
RTI Connext DDS Micro
User’s Manual

Version 3.0.0.1

Contents:

1 Introduction 2
1.1 What is RTI Connext DDS Micro? . 2

1.1.1 RTI Connext DDS Cert versus RTI Connext DDS Micro 2
1.1.2 Optional Certification Package . 3
1.1.3 Publish-Subscribe Middleware . 3

1.2 Supported DDS Features . 3
1.2.1 DDS Entity Support . 3
1.2.2 DDS QoS Policy Support . 4

1.3 RTI Connext DDS Documentation . 4
1.4 OMG DDS Specification . 5
1.5 Other Products . 5

2 Installation 7
2.1 Installing the RTI Connext DDS Micro Package . 7
2.2 Setting Up Your Environment . 7
2.3 Building Connext DDS Micro . 8

2.3.1 OpenSSL . 9
Excluding the Security Plugin from the Build 9

3 Getting Started 10
3.1 Define a Data Type . 10
3.2 Generate Type Support Code with rtiddsgen . 10
3.3 Create an Application . 12

3.3.1 Registry Configuration . 12
3.4 Configure UDP Transport . 14
3.5 Create DomainParticipant, Topic, and Type . 15

3.5.1 Register Type . 16
3.5.2 Create Topic of Registered Type . 16
3.5.3 DPSE Discovery: Assert Remote Participant 17

3.6 Create Publisher . 17
3.7 Create DataWriter . 17

3.7.1 DPSE Discovery: Assert Remote Subscription 18
3.7.2 Writing Samples . 19

3.8 Create Subscriber . 20
3.9 Create DataReader . 20

3.9.1 DPSE Discovery: Assert Remote Publication 22
3.9.2 Receiving Samples . 23

i

3.9.3 Filtering Samples . 25
3.10 Examples . 26

4 User’s Manual 27
4.1 Data Types . 27

4.1.1 Introduction to the Type System . 28
Sequences . 29
Strings and Wide Strings . 29

4.1.2 Creating User Data Types with IDL . 31
4.1.3 Working with DDS Data Samples . 31

4.2 DDS Entities . 32
4.3 Sending Data . 33

4.3.1 Preview: Steps to Sending Data . 33
4.3.2 Publishers . 34
4.3.3 DataWriters . 34
4.3.4 Publisher/Subscriber QosPolicies . 34
4.3.5 DataWriter QosPolicies . 34

4.4 Receiving Data . 35
4.4.1 Preview: Steps to Receiving Data . 35
4.4.2 Subscribers . 37
4.4.3 DataReaders . 37
4.4.4 Using DataReaders to Access Data (Read & Take) 37
4.4.5 Subscriber QosPolicies . 37
4.4.6 DataReader QosPolicies . 38

4.5 DDS Domains . 38
4.5.1 Fundamentals of DDS Domains and DomainParticipants 38
4.5.2 Discovery Announcements . 39

4.6 Application Generation . 40
4.6.1 Introduction . 40
4.6.2 Overview . 41

Important Points . 41
4.6.3 Names Assigned to Entities . 41
4.6.4 Create a Domain Participant . 42
4.6.5 Retrieving Entities . 42
4.6.6 Interoperability . 42
4.6.7 Example Code . 42

Create the application . 42
Delete the application . 44

4.6.8 Example Configuration . 44
Domain Participant “HelloWorldDPDEPubDP” 44
Domain Participant “HelloWorldDPDESubDP” 45
Domain Participant “HelloWorldDPSEPubDP” 45
Domain Participant “HelloWorldDPSESubDP” 45
Configuration Files . 45
Generated source files . 50

4.7 Transports . 77
4.7.1 Introduction . 77
4.7.2 Transport Registration . 77

ii

4.7.3 Transport Addresses . 78
4.7.4 Transport Port Number . 78
4.7.5 INTRA Transport . 78

Registering the INTRA Transport . 78
Reliability and Durability . 79
Threading Model . 79

4.7.6 Shared Memory Transport (SHMEM) . 79
Registering the SHMEM Transport . 80
Threading Model . 81
SHMEM Configuration . 82
Caveats . 83

4.7.7 UDP Transport . 84
Registering the UDP Transport . 84
Threading Model . 86
UDP Configuration . 87
UDP Transformations . 92

4.8 Discovery . 120
4.8.1 What is Discovery? . 120

Simple Participant Discovery . 121
Simple Endpoint Discovery . 121

4.8.2 Configuring Participant Discovery Peers . 122
peer_desc_string . 122

4.8.3 Configuring Initial Peers and Adding Peers 123
4.8.4 Discovery Plugins . 123

Dynamic Discovery Plugin . 123
Static Discovery Plugin . 124

4.9 Generating Type Support with rtiddsgen . 126
4.9.1 Why Use rtiddsgen? . 126
4.9.2 IDL Type Definition . 126
4.9.3 Generating Type Support . 126

C . 127
C++ . 127
Notes on Command-Line Options . 127
Generated Type Support Files . 127

4.9.4 Using custom data-types in Connext DDS Micro Applications 127
4.9.5 Customizing generated code . 128
4.9.6 Unsupported Features of rtiddsgen with Connext DDS Micro 129

4.10 Threading Model . 129
4.10.1 Introduction . 129
4.10.2 Architectural Overview . 129
4.10.3 Threading Model . 130

OSAPI Threads . 130
UDP Transport Threads . 131
General Thread Configuration . 132

4.10.4 Critical Sections . 132
Calling DDS APIs from listeners . 132

4.11 Batching . 132
4.11.1 Overview . 133

iii

4.11.2 Interoperability . 133
4.11.3 Performance . 133
4.11.4 Example Configuration . 133

4.12 Sending Large Data . 134
4.12.1 Overview . 135
4.12.2 Configuration of Large Data . 136
4.12.3 Limitations . 136

4.13 Zero Copy Transfer Over Shared Memory . 136
4.13.1 Overview . 137
4.13.2 Getting Started . 137

Writer Side . 138
Reader Side . 138

4.13.3 Synchronization of Zero Copy Samples . 139
4.13.4 Caveats . 140
4.13.5 Further Information . 140

4.14 FlatData Language Binding . 140
4.14.1 Overview . 140
4.14.2 Getting Started . 140
4.14.3 Further Information . 141

4.15 Security SDK . 141
4.15.1 Introduction . 141
4.15.2 Installation . 141
4.15.3 Examples . 141
4.15.4 Enabling RTI Security Plugins . 142

4.16 Building Against FACE Conformance Libraries . 143
4.16.1 Requirements . 143

Connext DDS Micro Source Code . 143
FACE Conformance Tools . 143
CMake . 143

4.16.2 FACE Golden Libraries . 144
Building the FACE Golden Libraries . 144

4.16.3 Building the Connext DDS Micro Source . 144
4.17 Working With Sequences . 145

4.17.1 Introduction . 145
4.17.2 Working with Sequences . 146

Overview . 146
Working with IDL Sequences . 147
Working with Application Defined Sequences 149

4.18 Debugging . 150
4.18.1 Overview . 150
4.18.2 Configuring Logging . 150
4.18.3 Log Message Kinds . 151
4.18.4 Interpreting Log Messages and Error Codes 151

5 Building and Porting 153
5.1 Building the Connext DDS Micro Source . 153

5.1.1 Introduction . 153
5.1.2 The Host and Target Environment . 153

iv

The Host Environment . 154
The Target Environment . 154

5.1.3 Overview of the Connext DDS Micro Source Bundle 155
Directory Structure . 155

5.1.4 Compiling Connext DDS Micro . 157
Building Connext DDS Micro with rtime-make 157
Manually Building with CMake . 158

5.1.5 Connext DDS Micro Compile Options . 161
Connext DDS Micro Debug Information . 162
Connext DDS Micro Platform Selection . 162
Connext DDS Micro Compiler Selection . 163
Connext DDS Micro UDP Options . 163

5.1.6 Cross-Compiling Connext DDS Micro . 163
5.1.7 Custom Build Environments . 164

Importing the Connext DDS Micro Code . 164
5.2 Porting RTI Connext DDS Micro . 165

5.2.1 Updating from Connext DDS Micro 2.4.8 and earlier 166
5.2.2 Directory Structure . 166
5.2.3 OS and CC Definition Files . 167
5.2.4 Heap Porting Guide . 168
5.2.5 Mutex Porting Guide . 168
5.2.6 Semaphore Porting Guide . 168
5.2.7 Process Porting Guide . 169
5.2.8 System Porting Guide . 169

Migrating a 2.2.x port to 2.3.x . 170
5.2.9 Thread Porting Guide . 171

6 API Reference 172

7 Release Notes 173
7.1 Supported Platforms and Programming Languages 173
7.2 Compatibility . 174
7.3 What’s New in 3.0.0.1 . 174

7.3.1 New APIs to Serialize and Deserialize Samples 174
7.3.2 Dynamic Memory allocations removed from the Dynamic Discovery Plugin . 174

7.4 What’s Fixed in 3.0.0.1 . 175
7.4.1 Cannot build source with OSAPI_ENABLE_LOG=0 175
7.4.2 DDS_Subscriber_create_datareader() was affected by the local_writer_al-

location limit . 175
7.5 What’s New in 3.0.0 . 175

7.5.1 Support for XCDR encoding version 2 . 175
7.5.2 Large data streaming using RTI FlatData™ language binding and Zero Copy

transfer over shared memory . 176
7.5.3 Support for RTI Security Plugins . 176
7.5.4 Large Data Types . 177
7.5.5 Asynchronous DataWriters . 177
7.5.6 Support for KEEP_ALL History . 177
7.5.7 Support for AUTOMATIC and MANUAL_BY_PARTICIPANT Liveliness . 177

v

7.5.8 Micro Application Generation . 177
7.5.9 Ability to use only one UDP port per DomainParticipant 178
7.5.10 New C++ DPSE example . 178

7.6 What’s Fixed in 3.0.0 . 178
7.6.1 Linker error when using shared libraries on VxWorks systems 178
7.6.2 Failure to link VxWorks RTP mode using shared libraries compiled with CMake178
7.6.3 CPU endianness detection method improved 178
7.6.4 Examples used untyped register_type APIs instead of typed APIs 179
7.6.5 Wait_set generic error when returned condition sequence exceeded capacity . 179
7.6.6 WaitSet waited less than specified time period 179
7.6.7 Samples with deserialization errors were accepted 179
7.6.8 Potential wrong API used when using host name as peer 179

7.7 Known Issues . 179
7.7.1 Flow Controllers require RTOS . 179

8 Copyrights 180

9 Contact Support 182

10 Join the Community 183

vi

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

RTI® Connext® DDS Micro provides a small-footprint, modular messaging solution for resource-
limited devices that have limited memory and CPU power, and may not even be running an
operating system. It provides the communications services that developers need to distribute
time-critical data. Additionally, Connext DDS Micro is designed as a certifiable component in
high-assurance systems.

Key benefits of Connext DDS Micro include:

• Accommodations for resource-constrained environments.

• Modular and user extensible architecture.

• Designed to be a certifiable component for safety-critical systems.

• Seamless interoperability with RTI Connext DDS Professional.

Contents: 1

Chapter 1

Introduction

1.1 What is RTI Connext DDS Micro?
RTI Connext DDS Micro is network middleware for distributed real-time applications. It provides
the communications service programmers need to distribute time-critical data between embedded
and/or enterprise devices or nodes. Connext DDS Micro uses the publish-subscribe communications
model to make data distribution efficient and robust. Connext DDS Micro simplifies application
development, deployment and maintenance and provides fast, predictable distribution of time-
critical data over a variety of transport networks. With Connext DDS Micro, you can:

• Perform complex one-to-many and many-to-many network communications.

• Customize application operation to meet various real-time, reliability, and quality-of-service
goals.

• Provide application-transparent fault tolerance and application robustness.

• Use a variety of transports.

Connext DDS Micro implements the Data-Centric Publish-Subscribe (DCPS) API within the
OMG’s Data Distribution Service (DDS) for Real-Time Systems. DDS is the first standard de-
veloped for the needs of real-time systems. DCPS provides an efficient way to transfer data in a
distributed system.

With Connext DDS Micro, systems designers and programmers start with a fault-tolerant and
flexible communications infrastructure that will work over a wide variety of computer hardware,
operating systems, languages, and networking transport protocols. Connext DDS Micro is highly
configurable so programmers can adapt it to meet the application’s specific communication require-
ments.

1.1.1 RTI Connext DDS Cert versus RTI Connext DDS Micro
RTI Connext DDS Micro and RTI Connext DDS Cert originate from the same source base, but as
of Connext DDS Micro 2.4.6 the two are maintained as two independent releases. The latest release
with certification evidence is Connext DDS Cert 2.4.5. However, features that exist in Connext
DDS Micro and Connext DDS Cert behave identically and the source code is written following
identical guidelines. Connext DDS Cert only supports a subset of the features found in Connext

2

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

DDS Micro. In the API reference manuals, APIs that are supported by Connext DDS Cert are
clearly marked.

1.1.2 Optional Certification Package
An optional Certification Package is available for systems that require certification to DO-178C or
other safety standards. This package includes the artifacts required by a certification authority.
The Certification Package is licensed separately from Connext DDS Cert.

To use an existing Certification Package, an application must be linked against the same libraries
included in the Certification Package. Contact RTI Support, support@rti.com, for details.

1.1.3 Publish-Subscribe Middleware
Connext DDS Micro is based on a publish-subscribe communications model. Publish-subscribe
(PS) middleware provides a simple and intuitive way to distribute data. It decouples the software
that creates and sends data—the data publishers—from the software that receives and uses the
data—the data subscribers. Publishers simply declare their intent to send and then publish the
data. Subscribers declare their intent to receive, then the data is automatically delivered by the
middleware. Despite the simplicity of the model, PS middleware can handle complex patterns of
information flow. The use of PS middleware results in simpler, more modular distributed appli-
cations. Perhaps most importantly, PS middleware can automatically handle all network chores,
including connections, failures, and network changes, eliminating the need for user applications to
program of all those special cases. What experienced network middleware developers know is that
handling special cases accounts for over 80% of the effort and code.

1.2 Supported DDS Features
Connext DDS Micro supports a subset of the DDS DCPS standard. A brief overview of the
supported features are listed here. For a detailed list, please refer to the C API Reference and
C++ API Reference.

1.2.1 DDS Entity Support
Connext DDS Micro supports the following DDS entities. Please refer to the documentation for
details.

• DomainParticipantFactory

• DomainParticipant

• Topic

• Publisher

• Subscriber

• DataWriter

• DataReader

1.2. Supported DDS Features 3

mailto:support@rti.com
../api_c/html/index.html
../api_cpp/html/index.html
../api_c/html/group__DDSDomainParticipantFactoryModule.html
../api_c/html/group__DDSDomainParticipantModule.html
../api_c/html//group__DDSTopicEntityModule.html
../api_c/html/group__DDSPublisherModule.html
../api_c/html/group__DDSSubscriberModule.html
../api_c/html/group__DDSWriterModule.html
../api_c/html/group__DDSReaderModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

1.2.2 DDS QoS Policy Support
Connext DDS Micro supports the following DDS Qos Policies. Please refer to the documentation
for details.

• DDS_DataReaderProtocolQosPolicy

• DDS_DataReaderResourceLimitsQosPolicy

• DDS_DataWriterProtocolQosPolicy

• DDS_DataWriterResourceLimitsQosPolicy

• DDS_DeadlineQosPolicy

• DDS_DiscoveryQosPolicy

• DDS_DomainParticipantResourceLimitsQosPolicy

• DDS_DurabilityQosPolicy

• DDS_DestinationOrderQosPolicy

• DDS_EntityFactoryQosPolicy

• DDS_HistoryQosPolicy

• DDS_LivelinessQosPolicy

• DDS_OwnershipQosPolicy

• DDS_OwnershipStrengthQosPolicy

• DDS_ReliabilityQosPolicy

• DDS_ResourceLimitsQosPolicy

• DDS_RtpsReliableWriterProtocol_t

• DDS_SystemResourceLimitsQosPolicy

• DDS_TransportQosPolicy

• DDS_UserTrafficQosPolicy

• DDS_WireProtocolQosPolicy

1.3 RTI Connext DDS Documentation
Throughout this document, we may suggest reading sections in other RTI Connext DDS documents.
These documents are in your RTI Connext DDS installation directory under rti-connext-dds-
<version>/doc/manuals. A quick way to find them is from RTI Launcher’s Help panel, select
“Browse Connext Documentation”.

Since installation directories vary per user, links are not provided to these documents on your local
machine. However, we do provide links to documents on the RTI Documentation site for users with
Internet access.

1.3. RTI Connext DDS Documentation 4

../api_c/html/structDDS__DataReaderProtocolQosPolicy.html
../api_c/html/structDDS__DataReaderResourceLimitsQosPolicy.html
../api_c/html/structDDS__DataWriterProtocolQosPolicy.html
../api_c/html/structDDS__DataWriterResourceLimitsQosPolicy.html
../api_c/html/structDDS__DeadlineQosPolicy.html
../api_c/html/structDDS__DiscoveryQosPolicy.html
../api_c/html/structDDS__DomainParticipantResourceLimitsQosPolicy.html
../api_c/html/structDDS__DurabilityQosPolicy.html
../api_c/html/structDDS__DestinationOrderQosPolicy.html
../api_c/html/structDDS__EntityFactoryQosPolicy.html
../api_c/html/structDDS__HistoryQosPolicy.html
../api_c/html/structDDS__LivelinessQosPolicy.html
../api_c/html/structDDS__OwnershipQosPolicy.html
../api_c/html/structDDS__OwnershipStrengthQosPolicy.html
../api_c/html/structDDS__ReliabilityQosPolicy.html
../api_c/html/structDDS__ResourceLimitsQosPolicy.html
../api_c/html/structDDS__RtpsReliableWriterProtocol__t.html
../api_c/html/structDDS__SystemResourceLimitsQosPolicy.html
../api_c/html/structDDS__TransportQosPolicy.html
../api_c/html/structDDS__UserTrafficQosPolicy.html
../api_c/html/structDDS__WireProtocolQosPolicy.html
https://community.rti.com/documentation

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

New users can start by reading Parts 1 (Introduction) and 2 (Core Concepts) in the RTI Connext
DDS Core Libraries User’s Manual. These sections teach basic DDS concepts applicable to all RTI
middleware, including RTI Connext DDS Professional and RTI Connext DDS Micro. You can
open the RTI Connext DDS Core Libraries User’s Manual from RTI Launcher’s Help panel.

The RTI Community provides many resources for users of DDS and the RTI Connext family of
products.

1.4 OMG DDS Specification
For the original DDS reference, the OMG DDS specification can be found in the OMG Specifications
under “Data Distribution Service”.

1.5 Other Products
RTI Connext DDS Micro is one of several products in the RTI Connext family of products:

RTI Connext DDS Cert is a subset of RTI Connext DDS Micro. Connext DDS Cert does not
include the following features because Certification Evidence is not yet available for them. If you
require Certification Evidence for any of these features, please contact RTI.

• C++ language API.

• Multi-platform support.

• Dynamic endpoint discovery.

• delete() APIs (e.g. delete_datareader())

RTI Connext DDS Professional addresses the sophisticated databus requirements in complex sys-
tems including an API compliant with the Object Management Group (OMG) Data Distribution
Service (DDS) specification. DDS is the leading data-centric publish/subscribe (DCPS) messag-
ing standard for integrating distributed real-time applications. Connext DDS Professional is the
dominant industry implementation with benefits including:

• OMG-compliant DDS API

• Advanced features to address complex systems

• Advanced Quality of Service (QoS) support

• Comprehensive platform and network transport support

• Seamless interoperability with rtime

RTI Connext DDS Professional includes rich integration capabilities:

• Data transformation

• Integration support for standards including JMS, SQL databases, file, socket, Excel, OPC,
STANAG, LabVIEW, Web Services and more

• Ability for users to create custom integration adapters

• Optional integration with Oracle, MySQL and other relational databases

1.4. OMG DDS Specification 5

https://community.rti.com/
https://www.omg.org/spec

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• Tools for visualizing, debugging and managing all systems in real-time

RTI Connext DDS Professional also includes a rich set of tools to accelerate debugging and testing
while easing management of deployed systems. These components include:

• Administration Console

• Distributed Logger

• Monitor

• Monitoring Library

• Recording Service

1.5. Other Products 6

Chapter 2

Installation

2.1 Installing the RTI Connext DDS Micro Package
RTI Connext DDS Micro is provided in one of 4 RTI target packages:

• rti_connext_dds_micro-3.0.0-Unix.rtipkg

• rti_connext_dds_micro-3.0.0-Windows.rtipkg

• rti_connext_dds_micro_security_sdk-3.0.0-Unix.rtipkg

• rti_connext_dds_micro_security_sdk-3.0.0-Windows.rtipkg

Note: You must first install RTI Connext DDS Professional and either rti_connext_dds_micro-3.
0.0-Unix.rtipkg or rti_connext_dds_micro-3.0.0-Windows.rtipkg before the corresponding
security SDK packages can be installed.

Once installed, you will see a directory rti_connext_dds_micro-3.0.0 in the RTI Connext DDS
Professional installation directory. This installation directory contains this documentation, the
rtiddsgen code generation tool, and example source code. Note that a JRE is needed to execute
rtiddsgen.

It is strongly recommended that you copy the RTI Connext DDS Micro installation directory
outside of the RTI Connext DDS Professional installation. This is because it may not be desirable
to build the RTI Connext DDS Micro libraries in the RTI Connext DDS Professional installation
directory. To copy RTI Connext DDS Micro to another location, open RTI Launcher, navigate to
the Utilities tab, click on Copy Micro SDK and follow the instructions. See the image below
for a visual aid.

2.2 Setting Up Your Environment
The RTIMEHOME environment variable must be set to the installation directory path for RTI
Connext DDS Micro. If you installed RTI Connext DDS with default settings, RTI Con-
next DDS Micro will be here: <path_to_connext_dds_installation>/rti_connext_dds-6.0.
0/rti_connext_micro-3.0.0. If you copied RTI Connext DDS Micro to another place, set
RTIMEHOME to point to that location.

7

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

2.3 Building Connext DDS Micro
This section is for users who are already familiar with CMake and may have built earlier versions
of Connext DDS Micro. The sections following describe the process in detail and are recommended
for everyone building Connext DDS Micro.

This section assumes that the Connext DDS Micro source-bundle has been downloaded and installed
and that CMake is available.

1. Make sure CMake is in the path.

2. Run rtime-make.

On UNIX® systems:

cd <rti_me install directory>/src
you should see directories like doc/ lib/ rtiddsgen/ src/
and CMakeLists.txt

resource/scripts/rtime-make --target self --name i86Linux4gcc7.3.0 \
-G "Unix Makefiles" --build

On Windows® systems:

cd <rti_me install directory>\src
you should see directories like doc/ lib/ rtiddsgen/ src/
and CMakeLists.txt

resource\scripts\rtime-make --target self --name i86Win32VS2015 \
-G "NMake Makefiles" --build

3. You will find the Connext DDS Micro libraries here:

2.3. Building Connext DDS Micro 8

https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

On UNIX-based systems:

<rti_me install directory>/lib/i86Linux4gcc7.3.0

On Windows systems:

<rti_me install directory>/lib/i86Win32VS2015

NOTE: rtime-make uses the platform specified with --name to determine a few settings needed by
Connext DDS Micro. Please refer to Preparing for a Build for details.

2.3.1 OpenSSL
The Connext DDS Micro builtin security plugin requires OpenSSL® 1.0.1 or a later 1.0.x version,
but is not compatible with 1.1 or later. The CMake build files will try to locate a suitable version
and use a locally installed library if available. If a compatible library is not available, please check
the RTI Download portal for a compatible version of OpenSSL. After installing OpenSSL, set
OPENSSLHOME to its location when building.

rtime-make -DOPENSSLHOME=<path>/release

Excluding the Security Plugin from the Build

It is possible to exclude the builtin security plugin in Connext DDS Micro (the rti_me_seccore
library). Set RTIME_TRUST_INCLUDE_BUILTIN to false to disable it.

rtime-make -DRTIME_TRUST_INCLUDE_BUILTIN=false

For help, enter:

resource\scripts\rtime-make --help

To list available targets, enter:

resource\scripts\rtime-make --list

For help for a specific target, except self, enter:

resource\scripts\rtime-make --target <target> --help

2.3. Building Connext DDS Micro 9

Chapter 3

Getting Started

3.1 Define a Data Type
To distribute data using Connext DDS Micro, you must first define a data type, then run the
rtiddsgen utility. This utility will generate the type-specific support code that Connext DDS Micro
needs and the code that makes calls to publish and subscribe to that data type.

Connext DDS Micro accepts types definitions in Interface Definition Language (IDL) format.

For instance, the HelloWorld examples provided with Connext DDS Micro use this simple type,
which contains a string “msg” with a maximum length of 128 chars:

struct HelloWorld {
string<128> msg;

};

For more details, see Data Types in the User’s Manual.

3.2 Generate Type Support Code with rtiddsgen
You will provide your IDL as an input to rtiddsgen. rtiddsgen supports code generation for the
following standard types:

• octet, char, wchar

• short, unsigned short

• long, unsigned long

• long long, unsigned long long float

• double, long double

• boolean

• string

• struct

• array

10

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• enum

• wstring

• sequence

• union

• typedef

• value type

The script to run rtiddsgen is in <your_top_level_dir>/rti_connext_dds-
6.0.0/rti_connext_micro-3.0.0/rtiddsgen/scripts.

To generate support code for data types in a file called HelloWorld.idl:

rtiddsgen -micro -language C -replace HelloWorld.idl

Run rtiddsgen -help to see all available options. For the options used here:

• The -micro option is necessary to generate support code specific to Connext DDS Micro,
as rtiddsgen is also capable of generating support code for Connext DDS, and the generated
code for the two are different.

• The -language option specifies the language of the generated code. Connext DDS Micro
supports C and C++ (with -language C++).

• The -replace option specifies that the new generated code will replace, or overwrite, any
existing files with the same name.

rtiddsgen generates the following files for an input file HelloWorld.idl:

• HelloWorld.h and HelloWorld.c. Operations to manage a sample of the type, and a DDS
sequence of the type.

• HelloWorldPlugin.h and HelloWorldPlugin.c. Implements the type-plugin interface
defined by Connext DDS Micro. Includes operations to serialize and deserialize a sample of
the type and its DDS instance keys.

• HelloWorldSupport.h and HelloWorldSupport.c. Support operations to generate a
type-specific a DataWriter and DataReader, and to register the type with a DDS Domain-
Participant.

rtiddsgen does not generate publisher or subscriber code for Connext DDS Micro. This is different
than for Connext DDS, where rtiddsgen will generate HelloWorld_publisher.c and HelloWorld_sub-
scriber.c.

This release of Connext DDS Micro supports a new way to generate support code for IDL Types
that will generate a TypeCode object containing information used by an interpreter to serialize and
deserialize samples. Prior to this release, the code for serialization and deserialization was generated
for each type. To disable generating code to be used by the interpreter, use the -interpreted0
command-line option to generate code. This option generates code in the same way as was done in
previous releases.

For more details, see Generating Type Support with rtiddsgen in the User’s Manual.

3.2. Generate Type Support Code with rtiddsgen 11

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

3.3 Create an Application
The rest of this guide will walk you through the steps to create an application and will provide
example code snippets. It assumes that you have defined your types (see Define a Data Type)
and have used rtiddsgen to generate their support code (see Generate Type Support Code with
rtiddsgen).

3.3.1 Registry Configuration
The DomainParticipantFactory, in addition to its standard role of creating and deleting Domain-
Participants, contains the RT Registry that a new application registers with some necessary com-
ponents.

The Connext DDS Micro architecture defines a run-time (RT) component interface that provides a
generic framework for organizing and extending functionality of an application. An RT component
is created and deleted with an RT component factory. Each RT component factory must be
registered within an RT registry in order for its components to be usable by an application.

Connext DDS Micro automatically registers components that provide necessary functionality. These
include components for DDS Writers and Readers, the RTPS protocol, and the UDP transport.

In addition, every DDS application must register three components:

• Writer History. Queue of written samples of a DataWriter. Must be registered with the
name “wh”.

• Reader History. Queue of received samples of a DataReader. Must be registered with the
name “rh”.

• Discovery (DPDE or DPSE). Discovery component. Choose either dynamic (DPDE) or
static (DPSE) endpoint discovery.

Example source:

• Get the RT Registry from the DomainParticipantFactory singleton:

DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;

factory = DDS_DomainParticipantFactory_get_instance();
registry = DDS_DomainParticipantFactory_get_registry(factory);

• Register the Writer History and Reader History components with the registry:

/* Register Writer History */
if (!RT_Registry_register(registry, "wh",

WHSM_HistoryFactory_get_interface(), NULL, NULL))
{

/* failure */
}

/* Register Reader History */
if (!RT_Registry_register(registry, "rh",

(continues on next page)

3.3. Create an Application 12

../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
RHSM_HistoryFactory_get_interface(), NULL, NULL))

{
/* failure */

}

Only one discovery component can be registered, either DPDE or DPSE. Each has its own properties
that can be configured upon registration.

• Register DPDE for dynamic participant, dynamic endpoint discovery:

struct DPDE_DiscoveryPluginProperty discovery_plugin_properties =
DPDE_DiscoveryPluginProperty_INITIALIZER;

/* Configure properties */
discovery_plugin_properties.participant_liveliness_assert_period.sec = 5;
discovery_plugin_properties.participant_liveliness_assert_period.nanosec = 0;
discovery_plugin_properties.participant_liveliness_lease_duration.sec = 30;
discovery_plugin_properties.participant_liveliness_lease_duration.nanosec = 0;

/* Register DPDE with updated properties */
if (!RT_Registry_register(registry,

"dpde",
DPDE_DiscoveryFactory_get_interface(),
&discovery_plugin_properties._parent,
NULL))

{
/* failure */

}

• Register DPSE for dynamic participant, static endpoint discovery:

struct DPSE_DiscoveryPluginProperty discovery_plugin_properties =
DPSE_DiscoveryPluginProperty_INITIALIZER;

/* Configure properties */
discovery_plugin_properties.participant_liveliness_assert_period.sec = 5;
discovery_plugin_properties.participant_liveliness_assert_period.nanosec = 0;
discovery_plugin_properties.participant_liveliness_lease_duration.sec = 30;
discovery_plugin_properties.participant_liveliness_lease_duration.nanosec = 0;

/* Register DPSE with updated properties */
if (!RT_Registry_register(registry,

"dpse",
DPSE_DiscoveryFactory_get_interface(),
&discovery_plugin_properties._parent,
NULL))

{
printf("failed to register dpse\n");
goto done;

}

For more information, see the Application Generation section in the User’s Manual.

3.3. Create an Application 13

../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

3.4 Configure UDP Transport
You may need to configure the UDP transport component that is pre-registered by RTI Connext
DDS Micro. To change the properties of the UDP transport, first the UDP component has be
unregistered, then the properties have to be updated, and finally the component must be re-
registered with the updated properties.

Example code:

• Unregister the pre-registered UDP component:

/* Unregister the pre-registered UDP component */
if (!RT_Registry_unregister(registry, "_udp", NULL, NULL))
{

/* failure */
}

• Configure UDP transport properties:

struct UDP_InterfaceFactoryProperty *udp_property = NULL;

udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof(struct UDP_InterfaceFactoryProperty));

if (udp_property != NULL)
{

*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* allow_interface: Names of network interfaces allowed to send/receive.
* Allow one loopback (lo) and one NIC (eth0).
*/

REDA_StringSeq_set_maximum(&udp_property->allow_interface,2);
REDA_StringSeq_set_length(&udp_property->allow_interface,2);

*REDA_StringSeq_get_reference(&udp_property->allow_interface,0) = DDS_String_
↪→dup("lo");

*REDA_StringSeq_get_reference(&udp_property->allow_interface,1) = DDS_String_
↪→dup("eth0");
}
else
{

/* failure */
}

• Re-register UDP component with updated properties:

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),

(struct RT_ComponentFactoryProperty*)udp_property, NULL))
{

/* failure */
}

For more details, see the Transports section in the User’s Manual.

3.4. Configure UDP Transport 14

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

3.5 Create DomainParticipant, Topic, and Type
A DomainParticipantFactory creates DomainParticipants, and a DomainParticipant itself is the
factory for creating Publishers, Subscribers, and Topics.

When creating a DomainParticipant, you may need to customize DomainParticipantQos, notably
for:

• Resource limits. Default resource limits are set at minimum values.

• Initial peers.

• Discovery. The name of the registered discovery component (“dpde” or “dpse”) must be
assigned to DiscoveryQosPolicy’s name.

• Participant Name. Every DomainParticipant is given the same default name. Must be
unique when using DPSE discovery.

Example code:

• Create a DomainParticipant with configured DomainParticipantQos:

DDS_DomainParticipant *participant = NULL;
struct DDS_DomainParticipantQos dp_qos =

DDS_DomainParticipantQos_INITIALIZER;

/* DDS domain of DomainParticipant */
DDS_Long domain_id = 0;

/* Name of your registered Discovery component */
if (!RT_ComponentFactoryId_set_name(&dp_qos.discovery.discovery.name, "dpde"))
{

/* failure */
}

/* Initial peers: use only default multicast peer */
DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers,1);
DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers,1);
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers,0) =

DDS_String_dup("239.255.0.1");

/* Resource limits */
dp_qos.resource_limits.max_destination_ports = 32;
dp_qos.resource_limits.max_receive_ports = 32;
dp_qos.resource_limits.local_topic_allocation = 1;
dp_qos.resource_limits.local_type_allocation = 1;
dp_qos.resource_limits.local_reader_allocation = 1;
dp_qos.resource_limits.local_writer_allocation = 1;
dp_qos.resource_limits.remote_participant_allocation = 8;
dp_qos.resource_limits.remote_reader_allocation = 8;
dp_qos.resource_limits.remote_writer_allocation = 8;

/* Participant name */
strcpy(dp_qos.participant_name.name, "Participant_1");

(continues on next page)

3.5. Create DomainParticipant, Topic, and Type 15

../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/structDDS__DomainParticipantQos.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DomainParticipantQos.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)

participant =
DDS_DomainParticipantFactory_create_participant(factory,

domain_id,
&dp_qos,
NULL,
DDS_STATUS_MASK_NONE);

if (participant == NULL)
{

/* failure */
}

3.5.1 Register Type
Your data types that have been generated from IDL need to be registered with the DomainPar-
ticipants that will be using them. Each registered type must have a unique name, preferably the
same as its IDL defined name.

DDS_ReturnCode_t retcode;

retcode = DDS_DomainParticipant_register_type(participant,
"HelloWorld",
HelloWorldTypePlugin_get());

if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

3.5.2 Create Topic of Registered Type
DDS Topics encapsulate the types being communicated, and you can create Topics for your type
once your type is registered.

A topic is given a name at creation (e.g. “Example HelloWorld”). The type associated with the
Topic is specified with its registered name.

DDS_Topic *topic = NULL;

topic = DDS_DomainParticipant_create_topic(participant,
"Example HelloWorld",
"HelloWorld",
&DDS_TOPIC_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE);

if (topic == NULL)
{

/* failure */
}

3.5. Create DomainParticipant, Topic, and Type 16

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

3.5.3 DPSE Discovery: Assert Remote Participant
DPSE Discovery relies on the application to specify the other, or remote, DomainParticipants that
its local DomainParticipants are allowed to discover. Your application must call a DPSE API
for each remote participant to be discovered. The API takes as input the name of the remote
participant.

/* Enable discovery of remote participant with name Participant_2 */
retcode = DPSE_RemoteParticipant_assert(participant, "Participant_2");
if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

For more information, see the DDS Domains section in the User’s Manual.

3.6 Create Publisher
A publishing application needs to create a DDS Publisher and then a DataWriter for each Topic
it wants to publish.

In Connext DDS Micro, PublisherQos in general contains no policies that need to be customized,
while DataWriterQos does contain several customizable policies.

• Create Publisher :

DDS_Publisher *publisher = NULL;
publisher = DDS_DomainParticipant_create_publisher(participant,

&DDS_PUBLISHER_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE);

if (publisher == NULL)
{

/* failure */
}

For more information, see the Sending Data section in the User’s Manual.

3.7 Create DataWriter

DDS_DataWriter *datawriter = NULL;
struct DDS_DataWriterQos dw_qos = DDS_DataWriterQos_INITIALIZER;
struct DDS_DataWriterListener dw_listener = DDS_DataWriterListener_INITIALIZER;

/* Configure writer Qos */
dw_qos.protocol.rtps_object_id = 100;
dw_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
dw_qos.resource_limits.max_samples_per_instance = 2;
dw_qos.resource_limits.max_instances = 2;
dw_qos.resource_limits.max_samples =

dw_qos.resource_limits.max_samples_per_instance * dw_qos.resource_limits.max_
↪→instances; (continues on next page)

3.6. Create Publisher 17

../../api_c/html/group__DPSEModule.html
../../api_c/html/structDDS__PublisherQos.html
../../api_c/html/structDDS__DataWriterQos.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
dw_qos.history.depth = 1;
dw_qos.durability.kind = DDS_VOLATILE_DURABILITY_QOS;
dw_qos.protocol.rtps_reliable_writer.heartbeat_period.sec = 0;
dw_qos.protocol.rtps_reliable_writer.heartbeat_period.nanosec = 250000000;

/* Set enabled listener callbacks */
dw_listener.on_publication_matched = HelloWorldPublisher_on_publication_matched;

datawriter =
DDS_Publisher_create_datawriter(publisher,

topic,
&dw_qos,
&dw_listener,
DDS_PUBLICATION_MATCHED_STATUS);

if (datawriter == NULL)
{

/* failure */
}

The DataWriterListener has its callbacks selectively enabled by the DDS status mask. In the exam-
ple, the mask has set the on_publication_matched status, and accordingly the DataWriterListener
has its on_publication_matched assigned to a callback function.

void HelloWorldPublisher_on_publication_matched(void *listener_data,
DDS_DataWriter * writer,
const struct DDS_

↪→PublicationMatchedStatus *status)
{

/* Print on match/unmatch */
if (status->current_count_change > 0)
{

printf("Matched a subscriber\n");
}
else
{

printf("Unmatched a subscriber\n");
}

}

3.7.1 DPSE Discovery: Assert Remote Subscription
A publishing application using DPSE discovery must specify the other DataReaders that its
DataWriters are allowed to discover. Like the API for asserting a remote participant, the DPSE API
for asserting a remote subscription must be called for each remote DataReader that a DataWriter
may discover.

Whereas asserting a remote participant requires only the remote Participant’s name, asserting a
remote subscription requires more configuration, as all QoS policies of the subscription necessary
to determine matching must be known and thus specified.

3.7. Create DataWriter 18

../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/structDDS__DataWriterListener.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

struct DDS_SubscriptionBuiltinTopicData rem_subscription_data =
DDS_SubscriptionBuiltinTopicData_INITIALIZER;

/* Set Reader's protocol.rtps_object_id */
rem_subscription_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 200;

rem_subscription_data.topic_name = DDS_String_dup("Example HelloWorld");
rem_subscription_data.type_name = DDS_String_dup("HelloWorld");

rem_subscription_data.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

retcode = DPSE_RemoteSubscription_assert(participant,
"Participant_2",
&rem_subscription_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

↪→get(),
NULL)));

if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

3.7.2 Writing Samples
Within the generated type support code are declarations of the type-specific DataWriter. For the
HelloWorld type, this is the HelloWorldDataWriter.

Writing a HelloWorld sample is done by calling the write API of the HelloWorldDataWriter.

HelloWorldDataWriter *hw_datawriter;
DDS_ReturnCode_t retcode;
HelloWorld *sample = NULL;

/* Create and set sample */
sample = HelloWorld_create();
if (sample == NULL)
{

/* failure */
}
sprintf(sample->msg, "Hello World!");

/* Write sample */
hw_datawriter = HelloWorldDataWriter_narrow(datawriter);

retcode = HelloWorldDataWriter_write(hw_datawriter, sample, &DDS_HANDLE_NIL);
if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

For more information, see the Sending Data section in the User’s Manual.

3.7. Create DataWriter 19

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

3.8 Create Subscriber
A subscribing application needs to create a DDS Subscriber and then a DataReader for each Topic
to which it wants to subscribe.

In Connext DDS Micro, SubscriberQos in general contains no policies that need to be customized,
while DataReaderQos does contain several customizable policies.

DDS_Subscriber *subscriber = NULL;
subscriber = DDS_DomainParticipant_create_subscriber(participant,

&DDS_SUBSCRIBER_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE);

if (subscriber == NULL)
{

/* failure */
}

For more information, see the Receiving Data section in the User’s Manual.

3.9 Create DataReader

DDS_DataReader *datareader = NULL;
struct DDS_DataReaderQos dr_qos = DDS_DataReaderQos_INITIALIZER;
struct DDS_DataReaderListener dr_listener = DDS_DataReaderListener_INITIALIZER;

/* Configure Reader Qos */
dr_qos.protocol.rtps_object_id = 200;
dr_qos.resource_limits.max_instances = 2;
dr_qos.resource_limits.max_samples_per_instance = 2;
dr_qos.resource_limits.max_samples =

dr_qos.resource_limits.max_samples_per_instance * dr_qos.resource_limits.max_
↪→instances;
dr_qos.reader_resource_limits.max_remote_writers = 10;
dr_qos.reader_resource_limits.max_remote_writers_per_instance = 10;
dr_qos.history.depth = 1;
dr_qos.durability.kind = DDS_VOLATILE_DURABILITY_QOS;
dr_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

/* Set listener callbacks */
dr_listener.on_data_available = HelloWorldSubscriber_on_data_available;
dr_listener.on_subscription_matched = HelloWorldSubscriber_on_subscription_matched;

datareader = DDS_Subscriber_create_datareader(subscriber,
DDS_Topic_as_topicdescription(topic),
&dr_qos,
&dr_listener,
DDS_DATA_AVAILABLE_STATUS | DDS_

↪→SUBSCRIPTION_MATCHED_STATUS);
if (datareader == NULL)
{

(continues on next page)

3.8. Create Subscriber 20

../../api_c/html/structDDS__SubscriberQos.html
../../api_c/html/structDDS__DataReaderQos.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
/* failure */

}

The DataReaderListener has its callbacks selectively enabled by the DDS status mask.
In the example, the mask has set the DDS_SUBSCRIPTION_MATCHED_STATUS and
DDS_DATA_AVAILABLE_STATUS statuses, and accordingly the DataReaderListener has its
on_subscription_matched and on_data_available assigned to callback functions.

void HelloWorldSubscriber_on_subscription_matched(void *listener_data,
DDS_DataReader * reader,
const struct DDS_

↪→SubscriptionMatchedStatus *status)
{

if (status->current_count_change > 0)
{

printf("Matched a publisher\n");
}
else
{

printf("Unmatched a publisher\n");
}

}

void HelloWorldSubscriber_on_data_available(void* listener_data,
DDS_DataReader* reader)

{
HelloWorldDataReader *hw_reader = HelloWorldDataReader_narrow(reader);
DDS_ReturnCode_t retcode;
struct DDS_SampleInfo *sample_info = NULL;
HelloWorld *sample = NULL;

struct DDS_SampleInfoSeq info_seq =
DDS_SEQUENCE_INITIALIZER(struct DDS_SampleInfo);

struct HelloWorldSeq sample_seq =
DDS_SEQUENCE_INITIALIZER(HelloWorld);

const DDS_Long TAKE_MAX_SAMPLES = 32;
DDS_Long i;

retcode = HelloWorldDataReader_take(hw_reader,
&sample_seq, &info_seq, TAKE_MAX_SAMPLES,
DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

if (retcode != DDS_RETCODE_OK)
{

printf("failed to take data: %d\n", retcode);
goto done;

}

/* Print each valid sample taken */
for (i = 0; i < HelloWorldSeq_get_length(&sample_seq); ++i)

(continues on next page)

3.9. Create DataReader 21

../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/group__DDSStatusTypesModule.html
../../api_c/html/group__DDSStatusTypesModule.html
../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{

sample_info = DDS_SampleInfoSeq_get_reference(&info_seq, i);

if (sample_info->valid_data)
{

sample = HelloWorldSeq_get_reference(&sample_seq, i);
printf("\nSample received\n\tmsg: %s\n", sample->msg);

}
else
{

printf("not valid data\n");
}

}

HelloWorldDataReader_return_loan(hw_reader, &sample_seq, &info_seq);

done:
HelloWorldSeq_finalize(&sample_seq);
DDS_SampleInfoSeq_finalize(&info_seq);

}

3.9.1 DPSE Discovery: Assert Remote Publication
A subscribing application using DPSE discovery must specify the other DataWriters that its
DataReaders are allowed to discover. Like the API for asserting a remote participant, the DPSE API
for asserting a remote publication must be called for each remote DataWriter that a DataReader
may discover.

struct DDS_PublicationBuiltinTopicData rem_publication_data =
DDS_PublicationBuiltinTopicData_INITIALIZER;

/* Set Writer's protocol.rtps_object_id */
rem_publication_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 100;

rem_publication_data.topic_name = DDS_String_dup("Example HelloWorld");
rem_publication_data.type_name = DDS_String_dup("HelloWorld");

rem_publication_data.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

retcode = DPSE_RemotePublication_assert(participant,
"Participant_1",
&rem_publication_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

↪→get(),
NULL)));

if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

Asserting a remote publication requires configuration of all QoS policies necessary to determine

3.9. Create DataReader 22

../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

matching.

3.9.2 Receiving Samples
Accessing received samples can be done in a few ways:

• Polling. Do read or take within a periodic polling loop.

• Listener. When a new sample is received, the DataReaderListener’s on_data_available is
called. Processing is done in the context of the middleware’s receive thread. See the above
HelloWorldSubscriber_on_data_available callback for example code.

• Waitset. Create a waitset, attach it to a status condition with the data_available status
enabled, and wait for a received sample to trigger the waitset. Processing is done in the
context of the user’s application thread. (Note: the code snippet below is taken from the
shipped HelloWorld_dpde_waitset example).

DDS_WaitSet *waitset = NULL;
struct DDS_Duration_t wait_timeout = { 10, 0 }; /* 10 seconds */
DDS_StatusCondition *dr_condition = NULL;
struct DDS_ConditionSeq active_conditions =

DDS_SEQUENCE_INITIALIZER(struct DDS_ConditionSeq);

if (!DDS_ConditionSeq_initialize(&active_conditions))
{

/* failure */
}

if (!DDS_ConditionSeq_set_maximum(&active_conditions, 1))
{

/* failure */
}

waitset = DDS_WaitSet_new();
if (waitset == NULL)
{

/* failure */
}

dr_condition = DDS_Entity_get_statuscondition(DDS_DataReader_as_entity(datareader));

retcode = DDS_StatusCondition_set_enabled_statuses(dr_condition,
DDS_DATA_AVAILABLE_STATUS);

if (retcode != DDS_RETCODE_OK)
{

/* failure */
}

retcode = DDS_WaitSet_attach_condition(waitset,
DDS_StatusCondition_as_condition(dr_condition));

if (retcode != DDS_RETCODE_OK)
{

/* failure */
(continues on next page)

3.9. Create DataReader 23

../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
}

retcode = DDS_WaitSet_wait(waitset, active_conditions, &wait_timeout);

switch (retcode) {
case DDS_RETCODE_OK:
{

/* This WaitSet only has a single condition attached to it
* so we can implicitly assume the DataReader's status condition
* to be active (with the enabled DATA_AVAILABLE status) upon
* successful return of wait().
* If more than one conditions were attached to the WaitSet,
* the returned sequence must be examined using the
* commented out code instead of the following.
*/

HelloWorldSubscriber_take_data(HelloWorldDataReader_narrow(datareader));

/*
DDS_Long active_len = DDS_ConditionSeq_get_length(&active_conditions);
for (i = active_len - 1; i >= 0; --i)
{

DDS_Condition *active_condition =
*DDS_ConditionSeq_get_reference(&active_conditions, i);

if (active_condition ==
DDS_StatusCondition_as_condition(dr_condition))

{
total_samples += HelloWorldSubscriber_take_data(

HelloWorldDataReader_narrow(datareader));
}
else if (active_condition == some_other_condition)
{

do_something_else();
}

}
*/
break;

}
case DDS_RETCODE_TIMEOUT:
{

printf("WaitSet_wait timed out\n");
break;

}
default:
{

printf("ERROR in WaitSet_wait: retcode=%d\n", retcode);
break;

}
}

3.9. Create DataReader 24

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

3.9.3 Filtering Samples
In lieu of supporting Content-Filtered Topics, a DataReaderListener in Connext DDS Micro pro-
vides callbacks to do application-level filtering per sample.

• on_before_sample_deserialize. Through this callback, a received sample is presented
to the application before it has been deserialized or stored in the DataReader ’s queue.

• on_before_sample_commit. Through this callback, a received sample is presented to the
application after it has been deserialized but before it has been stored in the DataReader ’s
queue.

You control the callbacks’ sample_dropped parameter; upon exiting either callback, the DataReader
will drop the sample if sample_dropped is true. Consequently, dropped samples are not stored in
the DataReader ’s queue and are not available to be read or taken.

Neither callback is associated with a DDS Status. Rather, each is enabled when assigned, to a
non-NULL callback.

NOTE: Because it is called after the sample has been deserialized, on_before_sample_commit
provides an additional sample_info parameter, containing some of the usual sample information
that would be available when the sample is read or taken.

The HelloWorld_dpde example’s subscriber has this on_before_sample_commit callback:

DDS_Boolean HelloWorldSubscriber_on_before_sample_commit(
void *listener_data,
DDS_DataReader *reader,
const void *const sample,
const struct DDS_SampleInfo *const sample_info,
DDS_Boolean *dropped)

{
HelloWorld *hw_sample = (HelloWorld *)sample;

/* Drop samples with even-numbered count in msg */
HelloWorldSubscriber_filter_sample(hw_sample, dropped);

if (*dropped)
{

printf("\nSample filtered, before commit\n\tDROPPED - msg: %s\n",
hw_sample->msg);

}

return DDS_BOOLEAN_TRUE;
}

...

dr_listener.on_before_sample_commit =
HelloWorldSubscriber_on_before_sample_commit;

For more information, see the Receiving Data section in the User’s Manual.

3.9. Create DataReader 25

../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__DataReaderListener.html
../../api_c/html/structDDS__SampleLostStatus.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

3.10 Examples

Connext DDS Micro provides buildable example applications, in the example/ directory of its
host bundle. They include a basic HelloWorld application presented in a few different flavors, an
RTPS-only emitter, and latency and throughput benchmarking applications.

Each example comes with instructions on how to build and run an application.

All examples are available in C, while the HelloWorld_dpde and HelloWorld_dpde_waitset exam-
ples are available in C++.

Note that by the default all the examples link against release libraries. To build release libraries:

./resource/scripts/rtime-make --name x64Darwin17clang9.0 --target self --build --config␣
↪→Release

To build the examples against the debug libraries, specify the the DEBUG option:

make DEBUG=Y

• Helloworld_dpse. Shows how to use rtiddsgen to generate type-support code from a simple
HelloWorld IDL-defined type. This examplecreates a publisher and subscriber, and uses
dynamic participant, static endpoint discovery to establish communication.

• HelloWorld_dpde. Same as the HelloWorld_dpse example, except it uses dynamic
participant, dynamic endpoint discovery. This example is available in both C and C++.

• HelloWorld_dpde_waitset. Same as the HelloWorld_dpde example, except it uses wait-
sets instead of listener callbacks to access received data.

• HelloWorld_dpde_secure Same as the HelloWorld_dpde example, except that the RTI
Security Plugins are installed and enabled on each DomainParticipant to perform mutual
authentication, enforce access control rules, and encrypt data exchanged by applications.

• HelloWorld_android. Example application using Android™ NDK.

• HelloWorld_static_udp. Same as HelloWorld_dpde, except it uses static configuration
of network interfaces.

• HelloWorld_appgen. Example application using Application Generation API.

• HelloWorld_transformations. Same as HelloWorld_dpde, except it uses UDP transfor-
mations to send encrypted packets using OpenSSL.

• RTPS. Example of an RTPS emitter that bypasses the DDS module and APIs to send RTPS
discovery and user data.

• Latency. Measures the end-to-end latency of Connext DDS Micro.

• Throughput. Measures the end-to-end throughput of Connext DDS Micro.

3.10. Examples 26

Chapter 4

User’s Manual

4.1 Data Types
How data is stored or laid out in memory can vary from language to language, compiler to com-
piler, operating system to operating system, and processor to processor. This combination of lan-
guage/compiler/operating system/processor is called a platform. Any modern middleware must be
able to take data from one specific platform (for example, C/gcc.7.3.0/Linux®/PPC) and transpar-
ently deliver it to another (for example, C/gcc.7.3.0/Linux/Arm® v8). This process is commonly
called serialization/deserialization, or marshalling/demarshalling.

Connext DDS Micro data samples sent on the same Connext DDS Micro topic share a data type.
This type defines the fields that exist in the DDS data samples and what their constituent types
are. The middleware stores and propagates this meta-information separately from the individual
DDS data samples, allowing it to propagate DDS samples efficiently while handling byte ordering
and alignment issues for you.

To publish and/or subscribe to data with Connext DDS Micro, you will carry out the following
steps:

1. Select a type to describe your data and use the RTI Code Generator to define a type at
compile-time using a language-independent description language.

The RTI Code Generator accepts input in the following formats:

• OMG IDL. This format is a standardized component of the DDS specification. It
describes data types with a C++-like syntax. A link to the latest specification can be
found here: https://www.omg.org/spec/IDL.

• XML in a DDS-specific format. This XML format is terser, and therefore easier
to read and write by hand, than an XSD file. It offers the general benefits of XML-
extensibility and ease of integration, while fully supporting DDS-specific data types and
concepts. A link to the latest specification, including a description of the XML format,
can be found here: https://www.omg.org/spec/DDS-XTypes/.

• XSD format. You can describe data types with XML schemas (XSD). A link to
the latest specification, including a description of the XSD format, can be found here:
https://www.omg.org/spec/DDS-XTypes/.

27

https://www.omg.org/spec/IDL
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Define a type programmatically at run time.

This method may be appropriate for applications with dynamic data description needs: ap-
plications for which types change frequently or cannot be known ahead of time.

2. Register your type with a logical name.

3. Create a Topic using the type name you previously registered.

If you’ve chosen to use a built-in type instead of defining your own, you will use the API
constant corresponding to that type’s name.

4. Create one or more DataWriters to publish your data and one or more DataReaders to
subscribe to it.

The concrete types of these objects depend on the concrete data type you’ve selected, in order
to provide you with a measure of type safety.

Whether publishing or subscribing to data, you will need to know how to create and delete DDS
data samples and how to get and set their fields. These tasks are described in the section on Working
with DDS Data Samples in the RTI Connext DDS Core Libraries User’s Manual (available here if
you have Internet access).

4.1.1 Introduction to the Type System
A user data type is any custom type that your application defines for use with RTI Connext DDS
Micro. It may be a structure, a union, a value type, an enumeration, or a typedef (or language
equivalents).

Your application can have any number of user data types. They can be composed of any of the
primitive data types listed below or of other user data types.

Only structures, unions, and value types may be read and written directly by Connext DDS Micro;
enums, typedefs, and primitive types must be contained within a structure, union, or value type. In
order for a DataReader and DataWriter to communicate with each other, the data types associated
with their respective Topic definitions must be identical.

• octet, char, wchar

• short, unsigned short

• long, unsigned long

• long long, unsigned long long

• float

• double, long double

• boolean

• enum (with or without explicit values)

• bounded string and wstring

The following type-building constructs are also supported:

• module (also called a package or namespace)

4.1. Data Types 28

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Working_with_DDS_Data_Samples.htm

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• pointer

• array of primitive or user type elements

• bounded sequence of elements—a sequence is a variable-length ordered collection, such as a
vector or list

• typedef

• union

• struct

• value type, a complex type that supports inheritance and other object-oriented features

To use a data type with Connext DDS Micro, you must define that type in a way the middleware
understands and then register the type with the middleware. These steps allow Connext DDS
Micro to serialize, deserialize, and otherwise operate on specific types. They will be described in
detail in the following sections.

Sequences

A sequence contains an ordered collection of elements that are all of the same type. The operations
supported in the sequence are documented in the C API Reference and C++ API Reference HTML
documentation.

Elements in a sequence are accessed with their index, just like elements in an array. Indices start
at zero in all APIs. Unlike arrays, however, sequences can grow in size. A sequence has two sizes
associated with it: a physical size (the “maximum”) and a logical size (the “length”). The physical
size indicates how many elements are currently allocated by the sequence to hold; the logical size
indicates how many valid elements the sequence actually holds. The length can vary from zero up
to the maximum. Elements cannot be accessed at indices beyond the current length.

A sequence must be declared as bounded. A sequence’s “bound” is the maximum number of
elements that the sequence can contain at any one time. A finite bound is very important because
it allows RTI Connext DDS Micro to preallocate buffers to hold serialized and deserialized samples
of your types; these buffers are used when communicating with other nodes in your distributed
system.

By default, any unbounded sequences found in an IDL file will be given a default bound of 100
elements. This default value can be overwritten using RTI Code Generator‘s -sequenceSize
command-line argument (see the Command-Line Arguments chapter in the RTI Code Generator
User’s Manual, available here if you have Internet access).

Strings and Wide Strings

Connext DDS Micro supports both strings consisting of single-byte characters (the IDL string type)
and strings consisting of wide characters (IDL wstring). The wide characters supported by Connext
DDS Micro are large enough to store two-byte Unicode/UTF16 characters.

Like sequences, strings must be bounded. A string’s “bound” is its maximum length (not counting
the trailing NULL character in C and C++).

4.1. Data Types 29

../../api_c/html/index.html
../../api_cpp/html/index.html
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/code_generator/html_files/RTI_CodeGenerator_UsersManual/index.htm#code_generator/UsersManual/CommandLineArgs.htm

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

In C and Traditional C++, strings are mapped to char*. Optionally, the mapping in Traditional
C++ can be changed to std::string by generating code with the option -useStdString.

By default, any unbounded string found in an IDL file will be given a default bound of 255 elements.
This default value can be overwritten using RTI Code Generator‘s -stringSize command-line
argument (see the Command-Line Arguments chapter in the RTI Code Generator User’s Manual,
available here if you have Internet access).

IDL String Encoding

The “Extensible and Dynamic Topic Types for DDS specification” (https://www.omg.org/spec/
DDS-XTypes/) standardizes the default encoding for strings to UTF-8. This encoding shall be
used as the wire format. Language bindings may use the representation that is most natural in
that particular language. If this representation is different from UTF-8, the language binding shall
manage the transformation to/from the UTF-8 wire representation.

As an extension, Connext DDS Micro offers ISO_8859_1 as an alternative string wire encoding.

This section describes the encoding for IDL strings across different languages in Connext DDS
Micro and how to configure that encoding.

• C, Traditional C++

IDL strings are mapped to a NULL-terminated array of DDS_Char (char*). Users are re-
sponsible for using the right character encoding (UTF-8 or ISO_8859_1) when populating
the string values. This applies to all generated code, DynamicData, and Built-in data types.
The middleware does not transform from the language binding encoding to the wire encoding.

IDL Wide Strings Encoding

The “Extensible and Dynamic Topic Types for DDS specification” (https://www.omg.org/spec/
DDS-XTypes/) standardizes the default encoding for wide strings to UTF-16. This encoding shall
be used as the wire format.

When the data representation is Extended CDR version 1, wide-string characters have a size of 4
bytes on the wire with UTF-16 encoding. When the data representation is Extended CDR version
2, wide-string characters have a size of 2 bytes on the wire with UTF-16 encoding.

Language bindings may use the representation that is most natural in that particular language. If
this representation is different from UTF-16, the language binding shall manage the transformation
to/from the UTF-16 wire representation.

• C, Traditional C++

IDL wide strings are mapped to a NULL-terminated array of DDS_Wchar (DDS_Wchar*).
DDS_WChar is an unsigned 2-byte integer. Users are responsible for using the right character
encoding (UTF-16) when populating the wide-string values. This applies to all generated
code, DynamicData, and Built-in data types. Connext DDS Micro does not transform from
the language binding encoding to the wire encoding.

4.1. Data Types 30

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/code_generator/html_files/RTI_CodeGenerator_UsersManual/index.htm#code_generator/UsersManual/CommandLineArgs.htm
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
../../api_c/html/group__DDSCdrTypesModule.html
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
../../api_c/html/group__DDSCdrTypesModule.html
../../api_c/html/group__DDSCdrTypesModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Sending Type Information on the Network

Connext DDS Micro can send type information the network using a concept called type objects. A
type objects is a description of a type suitable to network transmission, and is commonly used by
for example tools to visualize data from any application.

However, please note that Connext DDS Micro does not support sending type information on
the network. Instead, tools can load type information from XML files generated from IDL using
rtiddsgen. Please refer to the RTI Code Generator’s User’s Manual for more information (available
here if you have Internet access).

4.1.2 Creating User Data Types with IDL
You can create user data types in a text file using IDL (Interface Description Language). IDL
is programming-language independent, so the same file can be used to generate code in C and
Traditional C++. RTI Code Generator parses the IDL file and automatically generates all the
necessary routines and wrapper functions to bind the types for use by Connext DDS Micro at run
time. You will end up with a set of required routines and structures that your application and
Connext DDS Micro will use to manipulate the data.

Please refer to the section on Creating User Data Types with IDL in the RTI Connext DDS Core
Libraries User’s Manual for more information (available here if you have Internet access).

Note: Not all features in RTI Code Generator are supported when generating code for Connext
DDS Micro, see Unsupported Features of rtiddsgen with Connext DDS Micro.

4.1.3 Working with DDS Data Samples
You should now understand how to define and work with data types. Now that you have chosen
one or more data types to work with, this section will help you understand how to create and
manipulate objects of those types.

In C:

You create and delete your own objects from factories, just as you create Connext DDS Micro
objects from factories. In the case of user data types, the factory is a singleton object called the
type support. Objects allocated from these factories are deeply allocated and fully initialized.

/* In the generated header file: */
struct MyData {

char* myString;
};
/* In your code: */
MyData* sample = MyDataTypeSupport_create_data();
char* str = sample->myString; /*empty, non-NULL string*/
/* ... */
MyDataTypeSupport_delete_data(sample);

In Traditional C++:

Without the -constructor option, you create and delete objects using the TypeSupport factories.

4.1. Data Types 31

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/code_generator/html_files/RTI_CodeGenerator_UsersManual/index.htm
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Creating_User_Data_Types_with_IDL.htm

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

MyData* sample = MyDataTypeSupport::create_data();
char* str = sample->myString; // empty, non-NULL string
// ...
MyDataTypeSupport::delete_data(sample);

Please refer to the section on Working with DDS Data Samples in the RTI Connext DDS Core
Libraries User’s Manual for more information (available here if you have Internet access).

4.2 DDS Entities
The main classes extend an abstract base class called a DDS Entity. Every DDS Entity has a set of
associated events known as statuses and a set of associated Quality of Service Policies (QosPolicies).
In addition, a Listener may be registered with the Entity to be called when status changes occur.
DDS Entities may also have attached DDS Conditions, which provide a way to wait for status
changes. Figure 4.1: Overview of DDS Entities presents an overview in a UML diagram.

Figure 4.1: Overview of DDS Entities

Please note that RTI Connext DDS Micro does not support the following:

• MultiTopic

• ContentFileteredTopic

• ReadCondition

• QueryConditions

For a general description of DDS Entities and their operations, please refer to the DDS Entities
chapter in the RTI Connext DDS Core Libraries User’s Manual (available here if you have Internet

4.2. DDS Entities 32

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Working_with_DDS_Data_Samples.htm
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/DDS_Entities.htm

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

access). Note that RTI Connext DDS Micro does not support all APIs and QosPolicies; please
refer to the C API Reference and C++ API Reference documentation for more information.

4.3 Sending Data
This section discusses how to create, configure, and use Publishers and DataWriters to send data.
It describes how these Entities interact, as well as the types of operations that are available for
them.

The goal of this section is to help you become familiar with the Entities you need for sending data.
For up-to-date details such as formal parameters and return codes on any mentioned operations,
please see the C API Reference and C++ API Reference documentation.

4.3.1 Preview: Steps to Sending Data
To send DDS samples of a data instance:

1. Create and configure the required Entities:

(a) Create a DomainParticipant.

(b) Register user data types with the DomainParticipant. For example, the
‘FooDataType’.

(c) Use the DomainParticipant to create a Topic with the registered data type.

(d) Use the DomainParticipant to create a Publisher.

(e) Use the Publisher or DomainParticipant to create a DataWriter for the Topic.

(f) Use a type-safe method to cast the generic DataWriter created by the Publisher to a
type-specific DataWriter. For example, ‘FooDataWriter’. Optionally, register data
instances with the DataWriter. If the Topic’s user data type contain key fields, then
registering a data instance (data with a specific key value) will improve performance
when repeatedly sending data with the same key. You may register many different data
instances; each registration will return an instance handle corresponding to the specific
key value. For non-keyed data types, instance registration has no effect.

2. Every time there is changed data to be published:

(a) Store the data in a variable of the correct data type (for instance, variable ‘Foo’ of the
type ‘FooDataType’).

(b) Call the FooDataWriter’s write() operation, passing it a reference to the variable
‘Foo’.

• For non-keyed data types or for non-registered instances, also pass in DDS_HAN-
DLE_NIL.

• For keyed data types, pass in the instance handle corresponding to the instance
stored in ‘Foo’, if you have registered the instance previously. This means that the
data stored in ‘Foo’ has the same key value that was used to create instance handle.

(c) The write() function will take a snapshot of the contents of ‘Foo’ and store it in Connext
DDS internal buffers from where the DDS data sample is sent under the criteria set by

4.3. Sending Data 33

../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

the Publisher’s and DataWriter’s QosPolicies. If there are matched DataReaders, then
the DDS data sample will have been passed to the physical transport plug-in/device
driver by the time that write() returns.

4.3.2 Publishers
An application that intends to publish information needs the following Entities: DomainParticipant,
Topic, Publisher, and DataWriter. All Entities have a corresponding specialized Listener and a set
of QosPolicies. A Listener is how Connext DDS notifies your application of status changes relevant
to the Entity. The QosPolicies allow your application to configure the behavior and resources of
the Entity.

• A DomainParticipant defines the DDS domain in which the information will be made avail-
able.

• A Topic defines the name under which the data will be published, as well as the type (format)
of the data itself.

• An application writes data using a DataWriter. The DataWriter is bound at creation time
to a Topic, thus specifying the name under which the DataWriter will publish the data and
the type associated with the data. The application uses the DataWriter’s write() operation
to indicate that a new value of the data is available for dissemination.

• A Publisher manages the activities of several DataWriters. The Publisher determines when
the data is actually sent to other applications. Depending on the settings of various QosPoli-
cies of the Publisher and DataWriter, data may be buffered to be sent with the data of other
DataWriters or not sent at all. By default, the data is sent as soon as the DataWriter’s
write() function is called.

You may have multiple Publishers, each managing a different set of DataWriters, or you may
choose to use one Publisher for all your DataWriters.

4.3.3 DataWriters
To create a DataWriter, you need a DomainParticipant, Publisher, and a Topic.

You need a DataWriter for each Topic that you want to publish. For more details on all operations,
see the C API Reference and C++ API Reference documentation.

For more details on creating, deleting, and setting up DataWriters, see the DataWriters section in
the RTI Connext DDS Core Libraries User’s Manual (available here if you have Internet access).

4.3.4 Publisher/Subscriber QosPolicies
Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.3.5 DataWriter QosPolicies
Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.3. Sending Data 34

../../api_c/html/index.html
../../api_cpp/html/index.html
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/DataWriters.htm
../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.4 Receiving Data
This section discusses how to create, configure, and use Subscribers and DataReaders to receive
data. It describes how these objects interact, as well as the types of operations that are available
for them.

The goal of this section is to help you become familiar with the Entities you need for receiving data.
For up-to-date details such as formal parameters and return codes on any mentioned operations,
please see the C API Reference and C++ API Reference documentation.

4.4.1 Preview: Steps to Receiving Data
There are three ways to receive data:

• Your application can explicitly check for new data by calling a DataReader’s read() or take()
operation. This method is also known as polling for data.

• Your application can be notified asynchronously whenever new DDS data samples arrive—this
is done with a Listener on either the Subscriber or the DataReader. RTI Connext DDS
Micro will invoke the Listener’s callback routine when there is new data. Within the callback
routine, user code can access the data by calling read() or take() on the DataReader. This
method is the way for your application to receive data with the least amount of latency.

• Your application can wait for new data by using Conditions and a WaitSet, then calling
wait(). Connext DDS Micro will block your application’s thread until the criteria (such as
the arrival of DDS samples, or a specific status) set in the Condition becomes true. Then
your application resumes and can access the data with read() or take().

The DataReader’s read() operation gives your application a copy of the data and leaves the data
in the DataReader’s receive queue. The DataReader’s take() operation removes data from the
receive queue before giving it to your application.

To prepare to receive data, create and configure the required Entities:

1. Create a DomainParticipant.

2. Register user data types with the DomainParticipant. For example, the ‘FooDataType’.

3. Use the DomainParticipant to create a Topic with the registered data type.

4. Use the DomainParticipant to create a Subscriber.

5. Use the Subscriber or DomainParticipant to create a DataReader for the Topic.

6. Use a type-safe method to cast the generic DataReader created by the Subscriber to a type-
specific DataReader. For example, ‘FooDataReader’.

Then use one of the following mechanisms to receive data.

• To receive DDS data samples by polling for new data:

– Using a FooDataReader, use the read() or take() operations to access the DDS data
samples that have been received and stored for the DataReader. These operations can
be invoked at any time, even if the receive queue is empty.

• To receive DDS data samples asynchronously:

4.4. Receiving Data 35

../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

– Install a Listener on the DataReader or Subscriber that will be called back by an internal
Connext DDS Micro thread when new DDS data samples arrive for the DataReader.

1. Create a DDSDataReaderListener for the FooDataReader or a DDSSubscriberListener for
Subscriber. In C++ you must derive your own Listener class from those base classes. In C,
you must create the individual functions and store them in a structure.

If you created a DDSDataReaderListener with the on_data_available() callback
enabled: on_data_available() will be called when new data arrives for that
DataReader.

If you created a DDSSubscriberListener with the on_data_on_readers() callback
enabled: on_data_on_readers() will be called when data arrives for any DataReader
created by the Subscriber.

2. Install the Listener on either the FooDataReader or Subscriber.

For the DataReader, the Listener should be installed to handle changes in the
DATA_AVAILABLE status.

For the Subscriber, the Listener should be installed to handle changes in the
DATA_ON_READERS status.

3. Only 1 Listener will be called back when new data arrives for a DataReader.

Connext DDS Micro will call the Subscriber’s Listener if it is installed. Otherwise, the
DataReader’s Listener is called if it is installed. That is, the on_data_on_readers()
operation takes precedence over the on_data_available() operation.

If neither Listeners are installed or neither Listeners are enabled to handle their respective
statuses, then Connext DDS Micro will not call any user functions when new data arrives for
the DataReader.

4. In the on_data_available() method of the DDSDataReaderListener, invoke read() or
take() on the FooDataReader to access the data.

If the on_data_on_readers() method of the DDSSubscriberListener is called, the
code can invoke read() or take() directly on the Subscriber’s DataReaders that have re-
ceived new data. Alternatively, the code can invoke the Subscriber’s notify_dataread-
ers() operation. This will in turn call the on_data_available() methods of the
DataReaderListeners (if installed and enabled) for each of the DataReaders that have
received new DDS data samples.

To wait (block) until DDS data samples arrive:

1. Use the DataReader to create a StatusCondition that describes the DDS samples for which
you want to wait. For example, you can specify that you want to wait for never-before-seen
DDS samples from DataReaders that are still considered to be ‘alive.’

2. Create a WaitSet.

3. Attach the StatusCondition to the WaitSet.

4. Call the WaitSet’s wait() operation, specifying how long you are willing to wait for the
desired DDS samples. When wait() returns, it will indicate that it timed out, or that the
attached Condition become true (and therefore the desired DDS samples are available).

4.4. Receiving Data 36

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

5. Using a FooDataReader, use the read() or take() operations to access the DDS data
samples that have been received and stored for the DataReader.

4.4.2 Subscribers
An application that intends to subscribe to information needs the following Entities: DomainPar-
ticipant, Topic, Subscriber, and DataReader. All Entities have a corresponding specialized Listener
and a set of QosPolicies. The Listener is how RTI Connext DDS Micro notifies your application
of status changes relevant to the Entity. The QosPolicies allow your application to configure the
behavior and resources of the Entity.

• The DomainParticipant defines the DDS domain on which the information will be available.

• The Topic defines the name of the data to be subscribed, as well as the type (format) of the
data itself.

• The DataReader is the Entity used by the application to subscribe to updated values of the
data. The DataReader is bound at creation time to a Topic, thus specifying the named and
typed data stream to which it is subscribed. The application uses the DataWriter’s read()
or take() operation to access DDS data samples received for the Topic.

• The Subscriber manages the activities of several DataReader entities. The application re-
ceives data using a DataReader that belongs to a Subscriber. However, the Subscriber will
determine when the data received from applications is actually available for access through
the DataReader. Depending on the settings of various QosPolicies of the Subscriber and
DataReader, data may be buffered until DDS data samples for associated DataReaders are
also received. By default, the data is available to the application as soon as it is received.

For more information on creating and deleting Subscribers, as well as setting QosPolicies, see the
Subscribers section in the RTI Connext DDS Core Libraries User’s Manual (available here if you
have Internet access).

4.4.3 DataReaders
To create a DataReader, you need a DomainParticipant, a Topic, and a Subscriber. You need at
least one DataReader for each Topic whose DDS data samples you want to receive.

For more details on all operations, see the C API Reference and C++ API Reference HTML
documentation.

4.4.4 Using DataReaders to Access Data (Read & Take)
For user applications to access the data received for a DataReader, they must use the type-specific
derived class or set of functions in the C API Reference. Thus for a user data type ‘Foo’, you must
use methods of the FooDataReader class. The type-specific class or functions are automatically
generated if you use RTI Code Generator.

4.4.5 Subscriber QosPolicies
Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.4. Receiving Data 37

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Subscribers.htm
../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.4.6 DataReader QosPolicies
Please refer to the C API Reference and C++ API Reference for details on supported QosPolicies.

4.5 DDS Domains
This section discusses how to use DomainParticipants. It describes the types of operations that
are available for them and their QosPolicies.

The goal of this section is to help you become familiar with the objects you need for setting up
your RTI Connext DDS Micro application. For specific details on any mentioned operations, see
the C API Reference and C++ API Reference documentation.

4.5.1 Fundamentals of DDS Domains and DomainParticipants
DomainParticipants are the focal point for creating, destroying, and managing other RTI Connext
DDS Micro objects. A DDS domain is a logical network of applications: only applications that
belong to the same DDS domain may communicate using Connext DDS Micro. A DDS domain is
identified by a unique integer value known as a domain ID. An application participates in a DDS
domain by creating a DomainParticipant for that domain ID.

Figure 4.2: Relationship between Applications and DDS Domains
Applications can belong to multiple DDS domains—A belongs to DDS domains 1 and 2. Applications in
the same DDS domain can communicate with each other, such as A and B, or A and C. Applications in

different DDS domains, such as B and C, are not even aware of each other and will not exchange messages.

As seen in Figure 4.2: Relationship between Applications and DDS Domains, a single application
can participate in multiple DDS domains by creating multiple DomainParticipants with different
domain IDs. DomainParticipants in the same DDS domain form a logical network; they are isolated

4.5. DDS Domains 38

../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

from DomainParticipants of other DDS domains, even those running on the same set of physical
computers sharing the same physical network. DomainParticipants in different DDS domains will
never exchange messages with each other. Thus, a DDS domain establishes a “virtual network”
linking all DomainParticipants that share the same domain ID.

An application that wants to participate in a certain DDS domain will need to create a DomainPar-
ticipant. As seen in Figure 4.3: DDS Domain Module, a DomainParticipant object is a container
for all other Entities that belong to the same DDS domain. It acts as factory for the Publisher,
Subscriber, and Topic entities. (As seen in Sending Data and Receiving Data, in turn, Publishers
are factories for DataWriters and Subscribers are factories for DataReaders.) DomainParticipants
cannot contain other DomainParticipants.

Like all Entities, DomainParticipants have QosPolicies and Listeners. The DomainParticipant
entity also allows you to set ‘default’ values for the QosPolicies for all the entities created from it or
from the entities that it creates (Publishers, Subscribers, Topics, DataWriters, and DataReaders).

Figure 4.3: DDS Domain Module
Note: MultiTopics are not supported.

4.5.2 Discovery Announcements
Each DomainParticipant announces information about itself, such as which locators other Domain-
Participants must use to communicate with it. A locator is an address that consists of an address
kind, a port number, and an address. Four locator types are defined:

• A unicast meta-traffic locator. This locator type is used to identify where unicast discov-
ery messages shall be sent. A maximum of four locators of this type can be specified.

• A multicast meta-traffic locator. This locator type is used to identify where multicast

4.5. DDS Domains 39

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

discovery messages shall be sent. A maximum of four locators of this type can be specified.

• A unicast user-traffic locator. This locator type is used to identify where unicast user-
traffic messages shall be sent. A maximum of four locators of this type can be specified.

• A multicast user-traffic locator. This locator type is used to identify where multicast
user-traffic messages shall be sent. A maximum of four locators of this type can be specified.

It is important to note that a maximum of four locators of each kind can be sent in a DomainPar-
ticipant discovery message.

The locators in a DomainParticipant’s discovery announcement is used for two purposes:

• It informs other DomainParticipants where to send their discovery announcements to this
DomainParticipants.

• It informs the DataReaders and DataWriters in other DomainParticipants where to send
data to the DataReaders and DataWriters in this DomainParticipant unless a DataReader or
DataWriter specifies its own locators.

If a DataReader or DataWriter specifies their own locators, only user-traffic locators can be speci-
fied, then the exact same rules apply as for the DomainParticipant.

This document uses address and locator interchangeably. An address corresponds to the port and
address part of a locator. The same address may exist as different kinds, in which case they are
unique.

For more details about the discovery process, see the Discovery section.

4.6 Application Generation

4.6.1 Introduction
RTI Connext DDS Micro’s Application Generation feature simplifies and accelerates application
development by enabling the creation of DDS Entities by compiling an XML configuration file,
linking the result to an application, and calling a single API. Once created, all Entities can be
retrieved from the application code using standard “lookup_by_name” operations so that they can
be used to read and write data. C or C++ source code is generated from the XML configuration
and compiled with the application.

This user-guide explains how to use this feature in an application and is organized as follows:

• Overview

• Names Assigned to Entities

• Create a Domain Participant

• Retrieving Entities

• Interoperability

• Example Code

• Example Configuration

4.6. Application Generation 40

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.6.2 Overview
The Connext DDS Micro Application Generation feature enables the creation of all DDS Entities
needed in an application and the registration of the factories used in the application. Once created,
all Entities can be retrieved from application code using standard “lookup_by_name” operations
so that they can be used to read and write data. UDP transport, DPDE (Dynamic Participant
Dynamic Endpoint) and DPSE (Dynamic Participant Static Endpoint) discovery configuration can
also be configured as needed.

C source code is generated from the XML configuration and has to be compiled with the appli-
cation. This is needed because Connext DDS Micro does not include an XML parser (this would
significantly increase code size and amount of memory needed). The generated C source code con-
tains the same information as the XML configuration file. The generated C source code can be
used from both the C API Reference and C++ API Reference.

The Connext DDS Micro Application Generation is enabled by default in this release when com-
piling with rtime-make. However, future releases may disable the feature by default. Thus, it is
advised to always compile with the Connext DDS Micro Application Generation feature enabled
(-DRTIME_DDS_ENABLE_APPGEN=1 to CMake).

Important Points

Applications can create a RTI Connext DDS Micro Entity from a DomainParticipant configuration
described in the XML Configuration file. All the Entities defined by such DomainParticipant config-
uration are created automatically as part of the creation. In addition, multiple DomainParticipant
configurations may be defined within a single XML configuration file.

All the Entities created from a DomainParticipant configuration are automatically assigned an
entity name. Entities can be retrieved via “lookup_by_name” operations specifying their name.
Each Entity stores its own name in the QoS policies of the Entity so that they can be retrieved
locally (via a lookup) and communicated via discovery.

A configuration file is not tied to the application that uses it. Different applications may run using
the same configuration file. A single file may define multiple DomainParticipant configurations.
Normally, a single application will instantiate only one Connext DDS Micro, but a Connext DDS
Micro application can instantiate as many as needed.

Changes in the XML configuration file require to generate C/C++ source code again and recompile
the application.

4.6.3 Names Assigned to Entities
Each Entity configured in the configuration is given a name. This name is used to retrieve them at
run-time using the RTI Connext DDS Micro API.

In the context of the configuration we should distinguish between two names:

• Configuration name: The name of a specific Entity’s configuration. It is given by the name
attribute of the corresponding element.

• Entity name in the Entity’s QoS: The Entity name in the Entity’s QoS.

4.6. Application Generation 41

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

At runtime, the Entity will be created using the Entity name in the Entity’s QoS; the configuration
name will be used if this is an empty string.

The attribute multiplicity indicates that a set of Entities should be created from the same configu-
ration. As each Entity must have a unique name, the system will automatically append a number
to the Entity name in the Entity’s QoS (or, if it is an empty string, the configuration name) to
obtain the Entity name. For example, if we specified a multiplicity of “N”, then for each index “i”
between 0 and N-1, the system will assign Entity names according to the table below:

Entity Name Index: i
“configuration_name” 0
“configuration_name#i” [1,N-1]

That is, the Entity name followed by the token “#” and an index.

4.6.4 Create a Domain Participant
To create aDomainParticipant from a configuration profile, use API create_participant_from_con-
fig(), which receives the configuration name and creates all the Entities defined by that configura-
tion. This API is available in RTI Connext DDS Micro for compatibility with RTI Connext DDS
Professional.

4.6.5 Retrieving Entities
After creation, you can retrieve the defined Entities by using the lookup_by_name() operations
available in the C API Reference and C++ API Reference.

4.6.6 Interoperability
Applications created using this feature can inter-operate with other RTI Connext DDS Micro
applications which are not created using this feature and with RTI Connext DDS Professional
applications.

4.6.7 Example Code
This section contains an example to instantiate an application using Connext DDS Micro Applica-
tion Generation.

Create the application

Create an application using Connext DDS Micro Application Generation. Note that only the
Connext DDS Micro Application Generation factory needs to be registered; all other factories,
such as UDP transport, DPDE, and DPSE discovery can be defined in the Connext DDS Micro
Application Generation configuration, and are automatically registered by Connext DDS Micro
Application Generation.

DDS_ReturnCode_t retcode;
DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;

(continues on next page)

4.6. Application Generation 42

../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__DDSDomainParticipantModule.html
../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
struct APPGEN_FactoryProperty model_xml = APPGEN_FactoryProperty_INITIALIZER;
DDS_DomainParticipant *participant;
DDS_DataWriter *datawriter;
struct DDS_DataWriterListener dw_listener =

DDS_DataWriterListener_INITIALIZER;
factory = DDS_DomainParticipantFactory_get_instance();
registry = DDS_DomainParticipantFactory_get_registry(factory);
/* This pointer must be valid as long as the Micro

Application Generation plugin is registered
*/
model_xml._model = APPGEN_get_library_seq();
/* Register factory used to create participants from config */
if (!APPGEN_Factory_register(registry, &model_xml))
{

printf("failed to register Application Generation\n");
goto error;

}
/* create participant from config */
participant = DDS_DomainParticipantFactory_create_participant_from_config(

factory, "UnitTestAppLibrary::UnitTestPublisherApp");
if (participant == NULL)
{

printf("failed to create participant\n");
goto error;

}
datawriter = DDS_DomainParticipant_lookup_datawriter_by_name(

participant, "TestPublisher1::Test1DW");
if (datawriter == NULL)
{

printf("failed to lookup datawriter\n");
goto error;

}
dw_listener.on_publication_matched = HelloWorldPublisher_on_publication_matched;
retcode = DDS_DataWriter_set_listener(datawriter, &dw_listener,

DDS_PUBLICATION_MATCHED_STATUS);
if (retcode != DDS_RETCODE_OK)
{

printf("failed to set writer listener\n");
goto done;

}
retcode = DDS_Entity_enable(DDS_DomainParticipant_as_entity(participant));
if (retcode != DDS_RETCODE_OK)
{

printf("failed to enable entity\n");
}
hw_datawriter = HelloWorldDataWriter_narrow(datawriter);
/* Using variable hw_datawriter call HelloWorldDataWriter_write()

to write samples.
*/

4.6. Application Generation 43

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Delete the application

Connext DDS Micro Application Generation does not include any new API that can be used to
delete an application. Instead, the already existing APIs can be used.

DDS_ReturnCode_t retcode;
RT_Registry_T *registry = NULL;
DDS_DomainParticipantFactory *factory = NULL;
factory = DDS_DomainParticipantFactory_get_instance();
registry = DDS_DomainParticipantFactory_get_registry(factory);
retcode = DDS_DomainParticipant_delete_contained_entities(participant);
if (retcode != DDS_RETCODE_OK)
{

printf("failed to delete contained entities: %d\n", retcode);
return;

}
retcode = DDS_DomainParticipantFactory_delete_participant(participant);
if (retcode != DDS_RETCODE_OK)
{

printf("failed to delete participant: %d\n", retcode);
return;

}
if (!APPGEN_Factory_unregister(registry, NULL))
{

printf("failed to unregister Application Generation\n");
}
retcode = DDS_DomainParticipantFactory_finalize_instance();
if (retcode != DDS_RETCODE_OK)
{

printf("failed to finalize domain participant factory: %d\n", retcode);
return;

}

4.6.8 Example Configuration
This section contains an example configuration. The example code configuration has been generated
from the example XML configuration files.

The example configuration defines one library named “HelloWorldAppLibrary”. This library defines
four RTI Connext DDS Micro applications: one with a publisher and one with a subscriber,
both using DPDE discovery, and one with a publisher and one with a subscriber, both using
DPSE discovery. Applications using DPDE discovery are compatible and are able to communicate.
Applications using DPSE discovery are compatible and are able to communicate.

Domain Participant “HelloWorldDPDEPubDP”

This application defines a publisher which uses DPDE discovery.

The application has one named “HelloWorldDPDEPubDP”, one named “HelloWorldDPDEPub”,
and one named “HelloWorldDPDEDW” which uses topic name “Example HelloWorld”. The appli-
cation registers one type with name “HelloWorld” and defines one with name “Example HelloWorld”
which uses the type “HelloWorld”.

4.6. Application Generation 44

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Domain Participant “HelloWorldDPDESubDP”

This application defines a subscriber which uses DPDE discovery.

The application has one named “HelloWorldDPDESubDP”, one named “HelloWorldDPDESub”,
and one named “HelloWorldDPDEDR” which uses topic name “Example HelloWorld”. The applica-
tion registers one type with name “HelloWorld” and defines one with name “Example HelloWorld”
which uses the type “HelloWorld”.

Domain Participant “HelloWorldDPSEPubDP”

This application defines a publisher which uses DPSE discovery.

The application has one named “HelloWorldDPSEPubDP”, one named “HelloWorldDPSEPub”,
and one named “HelloWorldDPSEDW” which uses topic name “Example HelloWorld” and has
RTPS id 100. The application registers one type with name “HelloWorld” and defines one with
name “Example HelloWorld” which uses type “HelloWorld”.

The application asserts one remote participant named “HelloWorldDPSESubDP” and one remote
subscription with ID 200, type name “HelloWorld”, and topic name “Example HelloWorld”.

Domain Participant “HelloWorldDPSESubDP”

This application defines a subscriber which uses DPSE discovery.

The application has one named “HelloWorldDPSESubDP”, one named “HelloWorldDPSESub”,
and one named “HelloWorldDPSEDR” which uses topic name “Example HelloWorld” and has
RTPS id 200. The application registers one type with name “HelloWorld” and defines one with
name “Example HelloWorld” which uses the type “HelloWorld”.

The application asserts one remote participant named “HelloWorldDPSEPubDP” and one remote
subscription with ID 100, type name “HelloWorld”, and topic name “Example HelloWorld”.

Configuration Files

Example Connext DDS Micro Application Generation configuration file HelloWorld.xml:

<?xml version="1.0"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://community.rti.com/schema/6.0.0/rti_dds_
↪→profiles.xsd">

<!-- Type Definition -->
<types>

<const name="MAX_NAME_LEN" type="long" value="64"/>
<const name="MAX_MSG_LEN" type="long" value="128"/>
<struct name="HelloWorld">

<member name="sender" type="string" stringMaxLength="MAX_NAME_LEN" key=
↪→"true"/>

<member name="message" type="string" stringMaxLength="MAX_MSG_LEN"/>
<member name="count" type="long"/>

</struct>
</types>
<!-- Domain Library -->

(continues on next page)

4.6. Application Generation 45

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
<domain_library name="HelloWorldLibrary">

<domain name="HelloWorldDomain" domain_id="0">
<register_type name="HelloWorldType" type_ref="HelloWorld">
</register_type>
<topic name="HelloWorldTopic" register_type_ref="HelloWorldType">

<registered_name>HelloWorldTopic</registered_name>
</topic>

</domain>
</domain_library>
<!-- Participant Library -->
<domain_participant_library name="HelloWorldAppLibrary">

<domain_participant name="HelloWorldDPDEPubDP"
domain_ref="HelloWorldLibrary::HelloWorldDomain">
<publisher name="HelloWorldDPDEPub">

<data_writer topic_ref="HelloWorldTopic" name="HelloWorldDPDEDW">
<datawriter_qos base_name="QosLibrary::DPDEProfile"/>

</data_writer>
</publisher>
<participant_qos base_name="QosLibrary::DPDEProfile"/>

</domain_participant>
<domain_participant name="HelloWorldDPDESubDP"

domain_ref="HelloWorldLibrary::HelloWorldDomain">
<subscriber name="HelloWorldDPDESub">

<data_reader topic_ref="HelloWorldTopic" name="HelloWorldDPDEDR">
<datareader_qos base_name="QosLibrary::DPDEProfile"/>

</data_reader>
</subscriber>
<participant_qos base_name="QosLibrary::DPDEProfile"/>

</domain_participant>
<domain_participant name="HelloWorldDPSEPubDP"

domain_ref="HelloWorldLibrary::HelloWorldDomain">
<publisher name="HelloWorldDPSEPub">

<data_writer topic_ref="HelloWorldTopic" name="HelloWorldDPSEDW">
<datawriter_qos base_name="QosLibrary::DPSEProfile"/>

</data_writer>
</publisher>
<participant_qos base_name="QosLibrary::DPSEProfile"/>

</domain_participant>
<domain_participant name="HelloWorldDPSESubDP"

domain_ref="HelloWorldLibrary::HelloWorldDomain">
<subscriber name="HelloWorldDPSESub">

<data_reader topic_ref="HelloWorldTopic" name="HelloWorldDPSEDR">
<datareader_qos base_name="QosLibrary::DPSEProfile"/>

</data_reader>
</subscriber>
<participant_qos base_name="QosLibrary::DPSEProfile"/>

</domain_participant>
</domain_participant_library>

</dds>

Example QoS configuration file HelloWorldQos.xml:

4.6. Application Generation 46

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

<?xml version="1.0"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://community.rti.com/schema/6.0.0/rti_dds_
↪→profiles.xsd">

<qos_library name="QosLibrary">
<qos_profile name="DefaultProfile" is_default_participant_factory_profile="true">

<!-- Participant Factory Qos -->
<participant_factory_qos>

<entity_factory>
<autoenable_created_entities>false</autoenable_created_entities>

</entity_factory>
</participant_factory_qos>
<!-- Participant Qos -->
<participant_qos>

<discovery>
<accept_unknown_peers>false</accept_unknown_peers>
<initial_peers>

<element>127.0.0.1</element>
<element>239.255.0.1</element>

</initial_peers>
<enabled_transports>

<element>udpv4</element>
</enabled_transports>
<multicast_receive_addresses>

<element>udpv4://127.0.0.1</element>
<element>udpv4://239.255.0.1</element>

</multicast_receive_addresses>
</discovery>
<default_unicast>

<value>
<element>

<transports>
<element>udpv4</element>

</transports>
</element>

</value>
</default_unicast>
<transport_builtin>

<mask>UDPv4</mask>
</transport_builtin>
<resource_limits>

<local_writer_allocation>
<max_count>1</max_count>

</local_writer_allocation>
<local_reader_allocation>

<max_count>1</max_count>
</local_reader_allocation>

<local_publisher_allocation>
<max_count>1</max_count>

</local_publisher_allocation>
<local_subscriber_allocation>

<max_count>1</max_count>

(continues on next page)

4.6. Application Generation 47

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
</local_subscriber_allocation>

<local_topic_allocation>
<max_count>1</max_count>
</local_topic_allocation>

<local_type_allocation>
<max_count>1</max_count>
</local_type_allocation>

<remote_participant_allocation>
<max_count>8</max_count>
</remote_participant_allocation>

<remote_writer_allocation>
<max_count>8</max_count>

</remote_writer_allocation>
<remote_reader_allocation>

<max_count>8</max_count>
</remote_reader_allocation>
<max_receive_ports>32</max_receive_ports>
<max_destination_ports>32</max_destination_ports>

</resource_limits>
</participant_qos>
<!-- DataWriter Qos -->
<datawriter_qos>

<history>
<depth>32</depth>

</history>
<resource_limits>

<max_instances>2</max_instances>
<max_samples>64</max_samples>
<max_samples_per_instance>32</max_samples_per_instance>

</resource_limits>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
<protocol>

<rtps_reliable_writer>
<heartbeat_period>

<nanosec>250000000</nanosec>
<sec>0</sec>

</heartbeat_period>
</rtps_reliable_writer>

</protocol>
<!-- transports -->
<unicast>

<value>
<element>

<transports>
<element>udpv4</element>

</transports>
</element>

</value>
</unicast>

(continues on next page)

4.6. Application Generation 48

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
</datawriter_qos>
<!-- DataReader Qos -->
<datareader_qos>

<history>
<depth>32</depth>

</history>
<resource_limits>

<max_instances>2</max_instances>
<max_samples>64</max_samples>
<max_samples_per_instance>32</max_samples_per_instance>

</resource_limits>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
<reader_resource_limits>

<max_remote_writers>10</max_remote_writers>
<max_remote_writers_per_instance>10</max_remote_writers_per_instance>

</reader_resource_limits>
<!-- transports -->
<unicast>

<value>
<element>

<transports>
<element>udpv4</element>

</transports>
</element>

</value>
</unicast>
<multicast>

<value>
<element>

<receive_address>127.0.0.1</receive_address>
<transports>

<element>udpv4</element>
</transports>

</element>
</value>

</multicast>
</datareader_qos>

</qos_profile>
<qos_profile name="DPDEProfile" base_name="DefaultProfile">

<participant_qos>
<discovery_config>

<builtin_discovery_plugins>SDP</builtin_discovery_plugins>
</discovery_config>

</participant_qos>
</qos_profile>
<qos_profile name="DPSEProfile" base_name="DefaultProfile">

<participant_qos>
<discovery_config>

<builtin_discovery_plugins>DPSE</builtin_discovery_plugins>

(continues on next page)

4.6. Application Generation 49

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
</discovery_config>

</participant_qos>
</qos_profile>

</qos_library>
</dds>

Generated source files

Example generated header configuration HelloWorldAppgen.h:

/*
WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.
This file was generated from HelloWorld.xml using "rtiddsmag."
The rtiddsmag tool is part of the RTI Connext distribution.
For more information, type 'rtiddsmag -help' at a command shell
or consult the RTI Connext manual.
*/
#include "HelloWorldPlugin.h"
#include "app_gen/app_gen.h"
#include "netio/netio_udp.h"
#include "disc_dpde/disc_dpde_discovery_plugin.h"
#include "disc_dpse/disc_dpse_dpsediscovery.h"
#define RTI_APP_GEN___udpv4__HelloWorldAppLibrary_HelloWorldDPDEPubDP_udp1 \
{ \

NETIO_InterfaceFactoryProperty_INITIALIZER, \
REDA_StringSeq_INITIALIZER, /* allow_interface */ \
REDA_StringSeq_INITIALIZER, /* deny_interface */ \
262144, /* max_send_buffer_size */ \
262144, /* max_receive_buffer_size */ \
8192, /* max_message_size */ \
-1, /* max_send_message_size */ \
1, /* multicast_ttl */ \
UDP_NAT_INITIALIZER \
UDP_InterfaceTableEntrySeq_INITIALIZER, /* if_table */ \
NULL, /* multicast_interface */ \
DDS_BOOLEAN_TRUE, /* is_default_interface */ \
DDS_BOOLEAN_FALSE, /* disable_auto_interface_config */ \
{ /* recv_thread */ \

OSAPI_THREAD_USE_OSDEFAULT_STACKSIZE, /* stack_size */ \
OSAPI_THREAD_PRIORITY_NORMAL, /* priority */ \
OSAPI_THREAD_DEFAULT_OPTIONS /* options */ \

}, \
RTI_FALSE /* transform_locator_kind */ \
UDP_TRANSFORMS_INITIALIZER \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=145, columnNumber=35 */
↪→

#define RTI_APP_GEN___dpde__HelloWorldAppLibrary_HelloWorldDPDEPubDP_dpde1 \
{ \

RT_ComponentFactoryProperty_INITIALIZER, /* _parent */ \
(continues on next page)

4.6. Application Generation 50

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{ /*participant_liveliness_assert_period */ \

30L, /* sec */ \
0L /* nanosec */ \

}, \
{ /*participant_liveliness_lease_duration */ \

100L, /* sec */ \
0L /* nanosec */ \

}, \
5, /* initial_participant_announcements */ \
{ /*initial_participant_announcement_period */ \

1L, /* sec */ \
0L /* nanosec */ \

}, \
DDS_BOOLEAN_FALSE, /* cache_serialized_samples */ \
DDS_LENGTH_AUTO, /* max_participant_locators */ \
4, /* max_locators_per_discovered_participant */ \
8, /* max_samples_per_builtin_endpoint_reader */ \
DDS_LENGTH_UNLIMITED, /* builtin_writer_max_heartbeat_retries */ \
{ /*builtin_writer_heartbeat_period */ \

0L, /* sec */ \
100000000L /* nanosec */ \

}, \
1L /* builtin_writer_heartbeats_per_max_samples */ \
DDS_PARTICIPANT_MESSAGE_READER_RELIABILITY_KIND_INITIALIZER \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=152, columnNumber=35 */
↪→

#define RTI_APP_GEN___dpse__HelloWorldAppLibrary_HelloWorldDPSEPubDP_dpse1 \
{ \

RT_ComponentFactoryProperty_INITIALIZER, /* _parent */ \
{ /*participant_liveliness_assert_period */ \

30L, /* sec */ \
0L /* nanosec */ \

}, \
{ /*participant_liveliness_lease_duration */ \

100L, /* sec */ \
0L /* nanosec */ \

}, \
5, /* initial_participant_announcements */ \
{ /*initial_participant_announcement_period */ \

1L, /* sec */ \
0L /* nanosec */ \

}, \
DDS_LENGTH_AUTO, /* max_participant_locators */ \
4 /* max_locators_per_discovered_participant */ \
DDS_PARTICIPANT_MESSAGE_READER_RELIABILITY_KIND_INITIALIZER \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=7, columnNumber=38 */
#define RTI_APP_GEN___DPF_QOS_QosLibrary_DefaultProfile \

(continues on next page)

4.6. Application Generation 51

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{ \

{ /* entity_factory */ \
DDS_BOOLEAN_FALSE /* autoenable_created_entities */ \

}, \
DDS_SYSTEM_RESOURCE_LIMITS_QOS_POLICY_DEFAULT \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=38, columnNumber=67 */
extern const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_initial_peers[2];
extern const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_discovery_enabled_
↪→transports[3];
extern const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_transport_enabled_
↪→transports[1];
extern const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_user_traffic_enabled_
↪→transports[1];
#define RTI_APP_GEN___DP_QOS_HelloWorldAppLibrary_HelloWorldDPDEPubDP \
{ \

DDS_ENTITY_FACTORY_QOS_POLICY_DEFAULT, \
{ /* discovery */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→initial_peers, 2, 2), /* initial_peers */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→discovery_enabled_transports, 3, 3), /* enabled_transports */ \

{ \
{ { "dpde1" } }, /* RT_ComponentFactoryId_INITIALIZER */ \
NDDS_Discovery_Property_INITIALIZER \

}, /* discovery_component */ \
DDS_BOOLEAN_FALSE /* accept_unknown_peers */ \

}, \
{ /* resource_limits */ \

1L, /* local_writer_allocation */ \
1L, /* local_reader_allocation */ \
1L, /* local_publisher_allocation */ \
1L, /* local_subscriber_allocation */ \
1L, /* local_topic_allocation */ \
1L, /* local_type_allocation */ \
8L, /* remote_participant_allocation */ \
8L, /* remote_writer_allocation */ \
8L, /* remote_reader_allocation */ \
32L, /* matching_writer_reader_pair_allocation */ \
32L, /* matching_reader_writer_pair_allocation */ \
32L, /* max_receive_ports */ \
32L, /* max_destination_ports */ \
65536, /* unbound_data_buffer_size */ \
500UL /* shmem_ref_transfer_mode_max_segments */ \

}, \
DDS_ENTITY_NAME_QOS_POLICY_DEFAULT, \
DDS_WIRE_PROTOCOL_QOS_POLICY_DEFAULT, \
{ /* transports */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→transport_enabled_transports, 1, 1) /* enabled_transports */ \

(continues on next page)

4.6. Application Generation 52

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
}, \
{ /* user_traffic */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDEPubDP_user_
↪→traffic_enabled_transports, 1, 1) /* enabled_transports */ \

}, \
DDS_TRUST_QOS_POLICY_DEFAULT, \
DDS_PROPERTY_QOS_POLICY_DEFAULT \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=35, columnNumber=74 */
extern const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_HelloWorldDPDEPub_
↪→HelloWorldDPDEDW_transport_enabled_transports[1];
#define RTI_APP_GEN___DW_QOS_HelloWorldAppLibrary_HelloWorldDPDEPubDP_HelloWorldDPDEPub_
↪→HelloWorldDPDEDW \
{ \

DDS_DEADLINE_QOS_POLICY_DEFAULT, \
DDS_LIVELINESS_QOS_POLICY_DEFAULT, \
{ /* history */ \

DDS_KEEP_LAST_HISTORY_QOS, /* kind */ \
32L /* depth */ \

}, \
{ /* resource_limits */ \

64L, /* max_samples */ \
2L, /* max_instances */ \
32L /* max_samples_per_instance */ \

}, \
DDS_OWNERSHIP_QOS_POLICY_DEFAULT, \
DDS_OWNERSHIP_STRENGTH_QOS_POLICY_DEFAULT, \
DDS_LATENCY_BUDGET_QOS_POLICY_DEFAULT, \
{ /* reliability */ \

DDS_RELIABLE_RELIABILITY_QOS, /* kind */ \
{ /* max_blocking_time */ \

0L, /* sec */ \
100000000L /* nanosec */ \

} \
}, \
DDS_DURABILITY_QOS_POLICY_DEFAULT, \
DDS_DESTINATION_ORDER_QOS_POLICY_DEFAULT, \
DDS_TRANSPORT_ENCAPSULATION_QOS_POLICY_DEFAULT, \
DDS_DATA_REPRESENTATION_QOS_POLICY_DEFAULT, \
{ /* protocol */ \

DDS_RTPS_AUTO_ID, /* rtps_object_id */ \
{ /* rtps_reliable_writer */ \

{ /* heartbeat_period */ \
0L, /* sec */ \
250000000L /* nanosec */ \

}, \
1L, /* heartbeats_per_max_samples */ \
DDS_LENGTH_UNLIMITED, /* max_send_window */ \
DDS_LENGTH_UNLIMITED, /* max_heartbeat_retries */ \
{ /* first_write_sequence_number */ \

(continues on next page)

4.6. Application Generation 53

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
0, /* high */ \
1 /* low */ \

} \
}, \
DDS_BOOLEAN_TRUE /* serialize_on_write */ \

}, \
DDS_TYPESUPPORT_QOS_POLICY_DEFAULT, \
{ /* transports */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→HelloWorldDPDEPub_HelloWorldDPDEDW_transport_enabled_transports, 1, 1) /* enabled_
↪→transports */ \

}, \
RTI_MANAGEMENT_QOS_POLICY_DEFAULT, \
DDS_DATAWRITERRESOURCE_LIMITS_QOS_POLICY_DEFAULT, \
DDS_PUBLISH_MODE_QOS_POLICY_DEFAULT, \
DDS_DATAWRITERQOS_TRUST_INITIALIZER \
DDS_DATAWRITERQOS_APPGEN_INITIALIZER \
NULL, \
DDS_DataWriterTransferModeQosPolicy_INITIALIZER \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=48, columnNumber=67 */
extern const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_initial_peers[2];
extern const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_discovery_enabled_
↪→transports[3];
extern const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_transport_enabled_
↪→transports[1];
extern const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_user_traffic_enabled_
↪→transports[1];
#define RTI_APP_GEN___DP_QOS_HelloWorldAppLibrary_HelloWorldDPDESubDP \
{ \

DDS_ENTITY_FACTORY_QOS_POLICY_DEFAULT, \
{ /* discovery */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→initial_peers, 2, 2), /* initial_peers */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→discovery_enabled_transports, 3, 3), /* enabled_transports */ \

{ \
{ { "dpde1" } }, /* RT_ComponentFactoryId_INITIALIZER */ \
NDDS_Discovery_Property_INITIALIZER \

}, /* discovery_component */ \
DDS_BOOLEAN_FALSE /* accept_unknown_peers */ \

}, \
{ /* resource_limits */ \

1L, /* local_writer_allocation */ \
1L, /* local_reader_allocation */ \
1L, /* local_publisher_allocation */ \
1L, /* local_subscriber_allocation */ \
1L, /* local_topic_allocation */ \
1L, /* local_type_allocation */ \
8L, /* remote_participant_allocation */ \

(continues on next page)

4.6. Application Generation 54

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
8L, /* remote_writer_allocation */ \
8L, /* remote_reader_allocation */ \
32L, /* matching_writer_reader_pair_allocation */ \
32L, /* matching_reader_writer_pair_allocation */ \
32L, /* max_receive_ports */ \
32L, /* max_destination_ports */ \
65536, /* unbound_data_buffer_size */ \
500UL /* shmem_ref_transfer_mode_max_segments */ \

}, \
DDS_ENTITY_NAME_QOS_POLICY_DEFAULT, \
DDS_WIRE_PROTOCOL_QOS_POLICY_DEFAULT, \
{ /* transports */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→transport_enabled_transports, 1, 1) /* enabled_transports */ \

}, \
{ /* user_traffic */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDESubDP_user_
↪→traffic_enabled_transports, 1, 1) /* enabled_transports */ \

}, \
DDS_TRUST_QOS_POLICY_DEFAULT, \
DDS_PROPERTY_QOS_POLICY_DEFAULT \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=45, columnNumber=74 */
extern const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_HelloWorldDPDESub_
↪→HelloWorldDPDEDR_transport_enabled_transports[2];
#define RTI_APP_GEN___DR_QOS_HelloWorldAppLibrary_HelloWorldDPDESubDP_HelloWorldDPDESub_
↪→HelloWorldDPDEDR \
{ \

DDS_DEADLINE_QOS_POLICY_DEFAULT, \
DDS_LIVELINESS_QOS_POLICY_DEFAULT, \
{ /* history */ \

DDS_KEEP_LAST_HISTORY_QOS, /* kind */ \
32L /* depth */ \

}, \
{ /* resource_limits */ \

64L, /* max_samples */ \
2L, /* max_instances */ \
32L /* max_samples_per_instance */ \

}, \
DDS_OWNERSHIP_QOS_POLICY_DEFAULT, \
DDS_LATENCY_BUDGET_QOS_POLICY_DEFAULT, \
{ /* reliability */ \

DDS_RELIABLE_RELIABILITY_QOS, /* kind */ \
{ /* max_blocking_time */ \

0L, /* sec */ \
0L /* nanosec */ \

} \
}, \
DDS_DURABILITY_QOS_POLICY_DEFAULT, \
DDS_DESTINATION_ORDER_QOS_POLICY_DEFAULT, \

(continues on next page)

4.6. Application Generation 55

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
DDS_TRANSPORT_ENCAPSULATION_QOS_POLICY_DEFAULT, \
DDS_DATA_REPRESENTATION_QOS_POLICY_DEFAULT, \
DDS_TYPESUPPORT_QOS_POLICY_DEFAULT, \
DDS_DATA_READER_PROTOCOL_QOS_POLICY_DEFAULT, \
{ /* transports */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→HelloWorldDPDESub_HelloWorldDPDEDR_transport_enabled_transports, 2, 2) /* enabled_
↪→transports */ \

}, \
{ /* reader_resource_limits */ \

10L, /* max_remote_writers */ \
10L, /* max_remote_writers_per_instance */ \
1L, /* max_samples_per_remote_writer */ \
1L, /* max_outstanding_reads */ \
DDS_NO_INSTANCE_REPLACEMENT_QOS, /* instance_replacement */ \
4L, /* max_routes_per_writer */ \
DDS_MAX_AUTO, /* max_fragmented_samples */ \
DDS_MAX_AUTO, /* max_fragmented_samples_per_remote_writer */ \
DDS_SIZE_AUTO /* shmem_ref_transfer_mode_attached_segment_allocation */ \

}, \
RTI_MANAGEMENT_QOS_POLICY_DEFAULT, \
DDS_DATAREADERQOS_TRUST_INITIALIZER \
DDS_DATAREADERQOS_APPGEN_INITIALIZER \
NULL \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=58, columnNumber=67 */
extern const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_initial_peers[2];
extern const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_discovery_enabled_
↪→transports[3];
extern const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_transport_enabled_
↪→transports[1];
extern const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_user_traffic_enabled_
↪→transports[1];
#define RTI_APP_GEN___DP_QOS_HelloWorldAppLibrary_HelloWorldDPSEPubDP \
{ \

DDS_ENTITY_FACTORY_QOS_POLICY_DEFAULT, \
{ /* discovery */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→initial_peers, 2, 2), /* initial_peers */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→discovery_enabled_transports, 3, 3), /* enabled_transports */ \

{ \
{ { "dpse1" } }, /* RT_ComponentFactoryId_INITIALIZER */ \
NDDS_Discovery_Property_INITIALIZER \

}, /* discovery_component */ \
DDS_BOOLEAN_FALSE /* accept_unknown_peers */ \

}, \
{ /* resource_limits */ \

1L, /* local_writer_allocation */ \
1L, /* local_reader_allocation */ \

(continues on next page)

4.6. Application Generation 56

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
1L, /* local_publisher_allocation */ \
1L, /* local_subscriber_allocation */ \
1L, /* local_topic_allocation */ \
1L, /* local_type_allocation */ \
8L, /* remote_participant_allocation */ \
8L, /* remote_writer_allocation */ \
8L, /* remote_reader_allocation */ \
32L, /* matching_writer_reader_pair_allocation */ \
32L, /* matching_reader_writer_pair_allocation */ \
32L, /* max_receive_ports */ \
32L, /* max_destination_ports */ \
65536, /* unbound_data_buffer_size */ \
500UL /* shmem_ref_transfer_mode_max_segments */ \

}, \
DDS_ENTITY_NAME_QOS_POLICY_DEFAULT, \
DDS_WIRE_PROTOCOL_QOS_POLICY_DEFAULT, \
{ /* transports */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→transport_enabled_transports, 1, 1) /* enabled_transports */ \

}, \
{ /* user_traffic */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSEPubDP_user_
↪→traffic_enabled_transports, 1, 1) /* enabled_transports */ \

}, \
DDS_TRUST_QOS_POLICY_DEFAULT, \
DDS_PROPERTY_QOS_POLICY_DEFAULT \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=55, columnNumber=74 */
extern const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_HelloWorldDPSEPub_
↪→HelloWorldDPSEDW_transport_enabled_transports[1];
#define RTI_APP_GEN___DW_QOS_HelloWorldAppLibrary_HelloWorldDPSEPubDP_HelloWorldDPSEPub_
↪→HelloWorldDPSEDW \
{ \

DDS_DEADLINE_QOS_POLICY_DEFAULT, \
DDS_LIVELINESS_QOS_POLICY_DEFAULT, \
{ /* history */ \

DDS_KEEP_LAST_HISTORY_QOS, /* kind */ \
32L /* depth */ \

}, \
{ /* resource_limits */ \

64L, /* max_samples */ \
2L, /* max_instances */ \
32L /* max_samples_per_instance */ \

}, \
DDS_OWNERSHIP_QOS_POLICY_DEFAULT, \
DDS_OWNERSHIP_STRENGTH_QOS_POLICY_DEFAULT, \
DDS_LATENCY_BUDGET_QOS_POLICY_DEFAULT, \
{ /* reliability */ \

DDS_RELIABLE_RELIABILITY_QOS, /* kind */ \
{ /* max_blocking_time */ \

(continues on next page)

4.6. Application Generation 57

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
0L, /* sec */ \
100000000L /* nanosec */ \

} \
}, \
DDS_DURABILITY_QOS_POLICY_DEFAULT, \
DDS_DESTINATION_ORDER_QOS_POLICY_DEFAULT, \
DDS_TRANSPORT_ENCAPSULATION_QOS_POLICY_DEFAULT, \
DDS_DATA_REPRESENTATION_QOS_POLICY_DEFAULT, \
{ /* protocol */ \

1UL, /* rtps_object_id */ \
{ /* rtps_reliable_writer */ \

{ /* heartbeat_period */ \
0L, /* sec */ \
250000000L /* nanosec */ \

}, \
1L, /* heartbeats_per_max_samples */ \
DDS_LENGTH_UNLIMITED, /* max_send_window */ \
DDS_LENGTH_UNLIMITED, /* max_heartbeat_retries */ \
{ /* first_write_sequence_number */ \

0, /* high */ \
1 /* low */ \

} \
}, \
DDS_BOOLEAN_TRUE /* serialize_on_write */ \

}, \
DDS_TYPESUPPORT_QOS_POLICY_DEFAULT, \
{ /* transports */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→HelloWorldDPSEPub_HelloWorldDPSEDW_transport_enabled_transports, 1, 1) /* enabled_
↪→transports */ \

}, \
RTI_MANAGEMENT_QOS_POLICY_DEFAULT, \
DDS_DATAWRITERRESOURCE_LIMITS_QOS_POLICY_DEFAULT, \
DDS_PUBLISH_MODE_QOS_POLICY_DEFAULT, \
DDS_DATAWRITERQOS_TRUST_INITIALIZER \
DDS_DATAWRITERQOS_APPGEN_INITIALIZER \
NULL, \
DDS_DataWriterTransferModeQosPolicy_INITIALIZER \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=68, columnNumber=67 */
extern const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_initial_peers[2];
extern const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_discovery_enabled_
↪→transports[3];
extern const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_transport_enabled_
↪→transports[1];
extern const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_user_traffic_enabled_
↪→transports[1];
#define RTI_APP_GEN___DP_QOS_HelloWorldAppLibrary_HelloWorldDPSESubDP \
{ \

DDS_ENTITY_FACTORY_QOS_POLICY_DEFAULT, \

(continues on next page)

4.6. Application Generation 58

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{ /* discovery */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→initial_peers, 2, 2), /* initial_peers */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→discovery_enabled_transports, 3, 3), /* enabled_transports */ \

{ \
{ { "dpse1" } }, /* RT_ComponentFactoryId_INITIALIZER */ \
NDDS_Discovery_Property_INITIALIZER \

}, /* discovery_component */ \
DDS_BOOLEAN_FALSE /* accept_unknown_peers */ \

}, \
{ /* resource_limits */ \

1L, /* local_writer_allocation */ \
1L, /* local_reader_allocation */ \
1L, /* local_publisher_allocation */ \
1L, /* local_subscriber_allocation */ \
1L, /* local_topic_allocation */ \
1L, /* local_type_allocation */ \
8L, /* remote_participant_allocation */ \
8L, /* remote_writer_allocation */ \
8L, /* remote_reader_allocation */ \
32L, /* matching_writer_reader_pair_allocation */ \
32L, /* matching_reader_writer_pair_allocation */ \
32L, /* max_receive_ports */ \
32L, /* max_destination_ports */ \
65536, /* unbound_data_buffer_size */ \
500UL /* shmem_ref_transfer_mode_max_segments */ \

}, \
DDS_ENTITY_NAME_QOS_POLICY_DEFAULT, \
DDS_WIRE_PROTOCOL_QOS_POLICY_DEFAULT, \
{ /* transports */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→transport_enabled_transports, 1, 1) /* enabled_transports */ \

}, \
{ /* user_traffic */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSESubDP_user_
↪→traffic_enabled_transports, 1, 1) /* enabled_transports */ \

}, \
DDS_TRUST_QOS_POLICY_DEFAULT, \
DDS_PROPERTY_QOS_POLICY_DEFAULT \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=65, columnNumber=74 */
extern const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_HelloWorldDPSESub_
↪→HelloWorldDPSEDR_transport_enabled_transports[2];
#define RTI_APP_GEN___DR_QOS_HelloWorldAppLibrary_HelloWorldDPSESubDP_HelloWorldDPSESub_
↪→HelloWorldDPSEDR \
{ \

DDS_DEADLINE_QOS_POLICY_DEFAULT, \
DDS_LIVELINESS_QOS_POLICY_DEFAULT, \
{ /* history */ \

(continues on next page)

4.6. Application Generation 59

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
DDS_KEEP_LAST_HISTORY_QOS, /* kind */ \
32L /* depth */ \

}, \
{ /* resource_limits */ \

64L, /* max_samples */ \
2L, /* max_instances */ \
32L /* max_samples_per_instance */ \

}, \
DDS_OWNERSHIP_QOS_POLICY_DEFAULT, \
DDS_LATENCY_BUDGET_QOS_POLICY_DEFAULT, \
{ /* reliability */ \

DDS_RELIABLE_RELIABILITY_QOS, /* kind */ \
{ /* max_blocking_time */ \

0L, /* sec */ \
0L /* nanosec */ \

} \
}, \
DDS_DURABILITY_QOS_POLICY_DEFAULT, \
DDS_DESTINATION_ORDER_QOS_POLICY_DEFAULT, \
DDS_TRANSPORT_ENCAPSULATION_QOS_POLICY_DEFAULT, \
DDS_DATA_REPRESENTATION_QOS_POLICY_DEFAULT, \
DDS_TYPESUPPORT_QOS_POLICY_DEFAULT, \
{ /* protocol */ \

2UL /* rtps_object_id */ \
}, \
{ /* transports */ \

REDA_StringSeq_INITIALIZER_W_LOAN(HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→HelloWorldDPSESub_HelloWorldDPSEDR_transport_enabled_transports, 2, 2) /* enabled_
↪→transports */ \

}, \
{ /* reader_resource_limits */ \

10L, /* max_remote_writers */ \
10L, /* max_remote_writers_per_instance */ \
1L, /* max_samples_per_remote_writer */ \
1L, /* max_outstanding_reads */ \
DDS_NO_INSTANCE_REPLACEMENT_QOS, /* instance_replacement */ \
4L, /* max_routes_per_writer */ \
DDS_MAX_AUTO, /* max_fragmented_samples */ \
DDS_MAX_AUTO, /* max_fragmented_samples_per_remote_writer */ \
DDS_SIZE_AUTO /* shmem_ref_transfer_mode_attached_segment_allocation */ \

}, \
RTI_MANAGEMENT_QOS_POLICY_DEFAULT, \
DDS_DATAREADERQOS_TRUST_INITIALIZER \
DDS_DATAREADERQOS_APPGEN_INITIALIZER \
NULL \

}
extern struct DPDE_DiscoveryPluginProperty HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→dpde[1];
extern struct UDP_InterfaceFactoryProperty HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→udpv4[1];
extern const struct ComponentFactoryUnregisterModel HelloWorldAppLibrary_
↪→HelloWorldDPDEPubDP_unregister_components[2];

(continues on next page)

4.6. Application Generation 60

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
extern const struct ComponentFactoryRegisterModel HelloWorldAppLibrary_
↪→HelloWorldDPDEPubDP_register_components[2];
#define RTI_APP_GEN__DPF_HelloWorldAppLibrary_HelloWorldDPDEPubDP \
{ \

2UL, /* unregister_count */ \
HelloWorldAppLibrary_HelloWorldDPDEPubDP_unregister_components, /* unregister_

↪→components */ \
2UL, /* register_count */ \
HelloWorldAppLibrary_HelloWorldDPDEPubDP_register_components, /* register_components␣

↪→*/ \
RTI_APP_GEN___DPF_QOS_QosLibrary_DefaultProfile /* factory_qos */ \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=32, columnNumber=62 */
extern const struct APPGEN_TypeRegistrationModel HelloWorldAppLibrary_
↪→HelloWorldDPDEPubDP_type_registrations[1];
extern const struct APPGEN_TopicModel HelloWorldAppLibrary_HelloWorldDPDEPubDP_topics[1];
extern const struct APPGEN_PublisherModel HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→publishers[1];
#define RTI_APP_GEN__DP_HelloWorldAppLibrary_HelloWorldDPDEPubDP \
{ \

"HelloWorldDPDEPubDP", /* name */ \
RTI_APP_GEN__DPF_HelloWorldAppLibrary_HelloWorldDPDEPubDP, /* domain_participant_

↪→factory */ \
RTI_APP_GEN___DP_QOS_HelloWorldAppLibrary_HelloWorldDPDEPubDP, /* participant_qos */␣

↪→\
0L, /* domain_id */ \
1UL, /* type_registration_count */ \
HelloWorldAppLibrary_HelloWorldDPDEPubDP_type_registrations, /* type_registrations */

↪→ \
1UL, /* topic_count */ \
HelloWorldAppLibrary_HelloWorldDPDEPubDP_topics, /* topics */ \
1UL, /* publisher_count */ \
HelloWorldAppLibrary_HelloWorldDPDEPubDP_publishers, /* publishers */ \
0UL, /* subscriber_count */ \
NULL, /* subscribers */ \
0UL, /* remote_participant_count */ \
NULL, /* remote_participants */ \
0UL, /* flow_controller_count */ \
NULL, /* flow_controllers */ \

}
extern struct DPDE_DiscoveryPluginProperty HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→dpde[1];
extern struct UDP_InterfaceFactoryProperty HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→udpv4[1];
extern const struct ComponentFactoryUnregisterModel HelloWorldAppLibrary_
↪→HelloWorldDPDESubDP_unregister_components[2];
extern const struct ComponentFactoryRegisterModel HelloWorldAppLibrary_
↪→HelloWorldDPDESubDP_register_components[2];
#define RTI_APP_GEN__DPF_HelloWorldAppLibrary_HelloWorldDPDESubDP \
{ \

(continues on next page)

4.6. Application Generation 61

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
2UL, /* unregister_count */ \
HelloWorldAppLibrary_HelloWorldDPDESubDP_unregister_components, /* unregister_

↪→components */ \
2UL, /* register_count */ \
HelloWorldAppLibrary_HelloWorldDPDESubDP_register_components, /* register_components␣

↪→*/ \
RTI_APP_GEN___DPF_QOS_QosLibrary_DefaultProfile /* factory_qos */ \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=42, columnNumber=62 */
extern const struct APPGEN_TypeRegistrationModel HelloWorldAppLibrary_
↪→HelloWorldDPDESubDP_type_registrations[1];
extern const struct APPGEN_TopicModel HelloWorldAppLibrary_HelloWorldDPDESubDP_topics[1];
extern const struct APPGEN_SubscriberModel HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→subscribers[1];
#define RTI_APP_GEN__DP_HelloWorldAppLibrary_HelloWorldDPDESubDP \
{ \

"HelloWorldDPDESubDP", /* name */ \
RTI_APP_GEN__DPF_HelloWorldAppLibrary_HelloWorldDPDESubDP, /* domain_participant_

↪→factory */ \
RTI_APP_GEN___DP_QOS_HelloWorldAppLibrary_HelloWorldDPDESubDP, /* participant_qos */␣

↪→\
0L, /* domain_id */ \
1UL, /* type_registration_count */ \
HelloWorldAppLibrary_HelloWorldDPDESubDP_type_registrations, /* type_registrations */

↪→ \
1UL, /* topic_count */ \
HelloWorldAppLibrary_HelloWorldDPDESubDP_topics, /* topics */ \
0UL, /* publisher_count */ \
NULL, /* publishers */ \
1UL, /* subscriber_count */ \
HelloWorldAppLibrary_HelloWorldDPDESubDP_subscribers, /* subscribers */ \
0UL, /* remote_participant_count */ \
NULL, /* remote_participants */ \
0UL, /* flow_controller_count */ \
NULL, /* flow_controllers */ \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=64, columnNumber=82 */
#define RTI_APP_GEN__RSD_HelloWorldAppLibrary_HelloWorldDPSEPubDP_HelloWorldAppLibrary_
↪→HelloWorldDPSESubDP_HelloWorldDPSESub_HelloWorldDPSEDR \
{ \

{ /* subscription_data */ \
{ \

{ 0, 0, 0, 2 } /* key */ \
}, \
{ \

{ 0, 0, 0, 0 } /* participant_key */ \
}, \
"HelloWorldTopic", /* topic_name */ \
"HelloWorldType", /* type_name */ \

(continues on next page)

4.6. Application Generation 62

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
DDS_DEADLINE_QOS_POLICY_DEFAULT, \
DDS_OWNERSHIP_QOS_POLICY_DEFAULT, \
DDS_LATENCY_BUDGET_QOS_POLICY_DEFAULT, \
{ /* reliability */ \

DDS_RELIABLE_RELIABILITY_QOS, /* kind */ \
{ /* max_blocking_time */ \

0L, /* sec */ \
0L /* nanosec */ \

} \
}, \
DDS_LIVELINESS_QOS_POLICY_DEFAULT, \
DDS_DURABILITY_QOS_POLICY_DEFAULT, \
DDS_DESTINATION_ORDER_QOS_POLICY_DEFAULT, \
DDS_SEQUENCE_INITIALIZER, \
DDS_SEQUENCE_INITIALIZER, \
DDS_DATA_REPRESENTATION_QOS_POLICY_DEFAULT \
DDS_TRUST_SUBSCRIPTION_DATA_INITIALIZER \

}, \
HelloWorldTypePlugin_get /* get_type_plugin */ \

}
extern struct DPSE_DiscoveryPluginProperty HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→dpse[1];
extern struct UDP_InterfaceFactoryProperty HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→udpv4[1];
extern const struct ComponentFactoryUnregisterModel HelloWorldAppLibrary_
↪→HelloWorldDPSEPubDP_unregister_components[2];
extern const struct ComponentFactoryRegisterModel HelloWorldAppLibrary_
↪→HelloWorldDPSEPubDP_register_components[2];
#define RTI_APP_GEN__DPF_HelloWorldAppLibrary_HelloWorldDPSEPubDP \
{ \

2UL, /* unregister_count */ \
HelloWorldAppLibrary_HelloWorldDPSEPubDP_unregister_components, /* unregister_

↪→components */ \
2UL, /* register_count */ \
HelloWorldAppLibrary_HelloWorldDPSEPubDP_register_components, /* register_components␣

↪→*/ \
RTI_APP_GEN___DPF_QOS_QosLibrary_DefaultProfile /* factory_qos */ \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=52, columnNumber=62 */
extern const struct APPGEN_TypeRegistrationModel HelloWorldAppLibrary_
↪→HelloWorldDPSEPubDP_type_registrations[1];
extern const struct APPGEN_TopicModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_topics[1];
extern const struct APPGEN_PublisherModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→publishers[1];
extern const struct APPGEN_RemoteSubscriptionModel HelloWorldAppLibrary_
↪→HelloWorldDPSEPubDP_remote_subscribers[1];
extern const struct APPGEN_RemoteParticipantModel HelloWorldAppLibrary_
↪→HelloWorldDPSEPubDP_remote_participants[1];
#define RTI_APP_GEN__DP_HelloWorldAppLibrary_HelloWorldDPSEPubDP \
{ \

(continues on next page)

4.6. Application Generation 63

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
"HelloWorldDPSEPubDP", /* name */ \
RTI_APP_GEN__DPF_HelloWorldAppLibrary_HelloWorldDPSEPubDP, /* domain_participant_

↪→factory */ \
RTI_APP_GEN___DP_QOS_HelloWorldAppLibrary_HelloWorldDPSEPubDP, /* participant_qos */␣

↪→\
0L, /* domain_id */ \
1UL, /* type_registration_count */ \
HelloWorldAppLibrary_HelloWorldDPSEPubDP_type_registrations, /* type_registrations */

↪→ \
1UL, /* topic_count */ \
HelloWorldAppLibrary_HelloWorldDPSEPubDP_topics, /* topics */ \
1UL, /* publisher_count */ \
HelloWorldAppLibrary_HelloWorldDPSEPubDP_publishers, /* publishers */ \
0UL, /* subscriber_count */ \
NULL, /* subscribers */ \
1UL, /* remote_participant_count */ \
HelloWorldAppLibrary_HelloWorldDPSEPubDP_remote_participants, /* remote_participants␣

↪→*/ \
0UL, /* flow_controller_count */ \
NULL, /* flow_controllers */ \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=54, columnNumber=82 */
#define RTI_APP_GEN__RPD_HelloWorldAppLibrary_HelloWorldDPSESubDP_HelloWorldAppLibrary_
↪→HelloWorldDPSEPubDP_HelloWorldDPSEPub_HelloWorldDPSEDW \
{ \

{ /* publication_data */ \
{ \

{ 0, 0, 0, 1 } /* key */ \
}, \
{ \

{ 0, 0, 0, 0 } /* participant_key */ \
}, \
"HelloWorldTopic", /* topic_name */ \
"HelloWorldType", /* type_name */ \
DDS_DEADLINE_QOS_POLICY_DEFAULT, \
DDS_OWNERSHIP_QOS_POLICY_DEFAULT, \
DDS_OWNERSHIP_STRENGTH_QOS_POLICY_DEFAULT, \
DDS_LATENCY_BUDGET_QOS_POLICY_DEFAULT, \
{ /* reliability */ \

DDS_RELIABLE_RELIABILITY_QOS, /* kind */ \
{ /* max_blocking_time */ \

0L, /* sec */ \
100000000L /* nanosec */ \

} \
}, \
DDS_LIVELINESS_QOS_POLICY_DEFAULT, \
DDS_DURABILITY_QOS_POLICY_DEFAULT, \
DDS_DESTINATION_ORDER_QOS_POLICY_DEFAULT, \
DDS_SEQUENCE_INITIALIZER, \
DDS_DATA_REPRESENTATION_QOS_POLICY_DEFAULT \

(continues on next page)

4.6. Application Generation 64

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
DDS_TRUST_PUBLICATION_DATA_INITIALIZER \

}, \
HelloWorldTypePlugin_get /* get_type_plugin */ \

}
extern struct DPSE_DiscoveryPluginProperty HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→dpse[1];
extern struct UDP_InterfaceFactoryProperty HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→udpv4[1];
extern const struct ComponentFactoryUnregisterModel HelloWorldAppLibrary_
↪→HelloWorldDPSESubDP_unregister_components[2];
extern const struct ComponentFactoryRegisterModel HelloWorldAppLibrary_
↪→HelloWorldDPSESubDP_register_components[2];
#define RTI_APP_GEN__DPF_HelloWorldAppLibrary_HelloWorldDPSESubDP \
{ \

2UL, /* unregister_count */ \
HelloWorldAppLibrary_HelloWorldDPSESubDP_unregister_components, /* unregister_

↪→components */ \
2UL, /* register_count */ \
HelloWorldAppLibrary_HelloWorldDPSESubDP_register_components, /* register_components␣

↪→*/ \
RTI_APP_GEN___DPF_QOS_QosLibrary_DefaultProfile /* factory_qos */ \

}
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=62, columnNumber=62 */
extern const struct APPGEN_TypeRegistrationModel HelloWorldAppLibrary_
↪→HelloWorldDPSESubDP_type_registrations[1];
extern const struct APPGEN_TopicModel HelloWorldAppLibrary_HelloWorldDPSESubDP_topics[1];
extern const struct APPGEN_SubscriberModel HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→subscribers[1];
extern const struct APPGEN_RemotePublicationModel HelloWorldAppLibrary_
↪→HelloWorldDPSESubDP_remote_publishers[1];
extern const struct APPGEN_RemoteParticipantModel HelloWorldAppLibrary_
↪→HelloWorldDPSESubDP_remote_participants[1];
#define RTI_APP_GEN__DP_HelloWorldAppLibrary_HelloWorldDPSESubDP \
{ \

"HelloWorldDPSESubDP", /* name */ \
RTI_APP_GEN__DPF_HelloWorldAppLibrary_HelloWorldDPSESubDP, /* domain_participant_

↪→factory */ \
RTI_APP_GEN___DP_QOS_HelloWorldAppLibrary_HelloWorldDPSESubDP, /* participant_qos */␣

↪→\
0L, /* domain_id */ \
1UL, /* type_registration_count */ \
HelloWorldAppLibrary_HelloWorldDPSESubDP_type_registrations, /* type_registrations */

↪→ \
1UL, /* topic_count */ \
HelloWorldAppLibrary_HelloWorldDPSESubDP_topics, /* topics */ \
0UL, /* publisher_count */ \
NULL, /* publishers */ \
1UL, /* subscriber_count */ \
HelloWorldAppLibrary_HelloWorldDPSESubDP_subscribers, /* subscribers */ \
1UL, /* remote_participant_count */ \

(continues on next page)

4.6. Application Generation 65

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
HelloWorldAppLibrary_HelloWorldDPSESubDP_remote_participants, /* remote_participants␣

↪→*/ \
0UL, /* flow_controller_count */ \
NULL, /* flow_controllers */ \

}
extern const struct APPGEN_DomainParticipantModel HelloWorldAppLibrary_participants[4];
#define RTI_APP_GEN__LIB_HelloWorldAppLibrary \
{ \

"HelloWorldAppLibrary", /* library_name */ \
4UL, /* participant_count */ \
HelloWorldAppLibrary_participants /* participants */ \

}
extern const struct APPGEN_LibraryModel HelloWorld_libraries[1];

Example generated source configuration file HelloWorldAppgen.c:

/*
WARNING: THIS FILE IS AUTO-GENERATED. DO NOT MODIFY.
This file was generated from HelloWorld.xml using "rtiddsmag."
The rtiddsmag tool is part of the RTI Connext distribution.
For more information, type 'rtiddsmag -help' at a command shell
or consult the RTI Connext manual.
*/
#include "HelloWorldAppgen.h"
const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_initial_peers[2] =
{

"127.0.0.1",
"239.255.0.1"

};
const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_discovery_enabled_
↪→transports[3] =
{

"udp1://",
"udp1://127.0.0.1",
"udp1://239.255.0.1"

};
const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_transport_enabled_
↪→transports[1] =
{

"udp1"
};
const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_user_traffic_enabled_
↪→transports[1] =
{

"udp1://"
};
const char *const HelloWorldAppLibrary_HelloWorldDPDEPubDP_HelloWorldDPDEPub_
↪→HelloWorldDPDEDW_transport_enabled_transports[1] =
{

"udp1://"
};

(continues on next page)

4.6. Application Generation 66

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_initial_peers[2] =
{

"127.0.0.1",
"239.255.0.1"

};
const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_discovery_enabled_
↪→transports[3] =
{

"udp1://",
"udp1://127.0.0.1",
"udp1://239.255.0.1"

};
const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_transport_enabled_
↪→transports[1] =
{

"udp1"
};
const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_user_traffic_enabled_
↪→transports[1] =
{

"udp1://"
};
const char *const HelloWorldAppLibrary_HelloWorldDPDESubDP_HelloWorldDPDESub_
↪→HelloWorldDPDEDR_transport_enabled_transports[2] =
{

"udp1://",
"udp1://127.0.0.1"

};
const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_initial_peers[2] =
{

"127.0.0.1",
"239.255.0.1"

};
const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_discovery_enabled_
↪→transports[3] =
{

"udp1://",
"udp1://127.0.0.1",
"udp1://239.255.0.1"

};
const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_transport_enabled_
↪→transports[1] =
{

"udp1"
};
const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_user_traffic_enabled_
↪→transports[1] =
{

"udp1://"
};
const char *const HelloWorldAppLibrary_HelloWorldDPSEPubDP_HelloWorldDPSEPub_
↪→HelloWorldDPSEDW_transport_enabled_transports[1] =

(continues on next page)

4.6. Application Generation 67

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{

"udp1://"
};
const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_initial_peers[2] =
{

"127.0.0.1",
"239.255.0.1"

};
const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_discovery_enabled_
↪→transports[3] =
{

"udp1://",
"udp1://127.0.0.1",
"udp1://239.255.0.1"

};
const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_transport_enabled_
↪→transports[1] =
{

"udp1"
};
const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_user_traffic_enabled_
↪→transports[1] =
{

"udp1://"
};
const char *const HelloWorldAppLibrary_HelloWorldDPSESubDP_HelloWorldDPSESub_
↪→HelloWorldDPSEDR_transport_enabled_transports[2] =
{

"udp1://",
"udp1://127.0.0.1"

};
const struct ComponentFactoryUnregisterModel HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→unregister_components[2] =
{

{
"_udp", /* NETIO_DEFAULT_UDP_NAME */
NULL, /* udp struct RT_ComponentFactoryProperty** */
NULL /* udp struct RT_ComponentFactoryListener** */

},
{

"_intra", /* NETIO_DEFAULT_INTRA_NAME */
NULL, /* _intra struct RT_ComponentFactoryProperty** */
NULL /* _intra struct RT_ComponentFactoryListener** */

}
};
struct DPDE_DiscoveryPluginProperty HelloWorldAppLibrary_HelloWorldDPDEPubDP_dpde[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=145, columnNumber=35 */
↪→

RTI_APP_GEN___dpde__HelloWorldAppLibrary_HelloWorldDPDEPubDP_dpde1

(continues on next page)

4.6. Application Generation 68

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
};
struct UDP_InterfaceFactoryProperty HelloWorldAppLibrary_HelloWorldDPDEPubDP_udpv4[1] =
{

RTI_APP_GEN___udpv4__HelloWorldAppLibrary_HelloWorldDPDEPubDP_udp1
};
const struct ComponentFactoryRegisterModel HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→register_components[2] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=145, columnNumber=35 */
↪→

{
"dpde1", /* register_name */
DPDE_DiscoveryFactory_get_interface, /* register_intf */
&HelloWorldAppLibrary_HelloWorldDPDEPubDP_dpde[0]._parent, /* register_property␣

↪→*/
NULL /* register_listener */

},
{

"udp1", /* register_name */
UDP_InterfaceFactory_get_interface, /* register_intf */
&HelloWorldAppLibrary_HelloWorldDPDEPubDP_udpv4[0]._parent._parent, /* register_

↪→property */
NULL /* register_listener */

}
};
const struct APPGEN_TypeRegistrationModel HelloWorldAppLibrary_HelloWorldDPDEPubDP_type_
↪→registrations[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=20, columnNumber=72 */

{
"HelloWorldType", /* registered_type_name */
HelloWorldTypePlugin_get /* get_type_plugin */

}
};
const struct APPGEN_TopicModel HelloWorldAppLibrary_HelloWorldDPDEPubDP_topics[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=23, columnNumber=78 */

{
"HelloWorldTopic", /* topic_name */
"HelloWorldType", /* type_name */
DDS_TopicQos_INITIALIZER /* topic_qos*/

}
};
const struct APPGEN_DataWriterModel HelloWorldAppLibrary_HelloWorldDPDEPubDP_publisher_
↪→HelloWorldDPDEPub_data_writers[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=34, columnNumber=82 */

(continues on next page)

4.6. Application Generation 69

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{

"HelloWorldDPDEDW", /* name */
1UL, /* multiplicity */
"HelloWorldTopic", /* topic_name */
RTI_APP_GEN___DW_QOS_HelloWorldAppLibrary_HelloWorldDPDEPubDP_HelloWorldDPDEPub_

↪→HelloWorldDPDEDW /* writer_qos */
}

};
const struct APPGEN_PublisherModel HelloWorldAppLibrary_HelloWorldDPDEPubDP_
↪→publishers[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=33, columnNumber=49 */

{
"HelloWorldDPDEPub", /* name */
1UL, /* multiplicity */
DDS_PublisherQos_INITIALIZER, /* publisher_qos */
1UL, /* writer_count */
HelloWorldAppLibrary_HelloWorldDPDEPubDP_publisher_HelloWorldDPDEPub_data_

↪→writers /* data_writers */
}

};
const struct ComponentFactoryUnregisterModel HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→unregister_components[2] =
{

{
"_udp", /* NETIO_DEFAULT_UDP_NAME */
NULL, /* udp struct RT_ComponentFactoryProperty** */
NULL /* udp struct RT_ComponentFactoryListener** */

},
{

"_intra", /* NETIO_DEFAULT_INTRA_NAME */
NULL, /* _intra struct RT_ComponentFactoryProperty** */
NULL /* _intra struct RT_ComponentFactoryListener** */

}
};
struct DPDE_DiscoveryPluginProperty HelloWorldAppLibrary_HelloWorldDPDESubDP_dpde[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=145, columnNumber=35 */
↪→

RTI_APP_GEN___dpde__HelloWorldAppLibrary_HelloWorldDPDEPubDP_dpde1
};
struct UDP_InterfaceFactoryProperty HelloWorldAppLibrary_HelloWorldDPDESubDP_udpv4[1] =
{

RTI_APP_GEN___udpv4__HelloWorldAppLibrary_HelloWorldDPDEPubDP_udp1
};
const struct ComponentFactoryRegisterModel HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→register_components[2] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=145, columnNumber=35 */
↪→ (continues on next page)

4.6. Application Generation 70

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{

"dpde1", /* register_name */
DPDE_DiscoveryFactory_get_interface, /* register_intf */
&HelloWorldAppLibrary_HelloWorldDPDESubDP_dpde[0]._parent, /* register_property␣

↪→*/
NULL /* register_listener */

},
{

"udp1", /* register_name */
UDP_InterfaceFactory_get_interface, /* register_intf */
&HelloWorldAppLibrary_HelloWorldDPDESubDP_udpv4[0]._parent._parent, /* register_

↪→property */
NULL /* register_listener */

}
};
const struct APPGEN_TypeRegistrationModel HelloWorldAppLibrary_HelloWorldDPDESubDP_type_
↪→registrations[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=20, columnNumber=72 */

{
"HelloWorldType", /* registered_type_name */
HelloWorldTypePlugin_get /* get_type_plugin */

}
};
const struct APPGEN_TopicModel HelloWorldAppLibrary_HelloWorldDPDESubDP_topics[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=23, columnNumber=78 */

{
"HelloWorldTopic", /* topic_name */
"HelloWorldType", /* type_name */
DDS_TopicQos_INITIALIZER /* topic_qos*/

}
};
const struct APPGEN_DataReaderModel HelloWorldAppLibrary_HelloWorldDPDESubDP_subscriber_
↪→HelloWorldDPDESub_data_readers[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=44, columnNumber=82 */

{
"HelloWorldDPDEDR", /* name */
1UL, /* multiplicity */
"HelloWorldTopic", /* topic_name */
RTI_APP_GEN___DR_QOS_HelloWorldAppLibrary_HelloWorldDPDESubDP_HelloWorldDPDESub_

↪→HelloWorldDPDEDR /* reader_qos */
}

};
const struct APPGEN_SubscriberModel HelloWorldAppLibrary_HelloWorldDPDESubDP_
↪→subscribers[1] =
{

(continues on next page)

4.6. Application Generation 71

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.

↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=43, columnNumber=50 */
{

"HelloWorldDPDESub", /* name */
1UL, /* multiplicity */
DDS_SubscriberQos_INITIALIZER, /* subscriber_qos */
1UL, /* reader_count */
HelloWorldAppLibrary_HelloWorldDPDESubDP_subscriber_HelloWorldDPDESub_data_

↪→readers /* data_readers */
}

};
const struct ComponentFactoryUnregisterModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→unregister_components[2] =
{

{
"_udp", /* NETIO_DEFAULT_UDP_NAME */
NULL, /* udp struct RT_ComponentFactoryProperty** */
NULL /* udp struct RT_ComponentFactoryListener** */

},
{

"_intra", /* NETIO_DEFAULT_INTRA_NAME */
NULL, /* _intra struct RT_ComponentFactoryProperty** */
NULL /* _intra struct RT_ComponentFactoryListener** */

}
};
struct DPSE_DiscoveryPluginProperty HelloWorldAppLibrary_HelloWorldDPSEPubDP_dpse[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=152, columnNumber=35 */
↪→

RTI_APP_GEN___dpse__HelloWorldAppLibrary_HelloWorldDPSEPubDP_dpse1
};
struct UDP_InterfaceFactoryProperty HelloWorldAppLibrary_HelloWorldDPSEPubDP_udpv4[1] =
{

RTI_APP_GEN___udpv4__HelloWorldAppLibrary_HelloWorldDPDEPubDP_udp1
};
const struct ComponentFactoryRegisterModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→register_components[2] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=152, columnNumber=35 */
↪→

{
"dpse1", /* register_name */
DPSE_DiscoveryFactory_get_interface, /* register_intf */
&HelloWorldAppLibrary_HelloWorldDPSEPubDP_dpse[0]._parent, /* register_property␣

↪→*/
NULL /* register_listener */

},
{

"udp1", /* register_name */

(continues on next page)

4.6. Application Generation 72

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
UDP_InterfaceFactory_get_interface, /* register_intf */
&HelloWorldAppLibrary_HelloWorldDPSEPubDP_udpv4[0]._parent._parent, /* register_

↪→property */
NULL /* register_listener */

}
};
const struct APPGEN_TypeRegistrationModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_type_
↪→registrations[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=20, columnNumber=72 */

{
"HelloWorldType", /* registered_type_name */
HelloWorldTypePlugin_get /* get_type_plugin */

}
};
const struct APPGEN_TopicModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_topics[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=23, columnNumber=78 */

{
"HelloWorldTopic", /* topic_name */
"HelloWorldType", /* type_name */
DDS_TopicQos_INITIALIZER /* topic_qos*/

}
};
const struct APPGEN_DataWriterModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_publisher_
↪→HelloWorldDPSEPub_data_writers[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=54, columnNumber=82 */

{
"HelloWorldDPSEDW", /* name */
1UL, /* multiplicity */
"HelloWorldTopic", /* topic_name */
RTI_APP_GEN___DW_QOS_HelloWorldAppLibrary_HelloWorldDPSEPubDP_HelloWorldDPSEPub_

↪→HelloWorldDPSEDW /* writer_qos */
}

};
const struct APPGEN_PublisherModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→publishers[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=53, columnNumber=49 */

{
"HelloWorldDPSEPub", /* name */
1UL, /* multiplicity */
DDS_PublisherQos_INITIALIZER, /* publisher_qos */
1UL, /* writer_count */
HelloWorldAppLibrary_HelloWorldDPSEPubDP_publisher_HelloWorldDPSEPub_data_

↪→writers /* data_writers */

(continues on next page)

4.6. Application Generation 73

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
}

};
const struct APPGEN_RemoteSubscriptionModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→remote_subscribers[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=64, columnNumber=82 */

RTI_APP_GEN__RSD_HelloWorldAppLibrary_HelloWorldDPSEPubDP_HelloWorldAppLibrary_
↪→HelloWorldDPSESubDP_HelloWorldDPSESub_HelloWorldDPSEDR
};
const struct APPGEN_RemoteParticipantModel HelloWorldAppLibrary_HelloWorldDPSEPubDP_
↪→remote_participants[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=62, columnNumber=62 */

{
"HelloWorldDPSESubDP", /* name */
0UL, /* remote_publisher_count */
NULL, /* remote_publishers */
1UL, /* remote_subscriber_count */
HelloWorldAppLibrary_HelloWorldDPSEPubDP_remote_subscribers /* remote_

↪→subscribers */
}

};
const struct ComponentFactoryUnregisterModel HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→unregister_components[2] =
{

{
"_udp", /* NETIO_DEFAULT_UDP_NAME */
NULL, /* udp struct RT_ComponentFactoryProperty** */
NULL /* udp struct RT_ComponentFactoryListener** */

},
{

"_intra", /* NETIO_DEFAULT_INTRA_NAME */
NULL, /* _intra struct RT_ComponentFactoryProperty** */
NULL /* _intra struct RT_ComponentFactoryListener** */

}
};
struct DPSE_DiscoveryPluginProperty HelloWorldAppLibrary_HelloWorldDPSESubDP_dpse[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=152, columnNumber=35 */
↪→

RTI_APP_GEN___dpse__HelloWorldAppLibrary_HelloWorldDPSEPubDP_dpse1
};
struct UDP_InterfaceFactoryProperty HelloWorldAppLibrary_HelloWorldDPSESubDP_udpv4[1] =
{

RTI_APP_GEN___udpv4__HelloWorldAppLibrary_HelloWorldDPDEPubDP_udp1
};
const struct ComponentFactoryRegisterModel HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→register_components[2] =

(continues on next page)

4.6. Application Generation 74

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorldQos.xml, lineNumber=152, columnNumber=35 */
↪→

{
"dpse1", /* register_name */
DPSE_DiscoveryFactory_get_interface, /* register_intf */
&HelloWorldAppLibrary_HelloWorldDPSESubDP_dpse[0]._parent, /* register_property␣

↪→*/
NULL /* register_listener */

},
{

"udp1", /* register_name */
UDP_InterfaceFactory_get_interface, /* register_intf */
&HelloWorldAppLibrary_HelloWorldDPSESubDP_udpv4[0]._parent._parent, /* register_

↪→property */
NULL /* register_listener */

}
};
const struct APPGEN_TypeRegistrationModel HelloWorldAppLibrary_HelloWorldDPSESubDP_type_
↪→registrations[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=20, columnNumber=72 */

{
"HelloWorldType", /* registered_type_name */
HelloWorldTypePlugin_get /* get_type_plugin */

}
};
const struct APPGEN_TopicModel HelloWorldAppLibrary_HelloWorldDPSESubDP_topics[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=23, columnNumber=78 */

{
"HelloWorldTopic", /* topic_name */
"HelloWorldType", /* type_name */
DDS_TopicQos_INITIALIZER /* topic_qos*/

}
};
const struct APPGEN_DataReaderModel HelloWorldAppLibrary_HelloWorldDPSESubDP_subscriber_
↪→HelloWorldDPSESub_data_readers[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=64, columnNumber=82 */

{
"HelloWorldDPSEDR", /* name */
1UL, /* multiplicity */
"HelloWorldTopic", /* topic_name */
RTI_APP_GEN___DR_QOS_HelloWorldAppLibrary_HelloWorldDPSESubDP_HelloWorldDPSESub_

↪→HelloWorldDPSEDR /* reader_qos */
}

(continues on next page)

4.6. Application Generation 75

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
};
const struct APPGEN_SubscriberModel HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→subscribers[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=63, columnNumber=50 */

{
"HelloWorldDPSESub", /* name */
1UL, /* multiplicity */
DDS_SubscriberQos_INITIALIZER, /* subscriber_qos */
1UL, /* reader_count */
HelloWorldAppLibrary_HelloWorldDPSESubDP_subscriber_HelloWorldDPSESub_data_

↪→readers /* data_readers */
}

};
const struct APPGEN_RemotePublicationModel HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→remote_publishers[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=54, columnNumber=82 */

RTI_APP_GEN__RPD_HelloWorldAppLibrary_HelloWorldDPSESubDP_HelloWorldAppLibrary_
↪→HelloWorldDPSEPubDP_HelloWorldDPSEPub_HelloWorldDPSEDW
};
const struct APPGEN_RemoteParticipantModel HelloWorldAppLibrary_HelloWorldDPSESubDP_
↪→remote_participants[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=52, columnNumber=62 */

{
"HelloWorldDPSEPubDP", /* name */
1UL, /* remote_publisher_count */
HelloWorldAppLibrary_HelloWorldDPSESubDP_remote_publishers, /* remote_publishers␣

↪→*/
0UL, /* remote_subscriber_count */
NULL /* remote_subscribers */

}
};
const struct APPGEN_DomainParticipantModel HelloWorldAppLibrary_participants[4] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=32, columnNumber=62 */

RTI_APP_GEN__DP_HelloWorldAppLibrary_HelloWorldDPDEPubDP,
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.

↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=42, columnNumber=62 */
RTI_APP_GEN__DP_HelloWorldAppLibrary_HelloWorldDPDESubDP,
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.

↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=52, columnNumber=62 */
RTI_APP_GEN__DP_HelloWorldAppLibrary_HelloWorldDPSEPubDP,
/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.

↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=62, columnNumber=62 */
RTI_APP_GEN__DP_HelloWorldAppLibrary_HelloWorldDPSESubDP

(continues on next page)

4.6. Application Generation 76

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
};
const struct APPGEN_LibraryModel HelloWorld_libraries[1] =
{

/* XML Source Location: file=c:\shared\connextmicro\rti\ndds_lite\rti_me.2.
↪→0\example\C\HelloWorld_appgen\HelloWorld.xml, lineNumber=30, columnNumber=61 */

RTI_APP_GEN__LIB_HelloWorldAppLibrary
};
const struct APPGEN_LibraryModelSeq HelloWorld_libraries_sequence =

REDA_DEFINE_SEQUENCE_INITIALIZER_W_LOAN(
HelloWorld_libraries,
1,
1,
struct APPGEN_LibraryModel);

APPGENDllExport const struct APPGEN_LibraryModelSeq*
APPGEN_get_library_seq(void)

{
return &HelloWorld_libraries_sequence;

}

4.7 Transports

4.7.1 Introduction
RTI Connext DDS Micro has a pluggable-transports architecture. The core of Connext DDS Micro
is transport agnostic—it does not make any assumptions about the actual transports used to send
and receive messages. Instead, Connext DDS Micro uses an abstract “transport API” to interact
with the transport plugins that implement that API. A transport plugin implements the abstract
transport API, and performs the actual work of sending and receiving messages over a physical
transport.

In Connext DDS Micro a Network Input/Output (NETIO) interface is a software layer that may
send and/or receive data from a higher and/or lower level locally, as well as communicate with
a peer. A transport is a NETIO interface that is at the lowest level of the protocol stack. For
example, the UDP NETIO interface is a transport.

A transport can send and receive on addresses as defined by the concrete transport. For example, the
Connext DDS Micro UDP transport can listen to and send to UDPv4 ports and addresses. In order
to establish communication between two transports, the addresses that the transport can listen to
must be determined and announced to other DomainParticipants that want to communicate with
it. This document describes how the addresses are reserved and how these addresses are used by
the DDS layer in Connext DDS Micro.

While the NETIO interface is not limited to DDS, the rest of this document is written in the context
of how Connext DDS Micro uses the NETIO interfaces as part of the DDS implementation.

4.7.2 Transport Registration
Before a transport may be used for communication in Connext DDS Micro, it must be registered
and added to the DiscoveryQos and UserTrafficQos policies. Please see the section on Discovery
for details.

4.7. Transports 77

../../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../../api_c/html/structDDS__UserTrafficQosPolicy.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.7.3 Transport Addresses
Address reservation is the process to determine which locators should be used in the discovery
announcement. Which transports and addresses to be used is determined as described in Discovery.

When a DomainParticipant is created, it calculates a port number and tries to reserve this port on
all addresses available in all the transports based on the registration properties. If the port cannot
be reserved on all transports, then it release the port on all transports and tries again. If no free
port can be found the process fails and the DomainParticipant cannot be created.

The number of locators which can be announced is limited to only the first four for each type
across all transports available for each policy. If more than four are available of any kind, these
are ignored. This is by design, although it may be changed in the future. The order in which the
locators are read is also not known, thus the four locators which will be used are not deterministic.

To ensure that all the desired addresses and only the desired address are used in a transport, follow
these rules:

• Make sure that no more than four unicast addresses and four multicast addresses can be
returned across all transports for discovery traffic.

• Make sure that no more than four unicast addresses and four multicast addresses can be
returned across all transports for user traffic.

• Make sure that no more than four unicast addresses and four multicast addresses can be re-
turned across all transports for user-traffic, for DataReader and DataWriter specific locators,
and that they do not duplicate any of the DomainParticipant’s locators.

4.7.4 Transport Port Number
The port number of a locator is not directly configurable. Rather, it is configured indirectly by the
DDS_WireProtocolQosPolicy (rtps_well_known_ports) of the DomainParticipant’s QoS, where
a well-known, interoperable RTPS port number is assigned.

4.7.5 INTRA Transport
The builtin intra participant transport (INTRA) is a transport that bypasses RTPS and reduces
the number of data-copies from three to one for data published by a DataWriter to a DataReader
within the same participant. When a sample is published, it is copied directly to the data reader’s
cache (if there is space). This transport is used for communication between DataReaders and
DataWriters created within the same participant by default.

Please refer to Threading Model for important details regarding application constraints when using
this transport.

Registering the INTRA Transport

The builtin INTRA transport is a RTI Connext DDS Micro component that is automatically
registered when the DDS_DomainParticipantFactory_get_instance() method is called. By default,
data published by a DataWriter is sent to all DataReaders within the same participant using the
INTRA transport.

4.7. Transports 78

../../../api_c/html/structDDS__WireProtocolQosPolicy.html
../../../api_c/html/structDDS__WireProtocolQosPolicy.html
../../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

In order to prevent the INTRA transport from being used it is necessary to remove it as a transport
and a user-data transport. The following code shows how to only use the builtin UDP transport
for user-data.

struct DDS_DomainParticipantQos dp_qos =
DDS_DomainParticipantQos_INITIALIZER;

REDA_StringSeq_set_maximum(&dp_qos.transports.enabled_transports,1);
REDA_StringSeq_set_length(&dp_qos.transports.enabled_transports,1);
*REDA_StringSeq_get_reference(&dp_qos.transports.enabled_transports,0) =

REDA_String_dup(NETIO_DEFAULT_UDP_NAME);

/* Use only unicast for user-data traffic. */
REDA_StringSeq_set_maximum(&dp_qos.user_traffic.enabled_transports,1);
REDA_StringSeq_set_length(&dp_qos.user_traffic.enabled_transports,1);
*REDA_StringSeq_get_reference(&dp_qos.user_traffic.enabled_transports,0) =

REDA_String_dup("_udp://");

Note that the INTRA transport is never used for discovery traffic internally. It is not possible to
disable matching of DataReaders and DataWriters within the same participant.

Reliability and Durability

Because a sample sent over INTRA bypasses the RTPS reliability and DDS durability queue, the
Reliability and Durability Qos policies are not supported by the INTRA transport. However, by
creating all the DataReaders before the DataWriters durability is not required.

Threading Model

The INTRA transport does not create any threads. Instead, a DataReader receives data over the
INTRA transport in the context of the DataWriter ’s send thread.

This model has two important limitations:

• Because a DataReader ’s on_data_available() listener is called in the context of the
DataWriter ’s send thread, a DataReader may potentially process data at a different pri-
ority than intended (the DataWriter ’s). While it is generally not recommended to process
data in a DataReader ’s on_data_available() listener, it is particularly important to not do
so when using the INTRA transport. Instead, use a DDS WaitSet or a similar construct to
wake up a separate thread to process data.

• Because a DataReader ’s on_data_available() listener is called in the context of the
DataWriter ’s send thread, any method called in the on_data_available() listener is done
in the context of the DataWriter ’s stack. Calling a DataWriter write() in the callback could
result in an infinite call stack. Thus, it is recommended not to call in this listener any Connext
DDS Micro APIs that write data.

4.7.6 Shared Memory Transport (SHMEM)
This section describes the optional builtin RTI Connext DDS Micro SHMEM transport and how
to configure it.

4.7. Transports 79

../../../api_c/html/group__DDSReliabilityQosModule.html
../../../api_c/html/group__DurabilityQosPolicyModule.html
../../../api_c/html/structDDS__DataReaderListener.html
../../../api_c/html/structDDS__DataReaderListener.html
../../../api_c/html/structDDS__DataReaderListener.html
../../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Shared Memory Transport (SHMEM) is an optional transport that can be used in Connext DDS
Micro. It is part of a standalone library that can be optionally linked in.

Currently, Connext DDS Micro supports the following functionality:

• Unicast

• Configuration of the shared memory receive queues

Registering the SHMEM Transport

The builtin SHMEM transport is a Connext DDS Micro component that needs to be registered
before a DomainParticipant can be created with the ability to send data across shared memory.
Unlike the UDP Transport, this transport is not automatically registered. Register the transport
using the code snippet below:

#include "netio_shmem/netio_shmem.h"

...

{
DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;
struct NETIO_SHMEMInterfaceFactoryProperty shmem_property = NETIO_

↪→SHMEMInterfaceFactoryProperty_INITIALIZER;
struct DDS_DomainParticipantQos dp_qos = DDS_DomainParticipantQos_INITIALIZER;

/* Optionally configure the transport settings */
shmem_property.received_message_count_max = ...
shmem_property.receive_buffer_size = ...
shmem_property.message_size_max = ...

registry = DDS_DomainParticipantFactory_get_registry(
DDS_DomainParticipantFactory_get_instance());

factory = DDS_DomainParticipantFactory_get_instance();
registry = DDS_DomainParticipantFactory_get_registry(factory);
if (!RT_Registry_register(

registry,
"_shmem",
NETIO_SHMEMInterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)&shmem_property,
NULL))

{
/* ERROR */

}

/* Enable the transport on a Domain Participant */
DDS_StringSeq_set_maximum(&dp_qos.transports.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qos.transports.enabled_transports,1);
*DDS_StringSeq_get_reference(&dp_qos.transports.enabled_transports,0) = DDS_String_

↪→dup("_shmem");

(continues on next page)

4.7. Transports 80

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
DDS_StringSeq_set_maximum(&dp_qos.discovery.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qos.discovery.enabled_transports,1);
*DDS_StringSeq_get_reference(&dp_qos.discovery.enabled_transports,0) = DDS_String_

↪→dup("_shmem://");

DDS_StringSeq_set_maximum(&dp_qos.user_traffic.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qos.user_traffic.enabled_transports,1);
*DDS_StringSeq_get_reference(&dp_qos.user_traffic.enabled_transports,0) = DDS_String_

↪→dup("_shmem://");

DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers,1);
DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers,1);
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers,0) = DDS_String_dup("_

↪→shmem://");

...

/* Explicitly unregister the shared memory transport before clean up */
if (!RT_Registry_unregister(

registry,
"_shmem",
NULL,
NULL)

{
/* ERROR */

}
}

The above snippet will register a transport with the default settings. To configure it, change the
invidiual configurations as described in SHMEM Configuration.

When a component is registered, the registration takes the properties and a listener as the 3rd
and 4th parameters. The registration of the shared memory component will make a copy of the
properties configurable within a shared memory transport. There is currently no support for passing
in a listener as the 4th parameter.

It should be noted that the SHMEM transport can be registered with any name, but all transport
QoS policies and initial peers must refer to this name. If a transport is referred to and it does not
exist, an error message is logged.

While it is possible to register multiple SHMEM transports, it is not possible to use multiple
SHMEM transports within the same participant. The reason is that SHMEM port allocation is
not synchronized between transports.

Threading Model

The SHMEM transport creates one receive thread for each unique SHMEM receive address and
port. Thus, by default two SHMEM threads are created:

• A unicast receive thread for discovery data

• A unicast receive thread for user data

4.7. Transports 81

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Each receive thread will create a shared memory segment that will act as a message queue. Other
DomainParticipants will send RTPS message to this message queue.

This message queue has a fixed size and can accommodate a fixed number of messages (re-
ceived_message_count_max) each with a maximum payload size of (message_size_max). The
total size of the queue is configurable with (receive_buffer_size).

Configuring SHMEM Receive Threads

All threads in the SHMEM transport share the same thread settings. It is important to note that
all the SHMEM properties must be set before the SHMEM transport is registered. Connext DDS
Micro preregisters the SHMEM transport with default settings when the DomainParticipantFactory
is initialized. To change the SHMEM thread settings, use the following code.

struct SHMEM_InterfaceFactoryProperty shmem_property = NETIO_SHMEMInterfaceFactoryProperty_
↪→INITIALIZER

shmem_property.recv_thread_property.options = ...;

/* The stack-size is platform dependent, it is passed directly to the OS */
shmem_property.recv_thread_property.stack_size = ...;

/* The priority is platform dependent, it is passed directly to the OS */
shmem_property.recv_thread_property.priority = ...;

if (!RT_Registry_register(registry, "_shmem",
SHMEM_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)&shmem_property,
NULL))

{
/* ERROR */

}

SHMEM Configuration

All the configuration of the SHMEM transport is done via the struct SHMEM_InterfaceFacto-
ryProperty structure:

struct NETIO_SHMEMInterfaceFactoryProperty
{

struct NETIO_InterfaceFactoryProperty _parent;
/* Max number of received message sizes that can be residing

inside the shared memory transport concurrent queue
*/
RTI_INT32 received_message_count_max;
/* The size of the receive socket buffer */
RTI_INT32 receive_buffer_size;
/* The maximum size of the message which can be received */
RTI_INT32 message_size_max;
/* Thread properties for each receive thread created by this

NETIO interface.
(continues on next page)

4.7. Transports 82

../../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
*/

struct OSAPI_ThreadProperty recv_thread_property;
};

received_message_count_max

The number of maximum RTPS messages that can be inside a receive thread’s receive buffer. By
default this is 64.

receive_buffer_size

The size of the message queue residing inside a shared memory region accessible from different
processes. The default size is ((received_message_count_max * message_size_max) / 4).

message_size_max

The size of an RTPS message that can be sent across the shared memory transport. By default
this number is 65536.

recv_thread_property

The recv_thread field is used to configure all the receive threads. Please refer to Threading Model
for details.

Caveats

Leftover shared memory resources

Connext DDS Micro implements the shared memory transport and utilizes shared memory
semaphores that can be used conccurently by processes. Connext DDS Micro implements a shared
memory mutex from a shared memory semaphore. If an application exits ungracefully, then the
shared memory mutex may be left in a state that prevents it from being used. This can occurs be-
cause the Connext DDS Micro Shared Memory Transport tries to re-use and clean up and leftover
segments as a result of an applications ungraceful termination. If ungraceful termination occurs,
the leftover shared memory mutexes need to be cleaned up either manually or by restarting the
system.

The same applies to shared memory semaphores. If an application exists ungracefully, there can
be leftover shared memory segments.

Darwin and Linux systems

In the case of Darwin and Linux systems which use SysV semaphores, you can view any leftover
shared memory segments using ipcs -a. They can be removed using the ipcrm command. Shared
memory keys used by Connext DDS Micro are in the range of 0x00400000. For example:

• ipcs -m | grep 0x004

4.7. Transports 83

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

The shared semaphore keys used by Connext DDS Micro are in the range of 0x800000; the shared
memory mutex keys are in the range of 0xb00000. For example:

• ipcs -m | grep 0x008

• ipcs -m | grep 0x00b

QNX systems

QNX® systems use POSIX® APIs to create shared memory segments or semaphores. The shared
memory segment resources are located in /dev/shmem and the shared memory mutex and
semaphores are located in /dev/sem.

To view any leftover shared memory segments when no Connext DDS Micro applications are
running:

• ls /dev/shmem/RTIOsapi*

• ls /dev/sem/RTIOsapi*

To clean up the shared memory resources, remove the files listed.

Windows and VxWorks systems

On Windows and VxWorks® systems, once all the processes that are attached to a shared memory
segment, shared memory mutex, or shared memory semaphores are terminated (either gracefully
or ungracefully), the shared memory resources will be automatically cleaned up by the operating
system.

4.7.7 UDP Transport
This section describes the builtin RTI Connext DDS Micro UDP transport and how to configure
it.

The builtin UDP transport (UDP) is a fairly generic UDPv4 transport. Connext DDS Micro
supports the following functionality:

• Unicast

• Multicast

• Automatic detection of available network interfaces

• Manual configuration of network interfaces

• Allow/Deny lists to select which network interfaces can be used

• Simple NAT configuration

• Configuration of receive threads

Registering the UDP Transport

The builtin UDP transport is a Connext DDS Micro component that is automatically registered
when the DDS_DomainParticipantFactory_get_instance() method is called. To change the UDP
configuration, it is necessary to first unregister the transport as shown below:

4.7. Transports 84

../../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

DDS_DomainParticipantFactory *factory = NULL;
RT_Registry_T *registry = NULL;

factory = DDS_DomainParticipantFactory_get_instance();
registry = DDS_DomainParticipantFactory_get_registry(factory);

/* The builtin transport does not return any properties (3rd param) or
* listener (4th param)
*/

if (!RT_Registry_unregister(registry, "_udp", NULL, NULL))
{

/* ERROR */
}

When a component is registered, the registration takes the properties and a listener as the 3rd and
4th parameters. In general, it is up to the caller to manage the memory for the properties and the
listeners. There is no guarantee that a component makes a copy.

The following code-snippet shows how to register the UDP transport with new parameters.

struct UDP_InterfaceFactoryProperty *udp_property = NULL;

/* Allocate a property structure for the heap, it must be valid as long
* as the component is registered
*/
udp_property = (struct UDP_InterfaceFactoryProperty *)

malloc(sizeof(struct UDP_InterfaceFactoryProperty));
if (udp_property != NULL)
{

*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* Only allow network interface "eth0" to be used;
*/
REDA_StringSeq_set_maximum(&udp_property->allow_interface, 1);
REDA_StringSeq_set_length(&udp_property->allow_interface, 1);

*REDA_StringSeq_get_reference(&udp_property->allow_interface, 0) =
REDA_String_dup("eth0");

/* Register the transport again, using the builtin name
*/

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),

(struct RT_ComponentFactoryProperty*)udp_property,
NULL))

{
/* ERROR */

}
}
else
{

/* ERROR */
}

4.7. Transports 85

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

It should be noted that the UDP transport can be registered with any name, but all transport QoS
policies and initial peers must refer to this name. If a transport is referred to and it does not exist,
an error message is logged.

It is possible to register multiple UDP transports with a DomainParticipantFactory. It is also
possible to use different UDP transports within the same DomainParticipant when multiple network
interfaces are available (either physical or virtual).

When UDP transformations are enabled, this feature is always enabled and determined by the
allow_interface and deny_interface lists. If any of the lists are non-empty the UDP transports will
bind each receive socket to the specific interfaces.

When UDP transformations are not enabled, this feature is determined by the value of the en-
able_interface_bind. If this value is set to RTI_TRUE and the allow_interface and/or deny_in-
terface properties are non-empty, the receive sockets are bound to specific interfaces.

Threading Model

The UDP transport creates one receive thread for each unique UDP receive address and port. Thus,
by default, three UDP threads are created:

• A multicast receive thread for discovery data (assuming multicast is available and enabled)

• A unicast receive thread for discovery data

• A unicast receive thread for user data

Additional threads may be created depending on the transport configuration for a DomainPartic-
ipant, DataReader, and DataWriter. The UDP transport creates threads based on the following
criteria:

• Each unique unicast port creates a new thread

• Each unique multicast address and port creates a new thread

For example, if a DataReader specifies its own multicast receive address, a new receive thread will
be created.

Configuring UDP Receive Threads

All threads in the UDP transport share the same thread settings. It is important to note that
all the UDP properties must be set before the UDP transport is registered. Connext DDS Mi-
cro preregisters the UDP transport with default settings when the DomainParticipantFactory is
initialized. To change the UDP thread settings, use the following code.

struct UDP_InterfaceFactoryProperty *udp_property = NULL;
struct UDP_InterfaceFactoryProperty udp_property =

UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* Allocate a property structure for the heap, it must be valid as long
* as the component is registered
*/
udp_property = (struct UDP_InterfaceFactoryProperty *)

(continues on next page)

4.7. Transports 86

../../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
malloc(sizeof(struct UDP_InterfaceFactoryProperty));

*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* Please refer to OSAPI_ThreadOptions for possible options */
udp_property->recv_thread.options = ...;

/* The stack-size is platform dependent, it is passed directly to the OS */
udp_property->recv_thread.stack_size =

/* The priority is platform dependent, it is passed directly to the OS */
udp_property->recv_thread.priority =

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)udp_property,
NULL))

{
/* ERROR */

}

UDP Configuration

All the configuration of the UDP transport is done via the UDP_InterfaceFactoryProperty.

struct UDP_InterfaceFactoryProperty
{

/* Inherited from */
struct NETIO_InterfaceFactoryProperty _parent;

/* Sequence of allowed interface names */
struct REDA_StringSeq allow_interface;

/* Sequence of denied interface names */
struct REDA_StringSeq deny_interface;

/* The size of the send socket buffer */
RTI_INT32 max_send_buffer_size;

/* The size of the receive socket buffer */
RTI_INT32 max_receive_buffer_size;

/* The maximum size of the message which can be received */
RTI_INT32 max_message_size;

/* The maximum TTL */
RTI_INT32 multicast_ttl;

#ifndef RTI_CERT
struct UDP_NatEntrySeq nat;

#endif

(continues on next page)

4.7. Transports 87

../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
/* The interface table if interfaces are added manually */
struct UDP_InterfaceTableEntrySeq if_table;

/* The network interface to use to send to multicast */
REDA_String_T multicast_interface;

/* If this should be considered the default UDP interfaces if
* no other UDP interface is found to handle a route
*/
RTI_BOOL is_default_interface;

/* Disable reading of available network interfaces using system
* information and instead rely on the manually configured
* interface table
*/
RTI_BOOL disable_auto_interface_config;

/* Thread properties for each receive thread created by this
* NETIO interface.
*/

struct OSAPI_ThreadProperty recv_thread;

/* Bind to specific interfaces
*/

RTI_BOOL enable_interface_bind;

struct UDP_TransformRuleSeq source_rules;

/* Rules for how to transform sent UDP payloads based on the
* destination address.
*/

struct UDP_TransformRuleSeq destination_rules;

/* Determines how regular UDP is supported when transformations
* are supported.
*/
UDP_TransformUdpMode_T transform_udp_mode;

/* The locator to use for locators that have transformations.
*/
RTI_INT32 transform_locator_kind;

};

allow_interface

The allow_interface string sequence determines which interfaces are allowed to be used for com-
munication. Each string element is the name of a network interface, such as “en0” or “eth1”.

If this sequence is empty, all interface names pass the allow test. The default value is empty. Thus,
all interfaces are allowed.

4.7. Transports 88

../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

deny_interface

The deny_interface string sequence determines which interfaces are not allowed to be used for
communication. Each string element is the name of a network interface, such as “en0” or “eth1”.

If this sequence is empty, the test is false. That is, the interface is allowed. Note that the deny list
is checked after the allow list. Thus, if an interface appears in both, it is denied. The default value
is empty, thus no interfaces are denied.

max_send_buffer_size

The max_send_buffer_size is the maximum size of the send socket buffer and it must be at least
as big as the largest sample. Typically, this buffer should be a multiple of the maximum number
of samples that can be sent at any given time. The default value is 256KB.

max_receive_buffer_size

The max_receive_buffer_size is the maximum size of the receive socket buffer and it must be at
least as big as the largest sample. Typically, this buffer should be a multiple of the maximum
number of samples that can be received at any given time. The default value is 256KB.

max_message_size

The max_message_size is the maximum size of the message which can be received, including any
packet overhead. The default value is 8KB. Note that Connext DDS Micro does not support
fragmentation.

multicast_ttl

The multicast_ttl is the Multicast Time-To-Live (TTL). This value is only used for multicast. It
limits the number of hops a packet can pass through before it is dropped by a router. The default
value is 1.

nat

Connext DDS Micro supports firewalls with NAT. However, this feature has limited use and only
supports translation between a private and public IP address. UDP ports are not translated. Fur-
thermore, because Connext DDS Micro does not support any hole punching technique or WAN
server, this feature is only useful when the private and public address mapping is static and known
in advance. For example, to test between an Android emulator and the host, the following config-
uration can be used:

UDP_NatEntrySeq_set_maximum(&udp_property->nat,2);
UDP_NatEntrySeq_set_length(&udp_property->nat,2);

/* Translate the local emulator eth0 address 10.10.2.f:7410 to
* 127.0.0.1:7410. This ensures that the address advertised by the
* emulator to the host machine is the host's loopback interface, not
* the emulator's host interface

(continues on next page)

4.7. Transports 89

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
*/
UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->

local_address.kind = NETIO_ADDRESS_KIND_UDPv4;
UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->

local_address.port = 7410;
UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->

local_address.value.ipv4.address = 0x0a00020f;

UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->
public_address.kind = NETIO_ADDRESS_KIND_UDPv4;

UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->
public_address.port = 7410;

UDP_NatEntrySeq_get_reference(&udp_property->nat,0)->
public_address.value.ipv4.address = 0x7f000001;

/* Translate the local emulator eth0 address 10.10.2.f:7411 to
* 127.0.0.1:7411. This ensures that the address advertised by the
* emulator to the host machine is the host's loopback interface
*/
UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->

local_address.kind = NETIO_ADDRESS_KIND_UDPv4;
UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->

local_address.port = 7411;
UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->

local_address.value.ipv4.address = 0x0a00020f;

UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
public_address.kind = NETIO_ADDRESS_KIND_UDPv4;

UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
public_address.port = 7411;

UDP_NatEntrySeq_get_reference(&udp_property->nat,1)->
public_address.value.ipv4.address = 0x7f000001;

if_table

The if_table provides a method to manually configure which interfaces are available for use; for
example, when using IP stacks that do not support reading interface lists. The following example
shows how to manually configure the interfaces.

/* The arguments to the UDP_InterfaceTable_add_entry functions are:
* The if_table itself
* The network address of the interface
* The netmask of the interface
* The name of the interface
* Interface flags. Valid flags are:
* UDP_INTERFACE_INTERFACE_UP_FLAG - The interface is UP
* UDP_INTERFACE_INTERFACE_MULTICAST_FLAG - The interface supports multicast
*/

if (!UDP_InterfaceTable_add_entry(&udp_property->if_table,
0x7f000001,0xff000000,"loopback",

(continues on next page)

4.7. Transports 90

../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
UDP_INTERFACE_INTERFACE_UP_FLAG |
UDP_INTERFACE_INTERFACE_MULTICAST_FLAG))

{
/* Error */

}

multicast_interface

The multicast_interface may be used to select a particular network interface to be used to send
multicast packets. The default value is any interface (that is, the OS selects the interface).

is_default_interface

The is_default_interface flag is used to indicate that this Connext DDS Micro network transport
shall be used if no other transport is found. The default value is RTI_TRUE.

disable_auto_interface_config

Normally, the UDP transport will try to read out the interface list (on platforms that support
it). Setting disable_auto_interface_config to RTI_TRUE will prevent the UDP transport from
reading the interface list.

recv_thread

The recv_thread field is used to configure all the receive threads. Please refer to Threading Model
for details.

enable_interface_bind

When this is set to TRUE the UDP transport binds each receive port to a specific interface when
the allow_interface/deny_interface lists are non-empty. This allows multiple UDP transports to
be used by a single DomainParticipant at the expense of an increased number of threads. This
property is ignored when transformations are enabled and the allow_interface/deny_interface lists
are non-empty.

source_rules

Rules for how to transform received UDP payloads based on the source address.

destination_rules

Rules for how to transform sent UDP payloads based on the destination address.

transform_udp_mode

Determines how regular UDP is supported when transformations are supported. When transforma-
tions are enabled the default value is UDP_TRANSFORM_UDP_MODE_DISABLED.

4.7. Transports 91

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

transform_locator_kind

The locator to use for locators that have transformations. When transformation rules have been
enabled, they are announced as a vendor specific locator. This property overrides this value.

NOTE: Changing this value may prevent communication.

UDP Transformations

The UDP transform feature enables custom transformation of incoming and outgoing UDP payloads
based on transformation rules between a pair of source and destination IP addresses. Some examples
of transformations are encrypted data or logging.

This section explains how to implement and use transformations in an application and is organized
as follows:

• Overview

• Creating a Transformation Library

• Creating Transformation Rules

• Interoperability

• Error Handling

• Example Code

• Examples

• OS Configuration

Overview

The UDP transformation feature enables custom transformation of incoming and outgoing UDP
payloads. For the purpose of this section, a UDP payload is defined as a sequence of octets sent or
received as a single UDP datagram excluding UDP headers – typically UDP port numbers – and
trailers, such as the optional used checksum.

An outgoing payload is the UDP payload passed to the network stack. The transformation feature
allows a custom transformation of this payload just before it is sent. The UDP transport receives
payloads to send from an upstream layer. In Connext DDS Micro this layer is typically RTPS,
which creates payloads containing one or more RTPS messages. The transformation feature enables
transformation of the entire RTPS payload before it is passed to the network stack.

The same RTPS payload may be sent to one or more locators. A locator identifies a destination
address, such as an IPv4 address, a port, such as a UDP port, and a transport kind. The address
and port are used by the UDP transport to reach a destination. However, only the destination
address is used to determine which transformation to apply.

An incoming payload is the UDP payload received from the network stack. The transformation fea-
ture enables transformation of the UDP payload received from the network stack before it is passed
to the upstream interface, typically RTPS. The UDP transport only receives payloads destined for
one of its network interface addresses, but may receive UDP payloads destined for many different

4.7. Transports 92

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

ports. The transformation does not take a port into account, only the source address. In Connext
DDS Micro the payload is typically a RTPS payload containing one or more RTPS messages.

UDP transformations are registered with Connext DDS Micro and used by the UDP transport to
determine how to transform payloads based on a source or destination address. Please refer to
Creating a Transformation Library for details on how to implement transformations and Creating
Transformation Rules for how to add rules.

Transformations are local resources. There is no exchange between different UDP transports regard-
ing what a transformation does to a payload. This is considered a-priori knowledge and depends on
the implementation of the transformation. Any negotiation of e.g. keys must be handled before the
UDP transport is registered. Thus, if a sender and receiver do not apply consistent rules, they may
not be able to communicate, or incorrect data may result. Note that while information is typically
in the direction from a DataWriter to a DataReader, a reliable DataReader also send protocol data
to a DataWriter. These messages are also transformed.

Network Interface Selection

When a DomainParticipant is created, it first creates an instance of each transport configured
in the DomainParticipantQos::transports QoS policy. Thus, each UDP transport registered with
Connext DDS Micromust have a unique name (up to 7 characters). Each registered transport can be
configured to use all or some of the available interfaces using the allow_interface and deny_interface
properties. The registered transports may now be used for either discovery data (specified in
DomainParticipantQos::discovery), user_traffic (specified in DomainParticipantQos::user_traffic)
or both. The DomainParticipant also queries the transport for which addresses it is capable of
sending to.

When a participant creates multiple instances of the UDP transport, it is important that instances
use non-overlapping networking interface resources.

Data Reception

Which transport to use for discovery data is determined by the DomainParticipantQos::discovery
QoS policy. For each transport listed, theDomainParticipant reserves a network address to listen to.
This network address is sent as part of the discovery data and is used by other DomainParticipants
as the address to send discovery data for this DomainParticipant. Because a UDP transformation
only looks at source and destination addresses, if different transformations are needed for discovery
and user-data, different UDP transport registrations must be used and hence different network
interfaces.

Data Transmission

Which address to send data to is based on the locators received as part of discovery and the peer
list.

Received locators are analyzed and a transport locally registered with a DomainParticipant is
selected based on the locator kind, address and mask. The first matching transport is selected. If
a matching transport is not found, the locator is discarded.

4.7. Transports 93

../../../api_c/html/structDDS__DomainParticipantQos.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structDDS__DomainParticipantQos.html
../../../api_c/html/structDDS__DomainParticipantQos.html
../../../api_c/html/structDDS__DomainParticipantQos.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

NOTE: A transport is not a matching criteria at the same level as a QoS policy. If a discovered
entity requests user data on a transport that doesn’t exist, it is not unmatched.

The peer list, as specified by the application, is a list of locators to send participant discovery
announcements to. If the transport to use is not specified, e.g. “udp1@192.168.1.1”, but instead
“192.168.1.1”, then all transports that understand this address will send to it. Thus, in this case
the latter is used, and two different UDP transports are registered; they will both send to the same
address. However, one transport may send transformed data and the other may not depending on
the destination address.

Creating a Transformation Library

The transformation library is responsible for creating and performing transformations. Note that
a library is a logical concept and does not refer to an actual library in, for example, UNIX. A
library in this context is a collection of routines that together creates, manages, and performs
transformations. How these routines are compiled and linked with an application using Connext
DDS Micro is out of scope of this section.

The transformation library must be registered with Connext DDS Micro’s run-time and must
implement the required interfaces. This ensures proper life-cycle management of transformation
resources as well as clear guidelines regarding concurrency and memory management.

From Connext DDS Micro’s run-time point of view, the transformation library must implement
methods so that:

• A library can be initialized.

• A library can be instantiated.

• An instance of the library performs and manages transformations.

The first two tasks are handled by Connext DDS Micro’s run-time factory interface which is common
for all libraries managed by Connext DDS Micro. The third task is handled by the transformation
interface, which is specific to UDP transformations.

The following describes the relationship between the different interfaces:

• A library is initialized once when it is registered with Connext DDS Micro.

• A library is finalized once when it is unregistered from Connext DDS Micro.

• Multiple library instances can be created. If a library is used twice, for example registered
with two different transports, two different library contexts are created using the factory
interface. Connext DDS Micro assumes that concurrent access to two different instances is
allowed.

• Different instances of the library can be deleted independently. An instance is deleted using
the factory interface.

• A library instance creates specific source or destination transformations. Each transformation
is expected to transform a payload to exactly one destination or from one source.

The following relationship is true between the UDP transport and a UDP transformation library:

• Each registered UDP transport may make use of one or more UDP transformation libraries.

4.7. Transports 94

mailto:udp1@192.168.1.1

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• A DDS DomainParticipant creates one instance of each registered UDP transport.

• Each instance of the UDP transport creates one instance of each enabled transformation
library registered with the UDP transport.

• Each Transformation rule created by the UDP transport creates one send or one receive
transformation.

Creating Transformation Rules

Transformation rules decide how a payload should be transformed based on either a source or
destination address. Before a UDP transport is registered, it must be configured with the trans-
formation libraries to use, as well as which library to use for each source and destination address.
For each UDP payload sent or received, an instance of the UDP transport searches for a matching
source or destination rule to determine which transformation to apply.

The transformation rules are added to the UDP_InterfaceFactoryProperty before registration takes
place.

If no transformation rules have been configured, all payloads are treated as regular UDP packets.

If no send rules have been asserted, the payload is sent as is. If all outgoing messages are to be
transformed, a single entry is sufficient (address = 0, mask = 0).

If no receive rules have been asserted, it is passed upstream as is. If all incoming messages are to
be transformed, a single entry is sufficient (address = 0, mask = 0).

If no matching rule is found, the packet is dropped and an error is logged.

NOTE: UDP_InterfaceFactoryProperty is immutable after the UDP transport has been registered.

Interoperability

When the UDP transformations has enabled at least one transformation, it will only inter-operate
with another UDP transport which also has at least one transformation.

UDP transformations does not interoperate with RTI Connext DDS Professional.

Error Handling

The transformation rules are applied on a local basis and correctness is based on configuration.
It is not possible to detect that a peer participant is configured for different behavior and errors
cannot be detected by the UDP transport itself. However, the transformation interface can return
errors which are logged.

Example Code

Example Header file MyUdpTransform.h:

#ifndef MyUdpTransform_h
#define MyUdpTransform_h

(continues on next page)

4.7. Transports 95

../../../api_c/html/structUDP__InterfaceFactoryProperty.html
../../../api_c/html/structUDP__InterfaceFactoryProperty.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
#include "rti_me_c.h"
#include "netio/netio_udp.h"
#include "netio/netio_interface.h"

struct MyUdpTransformFactoryProperty
{

struct RT_ComponentFactoryProperty _parent;
};

extern struct RT_ComponentFactoryI*
MyUdpTransformFactory_get_interface(void);

extern RTI_BOOL
MyUdpTransformFactory_register(RT_Registry_T *registry,

const char *const name,
struct MyUdpTransformFactoryProperty *property);

extern RTI_BOOL
MyUdpTransformFactory_unregister(RT_Registry_T *registry,

const char *const name,
struct MyUdpTransformFactoryProperty **);

#endif

Example Source file MyUdpTransform.c:

/*ce
* \file
* \defgroup UDPTransformExampleModule MyUdpTransform
* \ingroup UserManuals_UDPTransform
* \brief UDP Transform Example
*
* \details
*
* The UDP interface is implemented as a NETIO interface and NETIO interface
* factory.
*/

/*ce \addtogroup UDPTransformExampleModule
* @{
*/

#include <stdio.h>

#include "MyUdpTransform.h"

/*ce
* \brief The UDP Transformation factory class
*
* \details
* All Transformation components must have a factory. A factory creates one

(continues on next page)

4.7. Transports 96

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
* instance of the component as needed. In the case of UDP transformations,
* \rtime creates one instance per UDP transport instance.
*/

struct MyUdpTransformFactory
{

/*ce
* \brief Base-class. All \rtime Factories must inherit from RT_ComponentFactory.
*/

struct RT_ComponentFactory _parent;

/*ce
* \brief A pointer to the properties of the factory.
*
* \details
*
* When a factory is registered with \rtime it can be registered with
* properties specific to the component. However \rtime does not
* make a copy (that would require additional methods). Furthermore, it
* may not be desirable to make a copy. Instead, this decision is
* left to the implementer of the component. \rtime does not access
* any custom properties.
*/

struct MyUdpTransformFactoryProperty *property;
};

/*ce
* \brief The custom UDP transformation class.
*
* \details
* The MyUdpTransformFactory creates one instance of this class for each
* UDP interface created. In this example one packet buffer (NETIO_Packet_T),
* is allocated and a buffer to hold the transformed data (\ref buffer)
*
* Only one transformation can be done at a time and it is synchronous. Thus,
* it is sufficient with one buffer to transform input and output per
* instance of the MyUdpTransform.
*/

struct MyUdpTransform
{

/*ce
* \brief Base-class. All UDP transforms must inherit from UDP_Transform
*/

struct UDP_Transform _parent;

/*ce \brief A reference to its own factory, if properties must be accessed
*/

struct MyUdpTransformFactory *factory;

/*ce \brief NETIO_Packet to hold a transformed payload.
*
* \details

(continues on next page)

4.7. Transports 97

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
*
* \rtime uses a NETIO_Packet_T to abstract data payload and this is
* what is being passed betweem the UDP transport and the transformation.
* The transformation must convert a payload into a NETIO_Packet. This
* is done with NETIO_Packet_initialize_from. This function saves all
* state except the payload buffer.
*/
NETIO_Packet_T packet;

/*ce \brief The payload to assign to NETIO_Packet_T
*
* \details
*
* A transformation cannot do in-place transformations because the input
* buffer may be sent multiple times (for example due to reliability).
* A transformation instance can only transform one buffer at a time
* (send or receive). The buffer must be large enough to hold a transformed
* payload. When the the transformation is created it receives a
* \ref UDP_TransformProperty. This property has the max send and
* receive buffers for transport and can be used to sise the buffer.
* Please refer to \ref UDP_InterfaceFactoryProperty::max_send_message_size
* and \ref UDP_InterfaceFactoryProperty::max_message_size.
*/

char *buffer;

/*ce \brief The maximum length of the buffer. NOTE: The buffer must
* be 1 byte larger than the largest buffer.
*/
RTI_SIZE_T max_buffer_length;

};

/*ce \brief Forward declaration of the interface implementation
*/

static struct UDP_TransformI MyUdpTransform_fv_Intf;

/*ce \brief Forward declaration of the interface factory implementation
*/

static struct RT_ComponentFactoryI MyUdpTransformFactory_fv_Intf;

/*ce \brief Method to create an instance of MyUdpTransform
*
* \param[in] factory The factory creating this instance
* \param[in] property Generic UDP_Transform properties
*
* \return A pointer to MyUdpTransform on sucess, NULL on failure.
*/
RTI_PRIVATE struct MyUdpTransform*
MyUdpTransform_create(struct MyUdpTransformFactory *factory,

const struct UDP_TransformProperty *const property)
{

struct MyUdpTransform *t;

(continues on next page)

4.7. Transports 98

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)

OSAPI_Heap_allocate_struct(&t, struct MyUdpTransform);
if (t == NULL)
{

return NULL;
}

/* All component instances must initialize the parent using this
* call.
*/
RT_Component_initialize(&t->_parent._parent,

&MyUdpTransform_fv_Intf._parent,
0,
(property ? &property->_parent : NULL),
NULL);

t->factory = factory;

/* Allocate a buffer that is the larger of the send and receive
* size.
*/
t->max_buffer_length = property->max_receive_message_size;
if (property->max_send_message_size > t->max_buffer_length)
{

t->max_buffer_length = property->max_send_message_size;
}

/* Allocate 1 extra byte */
OSAPI_Heap_allocate_buffer(&t->buffer,t->max_buffer_length+1,

OSAPI_ALIGNMENT_DEFAULT);

if (t->buffer == NULL)
{

OSAPI_Heap_free_struct(t);
t = NULL;

}

return t;
}

/*ce \brief Method to delete an instance of MyUdpTransform
*
* \param[in] t Transformation instance to delete
*/
RTI_PRIVATE void
MyUdpTransform_delete(struct MyUdpTransform *t)
{

OSAPI_Heap_free_buffer(t->buffer);
OSAPI_Heap_free_struct(t);

}

(continues on next page)

4.7. Transports 99

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
/*ce \brief Method to create a transformation for an destination address
*
* \details
*
* For each asserted destination rule a transform is created by the transformation
* instance. This method determines how a UDP payload is transformed before
* it is sent to an address that matches destination & netmask.
*
* \param[in] udptf UDP Transform instance that creates the transformation
* \param[out] context Pointer to a transformation context
* \param[in] destination Destination address for the transformation
\param[in] netmask The netmask to apply to this destination.

* \param[in] user_data The user_data the rule was asserted with
* \param[in] property UDP transform specific properties
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_create_destination_transform(

UDP_Transform_T *const udptf,
void **const context,
const struct NETIO_Address *const destination,
const struct NETIO_Netmask *const netmask,
void *user_data,
const struct UDP_TransformProperty *const property,
RTI_INT32 *const ec)

{
struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
UNUSED_ARG(self);
UNUSED_ARG(destination);
UNUSED_ARG(user_data);
UNUSED_ARG(property);
UNUSED_ARG(ec);
UNUSED_ARG(netmask);

/* Save the user-data to determine which transform to apply later */
context = (void)user_data;

return RTI_TRUE;
}

/*ce \brief Method to delete a transformation for an destination address
*
*
* \param[in] udptf UDP Transform instance that created the transformation
* \param[out] context Pointer to a transformation context
* \param[in] destination Destination address for the transformation
* \param[in] netmask The netmask to apply to this destination.
* \param[out] ec User defined error code
*

(continues on next page)

4.7. Transports 100

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_delete_destination_transform(UDP_Transform_T *const udptf,

void *context,
const struct NETIO_Address *const destination,
const struct NETIO_Netmask *const netmask,
RTI_INT32 *const ec)

{
UNUSED_ARG(udptf);
UNUSED_ARG(context);
UNUSED_ARG(destination);
UNUSED_ARG(ec);
UNUSED_ARG(netmask);

return RTI_TRUE;
}

/*ce \brief Method to create a transformation for an source address
*
* \details
*
* For each asserted source rule a transform is created by the transformation
* instance. This method determines how a UDP payload is transformed when
* it is received from an address that matches source & netmask.
*
* \param[in] udptf UDP Transform instance that creates the transformation
* \param[out] context Pointer to a transformation context
* \param[in] source Destination address for the transformation
\param[in] netmask The netmask to apply to this destination.

* \param[in] user_data The user_data the rule was asserted with
* \param[in] property UDP transform specific properties
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_create_source_transform(UDP_Transform_T *const udptf,

void **const context,
const struct NETIO_Address *const source,
const struct NETIO_Netmask *const netmask,
void *user_data,
const struct UDP_TransformProperty *const property,
RTI_INT32 *const ec)

{
struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
UNUSED_ARG(self);
UNUSED_ARG(source);
UNUSED_ARG(user_data);
UNUSED_ARG(property);
UNUSED_ARG(ec);

(continues on next page)

4.7. Transports 101

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
UNUSED_ARG(netmask);

context = (void)user_data;

return RTI_TRUE;
}

/*ce \brief Method to delete a transformation for an source address
*
*
* \param[in] udptf UDP Transform instance that created the transformation
* \param[out] context Pointer to a transformation context
* \param[in] source Source address for the transformation
* \param[in] netmask The netmask to apply to this destination.
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_delete_source_transform(UDP_Transform_T *const udptf,

void *context,
const struct NETIO_Address *const source,
const struct NETIO_Netmask *const netmask,
RTI_INT32 *const ec)

{
UNUSED_ARG(udptf);
UNUSED_ARG(context);
UNUSED_ARG(source);
UNUSED_ARG(ec);
UNUSED_ARG(netmask);

return RTI_TRUE;
}

/*ce \brief Method to transform data based on a source address
*
* \param[in] udptf UDP_Transform_T that performs the transformation
* \param[in] context Reference to context created by \ref MyUdpTransform_create_

↪→source_transform
* \param[in] source Source address for the transformation
* \param[in] in_packet The NETIO packet to transform
* \param[out] out_packet The transformed NETIO packet
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_transform_source(UDP_Transform_T *const udptf,

void *context,
const struct NETIO_Address *const source,
const NETIO_Packet_T *const in_packet,

(continues on next page)

4.7. Transports 102

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
NETIO_Packet_T **out_packet,
RTI_INT32 *const ec)

{
struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
char *buf_ptr,*buf_end;
char *from_buf_ptr,*from_buf_end;
UNUSED_ARG(context);
UNUSED_ARG(source);

*ec = 0;

/* Assigned the transform buffer to the outgoing packet
* saving state from the incoming packet. In this case the
* outgoing length is the same as the incoming. How to buffer
* is filled in is of no interest to \rtime. All it cares about is
* where it starts and where it ends.
*/

if (!NETIO_Packet_initialize_from(
&self->packet,in_packet,
self->buffer,self->max_buffer_length,
0,NETIO_Packet_get_payload_length(in_packet)))

{
return RTI_FALSE;

}

*out_packet = &self->packet;

buf_ptr = NETIO_Packet_get_head(&self->packet);
buf_end = NETIO_Packet_get_tail(&self->packet);
from_buf_ptr = NETIO_Packet_get_head(in_packet);
from_buf_end = NETIO_Packet_get_tail(in_packet);

/* Perform a transformation based on the user-data */
while (from_buf_ptr < from_buf_end)
{

if (context == (void*)1)
{

*buf_ptr = ~(*from_buf_ptr);
}
else if (context == (void*)2)
{

*buf_ptr = (*from_buf_ptr)+1;
}

++buf_ptr;
++from_buf_ptr;

}

return RTI_TRUE;
}

(continues on next page)

4.7. Transports 103

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
/*ce \brief Method to transform data based on a destination address
*
* \param[in] udptf UDP_Transform_T that performs the transformation
* \param[in] context Reference to context created by \ref MyUdpTransform_create_

↪→destination_transform
* \param[in] destination Source address for the transformation
* \param[in] in_packet The NETIO packet to transform
* \param[out] packet_out The transformed NETIO packet
* \param[out] ec User defined error code
*
* \return RTI_TRUE on success, RTI_FALSE on failure
*/
RTI_PRIVATE RTI_BOOL
MyUdpTransform_transform_destination(UDP_Transform_T *const udptf,

void *context,
const struct NETIO_Address *const destination,
const NETIO_Packet_T *const in_packet,
NETIO_Packet_T **packet_out,
RTI_INT32 *const ec)

{
struct MyUdpTransform *self = (struct MyUdpTransform*)udptf;
char *buf_ptr,*buf_end;
char *from_buf_ptr,*from_buf_end;
UNUSED_ARG(context);
UNUSED_ARG(destination);

*ec = 0;

if (!NETIO_Packet_initialize_from(
&self->packet,in_packet,
self->buffer,8192,
0,NETIO_Packet_get_payload_length(in_packet)))

{
return RTI_FALSE;

}

*out_packet = &self->packet;

buf_ptr = NETIO_Packet_get_head(&self->packet);
buf_end = NETIO_Packet_get_tail(&self->packet);
from_buf_ptr = NETIO_Packet_get_head(in_packet);
from_buf_end = NETIO_Packet_get_tail(in_packet);

while (from_buf_ptr < from_buf_end)
{

if (context == (void*)1)
{

*buf_ptr = ~(*from_buf_ptr);
}
else if (context == (void*)2)
{

(continues on next page)

4.7. Transports 104

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
*buf_ptr = (*from_buf_ptr)-1;

}

++buf_ptr;
++from_buf_ptr;

}

return RTI_TRUE;
}

/*ce \brief Definition of the transformation interface
*/
RTI_PRIVATE struct UDP_TransformI MyUdpTransform_fv_Intf =
{

RT_COMPONENTI_BASE,
MyUdpTransform_create_destination_transform,
MyUdpTransform_create_source_transform,
MyUdpTransform_transform_source,
MyUdpTransform_transform_destination,
MyUdpTransform_delete_destination_transform,
MyUdpTransform_delete_source_transform

};

/*ce \brief Method called by \rtime to create an instance of transformation
*/
MUST_CHECK_RETURN RTI_PRIVATE RT_Component_T*
MyUdpTransformFactory_create_component(struct RT_ComponentFactory *factory,

struct RT_ComponentProperty *property,
struct RT_ComponentListener *listener)

{
struct MyUdpTransform *t;
UNUSED_ARG(listener);

t = MyUdpTransform_create(
(struct MyUdpTransformFactory*)factory,
(struct UDP_TransformProperty*)property);

return &t->_parent._parent;
}

/*ce \brief Method called by \rtime to delete an instance of transformation
*/
RTI_PRIVATE void
MyUdpTransformFactory_delete_component(

struct RT_ComponentFactory *factory,
RT_Component_T *component)

{
UNUSED_ARG(factory);

MyUdpTransform_delete((struct MyUdpTransform*)component);
}

(continues on next page)

4.7. Transports 105

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)

/*ce \brief Method called by \rtime when a factory is registered
*/
MUST_CHECK_RETURN RTI_PRIVATE struct RT_ComponentFactory*
MyUdpTransformFactory_initialize(struct RT_ComponentFactoryProperty* property,

struct RT_ComponentFactoryListener *listener)
{

struct MyUdpTransformFactory *fac;
UNUSED_ARG(property);
UNUSED_ARG(listener);

OSAPI_Heap_allocate_struct(&fac,struct MyUdpTransformFactory);

fac->_parent._factory = &fac->_parent;
fac->_parent.intf = &MyUdpTransformFactory_fv_Intf;
fac->property = (struct MyUdpTransformFactoryProperty*)property;

return &fac->_parent;
}

/*ce \brief Method called by \rtime when a factory is unregistered
*/
RTI_PRIVATE void
MyUdpTransformFactory_finalize(struct RT_ComponentFactory *factory,

struct RT_ComponentFactoryProperty **property,
struct RT_ComponentFactoryListener **listener)

{
struct MyUdpTransformFactory *fac =

(struct MyUdpTransformFactory*)factory;

UNUSED_ARG(property);
UNUSED_ARG(listener);

if (listener != NULL)
{

*listener = NULL;
}

if (property != NULL)
{

property = (struct RT_ComponentFactoryProperty)fac->property;
}

OSAPI_Heap_free_struct(factory);

return;
}

/*ce \brief Definition of the factory interface
*/
RTI_PRIVATE struct RT_ComponentFactoryI MyUdpTransformFactory_fv_Intf =

(continues on next page)

4.7. Transports 106

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{

UDP_INTERFACE_INTERFACE_ID,
MyUdpTransformFactory_initialize,
MyUdpTransformFactory_finalize,
MyUdpTransformFactory_create_component,
MyUdpTransformFactory_delete_component,
NULL

};

struct RT_ComponentFactoryI*
MyUdpTransformFactory_get_interface(void)
{

return &MyUdpTransformFactory_fv_Intf;
}

/*ce \brief Method to register this transformation in a registry
*/
RTI_BOOL
MyUdpTransformFactory_register(RT_Registry_T *registry,

const char *const name,
struct MyUdpTransformFactoryProperty *property)

{
return RT_Registry_register(registry, name,

MyUdpTransformFactory_get_interface(),
&property->_parent, NULL);

}

/*ce \brief Method to unregister this transformation from a registry
*/
RTI_BOOL
MyUdpTransformFactory_unregister(RT_Registry_T *registry,

const char *const name,
struct MyUdpTransformFactoryProperty **property)

{
return RT_Registry_unregister(registry, name,

(struct RT_ComponentFactoryProperty**)property,
NULL);

}

/*! @} */

Example configuration of rules:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "common.h"

void
(continues on next page)

4.7. Transports 107

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
MyAppApplication_help(char *appname)
{

printf("%s [options]\n", appname);
printf("options:\n");
printf("-h - This text\n");
printf("-domain <id> - DomainId (default: 0)\n");
printf("-udp_intf <intf> - udp interface (no default)\n");
printf("-peer <address> - peer address (no default)\n");
printf("-count <count> - count (default -1)\n");
printf("-sleep <ms> - sleep between sends (default 1s)\n");
printf("\n");

}

struct MyAppApplication*
MyAppApplication_create(const char *local_participant_name,

const char *remote_participant_name,
DDS_Long domain_id, char *udp_intf, char *peer,
DDS_Long sleep_time, DDS_Long count)

{
DDS_ReturnCode_t retcode;
DDS_DomainParticipantFactory *factory = NULL;
struct DDS_DomainParticipantFactoryQos dpf_qos =

DDS_DomainParticipantFactoryQos_INITIALIZER;
struct DDS_DomainParticipantQos dp_qos =

DDS_DomainParticipantQos_INITIALIZER;
DDS_Boolean success = DDS_BOOLEAN_FALSE;
struct MyAppApplication *application = NULL;
RT_Registry_T *registry = NULL;
struct UDP_InterfaceFactoryProperty *udp_property = NULL;
struct DPDE_DiscoveryPluginProperty discovery_plugin_properties =

DPDE_DiscoveryPluginProperty_INITIALIZER;
UNUSED_ARG(local_participant_name);
UNUSED_ARG(remote_participant_name);

/* Uncomment to increase verbosity level:
OSAPILog_set_verbosity(OSAPI_LOG_VERBOSITY_WARNING);

*/
application = (struct MyAppApplication *)malloc(sizeof(struct MyAppApplication));

if (application == NULL)
{

printf("failed to allocate application\n");
goto done;

}

application->sleep_time = sleep_time;
application->count = count;

factory = DDS_DomainParticipantFactory_get_instance();

if (DDS_DomainParticipantFactory_get_qos(factory,&dpf_qos) != DDS_RETCODE_OK)

(continues on next page)

4.7. Transports 108

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
{

printf("failed to get number of components\n");
goto done;

}

dpf_qos.resource_limits.max_components = 128;

if (DDS_DomainParticipantFactory_set_qos(factory,&dpf_qos) != DDS_RETCODE_OK)
{

printf("failed to increase number of components\n");
goto done;

}

registry = DDS_DomainParticipantFactory_get_registry(
DDS_DomainParticipantFactory_get_instance());

if (!RT_Registry_register(registry, DDSHST_WRITER_DEFAULT_HISTORY_NAME,
WHSM_HistoryFactory_get_interface(), NULL, NULL))

{
printf("failed to register wh\n");
goto done;

}

if (!RT_Registry_register(registry, DDSHST_READER_DEFAULT_HISTORY_NAME,
RHSM_HistoryFactory_get_interface(), NULL, NULL))

{
printf("failed to register rh\n");
goto done;

}

if (!MyUdpTransformFactory_register(registry,"T0",NULL))
{

printf("failed to register T0\n");
goto done;

}

if (!MyUdpTransformFactory_register(registry,"T1",NULL))
{

printf("failed to register T0\n");
goto done;

}

/* Configure UDP transport's allowed interfaces */
if (!RT_Registry_unregister(registry, NETIO_DEFAULT_UDP_NAME, NULL, NULL))
{

printf("failed to unregister udp\n");
goto done;

}

udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof(struct UDP_InterfaceFactoryProperty));

(continues on next page)

4.7. Transports 109

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
if (udp_property == NULL)
{

printf("failed to allocate udp properties\n");
goto done;

}
*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

/* For additional allowed interface(s), increase maximum and length, and
set interface below:

*/
udp_property->max_send_message_size = 16384;
udp_property->max_message_size = 32768;

if (udp_intf != NULL)
{

REDA_StringSeq_set_maximum(&udp_property->allow_interface,1);
REDA_StringSeq_set_length(&udp_property->allow_interface,1);
*REDA_StringSeq_get_reference(&udp_property->allow_interface,0) =

DDS_String_dup(udp_intf);
}

/* A rule that says: For payloads received from 192.168.10.* (netmask is
* 0xffffff00), apply transformation T0.
*/

if (!UDP_TransformRules_assert_source_rule(
&udp_property->source_rules,
0xc0a80ae8,0xffffff00,"T0",(void*)2))

{
printf("Failed to assert source rule\n");
goto done;

}

/* A rule that says: For payloads sent to 192.168.10.* (netmask is
* 0xffffff00), apply transformation T0.
*/

if (!UDP_TransformRules_assert_destination_rule(
&udp_property->destination_rules,
0xc0a80ae8,0xffffff00,"T0",(void*)2))

{
printf("Failed to assert source rule\n");
goto done;

}

/* A rule that says: For payloads received from 192.168.20.* (netmask is
* 0xffffff00), apply transformation T1.
*/

if (!UDP_TransformRules_assert_source_rule(
&udp_property->source_rules,
0xc0a81465,0xffffff00,"T1",(void*)1))

{

(continues on next page)

4.7. Transports 110

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
printf("Failed to assert source rule\n");
goto done;

}

/* A rule that says: For payloads received from 192.168.20.* (netmask is
* 0xffffff00), apply transformation T1.
*/

if (!UDP_TransformRules_assert_destination_rule(
&udp_property->destination_rules,
0xc0a81465,0xffffff00,"T1",(void*)1))

{
printf("Failed to assert source rule\n");
goto done;

}

if (!RT_Registry_register(registry, NETIO_DEFAULT_UDP_NAME,
UDP_InterfaceFactory_get_interface(),

(struct RT_ComponentFactoryProperty*)udp_property, NULL))
{

printf("failed to register udp\n");
goto done;

}

DDS_DomainParticipantFactory_get_qos(factory, &dpf_qos);
dpf_qos.entity_factory.autoenable_created_entities = DDS_BOOLEAN_FALSE;
DDS_DomainParticipantFactory_set_qos(factory, &dpf_qos);

if (peer == NULL)
{

peer = "127.0.0.1"; /* default to loopback */
}

if (!RT_Registry_register(registry,
"dpde",
DPDE_DiscoveryFactory_get_interface(),
&discovery_plugin_properties._parent,
NULL))

{
printf("failed to register dpde\n");
goto done;

}

if (!RT_ComponentFactoryId_set_name(&dp_qos.discovery.discovery.name,"dpde"))
{

printf("failed to set discovery plugin name\n");
goto done;

}

DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers,1);
DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers,1);
*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers,0) = DDS_String_

↪→dup(peer);
(continues on next page)

4.7. Transports 111

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)

DDS_StringSeq_set_maximum(&dp_qos.discovery.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qos.discovery.enabled_transports,1);

/* Use network interface 192.168.10.232 for discovery. T0 is used for
* discovery
*/
*DDS_StringSeq_get_reference(&dp_qos.discovery.enabled_transports,0) = DDS_String_

↪→dup("_udp://192.168.10.232");

DDS_StringSeq_set_maximum(&dp_qos.user_traffic.enabled_transports,1);
DDS_StringSeq_set_length(&dp_qos.user_traffic.enabled_transports,1);

/* Use network interface 192.168.20.101 for user-data. T1 is used for
* this interface.
*/
*DDS_StringSeq_get_reference(&dp_qos.user_traffic.enabled_transports,0) = DDS_String_

↪→dup("_udp://192.168.20.101");

/* if there are more remote or local endpoints, you need to increase these limits */
dp_qos.resource_limits.max_destination_ports = 32;
dp_qos.resource_limits.max_receive_ports = 32;
dp_qos.resource_limits.local_topic_allocation = 1;
dp_qos.resource_limits.local_type_allocation = 1;
dp_qos.resource_limits.local_reader_allocation = 1;
dp_qos.resource_limits.local_writer_allocation = 1;
dp_qos.resource_limits.remote_participant_allocation = 8;
dp_qos.resource_limits.remote_reader_allocation = 8;
dp_qos.resource_limits.remote_writer_allocation = 8;

application->participant =
DDS_DomainParticipantFactory_create_participant(factory, domain_id,

&dp_qos, NULL,
DDS_STATUS_MASK_NONE);

if (application->participant == NULL)
{

printf("failed to create participant\n");
goto done;

}

sprintf(application->type_name, "HelloWorld");
retcode = DDS_DomainParticipant_register_type(application->participant,

application->type_name,
HelloWorldTypePlugin_get());

if (retcode != DDS_RETCODE_OK)
{

printf("failed to register type: %s\n", "test_type");
goto done;

}

(continues on next page)

4.7. Transports 112

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
sprintf(application->topic_name, "HelloWorld");
application->topic =

DDS_DomainParticipant_create_topic(application->participant,
application->topic_name,
application->type_name,
&DDS_TOPIC_QOS_DEFAULT, NULL,
DDS_STATUS_MASK_NONE);

if (application->topic == NULL)
{

printf("topic == NULL\n");
goto done;

}

success = DDS_BOOLEAN_TRUE;

done:

if (!success)
{

if (udp_property != NULL)
{

free(udp_property);
}
free(application);
application = NULL;

}

return application;
}

DDS_ReturnCode_t
MyAppApplication_enable(struct MyAppApplication * application)
{

DDS_Entity *entity;
DDS_ReturnCode_t retcode;

entity = DDS_DomainParticipant_as_entity(application->participant);

retcode = DDS_Entity_enable(entity);
if (retcode != DDS_RETCODE_OK)
{

printf("failed to enable entity\n");
}

return retcode;
}

void
MyAppApplication_delete(struct MyAppApplication *application)
{

(continues on next page)

4.7. Transports 113

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
DDS_ReturnCode_t retcode;
RT_Registry_T *registry = NULL;

retcode = DDS_DomainParticipant_delete_contained_entities(application->participant);
if (retcode != DDS_RETCODE_OK)
{

printf("failed to delete conteined entities (retcode=%d)\n",retcode);
}

if (DDS_DomainParticipant_unregister_type(application->participant,
application->type_name) != HelloWorldTypePlugin_get())

{
printf("failed to unregister type: %s\n", application->type_name);
return;

}

retcode = DDS_DomainParticipantFactory_delete_participant(
DDS_DomainParticipantFactory_get_instance(),
application->participant);

if (retcode != DDS_RETCODE_OK)
{

printf("failed to delete participant: %d\n", retcode);
return;

}

registry = DDS_DomainParticipantFactory_get_registry(
DDS_DomainParticipantFactory_get_instance());

if (!RT_Registry_unregister(registry, "dpde", NULL, NULL))
{

printf("failed to unregister dpde\n");
return;

}
if (!RT_Registry_unregister(registry, DDSHST_READER_DEFAULT_HISTORY_NAME, NULL,␣

↪→NULL))
{

printf("failed to unregister rh\n");
return;

}
if (!RT_Registry_unregister(registry, DDSHST_WRITER_DEFAULT_HISTORY_NAME, NULL,␣

↪→NULL))
{

printf("failed to unregister wh\n");
return;

}

free(application);

DDS_DomainParticipantFactory_finalize_instance();
}

4.7. Transports 114

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Examples

The following examples illustrate how this feature can be used in a system with a mixture of
different types of UDP transport configurations.

For the purpose of the examples, the following terminology is used:

• Plain communication – No transformations have been applied.

• Transformed User Data – Only the user-data is transformed, discovery is plain.

• Transformed Discovery – Only the discovery data is transformed, user-data is plain.

• Transformed Data – Both discovery and user-data are transformed. Unless stated otherwise
the transformations are different.

A transformation Tn is a transformation such that an outgoing payload transformed with Tn can
be transformed back to its original state by applying Tn to the incoming data.

A network interface can be either physical or virtual.

Plain Communication Between 2 Nodes

In this system two Nodes, A and B, are communicating with plain communication. Node A has
one interface, a0, and Node B has one interface, b0.

Node A:

• Register the UDP transport Ua with allow_interface = a0.

• DomainParticipantQos.transports.enabled_transports = “Ua”

• DomainParticipantQos.discovery.enabled_transports = ”Ua://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua://”

Node B:

• Register the UDP transport Ub with allow_interface = b0.

• DomainParticipantQos.transports.enabled_transports = “Ub”

• DomainParticipantQos.discovery.enabled_transports = ”Ub://”

• DomainParticipantQos.user_data.enabled_transports = ”Ub://”

Transformed User Data Between 2 Nodes

In this system two Nodes, A and B, are communicating with transformed user data. Node A has
two interfaces, a0 and a1, and Node B has two interfaces, b0 and b1. Since each node has only one
peer, a single transformation is sufficient.

Node A:

• Add a destination transformation T0 to Ua0, indicating that all sent data is transformed with
T0.

4.7. Transports 115

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

• Register the UDP transport Ua0 with allow_interface = a0.

• Register the UDP transport Ua1 with allow_interface = a1.

• No transformations are registered with Ua1.

• DomainParticipantQos.transports.enabled_transports = “Ua0”,”Ua1”

• DomainParticipantQos.discovery.enabled_transports = ”Ua1://”

• DomainParticipantQos.user_traffic.enabled_transports = ”Ua0://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that all sent data is transformed with
T1.

• Add a source transformation T0 to Ub0, indicating that all received data is transformed with
T0.

• Register the UDP transport Ub0 with allow_interface = b0.

• Register the UDP transport Ub1 with allow_interface = b1.

• No transformations are registered with Ub1.

• DomainParticipantQos.transports.enabled_transports = “Ub0”,”Ub1”

• DomainParticipantQos.discovery.enabled_transports = ”Ub1://”

• DomainParticipantQos.user_traffic.enabled_transports = ”Ub0://”

Ua0 and Ub0 perform transformations and are used for user-data. Ua1 and Ub1 are used for
discovery and no transformations takes place.

Transformed Discovery Data Between 2 Nodes

In this system two Nodes, A and B, are communicating with transformed user data. Node A has
two interfaces, a0 and a1, and Node B has two interfaces, b0 and b1. Since each node has only one
peer, a single transformation is sufficient.

Node A:

• Add a destination transformation T0 to Ua0, indicating that all sent data is transformed with
T0.

• Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

• Register the UDP transport Ua0 with allow_interface = a0.

• Register the UDP transport Ua1 with allow_interface = a1.

• No transformations are registered with Ua1.

• DomainParticipantQos.transports.enabled_transports = “Ua0”,”Ua1”

4.7. Transports 116

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• DomainParticipantQos.discovery.enabled_transports = ”Ua0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua1://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that all sent data is transformed with
T1.

• Add a source transformation T0 to Ub0, indicating that all received data is transformed with
T0.

• Register the UDP transport Ub0 with allow_interface = b0.

• Register the UDP transport Ub1 with allow_interface = b1.

• No transformations are registered with Ub1.

• DomainParticipantQos.transports.enabled_transports = “Ub0”,”Ub1”

• DomainParticipantQos.discovery.enabled_transports = ”Ub0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ub1://”

Ua0 and Ub0 perform transformations and are used for discovery. Ua1 and Ub1 are used for
user-data and no transformation takes place.

Transformed Data Between 2 Nodes (same transformation)

In this system two Nodes, A and B, are communicating with transformed data using the same
transformation for user and discovery data. Node A has one interface, a0, and Node B has one
interface, b0.

Node A:

• Add a destination transformation T0 to Ua0, indicating that all sent data is transformed with
T0.

• Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

• Register the UDP transport Ua0 with allow_interface = a0.

• DomainParticipantQos.transports.enabled_transports = “Ua0”

• DomainParticipantQos.discovery.enabled_transports = ”Ua0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua0://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that all sent data is transformed with
T1.

• Add a source transformation T0 to Ub0, indicating that all received data is transformed with
T0.

• Register the UDP transport Ub0 with allow_interface = b0.

4.7. Transports 117

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• DomainParticipantQos.transports.enabled_transports = “Ub0”

• DomainParticipantQos.discovery.enabled_transports = ”Ub0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ub0://”

Ua0 and Ub0 performs transformations and are used for discovery and for user-data.

Transformed Data Between 2 Nodes (different transformations)

In this system two Nodes, A and B, are communicating with transformed data using different
transformations for user and discovery data. Node A has two interfaces, a0 and a1, and Node B
has two interfaces, b0 and b1.

Node A:

• Add a destination transformation T0 to Ua0, indicating that all sent data is transformed with
T0.

• Add a source transformation T1 to Ua0, indicating that all received data is transformed with
T1.

• Add a destination transformation T2 to Ua1, indicating that all sent data is transformed with
T2.

• Add a source transformation T3 to Ua1, indicating that all received data is transformed with
T3.

• Register the UDP transport Ua0 with allow_interface = a0.

• Register the UDP transport Ua1 with allow_interface = a1.

• DomainParticipantQos.transports.enabled_transports = “Ua0”,”Ua1”

• DomainParticipantQos.discovery.enabled_transports = ”Ua0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua1://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that all sent data is transformed with
T1.

• Add a source transformation T0 to Ub0, indicating that all received data is transformed with
T0.

• Add a destination transformation T3 to Ub1, indicating that all sent data is transformed with
T3.

• Add a source transformation T2 to Ub1, indicating that all received data is transformed with
T2.

• Register the UDP transport Ub0 with allow_interface = b0.

• Register the UDP transport Ub1 with allow_interface = b1.

• DomainParticipantQos.transports.enabled_transports = “Ub0”,”Ub1”

• DomainParticipantQos.discovery.enabled_transports = ”Ub0://”

4.7. Transports 118

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• DomainParticipantQos.user_data.enabled_transports = ”Ub1://”

Ua0 and Ub0 perform transformations and are used for discovery. Ua1 and Ub1 perform transfor-
mations and are used for user-data.

OS Configuration

In systems with several network interfaces, Connext DDS Micro cannot ensure which network
interface should be used to send a packet. Depending on the UDP transformations configured, this
might be a problem.

To illustrate this problem, let’s assume a system with two nodes, A and B. Node A has two network
interfaces, a0 and a1, and Node B has two network interfaces, b0 and b1. In this system, Node A
is communicating with Node B using a transformation for discovery and a different transformation
for user data.

Node A:

• Add a destination transformation T0 to Ua0, indicating that sent data to b0 is transformed
with T0.

• Add a source transformation T1 to Ua0, indicating that received data from b0 is transformed
with T1.

• Add a destination transformation T2 to Ua1, indicating that sent data to b1 is transformed
with T2.

• Add a source transformation T3 to Ua1, indicating that received data from b1 is transformed
with T3.

• Register the UDP transport Ua0 with allow_interface = a0.

• Register the UDP transport Ua1 with allow_interface = a1.

• DomainParticipantQos.transports.enabled_transports = “Ua0”,”Ua1”

• DomainParticipantQos.discovery.enabled_transports = ”Ua0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ua1://”

Node B:

• Add a destination transformation T1 to Ub0, indicating that sent data to a0 is transformed
with T1.

• Add a source transformation T0 to Ub0, indicating that received data from a0 transformed
with T0.

• Add a destination transformation T3 to Ub1, indicating that sent data to a1 is transformed
with T3.

• Add a source transformation T2 to Ub1, indicating that received data from a1 transformed
with T2.

• Register the UDP transport Ub0 with allow_interface = b0.

• Register the UDP transport Ub1 with allow_interface = b1.

4.7. Transports 119

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• DomainParticipantQos.transports.enabled_transports = “Ub0”,”Ub1”

• DomainParticipantQos.discovery.enabled_transports = ”Ub0://”

• DomainParticipantQos.user_data.enabled_transports = ”Ub1://”

Node A sends a discovery packet to Node B to interface b0. This packet will be transformed using
T0 as specified by Node A’s configuration. When this packet is received in Node B, it will be
transformed using either T0 or T2 depending on the source address. Node’s A OS will use a0 or
a1 to send this packet but Connext DDS Micro cannot ensure which one will be used. In case the
OS sends the packet using a1, the wrong transformation will be applied in Node B.

Some systems have the possibility to configure the source address that should be used when a
packet is sent. In POSIX systems, the command ip route add <string> dev <interface> can
be used.

By typing the command ip route add < b0 ip >/32 dev a0 in Node A, the OS will send all
packets to Node B’s b0 IP address using interface a0. This would ensure that the correct transfor-
mation is applied in Node B. The same should be done to ensure that user data is sent with the
right address ip route add < b1 ip >/32 dev a1. Of course, similar configuration is needed in
Node B.

4.8 Discovery
This section discusses the implementation of discovery plugins in RTI Connext DDS Micro. For a
general overview of discovery in RTI Connext DDS Micro, see What is Discovery?.

Connext DDS Micro discovery traffic is conducted through transports. Please see the Transports
section for more information about registering and configuring transports.

4.8.1 What is Discovery?
Discovery is the behind-the-scenes way in which RTI Connext DDS Micro objects (DomainPartici-
pants, DataWriters, and DataReaders) on different nodes find out about each other. Each Domain-
Participant maintains a database of information about all the active DataReaders and DataWriters
that are in the same DDS domain. This database is what makes it possible for DataWriters and
DataReaders to communicate. To create and refresh the database, each application follows a com-
mon discovery process.

This section describes the default discovery mechanism known as the Simple Discovery Protocol,
which includes two phases: Simple Participant Discovery and Simple Endpoint Discovery.

The goal of these two phases is to build, for each DomainParticipant, a complete picture of all the
entities that belong to the remote participants that are in its peers list. The peers list is the list of
nodes with which a participant may communicate. It starts out the same as the initial_peers list
that you configure in the DISCOVERY QosPolicy. If the accept_unknown_peers flag in that same
QosPolicy is TRUE, then other nodes may also be added as they are discovered; if it is FALSE, then
the peers list will match the initial_peers list, plus any peers added using the DomainParticipant’s
add_peer() operation.

The following section discusses how Connext DDS Micro objects on different nodes find out about
each other using the default Simple Discovery Protocol (SDP). It describes the sequence of messages

4.8. Discovery 120

../../api_c/html/group__DDSDiscoveryQosModule.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

that are passed between Connext DDS Micro on the sending and receiving sides.

The discovery process occurs automatically, so you do not have to implement any special code. For
more information about advanced topics related to Discovery, please refer to the Discovery chapter
in the RTI Connext DDS Core Libraries User’s Manual (available here if you have Internet access).

Simple Participant Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Participant Discovery
Protocol (SPDP).

During the Participant Discovery phase, DomainParticipants learn about each other. The Domain-
Participant’s details are communicated to all other DomainParticipants in the same DDS domain
by sending participant declaration messages, also known as participant DATA submessages. The
details include the DomainParticipant’s unique identifying key (GUID or Globally Unique ID de-
scribed below), transport locators (addresses and port numbers), and QoS. These messages are sent
on a periodic basis using best-effort communication.

Participant DATAs are sent periodically to maintain the liveliness of the DomainParticipant. They
are also used to communicate changes in the DomainParticipant’s QoS. Only changes to QosPolicies
that are part of the DomainParticipant’s built-in data need to be propagated.

When receiving remote participant discovery information, RTI Connext DDS Micro determines if
the local participant matches the remote one. A ‘match’ between the local and remote participant
occurs only if the local and remote participant have the same Domain ID and Domain Tag. This
matching process occurs as soon as the local participant receives discovery information from the
remote one. If there is no match, the discovery DATA is ignored, resulting in the remote participant
(and all its associated entities) not being discovered.

When a DomainParticipant is deleted, a participant DATA (delete) submessage with the Domain-
Participant’s identifying GUID is sent.

The GUID is a unique reference to an entity. It is composed of a GUID prefix and an Entity ID.
By default, the GUID prefix is calculated from the IP address and the process ID. The entityID is
set by Connext DDS Micro (you may be able to change it in a future version).

Once a pair of remote participants have discovered each other, they can move on to the Endpoint
Discovery phase, which is how DataWriters and DataReaders find each other.

Simple Endpoint Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Endpoint Discovery Pro-
tocol (SEDP).

During the Endpoint Discovery phase, RTI Connext DDS Micro matches DataWriters and
DataReaders. Information (GUID, QoS, etc.) about your application’s DataReaders and DataWrit-
ers is exchanged by sending publication/subscription declarations in DATA messages that we will
refer to as publication DATAs and subscription DATAs. The Endpoint Discovery phase uses reliable
communication.

These declaration or DATA messages are exchanged until each DomainParticipant has a complete
database of information about the participants in its peers list and their entities. Then the discovery
process is complete and the system switches to a steady state. During steady state, participant

4.8. Discovery 121

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Discovery.htm

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

DATAs are still sent periodically to maintain the liveliness status of participants. They may also
be sent to communicate QoS changes or the deletion of a DomainParticipant.

When a remote DataWriter/DataReader is discovered, Connext DDS Micro determines if the local
application has a matching DataReader/DataWriter. A ‘match’ between the local and remote
entities occurs only if the DataReader and DataWriter have the same Topic, same data type, and
compatible QosPolicies. Furthermore, if the DomainParticipant has been set up to ignore certain
DataWriters/DataReaders, those entities will not be considered during the matching process.

This ‘matching’ process occurs as soon as a remote entity is discovered, even if the entire database
is not yet complete: that is, the application may still be discovering other remote entities.

A DataReader and DataWriter can only communicate with each other if each one’s application has
hooked up its local entity with the matching remote entity. That is, both sides must agree to the
connection.

Please refer to the section on Discovery Implementation in the RTI Connext DDS Core Libraries
User’s Manual for more details about the discovery process (available here if you have Internet
access).

4.8.2 Configuring Participant Discovery Peers
An RTI Connext DDS Micro DomainParticipant must be able to send participant discovery an-
nouncement messages for other DomainParticipants to discover itself, and it must receive announce-
ments from other DomainParticipants to discover them.

To do so, each DomainParticipant will send its discovery announcements to a set of locators known
as its peer list, where a peer is the transport locator of one or more potential other DomainPartic-
ipants to discover.

peer_desc_string

A peer descriptor string of the initial_peers string sequence conveys the interface and address of
the locator to which to send, as well as the indices of participants to which to send. For example:

DDS_StringSeq_set_maximum(&dp_qos.discovery.initial_peers, 3);
DDS_StringSeq_set_length(&dp_qos.discovery.initial_peers, 3);

*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 0) =
DDS_String_dup("_udp://239.255.0.1");

*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 1) =
DDS_String_dup("[1-4]@_udp://10.10.30.101");

*DDS_StringSeq_get_reference(&dp_qos.discovery.initial_peers, 2) =
DDS_String_dup("[2]@_udp://10.10.30.102");

The peer descriptor format is:

[index@][interface://]address

Remember that every DomainParticipant has a participant index that is unique within a DDS
domain. The participant index (also referred to as the participant ID), together with the DDS

4.8. Discovery 122

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Discovery_Implementation.htm
../../api_c/html/structDDS__DiscoveryQosPolicy.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

domain ID, is used to calculate the network port on which DataReaders of that participant will
receive messages. Thus, by specifying the participant index, or a range of indices, for a peer locator,
that locator becomes a port to which messages will be sent only if addressed to the entities of a
particular DomainParticipant. Specifying indices restricts the number of participant announce-
ments sent to a locator where other DomainParticipants exist and, thus, should be considered to
minimize network bandwidth usage.

In the above example, the first peer, “_udp://239.255.0.1,” has the default UDPv4 multicast peer
locator. Note that there is no [index@] associated with a multicast locator.

The second peer, “[1-4]@_udp://10.10.30.101,” has a unicast address. It also has indices in brackets,
[1-4]. These represent a range of participant indices, 1 through 4, to which participant discovery
messages will be sent.

Lastly, the third peer, “[2]@_udp://10.10.30.102,” is a unicast locator to a single participant with
index 2.

4.8.3 Configuring Initial Peers and Adding Peers
DiscoveryQosPolicy_initial_peers is the list of peers a DomainParticipant sends its participant
announcement messages, when it is enabled, as part of the discovery process.

DiscoveryQosPolicy_initial_peers is an empty sequence by default, so while DiscoveryQosPol-
icy_enabled_transports by default includes the DDS default loopback and multicast (239.255.0.1)
addresses, initial_peers must be configured to include them.

Peers can also be added to the list, before and after a DomainParticipant has been enabled, by
using DomainParticipant_add_peer.

The DomainParticipant will start sending participant announcement messages to the new peer as
soon as it is enabled.

4.8.4 Discovery Plugins
When a DomainParticipant receives a participant discovery message from another DomainPar-
ticipant, it will engage in the process of exchanging information of user-created DataWriter and
DataReader endpoints.

RTI Connext DDS Micro provides two ways of determinig endpoint information of other Domain-
Participants: Dynamic Discovery Plugin and Static Discovery Plugin.

Dynamic Discovery Plugin

Dynamic endpoint discovery uses builtin discovery DataWriters and DataReader to exchange mes-
sages about user created DataWriter and DataReaders. A DomainParticipant using dynamic par-
ticipant, dynamic endpoint (DPDE) discovery will have a pair of builtin DataWriters for sending
messages about its own user created DataWriters and DataReaders, and a pair of builtin DataRead-
ers for receiving messages from other DomainParticipants about their user created DataWriters and
DataReaders.

Given a DomainParticipant with a user DataWriter, receiving an endpoint discovery message for a
user DataReader allows the DomainParticipant to get the type, topic, and QoS of the DataReader
that determine whether the DataReader is a match. When a matching DataReader is discovered,

4.8. Discovery 123

../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/structDDS__DiscoveryQosPolicy.html
../../api_c/html/group__DDSDomainParticipantModule.html
../../api_c/html/group__DPDEModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

the DataWriter will include that DataReader and its locators as destinations for its subsequent
writes.

Static Discovery Plugin

Static endpoint discovery uses function calls to statically assert information about remote end-
points belonging to remote DomainParticipants. An application with a DomainParticipant using
dynamic participant, static endpoint (DPSE) discovery has control over which endpoints belonging
to particular remote DomainParticipants are discoverable.

Whereas dynamic endpoint-discovery can establish matches for all endpoint-discovery messages it
receives, static endpoint-discovery establishes matches only for the endpoint that have been asserted
programmatically.

With DPSE, a user needs to know a priori the configuration of the entities that will need to be
discovered by its application. The user must know the names of all DomainParticipants within the
DDS domain and the exact QoS of the remote DataWriters and DataReaders.

Please refer to the C API Reference and C++ API Reference for the following remote entity
assertion APIs:

• DPSE_RemoteParticipant_assert

• DPSE_RemotePublication_assert

• DPSE_RemoteSubscription_assert

Remote Participant Assertion

Given a local DomainParticipant, static discovery requires first the names of remote Domain-
Participants to be asserted, in order for endpoints on them to match. This is done by calling
DPSE_RemoteParticipant_assert with the name of a remote DomainParticipant. The name must
match the name contained in the participant discovery announcement produced by that Domain-
Participant. This has to be done reciprocally between two DomainParticipants so that they may
discover one another.

For example, a DomainParticipant has entity name “participant_1”, while another DomainPartici-
pant has name “participant_2.” participant_1 should call DPSE_RemoteParticipant_assert(“par-
ticipant_2”) in order to discover participant_2. Similarly, participant_2 must also assert partici-
pant_1 for discovery between the two to succeed.

/* participant_1 is asserting (remote) participant_2 */
retcode = DPSE_RemoteParticipant_assert(participant_1,

"participant_2");
if (retcode != DDS_RETCODE_OK) {

printf("participant_1 failed to assert participant_2\n");
goto done;

}

4.8. Discovery 124

../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Remote Publication and Subscription Assertion

Next, a DomainParticipant needs to assert the remote endpoints it wants to match that belong to an
already asserted remote DomainParticipant. The endpoint assertion function is used, specifying an
argument which contains all the QoS and configuration of the remote endpoint. Where DPDE gets
remote endpoint QoS information from received endpoint-discovery messages, in DPSE, the remote
endpoint’s QoS must be configured locally. With remote endpoints asserted, the DomainPartic-
ipant then waits until it receives a participant discovery announcement from an asserted remote
DomainParticipant. Once received that, all endpoints that have been asserted for that remote
DomainParticipant are considered discovered and ready to be matched with local endpoints.

Assume participant_1 contains a DataWriter, and participant_2 has a DataReader, both commu-
nicating on topic HelloWorld. participant_1 needs to assert the DataReader in participant_2 as
a remote subscription. The remote subscription data passed to the operation must match exactly
the QoS actually used by the remote DataReader :

/* Set participant_2's reader's QoS in remote subscription data */
rem_subscription_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 200;
rem_subscription_data.topic_name = DDS_String_dup("Example HelloWorld");
rem_subscription_data.type_name = DDS_String_dup("HelloWorld");
rem_subscription_data.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

/* Assert reader as a remote subscription belonging to (remote) participant_2 */
retcode = DPSE_RemoteSubscription_assert(participant_1,

"participant_2",
&rem_subscription_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

↪→get(), NULL));
if (retcode != DDS_RETCODE_OK)
{

printf("failed to assert remote subscription\n");
goto done;

}

Reciprocally, participant_2 must assert participant_1’s DataWriter as a remote publication, also
specifying matching QoS parameters:

/* Set participant_1's writer's QoS in remote publication data */
rem_publication_data.key.value[DDS_BUILTIN_TOPIC_KEY_OBJECT_ID] = 100;
rem_publication_data.key.value.topic_name = DDS_String_dup("Example HelloWorld");
rem_publication_data.key.value.type_name = DDS_String_dup("HelloWorld");
rem_publication_data.key.value.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

/* Assert writer as a remote publication belonging to (remote) participant_1 */
retcode = DPSE_RemotePublication_assert(participant_2,

"participant_1",
&rem_publication_data,
HelloWorld_get_key_kind(HelloWorldTypePlugin_

↪→get(), NULL));
if (retcode != DDS_RETCODE_OK)
{

printf("failed to assert remote publication\n");
(continues on next page)

4.8. Discovery 125

../../api_c/html/group__DPDEModule.html
../../api_c/html/group__DPSEModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
goto done;

}

When participant_1 receives a participant discovery message from participant_2, it is aware of par-
ticipant_2, based on its previous assertion, and it knows participant_2 has a matching DataReader,
also based on the previous assertion of the remote endpoint. It therefore establishes a match be-
tween its DataWriter and participant_2’s DataReader. Likewise, participant_2 will match partic-
ipant_1’s DataWriter with its local DataRead, upon receiving one of participant_1’s participant
discovery messages.

Note, with DPSE, there is no runtime check of QoS consistency between DataWriters and DataRead-
ers, because no endpoint discovery messages are exchanged. This makes it extremely important
that users of DPSE ensure that the QoS set for a local DataWriter and DataReader is the same
QoS being used by another DomainParticipant to assert it as a remote DataWriter or DataReader.

4.9 Generating Type Support with rtiddsgen

4.9.1 Why Use rtiddsgen?
For Connext DDS Micro to publish and subscribe to topics of user-defined types, the types have
to be defined and programmatically registered with Connext DDS Micro. A registered type is then
serialized and deserialized by Connext DDS Micro through a pluggable type interface that each
type must implement.

Rather than have users manually implement each new type, Connext DDS Micro provides the
rtiddsgen utility for automatically generating type support code.

4.9.2 IDL Type Definition
rtiddsgen for Connext DDS Micro accepts types defined in IDL. The HelloWorld examples included
with Connext DDS Micro use the following HelloWorld.idl:

struct HelloWorld {
string<128> msg;

};

For further reference, see the section on Creating User Data Types with IDL in the RTI Connext
DDS Core Libraries User’s Manual (available here if you have Internet access).

4.9.3 Generating Type Support
Before running rtiddsgen, some environment variables must be set:

• RTIMEHOME sets the path of the Connext DDS Micro installation directory

• RTIMEARCH sets the platform architecture (e.g. i86Linux2.6gcc4.4.5 or i86Win32VS2010)

• JREHOME sets the path for a Java JRE

4.9. Generating Type Support with rtiddsgen 126

../../api_c/html/group__DPSEModule.html
../../api_c/html/group__DPSEModule.html
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Creating_User_Data_Types_with_IDL.htm

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Note that a JRE is shipped with Connext DDS Micro on platforms supported for the execution
of rtiddsgen (Linux, Windows, and Mac® OS X®). It is not necessary to set JREHOME on these
platforms, unless a specific JRE is preferred.

C

Run rtiddsgen from the command line to generate C language type-support for a UserType.idl (and
replace any existing generated files):

> cd $rti_connext_micro_root/rtiddsgen/scripts
> rtiddsgen -micro -language C -replace UserType.idl

C++

Run rtiddsgen from the command line to generate C++ language type-support for a UserType.idl
(and replace any existing generated files):

> cd $rti_connext_micro_root/rtiddsgen/scripts
> rtiddsgen -micro -language C++ -replace UserType.idl

Notes on Command-Line Options

In order to target Connext DDS Micro when generating code with rtiddsgen, the -micro option
must be specified on the command line.

To list all command-line options specifically supported by rtiddsgen for Connext DDS Micro, enter:

> cd $rti_connext_micro_root/rtiddsgen/scripts
> rtiddsgen -micro -help

Existing users might notice that that previously available options, -language microC and -
language microC++, have been replaced by -micro -language C and -micro -language C++,
respectively. It is still possible to specify microC and microC++ for backwards compatibility, but
users are advised to switch to using the -micro command-line option along with other arguments.

Generated Type Support Files

rtiddsgen will produce the following header and source files for each IDL file passed to it:

• UserType.h and UserType.c(xx) implement creation/intialization and deletion of a single
sample and a sequence of samples of the type (or types) defined in the IDL description.

• UserTypePlugin.h and UserTypePlugin.c(xx) implement the pluggable type interface that
Connext DDS Micro uses to serialize and deserialize the type.

• UserTypeSupport.h and UserTypeSupport.c(xx) define type-specific DataWriters and
DataReaders for user-defined types.

4.9.4 Using custom data-types in Connext DDS Micro Applications
A Connext DDS Micro application must first of all include the generated headers. Then it must
register the type with the DomainParticipant before a topic of that type can be defined. For

4.9. Generating Type Support with rtiddsgen 127

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

an example HelloWorld type, the following code registers the type with the participant and then
creates a topic of that type:

#include "HelloWorldPlugin.h"

/* ... */

retcode = DDS_DomainParticipant_register_type(application->participant,
"HelloWorld",
HelloWorldTypePlugin_get());

if (retcode != DDS_RETCODE_OK)
{

/* Log an error */
goto done;

}

application->topic =
DDS_DomainParticipant_create_topic(application->participant,

"Example HelloWorld",
"HelloWorld",
&DDS_TOPIC_QOS_DEFAULT, NULL,
DDS_STATUS_MASK_NONE);

if (application->topic == NULL)
{

/* Log an error */
goto done;

}

See the full HelloWorld examples for further reference.

4.9.5 Customizing generated code
rtiddsgen allows Connext DDS Micro users to select whether they want to generate code to subscribe
to and/or publish a custom data-type. When generating code for subscriptions, only those parts of
code dealing with deserialization of data and the implementation of a typed DataReader endpoint
are generated. Conversely, only those parts of code addressing serialization and the implementation
of a DataWriter are considered when generating publishing code.

Control over these options is provide by two command-line arguments:

• -reader generates code for deserializing custom data-types and creating DataReaders from
them.

• -writer generates code for serializing custom data-types and creating DataWriters from
them.

If neither of these two options are supplied to rtiddsgen, they will both be considered active and
code for both DataReaders and DataWriters will be generated. If only one of the two options is
supplied to rtiddsgen, only that one is enabled. If both options are supplied, both are enabled.

4.9. Generating Type Support with rtiddsgen 128

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.9.6 Unsupported Features of rtiddsgen with Connext DDS Micro
Connext DDS Micro supports a subset of the features and options in rtiddsgen. Use rtiddsgen
-micro -help to see the list of features supported by rtiddsgen for Connext DDS Micro.

Note: Generating example publisher/subscriber code, and makefiles to compile generated files, is
not yet available when targeting Connext DDS Micro.

4.10 Threading Model

4.10.1 Introduction
This section describes the threading model, the use of critical sections, and how to configure
thread parameters in RTI Connext DDS Micro. Please note that the information contained in this
document applies to application development using Connext DDS Micro. For information regarding
porting the Connext DDS Micro thread API to a new OS, please refer to Porting RTI Connext
DDS Micro.

This section includes:

• Architectural Overview

• Threading Model

• UDP Transport Threads

4.10.2 Architectural Overview
RTI Connext DDS Micro consists of a core library and a number of components. The core library
provides a porting layer, frequently used data-structures and abstractions, and the DDS API.
Components provide additional functionality such as UDP communication, DDS discovery plugins,
DDS history caches, etc.

+-------+ \
| DDS_C | } C API
+-------+ /

+-------+ +-------+ +------+ +------+ \
| DPSE | | DPDE | | WHSM | | RHSM | |
+-------+ +-------+ +------+ +------+ |
+-------+ +-------+ +------+ +------+ +-----+ } Optional components
| LOOP | | UDP(*)| | RTPS | | DRI | | DWI | | (platform independent)
+-------+ +-------+ +------+ +------+ +-----+ |

/

+-------+ +-------+ +------+ +------+ \ Core Services (always
| REDA | | CDR | | DB | | RT | } present, platform
+-------+ +-------+ +------+ +------+ / independent)

+-----------------------------------+ \
| OSAPI | } Platform dependent module
+-----------------------------------+ /

(continues on next page)

4.10. Threading Model 129

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)

(*) The UDP transport relies on a BSD socket API

4.10.3 Threading Model
RTI Connext DDS Micro is architected in a way that makes it possible to create a port of Connext
DDS Micro that uses no threads, for example on platforms with no operating system. Thus, the
following discussion can only be guaranteed to be true for Connext DDS Micro libraries from RTI.

OSAPI Threads

The Connext DDS Micro OSAPI layer creates one thread per OS process. This thread manages all
the Connext DDS Micro timers, such as deadline and liveliness timers. This thread is created by
the Connext DDS Micro OSAPI System when the OSAPI_System_initialize() function is called.
When the Connext DDS Micro DDS API is used DomainParticipantFactory_get_instance() calls
this function once.

Configuring OSAPI Threads

The timer thread is configured through the OSAPI_SystemProperty structure and any changes
must be made before OSAPI_System_initialize() is called. In Connext DDS Micro, DomainPar-
ticipantFactory_get_instance() calls OSAPI_System_initialize(). Thus, if it is necessary to change
the system timer thread settings, it must be done before DomainParticipantFactory_get_instance()
is called the first time.

Please refer to OSAPI_Thread for supported thread options. Note that not all options are sup-
ported by all platforms.

struct OSAPI_SystemProperty sys_property = OSAPI_SystemProperty_INITIALIZER;

if (!OSAPI_System_get_property(&sys_property))
{

/* ERROR */
}

/* Please refer to OSAPI_ThreadOptions for possible options */
sys.property.timer_property.thread.options =;

/* The stack-size is platform dependent, it is passed directly to the OS */
sys.property.timer_property.thread.stack_size =

/* The priority is platform dependent, it is passed directly to the OS */
sys.property.timer_property.thread.priority =

if (!OSAPI_System_set_property(&sys_property))
{

/* ERROR */
}

4.10. Threading Model 130

../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/structOSAPI__SystemProperty.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__DDSDomainParticipantFactoryModule.html
../../api_c/html/group__OSAPI__ThreadClass.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

UDP Transport Threads

Of the components that RTI provides, only the UDP component creates threads. The UDP trans-
port creates one receive thread for each unique UDP receive address and port. Thus, three UDP
threads are created by default:

• A multicast receive thread for discovery data (assuming multicast is available and enabled)

• A unicast receive thread for discovery data

• A unicast receive thread for user-data

Additional threads may be created depending on the transport configuration for a DomainPartic-
ipant, DataReader and DataWriter. The UDP transport creates threads based on the following
criteria:

• Each unique unicast port creates a new thread

• Each unique multicast address and port creates a new thread

For example, if a DataReader specifies its own multicast receive address a new receive thread will
be created.

Configuring UDP Receive Threads

All threads in the UDP transport share the same thread settings. It is important to note that all
the UDP properties must be set before the UDP transport is registered. Connext DDS Micro pre-
registers the UDP transport with default settings when the DomainParticipantFactory is initialized.
To change the UDP thread settings, use the following code.

RT_Registry_T *registry = NULL;
DDS_DomainParticipantFactory *factory = NULL;
struct UDP_InterfaceFactoryProperty *udp_property = NULL;

factory = DDS_DomainParticipantFactory_get_instance();

udp_property = (struct UDP_InterfaceFactoryProperty *)
malloc(sizeof(struct UDP_InterfaceFactoryProperty));

*udp_property = UDP_INTERFACE_FACTORY_PROPERTY_DEFAULT;

registry = DDS_DomainParticipantFactory_get_registry(factory);

if (!RT_Registry_unregister(registry, "_udp", NULL, NULL))
{

/* ERROR */
}

/* Please refer to OSAPI_ThreadOptions for possible options */
udp_property->recv_thread.options = ...;

/* The stack-size is platform dependent, it is passed directly to the OS */
udp_property->recv_thread.stack_size =

/* The priority is platform dependent, it is passed directly to the OS */
(continues on next page)

4.10. Threading Model 131

../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
udp_property->recv_thread.priority =

if (!RT_Registry_register(registry, "_udp",
UDP_InterfaceFactory_get_interface(),
(struct RT_ComponentFactoryProperty*)udp_property,
NULL))

{
/* ERROR */

}

General Thread Configuration

The Connext DDS Micro architecture consists of a number of components and layers, and each layer
and component has its own properties. It is important to remember that the layers and components
are configured independently of each other, as opposed to configuring everything through DDS. This
design makes it possible to relatively easily swap out one part of the library for another.

All threads created based on Connext DDS Micro OSAPI APIs use the same OSAPI_ThreadProp-
erty structure.

4.10.4 Critical Sections
RTI Connext DDS Micro may create multiple threads, but from an application point of view there
is only a single critical section protecting all DDS resources. Note that although Connext DDS
Micro may create multiple mutexes, these are used to protect resources in the OSAPI layer and
are thus not relevant when using the public DDS APIs.

Calling DDS APIs from listeners

When DDS is executing in a listener, it holds a critical section. Thus it is important to return as
quickly as possible to avoid stalling network I/O.

There are no deadlock scenarios when calling Connext DDS Micro DDS APIs from a listener.
However, there are no checks on whether or not an API call will cause problems, such as deleting a
participant when processing data in on_data_available from a reader within the same participant.

4.11 Batching
This section is organized as follows:

• Overview

• Interoperability

• Performance

• Example Configuration

4.11. Batching 132

../../api_c/html/structOSAPI__ThreadProperty.html
../../api_c/html/structOSAPI__ThreadProperty.html
../../api_c/html/structDDS__DataReaderListener.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.11.1 Overview
Batching refers to a mechanism that allows RTI Connext DDS Micro to collect multiple user data
DDS samples to be sent in a single network packet, to take advantage of the efficiency of sending
larger packets and thus increase effective throughput.

Connext DDS Micro supports receiving batches of user data DDS samples, but does not support
any mechanism to collect and send batches of user data.

Receiving batches of user samples is transparent to the application, which receives the samples as
if the samples had been received one at a time. Note though that the reception sequence number
refers to the sample sequence number, not the RTPS sequence number used to send RTPS messages.
The RTPS sequence number is the batch sequence number for the entire batch.

A Connext DDS Micro DataReader can receive both batched and non-batched samples.

For a more detailed explanation, please refer to the BATCH QosPolicy section in the RTI Connext
DDS Core Libraries User’s Manual (available here if you have Internet access).

4.11.2 Interoperability
RTI Connext DDS Professional supports both sending and receiving batches, whereas RTI Connext
DDS Micro supports only receiving batches. Thus, this feature primarily exists in Connext DDS
Micro to interoperate with RTI Connext DDS applications that have enabled batching. An Connext
DDS Micro DataReader can receive both batched and non-batched samples.

4.11.3 Performance
The purpose of batching is to increase throughput when writing small DDS samples at a high rate.
In such cases, throughput can be increased several-fold, approaching much more closely the physical
limitations of the underlying network transport.

However, collecting DDS samples into a batch implies that they are not sent on the network
immediately when the application writes them; this can potentially increase latency. But, if the
application sends data faster than the network can support, an increased proportion of the network’s
available bandwidth will be spent on acknowledgements and DDS sample resends. In this case,
reducing that overhead by turning on batching could decrease latency while increasing throughput.

4.11.4 Example Configuration
This section includes several examples that explain how to enable batching in RTI Connext DDS
Professional. For more detailed and advanced configuration, please refer to the RTI Connext DDS
Core Libraries User’s Manual.

• This configuration ensures that a batch will be sent with a maximum of 10 samples:

<datawriter_qos>
<publication_name>

<name>HelloWorldDataWriter</name>
</publication_name>
<batch>

<enable>true</enable>
(continues on next page)

4.11. Batching 133

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/BATCH_Qos.htm

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
<max_samples>10</max_samples>

</batch>
</datawriter_qos>

• This configuration ensures that a batch is automatically flushed after the delay specified by
max_flush_delay. The delay is measured from the time the first sample in the batch is
written by the application:

<datawriter_qos>
<publication_name>

<name>HelloWorldDataWriter</name>
</publication_name>
<batch>

<enable>true</enable>
<max_flush_delay>

<sec>1</sec>
<nanosec>0</nanosec>

</max_flush_delay>
</batch>

</datawriter_qos>

• The following configuration ensures that a batch is flushed automatically when
max_data_bytes is reached (in this example 8192).

<datawriter_qos>
<publication_name>

<name>HelloWorldDataWriter</name>
</publication_name>
<batch>

<enable>true</enable>
<max_data_bytes>8192</max_data_bytes>

</batch>
</datawriter_qos>

Note that max_data_bytes does not include the metadata associated with the batch samples.

Batches must contain whole samples. If a new batch is started and its initial sample causes the
serialized size to exceed max_data_bytes, RTI Connext DDS Professional will send the sample in
a single batch.

4.12 Sending Large Data
Connext DDS Micro supports transmission and reception of data types that exceed the maximum
message size of a transport. This section describes the behavior and the configuration options.

This section includes:

• Overview

• Configuration of Large Data

• Limitations

4.12. Sending Large Data 134

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.12.1 Overview
Connext DDS Micro supports transmission and reception of data samples that exceed the maximum
message size of a transport. For example, UDP supports a maximum user payload of 65507 bytes.
In order to send samples larger than 65507 bytes, Connext DDS Micro must split the sample into
multiple UDP payloads.

When a sample larger than the transport size is sent, Connext DDS Micro splits the sample into
fragmants and starts sending fragments based based on a flow-control algorithm. A bandwidth
allocation parameters on the DataWriter and the scheduling rate determined how frequent and
how much data can be sent each period.

When a sample is received in multiple fragments, the receiver reassmbles the each fragment into a
complete serialized sample. The serialized data is then de-serialized and made available to the user
as regular data.

When working with large data, it is important to keep the following in mind:

• Fragmentation is always enabled.

• Fragmentation is per DataWriter.

• Flow-control is per DataWriter. It is important to keep this in mind since in |rti_core_pro|
the flow-controller works accross all *DataWriters in the same publisher.

• Fragmentation is on a per sample basis. That is, two samples of the same type may lead
to fragmentation of one sample, but not the other. The application is never exposed to
fragments.

• It is the DataWriters that determines the fragmentation size, and different DataWriters can
use different fragmentation sizes for the same type.

• All fragments must be received before a sample can be re-constructed. When using best-effort,
if a fragment is lost, the entire sample is lost. When using reliability, a fragment that is not
received may be resent. If a fragment is no longer available, the entire sample is dropped.

• If one of the DDS write() APIs are called too fast when writing large samples, Connext DDS
Micro may run out of resources. This is because sample may take a long time to send, and
resources are not freed until the complete sample has been sent.

It is important to distinguish between the following concepts:

• Fragmentation by Connext DDS Micro

• Fragmentation by an underlying transport, e.g. IP fragmentation when UDP datagrams
exceeds about 1488 bytes.

• The maximum transmit message size of the sender. This is the maximum size of any payload
going over the transport.

• The maximum transport transmit buffer size of the sender. This is the maximum number of
bytes that can be stored by the transport.

• The maximum receive message size of a receiver. This is the maximum size of a single payload
on a transport.

4.12. Sending Large Data 135

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• The maximum receive buffer size of a receiver. This is the maximum number of bytes which
can be received.

4.12.2 Configuration of Large Data
For a general overview of writing large data, please refer to these sections in the RTI Connext DDS
Core Libraries User’s Manual:

• the ASYNCHRONOUS_PUBLISHER QoSPolicy section (available here if you have Internet
access)

• the FlowControllers section (available here if you have Internet access)

NOTE: Connext DDS Micro only supports the default FlowController.

Asynchronous publishing is handled by a separate thread that runs at a fixed rate. The rate and
properties of this thread can be adjusted in the OSAPI_SystemProperty and the following fields
before DomainParticipantFactory_get_instance() is called.

struct OSAPI_SystemProperty sys_property = OSAPI_SystemProperty_INITIALIZER;
DDS_DomainParticipantFactory *factory = NULL;

if (!OSAPI_System_get_property(&sys_property))
{

/* error */
}

sys_property.task_scheduler.thread.stack_size =
sys_property.task_scheduler.thread.options =
sys_property.task_scheduler.thread.priority =
sys_property.task_scheduler.rate = rate in nanosec;

if (!OSAPI_System_set_property(&sys_property))
{

/* error */
}

factory = DDS_DomainParticipantFactory_get_instance();

....

4.12.3 Limitations
The following are known limitations and issues with Large Data support:

• It is not possible to disable fragmentation support.

• The scheduler thread accuracy is based on the operating system.

4.13 Zero Copy Transfer Over Shared Memory
This section is organized as follows:

• Overview

4.13. Zero Copy Transfer Over Shared Memory 136

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/ASYNCHRONOUS_PUBL_Qos.htm
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/FlowControllers__DDS_Extension_.htm
../../api_c/html/group__DDSDomainParticipantFactoryModule.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• Getting Started

• Synchronization of Zero Copy Samples

• Caveats

• Further Information

4.13.1 Overview
Zero Copy transfer over shared memory allows large samples to be transmitted with a minimum
number of copies. These samples reside in a shared memory region accessible from multiple pro-
cesses. When creating a FooDataWriter that supports Zero Copy Transfer of user samples, a sample
must be created with a new non-DDS API (FooDataWriter_get_loan(…)). This will return a
pointer A* to a sample Foo that lies inside a shared memory segment. A reference to this sample
will be sent to a receiving FooDataReader across the shared memory. This FooDataReader will
attach to a shared memory segment and a pointer B* to sample Foo will be presented to the user.
Because the two processes shared different memory spaces, A* and B* will be different but they
will point to the same place in RAM.

This feature requires the usage of new RTI DDS Extension APIs:

• FooDataWriter_get_loan()

• FooDataWriter_discard_loan()

• FooDataReader_is_data_consistent()

For detailed information, see the C API Reference and C++ API Reference.

4.13.2 Getting Started
To enable Zero Copy transfer over shared memory, follow these steps:

1. Annotate your type with the @transfer_mode(SHMEM_REF) annotation. Currently,
variable-length types (strings and sequences) are not supported for types using this transfer
mode when the language binding is INBAND.

@transfer_mode(SHMEM_REF)
struct HelloWorld {

long id;
char raw_image_data[1024 * 1024]; // 1 MB

};

2. Register the Shared Memory Transport (see Registering the SHMEM Transport). References
will be sent across the shared memory transport.

3. Create a FooDataWriter for the above type.

4. Get a loan on a sample using FooDataWriter_get_loan().

5. Write a sample using FooDataWriter_write().

For more information, see the example HelloWorld_zero_copy, or generate an example for a type
annotated with @transfer_mode(SHMEM_REF):

4.13. Zero Copy Transfer Over Shared Memory 137

../../api_c/html/structFooDataWriter.html
../../api_c/html/structFooDataReader.html
../../api_c/html/structFooDataReader.html
../../api_c/html/index.html
../../api_cpp/html/index.html
../../api_c/html/structFooDataWriter.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

rtiddsgen -example -micro -language C HelloWorld.idl

Writer Side

Best practice for writing samples annotated with @transfer_mode(SHMEM_REF):

for (int i = 0; i < 10; i++)
{

Foo* sample;
DDS_ReturnCode_t dds_rc;
/* NEW API

IMPORTANT - call get_loan each time when writing a NEW sample
*/
dds_rc = FooDataWriter_get_loan(hw_datawriter, &sample);

if (dds_rc != DDS_RETCODE_OK)
{

printf("Failed to get a loan\n");
return -1;

}

/* After this function returns with DDS_RETCODE_OK,
* the middleware owns the sample
*/
dds_rc = FooDataWriter_write(hw_datawriter, sample, &DDS_HANDLE_NIL);

}

Reader Side

DDS_ReturnCode_t dds_rc;
dds_rc = FooDataReader_take(...)

/* process sample here */

dds_rc = FooDataReader_is_data_consistent(hw_reader,
&is_data_consistent,
sample,sample_info);

if (dds_rc == DDS_RETCODE_OK)
{

if (is_data_consistent)
{

/* Sample is consistent. Processing of sample is valid */
}
else
{

/* Sample is NOT consistent. Any processing of the sample should
* be discarded and considered invalid.
*/

}
}

4.13. Zero Copy Transfer Over Shared Memory 138

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.13.3 Synchronization of Zero Copy Samples
There is NO synchronization of a zero copy sample between a sender (DataWriter) and receiver
(DataReader) application. It is possible for a sample’s content to be invalidated before the receiver
application actually has had a chance to read it.

To illustrate this scenario, consider creating the case of creating a Best-effort DataWriter with
max_samples of X=1. When the DataWriter is created the middleware will pre-allocate a pool
of X+1 (2) samples residing in a shared memory region. This pool will be used to loan samples
when calling FooDataWriter_get_loan(…) ,

DDS_ReturnCode_t ddsrc;
Foo* sample;

ddsrc = FooDataWriter_get_loan(dw, &sample); /* returns pointer to sample 1 */
sample->value = 10000;
ddsrc = FooDataWriter_write(datawriter, sample, &DDS_HANDLE_NIL);
/*
* Because the datawriter is using best effort, the middleware immediately
* makes this sample available to be returned by another FooDataWriter_get_loan(...
*/

ddsrc = FooDataWriter_get_loan(dw, &sample); /* returns pointer to sample 2 */
sample->value = 20000;
ddsrc = FooDataWriter_write(datawriter, sample, &DDS_HANDLE_NIL);
/*
* Because the datawriter is using best effort, the middleware immediately
* makes this sample available to be returned by another FooDataWriter_get_loan(...
*/

/*
* At this point, it is possible the sample has been received by the receiving␣

↪→application
* but has not been presented yet to the user.
*/

ddsrc = FooDataWriter_get_loan(dw, &sample); /* returns pointer to sample 1 */
/* sample->value will contain the integer 10000 because we are re-using samples
* from a list that contains only 2 buffers.
*
* Also, at this point in time a referemce to sample 1 and 2 may have already been␣

↪→received
* by the middleware on the DataReader side and are lying inside a DataReader's internal␣

↪→cache.
* However, the sample may not have been received by the
* application. If at this point the sample's value (sample->value) was changed to 999,
* the sample returned from the Subscribers
* read(...) or take(...) would contain unexpected values (999 instead of 10000). This␣

↪→is because
* both the Publisher and the Subscriber process have mapped into their virtual
* address space the same shared memory region where the sample lies.
*
* Use **FooDataReader_is_data_consistent** to verify the consistency, to prevent this

(continues on next page)

4.13. Zero Copy Transfer Over Shared Memory 139

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
* scenario.
*
* Note, a sample is actually invalidated right after the completion
* of FooDataWriter_get_loan(dw, &sample). If the address of the newly created sample␣

↪→has been
* previously written and its contents has not been read by the receiver application,
* then the previously written sample has been invalidated.
*/

ddsrc = FooDataWriter_write(datawriter, sample, &DDS_HANDLE_NIL);

4.13.4 Caveats
• After you call FooDataWriter_write(), the middleware takes ownership of the sample.

It is no longer safe to make any changes to the sample that was written. If, for whatever
reason, you call FooDataWriter_get_loan() but never write the sample, you must call
FooDataWriter_discard_loan() to return the sample back to FooDataWriter. Other-
wise, subsequent FooDataWriter_get_loan may fail, because the FooDataWriter has no
samples to loan.

• The current maximum supported sample size is a little under the maximum value of a signed
32-bit integer. For that reason, do not use any samples greater than 2000000000 bytes.

4.13.5 Further Information
For more information, see the section on Zero Copy Transfer Over Shared Memory in the RTI
Connext DDS Core Libraries User’s Manual (available here if you have Internet access).

4.14 FlatData Language Binding
This section is organized as follows:

• Overview

• Getting Started

• Further Information

4.14.1 Overview

RTI Connext DDS Micro supports the FlatDataTM language binding in the same manner as RTI
Connext DDS. However, Connext DDS Micro only supports the FlatData language binding for
traditional C++ APIs, whereas RTI Connext DDS also supports it for the Modern C++ API. The
FlatData language binding is not supported for the C language binding.

4.14.2 Getting Started
The best way to start is to generate an example by creating an example IDL file HelloWorld.idl
containing the following IDL type:

4.14. FlatData Language Binding 140

../../api_c/html/structFooDataWriter.html
../../api_c/html/structFooDataWriter.html
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/SendingLDZeroCopy.htm

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

@final
@language_binding(FLAT_DATA)
struct HelloWorld
{

long a;
}

Next, run:

rtiddsgen -example -micro -language C++ HelloWorld.idl

4.14.3 Further Information
For more details about this feature, please see the FlatData Language Binding section in the RTI
Connext DDS Core Libraries User’s Manual (available here if you have Internet access).

For details on how to build and read a FlatData sample, see FlatData.

4.15 Security SDK

4.15.1 Introduction
RTI Security Plugins introduce a robust set of security capabilities, including authentication, en-
cryption, access control and logging. Secure multicast support enables efficient and scalable dis-
tribution of data to many subscribers. Performance is also optimized by fine-grained control over
the level of security applied to each data flow, such as whether encryption or just data integrity is
required.

The RTI Connext DDS Micro Security SDK includes a set of builtin plugins that implement the
Service Plugin Interface defined by the DDS Security specification.

RTI Security Plugins is a separate package, available from the RTI Support Portal, https://support.
rti.com/.

It is also possible to implement new custom plugins by using the Security Plugins SDK bundle (for
more information, please contact support@rti.com). See the RTI Security Plugins Release Notes
and RTI Security Plugins Getting Started Guide on the RTI Documentation page.

4.15.2 Installation
Please refer to the Installation section for how to install the RTI Connext DDS Micro Security
SDK.

4.15.3 Examples
For descriptions and examples of the security configuration in this release, please consult the Hel-
loWorld_dpde_secure examples under the example/[unix, windows]/[C, CPP] directory. RTI Con-
next DDS Micro Security SDK supports both the C and C++ programming languages.

To use the RTI Connext DDS Micro Security SDK, you will need to create private keys, identity cer-
tificates, governance, and permission files, as well as signed versions for use in secure authenticated,
authorized, and/or encrypted communications.

4.15. Security SDK 141

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/SendingLDFlatData.htm
../../api_cpp/html/group__RTIFlatDataModule.html
https://support.rti.com/
https://support.rti.com/
mailto:support@rti.com
https://community.rti.com/documentation

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.15.4 Enabling RTI Security Plugins
To enable the RTI Security Plugins, the name of a “plugin suite” (i.e. the collection of security
plugins defined by DDS Security) must be specified in a DomainParticipant’s QoS. Plugin factories
for this suite must also be registered with the RT_Registry before the DomainParticipant is created.

When using RTI Connext DDS Micro’s C API, this can be achieved with the following code:

RTI_BOOL result = RTI_FALSE;
struct DDS_DomainParticipantQos dp_qos = DDS_DomainParticipantQos_INITIALIZER;
struct SECCORE_SecurePluginFactoryProperty sec_plugin_prop = SECCORE_
↪→SecurePluginFactoryProperty_INITIALIZER;
DDS_DomainParticipantFactory *factory = DDS_DomainParticipantFactory_get_instance();
RT_Registry_T *registry = DDS_DomainParticipantFactory_get_registry(factory);

/* Register factories for built-in security plugins, using default
* properties and default name */
if (!SECCORE_SecurePluginFactory_register(

registry,SECCORE_DEFAULT_SUITE_NAME,&sec_plugin_prop))
{

printf("failed to register security plugins\n");
goto done;

}

/* In order to enable security, the name used to register the suite of
* plugins must be set in DomainParticipantQos */
if (!RT_ComponentFactoryId_set_name(

&dp_qos->trust.suite, SECCORE_DEFAULT_SUITE_NAME))
{

printf("failed to set component id\n");
goto done;

}

result = RTI_TRUE;

done:

return result;

For users of RTI Connext DDS Micro’s C++ API, the suite can be registered using the following
code:

RTI_BOOL result = RTI_FALSE;
DDS_DomainParticipantQos dp_qos;
SECCORE_SecurePluginFactoryProperty sec_plugin_prop;
DDSDomainParticipantFactory *factory = DDSDomainParticipantFactory::get_instance();
RTRegistry_T *registry = factory->get_registry();

/* Register factories for built-in security plugins, using default
* properties and default name */
if (!SECCORE_SecurePluginFactory::register_suite(

registry,SECCORE_DEFAULT_SUITE_NAME,sec_plugin_prop))
{

(continues on next page)

4.15. Security SDK 142

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
printf("failed to register security plugins\n");
goto done;

}

/* In order to enable security, the name used to register the suite of
* plugins must be set in DomainParticipantQos */
if (!dp_qos.trust.suite.set_name(SECCORE_DEFAULT_SUITE_NAME))
{

printf("failed to set component id\n");
goto done;

}

result = RTI_TRUE;

done:

return result;

Additional properties can be controlled using (key,value) pairs in a DomainParticipant’s
DDS_PropertyQosPolicy.

Configuration keys (and corresponding valid values) supported by each security plugin are listed
by each plugin’s section in this manual.

In RTI Connext DDS Micro, you must set the security-related participant properties before you
create a participant. You cannot create a participant without security and then call DomainPar-
ticipant::set_qos() with security properties, even if the participant has not yet been enabled.

4.16 Building Against FACE Conformance Libraries

This section describes how to build Connext DDS Micro using the FACETM conformance test tools.

4.16.1 Requirements

Connext DDS Micro Source Code

The Connext DDS Micro source code is available from RTI’s Support portal.

FACE Conformance Tools

RTI does not distribute the FACE conformance tools.

CMake

The Connext DDS Micro source is distributed with a CMakeList.txt project file. CMake is an
easy to use tool that generates makefiles or project files for various build-tools, such has UNIX
makefiles, Microsoft® Visual Studio® project files, and Xcode.

CMake can be downloaded from https://www.cmake.org.

4.16. Building Against FACE Conformance Libraries 143

http://support.rti.com
https://www.cmake.org

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.16.2 FACE Golden Libraries
The FACE conformance tools use a set of golden libraries. There are different golden libraries
for different FACE services, languages and profiles. Connext DDS Micro only conforms to the
safetyExt and safety profile of OSS using the C language.

Building the FACE Golden Libraries

The FACE conformance tools ship with their own set of tools to build the golden libraries. Please
follow the instructions provided by FACE. In order to build the FACE golden libraries, it is necessary
to port to the required platform. RTI has only tested Connext DDS Micro on Linux 2.6 systems
with GCC 4.4.5. The complete list of files modified by RTI are included below in source form.

4.16.3 Building the Connext DDS Micro Source
The following instructions show how to built the Connext DDS Micro source:

• Extract the source-code. Please note that the remaining instructions assume that only a
single platform is built from the source.

• In the top-level source directory, enter the following:

shell> cmake-gui .

This will start the CMake GUI where all build configuration takes place.

• Click the “Configure” button.

• Select UNIX Makefiles from the drop-down list.

• Select “Use default compilers” or “Specify native compilers” as required. Press “Done.”

• Click “Configure” again. There should not be any red lines. If there are, click “Configure”
again.

NOTE: A red line means that a variable has not been configured. Some options could add new
variables. Thus, if you change an option a new red lines may appear. In this case configure
the variable and press “Configure.”

• Expand the CMAKE and RTIMICRO options and configure how to build Connext DDS
Micro:

CMAKE_BUILD_TYPE: Debug or blank. If Debug is used, the |me| debug
libraries are built.

RTIMICRO_BUILD_API: C or C++
C - Include the C API. For FACE, only C is supported.
C++ - Include the C++ API.

RTIMICRO_BUILD_DISCOVERY_MODULE: Dynamic | Static | Both
Dynamic - Include the dynamic discovery module.
Static - Include the static discovery module.
Both - Include both discovery modules.

(continues on next page)

4.16. Building Against FACE Conformance Libraries 144

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
RTIMICRO_BUILD_LIBRARY_BUILD:

Single - Build a single library.
RTI style - Build the same libraries RTI normally ships. This is useful

if RTI libraries are already being used and you want to use
the libraries built from source.

RTIMICRO_BUILD_LIBRARY_TYPE:
Static - Build static libraries.
Shared - Build shared libraries.

RTIMICRO_BUILD_LIBRARY_PLATFORM_MODULE: POSIX

RTIMICRO_BUILD_LIBRARY_TARGET_NAME: <target name>
Enter a string as the name of the target. This is also used as the
name of the directory where the built libraries are placed.
If you are building libraries to replace the libraries shipped by RTI,
you can use the RTI target name here. It is then possible to set
RTIMEHOME to the source tree (if RTI style is selected for
RTIMICRO_BUILD_LIBRARY_BUILD).

RTIMICRO_BUILD_ENABLE_FACE_COMPLIANCE: Select level of FACE compliance
None - No compliance required
General - Build for compliance with the FACE general profile
Safety Extended - Build for compliance with the FACE safety extended profile
Safety - Build for compliance with the FACE safety profile

RTIMICRO_BUILD_LINK_FACE_GOLDEBLIBS:
Check if linking against the static FACE conformance test libraries.
NOTE: This check-box is only available if FACE compliance is different
from "None".

RTIMICRO_BUILD_LINK_FACE_GOLDEBLIBS:
If the RTIMICRO_BUILD_LINK_FACE_GOLDEBLIBS is checked the path to the
top-level FACE root must be specified here.

• Click “Configure”.

• Click “Generate”.

• Build the generated project.

• Libraries are placed in lib/<RTIMICRO_BUILD_LIBRARY_TAR-
GET_NAME>.

4.17 Working With Sequences

4.17.1 Introduction
RTI Connext DDS Micro uses IDL as the language to define data-types. One of the constructs
in IDL is the sequence: a variable-length vector where each element is of the same type. This
section describes how to work with sequences; in particular, the string sequence since it has special
properties.

4.17. Working With Sequences 145

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.17.2 Working with Sequences

Overview

Logically a sequence can be viewed as a variable-length vector with N elements, as illustrated below.
Note that sequences indices are 0 based.

+---+
0 | T |

+---+
1 | T |

+---+
2 | T |

+---+
|
|

+---+
N-1 | T |

+---+

There are three types of sequences in Connext DDS Micro:

• Builtin sequences of primitive IDL types.

• Sequences defined in IDL using the sequence keyword.

• Sequences defined by the application.

The following builtin sequences exist (please refer to C API Reference and C++ API Reference for
the complete API).

IDL Type Connext DDS Micro Type Connext DDS Micro Sequence
octet DDS_Octet DDS_OctetSeq
char DDS_Char DDS_CharSeq
boolean DDS_Boolean DDS_BooleanSeq
short DDS_Short DDS_ShortSeq
unsigned short DDS_UnsignedShort DDS_UnsignedShortSeq
long DDS_Long DDS_LongSeq
unsigned long DDS_UnsignedLong DDS_UnsignedLongSeq
enum DDS_Enum DDS_EnumSeq
wchar DDS_Wchar DDS_WcharSeq
long long DDS_LongLong DDS_LongLongSeq
unsigned long long DDS_UnsignedLongLong DDS_UnsignedLongLongSeq
float DDS_Float DDS_FloatSeq
double DDS_Double DDS_DoubleSeq
long double DDS_LongDouble DDS_LongDoubleSeq
string DDS_String DDS_StringSeq
wstring DDS_Wstring DDS_WstringSeq

The following are important properties of sequences to remember:

• All sequences in Connext DDS Micro must be finite.

4.17. Working With Sequences 146

../../api_c/html/index.html
../../api_cpp/html/index.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• All sequences defined in IDL are sized based on IDL properties and must not be resized. That
is, never call set_maximum() on a sequence defined in IDL. This is particularly important
for string sequences.

• Application defined sequences can be resized using set_maximum() or ensure_length().

• There are two ways to use a DDS_StringSeq (they are type-compatible):

– A DDS_StringSeq originating from IDL. This sequence is sized based on maximum
sequence length and maximum string length.

– A DDS_StringSeq originating from an application. In this case the sequence element
memory is unmanaged.

• All sequences have an initial length of 0.

Working with IDL Sequences

Sequences that originate from IDL are created when the IDL type they belong to is created. IDL
sequences are always initialized with the maximum size specified in the IDL file. The maximum
size of a type, and hence the sequence size, is used to calculate memory needs for serialization and
deserialization buffers. Thus, changing the size of an IDL sequence can lead to hard to find memory
corruption.

The string and wstring sequences are special in that not only is the maximum sequence size allo-
cated, but because strings are also always of a finite maximum length, the maximum space needed
for each string element is also allocated. This ensure that Connext DDS Micro can prevent memory
overruns and validate input.

Some typical scenarios with a long sequence and a string sequence defined in IDL is shown below:

/* In IDL */
struct SomeIdlType
{

// A sequence of 20 longs
sequence<long,20> long_seq;

// A sequence of 10 strings, each string has a maximum length of 255 bytes
// (excluding NUL)
sequence<string<255>,10> string_seq;

}

/* In C source */
SomeIdlType *my_sample = SomeIdlTypeTypeSupport_create_data()

DDS_LongSet_set_length(&my_sample->long_seq,5);
DDS_StringSeq_set_length(&my_sample->string_seq,5);

/* Assign the first 5 longs in long_seq */
for (i = 0; i < 5; ++i)
{

*DDS_LongSeq_get_reference(&my_sample->long_seq,i) = i;
snprintf(*DDS_StringSeq_get_reference(&my_sample->string_seq,0),255,"SomeString %d",

↪→i);
(continues on next page)

4.17. Working With Sequences 147

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

(continued from previous page)
}

SomeIdlTypeTypeSupport_delete_data(my_sample);

/* In C++ source */
SomeIdlType *my_sample = SomeIdlTypeTypeSupport::create_data()

/* Assign the first 5 longs in long_seq */

my_sample->long_seq.length(5);
my_sample->string_seq.length(5);

for (i = 0; i < 5; ++i)
{

/* use method */
*DDSLongSeq_get_reference(&my_sample->long_seq,i) = i;
snprintf(*DDSStringSeq_get_reference(&my_sample->string_seq,i),255,"SomeString %d",

↪→i);

/* or assignment */
my_sample->long_seq[i] = i;
snprintf(my_sample->string_seq[i],255,"SomeString %d",i);

}

SomeIdlTypeTypeSupport::delete_data(my_sample);

Note that in the example above the sequence length is set. The maximum size for each sequence is
set when my_sample is allocated.

A special case is to copy a string sequence from a sample to a string sequence defined outside of the
sample. This is possible, but care must be taken to ensure that the memory is allocated properly:

Consider the IDL type from the previous example. A string sequence of equal size can be allocated
as follows:

struct DDS_StringSeq app_seq = DDS_SEQUUENCE_INITIALIZER;

/* This ensures that memory for the strings are allocated upfront */
DDS_StringSeq_set_maximum_w_max(&app_seq,10,255);

DDS_StringSeq_copy(&app_seq,&my_sample->string_seq);

If instead the following code was used, memory for the string in app_seq would be allocated as
needed.

struct DDS_StringSeq app_seq = DDS_SEQUUENCE_INITIALIZER;

/* This ensures that memory for the strings are allocated upfront */
DDS_StringSeq_set_maximum(&app_seq,10);

DDS_StringSeq_copy(&app_seq,&my_sample->string_seq);

4.17. Working With Sequences 148

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Working with Application Defined Sequences

Application defined sequences work in the same way as sequences defined in IDL with two excep-
tions:

• The maximum size is 0 by default. It is necessary to call set_maximum or ensure_length
to allocate space.

• DDS_StringSet_set_maximum does not allocate space for the string pointers. The
memory must be allocated on a per needed basis and calls to _copy may reallocate memory
as needed. Use DDS_StringSeq_set_maximum_w_max or DDS_StringSeq_en-
sure_length_w_max to also allocate pointers. In this case _copy will not reallocate
memory.

Note that it is not allowed to mix the use of calls that pass the max (ends in _w_max) and
calls that do not. Doing so may cause memory leaks and/or memory corruption.

struct DDS_StringSeq my_seq = DDS_SEQUENCE_INITIALIZER;

DDS_StringSeq_ensure_length(&my_seq,10,20);

for (i = 0; i < 10; i++)
{

*DDS_StringSeq_get_reference(&my_seq,i) = DDS_String_dup("test");
}

DDS_StringSeq_finalize(&my_seq);

DDS_StringSeq_finalize automatically frees memory pointed to by each element using
DDS_String_free. All memory allocated to a string element should be allocated using a
DDS_String function.

It is possible to assign any memory to a string sequence element if all elements are released manually
first:

struct DDS_StringSeq my_seq = DDS_SEQUENCE_INITIALIZER;

DDS_StringSeq_ensure_length(&my_seq,10,20);

for (i = 0; i < 10; i++)
{

*DDS_StringSeq_get_reference(&my_seq,i) = static_string[i];
}

/* Work with the sequence */

for (i = 0; i < 10; i++)
{

*DDS_StringSeq_get_reference(&my_seq,i) = NULL;
}

DDS_StringSeq_finalize(&my_seq);

4.17. Working With Sequences 149

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.18 Debugging

4.18.1 Overview
Connext DDS Micro maintains a log of events occuring in a Connext DDS Micro application.
Information on each event is formatted into a log entry. Each entry can be stored in a buffer,
stringified into a displayable log message, and/or redirected to a user-defined log handler.

4.18.2 Configuring Logging
By default, Connext DDS Micro sets the log verbosity to Error. It can be changed at any time by
calling OSAPI_Log_set_verbosity() using the desired verbosity as a parameter.

Note that when compiling with RTI_CERT defined, logging is completely removed.

The Connext DDS Micro log stores new log entries in a log buffer.

The default buffer size is different for Debug and Release libraries. The Debug libraries are con-
figured to use a much larger buffer than the Release ones. A custom buffer size can be configured
using the OSAPI_Log_set_property() function. For example, to set a buffer size of 128 bytes:

struct OSAPI_LogProperty prop = OSAPI_LogProperty_INIITALIZER;

OSAPI_Log_get_property(&prop);
prop.max_buffer_size = 128;
OSAPI_Log_set_property(&prop);

Note that if the buffer size is too small, log entries will be truncated in order to fit in the available
buffer.

The function used to write the logs can be set during compilation by defining the macro OS-
API_LOG_WRITE_BUFFER. This macro shall have the same parameters as the function pro-
totype OSAPI_Log_write_buffer_T.

It is also possible to set this function during runtime by using the function OS-
API_Log_set_property():

struct OSAPI_LogProperty prop = OSAPI_LogProperty_INIITALIZER;

OSAPI_Log_get_property(&prop);
prop.write_buffer = <pointer to user defined write function>;
OSAPI_Log_set_property(&prop);

A user can install a log handler function to process each new log entry. The handler must conform
to the definition OSAPI_LogHandler_T, and it is set by OSAPI_Log_set_log_handler().

When called, the handler has parameters containing the raw log entry and detailed log information
(e.g., error code, module, file and function names, line number).

The log handler is called for every new log entry, even when the log buffer is full. An expected use
case is redirecting log entries to another logger, such as one native to a particular platform.

4.18. Debugging 150

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

4.18.3 Log Message Kinds
Each log entry is classified as one of the following kinds:

• Error. An unexpected event with negative functional impact.

• Warning. An event that may not have negative functional impact but could indicate an
unexpected situation.

• Information. An event logged for informative purposes.

By default, the log verbosity is set to Error, so only error logs will be visible. To change the log
verbosity, simply call the function OSAPI_Log_set_verbosity() with the desired verbosity
level.

4.18.4 Interpreting Log Messages and Error Codes
A log entry in Connext DDS Micro has a defined format.

Each entry contains a header with the following information:

• Length. The length of the log message, in bytes.

• Module ID. A numerical ID of the module from which the message was logged.

• Error Code. A numerical ID for the log message. It is unique within a module.

Though referred to as an “error” code, it exists for all log kinds (error, warning, info).

The module ID and error code together uniquely identify a log message within Connext DDS Micro.

Connext DDS Micro can be configured to provide additional details per log message:

• Line Number. The line number of the source file from which the message is logged.

• Module Name. The name of the module from which the message is logged.

• Function Name. The name of the function from which the message is logged.

When an event is logged, by default it is printed as a message to standard output. An example
error entry looks like this:

[943921909.645099999]ERROR: ModuleID=7 Errcode=200 X=1 E=0 T=1
dds_c/DomainFactory.c:163/DDS_DomainParticipantFactory_get_instance: kind=19

• X Extended debug information is present, such as file and line number.

• E Exception, the log message has been truncated.

• T The log message has a valid timestamp (successful call to OSAPI_System_get_time()).

A log message will need to be interpreted by the user when an error or warning has occurred and its
cause needs to be determined, or the user has set a log handler and is processing each log message
based on its contents.

A description of an error code printed in a log message can be determined by following these steps:

• Navigate to the module that corresponds to the Module ID, or the printed module name in
the second line. In the above example, “ModuleID=7” corresponds to DDS.

4.18. Debugging 151

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• Search for the error code to find it in the list of the module’s error codes. In the example
above, with “Errcode=200,” search for “200” to find the log message that has the value
“(DDSC_LOG_BASE + 200)”.

4.18. Debugging 152

Chapter 5

Building and Porting

5.1 Building the Connext DDS Micro Source

5.1.1 Introduction
RTI Connext DDS Micro has been engineered for reasonable portability to common platforms
and environments, such as Darwin, iOS, Linux, and Windows. This document explains how to
build the Connext DDS Micro source-code. The focus of this document is building Connext DDS
Micro for an architecture supported by RTI. Please refer to Porting RTI Connext DDS Micro for
documentation on how to port Connext DDS Micro to an unsupported architecture.

This manual is written for developers and engineers with a background in software development.
It is recommended to read the document in order, as one section may refer to or assume knowledge
about concepts described in a preceding section.

5.1.2 The Host and Target Environment
The following terminology is used to refer to the environment in which Connext DDS Micro is built
and run:

• The host is the machine that runs the software to compile and link Connext DDS Micro.

• The target is the machine that runs Connext DDS Micro.

• In many cases Connext DDS Micro is built and run on the same machine. This is referred to
as a self-hosted environment.

The environment is the collection of tools, OS, compiler, linker, hardware etc. needed to build and
run applications.

The word must describes a requirement that must be met. Failure to meet a must requirement
may result in failure to compile, use or run Connext DDS Micro.

The word should describes a requirement that is strongly recommended to be met. A failure to
meet a should recommendation may require modification to how Connext DDS Micro is built, used,
or run.

The word may is used to describe an optional feature.

153

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

The Host Environment

RTI Connext DDS Micro has been designed to be easy to build and to require few tools on the
host.

The host machine must:

• support long filenames (8.3 will not work). Connext DDS Micro does not require a case
sensitive file-system.

• have the necessary compiler, linkers, and build-tools installed.

The host machine should:

• have CMake (www.cmake.org) installed. Note that it is not required to use CMake to build
Connext DDS Micro, and in some cases it may also not be recommended. As a rule of thumb,
if RTI Connext DDS Micro can be built from the command-line, CMake is recommended.

• be able to run bash shell scripts (Unix type systems) or BAT scripts (Windows machines).

Typical examples of host machines are:

• a Linux PC with the GNU tools installed (make, gcc, g++, etc).

• a Mac computer with Xcode and the command-line tools installed.

• a Windows computer with Microsoft Visual Studio Express edition.

• a Linux, Mac or Windows computer with an embedded development tool-suite.

The Target Environment

Connext DDS Micro has been designed to run on a wide variety of targets. For example, Connext
DDS Micro can be ported to run with no OS, an RTOS, GNU libc or a non-standard C library
etc. This section only lists the minimum requirements. Please refer to Porting RTI Connext DDS
Micro for how to port Connext DDS Micro.

The target machine must:

• support 8, 16, and 32-bit signed and unsigned integer. Note that a 16 bit CPU (or even 8
bit) is supported as long as the listed types are supported.

Connext DDS Micro supports 64 bit CPUs, and it does not use any native 64 bit quantities
internally.

The target compiler should:

• have a C compiler that is C99 compliant. Note that many non-standard compilers work, but
may require additional configuration.

• have a C++ compiler that is C++98 compliant.

The remainder of this manual assumes that the target environment is one supported by RTI:

• POSIX (Linux, Darwin, QNX®, VOS, iOS, Android).

• VxWorks 6.9 or later.

• Windows.

5.1. Building the Connext DDS Micro Source 154

https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• QNX.

5.1.3 Overview of the Connext DDS Micro Source Bundle
The Connext DDS Micro source is available from the RTI support portal. If you do not have access,
please contact RTI Support. The source-code is exactly the same as developed and tested by RTI.
No filtering or modifications are performed, except for line-ending conversion for the Windows
source bundle.

The source-bundle is in a directory called src/ under your Connext DDS Micro installation.

RTIMEHOME--+-- CmakeLists.txt
|
+-- build -- cmake --+-- Debug --+-- <ARCH> -- <project-files>
| |
| |
| +-- Release --+-- <ARCH> -- <project-files>
+-- doc --
|
+-- example
|
+-- include
|
+-- lib +-- <ARCH> -- <libraries>
|
+-- resource --+-- cmake
| |
| +-- scripts
|
+-- rtiddsgen
|
+-- rtiddsmag
|
+-- src

In this document, RTIMEHOME refers to the root directory where RTI archives are extracted and
installed. The only difference between the UNIX and Windows source bundles is the line endings.

For the remainder of this document RTIMEROOT refers to both source/unix and source/windows.
Only when necessary will it be pointed out whether it is the Windows or UNIX source that it is
being referred to.

Directory Structure

The recommended directory structure is described below and should be used (1) because:

• the source bundle includes a helper script to run CMake that expects this directory structure.

• this directory structure supports multiple architectures.

• this directory structure mirrors the structure shipped by RTI. To link against built libraries
instead of those shipped by RTI, set RTIMEHOME to RTIMEROOT (2).

5.1. Building the Connext DDS Micro Source 155

http://support.rti.com
mailto:support@rti.com
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

NOTE 1: This applies to builds using CMake. To build in a custom environment, please refer to
Custom Build Environments.

NOTE 2: The path to an installation of rtiddsgen, likely from a bundle shipped by RTI, will also
have to be specified separately.

CMakeLists.txt is the main input file to CMake and is used to generate build files.

The RTIMEROOT/include directory contains the public header files. By default it is identical to
RTIMEHOME/include. However, custom ports will typically add files to this directory.

The RTIMEROOT/src directory contains the Connext DDS Micro source files. RTI does not
support modifications to these files unless explicitly stated in the porting guide. A custom port
will typically add specific files to this directory.

The RTIMEROOT/build directory is empty by default. CMake generates one set of build-files
for each configuration. A build configuration can be an architecture, Connext DDS Micro options,
language selection, etc. This directory will contain CMake generated build-files per architecture per
configuration. By convention the Debug directory is used to generate build-files for debug libraries
and the Release directory is used for release libraries.

The RTIMEROOT/lib directory is empty by default. All libraries successfully built with the CMake
generated build-files, regardless of which generator was used, will be copied to the RTIMEROOT/lib
directory.

The following naming conventions are used regardless of the build-tool:

• Static libraries have a z suffix.

• Shared libraries do not have an additional suffix.

• Debug libraries have a d suffix.

• Release libraries do not have an additional suffix.

The following libraries are built:

• rti_me - the core library, including the DDS C API

• rti_me_discdpde - the Dynamic Participant Dynamic Endpoint plugin

• rti_me_discdpse - the Dynamic Participant Static Endpoint plugin

• rti_me_rhsm - the Reader History plugin

• rti_me_whsm - the Writer History plugin

• rti_me_netioshmem - the Shared Memory Transport

• rti_me_netiosdm - the Zero Copy over shared memory transport library

• rti_me_cpp - the C++ API

Note: The names above are the RTI library names. Depending on the target architecture, the
library name is prefixed with lib and the library suffix also varies between target architectures, such
as .so, .dylib, etc.

For example:

5.1. Building the Connext DDS Micro Source 156

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• rti_mezd indicates a static debug library

• rti_me indicates a dynamically linked release library

5.1.4 Compiling Connext DDS Micro
This section describes in detail how to compile Connext DDS Micro using CMake. It starts with
an example that uses the included scripts followed by a section showing how to build manually.

CMake, available from www.cmake.org, is the preferred tool to build Connext DDS Micro because
it simplifies configuring the Connext DDS Micro build options and generates build files for a variety
of environments. Note that CMake itself does not compile anything. CMake is used to generate
build files for a number of environments, such as make, Eclipse® CDT, Xcode® and Visual Studio.
Once the build-files have been generated, any of the tools mentioned can be used to build Connext
DDS Micro. This system makes it easier to support building Connext DDS Micro in different build
environments. CMake is easy to install with pre-built binaries for common environments and has
no dependencies on external tools.

NOTE: It is not required to use CMake. Please refer to Custom Build Environments for other ways
to build Connext DDS Micro.

Building Connext DDS Micro with rtime-make

The Connext DDS Micro source bundle includes a bash (UNIX) and BAT (Windows) script to
simplify the invocation of CMake. These scripts are a convenient way to invoke CMake with the
correct options.

On UNIX-based systems:

RTIMEROOT/resource/script/rtime-make --type Debug --target self \
--name i86Linux2.6gcc4.4.5 -G "Unix Makefiles" --build

On Windows systems:

C:RTIMEROOT\resource\scripts|rti_me|-make --config Debug --target self \
--name i86Win32VS2010 -G "Visual Studio 10 2013" --build

Explanation of arguments:

• --config Debug : Create Debug build.

• --target \<target\> : The target for the sources to be built. “self” indicates that the host
machine is the target and Connext DDS Micro will be built with the options that CMake
automatically determines for the local compiler. Please refer to Cross-Compiling Connext
DDS Micro for information on specifying the target architecture to build for.

• --name \<name\> : The name of the build, shall be a descriptive name following the recom-
mendation on naming described in section Preparing for a Build. If --name is not specified,
the value for --target will be used as the name.

• --build Build: The generated project files.

On UNIX-based systems:

5.1. Building the Connext DDS Micro Source 157

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• If gcc is part of the name, GCC is assumed.

• If clang is part of the name, clang is assumed.

On Windows systems:

• If Win32 is part of the name, a 32 bit Windows build is assumed.

• If Win64 is part of the name, a 64 bit Windows build is assumed.

To get a list of all the options:

rtime-make -h

To get help for a specific target:

rtime-make --target <target> --help

Manually Building with CMake

Preparing for a Build

As mentioned, it is recommended to create a unique directory for each build configuration. A
build configuration can be created to address specific architectures, compiler settings, or different
Connext DDS Micro build options.

RTI recommends assigning a descriptive name to each build configuration, using a common for-
mat. While there are no requirements to the format for functional correctness, the tool-chain
files in Cross-Compiling Connext DDS Micro uses the RTIME_TARGET_NAME variable to
determine various compiler options and selections.

RTI uses the following name format:

{cpu}{OS}{compiler}_{config}

In order to avoid a naming conflict with RTI, the following name format is recommended:

{prefix}_{cpu}{OS}{compiler}_{config}

Some examples:

• acme_ppc604FreeRTOSgcc4.6.1 - Connext DDS Micro for a PPC 604 CPU running FreeR-
TOS compiled with gcc 4.6.1, compiled by acme.

• acme_i86Win32VS2015 - Connext DDS Micro for an i386 CPU running Windows XP or
higher compiled with Visual Studio 2015, compiled by acme.

• acme_i86Linux4gcc4.4.5_test - a test configuration build of Connext DDS Micro for an i386
CPU running Linux 3 or higher compiled with gcc 4.4.5, compiled by acme.

Files built by each build configuration will be stored under RTIMEHOME/build/[Debug | Re-
lease]/<name>. These directories are referred to as build directories or RTIMEBUILD. The structure
of the RTIMEBUILD depends on the generated build files and should be regarded as an intermediate
directory.

5.1. Building the Connext DDS Micro Source 158

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Creating Build Files for Connext DDS Micro Using the CMake GUI

Start the CMake GUI, either from a terminal window or a menu.

Please note that the Cmake GUI does not set the CMAKE_BUILD_TYPE variable. This
variable is used to determine the names of the Connext DDS Micro libraries. Thus, it is necessary
to add CMAKE_BUILD_TYPE manually and specify either Debug or Release. To add this
variable manually, click the ‘Add Entry’ button, specify the name as a string type.

As an alternative, rtime-make’s --gui option can be used. This option starts the CMake and also
adds the CMAKE_BUILD_TYPE option when the CMake GUI exits.

Please note that when using Visual Studio or Xcode, it is important to build the same configuration
as was specified with rtime-make’s --config option. While it is possible to build a different con-
figuration from the IDE, selecting a different configuration does not update the build configuration
generated for Connext DDS Micro.

The GUI should be started from the RTIMEROOT directory. If this is not the case, check that:

• The source directory is the location of RTIMEROOT.

• The binary directory is the location of RTIMEBUILD.

With the CMake GUI running:

• Press ‘Configure’.

• Select a generator. You must have a compatible tool installed to process the generated files.

• Select ‘Use default native compilers’.

• Press ‘Done’.

• Press ‘Configure’.

• Check ‘Grouped’.

• Expand RTIME and select your build options. All available build options for Connext DDS
Micro are listed here.

• Type a target name for RTIME_TARGET_NAME. This should be the same as the
<name> used to create the RTIMEBUILD directory, that is the RTIMEBUILD should be on the
form <path>/<RTIME_TARGET_NAME>.

• Press ‘Configure’. All red lines should disappear. Due to how CMake works, it is strongly
recommended to always press ‘Configure’ whenever a value is changed for a variable. Other
variables may depend on the modified variable and pressing ‘Configure’ will mark those with
a red line. No red lines means everything has been configured.

• Press ‘Generate’. This creates the build-files in the RTIMEBUILD directory. Whenever an
option is changed and Configure is re-run, press Generate again.

• Exit the GUI.

Depending on the generator, do one of the following:

• For IDE generators (such as Eclipse, Visual Studio, Xcode) open the generated solu-
tion/project files and build the project/solution.

5.1. Building the Connext DDS Micro Source 159

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• For command-line tools (such as make, nmake, ninja) change to the RTIMEBUILD directory
and run the build-tool.

After a successful build, the output is placed in RTIMEROOT/lib/<name>.

The generated build-files may contain different sub-projects that are specific to the tool. For
example, when using Xcode or Visual Studio, the following targets are available:

• ALL_BUILD - Builds all the projects.

• rti_me_<name> - Builds only the specific library. Note that that dependent libraries are
built first.

• ZERO_CHECK - Runs CMake to regenerate project files in case something changed in the
build input. This target does not need to be built manually.

For command-line tools, try <tool> help for a list of available targets to build. For example, if
UNIX makefiles were generated:

make help

Creating Build Files for Connext DDS Micro Using CMake from the Command Line

Open a terminal window in the RTIMEROOT directory and create the RTIMEBUILD directory. Change
to the RTIMEBUILD directory and invoke cmake using the following arguments:

cmake -G <generator> -DCMAKE_BUILD_TYPE=<Debug | Release> \
-DCMAKE_TOOLCHAIN_FILE=<toolchain file> \
-DRTIME_TARGET_NAME=<target-name>

Depending on the generator, do one of the following:

• For IDE generators (such as Eclipse, Visual Studio, Xcode) open the generated solu-
tion/project files and build the project/solution.

• For command-line tools (such as make, nmake, ninja) run the build-tool.

After a successful build, the output is placed in RTIMEROOT/lib/<name>.

The generated build-files may contain different sub-projects that are specific to the tool. For
example, in Xcode and Visual Studio the following targets are available:

• ALL_BUILD - Builds all the projects.

• rti_me_<name> - Builds only the specific library. Note that that dependent libraries are
built first.

• ZERO_CHECK - Runs CMake to regenerate project-files in case something changed in the
build input. This target does not need to be built manually.

For command-line tools, try <tool> help for a list of available targets to build. For example, if
UNIX makefiles were generated:

make help

5.1. Building the Connext DDS Micro Source 160

https://cmake.org/
https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

CMake Flags used by Connext DDS Micro

The following CMake flags (-D) are understood by Connext DDS Micro and may be useful when
building outside of the source bundle installed by RTI. An example would be incorporating the
Connext DDS Micro source in a project tree and invoking cmake directly on the CMakeLists.txt
provided by Connext DDS Micro.

• -DRTIME_TARGET_NAME=\<name\> - The name of the target (equivalant to --name to rtime-
make). The default value is the name of the source directory.

• -DRTIME_CMAKE_ROOT=\<path\> - Where to place the CMake build files. The default value
is <source>/build/cmake.

• -DRTIME_BUILD_ROOT=\<path\> - Where to place the intermediate build files. The default
value is <source>/build.

• -DRTIME_SYSTEM_FILE=\<file\> or an empty string - This file can be used to set the PLAT-
FORM_LIBS variable used by Connext DDS Micro to link with. If an empty string is
specified no system file is loaded. This option may be useful when cmake can detect all that
is needed. The default value is not defined, which means try to detect the system to build
for.

• -DRTI_NO_SHARED_LIB=true - Do not build shared libraries. The default is undefined, which
means shared libraries are built. NOTE: This flag must be undefined to build shared libraries.
Setting the value to false is not supported.

• -DRTI_MANUAL_BUILDID=true - Do not automatically generate a build ID. The default value
is undefined, which means generate a new build each time the libraries are built. Setting the
value to false is not supported. The build ID is in its own source and only forces a recompile
of a few files. Note that it is necessary to generate a build ID at least once (this is done
automatically). Also, a build ID is not supported for cmake versions less than 2.8.11 because
the TIMESTAMP function does not exist.

• -DOPENSSLHOME=<path> - Specifies the path to OpenSSL 1.0.1.

• -DRTIME_TRUST_INCLUDE_BUILTIN=false Excludes the builtin security plugin from the build.

• -DRTIME_DDS_DISABLE_PARTICIPANT_MESSAGE_DATA=false Disables P2P Message Data
inter-participant channel. This channel is needed to use DDS_AUTOMATIC_LIVE-
LINESS_QOS and DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS
with a finite lease duration.

5.1.5 Connext DDS Micro Compile Options
The Connext DDS Micro source supports compile-time options. These options are in general used
to control:

• Enabling/Disabling features.

• Inclusion/Exclusion of debug information.

• Inclusion/Exclusion of APIs.

• Target platform definitions.

5.1. Building the Connext DDS Micro Source 161

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• Target compiler definitions.

NOTE: It is no longer possible to build a single library using CMake. Please refer to Custom Build
Environments for information on customized builds.

Connext DDS Micro Debug Information

Please note that Connext DDS Micro debug information is independent of a debug build as defined
by a compiler. In the context of Connext DDS Micro, debug information refers to inclusion of:

• Logging of error-codes.

• Tracing of events.

• Precondition checks (argument checking for API functions).

Unless explicitly included/excluded, the following rule is used:

• For CMAKE_BUILD_TYPE = Release, the NDEBUG preprocessor directive is defined.
Defining NDEBUG includes logging, but excludes tracing and precondition checks.

• For CMAKE_BUILD_TYPE = Debug, the NDEBUG preprocessor directive is undefined.
With NDEBUG undefined, logging, tracing and precondition checks are included.

To manually determine the level of debug information, the following options are available:

• OSAPI_ENABLE_LOG (Include/Exclude/Default)

– Include - Include logging.

– Exclude - Exclude logging.

– Default - Include logging based on the default rule.

• OSAPI_ENABLE_TRACE (Include/Exclude/Default)

– Include - Include tracing.

– Exclude - Exclude tracing.

– Default - Include tracing based on the default rule.

• OSAPI_ENABLE_PRECONDITION (Include/Exclude/Default)

– Include - Include tracing.

– Exclude - Exclude tracing.

– Default - Include precondition checks based on the default rule.

Connext DDS Micro Platform Selection

The Connext DDS Micro build system looks for target platform files in RTIMEROOT/include/os-
api. All files that match *osapi_os_*.h are listed under RTIME_OSAPI_PLATFORM. Thus,
if a new port is added it will automatically be listed and available for selection.

The default behavior, <auto detect>, is to try to determine the target platform based on header-
files. The following target platforms are known to work:

5.1. Building the Connext DDS Micro Source 162

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• Linux (posix)

• VOS (posix)

• QNX (posix)

• Darwin (posix)

• iOS (posix)

• Android (posix)

• Win32 (windows)

• VxWorks 6.9 and later (vxworks)

However, for custom ports this may not work. Instead the appropriate platform definition file can
be selected here.

Connext DDS Micro Compiler Selection

The Connext DDS Micro build system looks for target compiler files in RTIMEROOT/include/os-
api. All files that match *osapi_cc_*.h are listed under RTIME_OSAPI_COMPILER. Thus,
if a new compiler definition file is added it will automatically be listed and available for selection.

The default behavior, <auto detect>, is to try to determine the target compiler based on header-
files. The following target compilers are known to work:

• GCC (stdc)

• clang (stdc)

• MSVC (stdc)

However, for others compilers this this may not work. Instead the appropriate compiler definition
file can be selected here.

Connext DDS Micro UDP Options

Checking the RTIME_UDP_ENABLE_IPALIASES disables filtering out IP aliases. Note
that this currently only works on platforms where each IP alias has its own interface name, such
as eth0:1, eth1:2, etc.

Checking the RTIME_UDP_ENABLE_TRANSFORMS_DOC enables UDP transforma-
tions in the UDP transport.

Checking the RTIME_UDP_EXCLUDE_BUILTIN excludes the UDP transport from being
built.

5.1.6 Cross-Compiling Connext DDS Micro
Cross-compiling the Connext DDS Micro source-code uses the exact same process described in
Compiling Connext DDS Micro, but requires a additonal tool-chain file. A tool-chain file is a
CMake file that describes the compiler, linker, etc. needed to build the source for the target.

5.1. Building the Connext DDS Micro Source 163

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

The Connext DDS Micro source bundle includes a few basic, generic tool-chain files for cross-
compilation. In general it is expected that users will provide their own cross-compilation tool-chain
files.

To see a list of available targets, use --list :

rtime-make --list

By convention, RTI only provides generic tool-chain files that can be used to build for a broad
range of targets. For example, the Linux target can be used to build for any Linux architecture as
long as it is a self-hosted build. The same is true for Windows and Darwin systems. The VxWorks
tool-chain file uses the Wind River environment variables to select the compiler.

For example, to build on a Linux machine with Kernel 2.6 and gcc 4.7.3:

rtime-make --target Linux --name i86Linux2.6gcc4.7.3 --config Debug --build

By convention, a specific name such as i86Linux2.6gcc4.4.5 is expected to only build for a spe-
cific target architecture. Note however that this cannot be enforced by the script provided by
RTI. To create a target specific tool-chain file, copy the closest matching file and add it to the
RTIMEROOT/source/Unix/resource/CMake/architectures or RTIMEROOT/source/windows/re-
source/CMake/architectures directory.

Once a tool-chain file has been created, or a suitable file has been found, edit it as needed. Then
invoke rtime-make, specifying the new tool-chain file as the target architecture. For example:

rtime-make --target i86Linux2.6gcc4.4.5 --config Debug --build

5.1.7 Custom Build Environments
The preferred method to build Connext DDS Micro is to use CMake. However, in some cases it
may be more convenient, or even necessary, to use a custom build environment. For example:

• Embedded systems often have numerous compiler, linker and board specific options that are
easier to manage in a managed build.

• The compiler cannot be invoked outside of the build environment, it may be an integral part
of the development environment.

• Sometimes better optimization may be achieved if all the components of a project are built
together.

• It is easier to port Connext DDS Micro.

Importing the Connext DDS Micro Code

The process for importing the Connext DDS Micro Source Code into a project varies depending on
the development environment. However, in general the following steps are needed:

• Create a new project or open an existing project.

• Import the entire Connext DDS Micro source tree from the file-system. Note that some
environments let you choose whether to make a copy only link to the original files.

5.1. Building the Connext DDS Micro Source 164

https://cmake.org/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• Add the following include paths:

– <root>/include

– <root>/src/dds_c/domain

– <root>/src/dds_c/infrastructure

– <root>/src/dds_c/publication

– <root>/src/dds_c/subscription

– <root>/src/dds_c/topic

– <root>/src/dds_c/type

• Add a compile-time definition -DTARGET="target name" (note that the ” must be included).

• Add a compile-time definition -DNDEBUG for a release build.

• Add a compile-time definition of either -DRTI_ENDIAN_LITTLE for a little-endian platform or
-DRTI_ENDIAN_BIG for a big-endian platform.

• If custom OSAPI definitions are used, add a compile-time definition -
DOSAPI_OS_DEF_H="my_os_file".

• If custom compiler definitions are used, add a compile-time definition -
DOSAPI_CC_DEF_H="my_cc_file.h" .

5.2 Porting RTI Connext DDS Micro
RTI Connext DDS Micro has been engineered for reasonable portability to platforms and environ-
ments which RTI does not have access to. This porting guide describes the features required by
Connext DDS Micro to run. The target audience is developers familiar with general OS concepts,
the standard C library, and embedded systems.

Connext DDS Micro uses an abstraction layer to support running on a number of platforms. The
abstraction layer, OSAPI, is an abstraction of functionality typically found in one or more of the
following libraries and services:

• Operating System calls

• Device drivers

• Standard C library

The OSAPI module is designed to be relatively easy to move to a new platform. All functionality,
with the exception of the UDP transport which must be ported, is contained within this single
module. It should be noted that although some functions may not seem relevant on a particular
platform, they must still be implemented as they are used by other modules. For example, the port
running on Stellaris with no OS support still needs to implement a threading model.

Please note that the OSAPI module is not designed to be a general purpose abstraction layer; its
sole purpose is to support the execution of Connext DDS Micro.

5.2. Porting RTI Connext DDS Micro 165

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

5.2.1 Updating from Connext DDS Micro 2.4.8 and earlier
In RTI Connext DDS Micro 2.4.9, a few changes were made to simplify incorporating new ports.
To upgrade an existing port to work with 2.4.9, follow these rules:

• Any changes to osapi_config.h should be placed in its own file (see Directory Structure).

• Define the OSAPI_OS_DEF_H preprocessor directive to include the file (refer to OS and
CC Definition Files).

• For compiler-specific definitions, please refer to OS and CC Definition Files.

• Please refer to Heap Porting Guide for changes to the Heap routines that need to be ported.

5.2.2 Directory Structure
The source shipped with Connext DDS Micro is identical to the source developed and tested by
RTI (with the exception of the the line-endings difference between the Unix and Windows source-
bundles).

The source-bundle directory structure is as follows:

RTIMEHOME--+-- CmakeLists.txt
|
+-- build -- cmake --+-- Debug --+-- <ARCH> -- <project-files>
| |
| |
| +-- Release --+-- <ARCH> -- <project-files>
+-- doc --
|
+-- example
|
+-- include
|
+-- lib +-- <ARCH> -- <libraries>
|
+-- resource --+-- cmake
| |
| +-- scripts
|
+-- rtiddsgen
|
+-- rtiddsmag
|
+-- src

The include directory contains the external interfaces, those that are available to other modules.
The src directory contains the implementation files. Please refer to Building the Connext DDS
Micro Source for how to build the source code.

The remainder of this document focuses on the files that are needed to add a new port. The
following directory structure is expected:

5.2. Porting RTI Connext DDS Micro 166

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

---+-- include --+-- osapi --+-- osapi_os_\<port\>.h
| |
| +-- osapi_cc_<compiler>.h
|
+-- src --+-- osapi --+-- common -- <common files>

|
+-- <port> --+-- <port>Heap.c

|
+-- <port>Mutex.c
|
+-- <port>Process.c
|
+-- <port>Semaphore.c
|
+-- <port>String.c
|
+-- <port>System.c
|
+-- <port>Thread.c
|
+-- <port>shmSegment.c
|
+-- <port>shmMutex.c

The osapi_os_<port>.h file contains OS specific definitions for various data-types. The <port>
name should be short and in lower case, for example myos.

The osapi_cc_<compiler>.h file contains compiler specific definitions. The <compiler> name
should be short and in lower case, for example mycc. The osapi_cc_stdc.h file properly detects
GCC and MSVC and it is not necessary to provide a new file if one of these compilers is used.

The <port>Heap.c, <port>Mutex.c, <port>Process.c, <port>Semaphore.c, <port>String.c and
<port>System.c files shall contain the implementation of the required APIs.

NOTE: It is not recommended to modify source files shipped with Connext DDS Micro. Instead
if it is desired to start with code supplied by RTI it is recommended to copy the corresponding
sub-directory, for example posix, and rename it. This way it is easier to upgrade Connext DDS
Micro while keeping existing ports.

5.2.3 OS and CC Definition Files
The include/osapi/osapi_os_<port>.h file contains OS and platform specific definitions used by
OSAPI and other modules. To include the platform specific file, define OSAPI_OS_DEF_H
as a preprocessor directive.

-DOSAPI_OS_DEF_H=\"osapi_os_<port>.h\"

It should be noted that Connext DDS Micro does not use auto-detection programs to detect the
host and target build environment and only relies on predefined macros to determine the target
environment. If Connext DDS Micro cannot determine the target environment, it is necessary to
manually configure the correct OS definition file by defining OSAPI_OS_DEF_H (see above).

5.2. Porting RTI Connext DDS Micro 167

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

The include/osapi/osapi_cc_<compiler>.h file contains compiler specific definitions used by OS-
API and other modules. To include the platform specific file, define OSAPI_CC_DEF_H as a
preprocessor directive.

-DOSAPI_CC_DEF_H=\"osapi_cc_<compiler>.h\"

Endianness of some platforms is determined automatically via the platform specific file, but for
others either RTI_ENDIAN_LITTLE or RTI_ENDIAN_BIG must be defined manually
for little-endian or big-endian, respectively.

5.2.4 Heap Porting Guide
Connext DDS Micro uses the heap to allocate memory for internal data-structures. With a few
exceptions, Connext DDS Micro does not return memory to the heap. Instead, Connext DDS Micro
uses internal pools to quickly allocate and free memory for specific types. Only the initial memory
is allocated directly from the heap. The following functions must be ported:

• OSAPI_Heap_allocate_buffer

• OSAPI_Heap_free_buffer

However, if the OS and C library supports the standard malloc and free APIs define the following
in the osapi_os_<port>.h file:

#define OSAPI_ENABLE_STDC_ALLOC (1)
#define OSAPI_ENABLE_STDC_REALLOC (1)
#define OSAPI_ENABLE_STDC_FREE (1)

Please refer to the OSAPI_Heap API for definition of the behavior. The available source code
contains implementation in the file osapi/<port>/<port>Heap.c.

5.2.5 Mutex Porting Guide
Connext DDS Micro relies on mutex support to protect internal data-structures from corruption
when accessed from multiple threads.

The following functions must be ported:

• OSAPI_Mutex_new

• OSAPI_Mutex_delete

• OSAPI_Mutex_take_os

• OSAPI_Mutex_give_os

Please refer to the OSAPI_Mutex API for definition of the behavior. The available source code
contains implementation in the file osapi/<port>/<port>Mutex.c

5.2.6 Semaphore Porting Guide
Connext DDS Micro relies on semaphore support for thread control. If Connext DDS Micro is
running on a non pre-emptive operating system with no support for IPC and thread synchronization,

5.2. Porting RTI Connext DDS Micro 168

../../api_c/html/group__OSAPI__HeapClass.html
../../api_c/html/group__OSAPI__HeapClass.html
../../api_c/html/group__OSAPI__HeapClass.html
../../api_c/html/group__OSAPI__MutexClass.html
../../api_c/html/group__OSAPI__MutexClass.html
../../api_c/html/group__OSAPI__MutexClass.html
../../api_c/html/group__OSAPI__MutexClass.html
../../api_c/html/group__OSAPI__MutexClass.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

it is possible to implement these functions as no-ops. Please refer to Thread Porting Guide for details
regarding threading.

The following functions must be ported:

• OSAPI_Semaphore_new

• OSAPI_Semaphore_delete

• OSAPI_Semaphore_take

• OSAPI_Semaphore_give

Please refer to the OSAPI_Semaphore API for definition of the behavior. The available source
code contains implementation in the file osapi/<port>/<port>Semaphore.c.

5.2.7 Process Porting Guide
Connext DDS Micro only uses the process API to retrieve a unique ID for the applications.

The following functions must be ported:

• OSAPI_Process_getpid

Please refer to the OSAPI_Process_getpid API for definition of the behavior. The available source
code contains implementation in the file osapi/<port>/<port>Process.c.

5.2.8 System Porting Guide
The system API consists of functions which are more related to the hardware on which Connext
DDS Micro is running than on the operating system. As of Connext DDS Micro 2.3.1, the system
API is implemented as an interface as opposed to the previous pure function implementation. This
change makes it easier to adapt Connext DDS Micro to different hardware platforms without having
to write a new port.

The system interface is defined in OSAPI_SystemI, and a port must implement all the methods
in this structure. In addition, the function OSAPI_System_get_native_interface must be imple-
mented. This function must return the system interface for the port (called the native system
interface).

The semantics for the methods in the interface are exactly as defined by the corresponding sys-
tem function. For example, the method OSAPI_SystemI::get_time must behave exactly as that
described by OSAPI_System_get_time.

The following system interface methods must be implemented in the OSAPI_SystemI structure:

• OSAPI_SystemI::get_timer_resolution

• OSAPI_SystemI::get_time

• OSAPI_SystemI::start_timer

• OSAPI_SystemI::stop_timer

• OSAPI_SystemI::generate_uuid

• OSAPI_SystemI::get_hostname

5.2. Porting RTI Connext DDS Micro 169

../../api_c/html/group__OSAPI__SemaphoreClass.html
../../api_c/html/group__OSAPI__SemaphoreClass.html
../../api_c/html/group__OSAPI__SemaphoreClass.html
../../api_c/html/group__OSAPI__SemaphoreClass.html
../../api_c/html/group__OSAPI__SemaphoreClass.html
../../api_c/html/osapi__process_8h.html
../../api_c/html/osapi__process_8h.html
../../api_c/html/structOSAPI__SystemI.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/structOSAPI__SystemI.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• OSAPI_SystemI::initialize

• OSAPI_SystemI::finalize

Please refer to the OSAPI_System API for definition of the behavior. The available source code
contains implementation in the file: osapi/<port>/<port>System.c.

Migrating a 2.2.x port to 2.3.x

In Connext DDS Micro 2.3.x, changes where made to how the system API is implemented. Because
of these changes, existing ports must be updated, and this section describes how to make a Connext
DDS Micro 2.2.x port compatible with Connext DDS Micro 2.3.x.

If you have ported Connext DDS Micro 2.2.x the following steps will make it compatible with
version 2.3.x:

• Rename the following functions and make them private to your source code. For example,
rename OSAPI_System_get_time to OSAPI_MyPortSystem_get_time etc.

– OSAPI_System_get_time

– OSAPI_System_get_timer_resolution

– OSAPI_System_start_timer

– OSAPI_System_stop_timer

– OSAPI_System_generate_uuid

• Implement the following new methods.

– OSAPI_SystemI::get_hostname

– OSAPI_SystemI::initialize

– OSAPI_SystemI::finalize

• Create a system structure for your port using the following template:

struct OSAPI_MyPortSystem
{

struct OSAPI_System _parent;

Your system variable
};

static struct OSAPI_MyPortSystem OSAPI_System_g;

/* OSAPI_System_gv_system is a global system variable used by the
* generic system API. Thus, the name must be exactly as
* shown here.
*/
struct OSAPI_System * OSAPI_System_gv_system = &OSAPI_System_g._parent;

• Implement OSAPI_System_get_native_interface method and fill the OSAPI_SystemI
structure with all the system methods.

5.2. Porting RTI Connext DDS Micro 170

../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/group__OSAPI__SystemClass.html
../../api_c/html/structOSAPI__SystemI.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

5.2.9 Thread Porting Guide
The thread API is used by Connext DDS Micro to create threads. Currently only the UDP transport
uses threads and it is a goal to keep the generic Connext DDS Micro core library free of threads.
Thus, if Connext DDS Micro is ported to an environment with no thread support, the thread API
can be stubbed out. However, note that the UDP transport must be ported accordingly in this case;
that is, all thread code must be removed and replaced with code appropriate for the environment.

The following functions must be ported:

• OSAPI_Thread_create

• OSAPI_Thread_sleep

Please refer to the OSAPI_Thread API for definition of the behavior. The available source code
contains implementation in the file srcC/osapi/<platform>/Thread.c.

5.2. Porting RTI Connext DDS Micro 171

../../api_c/html/group__OSAPI__ThreadClass.html
../../api_c/html/group__OSAPI__ThreadClass.html
../../api_c/html/group__OSAPI__ThreadClass.html

Chapter 6

API Reference

RTI Connext DDS Micro features API support for C and C++. Select the appropriate language
below in order to access the corresponding API Reference HTML documentation.

• C API Reference

• C++ API Reference

172

../../api_c/html/index.html
../../api_cpp/html/index.html

Chapter 7

Release Notes

7.1 Supported Platforms and Programming Languages
Connext DDS Micro supports the C and traditional C++ language bindings.

Connext DDS Micro is available as pre-built binaries for the following platforms:

• Supported Linux Platforms

• Supported Windows Platforms

• Supported VxWorks Platforms

Note that RTI only tests on a subset of the possible combinations of OS and CPU. Please refer to
the following tables for a list of specific platforms and the specific configurations that are tested by
RTI.

Table 7.1: Supported Linux Platforms
OS CPU Com-

piler
RTI Architecture Abbreviation

Red Hat Enterprise
Linux 6.0, 6.1 (2.6
kernel)

x86 gcc
4.4.5

i86Linux2.6gcc4.4.5

Table 7.2: Supported Windows Platforms
OS CPU Com-

piler
RTI Architecture Abbreviation

Windows 7 x86 Visual
Studio
2010

i86Win32VS2010

173

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Table 7.3: Supported VxWorks Platforms
OS CPU Com-

piler
RTI Architecture Abbreviation

VxWorks 6.9 Pentium 32-bit gcc
4.3.3

For Kernel Modules: pen-
tiumVx6.9gcc4.3.3 For Real Time
Processes: pentiumVx6.9gcc4.3.3_rtp

VxWorks 6.9 PPC32 gcc
4.3.3

For Kernel Modules:
ppc604Vx6.9gcc4.3.3 For Real Time
Processes: ppc604Vx6.9gcc4.3.3_rtp

VxWorks Cert 6.6.4.1 PPC32 e500v2 gcc
4.1.2

ppce500v2VxCert6.6.4.1gcc4.1.2

7.2 Compatibility
For backward compatibility information between 3.0.0 and previous releases, see the Migration
Guide on the RTI Community Portal (https://community.rti.com/documentation).

7.3 What’s New in 3.0.0.1

7.3.1 New APIs to Serialize and Deserialize Samples
Two new APIs are available to applications to serialize and deserialize samples, for example for
record and replay type applications. Please refer to the C and C++ API reference manuals under
“DDS API->Topic->User Data Type Support” for a details.

7.3.2 Dynamic Memory allocations removed from the Dynamic Discovery Plugin
In previous versions of Connext DDS Micro the dynamic discovery plugin (DPDE) allocates mem-
ory after the DomainParticipant is enabled to store discovered Topic and Type names. This release
includes improvements which make it possible to avoid all memory allocations after the Domain-
Participant is enabled.

When a DomainParticipant discovers a Topic that exists locally no memory is allocated. However,
if a Topic is discovered that does not exist locally memory is allocated to store the Topic and Type
names.

In order to avoid all dynamic memory allocations during discovery the following rules must be
followed:

• Create the DomainParticipant disabled by setting

DomainParticipantFactoryQos.entity_factory.autoenable_created_entities =
DDS_BOOLEAN_FALSE before calling create_participant(). - Create all local
DataReaders and DataWriters for all Topics that will be

discovered.

• If it is possible to discover DomainParticipants that will not match with local
DataReaders and DataWriters, set DomainParticipantFactoryQos.discovery.ac-

7.2. Compatibility 174

https://community.rti.com/documentation

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

cept_unknown_peers = DDS_BOOLEAN_FALSE and list all DomainPartici-
pants that should be discovered in DomainParticipantFactoryQos.discovery.ini-
tial_peers.

• Call enable() on the DomainParticipant to enable all entities.

A known limitation is that it is not possible ignore specific Topics.

7.4 What’s Fixed in 3.0.0.1

7.4.1 Cannot build source with OSAPI_ENABLE_LOG=0
The Connext DDS Micro source did not compile when logging was disabled with the preprocessor
definition -DOSAPI_ENABLE_LOG=0. This has been fixed.

[RTI Issue ID MICRO-2049], [RTI Issue ID MICRO-2048]

7.4.2 DDS_Subscriber_create_datareader() was affected by the local_writer_alloca-
tion limit

The maximum number of DataReaders that could be created was determined by the DomainPar-
ticipant.resource_limits.local_writer_alloation resource limit. This issue has been fixed.

[RTI Issue ID MICRO-2065]

7.5 What’s New in 3.0.0

7.5.1 Support for XCDR encoding version 2
This release adds support for the standard XCDR encoding version 2 data representation described
in the “Extensible and Dynamic Topic Types for DDS” specification. This encoding version is more
efficient in terms of bandwidth than XCDR encoding version 1, which is supported in previous
Connext DDS releases (and still supported in this release).

To select between XCDR and XCDR2 data representations, you can use the DataRepresentation-
QosPolicy for DataReaders and DataWriters. Connext DDS Micro now supports this policy. You
may specify XCDR, XCDR2, or AUTO to indicate which versions of the Extended Common Data
Representation (CDR) are offered and requested. The default is AUTO.

A DataWriter offers a single representation, which indicates the CDR version the DataWriter
uses to serialize its data. A DataReader requests one or more representations, which indicate
the CDR versions the DataReader accepts. If a DataWriter’s offered representation is contained
within a reader’s sequence of requested representations, then the offer satisfies the request, and the
policies are compatible. Otherwise, they are incompatible. In support of this feature, a new QoS,
DATA_REPRESENTATION, has been added for the DataWriter and DataReader. There is also
a new annotation, @allowed_data_representation, that can be used to select the supported data
representations for a type.

For more information, see:

• the “Extensible and Dynamic Topic Types for DDS” specification from the Object Man-
agement Group (OMG): https://www.omg.org/spec/DDS-XTypes/.

7.4. What’s Fixed in 3.0.0.1 175

https://www.omg.org/spec/DDS-XTypes/

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

• the section on the DATA_REPRESENTATION QoS Policy, in the RTI Connext DDS
Core Libraries User’s Manual (available here if you have Internet access).

• the Data Representation chapter, in the RTI Connext DDS Core Libraries Getting
Started Guide Addendum for Extensible Types (available here if you have Internet access).

7.5.2 Large data streaming using RTI FlatData™ language binding and Zero Copy
transfer over shared memory

To meet strict latency requirements, you can reduce the default number of copies made by the
middleware when publishing and receiving large samples (on the order of MBs) by using two new
features: FlatData language binding and Zero Copy transfer over shared memory.

These features can be used standalone or in combination.

By using the FlatData language binding, you can reduce the number of copies from the default of
four copies to two copies, for both UDP and shared memory communications. FlatData is a lan-
guage binding in which the in-memory representation of a sample matches the wire representation,
reducing the cost of serialization/deserialization to zero. You can directly access the serialized data
without deserializing it first. To select FlatData as the language binding of a type, annotate it with
the new @language_binding(FLAT_DATA) annotation.

Zero Copy transfer over shared memory allows you to reduce the number of copies to zero for
communications within the same host. This feature accomplishes zero copies by using the shared
memory builtin transport to send references to samples within a shared memory segment owned
by the DataWriter, instead of using the shared memory builtin transport to send the serialized
sample content by making a copy. With Zero Copy transfer over shared memory, there is no need
for the DataWriter to serialize a sample, and there is no need for the DataReader to deserialize an
incoming sample since the sample is accessed directly on the shared memory segment created by the
DataWriter. The new TransferModeQosPolicy specifies the properties of a Zero Copy DataWriter.

For more information on setting up and using one or both of these features, see the chapter on
Sending Large Data, in the RTI Connext DDS Core Libraries User’s Manual (available here if you
have Internet access).

7.5.3 Support for RTI Security Plugins
RTI Security Plugins introduce a robust set of security capabilities, including authentication, en-
cryption, access control and logging. Secure multicast support enables efficient and scalable dis-
tribution of data to many subscribers. Performance is also optimized by fine-grained control over
the level of security applied to each data flow, such as whether encryption or just data integrity is
required.

Security Plugins are available in a separate package from the RTI Support Portal, https://support.
rti.com/.

See the RTI Security Plugins Release Notes and RTI Security Plugins Getting Started Guide (avail-
able here and here if you have Internet access).

7.5. What’s New in 3.0.0 176

https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/DATAREPRESENTATION_Qos.htm
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/getting_started_extras/html_files/RTI_ConnextDDS_CoreLibraries_GettingStarted_ExtensibleAddendum/index.htm#ExtensibleTypesAddendum/Data_Representation.htm
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/SendingLargeData.htm
https://support.rti.com/
https://support.rti.com/
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/dds_security/RTI_SecurityPlugins_ReleaseNotes.html
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/dds_security/RTI_SecurityPlugins_GettingStarted.html

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

7.5.4 Large Data Types
This release adds support for user-defined data types that exceed the maximum message size sup-
ported by the underlying transports, such as 64K in the case of UDP. Its use is fully transparent:
samples are automatically fragmented by the DataWriter and reassembled by the DataReader.
Once re-assembled, the samples are treated as regular samples and subject to all applicable QoS
policies.

7.5.5 Asynchronous DataWriters
This release adds support for publishing data asynchronously. An asynchronous DataWriter offloads
the user thread and makes it possible to coalesce samples across multiple write() calls into a single
network packet.

Samples written by an asynchronous DataWriter are not sent in the context of the user thread as
part of the write() call. Instead, samples are queued and sent in the context of a separate, dedicated
thread. An optional flow control mechanism is provided to throttle the rate at which samples are
coalesced and sent by the dedicated thread.

To implement this feature, there are two new QosPolicies, ASYNCHRONOUS_PUBLISHER
and PUBLISH_MODE. The ASYNCHRONOUS_PUBLISHER QosPolicy enables/disables asyn-
chronous publishing for the Publisher. If enabled, the Publisher will spawn a separate asynchronous
publishing thread, which will be shared by all of the Publisher’s DataWriters that have their new
PUBLISH_MODE QosPolicy set to ASYNCHRONOUS. When data is written asynchronously,
a new ‘FlowController’ object can be used to shape the network traffic. The FlowController’s
properties determine when the asynchronous publishing thread is allowed to send data and how
much.

7.5.6 Support for KEEP_ALL History
This release supports setting the History QoS policy kind to KEEP_ALL.

7.5.7 Support for AUTOMATIC and MANUAL_BY_PARTICIPANT Liveliness
Now you can set the Liveliness QoS policy kind to AUTOMATIC or MANUAL_BY_PARTICI-
PANT.

• AUTOMATIC: Connext DDS Micro will automatically assert liveliness for the DataWriter
at least as often as the lease_duration.

• MANUAL_BY_PARTICIPANT: The DataWriter is assumed to be alive if any Entity within
the same DomainParticipant has asserted its liveliness.

7.5.8 Micro Application Generation
This release includes Micro Application Generation, which enables you to create a Connext DDS
Micro application, including registration of factories and creation of DDS entities, from an XML
configuration file. Please see Application Generation in this documentation, as well as the chapter
on Generating Applications for Connext DDS Micro, in the RTI Connext DDS Core Libraries XML-
Based Application Creation Getting Started Guide (available here if you have Internet access).

7.5. What’s New in 3.0.0 177

../usersmanual/appgen.html
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/xml_application_creation/html_files/RTI_ConnextDDS_CoreLibraries_XML_AppCreation_GettingStarted/index.htm#XMLBasedAppCreation/Micro/MAG_Intro.htm

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Micro Application Generation is enabled by default in this release when compiling with rtime-make.
However, future releases may disable the feature by default. Thus, it is advised to always compile
with the Micro Application Generation feature enabled (-DRTIME_DDS_ENABLE_APPGEN=1
to cmake).

7.5.9 Ability to use only one UDP port per DomainParticipant
This release provides a way to use just one UDP port per DomainParticipant. The advantage of
this is that by only using one UDP port, Connext DDS Micro will only create a receive thread, so
fewer resources are used, mainly stack memory.

The disadvantage is that the port mappings used are not compliant with the OMG’s DDS In-
teroperability Wire Protocol and communication with other DDS implementations might not be
possible.

You can only use this feature if multicast OR unicast is used for both discovery and user traffic. If
both unicast AND multicast are configured, you cannot use this feature.

To enable this feature, assign the same value to both the builtin and user port offsets in RtpsWell-
KnownPorts_t.

7.5.10 New C++ DPSE example
This release includes a new C++ example that uses DPSE (dynamic participant - static endpoint)
discovery.

7.6 What’s Fixed in 3.0.0

7.6.1 Linker error when using shared libraries on VxWorks systems
There was a linker error when compiling examples for architecture ppc604Vx6.9gcc4.3.3 using
shared libraries. The compiler reported that the libraries could not be found. This issue has been
fixed.

[RTI Issue ID MICRO-1841]

7.6.2 Failure to link VxWorks RTP mode using shared libraries compiled with CMake
Wrong compiler options were used when compiling for VxWorks RTP mode using CMake. This
problem caused a linker error when trying to link an application using shared libraries. This issue
has been fixed.

[RTI Issue ID MICRO-1909]

7.6.3 CPU endianness detection method improved
The CPU endianness detection method has been improved. Now the CMake endian test is used. If
CMake is not used to compile, the compiler preprocessor macros are used to infer CPU endianness.

[RTI Issue ID MICRO-1919]

7.6. What’s Fixed in 3.0.0 178

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

7.6.4 Examples used untyped register_type APIs instead of typed APIs
The provided examples have been updated to use FooTypeSupport_register_type() instead of
DDS_DomainParticipant_register_type(). Using the typed API to register types is preferred over
using the untyped API.

[RTI Issue ID MICRO-1922]

7.6.5 Wait_set generic error when returned condition sequence exceeded capacity
If the number of returned conditions exceeded the maximum size of the returned condition se-
quence, a generic error, DDS_RETCODE_ERROR, was returned instead of the expected error,
DDS_RETCODE_OUT_OF_RESOURCES. This problem has been resolved.

[RTI Issue ID MICRO-1933]

7.6.6 WaitSet waited less than specified time period
A WaitSet may have waited less than the specified time period. This problem has been resolved.

[RTI Issue ID MICRO-1950]

7.6.7 Samples with deserialization errors were accepted
In previous versions, samples that could not be deserialized was rejected, causing samples to be
resent when reliability was enabled. This behavior has been changed; now samples with deserial-
ization errors are accepted and discarded.

[RTI Issue ID MICRO-1954]

7.6.8 Potential wrong API used when using host name as peer
The getaddrinfo() API was incorrectly used when a host name was used as a peer. That error might
have caused a run-time error. This problem occurred only if compilation was done for Windows or
if FACE compliance was enabled. This issue has been fixed.

[RTI Issue ID MICRO-1957]

7.7 Known Issues

7.7.1 Flow Controllers require RTOS
Flow controllers require RTOS. This will be addressed in the next release.

7.7. Known Issues 179

Chapter 8

Copyrights

© 2019 Real-Time Innovations, Inc.
All rights reserved.
Printed in U.S.A. First printing.
May 2019.

Trademarks

Real-Time Innovations, RTI, NDDS, Connext, the RTI logo, 1RTI and the phrase, “Your Systems.
Working as one,” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc. The software described in this document is furnished
under and subject to the RTI software license agreement. The software may be used or copied only
under the terms of the license agreement.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or
approved by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use
in the OpenSSL Toolkit (http://www.openssl.org/).

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com

180

http://www.openssl.org/
mailto:support@rti.com

RTI Connext DDS Micro Documentation, Version 3.0.0.1-ENG

Website: https://support.rti.com/

© 2019 RTI

181

https://support.rti.com/

Chapter 9

Contact Support

We welcome your input on how to improve RTI Connext DDS Micro to suit your needs. If
you have questions or comments about this release, please visit the RTI Customer Portal, https:
//support.rti.com. The RTI Customer Portal provides access to RTI software, documentation, and
support. It also allows you to log support cases.

To access the software, documentation or log support cases, the RTI Customer Portal requires a
username and password. You will receive this in the email confirming your purchase. If you do not
have this email, please contact license@rti.com. Resetting your login password can be done directly
at the RTI Customer Portal.

182

https://support.rti.com
https://support.rti.com
mailto:license@rti.com

Chapter 10

Join the Community

RTI Community provides a free public knowledge base containing how-to guides, detailed solutions,
and example source code for many use cases. Search it whenever you need help using and developing
with RTI products.

RTI Community also provides forums for all RTI users to connect and interact.

183

https://community.rti.com/
https://community.rti.com/

	1 Introduction
	1.1 What is RTI Connext DDS Micro?
	1.1.1 RTI Connext DDS Cert versus RTI Connext DDS Micro
	1.1.2 Optional Certification Package
	1.1.3 Publish-Subscribe Middleware

	1.2 Supported DDS Features
	1.2.1 DDS Entity Support
	1.2.2 DDS QoS Policy Support

	1.3 RTI Connext DDS Documentation
	1.4 OMG DDS Specification
	1.5 Other Products

	2 Installation
	2.1 Installing the RTI Connext DDS Micro Package
	2.2 Setting Up Your Environment
	2.3 Building Connext DDS Micro
	2.3.1 OpenSSL
	Excluding the Security Plugin from the Build

	3 Getting Started
	3.1 Define a Data Type
	3.2 Generate Type Support Code with rtiddsgen
	3.3 Create an Application
	3.3.1 Registry Configuration

	3.4 Configure UDP Transport
	3.5 Create DomainParticipant, Topic, and Type
	3.5.1 Register Type
	3.5.2 Create Topic of Registered Type
	3.5.3 DPSE Discovery: Assert Remote Participant

	3.6 Create Publisher
	3.7 Create DataWriter
	3.7.1 DPSE Discovery: Assert Remote Subscription
	3.7.2 Writing Samples

	3.8 Create Subscriber
	3.9 Create DataReader
	3.9.1 DPSE Discovery: Assert Remote Publication
	3.9.2 Receiving Samples
	3.9.3 Filtering Samples

	3.10 Examples

	4 User’s Manual
	4.1 Data Types
	4.1.1 Introduction to the Type System
	Sequences
	Strings and Wide Strings

	4.1.2 Creating User Data Types with IDL
	4.1.3 Working with DDS Data Samples

	4.2 DDS Entities
	4.3 Sending Data
	4.3.1 Preview: Steps to Sending Data
	4.3.2 Publishers
	4.3.3 DataWriters
	4.3.4 Publisher/Subscriber QosPolicies
	4.3.5 DataWriter QosPolicies

	4.4 Receiving Data
	4.4.1 Preview: Steps to Receiving Data
	4.4.2 Subscribers
	4.4.3 DataReaders
	4.4.4 Using DataReaders to Access Data (Read & Take)
	4.4.5 Subscriber QosPolicies
	4.4.6 DataReader QosPolicies

	4.5 DDS Domains
	4.5.1 Fundamentals of DDS Domains and DomainParticipants
	4.5.2 Discovery Announcements

	4.6 Application Generation
	4.6.1 Introduction
	4.6.2 Overview
	Important Points

	4.6.3 Names Assigned to Entities
	4.6.4 Create a Domain Participant
	4.6.5 Retrieving Entities
	4.6.6 Interoperability
	4.6.7 Example Code
	Create the application
	Delete the application

	4.6.8 Example Configuration
	Domain Participant “HelloWorldDPDEPubDP”
	Domain Participant “HelloWorldDPDESubDP”
	Domain Participant “HelloWorldDPSEPubDP”
	Domain Participant “HelloWorldDPSESubDP”
	Configuration Files
	Generated source files

	4.7 Transports
	4.7.1 Introduction
	4.7.2 Transport Registration
	4.7.3 Transport Addresses
	4.7.4 Transport Port Number
	4.7.5 INTRA Transport
	Registering the INTRA Transport
	Reliability and Durability
	Threading Model

	4.7.6 Shared Memory Transport (SHMEM)
	Registering the SHMEM Transport
	Threading Model
	SHMEM Configuration
	Caveats

	4.7.7 UDP Transport
	Registering the UDP Transport
	Threading Model
	UDP Configuration
	UDP Transformations

	4.8 Discovery
	4.8.1 What is Discovery?
	Simple Participant Discovery
	Simple Endpoint Discovery

	4.8.2 Configuring Participant Discovery Peers
	peer_desc_string

	4.8.3 Configuring Initial Peers and Adding Peers
	4.8.4 Discovery Plugins
	Dynamic Discovery Plugin
	Static Discovery Plugin

	4.9 Generating Type Support with rtiddsgen
	4.9.1 Why Use rtiddsgen?
	4.9.2 IDL Type Definition
	4.9.3 Generating Type Support
	C
	C++
	Notes on Command-Line Options
	Generated Type Support Files

	4.9.4 Using custom data-types in Connext DDS Micro Applications
	4.9.5 Customizing generated code
	4.9.6 Unsupported Features of rtiddsgen with Connext DDS Micro

	4.10 Threading Model
	4.10.1 Introduction
	4.10.2 Architectural Overview
	4.10.3 Threading Model
	OSAPI Threads
	UDP Transport Threads
	General Thread Configuration

	4.10.4 Critical Sections
	Calling DDS APIs from listeners

	4.11 Batching
	4.11.1 Overview
	4.11.2 Interoperability
	4.11.3 Performance
	4.11.4 Example Configuration

	4.12 Sending Large Data
	4.12.1 Overview
	4.12.2 Configuration of Large Data
	4.12.3 Limitations

	4.13 Zero Copy Transfer Over Shared Memory
	4.13.1 Overview
	4.13.2 Getting Started
	Writer Side
	Reader Side

	4.13.3 Synchronization of Zero Copy Samples
	4.13.4 Caveats
	4.13.5 Further Information

	4.14 FlatData Language Binding
	4.14.1 Overview
	4.14.2 Getting Started
	4.14.3 Further Information

	4.15 Security SDK
	4.15.1 Introduction
	4.15.2 Installation
	4.15.3 Examples
	4.15.4 Enabling RTI Security Plugins

	4.16 Building Against FACE Conformance Libraries
	4.16.1 Requirements
	Connext DDS Micro Source Code
	FACE Conformance Tools
	CMake

	4.16.2 FACE Golden Libraries
	Building the FACE Golden Libraries

	4.16.3 Building the Connext DDS Micro Source

	4.17 Working With Sequences
	4.17.1 Introduction
	4.17.2 Working with Sequences
	Overview
	Working with IDL Sequences
	Working with Application Defined Sequences

	4.18 Debugging
	4.18.1 Overview
	4.18.2 Configuring Logging
	4.18.3 Log Message Kinds
	4.18.4 Interpreting Log Messages and Error Codes

	5 Building and Porting
	5.1 Building the Connext DDS Micro Source
	5.1.1 Introduction
	5.1.2 The Host and Target Environment
	The Host Environment
	The Target Environment

	5.1.3 Overview of the Connext DDS Micro Source Bundle
	Directory Structure

	5.1.4 Compiling Connext DDS Micro
	Building Connext DDS Micro with rtime-make
	Manually Building with CMake

	5.1.5 Connext DDS Micro Compile Options
	Connext DDS Micro Debug Information
	Connext DDS Micro Platform Selection
	Connext DDS Micro Compiler Selection
	Connext DDS Micro UDP Options

	5.1.6 Cross-Compiling Connext DDS Micro
	5.1.7 Custom Build Environments
	Importing the Connext DDS Micro Code

	5.2 Porting RTI Connext DDS Micro
	5.2.1 Updating from Connext DDS Micro 2.4.8 and earlier
	5.2.2 Directory Structure
	5.2.3 OS and CC Definition Files
	5.2.4 Heap Porting Guide
	5.2.5 Mutex Porting Guide
	5.2.6 Semaphore Porting Guide
	5.2.7 Process Porting Guide
	5.2.8 System Porting Guide
	Migrating a 2.2.x port to 2.3.x

	5.2.9 Thread Porting Guide

	6 API Reference
	7 Release Notes
	7.1 Supported Platforms and Programming Languages
	7.2 Compatibility
	7.3 What’s New in 3.0.0.1
	7.3.1 New APIs to Serialize and Deserialize Samples
	7.3.2 Dynamic Memory allocations removed from the Dynamic Discovery Plugin

	7.4 What’s Fixed in 3.0.0.1
	7.4.1 Cannot build source with OSAPI_ENABLE_LOG=0
	7.4.2 DDS_Subscriber_create_datareader() was affected by the local_writer_allocation limit

	7.5 What’s New in 3.0.0
	7.5.1 Support for XCDR encoding version 2
	7.5.2 Large data streaming using RTI FlatData™ language binding and Zero Copy transfer over shared memory
	7.5.3 Support for RTI Security Plugins
	7.5.4 Large Data Types
	7.5.5 Asynchronous DataWriters
	7.5.6 Support for KEEP_ALL History
	7.5.7 Support for AUTOMATIC and MANUAL_BY_PARTICIPANT Liveliness
	7.5.8 Micro Application Generation
	7.5.9 Ability to use only one UDP port per DomainParticipant
	7.5.10 New C++ DPSE example

	7.6 What’s Fixed in 3.0.0
	7.6.1 Linker error when using shared libraries on VxWorks systems
	7.6.2 Failure to link VxWorks RTP mode using shared libraries compiled with CMake
	7.6.3 CPU endianness detection method improved
	7.6.4 Examples used untyped register_type APIs instead of typed APIs
	7.6.5 Wait_set generic error when returned condition sequence exceeded capacity
	7.6.6 WaitSet waited less than specified time period
	7.6.7 Samples with deserialization errors were accepted
	7.6.8 Potential wrong API used when using host name as peer

	7.7 Known Issues
	7.7.1 Flow Controllers require RTOS

	8 Copyrights
	9 Contact Support
	10 Join the Community

