | Std | Min (us) | Max (us) | 50% | 90% | 99% | 99.99%
32 27 1.4 |25 559 26 29 30 33

64 28 1.5 | 25 322 26 31 32 34

128 29 1.5 | 25 317 29 31 32 35

256 32 1.3 | 30 581 32 34 35 37
1024 47 1.2 | 45 342 46 49 50 52
4096 80 1.3 | 78 356 79 81 83 85
8192 117 1.5 | 115 546 116 | 119 | 120 | 123
63000 | 609 1.2 | 607 662 609 | 611 | 613 | 625

9.1.

Latency Benchmarks

242

RTI Connext DDS Micro Documentation, Version 2.4.14.0

9.1.2 Raspberry Pi

The end-to-end latency is measured between two identical machines using the test configuration

below and running the RTI Connext DDS Performance Test tool.

The test environment consists of:

e 2 x Raspberry Pi 4 Model B

e 1 Gbps network

C++ Best Effort Keyed 1 Gbps

Length | Ave (us) | Std | Min (us) | Max (us) | 50% | 90% | 99% | 99.99%
32 67 5.6 | 62 274 65 78 80 160

64 68 5.7 |63 223 66 79 81 162
128 69 5.5 | 64 225 67 80 82 160
256 71 5.5 | 67 232 70 83 85 158
512 77 5.7 | 72 245 75 88 90 165
1024 89 7.2 | 83 236 86 100 | 103 | 178
8192 182 8.6 | 176 635 181 | 183 | 205 | 405
63000 | 865 42.6 | 849 2138 860 | 872 | 894 | 2039

C++ Best Effort Unkeyed 1 Gbps

Length | Ave (us) | Std | Min (us) | Max (us) | 50% | 90% | 99% | 99.99%
32 64 4.5 | 61 220 64 65 78 159

64 67 5.3 | 61 214 65 7 80 151
128 68 7.1 | 63 2093 66 79 82 155
256 71 5.9 |65 262 69 81 84 172
512 76 5.6 |71 221 74 87 91 162
1024 88 7.3 |81 256 85 99 106 | 176
8192 181 11.5 | 175 1395 180 | 182 | 210 | 412
63000 | 864 43.0 | 848 2698 860 | 871 | 893 | 2149

9.1. Latency Benchmarks

243

https://community.rti.com/downloads/rti-connext-dds-performance-test

RTI Connext DDS Micro Documentation, Version 2.4.14.0

C++ Reliable Keyed 1 Gbps

Length | Ave (us) | Std | Min (us) | Max (us) | 50% | 90% | 99% | 99.99%
32 87 5.5 |79 290 86 92 101 | 215

64 88 5.1 | 81 259 86 92 105 | 196
128 89 4.9 | 81 242 88 93 105 | 188
256 91 5.0 | &4 274 90 96 109 | 211
512 96 5.2 | 89 316 95 101 | 113 | 223
1024 109 74 | 101 279 106 | 120 | 131 | 228
8192 183 9.8 | 176 518 181 | 189 | 211 | 432
63000 | 870 45.2 | 849 2494 865 | 881 | 904 | 2363

C++ Reliable Unkeyed 1 Gbps

Length | Ave (us) | Std | Min (us) | Max (us) | 50% | 90% | 99% | 99.99%
32 85 5.6 |78 276 83 91 102 | 200

64 87 53 |79 267 86 92 103 | 185
128 88 5.1 | 81 270 87 93 103 | 215
256 90 7.3 | 82 2149 89 95 107 | 218
512 96 6.2 | 88 1713 94 100 | 114 | 180
1024 108 9.8 | 101 2157 105 | 118 | 131 | 229
8192 184 11.0 | 176 478 181 | 190 | 222 | 420
63000 | 868 43.5 | 849 2234 863 | 880 | 905 | 2040

9.2 Throughput Benchmark

Latency measurements are provided for two different environments:

e Xeon — End-to-End latency measured on high-performance Xeon machines in a dedicated
network using the RTT Connext DDS Performance Test tool.

e Raspberry Pi — Round-trip latencies measured on stock Raspberry Pi’s in a dedicated network
using the RTIT Connext DDS Performance Test tool.

The throughput is measured by sending as fast as possible. The subscriber measures the throughput
results.

Interpretation of the measurements:
o Length - The size of the DDS sample payload (UDP overhead is not included)
e Total Samples - The number of samples written.
o Ave Samples/s - The number of samples written per second.

o Ave Mbps - The bandwidth utilization for the payload based on Length and Samples/sec.

9.2. Throughput Benchmark 244

https://community.rti.com/downloads/rti-connext-dds-performance-test
https://community.rti.com/downloads/rti-connext-dds-performance-test

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e Lost Samples - On the subscriber side the number of samples received is counted against what
is expected.

o Lost Samples % - Percentage of Lost Samples compared to the Total Samples.

9.2.1 Xeon

The end-to-end latency is measured between two identical machines using the test configuration
below and running the RTT Connext DDS Performance Test tool.

The test environment consists of:

e x86 64 CentOS Linux release 7.1.1503
e RTI Perftest 3.0
e Switch Configuration: D-Link DXS-3350 SR:

— 176Gbps Switching Capacity

— Dual 10-Gig stacking ports and optional 10-Gig uplinks

Stacks up to 8 units per stack
4AMB (Packet Buffer Size)

— 48 x 10/100/1000BASE-T ports

e Machine:

— Intel 1350 Gigabit NIC
— Intel Core i7 CPU:
* 12MB cache

% 6 Cores (12 threads)
x 3.33 GHz CPU speed

— 12GB memory

C++ Best Effort Keyed 1 Gbps

Length | Total Samples | Ave Samples/s | Ave Mbps | Lost Samples | Lost Samples %
32 16044363 267348 68.4 4498829 21.90

64 16288384 271414 139.0 3937652 19.47

128 16544680 275683 282.3 3364334 16.90

256 15012642 250180 512.4 3461644 18.74

1024 6389009 106476 872.3 0 0.00

4096 1766545 29440 964.7 0 0.00

8192 899145 14984 982.0 0 0.00

63000 | 118019 1966 991.3 0 0.00

9.2. Throughput Benchmark

245

https://community.rti.com/downloads/rti-connext-dds-performance-test

RTI Connext DDS Micro Documentation, Version 2.4.14.0

C++4 Best Effort Unkeyed 1 Gbps

Length | Total Samples | Ave Samples/s | Ave Mbps | Lost Samples | Lost Samples %
32 16006959 266723 68.3 4975838 23.71

64 15669477 261101 133.7 5688987 26.64

128 16035834 267206 273.6 3696902 18.73

256 14506332 241748 495.1 5127339 26.12

1024 6522231 108698 890.5 0 0.00

4096 1776531 29607 970.2 0 0.00

8192 901733 15028 984.9 0 0.00

63000 | 118065 1967 991.7 0 0.00

9.2.2 Raspberry Pi

The throughput is measured between two identical machines using the test configuration below and
running the RTT Connext DDS Performance Test tool.

The test environment consists of:

e 2 x Raspberry Pi 4 Model B

e 1 Gbps network

C++ Best Effort Keyed 1 Gbps

Length | Total Samples | Ave Samples/s | Ave Mbps | Lost Samples | Lost Samples %
32 1029281 34286 8.8 86039 7.71
64 1002008 33383 17.1 103991 9.40
128 1003392 33424 34.2 105887 9.55
256 1010662 33667 69.0 97505 8.80
512 999412 33293 136.4 95499 8.72
1024 1005618 33503 274.5 70438 6.55
8192 373512 12444 815.5 4490 1.19
63000 | 57066 1901 958.2 4 0.01

9.2. Throughput Benchmark

246

https://community.rti.com/downloads/rti-connext-dds-performance-test

RTI Connext DDS Micro Documentation, Version 2.4.14.0

C++4 Best Effort Unkeyed 1 Gbps

Length | Total Samples | Ave Samples/s | Ave Mbps | Lost Samples | Lost Samples %
32 1075843 35848 9.2 28865 2.61

64 1078018 35921 18.4 46836 4.16

128 1075975 35846 36.7 49085 4.36

256 1051393 35032 1.7 71874 6.40

512 1056848 35206 144.2 38693 3.53

1024 1014000 33786 276.8 65777 6.09

8192 368939 12293 805.7 2060 0.56

63000 | 57094 1902 958.6 2 0.00

C++ Reliable Keyed 1 Gbps

Length | Total Samples | Ave Samples/s | Ave Mbps | Lost Samples | Lost Samples %
32 897966 29921 7.7 0 0.00

64 900673 30011 15.4 90 0.01

128 911776 30382 31.1 90 0.01

256 904006 30122 61.7 320 0.04

512 889059 29626 121.3 443 0.05

1024 885718 29513 241.8 95 0.01

8192 101075 3366 220.6 516764 83.64

63000 | 31038 1032 520.3 173185 84.80

C++ Reliable Unkeyed 1 Gbps

Length | Total Samples | Ave Samples/s | Ave Mbps | Lost Samples | Lost Samples %
32 910317 30332 7.8 0 0.00

64 907643 30244 15.5 0 0.00

128 906586 30209 30.9 0 0.00

256 905877 30184 61.8 0 0.00

512 895232 29830 122.2 0 0.00

1024 887834 29584 242.4 0 0.00

8192 115887 3860 253.0 166745 59.00

63000 | 56024 1866 940.5 604 1.07

9.2. Throughput Benchmark

247

RTI Connext DDS Micro Documentation, Version 2.4.14.0

9.3 Heap Benchmarks

The “Heap” section provides information about how much dynamically allocated memory is used
by Connext DDS Micro. It should be noted that exact numbers are very difficult to estimate and
that the numbers are only for guidance. Please refer to ResourceModule for a more information on
resource limits and memory usage.

On Linux, for each heap allocation using malloc, malloc_usable size() is called to determine the
actual size of each allocation. The numbers include resources used by the RH_SM, WH_ SM,
and UDP components, but not the resources used by the dynamic discovery component (DPDE)
or the static discovery component (DPSE). In addition, please note that the memory does not
include memory for the actual user-data. This must be added according to the resource limits. The
numbers are for the release libraries.

The size for entities that are controlled by resource limits are provided. In addition, a formula is
provided to estimate the amount of memory used by a data reader and data writer as these are
typically the ones that consume most of the memory.

9.3. Heap Benchmarks 248

../../api_c/html/group__DDSUserManuals__ResourceModule.html

RTI Connext DDS Micro Documentation, Version 2.4.14.0

9.3.1 Heap Usage

RTI Connext Micro Memory Map

DomainParticipantFactory

max components OSAPI max_receive ports

max_buffer size max_destination ports
Component

max participants

DomainParticipant [15 KB]

NOTE: One receive-buffer
local topic allocation local type allocation is allocated per receive port

Topic Type UDP
topic_name ype_name max message size

local_publisher allocation

Publisher
local writer_ allocation
DataWriter
i i remote participant allocation
DataWriter History max_samples - D p:
: - "Discovered" Participant
: max_samples_per instance :
‘ instance | ‘ sample | ‘ sample ‘
max_instances

[sample |

\ instance |

sample

remote writer allocation
"Discovered” DataWriters

max_remote readers

max_routes_per_reader Remote
DataReader

matching reader writer pair allocation
matching writer reader pair allocation

local subscriber allocation

Subscriber

local reader allocation

DataReader remote_reader_allocation
DataReader History max_samples "Discovered" DataReader

max_samples_per_ instance

max_instances

[sample | [sample | [sample |

instance
max_remote writers per instance

[sample | | sample |

The samples are allocated from max_samples
max remote writers
Remote DataWriter

max_routes_per writer

[sample | [sample | [sample |

maxX_samples_per_ remote_writer

The following table shows how much memory each resource limit uses in the memory model:

9.3. Heap Benchmarks 249

RTI Connext DDS Micro Documentation, Version 2.4.14.0

Resource limit Size in Bytes | Notes
DomainParticipantFactory 2512

max__participants 15558 This is the memory for an empty participai
max__components N/A

local topic allocation 140 Add strlen(topic name) + 1
local type allocation 36 Add strlen(type name) + 1
local publisher_allocation 268

local subscriber allocation 268

local reader allocation 2285 The sample and instance resources must be
local writer allocation 2727 The sample and instance resources must be
matching writer_reader_pair_ allocation 28

remote_ participant_ allocation 905

remote writer allocation about 600 This includes the topic_ name
remote_reader allocation about 600 This includes the topic_ name
max__destination_ ports 77

max_ receive_ ports 376

(DataReader) max_ instances 271

(DataReader) max samples 160

(DataReader) max_remote writers 391

(DataReader) max_routes_ per_ writer 87

(DataReader) max_samples_ per_instance 0

(DataReader) max_remote_ writers_per_instance | 0

(DataReader) max_samples per_remote writer | 0

(DataWriter Best Effort) max instances 80

(DataWriter Best Effort) max samples 116

(DataWriter Best Effort) max remote readers 391

(DataWriter Best Effort) max_routes_per_reader | 87

(DataWriter Reliable) max_instances 79

(DataWriter Reliable) max_samples 480

(DataWriter Reliable) max_remote_ readers 391

(DataWriter Reliable) max_routes_per_reader 87

(DataWriter) max__samples__per__instance 0

max_ locators_ per_ discovered_ participant 83

max__buffer size 0

max__message_ size 0

matching reader_ writer_pair_ allocation 0

Calculating Memory Usage for DDS Entities

The following short-hands are used in these formulas:

e rl_ms - resource_ limits.max_ samples

e 1l _mi - resource_limits.max_instances

e 1l mrw - datareader resource limits.max_remote writers

e rl_mrpw - datareader_resource_ limits.max_ routes_ per_writer

9.3. Heap Benchmarks

250

RTI Connext DDS Micro Documentation, Version 2.4.14.0

e wrl mrw - datawriter resource limits.max_remote readers

e wrl_mrpr - datawriter_ resource_ limits.max_ routes_ per_reader

Type

(36) + string.len(type_name) + 1

Topic

(140) + string.len(topic_name) + 1

DDS DataReader

(2285) + (rl_ms * 160) + (rl_mi * 271) + (rl_mrw * 391) + (rl_mrpw * 87)

DDS DataWriter

(2727) + (rl_ms * 116) + (rl_mi * 79) + (wrl_mrr * 391) + (wrl_mrpr * 87)

RemoteParticipant

(6501) + (16 * 24)

RemotePublication

(149) + string.len(topic_name) + 1 + (16 * 24)

RemoteSubscription

(173) + strlen(topic_name) + 1 + (16 * 24)

9.3. Heap Benchmarks 251

RTI Connext DDS Micro Documentation, Version 2.4.14.0

9.3.2 Dynamic Discovery (DPDE) Heap Usage Information

The DPDE plugin is a DDS application that advertises locally created DDS entities and listens for
DDS entities available in the DDS data-space. It is implemented using the DDS APIs supported
by Connext DDS Micro.

The DPDE plugin creates the following DDS entities:
e One DDS Publisher
e One DDS Subscriber
e Three DDS Topics
e Three DDS DataReaders
e Three DDS DataWriters
The DPDE plugin also registers the following three types:
e DDS_ ParticipantBuiltinTopicData
e« DDS PublicationBuiltinTopicData
e DDS_ SubscriptionBuiltinTopicData

All heap memory allocated by the DPDE plugin is allocated after the DDS DomainParticipant is
created (no additional memory is allocated after the DDS DomainParticipant is enabled).

DPDE Plugin | Release Size(B)
Plugin 66488

9.3.3 Static Discovery (DPSE) Heap Usage Information

The DPSE plugin is a DDS application that only advertises locally created DDS DomainPar-
ticipants and listens for other DDS DomainParticipants available in the DDS data-space. It is
implemented using the DDS APIs supported by Connext DDS Micro.

The DPSE plugin creates the following DDS entities:
e One DDS Publisher
e One DDS Subscriber
e One DDS Topics
e One DDS DataReader
e One DDS DataWriter
The DPSE plugin also registers the following type:
e DDS_ ParticipantBuiltinTopicData

All heap memory allocated by the DPSE plugin is allocated after the DDS DomainParticipant is
created (no additional memory is allocated after the DDS DomainParticipant is enabled).

9.3. Heap Benchmarks 252

RTI Connext DDS Micro Documentation, Version 2.4.14.0

DSDE Plugin | Release Size(B)
Plugin 32020

9.4 Source Line Count

This section gives the size of each library in terms off effective lines of source-code (ELOC) and is
gathered from the pre-processed files only for the release library. The ELOC number only include
lines with source that directly contribute to the object-files. For example, the following are _not__
included:

e comments

o white-space

e lines with only braces

e type, structure, constant definitions

The ELOC number by itself is not very useful, but is provided since it is a frequently asked question.

Library ELOC
rti me 30093
discdpde 3399
discdpse 1696
rh sm + wh_sm | 1889

9.5 Library Sizes

The size of each shared library’s _text_ , and _data__ segment in bytes is determined using the
size command on 64 bit Darwin. Please note that these numbers can vary significantly between
different targets.

Library Text (B) | Data (B)
rti__me 409600 | 8192
discdpde 40960 4096
discdpse 28672 4096

rh sm 20480 4096
wh_sm 12288 4096
rti_me_ cpp | 65536 12288

9.4. Source Line Count 253

RTI Connext DDS Micro Documentation, Version 2.4.14.0

0.6 Threads

RTI Connext DDS Micro uses multiple threads.
participant and cannot easily be removed. All the UDP threads are managed by the UDP transport

and a different UDP transport implementation can choose a different threading model.

Thread Heap | Default Stack (1)
Timer N/A | 16384
UDP Receive | 8192 | 16384

Notes:

The timer thread is managed by the domain

1. The “Default Stack” is the stack size a thread is created with. It is not the maximum

stack size needed at run-time based on the deepest call-path.

2. This is the default maximum message size property. Each UDP thread allocates its own

receive buffer.

9.6. Threads

254

Chapter 10
Copyrights

© 2021 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
March 2021.

Trademarks

Real-Time Innovations, RTI, NDDS, Connext, the RTI logo, 1RTT and the phrase, “Your Systems.
Working as one,” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc. The software described in this document is furnished
under and subject to the RTT software license agreement. The software may be used or copied only
under the terms of the license agreement.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or
approved by, Microsoft Corporation.

Technical Support

Real-Time Innovations, Inc.

232 E. Java Drive

Sunnyvale, CA 94089

Phone: (408) 990-7444

Email: support@rti.com

Website: https://support.rti.com/

255

mailto:support@rti.com
https://support.rti.com/

RTI Connext DDS Micro Documentation, Version 2.4.14.0

© 2021 RTI

256

Chapter 11

Contact Support

We welcome your input on how to improve RTI Connext DDS Micro to suit your needs. If
you have questions or comments about this release, please visit the RTI Customer Portal, https:
//support.rti.com. The RTI Customer Portal provides access to RTI software, documentation, and
support. It also allows you to log support cases.

To access the software, documentation or log support cases, the RTT Customer Portal requires a
username and password. You will receive this in the email confirming your purchase. If you do not
have this email, please contact license@rti.com. Resetting your login password can be done directly
at the RTI Customer Portal.

257

https://support.rti.com
https://support.rti.com
mailto:license@rti.com

Chapter 12

Join the Community

RTIT Community provides a free public knowledge base containing how-to guides, detailed solutions,
and example source code for many use cases. Search it whenever you need help using and developing
with RTT products.

RTIT Community also provides forums for all RTT users to connect and interact.

258

https://community.rti.com/
https://community.rti.com/

	1 Introduction
	1.1 What is RTI Connext DDS Micro?
	1.1.1 RTI Connext DDS Micro Cert versus RTI Connext DDS Micro
	1.1.2 Optional Certification Package
	1.1.3 Publish-Subscribe Middleware

	1.2 Supported DDS Features
	1.2.1 DDS Entity Support
	1.2.2 DDS QoS Policy Support

	1.3 Standards and Interoperability
	1.3.1 DDS Wire Compatibility
	1.3.2 Profile / Feature
	1.3.3 DDS API Support

	1.4 RTI Connext DDS Documentation
	1.5 OMG DDS Specification
	1.6 Other Products

	2 Installation
	2.1 Installing the RTI Connext DDS Micro Package
	2.2 Setting Up Your Environment
	2.3 Building Connext DDS Micro

	3 Getting Started
	3.1 Define a Data Type
	3.2 Generate Type Support Code with rtiddsgen
	3.3 Configure UDP Transport
	3.4 Create DomainParticipant, Topic, and Type
	3.4.1 Register Type
	3.4.2 Create Topic of Registered Type
	3.4.3 DPSE Discovery: Assert Remote Participant

	3.5 Create Publisher
	3.6 Create DataWriter
	3.6.1 DPSE Discovery: Assert Remote Subscription
	3.6.2 Writing Samples

	3.7 Create Subscriber
	3.8 Create DataReader
	3.8.1 DPSE Discovery: Assert Remote Publication
	3.8.2 Receiving Samples
	3.8.3 Filtering Samples

	3.9 Examples
	3.10 Example Generation
	3.10.1 Description of Examples
	3.10.2 How to Compile the Generated Examples
	3.10.3 How to Run the Generated Examples

	4 User’s Manual
	4.1 Data Types
	4.1.1 Introduction to the Type System
	Sequences
	Strings and Wide Strings

	4.1.2 Creating User Data Types with IDL
	4.1.3 Working with DDS Data Samples

	4.2 DDS Entities
	4.3 Sending Data
	4.3.1 Preview: Steps to Sending Data
	4.3.2 Publishers
	4.3.3 DataWriters
	4.3.4 Publisher QosPolicies
	4.3.5 DataWriter QosPolicies

	4.4 Receiving Data
	4.4.1 Preview: Steps to Receiving Data
	4.4.2 Subscribers
	4.4.3 DataReaders
	4.4.4 Using DataReaders to Access Data (Read & Take)
	4.4.5 Subscriber QosPolicies
	4.4.6 DataReader QosPolicies

	4.5 DDS Domains
	4.5.1 Fundamentals of DDS Domains and DomainParticipants
	4.5.2 Discovery Announcements

	4.6 Transports
	4.6.1 Introduction
	4.6.2 Transport Registration
	4.6.3 Transport Addresses
	4.6.4 Transport Port Number
	4.6.5 RTPS
	Registration of RTPS
	Overriding the Builtin RTPS Checksum Functions
	Example

	4.6.6 INTRA Transport
	Registering the INTRA Transport
	Reliability and Durability
	Threading Model

	4.6.7 UDP Transport
	Registering the UDP Transport
	Threading Model
	UDP Configuration
	UDP Transformations

	4.7 Discovery
	4.7.1 What is Discovery?
	Simple Participant Discovery
	Simple Endpoint Discovery

	4.7.2 Configuring Participant Discovery Peers
	peer_desc_string

	4.7.3 Configuring Initial Peers and Adding Peers
	4.7.4 Discovery Plugins
	Dynamic Discovery Plugin
	Static Discovery Plugin

	4.8 Configuring Resource Limits
	4.8.1 Introduction
	4.8.2 Resource Limits
	DomainParticipantFactoryQos
	DomainParticipantQos
	DataReaderQos
	DataWriterQos
	OSAPI
	UDP Transport
	Dynamic Participant Static Endpoint (DPSE)
	Dynamic Participant Dynamic Endpoint (DPDE)
	Memory Map

	4.8.3 Dynamic Memory Allocation
	4.8.4 Internal Resource Allocation

	4.9 Generating Type Support with rtiddsgen
	4.9.1 Why Use rtiddsgen?
	4.9.2 IDL Type Definition
	4.9.3 Generating Type Support
	C
	C++
	Notes on Command-Line Options
	Generated Type Support Files

	4.9.4 Using custom data-types in Connext DDS Micro Applications
	4.9.5 Customizing generated code
	4.9.6 Unsupported Features of rtiddsgen with Connext DDS Micro

	4.10 Threading Model
	4.10.1 Introduction
	4.10.2 Architectural Overview
	4.10.3 Threading Model
	OSAPI Threads
	UDP Transport Threads
	General Thread Configuration

	4.10.4 Critical Sections
	Calling DDS APIs from listeners

	4.11 Batching
	4.11.1 Overview
	4.11.2 Interoperability
	4.11.3 Performance
	4.11.4 Example Configuration

	4.12 Message Integrity Checking
	4.12.1 RTPS Checksum
	4.12.2 Configurations
	Selecting a checksum algorithm
	Configuring the DDS DomainParticipant

	4.12.3 Participant Discovery and Participant Compatibility
	4.12.4 Interoperability with Connext DDS Professional

	4.13 Working With Sequences
	4.13.1 Introduction
	4.13.2 Working with Sequences
	Overview
	Working with IDL Sequences
	Working with Application Defined Sequences

	4.14 Debugging
	4.14.1 Overview
	4.14.2 Configuring Logging
	4.14.3 Log Message Kinds
	4.14.4 Interpreting Log Messages and Error Codes

	4.15 Connext DDS Micro Hardcoded Resource Limits
	4.15.1 Introduction
	4.15.2 Summary
	4.15.3 Operating Services API (OSAPI)
	4.15.4 DDS C API
	4.15.5 Dynamic Discovery Plugin (DPDE)
	4.15.6 Static Discovery Plugin (DPSE)
	4.15.7 RTPS Protocol Implementation (RTPS)

	4.16 Building Against FACE Conformance Libraries
	4.16.1 Requirements
	Connext DDS Micro Source Code
	FACE Conformance Tools
	CMake

	4.16.2 FACE Golden Libraries
	Building the FACE Golden Libraries

	4.16.3 Building the Connext DDS Micro Source

	5 Building and Porting Connext DDS Micro
	5.1 RTI Connext DDS Micro Supported Platforms
	5.1.1 Reference Platforms
	5.1.2 Known Customer Platforms

	5.2 Building the Connext DDS Micro Source
	5.2.1 Introduction
	5.2.2 The Host and Target Environment
	The Host Environment
	The Target Environment

	5.2.3 Overview of the Connext DDS Micro Source
	Directory Structure

	5.2.4 Compiling Connext DDS Micro
	Building Connext DDS Micro with rtime-make
	Manually Building with CMake

	5.2.5 Connext DDS Micro Compile Options
	Connext DDS Micro Debug Information
	Connext DDS Micro Platform Selection
	Connext DDS Micro Compiler Selection
	Connext DDS Micro UDP Options

	5.2.6 Cross-Compiling Connext DDS Micro
	5.2.7 Custom Build Environments
	Importing the Connext DDS Micro Code

	5.3 Compiling the Connext DDS Micro Source for QNX™
	5.3.1 Introduction
	5.3.2 Build environment
	5.3.3 Compiling with rtime-make
	5.3.4 Required QNX kernel configuration

	5.4 Building the Connext DDS Micro Source for FreeRTOS
	5.4.1 Introduction
	5.4.2 Overview
	5.4.3 Configuration
	5.4.4 CMake Support

	5.5 Building the Connext DDS Micro Source for ThreadX
	5.5.1 Introduction
	5.5.2 Overview
	5.5.3 Configuration
	5.5.4 CMake Support

	5.6 Compiling the Connext DDS Micro Source for AUTOSAR
	5.6.1 Introduction
	5.6.2 AUTOSAR Configuration
	Properties
	Tasks
	Critical Sections
	TCP/IP Configuration
	Events
	Semaphores
	Memory

	5.6.3 AUTOSAR Port Details
	Logging
	WaitSets
	UDP Automatic Configuration

	5.6.4 Compiling
	Building Connext DDS Micro with rtime-make
	Importing the Connext DDS Micro Source Code

	5.6.5 Interoperability

	5.7 Porting RTI Connext DDS Micro
	5.7.1 Updating from Connext DDS Micro 2.4.8 and earlier
	5.7.2 Directory Structure
	5.7.3 OS and CC Definition Files
	5.7.4 Heap Porting Guide
	5.7.5 Mutex Porting Guide
	5.7.6 Semaphore Porting Guide
	5.7.7 Process Porting Guide
	5.7.8 System Porting Guide
	Migrating a 2.2.x port to 2.3.x

	5.7.9 Thread Porting Guide

	5.8 Port Validation
	5.8.1 Introduction
	5.8.2 Overview
	5.8.3 Building the Port Validation Tests
	Building with rtime-make
	Manually building with CMake
	Custom Build Environments

	5.8.4 Running the Tests
	Setting Up a Config File
	Running the tests using a configuration file
	Test Results
	Troubleshooting

	5.8.5 Embedded Platforms
	AUTOSAR Systems
	FreeRTOS Systems

	5.8.6 Porting UTEST

	5.9 Building Connext DDS Micro with compatibility for Connext DDS Micro Cert

	6 Working with RTI Connext DDS Micro and RTI Connext DDS
	6.1 Development Environment
	6.2 Non-standard APIs
	6.3 QoS Policies
	6.4 Standard APIs
	6.5 IDL Files
	6.6 Admin Console
	6.7 Distributed Logger
	6.8 LabVIEW
	6.9 Monitor
	6.10 Recording Service
	6.10.1 RTI Recorder
	6.10.2 RTI Replay
	6.10.3 RTI Converter

	6.11 Spreadsheet Addin
	6.12 Wireshark
	6.13 Persistence Service

	7 API Reference
	8 Release Notes
	8.1 Supported Platforms and Programming Languages
	8.2 What’s New in 2.4.14
	8.2.1 Important Interoperability Changes
	DataWriter’s Default Reliability Changed to Reliable

	8.2.2 Port Validation for Connext DDS Micro
	8.2.3 New Documentation on Compiling Connext DDS Micro for Connext DDS Micro Cert Compatibility
	8.2.4 ThreadX CMake Files and New Documentation on Building Connext DDS Micro for ThreadX + NetX
	8.2.5 Updated Example CMakeLists.txt to Automatically Regenerate Code when IDL or XML File Changes
	8.2.6 Message Logged when Samples Received Out of Order
	8.2.7 Message Logged when Sequence Numbers Received More than Once
	8.2.8 Ability to Send Logs over UDP
	8.2.9 rtime-make Provides Help for a Specific Target
	8.2.10 FreeRTOS CMake Files
	8.2.11 Improved Documentation on Building Connext DDS Micro for AUTOSAR Systems
	8.2.12 Examples Used Undocumented APIs
	8.2.13 New CMake Option to Enable Real-Time Timers on QNX and Linux Systems
	8.2.14 New -showTemplates and -exampleTemplate options for Code Generator

	8.3 What’s Fixed in 2.4.14
	8.3.1 Small Enums Caused Serialization Errors
	8.3.2 -Wcast-function-type and -Wdeprecated Compiler Warnings
	8.3.3 Documentation did not list all Entities that Support Transport QosPolicy
	8.3.4 Generated Examples Registered Wrong Type Name
	8.3.5 For C++ Types Generated by rtiddsgen that have Inheritance, the ParentCclass was also Declared in the Class as Another Member
	8.3.6 DomainParticipant not Rediscovered if Terminated and Restarted Before its Lease Duration Expired
	8.3.7 OSAPI_Log_clear did not Zero Out Log Buffer Memory
	8.3.8 Error in Generated C/C++ Code when Two Members of Different Enumerations had Same Name
	8.3.9 Incorrect Documentation Regarding Changeability of QoS
	8.3.10 Unexpected Behavior when Copying a DDS_UnsignedShortSeq with 0 Length
	8.3.11 Incorrect Range Documented for DDS_ResourceLimitsQosPolicy.max_samples
	8.3.12 Wrong Compiler Option for AUTOSAR Elektrobit Platform caused ‘double’ to Compile as 4 Bytes instead of 8
	8.3.13 Log Message with Random Characters Printed
	8.3.14 Event Masks of Semaphores in AUTOSAR Port were Calculated Incorrectly

	8.4 Previous Releases
	8.4.1 What’s New in 2.4.12.1
	Dynamic memory allocations removed from Dynamic Discovery Plugin
	Support for AUTOSAR Classic
	Support for detecting corrupted RTPS messages
	Reduced default socket send/receive buffer size for QNX systems
	For AUTOSAR the IP address is now used to generate a unique DomainParticipant ID

	8.4.2 What’s Fixed in 2.4.12.1
	PUBLICATION_MATCHED_STATUS and SUBSCRIPTION_MATCHED_STATUS may never have triggered a WaitSet if the status was enabled _after_ the DomainParticipant was enabled
	Unicast DataReader stopped receiving samples after DataWriter matched with a multicast DataReader
	A RTPS max_window_size not divisible by 32 may have resulted in retransmission of wrong sequence number
	POSIX mutex implementation did not conform with FACE Safety Profile
	Waitset with timeout of 0 did not return immediately

	8.4.3 What’s New in 2.4.12
	Shared UDP port for discovery and user-data in a DomainParticipant
	DomainParticipants no longer allocate dynamic memory during deletion
	New QoS parameter to set maximum outstanding samples allowed for remote DataWriter
	New QoS parameter to adjust preemptive ACKNACK period
	Deserialization of Presentation QoS policy

	8.4.4 What’s Fixed in 2.4.12
	Examples used DomainParticipant_register_type instead of FooTypeSupport_register_type
	A DataReader and DataWriter with incompatible liveliness kind and infinite lease_duration matched
	Warning at compilation time for FreeRTOS port
	Using DDS_NOT_ALIVE_INSTANCE_STATE caused compilation error in C and C++
	Seq_copy() did not work when the source sequence is a loaned/discontiguous sequence
	Warnings when compiling the example generated by Code Generator
	Unable to generate code for XML or XSD defined types
	Linker error in C++ application when C types were used
	Failure to link for VxWorks RTP using shared libraries compiled with CMake
	rtiddsgen may have failed on Windows systems when -jre was specified
	rtime-make did not work when it was started from different shell than Bash
	Linker error when using shared libraries on VxWorks systems
	A run-time error may have occurred on Windows or when compiling for FACE when using hostnames in the peer list
	Entity ID generation was not thread-safe
	DomainParticipant creation failed if active interface had invalid IP
	rtime-make did not work when there was a space in the installation path
	Sample filtering methods were always added to the subscriber code for C
	‘Failure to give mutex’ error
	UDP interface warning using valid interfaces
	A DataReader May Stop Receiving Samples When Filtering Callbacks Are Used
	DDS_WaitSet_wait() returned DDS_RETCODE_ERROR if unblocked with no active conditions
	Large timeout values may have caused segmentation fault
	HelloWorld_dpde_waitset C++ example uses wrong loop variable for printing data
	WaitSet_wait returned generic error when returned condition sequence exceeded capacity
	Publication handle not set in SampleInfo structure when on_before_sample_commit() called
	Duplicate DATA messages are sent to multicast in some cases
	GUID generation on QNX for processes run one after another may lead to duplicate GUIDs
	Read/take APIs returned more than depth samples if an instance returned to alive without application reading NOT_ALIVE sample
	Segmentation fault if OSAPI_Semaphore_give() was called from one thread while another called OSAPI_Semaphore_delete()
	Communication problems between Connext DDS Professional 6 and Connext DDS Micro 2.4.11
	OSAPI_System_get_ticktime() not implemented for FreeRTOS

	8.4.5 What’s New in 2.4.11
	Support for ThreadX/NetX
	Batching (reception only)
	UDP Transformations
	Optionally exclude builtin UDP Transport from compilation
	Publication handle of DataWriter now provided upon DataReaderListener sample loss
	DataWriters offer TOPIC presentation
	New warning if a configured UDP transport does not have any interface

	8.4.6 What’s Fixed in 2.4.11
	MICRO-1814 Incorrect thread ID returned for VxWorks RTP
	NULL listener and non-empty status mask not allowed for C++ DataReader
	accept_unknown_peers did not work when Shared Memory transport was enabled in RTI Connext DDS Pro
	Calling FooSeq_set_maximum() repeatedly with the same maximum size results in seg-fault
	CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used
	OS error code (errno) not logged if sendto() returned error
	Codegen might generate an incorrect pub/sub example if opction “-create typefiles” is not used
	Generated examples use always the last structure in the idl
	Instance might not have been disposed or unregistered under some conditions
	Reliable Endpoints with only multicast locators may not communicate
	Access to DDSEntity instance handles from C++ API
	Syntax changed for initial peer participant index range
	lookup_instance() is not thread safe
	CMakeLists.txt and README.txt created when they should not
	No communication when DomainParticipant used same GUID as another DomainParticipant in different domain
	Compiler error might happen when lwIP is used
	Wrong C++ code generated for unkeyed types when using IDL modules and -namespace option
	DDS_WaitSet_wait does not work if OSAPI_Semaphore_take() returns an error
	Log buffer could overflow on 64-bit architectures, causing application crash
	Fix API realloc in Windows OSAPI
	New samples for an instance may not be received if an instance goes back to ALIVE when using read()
	INTRA transport caused subscription matches to use additional resources
	Resolved memory leak in class RTRegistry
	Windows Debug DLLs are built without debug information
	Use hardcoded build ID when not compiling with CMake
	Example makefiles do not support 64bit compilation
	Compilation error might happen when code is generated using option -namespace

	8.4.7 What’s New in 2.4.10.4
	Batching (reception only)
	C++ examples

	8.4.8 What’s Fixed in 2.4.10.4
	Improve KEEP_LAST
	Locator might be duplicated when NAT is configured
	Segmentation fault might happen when a DataReader cannot be created
	CMake reports error if CMake version 2.8.10.2 or 2.8.10.1 is used
	Wrong TUDP locator kind sent when using UDP transformations
	Compile shipped examples for a 64 bits architecture
	OSAPI_Heap_realloc() Windows implementation fixed
	Use API DDSDomainParticipant::delete_contained_entities() in C++ examples
	Memory leak in shipped examples fixed
	C++ shipped examples might release an object twice.

	8.4.9 What’s New in 2.4.10.1
	UDP Transformations

	8.4.10 What’s Fixed in 2.4.10.1
	Race Condition when Log Buffer is Full and a Custom Log-handler is Installed

	8.4.11 What’s New in 2.4.10
	Generate Example Application with rtiddsgen
	BY_SOURCE_TIMESTAMP_DESTINATIONORDER Support on DataWriter

	8.4.12 What’s Fixed in 2.4.10
	Linker Warning for Missing PDB Files
	Linking with Dynamic Windows C Run-Time (CRT)
	DDS_Publisher_create_datawriter() May Fail to Create a New Datawriter
	DataReader May Not Reclaim NOT_ALIVE Instances when DataWriter Deleted or Liveliness Lost
	A Datawriter may fail to release instance resources if a peer is inactive while the Participant liveliness expires
	A Reliable DataWriter With max_samples_per_instance = 1 May Run Out of Resources After Multiple Unregistrations of Single Instance
	Connext Micro Fails to Discover Endpoints created by Connext Core if the Endpoints are Deleted or Modified
	Incorrect Log Output in a Complete Log Message could not be Stored
	Possible Segmentation Fault when Unregistering TRANSIENT_LOCAL Instance
	Support to map IDL modules to C++ namespaces in generated type-plugins
	Possible Memory Access Violation when Receiving Malformed RTPS Message
	In Some Cases an Incorrect Timeout Calculation Caused 100% CPU Load

	8.4.13 What’s New in 2.4.9
	Improved Support for adding new Ports
	Updated Build Environment to Build RTI Connext Micro
	Example CMake Tool-chain Files for Cross-Compilation
	Host Bundle without the Java RunTime Available
	Support for 64-bit Platforms
	POSIX Compliance Improvements
	C++ Support for find_topic()
	Types Are Automatically Unregistered Upon Deleting Contained Entities

	8.4.14 What’s Fixed in 2.4.9
	Improved Documentation
	Losing Participant Liveliness Stops Communication
	DDSTopic::narrow() Returned Incorrect Value in C++
	PRECONDITION_NOT_MET Returned by deleted_topic() When Topic Is Not Use
	Instance Resources Not Reclaimed When Unregistered
	Invalid Memory Read Reported in Log.c
	Unsupported Functions When Compiling With RTI_CERT Has Been Removed From Generated Code
	The HelloWorld_cert Example Now Compiles When Linked Against a Library Built With RTI_CERT
	Hostnames Are No Longer Validated
	A Participant May Not Be Rediscovered In Case Of Asymmetric Liveliness Loss
	A Non-keyed Endpoint Matches a Keyed Endpoint

	8.4.15 What’s New in 2.4.8
	8.4.16 What’s Fixed in 2.4.8
	Consistent support for assignment operator in C++
	DPSE API renamed to avoid conflict with assert()

	8.4.17 What’s New in 2.4.7
	8.4.18 What’s Fixed in 2.4.7
	Statuses are passed as pointers instead of references to DDSDomainParticipantListeners
	Missing assignment operator = in RT_ComponentFactoryId
	CMAKE_C_FLAGS_ORIGINAL in CMakeLists.txt misspelled
	Missing const qualifier for the sequence [] operator
	Missing primitive IDL sequences in C++

	8.4.19 What’s New in 2.4.6
	Important API Changes
	Run-time Memory Footprint Has Been Significantly Reduced
	New FooTypeSupport operations
	All public C API now natively available to C++ users
	Status data passed by reference to C++ listeners
	TheParticipantFactory now available to C++ users
	Status types now available in DDS:: C++ namespace
	Foo::copy_data() takes const argument
	ConditionSeq added to C++ DDS namespace
	First 2-Bytes Of GUID Assigned to Vendor ID

	8.4.20 What’s Fixed in 2.4.6
	POSIX Threads Were Created Without Names
	Prerequisite for HelloWorld_android updated in README.txt
	CPP/HelloWorld_dpde example does not overwrite RTIMEHOME
	Transport Not Supporting Multicast Did Not Ignore Multicast
	Discovery Messages Incorrectly Dropped When Containing Non-Standard Locators
	HEARTBEAT Not Sent in Response To Initial ACKNACK
	Incorrect Return Code From DataReader’s Read or Take APIs When Max_Outstanding_Reads Exceeded
	DataReader Did Not Replace Historical Samples When max_samples_per_instance Equaled History Depth
	A Disposed Instance Could Be Updated By A DataWriter That Is Not Its Exclusive Owner
	Fixed code generation for user-defined enum constants.
	Hostname is verified as specified in RFC-952 and RFC-1123
	DDS_<Foo>Seq APIs Were Missing
	DataReader Could Reject All Subsequent Samples From a DataWriter
	POSIX Thread Priorities Not Changeable
	RTPS DATA Submessages with K-flag Set Were Dropped

	8.5 Known Issues
	8.5.1 Maximum Number of Components Limited to 58
	8.5.2 CMake version 3.6 or Higher is Required to Build VxWorks with CMake
	8.5.3 Endpoint Discovery Requires Unique Object IDs Across All Remote Endpoints
	8.5.4 Compiler warnings on VxWorks
	8.5.5 OSAPI Does Not Always Detect Endianess
	8.5.6 Missing Checks for max_routes_per reader and max_routes_per_writer

	9 Benchmarks
	9.1 Latency Benchmarks
	9.1.1 Xeon
	C++ Best Effort Keyed 1 Gbps
	C++ Best Effort Unkeyed 1 Gbps
	C++ Reliable Keyed 1 Gbps
	C++ Reliable Unkeyed 1 Gbps

	9.1.2 Raspberry Pi
	C++ Best Effort Keyed 1 Gbps
	C++ Best Effort Unkeyed 1 Gbps
	C++ Reliable Keyed 1 Gbps
	C++ Reliable Unkeyed 1 Gbps

	9.2 Throughput Benchmark
	9.2.1 Xeon
	C++ Best Effort Keyed 1 Gbps
	C++ Best Effort Unkeyed 1 Gbps

	9.2.2 Raspberry Pi
	C++ Best Effort Keyed 1 Gbps
	C++ Best Effort Unkeyed 1 Gbps
	C++ Reliable Keyed 1 Gbps
	C++ Reliable Unkeyed 1 Gbps

	9.3 Heap Benchmarks
	9.3.1 Heap Usage
	Calculating Memory Usage for DDS Entities

	9.3.2 Dynamic Discovery (DPDE) Heap Usage Information
	9.3.3 Static Discovery (DPSE) Heap Usage Information

	9.4 Source Line Count
	9.5 Library Sizes
	9.6 Threads

	10 Copyrights
	11 Contact Support
	12 Join the Community

