
RTI® DDS Toolkit

Getting Started Guide

Version 2.0.0

© 2013-2017 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
March 2017.

Trademarks
Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the RTI
logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks or
service marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license
agreement.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: labview@rti.com
Website: https://support.rti.com/

https://support.rti.com/

CONTENTS

1 Installation
1.1 Introduction ... 1-1
1.2 Installing ... 1-1

1.2.1 Installing RTI DDS Toolkit Support Files on a Target.. 1-4
1.3 Verifying Installation .. 1-6

1.3.1 LabVIEW Functions Palette .. 1-7
1.3.2 LabVIEW Controls Palette... 1-8

1.4 Upgrading .. 1-8
1.4.1 Additional Steps when Upgrading from a Release Older than 2.0.0.104 1-9

1.5 Uninstalling.. 1-10
1.5.1 Uninstalling RTI DDS Toolkit Support Files from LabVIEW RT Targets1-11

1.6 LabVIEW Examples .. 1-12
1.7 Product Support .. 1-13

2 Communication Models
2.1 Publish/Subscribe – A Simple Analogy .. 2-2
2.2 The DDS Paradigm ... 2-3
2.3 Quality of Service (QoS) ... 2-4
2.4 DDS—Example Application.. 2-5

3 A Simple Read/Write Example
3.1 Publishing a String in DDS .. 3-2
3.2 Subscribing to a String in DDS.. 3-2
3.3 What is Happening? ... 3-3
3.4 Usage Notes ... 3-5

3.4.1 Preventing ‘Application Failed to Start’ Error when Opening Example VIs..................... 3-5
3.4.2 Communicating Unbounded Entities.. 3-5
3.4.3 Preventing 'Type Code Incorrect' Error when Working with Arrays.................................. 3-5
3.4.4 Troubleshooting with Ping and Spy... 3-6

4 Tutorial
4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric) 4-2

4.1.1 Developing a VI to Publish Simple Data (Numeric) ... 4-2
4.1.1.1 Create a Writer Object to Publish a Numeric (DBL) .. 4-2
4.1.1.2 Publish a Numeric (DBL)... 4-3
4.1.1.3 Release the Writer Object ... 4-4

4.1.2 Creating a VI to Subscribe to Simple Data (Numeric)... 4-4
iii

4.1.2.1 Create a Reader Object to Subscribe to a Numeric (DBL)..................................... 4-4
4.1.2.2 Subscribe to a Numeric (DBL)... 4-6
4.1.2.3 Release the Reader Object .. 4-7

4.1.3 Testing... 4-7
4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data

(Clusters) .. 4-8
4.2.1 Creating VIs for Publishing and Subscribing to a Cluster.. 4-9

4.2.1.1 Modify the Writer Example VI.. 4-10
4.2.1.2 Modify the Reader Example VI..4-11

4.2.2 Testing... 4-12
4.3 Lesson 3—Filtering Data .. 4-13

4.3.1 Filtering Data Using Query Conditions .. 4-13
4.3.2 Filtering Data Using ContentFilteredTopics ... 4-15

4.4 Lesson 4—Reading Only New Samples .. 4-17
4.5 Lesson 5—Using Keyed Types (RTI Shapes Demo) ... 4-19

4.5.1 Working with Shapes Demo.. 4-20
4.5.2 Publishing a Shape (Square).. 4-20
4.5.3 Subscribing to Shapes .. 4-22

4.6 Lesson 6—Used Nested and Multiple Keys.. 4-25
4.6.1 Adding Multiple Top-Level Fields as Keys .. 4-25
4.6.2 Adding Internal Cluster Fields as Keys (Nested Keys)... 4-26

4.7 Lesson 7—Reading All Samples (Reliable Communication).. 4-28
4.7.1 Writing and Reading Reliably Using the Default Configuration 4-28

4.7.1.1 Writing Reliably .. 4-28
4.7.1.2 Reading Reliably ... 4-29

4.7.2 Writing and Reading using Strict Reliability .. 4-31
4.7.2.1 Writing in Strictly Reliable Mode ... 4-32
4.7.2.2 Reading in Strictly Reliable Mode .. 4-32

4.8 Lesson 8—Debugging Your RTI Connext DDS Application... 4-34
4.8.1 Debugging an Application Using the Administration Panel ... 4-35

4.8.1.1 Logging Messages Manually... 4-36
4.8.1.2 Output Provided by RTI Monitor using Distributed Logger 4-36

4.8.2 Adapting a VI to Use RTI Monitoring Library ... 4-37
4.8.2.1 Output Provided by RTI Monitor... 4-38

4.9 Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)..................................... 4-40
4.10 Lesson 10—Using Security with RTI DDS Toolkit ... 4-44

4.10.1 Example Description .. 4-44
4.10.2 Description of VIs ... 4-45
4.10.3 Main Scenarios .. 4-46
4.10.4 Running the LabVIEW Example .. 4-46

4.11 Reviewing Completed Solutions... 4-47

5 Loading Quality of Service Profiles

6 Advanced Concepts and Settings
6.1 Default Configuration: DDS Entities Created by ‘Simple Create’ SubVIs.................................... 6-1
6.2 RTI DDS ComplexType Generator.. 6-3
6.3 Configuring Advanced Writer Settings ... 6-5
6.4 Configuring Advanced Reader Settings .. 6-6
iv

6.5 Debugging an RTI Connext DDS LabVIEW Application.. 6-7
6.5.1 Using Administration Panel (for Windows Systems only)... 6-8

6.5.1.1 Configuration Section... 6-10
6.5.1.2 DDS State Info.. 6-12
6.5.1.3 Debugging Table ... 6-12

6.5.2 Debugging SubVIs on Real-Time Targets and Windows Systems 6-12
6.5.2.1 Get Configuration Parameters .. 6-13
6.5.2.2 Set Configuration Parameters ... 6-13
6.5.2.3 Get DL Configuration Parameters.. 6-13
6.5.2.4 Configure Distributed Logger... 6-14
6.5.2.5 DDS State Info.. 6-14
6.5.2.6 Reading Logged Messages .. 6-14

6.5.3 Logging Messages from LabVIEW... 6-15
6.6 Enabling Security .. 6-16

6.6.1 Managing Custom Security Profiles with the Security Panel (Windows Systems) 6-17
6.6.1.1 Creating Custom Security Profiles ... 6-20
6.6.1.2 Deleting Custom Security Profiles.. 6-20
6.6.1.3 Load Custom Security Profile Values .. 6-20

6.6.2 Managing Custom Security Profiles with SubVIs.. 6-21
6.6.2.1 Creating Custom Security Profiles ... 6-21
6.6.2.2 Deleting Custom Security Profiles.. 6-21
6.6.2.3 Getting Custom Security Profiles List.. 6-21
6.6.2.4 Get Security Profiles Values .. 6-22

6.6.3 Creating DomainParticipants using a Custom Security Profile... 6-22
6.7 Advanced Filtering of Data—ContentFilteredTopics .. 6-23

6.7.1 Configuring ContentFilteredTopics ... 6-24

A VI Descriptions
A.1 Controls Palette Types ... A-1
A.2 Functions Palette .. A-3

A.2.1 Writer ... A-3
A.2.2 Reader.. A-4
A.2.3 Tools ... A-6

A.2.3.1 DDS Debugging SubPalette.. A-7
A.2.4 DDS Security Subpalette... A-9

B Creation and Release of DDS Entities

C Supported Data Types and Corresponding IDL
C.1 Corresponding IDL for Complex Data Types .. C-4

C.1.1 Clusters.. C-4
C.1.2 Enums.. C-5

D File Folders Installed within LabVIEW
D.1 File Folders on Windows Systems ... D-1
D.2 File Folders on NI Linux Targets.. D-2

E Troubleshooting
E.1 Enabling Debugging Mode..E-1
E.2 Error Codes and Possible Solutions..E-1
E.3 Running without an Active Network Interface ..E-9
v

E.4 Error Installing RTI DDS Toolkit RT Support ...E-10
E.5 Error Using Custom Security Profiles ..E-10
E.6 Error Generating ComplexType VIs ... E-11
vi

Chapter 1 Installation

1.1 Introduction
Developing heterogeneous distributed systems is a complex challenge. Individual subsystems
are often developed by independent teams, third parties, and legacy systems. These complexi-
ties can be substantially reduced by leveraging the combined power of RTI® Connext® DDS and
National Instruments® LabVIEW™.

By using LabVIEW and Connext DDS together, you can develop advanced and unique system
architectures to simplify system integration, data communication, network bandwidth manage-
ment, and redundancy.

This document will help you install and get started with RTI DDS Toolkit. The instructions
assume you are already familiar with the basics of using LabVIEW.

1.2 Installing
Notes:

❏ If you are upgrading RTI DDS Toolkit, skip to Upgrading (Section 1.4).

❏ You need administrator privileges to install the toolkit and to make it available to install
in RT targets.
1-1

Installing
To Install RTI DDS Toolkit:

1. Verify you have a supported version of LabVIEW already installed (see the Release Notes
for supported versions).

2. Login with administrator privileges.

3. Install the JKI LabVIEW VI Package Manager (VIPM) if you have not done so already
(available here: http://jki.net/vipm/download). It is typically installed in C:\Program
Files (x86)\JKI\VI Package Manager.

4. Make sure LabVIEW is not running.

5. Launch the VIPM in elevated mode.

6. Look for ‘RTI DDS’ in the search menu and double-click on RTI DDS Toolkit.

Note: In LabVIEW 2017, you will find a shortcut from the block diagram: select Data
Communication, RTI DDS Toolkit, Install, as seen below:
1-2

http://jki.net/vipm/download
http://jki.net/vipm/download
http://jki.net/vipm/download

Installing
7. Install RTI DDS Toolkit:

a. Select the LabVIEW version for which you want to install RTI DDS Toolkit.

If you have more than one version of LabVIEW installed, you will be able to select a
version from a drop-down list.

b. Select Install.

8. The VIPM will start the installation process and display a window similar to the one
below. You need to accept the license to proceed.

Note: When running the VIPM for the first time, the VIPM will test the connection to
LabVIEW and display the default port for LabVIEW. Select Test and allow the test to
complete.

During this step, the VIPM launches the LabVIEW version selected for the RTI DDS Tool-
kit installation. The LabVIEW application will appear in the Windows Task Bar at the bot-
tom of your screen. You may need to open the LabVIEW application from the Task Bar
and select Launch LabVIEW before the VIPM test times out.

9. If offered, select Finish when the installation is complete.
1-3

Installing
1.2.1 Installing RTI DDS Toolkit Support Files on a Target

Note: Your target will be rebooted as part of the installation process.

To install Real-Time target support for RTI DDS Toolkit:

RTI DDS Toolkit support files allow you to deploy VIs using RTI DDS Toolkit into your target. The
following instructions assume you have JKI VIPM and LabVIEW installed. The following
instructions assume you have installed successfully the RTI DDS Toolkit which is explained in
Installing (Section 1.2).

1. Launch NI MAX (Measurement & Automation Explorer).

2. Navigate to Remote Systems and select your target.

3. Go to Software and click on Add/Remove Software to launch the LabVIEW Real-Time
Software Wizard.

4. Login with administration privileges in your target.
1-4

Installing
5. In the LabVIEW Real-Time Software Wizard, select Custom software installation. A dia-
log will ask if you are sure you want to install customized software. Click yes.

6. Navigate to the RTI DDS Toolkit feature, click on the icon to the left of the name and
select Install the feature.

Note: If you are upgrading to a newer release, make sure you select the newest version
from the drop-down list on the right side (Available version(s) on the host).

7. Click Next and verify RTI DDS Toolkit is selected to be installed.

8. Click Next. The installation will start, then the target will automatically reboot.
1-5

Verifying Installation
After installation, RTI DDS Toolkit will appear in the installed Software list of your tar-
get.

1.3 Verifying Installation

1. Launch LabVIEW.

2. Select File, New VI.

3. From the Block Diagram’s View menu, open
the Functions Palette. From this palette, select
the down arrows at the bottom. Select Data
Communication and verify that you see RTI
DDS Toolkit.

For details, see LabVIEW Functions Palette
(Section 1.3.1).

4. From the Front Panel’s View menu, open the Controls
Palette. From this palette, select the down arrows at
the bottom. Select Addons and verify that you see RTI
DDS Toolkit.

For details, see LabVIEW Controls Palette (Section
1.3.2).

See also: Appendix D: File Folders Installed within
LabVIEW.
1-6

Verifying Installation
1.3.1 LabVIEW Functions Palette

RTI DDS Toolkit adds the following to the Data Communication section of the Block Diagram’s
Functions Palette:

❏ RTI DDS Toolkit

• Writer

• Simple Create Writer

• Advanced Create Writer

• Write

• Release Writer

• Set Writer QoS

• Reader

• Simple Create Reader

• Advanced Create Reader

• Read

• Release Reader

• Set Reader QoS

• Tools

• DDS Release Unused Entities

• DDS Time to LV Time

• DDS Debugging

• Get Configuration Parameters

• Set Configuration Parameters

• Get DL Configuration
Parameters

• Configure Distributed Logger

• Get DDS State

• Read One Logged Message

• Log New Message

• DDS Security

• Create Custom Security Profile

• Delete Custom Security Profile

• Get Custom Security Profiles List

• Get Security Profile Values
1-7

Upgrading
1.3.2 LabVIEW Controls Palette

RTI DDS Toolkit adds the following to the Addons section of the Front Panel’s Controls Palette:

❏ RTI DDS Toolkit
• RTI DDS Advanced Reader Configuration

• RTI DDS Advanced Writer Configuration

• DDS Sample Info

• DDS State Info

• RTI DDS Security Settings

• RTI DDS ContentFilteredTopic Info

• RTI DDS Filter Level

1.4 Upgrading
If you have already installed RTI DDS Toolkit and are upgrading to a newer release:

1. Login with administrator privileges.

2. Ensure that LabVIEW is not running.

3. Launch the VIPM in elevated mode, then:

a. Look for the ‘RTI DDS Toolkit’ latest version in the search bar.

b. (or) Select File, Open Package File(s) and open the latest RTI DDS Toolkit .vip file.

4. Upgrade RTI DDS Toolkit:

a. Select the LabVIEW version for which you want to upgrade RTI DDS Toolkit.

• If you have more than one version of LabVIEW installed, you will be able to select
the LabVIEW version from the LabVIEW version drop down list.

• The VIPM allows you to view all versions of RTI DDS Toolkit available to your sys-
tem by selecting *Browse All Versions in the lower-left corner.

b. Select Upgrade.

5. The VIPM will start the installation process. Select Continue to proceed.

6. If prompted, select Finish when the installation is complete.
1-8

Upgrading
1.4.1 Additional Steps when Upgrading from a Release Older than 2.0.0.104

If you are upgrading from a version older than 2.0.0.104, you must follow these steps to upgrade
your VIs to the newer version. Follow these instructions after upgrading the toolkit.

❏ The create Reader/Writer subVIs have been removed. Use the create simple/advanced
Reader/Writer subVIs instead. These VIs are included in the RTI DDS Toolkit/Reader
and RTI DDS Toolkit/Writer subpalettes.

❏ The Complex-Type Templates are no longer supported. Therefore, that subpalette has
been removed. Instead, you can use RTI DDS ComplexType Generator (Section 6.2).
1-9

Uninstalling
❏ The ForceNewDomainParticipant? flag from the Advanced Reader/Writer Configura-
tion has been deleted. If these clusters are not updated automatically, they need to be
updated manually. To do so, go to the Front Panel, right-click on the old cluster, select
Replace, RTI DDS Toolkit and choose the new cluster.

1.5 Uninstalling
To uninstall RTI DDS Toolkit:

1. Login with administrator privileges.

2. Ensure that LabVIEW is not running.

3. Launch the VIPM in elevated mode, then:

a. Scroll down to locate RTI DDS Toolkit.

b. Double-click on RTI DDS Toolkit to open the Package Information screen.

4. Select the LabVIEW version you want to work with from the LabVIEW version drop-
down list.
1-10

Uninstalling
Note: The VIPM allows you to
view all versions of RTI DDS
Toolkit available to your sys-
tem by selecting *Browse All
Versions in the bottom left-
hand corner.

5. Select Uninstall.

6. Select Continue.

7. If offered, select Finish when the VIPM finishes uninstalling RTI DDS Toolkit.

1.5.1 Uninstalling RTI DDS Toolkit Support Files from LabVIEW RT Targets

To uninstall LabVIEW RT support files for RTI DDS Toolkit:

1. Make sure no LabVIEW application is using the libraries on the target.

2. Launch NI MAX.

3. Navigate to Remote Systems and select your target.

4. Go to Software and click on Add/Remove Software to launch the LabVIEW Real-Time
Software Wizard.

5. Login with administrator privileges to your target.

6. In the LabVIEW Real-Time Software Wizard, select Custom software installation. A dia-
log will ask if you are sure you want to install customized software. Click yes.

7. Navigate to the RTI DDS Toolkit feature, click on the icon to the left of the name and
select Uninstall the feature.

8. Click Next and verify RTI DDS Toolkit is selected to be uninstalled.

9. Click Next. The uninstallation will start, then the target will automatically reboot.
1-11

LabVIEW Examples
1.6 LabVIEW Examples
RTI DDS Toolkit includes several examples which are used in later chapters. To access these
examples:

1. Select the LabVIEW Help menu.

2. Select Find Examples…

3. In the Browse tab, select the radio
button to browse according to
Directory Structure:

4. Scroll down and open the RTI DDS
Toolkit folder.

You will find the following examples:

❏ ClusterDemo: Shows how to handle complex types (such as clusters). It was created by
following the lessons in Chapter 4: Tutorial:

• Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data
(Clusters) (Section 4.2)

• Lesson 3—Filtering Data (Section 4.3)

• Lesson 4—Reading Only New Samples (Section 4.4)

❏ ContentFilteredTopicDemo: shows how to filter data using a ContentFilteredTopic. It
has been created by following Filtering Data Using ContentFilteredTopics (Section 4.3.2).

❏ cRIOProject: Shows how to use RTI DDS Toolkit on a cRIO 9068. It is explained in Lesson
9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example) (Section 4.9).

❏ LogMessagesDemo: Shows how to log debugging messages into the internal queue. It
was created by following Logging Messages Manually (Section 4.8.1.1).

❏ MonitoringDemo: Uses a QoS profile that enables RTI Monitoring Library. It was created
by following Adapting a VI to Use RTI Monitoring Library (Section 4.8.2).

❏ NumberDemo: Shows how to read and write a simple type (such as a numeric one). It
was created by following Lesson 1—Using DDS to Publish and Subscribe to Simple Data
(Numeric) (Section 4.1).

❏ ReadAllDemo: Shows how to read all available data by calling the Read function several
times and storing the data in an array without adding already existing samples. It is
explained in Lesson 7—Reading All Samples (Reliable Communication) (Section 4.7).

❏ SecurityShapesDemo: This example will show how to use different security profiles and
how they behave depending on the permissions they have. It is explained in Lesson 10—
Using Security with RTI DDS Toolkit (Section 4.10).

❏ ShapesDemo: Shows how to publish and subscribe to an already existing DDS applica-
tion: RTI Shapes Demo. It is explained in Lesson 5—Using Keyed Types (RTI Shapes
Demo) (Section 4.5).

❏ StringsDemo: Shows how to write a string. It is explained in Chapter 3: A Simple Read/
Write Example.

Note: If you see an error after opening one of the examples (such as “This application has failed to
start because its side by side configuration is incorrect”), see Section 3.4.3.
1-12

Product Support
1.7 Product Support
For technical support or questions about RTI DDS Toolkit, please visit the RTI Community portal
(http://community.rti.com).

If you have an RTI support subscription, please contact support@rti.com. If you do not have an
RTI support subscription, you can acquire one by contacting labview@rti.com.
1-13

http://community.rti.com

Chapter 2 Communication Models

This section provides an overview of middleware communication paradigms, including pub-
lish-subscribe, along with details of the OMG Data Distribution Service (DDS) standard.

Software applications are becoming increasingly distributed. A node in a distributed system
must access the right data, know where to send it, and deliver it to the right place at the right
time. Simplifying the access to this data would enable a whole new class of distributed applica-
tions. The challenge, especially in mission-critical and time-critical networks, is to quickly access
and disseminate information to many nodes.

Three major middleware communication paradigms have emerged to meet this need:

❏ Client/Server

❏ Message passing

❏ Publish/Subscribe

Client/Server is fundamentally a many-to-one design that works well for systems with central-
ized information, such as databases, transaction processing systems, and central file servers.
However, if multiple nodes generate information, client/server architectures require all the
information be sent to the server for later redistribution to the clients, resulting in inefficient cli-
ent-to-client communication.

The central server is a potential bottleneck and single-point of failure. It also adds inefficiencies
and unknown delay (and therefore indeterminism) to the system, because the receiving client
does not know when it has a message waiting, so it has to keep polling periodically.

Message Passing architectures work by implementing queues of messages. Processes can create
queues, send messages, and service messages that arrive. Message passing makes it easier to
exchange information between many nodes in the system. However, applications remain cou-
pled. Each message placed in a queue goes to a single consumer and the addition of new con-
sumers impacts the network.

In practice, applications find data indirectly by targeting specific sources (e.g., by process ID,
"channel", or queue name) on specific nodes. So this architecture does not address how applica-
tions know the location of a process/channel, what happens if that process/channel does not
exist, etc. The application must determine where to get data, where to send it, and when to per-
form the transaction. A message-passing architecture provides a model for the transfer of data,
but no model for the data itself.

Publish/Subscribe decouples the producers and consumers of the information. Producer pub-
lishes data they have and consumers subscribe to data based on their interests. The publish/
subscribe middleware infrastructure is responsible for delivering each message published to all
interested consumers. Applications remain decoupled because the presence of new consumers
2-1

Publish/Subscribe – A Simple Analogy
does not perturb existing consumers. Existing consumer’s requirements are met, regardless of
how many other consumers subscribe to the same data.

The fundamental communications model implies both discovery (i.e., what data should be sent)
and delivery (i.e., when and where to send the data). This design mirrors time-critical and mis-
sion-critical information delivery systems in everyday life (e.g., television, radio, magazines and
newspapers). The publish/subscribe network architecture is excellent at distributing large
quantities of time-critical information quickly, even in the presence of unreliable delivery mech-
anisms.

The publish/subscribe architecture maps well to high-performance and real-time communica-
tion challenges. Finding the right data becomes straightforward; nodes just declare their interest
once and the middleware handles all the details of the network and delivery. Sending the data
quickly is also inherent; publishers send data when the data is available. Publish/subscribe is
highly efficient because the data flows directly from source (publisher) to destination (sub-
scriber) without requiring intermediate servers, brokers, or daemons. Multiple sources and des-
tinations are easily defined within the model, providing inherent redundancy and fault
tolerance.

Data-Centric Publish/Subscribe (DCPS) middleware, such as the OMG Data Distribution Ser-
vice (DDS), defines a data model on top of the publish/subscribe infrastructure, allowing the
data to be structured. The schema of the data being published is declared by the application and
known to the middleware. Similar to the relational model in databases, each data type (a DDS
Topic) has an associated schema and a set of attributes that identify the ‘key’ for that Topic. Data
published on that Topic is understood by the middleware, allowing advanced capabilities such
as content-based filtering, last value (or history) caching, and applying fine-grained Quality of
Service (QoS) separately for each data-object written to the Topic.

In summary,

❏ Client/server middleware is best for centralized data designs and for systems where the
dominant communication patter is request-reply, such as file servers and transaction sys-
tems.

❏ Message passing, with its "send that there" semantics, maps well to systems with clear
and simple data-flow requirements, and requires the application to discover where data
resides.

❏ Publish/subscribe, by providing both discovery and messaging, decouples the produc-
ers and consumers effectively. DCPS middleware provides publish/subscribe services to
an application-defined data-model, allowing fine-grained control of QoS, enabling the
infrastructure to do smart-caching of the information and provide content and time fil-
tering at the source and destination. The data-centric architecture provides the best
decoupling between application components and is best suited for time-critical and mis-
sion critical distributed applications.

2.1 Publish/Subscribe – A Simple Analogy
The publish/subscribe communications model is analogous to that of a traditional magazine or
newspaper business model. A Topic represents the kind of publication (data or information), for
example “Newspaper” or “Magazine”. If we use the Newspaper as the model, the Key is used to
identify each different news corporation (“New York Times”, “San Francisco Chronicle”, “La
Strada”, “Le Monde”, etc.). The type specifies the format of the information (how it is encoded).
The user data is the contents (text and graphics) of each sample (weekly or daily issues). The
middleware is the distribution service (US Postal Service or a paper delivery service) that deliv-
2-2

The DDS Paradigm
ers the publication from where it is created (a printing house) to the individual subscribers (peo-
ple's homes). This analogy is illustrated in Figure 2.1.

Note that by subscribing to a publication, subscribers are requesting current and future samples
of that publication, so that as new samples are published, they are delivered without having to
submit another request for data. By specifying a content-filter on the value of the Key (the peri-
odical name in this case) a subscriber may indicate he only wants certain periodicals (e.g., yes to
the “New York Times” and “La Strada”, but no to others). Content filters could also select based
on other attributes in the data (e.g., select the ones written in a specific language, or coming from
a specific region). Time-based filters can be used to request only a subset of the samples (e.g.,
only the Sunday edition).

In this example, Quality of Service (QoS) parameters can be linked to delivery requirements;
only deliver the Sunday edition, the paper must be delivered by 7:00am, the paper must be in
the mailbox or on the porch, or delivered by certified mail with the subscriber signing receipt of
delivery.

QoS parameters specify how, where, and when the data is to be delivered, controlling not only
transport-level delivery properties, but also application-level concepts of fault tolerance, order-
ing, and reliability.

2.2 The DDS Paradigm
The Object Management Group (OMG) Data Distribution Service (DDS) standard the compre-
hensive specification available for publish/subscribe data-centric designs. The DDS publish/
subscribe model connects anonymous information producers (publishers) with information
consumers (subscribers). The overall distributed application is composed of processes called
"Participants," each running in a separate address space, and often on different computer or sys-
tem nodes. A Participant may simultaneously publish and subscribe to typed data-streams iden-
tified by a string name, these streams are called Topics in DDS. The model allows publishers and
subscribers to present type-safe interfaces to the application.

DDS defines a communications relationship between publishers and subscribers. The communi-
cations are decoupled in space (nodes can be anywhere—same node, a local node, or a geo-
graphically remote node), time (delivery may be immediate or controlled), and flow (delivery
may be reliable with a controlled bandwidth). To increase scalability, Topics may contain multi-
ple independent data channels identified by "Keys." This allows system nodes to subscribe too
many, possibly thousands, of similar data streams with a single subscription. When the data

Publisher

 Topic = "New York Times"

Subscriber

The publish/subscribe model is analogous to publishing magazines or newspapers. The
Publisher sends samples of a particular Topic to all Subscribers of that Topic.

Figure 2.1 An Example of Publish-Subscribe

Send Receive

Sample

Issue for Feb. 15

 Topic = "New York Times"

Delivery Service
2-3

Quality of Service (QoS)
arrives, the middleware can cache and sort data using the Key and deliver it for efficient pro-
cessing.

Additionally, DDS is fundamentally designed to work over unreliable transports, such as UDP,
wireless, or disadvantaged networks without the requirement for central servers or special
nodes. Direct, peer-to-peer communications, and support for reliable multicasting, enable a
highly efficient data distribution model.

2.3 Quality of Service (QoS)
Fine-grained control over QoS is a powerful feature of DDS. Each publisher/subscriber pair can
establish independent QoS agreements. Thus, DDS designs can support extremely sophisticated
and flexible data-flow requirements.

QoS parameters control most aspects of the DDS paradigm and the underlying communication
mechanisms. Many QoS parameters are implemented as “contracts” between publishers and
subscribers; publishers offer and subscribers request levels of service. The middleware is
responsible for determining if the offerer can satisfy the subscriber’s request, thereby establish-
ing communication, or indicating an incompatibility error. Ensuring that publish/subscribe
pairs meet the level-of-service contracts guarantees predictable operation. Information about
some common QoS parameters is presented below.

❏ Deadline: Periodic publishers can indicate the speed at which they can publish by offer-
ing guaranteed update deadlines. By setting a deadline, a compliant publisher promises
to send a new update on each key at a minimum rate. Subscribers may then request data
at that or any slower rate.

❏ Reliability: Publishers may offer levels of reliability, parameterized by the number of
past issues they can store for the purpose of retrying transmissions. Subscribers may then
request differing levels of reliable delivery, ranging from fast-but-unreliable "best effort"
to highly reliable in-order delivery. This provides per-data stream reliability control.

❏ Strength: The middleware can automatically arbitrate between multiple publishers of
the same data with a parameter called "strength." For each keyed data-object the sub-
scriber receives data only from the strongest active publisher of that key. This provides
automatic failover; if a strong publisher fails, all subscribers immediately receive updates
from the backup (weaker) publishers.

❏ Durability: Publishers can declare "durability," a parameter that determines how long
previously published data is saved. Late-joining subscribers to durable publications can
then be updated with a snapshot containing the most current set of values for each Key.

Other QoS parameters control when the middleware detects nodes that have failed, suggest
latency budgets, set delivery order, attach user data, prioritize messages, set resource utilization
limits, partition the system into namespaces, and more. The DDS QoS facilities offer extensive
flexibility and communications control.

RTI DDS Toolkit includes a set of predefined QoS profiles. These profiles are embedded in RTI
DDS Toolkit and cannot be modified. You can inherent from them. For your convenience, you
can find an XML file that shows you these profiles in C:/Program Files1/National Instruments/
LabVIEW 20xx/vi.lib/_RTI DDS Toolkit_internal_deps/RTI_LABVIEW_CONFIG.documen-
tationONLY.xml (where 20xx depends on your LabVIEW version). As the filename suggests,

1. On 64-bit systems, the folder is “Program Files (x86)”
2-4

DDS—Example Application
this file is for documentation purposes only. This file is not loaded by RTI DDS Toolkit, so updat-
ing it will not affect the embedded QoS profiles.

On RTI’s Community Forum (http://community.rti.com), you can find more information about
QoS properties and XML configuration, as well as the XSD schema.

2.4 DDS—Example Application
An air traffic control system provides sufficient details and requirements for as example applica-
tion. An air traffic control system may monitor and direct all flights over an entire continent. The
data distributed in such a system is in the form of aircraft tracks, which provides positional
information (e.g., course, speed, etc.) about an airplane. Components of an air traffic control sys-
tem would include radar systems, airplanes and air traffic control centers that provide current
flight status information through real-time displays.

Managing the correct distribution of data in such a system can be complex. Each radar system
can track many different airplanes, and each airplane may be tracked by more than one radar
system. Real-time access to this information is needed for displays at air-traffic control centers so
that air traffic controllers can make informed decisions. Air traffic controllers in the north-east
may only want aircraft track information in their area, so only a subset of data needs to be pro-
vide to them. Based on current local conditions (e.g., air traffic, weather, etc.) air traffic control-
lers may issue flight plan updates to the pilot in order to route around inclement weather and
other airplanes. Though a specific plane does not need flight plans from all other air planes, it
would be useful to have information about planes in the immediate vicinity.

Defining the air traffic control system in terms of publishers, subscribers and QoS parameters
reveals that DDS is a natural fit to address this data distribution problem. Each radar system can
be thought of as a publisher that publishes the "tracks" Topic which describes an airplane's posi-
tional information. Each airplane that the radar system is tracking can be thought of as an
"instance" of the track Topic identified by a unique Key attribute (e.g., the Airline name and
flight number). The real-time controller displays subscribe to the tracks Topic and publish "flight
plan" Topic updates back to the specific airplane. QoS parameters can be used to manage and
control deterministic behaviors and fault tolerance capabilities of the system.
2-5

http://community.rti.com

Chapter 3 A Simple Read/Write Example

The best way to learn about RTI DDS Toolkit is to begin building example applications. The fol-
lowing example VIs provide a quick introduction to the capabilities:

❏ RTI Connext DDS Read String.vi

❏ RTI Connext DDS Write String.vi

After reading this chapter, we recommend completing the lessons in Chapter 4: Tutorial for a
more in-depth look at the capabilities of RTI DDS Toolkit.

Note: The instructions for this example assume you are already familiar with LabVIEW.

Before continuing, please make sure you have the following software installed:

❏ LabVIEW (32-bit) for Windows (see the Release Notes for supported versions)

❏ RTI DDS Toolkit

If you are using a computer that does not have an active network interface, see Running without
an Active Network Interface (Section E.3).

We will start with the StringsDemo example VIs. To access the examples:

1. Launch LabVIEW.

2. From the LabVIEW Help menu, select Find Examples….

3. Select the Browse according to: Directory Structure radio button.

4. Scroll down and open the RTI DDS Toolkit
folder.

5. Open the StringsDemo folder.

Notes:

❏ If you see an error after opening one of the
examples (such as “This application has
failed to start because its side by side config-
uration is incorrect”), see Section 3.4.4.

❏ If the example VI seems blocked (the stop
button toggles, data does not transfer, etc.), you may have a linking issue in the VI. This
issue is very likely for LabVIEW 2010 users. Section 3.4.1 explains how to resolve this.
3-1

Publishing a String in DDS
3.1 Publishing a String in DDS

1. Open the RTI Connext DDS Write String.vi by double-clicking on it in the NI Example
Finder (select Help, Find Examples...).

2. Click the Run button in the LabVIEW toolbar.

3. From the LabVIEW Front Panel, enter some text (such as Hello DDS) in the Text field
and click the Enter Text button in the LabVIEW toolbar.

You are now writing (publishing) the string using DDS. Next we will read it from the RTI
Connext DDS Read String.vi.

3.2 Subscribing to a String in DDS

1. Open the RTI Connext DDS Read String.vi by double-clicking on it in the NI Example
Finder (select Help, Find Examples...).

2. Click on the Run button in the LabVIEW toolbar.
3-2

What is Happening?
3. Verify that it is reading the same string that is being published from the RTI Connext
DDS Write String.vi.

While both VIs are running, verify that if you change the text in the Text control of the RTI Con-
next DDS Write String.vi, you will read the new text in the RTI Connext DDS Read String.vi.
Remember to use the LabVIEW Enter Text button in the toolbar (rather than pressing Enter
or Return on your keyboard).

Note: Under the DDS publish/subscribe paradigm, knowing the location of the distributed
applications is handled by the middleware. In this example, we are running both the RTI Con-
next DDS Write String.vi and the RTI Connext DDS Read String.vi on the same computer,
using the Shared Memory transport for inter-application communication. However, if you were
to run these examples on different computers (with a functional LAN connection), DDS would
automatically handle the communication across the network.

3.3 What is Happening?
To better understand how this demonstration is implemented, let’s review the code for these
two VIs:

❏ Publisher side

The RTI Connext DDS Write String.vi uses three RTI DDS Toolkit subVIs:

• Simple Create Writer: Creates a Writer object for text (strings) and initializes it
according to the VI configuration parameters.

• Write: Receives as input the reference from the Writer object (Create Writer) and
the text to be published (the Text control). It will continue publishing the text
within a LabVIEW loop until an error occurs or the Stop Writing control is pressed.
3-3

What is Happening?
• Release Writer: When the Stop Writing control is pressed, the Release Writer subVI
will execute and release the Writer object.

For details on these subVIs, see Writer (Section A.2.1).

If you open the Block Diagram (in the RTI Connext DDS Write String Example window,
select Window, Show Block Diagram), it will look like this:

❏ Subscriber side

The RTI Connext DDS Read String.vi uses three RTI DDS Toolkit subVIs:

• Simple Create Reader: Creates a Reader object for text (strings) and initializes it
according to the VI configuration parameters.

• Read: Receives as input the reference from the Reader object (Create Reader). Out-
puts the Text indicator. It continues subscribing to the text within a LabVIEW loop
until an error occurs or the Stop Reading control is pressed.

• Release Reader: When Stop Reading control is pressed, the Release Reader subVI
will execute and release the Reader object.

For details on these subVIs, see Reader (Section A.2.2).

If you open the Block Diagram (in the RTI Connext DDS Read String Example window,
select Window, Show Block Diagram), it will look like this:

SimpleCreateWriter_String Write_String Release Writer

SimpleCreateReader_String Read_String Release Reader
3-4

Usage Notes
3.4 Usage Notes

3.4.1 Preventing ‘Application Failed to Start’ Error when Opening Example VIs

If you see an error when LabVIEW tries to load the RTI DDS Toolkit DLL (such as “This applica-
tion has failed to start because its side by side configuration is incorrect.”) after opening any of
the example VIs, you need to install the Microsoft Visual C++ 2008 Redistributable Package (x86).
This package provides the run-time components of the Visual C++ Libraries that are required to
run applications developed with Visual C++ on a computer that does not have the Visual C++
2008 development environment. You can download this package from http://www.micro-
soft.com/download/en/details.aspx?displaylang=en&id=29

3.4.2 Communicating Unbounded Entities

By default, strings in RTI DDS Toolkit are bounded so their maximum length is 1024 characters.
However, if you set the Advanced Reader/Writer Configuration flag forceUnboundedString to
true, they are created with a length equivalent to the maximum integer (2,147,483,647) (see Les-
son 6—Used Nested and Multiple Keys (Section 4.6)). Despite that, DDS only sends the actual
data the string contains, automatically reducing the sample size.

However, if you create a DataWriter of an unbounded type, it will not communicate with a
DataReader of a bounded type out of the box. RTI DDS Toolkit sets the following property in all
its DomainParticipants:

<participant_qos>
 <property>
 <value>
 <element>
 <name>
 dds.type_consistency.ignore_sequence_bounds
 </name>
 <value>1</value>
 </element>
 </value>
 </property>
</participant_qos>

This property allows bounded DataReaders to communicate with unbounded DataWriters. Set
this property in your external DDS applications that need to communicate with RTI DDS Toolkit
applications.

To Achieve Backward Compatibility:

If you need to create a bounded string, do not set to true the flag forceUnboundedString in the
Advanced Reader/Writer Configuration controls. Setting this flag will force all strings to be
unbounded.

3.4.3 Preventing 'Type Code Incorrect' Error when Working with Arrays

If you are forcing the usage of arrays, you may get an error when reading/writing them. To pre-
vent this error, use sequences instead. Sequences, as well as LabVIEW arrays, can be resized and
will not cause this error. Sequences are the default mapping of LabVIEW arrays.
3-5

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29

Usage Notes
If you must use arrays:

When using an array as the input or output for one of the RTI DDS Toolkit subVIs, you will need
to initialize the array to its maximum size. Arrays within clusters must also be initialized to their
maximum size. The resize functionality available in LabVIEW is not compatible with RTI DDS
Toolkit.

To increase the size of an array, drag down on the bottom of the last element until you’ve
reached the largest number of elements you need. Then assign a default value to each new ele-
ment. It is usually sufficient to add one element at the end of the array.

3.4.4 Troubleshooting with Ping and Spy

If data is not flowing between the writer and reader, we suggest running the Connext DDS Ping
and Spy utilities; they can show you what data is flowing through the network. These utilities
are provided with the Connext DDS core1.

If you do not have Connext DDS installed, you can download RTI Connext DDS Professional from
www.rti.com/downloads. Once you’ve installed RTI Connext DDS Professional, you can access
DDS Ping and DDS Spy from RTI Launcher2 (in the Utilities tab).

For help using Ping and Spy, see the Connext DDS API Reference HTML documentation. For
5.1.0 and lower versions, open <Connext DDS core installation directory>/ndds.<version>/
ReadMe.html. However if you are using 5.2.0 or a higher version, look for the file <Connext
DDS core installation directory>\ReadMe.html. The documentation is also available here:
http://community.rti.com/documentation. Choose an API (C, C++, .NET, or Java), then select
Modules, Programming Tools.

You can also use RTI Distributed Logger to help debug your applications. Distributed Logger
enables applications to publish their log messages to Connext DDS. The log message data can be
visualized with RTI Monitor, a separate GUI application that can run on the same host as your
application or on a different host. Since the data is provided in a Topic, you can also use DDS
Spy or even write your own visualization tool.

RTI Monitor is included in RTI Connext DDS Professional. You can download a free trial from
http://www.rti.com/downloads/index.html. For information about RTI Monitor, see https://
www.rti.com/products/dds/tools#MONITOR.

1. In the <Connext DDS installation directory>/ndds.<version>/scripts (5.1.0 or lower) or <Connext DDS installa-
tion directory>/bin (5.2.0 or higher), look for rtiddsping and rtiddsspy.

2. RTI Launcher is a GUI-based tool provided with RTI Connext DDS Professional.
3-6

http://community.rti.com/documentation
www.rti.com/downloads
http://www.rti.com/downloads/index.html
https://www.rti.com/products/dds/tools#MONITOR
https://www.rti.com/products/dds/tools#MONITOR

Chapter 4 Tutorial

This tutorial will help you become familiar with several key capabilities of RTI DDS Toolkit. The
tutorial assumes you have the following software installed:

❏ National Instruments LabVIEW 2015 SP1 (32-bit) or later for Windows systems

❏ RTI DDS Toolkit for National Instruments LabVIEW 2015 SP1 (32-bit) or higher for Win-
dows systems

The tutorial includes these lessons:

❏ Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric) (Section 4.1)

❏ Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data
(Clusters) (Section 4.2)

❏ Lesson 3—Filtering Data (Section 4.3)

❏ Lesson 4—Reading Only New Samples (Section 4.4)

❏ Lesson 5—Using Keyed Types (RTI Shapes Demo) (Section 4.5)

❏ Lesson 6—Used Nested and Multiple Keys (Section 4.6)

❏ Lesson 7—Reading All Samples (Reliable Communication) (Section 4.7)

❏ Lesson 8—Debugging Your RTI Connext DDS Application (Section 4.8)

❏ Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example) (Section 4.9)

❏ Lesson 10—Using Security with RTI DDS Toolkit (Section 4.10)

We encourage you to follow along and perform the steps in each lesson yourself—there is no
better teacher than hands-on experience. However, completed solutions are provided; see
Section 4.11.

Notes:

❏ These lessons assume you are familiar with LabVIEW.

❏ For debugging information, see Enabling Debugging Mode (Section E.1)
4-1

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data
(Numeric)
In this first lesson, you will become familiar with the RTI DDS Toolkit functions and capabilities
by creating two LabVIEW VIs that can publish and subscribe to data. You can run these VIs on
the same computer or separate computers connected to the same local area network. RTI DDS
Toolkit will automatically discover the location of each application and handle communication in
either scenario without any changes to the VIs.

4.1.1 Developing a VI to Publish Simple Data (Numeric)

Let’s start by developing a VI to publish a simple data type: the value of a double-precision
numeric control, a LabVIEW Numeric (DBL).

4.1.1.1 Create a Writer Object to Publish a Numeric (DBL)

1. Launch LabVIEW and create a new VI. Select File, New VI. Save the new VI with the
name Tutorial_Write_Double.vi.

2. Open the Block Diagram’s Functions Palette
(right-click on an open area) and select Data
Communication, RTI DDS Toolkit, Writer; drag
and drop the Simple Create Writer subVI into
the Block Diagram.

3. The Simple Create Writer subVI has the following
input parameters:

• Domain Id

• Topic Name

• Data Type

• error in (no error)

For details on these parameters, see Writer (Sec-
tion A.2.1).

We will use this subVI to create a Writer object
that can publish a data type of Numeric (DBL).
We will use domain ID 0 and our Topic Name
will be Hello LV Double. To begin:

a. Right-click on the Create Writer subVI and select Select Type, Numeric (DBL)

b. Right-click on each input node (except error in (no error)) and select Create, Con-
stant. This will create a default constant for that input parameter. Set each input
parameter as follows (right-click on each and select Edit...):

• Domain Id = 0

• Topic Name = Hello LV Double

• Data Type = 0

c. For error in, right-click and select Create, Control.
4-2

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
The resulting Block Diagram should look similar to this:

4.1.1.2 Publish a Numeric (DBL)

The next step is to add the functionality to publish values to the DDS network. We will use the
Write subVI.

1. Open the Functions Palette and select Data Communication, RTI DDS Toolkit, Writer,
Write; drag and drop the Write subVI into the Block Diagram.

The Write subVI has the following input parameters:

• DDS Object Ref in

• Data

• error in

For details on these parameters, see Writer (Section A.2.1).

2. Wire the DDS Object Ref output of the Create Writer subVI (from Section 4.1.1.1) to the
DDS Object Ref in input of the Write subVI.

3. We will publish the value of a Horizontal Pointer Slide control
(numeric control). Drop a Horizontal Pointer Slide control onto
the Front Panel from the Controls Palette. In the Block Dia-
gram, wire the Pointer Slide to the Write subVI’s Data input
node. Rename the slide control to Data.

4. To continuously publish the Pointer Slide value, add a While Loop around the Write subVI
in the Block Diagram. From the Functions Palette:

a. Select Programming, Structures, While Loop.

b. Use the left mouse button to drag and include both the Write subVI and the Horizontal
Pointer Slide control in the While Loop.

c. You may also add a Wait Until Next ms Multiple subVI (under Programming, Timing
from the Functions Palette) inside the While Loop if you want to specify a rate at which
Write will publish the value.

5. Add a Stop Button boolean to the Front Panel and wire it to the While Loop stop function
in the Block Diagram. The resulting Block Diagram should look similar to this:
4-3

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
4.1.1.3 Release the Writer Object

The final step in our Tutorial_Write_Double.vi is to release the DDS entities and reclaim the sys-
tem resources when the While Loop is terminated. To do this, we use the Release Writer subVI in
the Block Diagram.

1. From the Functions Palette, select Data Communication, RTI DDS Toolkit, Writer,
Release Writer; drag and drop the Release Writer subVI into the Block Diagram.

2. Configure its input parameters:

• DDS Object Ref

• error in

For details on these parameters, see Writer (Section A.2.1).

Wire the Write subVI’s output to the Release Writer’s inputs. The resulting Block Diagram
should look similar to this:

3. Save the file Tutorial_Write_Double.vi.

4. We recommend including error handling in your VIs. Take the above figure as an exam-
ple: we use error handler’s status to control the loop exit condition.

4.1.2 Creating a VI to Subscribe to Simple Data (Numeric)

In Section 4.1.1, you learned how to develop a LabVIEW VI to use DDS to publish a simple data
type, the value of a numeric (DBL). In the second part of the lesson, you will see how to develop
an equivalent VI to read the published data.

4.1.2.1 Create a Reader Object to Subscribe to a Numeric (DBL)

1. Launch LabVIEW and create a new VI. (In LabVIEW 2015 SP1, select File, New VI.) Save
the new VI with the name Tutorial_Read_Double.vi.
4-4

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
2. Open the Functions Palette (right-click on an open area in the Block Diagram), then select
Data Communication, RTI DDS Toolkit, Reader. Drag and drop the Simple Create Reader
subVI into the Block Diagram.

3. The Simple Create Reader subVI has the following input parameters:

• Domain Id

• Topic Name

• Data Type

• error in (no error)

For details on these parameters, see Reader (Section A.2.2).

We will use this subVI to create a Reader object that can subscribe to a data type of
Numeric (DBL). We will use domain ID 0 and our Topic Name will be Hello LV Double.
To begin:

a. Right-click on the Create Reader subVI and select Select Type, Numeric (DBL).

b. Right-click on each input node (except error in (no error)) and select Create, Con-
stant. This will create a default constant for that input parameter. Set each input
parameter as follows (by right-click on each and select Edit...):

• domain id = 0

• topic name = Hello LV Double

• data type = 0

c. Right-click on error in and select Create, Control.

The resulting Block Diagram should look similar to this:
4-5

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
4.1.2.2 Subscribe to a Numeric (DBL)

The next step is to add the functionality to subscribe to the values from the DDS network. We
will use the Read subVI.

1. To insert the Read subVI into your Block Diagram, open the Functions Palette and:

a. Select Data Communication, RTI DDS Toolkit, Reader, Read; drag and drop the
Read subVI into the Block Diagram.

b. Right-click on the Read subVI and select Select Type, Numeric (DBL).

Read takes the following input parameters.

• DDS Object Ref in

• Query Condition

• Only New Samples

• error in (no error)

For details on these parameters, see Writer (Section A.2.1).

2. Wire the Create Reader subVI’s DDS Object Ref output node to the Read subVI’s DDS
Object Ref in input node.

3. In this example, we will subscribe to the Numeric (DBL)
published by the Tutorial_Write_Double.vi. To display
the data, drop a Vertical Fill Slide control onto the Front
Panel from the Controls Palette. In the Block Diagram,
right-click on the Vertical Fill Slide control and select
Change to Indicator, then wire the Read subVI’s data out-
put node to the Vertical Fill Slide.

4. We want to continuously subscribe to the Numeric (DBL). To do so, add a While Loop
around Read in the Block Diagram. From the Functions Palette:

a. Select Programming, Structures, While Loop.

b. Use the left mouse button to drag and include both the Read subVI and the Vertical Fill
Slide control in the While Loop.

c. You may also add a Wait Until Next ms Multiple function (in the Functions Palette,
under Programming, Timing) inside the While Loop if you want to specify a rate at
which Read will subscribe to the data.

5. Add a Stop Button boolean to the Front Panel and wire the boolean to the While Loop stop
function in the Block Diagram. The resulting Block Diagram should look similar to this:
4-6

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
4.1.2.3 Release the Reader Object

The final step in our Tutorial_Read_Double.vi is to release the DDS entities and reclaim the sys-
tem resources when the While Loop execution is terminated. To do this, we use the Release Reader
subVI in the Block Diagram.

1. From the Functions Palette, select Data Communication, RTI DDS Toolkit, Reader,
Release Reader; drag and drop the Release Reader subVI into the Block Diagram.

2. Configure its input parameters:

• DDS Object Ref

• error in

For details on these parameters, see Reader (Section A.2.2).

Wire the Read subVI’s outputs to corresponding inputs in the Release Reader subVI.

The resulting Block Diagram for Tutorial_Read_Double.vi should look similar to this:

3. Save the file Tutorial_Read_Double.vi.

4. We recommend including error handling to your VIs. Please see Section 4.2 and
Section 4.3 for further details.

4.1.3 Testing

Now that both VIs are ready, we can verify that they work as expected.

1. Open both VIs, Tutorial_Write_Double.vi and Tutorial_Read_Double.vi, and click the
Run arrow button in the toolbar in each.

2. Verify that you are reading exactly the same Numeric (DBL) value in
Tutorial_Read_Double.vi that is being published from Tutorial_Write_Double.vi.
4-7

Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters)
While both VIs are running, you can change the value of the Horizontal Fill Slide control in
Tutorial_Write_Double.vi and see how the Vertical Fill Slide indicator displays the new values in
Tutorial_Read_Double.vi.

These VIs might execute in the same computer or on separate computers connected to the same
local area network. Either way, RTI DDS Toolkit will allow the VIs communicate without any
changes to the application VIs. This capability is known as ‘location transparency.’

4.2 Lesson 2—Using ComplexType Generator to Publish and
Subscribe to Complex Data (Clusters)

In this lesson, you will become familiar with the RTI DDS Toolkit
functions and capabilities to publish and subscribe to complex types
such as clusters or enumerators.

Note: Only 32-bit enumerators are supported. To change the repre-
sentation, right-click in the enum and select Representation—>32.

We are going to focus on the cluster use-case. Let’s begin by devel-
oping a VI that can publish the cluster defined in Figure 4.1.

First, we will define a new type (a LabVIEW Type-Def) for this clus-
ter:

1.Launch LabVIEW and create a new Custom Control: Select File,
New…, Other Files, Custom Control.

2.Choose Type Def. from the Control drop-down list in the toolbar:

3. Draw an empty cluster. From the Controls Palette:

a. Select Modern

b. Select Array, Matrix & Cluster

c. Select Cluster

d. Rename the cluster complexType (right-click and select Properties).

Note: See Preventing 'Type Code Incorrect' Error when Working with Arrays (Section
3.4.3).

Figure 4.1 Complex Type
4-8

Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters)
4. Fill the complexType cluster as shown in Figure 4.1. This process is simple: drag the fol-
lowing controls from the Palette:

a. String Control labeled as Text.

b. Numeric Control with Representation I32 labeled as I32_Num (once you have
selected a Numeric Control, right-click on it and select Representation and change it
to I32).

c. Numeric Control with Representation I64 labeled as I64_Num.

d. Numeric Control with Representation U16 labeled as U16_Num.

e. Array of Numeric Controls with Representation SGL labeled as Sgl_Array.

Note: LabVIEW arrays are mapped as bounded DDS sequences (or arrays if the flag
forceArrayMapping is marked in the Advanced Reader/Writer Configuration con-
trol). The sequence bound or length is calculated from the LabVIEW array size. Make
sure you declare your array to be the maximum size you will need.

f. Cluster inside the first one labeled as innercluster. Fill innercluster as shown in
Figure 4.1.

5. When the cluster definition is complete, save this new control type as
Tutorial_Cluster.ctl.

4.2.1 Creating VIs for Publishing and Subscribing to a Cluster

In this section, we will demonstrate how to create a set of subVIs to publish and subscribe a clus-
ter using DDS. In order to do that, we will use the DDS ComplexType Generator (see RTI DDS
ComplexType Generator (Section 6.2) for further information):

1. Open the RTI DDS ComplexType Generator from the Tools / RTI DDS Toolkit menu.

2. Choose the following information:

a. Type of Generation: Advanced.
4-9

Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters)
b. Save the Type Definition: Yes (Note: this may trigger a conflict if your previous type
definition has been loaded by LabVIEW).

c. Path to the Custom Type Definition: Path to the Type Definition you want to use for
creating this set of subVIs).

Note: If your type contains any arrays, make sure the arrays have been declared with
the maximum size you will need. If the array size changes, you will need to regener-
ate your VIs.

d. Output Directory: The folder where these files will be generated.

e. Generate Example VIs: TRUE. (Note: this will enable the Domain ID and the Topic
Name controls).

f. Domain ID: Leave this at 0.

g. Topic Name: The topic name to HelloComplex.

3. Press Generate Code (this button will be enabled when the Path to the Custom Type Def-
inition and the Output Directory controls have values).

4. Press the STOP button.

Several new VIs will be created in the output directory:

❏ Tutorial_Cluster Create Advanced Reader.vi

❏ Tutorial_Cluster Create Advanced Writer.vi

❏ Tutorial_Cluster Read.vi

❏ Tutorial_Cluster Reader Example.vi

❏ Tutorial_Cluster Write.vi

❏ Tutorial_Cluster Writer Example.vi

4.2.1.1 Modify the Writer Example VI

Open Tutorial_Cluster Writer Example.vi and change the advanced setting using the Advanced
Writer Configuration control:

1. Disconnect the Advanced Writer Configuration from the Tutorial_Cluster Create Advanced
Writer VI.

2. Right-click on Advanced Writer Configuration and select Cluster, Class, & Variant Pal-
ette, then Bundle by Name.

3. Create three fields in Bundle by Name and select values typeName, keyName and,
optionally, dataWriterQoSProfile.

4. Set typeName to ComplexType and keyName to Text. Optionally, set the QoS Profile to
LabVIEWLibrary::DefaultProfile.

Note: For details on Advanced Settings, see Chapter 6: Advanced Concepts and Settings.
4-10

Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters)
The resulting Block Diagram should look similar to this:

5. Save the file Tutorial_Cluster Writer Example.vi.

4.2.1.2 Modify the Reader Example VI

Open the Tutorial_Cluster Reader Exam-
ple.vi and change the Advanced Reader
Configuration control the same way
explained in Modify the Writer Example
VI (Section 4.2.1.1).

Note: For details on Advanced Settings,
see Chapter 6: Advanced Concepts and
Settings.

1. Delete the ContentFilteredTopic Info control, since we are not going to use it in this les-
son (See Filtering Data Using ContentFilteredTopics (Section 4.3.2)).

2. Optionally:

• Wire a DDS Sample Info indicator to the Tutorial_Cluster Read subVI.

• Wire a false boolean constant to the Only New Samples input of the Tutorial_Cluster
Read subVI.

The resulting Block Diagram should look similar to this:
4-11

Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters)
3. Save the file Tutorial_Cluster Reader Example.vi.

4.2.2 Testing

Now that both VIs are ready, you are ready to verify they work as expected.

1. Open Tutorial_Cluster Reader Example.vi and Tutorial_Cluster Writer Example.vi.
Then run each VI.

2. Verify that you can read exactly the same values for each member of the cluster in
Tutorial_Cluster Reader Example.vi, being published from Tutorial_Cluster Writer
Example.vi.

With both VIs running, you can change the value of the published cluster in
Tutorial_Cluster Writer Example.vi and see the values update.

3. Create a constant in the Tutorial_Cluster Read subVI’s input pin named Only New Sam-
ples and set it to false. Then modify the value for Text in the Writer. You will see it flicker
on the Reader side between the previous and current values. This is the expected behavior
because Text is our cluster’s key. This means that a new instance is created for each Text
value provided. Even after reading the sample, the received instance is still alive, so it
can be reached from the Reader. See Lesson 4—Reading Only New Samples (Section 4.4)
to learn more about this.
4-12

Lesson 3—Filtering Data
4.3 Lesson 3—Filtering Data
In this lesson you will learn how a subscriber can filter data available on the DDS network. First
we will filter by using a Query Condition. Then, we will use a ContentFilteredTopic.

This lesson assumes you have successfully completed Lesson 2—Using ComplexType Generator
to Publish and Subscribe to Complex Data (Clusters) (Section 4.2).

4.3.1 Filtering Data Using Query Conditions

1. Open Tutorial_Cluster Reader Example from Lesson 2 and save it as a new VI named
Tutorial_Filter_Cluster.vi. The Block Diagram should look similar to this:

With DDS, you can filter network data by subscribing to only the Topics of interest.
Additionally, DDS provides the capability to filter data within a Topic by specifying a
query condition for the data to match. The syntax of this Query Condition is similar to
standard SQL queries. We will demonstrate how to filter data with various query condi-
tions.

2. Replace the Read subVI’s query condition input constant with a text control that we can
modify while executing the VI. Right-click on the constant wired to the query condition
input of the Read subVI.

3. Select Change to Control.
4-13

Lesson 3—Filtering Data
4. Verify that the new Query condition
text control is available on the Front
Panel, as seen in the figure on the right.

5. Save to file Tutorial_Filter_Cluster.vi.

Now we can use filters to specify a Query condi-
tion at run time and subscribe to only the Topic
data we desire. Let’s test how it works:

6. Run Tutorial_Write_Cluster.vi to begin
publishing the complex data type (clus-
ter).

7. Run Tutorial_Filter_Read.vi. As you
will see, all the published data is read by
the Tutorial_Read_Cluster.vi. This is
because the Query condition text con-
trol is blank and no query condition is
being applied.

Note: DDS is content aware. That is, each Topic
and its data type(s) are known by the middle-
ware. This provides robust application support through capabilities such as content filtering,
queries, and advanced tooling.

We will now filter data by content; for example, only read those samples where the cluster field
is equal to “valid text”:

8. With the VIs running, enter the following filter text in the Query condition text control:

“Text = ‘valid text’”

Note: See the screenshot below for the exact Query condition entry.

9. Change the Text data in Tutorial_Write_Cluster.vi to “valid text” and modify the value
of some of the other types. Verify that you are reading “valid text” and get updated val-
ues of the other types in the reader VI.

10. Verify that when you enter any other text in the Writer VI Text field, you do not see “valid
text” or the updated values of other types in the Reader VI.
4-14

Lesson 3—Filtering Data
11. Here are a few other example Query Conditions you can try:

• “I32_Num > 0”

• “innercluster.Boolean = TRUE”

• “innercluster.Boolean = TRUE and Text = ‘valid text’”

• “innercluster.Boolean = TRUE or Text = ‘valid text’”

4.3.2 Filtering Data Using ContentFilteredTopics

In this section we will learn how to use ContentFilteredTopics. This allows us to filter the data in
the publisher side. See Advanced Filtering of Data—ContentFilteredTopics (Section 6.7) for fur-
ther details.

This lesson assumes you have successfully completed the previous lesson in Filtering Data
Using Query Conditions (Section 4.3.1).

1. Open Tutorial_Read_Cluster.vi from Lesson 3 and save it as a new VI named
Tutorial_Content_Filter_Cluster.vi.

With DDS, you can filter network data by subscribing to only the Topics of interest.
Additionally, DDS provides the capability to filter data within a Topic by using a Con-
tentFilteredTopic. A ContentFilteredTopic will not only makes possible to subscribe to
topics but also specify that you are only interested in a subset of the Topic’s data.

2. Add a Content Filtered Topic (if it doesn’t exist).

a. Create a new control in the front panel, right-click, select RTI DDS Toolkit, RTI DDS
ContentFilteredTopic Info. Or in the block diagram, right-click on the pin called
ContentFilteredTopic Info. Click on Create->Control. This will create a ContentFil-
teredTopic with the default configuration.

b. Create your own filter by filling in the ContentFilteredTopic Name and Filter Expres-
sion and attaching those parameters to a Bundle by name function, or by filling out
the ContentFilteredTopic Info cluster on the front panel.

Note: For details on Advanced Settings, see Configuring Advanced Reader Settings
(Section 6.4).

c. Connect it to the Advanced Create Reader subVI.
4-15

Lesson 3—Filtering Data
3. Save to file Tutorial_Content_Filter_Cluster.vi. The resulting block should look similar
to this:

The ContentFilteredTopic has been configured to read only the samples whose ‘Text = alas’.
Let’s test how it works:

4. Run Tutorial_Writer_Cluster.vi to begin publishing the complex data type (cluster).

5. Verify that you are receiving the samples whose Text value is ‘alas’.

6. Change several parameters of the cluster that is sent in the Tutorial_writer_cluster.vi,
also modify Text to have the value ‘alas2’.

7. Check that no samples are received.

8. Change the Text parameter back to ‘alas’.

9. Verify that you are receiving correct samples again and they contain the correct values.

The following picture shows how a Reader Cluster (left) created with a ContentFilteredTopic
only receives samples that meet the filter condition from the Writer Cluster (right).
4-16

Lesson 4—Reading Only New Samples
10. Here are a few other filter examples you can try:

• “I32_Num > 0”

• “innercluster.Boolean = TRUE”

• “innercluster.Boolean = TRUE and Text = ‘valid text’”

• “innercluster.Boolean = TRUE or Text = ‘valid text’”

4.4 Lesson 4—Reading Only New Samples
In this lesson you will learn how a subscriber can read every received data or only those that
have not been read yet. This lesson assumes you have successfully completed Lesson 2—Using
ComplexType Generator to Publish and Subscribe to Complex Data (Clusters) (Section 4.2).

1. Open Tutorial_Cluster Reader Example.vi from Lesson 2—Using ComplexType Genera-
tor to Publish and Subscribe to Complex Data (Clusters) (Section 4.2) and save as a new
VI with the name Tutorial_Only_New_Read.vi. The Block Diagram should look similar
to this:

With DDS, you can select whether you want to subscribe to all the available samples in
the Reader queue or just to the new ones. Using the Read subVI’s Only New Sample's input,
we can modify this behavior. When set to true, only those samples that have not been
read before are returned. When set to false, this indicates we want to re-read old sam-
ples, even if we read them in the past. This lesson will demonstrate how this feature may
affect your system.

2. Replace the Read subVI’s Only New Samples input constant with a boolean control that we
can modify while executing the VI. Right-click the constant wired to the Only New Sam-
ples input of the Read subVI.

a. Select Change to Control.

b. Verify that the new Only New Samples boolean control is available on the Front Panel.

c. Save to file Tutorial_Only_New_Read.vi.

Now you can specify whether you want to subscribe to new samples or to any available
one. Let’s test how it works:

3. If the DDS Sample Info is not visible on the Front Panel, make it visible by right-clicking
on it in the Block Diagram and selecting Show indicator.
4-17

Lesson 4—Reading Only New Samples
4. Set Only New Samples to false.

5. Run Tutorial_Only New_Read.vi and Tutorial_Cluster Writer Example.vi. As you will
see, all the published data is read by Tutorial_Only_New_Read.vi.

6. Modify the Text field, which is a key, in the Writer. The values in the Reader will flicker
from the new value to the previous one. In fact, in the DDS Sample Info control, you will
see that the data that is no longer published has its DDS_SampleStateKind set to
DDS_READ_SAMPLE_STATE, while the new one value is set to
DDS_NOT_READ_SAMPLE_STATE. Now we are reading any alive sample published
by the Writer, even if we had already read it.

Old Sample New Sample
4-18

Lesson 5—Using Keyed Types (RTI Shapes Demo)
7. Change the Only New Samples control to True. Now we are only reading the latest pub-
lished value. Take into account that only one data sample is read each time we call the
Read subVI (see Lesson 7—Reading All Samples (Reliable Communication) (Section 4.7)).

Note: A different approach is to use Exclusive Readers and 'take' to guarantee that the
data will only be read once (see Default Configuration: DDS Entities Created by ‘Simple
Create’ SubVIs (Section 6.1) and Writing and Reading using Strict Reliability (Section
4.7.2)).

4.5 Lesson 5—Using Keyed Types (RTI Shapes Demo)
In this lesson, we will explain the value of Keys in our data-type definition and introduce the
powerful concept of DDS Topic instances.

We will use RTI Shapes Demo in this lesson. RTI Shapes Demo is a powerful example application to
demonstrate the many capabilities of DDS as well as an easy way to quickly communicate with
an external DDS application.

Shapes Demo can publish and subscribe to colored, moving shapes (squares, circles, and trian-
gles). It supports a wide range of QoS parameters.

To complete this lesson, you need to install Shapes Demo, which you can download from
www.rti.com/downloads. The Shapes Demo User’s Manual is included with the installation.

Note: Shapes Demo uses a default domain ID of 0, which is the same domain ID used by the
example VIs in this document. If you use a different domain ID for the VIs, you will also need to
change the domain ID for Shapes Demo (see the Shapes Demo User’s Manual for instructions).
4-19

www.rti.com/downloads

Lesson 5—Using Keyed Types (RTI Shapes Demo)
4.5.1 Working with Shapes Demo

Shapes Demo allows you to publish and subscribe different shapes (the DDS Topic for this exam-
ple). A ‘ShapeType’ data type is defined as a structure with four members:

❏ color (string) – it will also be used as the Key for the ShapeType

❏ x (Long, an I32 in LabVIEW)

❏ y (Long, an I32 in LabVIEW)

❏ shapesize (Long, an I32 in LabVIEW)

Shapes Demo can publish three different Topics of type ShapeType:

❏ Square

❏ Circle

❏ Triangle

4.5.2 Publishing a Shape (Square)

We will use LabVIEW to publish a square in domain 0. Additionally, we will generate two sine
functions for the ShapeType X and Y coordinates in order to move the square in a circular or
elliptical pattern.

1. Open RTI Connext DDS Shapes Writer.vi from the LabVIEW examples ShapesDemo
directory under RTI DDS Toolkit. (Instructions for finding the examples are in
Section 1.6.)

2. Open the Block Diagram and note that the VI is creating a Writer object to publish a Sha-
peType data with Topic Square. The VI uses Simulate Signal functions to generate the X
and Y coordinates of each square before the square is published.

(Note: This example uses LabVIEWLibrary::NoTypeCodeProfile in order to make it
compatible with RTI Shapes Demo, which uses a different string length. See the Compati-
bility section of the Release Notes for further details.)
4-20

Lesson 5—Using Keyed Types (RTI Shapes Demo)
3. On the Front Panel, you can change these
parameters of the Simulate Signal function:
shapesize, color, Amplitude y, Amplitude x,
Frequency, Offset x and Offset y.

4. Launch Shapes Demo and select the Square
option under the Subscribe heading. You will see the dialog below. Select OK.

5. Run RTI Connext DDS Shapes Writer.vi and verify that Shapes Demo displays a blue
square moving in circles.
4-21

Lesson 5—Using Keyed Types (RTI Shapes Demo)
6. Use the Front Panel to make changes to the X and Y amplitude and the frequency control.
You should see the effects in the Shapes Demo window. The X and Y amplitude control the
square’s trajectory, the frequency varies the square’s speed.

7. Change the shape size and color to vary all the parameters. While the size can be any
value, we suggest using values between 0 and 100. The color can be: PURPLE, BLUE,
RED, GREEN, YELLOW, CYAN, MAGENTA, or ORANGE.

Note: When you change the square’s color, you will still see the blue square. This is because we
defined Square as the Topic and Color as the Topic Key (instance). Using Keys allows the defini-
tion of a single Topic with multiple instances. When you change the color, you are publishing a
new instance of the Square Topic of the type ShapeType.

4.5.3 Subscribing to Shapes

Instead of using Shapes Demo to subscribe to the published shapes, let’s create our own RTI Con-
next DDS Shapes Reader in LabVIEW.

1. Open RTI Connext DDS Shapes Reader.vi from the LabVIEW examples ShapesDemo
directory under RTI DDS Toolkit.

2. On the Front Panel, you will see two parts:

• On the left, the VI shows a table, DDS Data, in which the read shapes will be shown.
We also see a switch (DDS Stopped). By clicking on that switch, the VI will start read-
ing samples from DDS and add them to the table. In addition, we can see the informa-
tion of the currently read sample using Sample Info. We can use the Query condition
text box on top to filter data, as explained in Lesson 3—Filtering Data (Section 4.3).
Finally, we have the Stop button that stops the whole VI.
4-22

Lesson 5—Using Keyed Types (RTI Shapes Demo)
• On the right, we have a text box in which we can select one of the shapes using its key,
that is, its color. To select the shape, just add the color as shown in the color column in
DDS Data. Once selected, the position of the shape will be shown in XY Graph in real
time, while its size will be shown in Shape size.

3. Open the Block Diagram and review the three different processes:

a. Creating the Reader object and reading:

• A Reader object is created to subscribe to the type ShapeType and the Topic
Square, also providing a correct ShapesDemo cluster in the data type pin.

• Once created, the Reader object reads data from DDS using the Query Condition
introduced in the Front Panel.

• Those data, however, are only read if the DDS Stopped switch is changed to DDS
Running by clicking on it (i.e., if it is true).

• Sample Info is filled with the information of the currently read sample.

b. Storing data in the table:

• Each read datum is unbundled to extract the individual components. Each of these
components goes in a different column in the DDS Data table.
4-23

Lesson 5—Using Keyed Types (RTI Shapes Demo)
Note: Due to a known issue in 'Set Cell Value' calls, plot properties cannot be mod-
ified at run time. See more details here:
 http://www.ni.com/product-documentation/52188/en/#407633_by_Date.

• Since each row corresponds to a unique instance, we select the table row using the
cluster’s key, i.e., the color.

• When you push the Stop button, the Reader object is released.

Note: This example uses LabVIEWLibrary::NoTypeCodeProfile in order to make it
compatible with RTI Shapes Demo, which uses a different string length. See the Com-
patibility section of the Release Notes for further details.

c. Showing selected instance in the XY Graph:

If a color is selected in the text box on the right of the Front Panel, any read sample of
that color will appear in the correct X and Y positions in XY Graph. Valid colors are:
PURPLE, BLUE, RED, GREEN, YELLOW, CYAN, MAGENTA, and ORANGE.

The size of that shape will be shown in shapesize.
4-24

http://www.ni.com/product-documentation/52188/en/#407633_by_Date
http://www.ni.com/product-documentation/52188/en/#407633_by_Date
http://www.ni.com/product-documentation/52188/en/#407633_by_Date

Lesson 6—Used Nested and Multiple Keys
4.6 Lesson 6—Used Nested and Multiple Keys
The previous lesson highlighted the value of using keys in your type definitions. Now let’s see
how to provide multiple keys for a single data type. This lesson assumes you have successfully
completed Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data
(Clusters) (Section 4.2). You can also use the provided example, RTI Connext DDS Cluster
Example Reader/Writer.vi.

4.6.1 Adding Multiple Top-Level Fields as Keys

1. Open Tutorial_Cluster Reader Example.vi from Lesson 2 and
save it as a new VI named
Tuturial_MultipleKey_Read_Cluster.vi.

As you can see in the figure to the right, our cluster is quite
complex and includes many fields. In Lesson 5—Using Keyed
Types (RTI Shapes Demo) (Section 4.5), we marked Text as a
key. Depending on the application, we may want to mark
other fields as key. Suppose we want I32_Num to be a key
too. That will make Text and I32_Num keys.

2. To mark both Text and I32_Num as keys,
modify the Key Name string to include both fields,
separated by a semicolon (‘;’).

3. Click Run.

If you use one of the RTI tools such as RTI Admin Console to
view the published/subscribed type, you can see that the
equivalent IDL for this use case would be:

struct ultrainnerClusterType{
 sequence<short,2> I16_Array; //@ID 0
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct superinnerClusterType{
 double Dbl_Num; //@ID 0
 ultrainnerClusterType ultrainnerCluster; //@ID 1
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct innerclusterType{
 float Sgl_Num; //@ID 0
 boolean Boolean; //@ID 1
 superinnerClusterType superinnerCluster; //@ID 2
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct ComplexType{
 string<1024> Text; //@key
 //@ID 0
 long I32_Num; //@key
 //@ID 1
4-25

Lesson 6—Used Nested and Multiple Keys
 long long I64_Num; //@ID 2
 unsigned short U16_Num; //@ID 3
 sequence<float,4> Sgl_Array; //@ID 4
 innerclusterType innercluster; //@ID 5
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

Note: The key name specification is case sensitive.

4. Repeat this process using Tutorial_Cluster Writer Example.vi, so they can communicate
with each other.

4.6.2 Adding Internal Cluster Fields as Keys (Nested Keys)

For a field inside a cluster, use its fully qualified name. This name consists of the cluster name
followed by a period ('.') and then the field name. For instance, to refer to Sgl_Num, use the
string innercluster.Sgl_Num. For Dbl_Num, its fully qualified name is innercluster.superin-
nerCluster.Dbl_Num.

1. Open Tutorial_Cluster Reader Example.vi from Lesson 2—Using ComplexType Genera-
tor to Publish and Subscribe to Complex Data (Clusters) (Section 4.2) and save it as a new
VI named Tutorial_NestedKey_Read_Cluster.vi.

2. Replace the Key Name string with the following value:

3. Click Run.

If you use one of the RTI tools such as RTI Admin Console to view the published/sub-
scribed type, you can see that the equivalent IDL for this use case would be:

struct ultrainnerClusterType{
 sequence<short,2> I16_Array; //@ID 0
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct superinnerClusterType{
 double Dbl_Num; //@key
 //@ID 0
 ultrainnerClusterType ultrainnerCluster; //@ID 1
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct innerclusterType{
 float Sgl_Num; //@key
 //@ID 0
 boolean Boolean; //@ID 1
 superinnerClusterType superinnerCluster; //@key
 //@ID 2
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct ComplexType{
 string<1024> Text; //@key
 //@ID 0
 long I32_Num; //@key
 //@ID 1
 long long I64_Num; //@ID 2
4-26

Lesson 6—Used Nested and Multiple Keys
 unsigned short U16_Num; //@ID 3
 sequence<float,4> Sgl_Array; //@ID 4
 innerclusterType innercluster; //@key
 //@ID 5
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

Notice that innercluster and superinnercluster are both marked as keys. This is done automati-
cally by RTI DDS Toolkit and is needed for a correct key specification.

Remember that the key name specification is case sensitive.
4-27

Lesson 7—Reading All Samples (Reliable Communication)
4.7 Lesson 7—Reading All Samples (Reliable Communication)
This lesson explains how to use LabVIEW to read all the available samples in our Reader. This
lesson focuses on sending information reliably. There are two different approaches: using the
default RTI DDS Toolkit behavior (see Default Configuration: DDS Entities Created by ‘Simple
Create’ SubVIs (Section 6.1)) or using exclusive Reader nodes.

The first approach is explained in Writing and Reading Reliably Using the Default Configura-
tion (Section 4.7.1). The latter approach is explained in Writing and Reading using Strict Reliabil-
ity (Section 4.7.2).

4.7.1 Writing and Reading Reliably Using the Default Configuration

In our QoS file, there is an already prepared profile to enable this kind of communication: Reli-
ableProfile.

4.7.1.1 Writing Reliably

1. Open a blank VI and open the Block Diagram.

Add an Advanced Create Writer subVI and fill in
the parameters to create a Writer object of dou-
bles, as shown in the figure. Pay attention to the
new QoS Profile.

For details on the Advanced Create Writer subVI,
see Chapter 6: Advanced Concepts and Set-
tings.

2. Create a While Loop and put a Write subVI
inside it. We are going to send the loop counter through DDS, so
attach that counter to the Writer’s data field. You can also visual-
ize that value by attaching an indicator to the counter. Make
sure that the working type of data is DBL, if it is not, the error
5002 can be triggered. In order to modify the data type, right-
click on the VI / Select Type / Numeric (DBL). Besides, if you
want to delete the coercion point (the red one), you can also add
a casting from INT32 to DBL with the function Mathematics / Numeric /Conversion / To
Double Precision Float.

3. Add a Release Writer subVI and complete the VI as shown in the following figure. Pay
special attention to the Wait function.

4. Save it as Tutorial_Write_Reliable.vi.
4-28

Lesson 7—Reading All Samples (Reliable Communication)
4.7.1.2 Reading Reliably

1. Open a blank VI and create an indicator of an array of doubles. Show the vertical scroll
bar of the array in the array properties, i.e., right-click in the array, select Properties and
check the Show Vertical Scroll Bar option.

2. Add an Advanced Create Reader subVI and fill in the parameters to create a Reader of dou-
bles, as shown in the following figure. Pay close attention to the new QoS Profile.

For details on the Advanced Create Reader subVI, see Chapter 6: Advanced Concepts and
Settings.

3. Optionally, add an Invoke note to call the method Reinitialize All to Default. This func-
tion resets all the controls and indicators in the VI to the default value. To include it, fol-
low this steps:

a. Find Invoke Node under Programming, Application Control.

b. Right-click on the invoke node and go to Select Class, VI Server, VI, VI.

c. Click on the method label and navigate to Default Values, Reinitialize All to
Default.

4. Now we need to read data and discard those values that are not valid. For that:

a. Add a Read subVI inside a While Loop.

b. Connect the Read subVI to the Create Reader subVI.

c. Set Only New Samples to true.

d. Attach an unbundle function to the DDS Sample Info
cluster and select valid_data. This field will be true if
the data is a valid one.

e. If the type of the output data wire is not DBL, you need to modify it manually. To do
so, right-click on Read VI, then select Type, Numeric (DBL).

For details on the Read subVI, see Reader (Section A.2.2).
4-29

Lesson 7—Reading All Samples (Reliable Communication)
5. If the data is valid, insert it in the array. Otherwise, ignore the data:

a. Create a Case Structure from Programming, Structures and connect the output of
valid_data to the question mark.

b. Create an array indicator and connect it to the output of the Case Structure.

c. Connect the Read subVI outputs as inputs of the Case Structure, except Sample_info
cluster.

d. Create an empty array outside the While loop and connect it as input to the Case
Structure.

e. In the True case, add an Insert into Array subVI. Connect the empty array and read
value inputs as shown above. Connect the output array to the output of the Case
Structure and to Array.

f. In the False case, just wire the array input to the output array and to Array.

g. Make sure that ref num out and error wires are also forwarded by connecting them as
shown in the image above.

6. Attach the exit of the Case Structure to the While Loop. Then replace it with a shift regis-
ter by right-clicking on it and selecting Replace with Shift Register. Place the input shift
register on the left side of the loop and connect it as an input in the Case Structure as
shown below.
4-30

Lesson 7—Reading All Samples (Reliable Communication)
7. Add a Release Reader subVI and an Error Dialog. The final Block Diagram should look like
the following figure. Pay attention to the reading ratio, it needs to be faster than the
writer one or increase Reader History Depth in the XML Configuration File.

For details on the Release Reader subVI, see Reader (Section A.2.2).

8. Save it as Tutorial_Read_Reliable.vi.

9. Run the Reader and Writer. You will see how all the data transferred by the Writer
arrives at the Reader.

4.7.2 Writing and Reading using Strict Reliability

Writing and Reading Reliably Using the Default Configuration (Section 4.7.1) assumes you are
using the default configuration of RTI DDS Toolkit. As explained in Chapter 6: Advanced Con-
cepts and Settings, this configuration uses shared DataReaders, so a more strict reliability
(KEEP_ALL History QoS kind and History QoS depth > 1), is not allowed.

If you need strict reliability on your system, you can do it using exclusive readers and the builtin
QoS profile: BuiltinQosLibExp::Generic.StrictReliable. This profile is defined internally in RTI
Connext DDS (for details on Built-in profiles, see the RTI Community Forum: http://commu-
nity.rti.com/examples/built-qos-profiles).
4-31

http://community.rti.com/examples/built-qos-profiles
http://community.rti.com/examples/built-qos-profiles

Lesson 7—Reading All Samples (Reliable Communication)
4.7.2.1 Writing in Strictly Reliable Mode

1. Open a blank VI and open the Block Diagram.

2. Add a Create Advanced Writer subVI and fill in the parameters to create a Writer object of
doubles. Make sure you set the QoS profiles as shown in the following figure:

For details on the Create Advanced Writer subVI, see Chapter 6: Advanced Concepts and
Settings.

3. Create a While Loop and put it inside a Write subVI. We are going to send
the loop counter through DDS, so attach that counter to the Writer’s data
field. You can also visualize that value by attaching an indicator to the
counter.

4. Add a Release Writer subVI and complete the VI as shown in the follow-
ing figure. Pay special attention to the Wait function.

5. Save it as Tutorial_Write_StrictReliable.vi.

4.7.2.2 Reading in Strictly Reliable Mode

1. Open a blank VI and create an indicator of an array of doubles. Show the vertical scroll
bar of the array in the array properties, i.e., right-click in the array, select Properties and
check the Show Vertical Scroll Bar option.
4-32

Lesson 7—Reading All Samples (Reliable Communication)
2. Add an Advanced Create Reader subVI and fill in the parameters to create a Reader of dou-
bles, as shown in the following figure. Make sure you set the QoS profiles and the force-
ExclusiveReader? as shown in the following figure.

For details on the Create Advanced Writer subVI, see Chapter 6: Advanced Concepts and
Settings.

3. Optionally, add an Invoke note to call the method Reinitialize All to Default. This func-
tion resets all the controls and indicators in the VI to the default value. To include it, fol-
low this steps:

a. Find Reinitialize All to Default under Programming, Application Control.

b. Right click in the invoke node and go to Select Class, VI Server, VI, VI.

c. Click in the method label and navigate to Default Values, Reinitialize All to Default.

d. Connect it as shown in the previous figure.

4. Add a Read subVI inside a While Loop. Connect
the Read subVI to the Create Reader subVI. Set
Only New Samples to True. Then attach an
unbundle function to the DDS Sample Info cluster
to check whether the data is valid or not.

For details on the Read subVI, see Reader (Sec-
tion A.2.2).

5. If the data is valid, insert it in the array. Otherwise, ignore the data:
4-33

Lesson 8—Debugging Your RTI Connext DDS Application
6. Attach the exit of the If Case to the Loop Case. Then replace it with a shift register by right-
clicking on it and selecting Replace with Shift Register. Place the input shift register on
the left side of the loop and connect it as an input in the If Case as shown below.

7. Add a Release Reader subVI and an Error Dialog. The final Block Diagram should look like
the following figure. Pay attention to the reading ratio, it needs to be faster than the
writer one or increase Reader History Depth in the XML Configuration File.

For details on the Release Reader subVI, see Reader (Section A.2.2).

8. Save it as Tutorial_Read_StrictReliable.vi.

9. Run the Reader and Writer. You will see how all the data transferred by the Writer arrives
at the Reader.

4.8 Lesson 8—Debugging Your RTI Connext DDS Application
In this lesson, you will become familiar with the RTI DDS Toolkit QoS profiles and debugging
capabilities. RTI DDS Toolkit provides several predefined QoS profiles. You can see the contents
of these profiles in the file:

C:/Program Files1/National Instruments/LabVIEW 20xx/vi.lib/_RTI DDS
Toolkit_internal_deps/RTI_LABVIEW_CONFIG.documentationONLY.xml
(where 20xx depends on your LabVIEW version).
4-34

Lesson 8—Debugging Your RTI Connext DDS Application
In this lesson, we will use two different debugging tools:

❏ The administration panel to show internal messages about the current execution.

Debugging an Application Using the Administration Panel (Section 4.8.1)

❏ The monitoring profile, which enables RTI Monitoring Library.

Adapting a VI to Use RTI Monitoring Library (Section 4.8.2)

4.8.1 Debugging an Application Using the Administration Panel

Let’s begin by opening the Reader and Writer VIs creation in Lesson 1—Using DDS to Publish
and Subscribe to Simple Data (Numeric) (Section 4.1). We are going to get debugging messages
from them:

1. Open the Administration Panel. Then in the Tools menu, select RTI DDS Toolkit, RTI
DDS Administration Panel. For more details, see Using Administration Panel (for Win-
dows Systems only) (Section 6.5.1).

Note: The Administration Panel may not work on RT Targets. If you want to read mes-
sages from a RT Target, you can deploy the VI described in Reading Logged Messages
(Section 6.5.2.6).

2. Run the VI.

3. Set the Filter Level to be DEBUG LEVEL. This will cause all messages with log level of
Debug or higher to appear in the Debugging table.

4. Press Update to commit the change in the filter level.

5. Now we need to generate some messages. Open the
Reader and Writer VIs from Lesson 1—Using DDS to
Publish and Subscribe to Simple Data (Numeric) (Sec-
tion 4.1) and click Run.

6. Go back to the Administration Panel. You will see the generated debugging messages in
the Debugging table:

1. On 64-bit systems, the folder is “Program Files (x86)”
4-35

Lesson 8—Debugging Your RTI Connext DDS Application
4.8.1.1 Logging Messages Manually

Now that we can debug our application, let’s create our own debugging application. We are
going to modify the Writer VI from Lesson 1—Using DDS to Publish and Subscribe to Simple
Data (Numeric) (Section 4.1) to generate our own logging messages.

1. Save the VI with a different name, such as DebuggingWriter.vi by selecting Save as… in
the File menu.

2. Add the Log New Message subVI from the Tools’ Debugging subpalette in the Toolkit pal-
ette.

3. Create a Log Level control by right-clicking on the Log Level input in the Log New Mes-
sage VI. Then choose Create, Control.

4. Add the Format into String function for building a debugging string. Our debugging
string will be Published the value x, where x is a double number. To do that:

a. Connect a string constant with the text Published the value at the initial value pin.

b. Connect a string constant with the text %lf to the format string pin.

c. Wire the Published Value control to the input 1 pin.

d. Connect the resulting string to
the Message input of the Log
New Message subVI, as seen
here on the right:

5. Run the Writer VI.

6. Click on the Log Level control and
select DEBUG LEVEL.

7. Run the RTI DDS Administration
Panel: from the Tools menu, select
RTI DDS Toolkit, RTI DDS Admin-
istration Panel.

8. Set the Administration Panel’s Filter
Level to DEBUG LEVEL as explained in Debugging an Application Using the Adminis-
tration Panel (Section 4.8.1).

9. Run this new VI and you will see these messages on the administration panel debugging
table. The output will be similar to this:

4.8.1.2 Output Provided by RTI Monitor using Distributed Logger

If Distributed Logger is enabled, these messages have been sent through the network and they
can be received and shown in RTI Monitor as well.
4-36

Lesson 8—Debugging Your RTI Connext DDS Application
RTI Monitor is included in RTI Connext DDS Professional. You can download a free trial from
http://www.rti.com/downloads/index.html. For information about RTI Monitor, see https://
www.rti.com/products/dds/tools#MONITOR.

To send these messages using Distributed Logger and receive them with RTI Monitor:

1. Enable Distributed Logger (see Configuration Section (Section 6.5.1.1) for details).

2. Open RTI Monitor and join to the domain in which Distributed Logger has been enabled.

3. Select the current process from the list on the left.

4. Create a New Distributed Logger Panel (push this button:).

5. Use the State and Controls tab to set the Filter Level to Trace. This allows you to receive
all these messages:

4.8.2 Adapting a VI to Use RTI Monitoring Library

Let's begin by opening the Reader VI created in Lesson 2—Using ComplexType Generator to
Publish and Subscribe to Complex Data (Clusters) (Section 4.2): Tutorial_Read_Cluster.vi. Or
you can use the solution to that lesson mentioned in Section 4.11.

1. Save the VI with a different name, such as MonitoringReader.vi, by selecting Save as…
in the File menu.
4-37

http://www.rti.com/downloads/index.html
https://www.rti.com/products/dds/tools#MONITOR
https://www.rti.com/products/dds/tools#MONITOR

Lesson 8—Debugging Your RTI Connext DDS Application
2. In the Block Diagram,
change the qos profile
input of the Create Reader
subVI to
LabVIEWLibrary::Moni-
toringProfile.

3. Save the VI again.

4.8.2.1 Output Provided by RTI Monitor

Now that we have the Monitoring profile loaded in our VI, we can run RTI Monitor to debug our
application.

RTI Monitor is included in RTI Connext DDS Professional. You can download a free trial from
http://www.rti.com/downloads/index.html. For information about RTI Monitor, see https://
www.rti.com/products/dds/tools#MONITOR.

Important: Your Path environment variable must include the location of the RTI Monitoring
Library DLL, rtimonitoring.dll, that is noted in Appendix D. Make sure you are not loading RTI
Monitoring Library from another location.

1. Start RTI Monitor; when prompted, join domain 0.

2. Run the original Tutorial_Read_Cluster.vi. This example does not enable the monitoring
libraries, so Monitor will not show useful information. The following snapshot shows the
output from Monitor when the monitoring libraries are not enabled.
4-38

http://www.rti.com/downloads/index.html
https://www.rti.com/products/dds/tools#MONITOR
https://www.rti.com/products/dds/tools#MONITOR

Lesson 8—Debugging Your RTI Connext DDS Application
3. Stop Tutorial_Read_Cluster.vi and make sure that all the entities are released. To do so,
close all VIs containing RTI DDS Toolkit subVIs. You can also run the Release Unused Enti-
ties subVI ten seconds after stopping all the VIs running in the same domain as
Tutorial_Reader_Cluster.vi.

4. Run MonitoringReader.vi and go back to Monitor. Now you can see more information
such as the topic name, the number of subscribers and publishers, the QoS profile, etc.
4-39

Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)
4.9 Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068
Example)

1. Make sure the cRIO is up and running. You can use NI MAX to do so.

2. Follow the installation instructions in Installing RTI DDS Toolkit Support Files on a Tar-
get (Section 1.2.1).
4-40

Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)
3. Create an empty project in LabVIEW by choosing File, New Project or File, Create Proj-
ect, depending on your LabVIEW version.

4. Right-click the top-level project item in the Project Explorer window, seen in blue in the
above image. Select New, Targets and Devices from the shortcut menu to display the
Add Targets and Devices dialog box.

5. Select Existing target or device and Specify a target or device by IP address. Set the cor-
rect IP address. Select your device from the list. You can find a list of supported platforms
in the 'Supported Platforms' section of the Release Notes. Click OK.

Note: To use the "Discover an existing target(s) or device(s)" option, your host machine
must be in the same subnet as your target.
4-41

Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)
6. Right-click on your new target and select New, VI. You can also add an existing one by
selecting Add, File….

7. Create your application using RTI DDS Toolkit as mentioned in the previous lessons. Save
it and the project.

8. Once you are finished, run your VI as usual by clicking on the white arrow.
4-42

Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)
9. LabVIEW will show the Deployment Progress window and will send the VI to your tar-
get. This process may take a while, depending on your VI's complexity.

Note: If you get an error related to not being able to find rtilvdds.dll, reinstall the RTI
DDS Toolkit cRIO support files.

10. Once deployed, you will see a window like this:

11. Click Close and work with your VI as you normally would.
4-43

Lesson 10—Using Security with RTI DDS Toolkit
4.10 Lesson 10—Using Security with RTI DDS Toolkit
This example is based on the RTI Shapes Demo example in Lesson 5—Using Keyed Types (RTI
Shapes Demo) (Section 4.5).

This lesson uses the examples RTI Connext DDS Secure Shapes Reader.vi and RTI Connext
DDS Secure Shapes Writer.vi, which are included here: <LabVIEW installation folder>\exam-
ples\RTI DDS Toolkit\SecurityShapesDemo. This folder also contain a cert directory which
contains all the necessary files for using DDS Security.

4.10.1 Example Description

This example shows how RTI DDS Toolkit works with RTI DDS Security Plugins. Several scenar-
ios using ShapeType will be shown in this example. Shapes Demo version 5.2.7 or later can be
used to graphically show this communication. You can ask for a Shapes Demo trial.

We will use these topics:

❏ Square

❏ Circle

❏ Triangle

And these security profiles:

❏ AllowAll

❏ SecureDenySubSquares

These profiles can be created using the instructions in Managing Custom Security Profiles with
the Security Panel (Windows Systems) (Section 6.6.1) as well as the provided subVIs described
in Managing Custom Security Profiles with SubVIs (Section 6.6.2).

In this example, we will create the security profiles before the creation of the entities that will
use them. We will use the created security profile name as the domainParticipantQoSProfile
parameter for the Reader/Writer we are creating.

We will use the above security profiles to set up a secure environment that uses DDS Security
Plugins. You can use this example as a base to create many other security configurations. To do
4-44

Lesson 10—Using Security with RTI DDS Toolkit
that, you will need to generate your own security certificates, which is explained the RTI DDS
Security Plugins Getting Started Guide, available here:
https://community.rti.com/documentation.

The permissions of these profiles will decide how they can behave. The permission file
RTI_SHAPES_DEMO_PERMISSIONS.p7s is included in the cert folder. We will use the per-
missions to create the following security profiles:

❏ AllowAll: This configuration enables secure communication between all the domain IDs
and topics. Used by the Writer in the Shapes Security Example. The characteristics of this
communication are specified in the Governance. The permissions rule is:

 <default>ALLOW</default>

Note: The security files used by this profile are defined in the file Basic Security Config-
uration From Path.vi.

❏ SecureDenySubSquares: This configuration won't allow you to create DataReaders for
the topic 'Square'. The permissions rules are:

<deny_rule>
 <domain_id>0</domain_id>
 <subscribe>
 <topic>Square*</topic>
 </subscribe>
</deny_rule>
<default>ALLOW</default>

Note: The security files used by this profile are defined in the file Create SecureDeny-
SubSquares Profile.vi.

4.10.2 Description of VIs

The Secure Shapes Demo example is divided into six VIs:

❏ Get full path from file name.vi: Auxiliary VI which returns a full path that points to the
file whose name is File Name and is in a subfolder called cert in the previous folder level
than the current VI.

❏ Basic Security Configuration From Path.vi: Creates a basic security configuration which
uses the AllowAll configuration. This subVI will take the security certificates from a sub-
folder called cert in the previous folder level than the VI.
4-45

https://community.rti.com/documentation

Lesson 10—Using Security with RTI DDS Toolkit
❏ Create Security Profile If It Does Not Exist.vi: Creates a Security configuration if the
provided name does not exist.

❏ Create SecureDenySubSquares Profile.vi: Adds the files
RTI_SHAPES_DEMO_PEER_3 cert and key to the provided base Security Profile. This
configuration will use the permissions of SecureDenySubSquares, which denies sub-
scriptions to the topic Square.

❏ RTI Connext DDS Secure Shapes Reader.vi: Main Reader application. This VI will create
the DDS entities to subscribe to Shapes. It will be created with the security configuration
SecureDenySubSquares.

❏ RTI Connext DDS Secure Shapes Writer.vi: Main Writer application. This VI will create
the DDS entities to publish Shapes. It will be created with the security configuration
SecureDenyPubCircles.

4.10.3 Main Scenarios

There are two main scenarios (one per topic). All of them occur when we use the specific default
Security Profiles for this example. These default Security Profiles are:

❏ Writer: AllowAll

❏ Reader: SecureDenySubSquares

1. Topic Square: If the Writer and Reader are created with the default Security Profiles men-
tioned above, the Reader won't be able to subscribe to the Square topic. Therefore, no
communication will occur.

2. Topics Triangle & Circle: If the Writer and Reader are created with the default Security
Profile in the Topic Triangle, the communication will be fine because no restrictions
apply to this topic.

4.10.4 Running the LabVIEW Example

❏ Topic Square.

1. Run the Writer using the topic Square and using AllowAll, which is the default pro-
file.

2. The Writer will start to publish a square. You can see it subscribing to the Square topic
in Shapes Demo using the AllowAll configuration.

3. Run the Reader with the topic Square using the Security Profile SecureDenySubS-
quares.

4. You will receive error 5082 because the Security permissions do not allow you to cre-
ate a DataReader in the topic Square.
4-46

Reviewing Completed Solutions
❏ Topics Circle & Triangle.

1. Run the Reader using the topics Circle or Triangle with the Security Profile AllowAll
or SecureDenySubSquares. By default, the Reader will be created with SecureDeny-
SubSquares.

2. Run the Writer in the topic Circle or Triangle (whichever one you chose before) with
the Secure Custom Profile AllowAll, which is the default profile.

No communication will occur because the Writer cannot use the topic Circle, although no
error is shown. This happens because the governance property
enable_write_access_control is set to false for the Circle topic.

Since there are no restrictions on the Triangle or Circle topics, communication will work
fine.

❏ Test your own scenario. For instance:

1. Try to use RTI_SHAPES_DEMO_PEER_2_CERT.pem with
RTI_SHAPES_DEMO_PEER_3_KEY.pem in the same Custom Security Profile (no
communication will occur).

2. Try to modify these rules (bear in mind that the certificates files may need to be gener-
ated again).

3. Try to generate new rules.

4.11 Reviewing Completed Solutions
You can find completed solutions to many of the lessons in this chapter here:

❏ Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric) (Section 4.1)

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\NumberDemo

❏ Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data
(Clusters) (Section 4.2)

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ClusterDemo

❏ Lesson 3—Filtering Data (Section 4.3)

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ClusterDemo

❏ Lesson 4—Reading Only New Samples (Section 4.4)

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ClusterDemo

❏ Lesson 5—Using Keyed Types (RTI Shapes Demo) (Section 4.5)

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ShapesDemo

❏ Lesson 7—Reading All Samples (Reliable Communication) (Section 4.7)

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ReadAllDemo

❏ Lesson 8—Debugging Your RTI Connext DDS Application (Section 4.8)

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\LogMessagesDemo
\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\MonitoringDemo

❏ Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example) (Section 4.9)
4-47

Reviewing Completed Solutions
\LabVIEW 20xx\examples\RTI DDS Toolkit\cRIO-9068Project
(Note: This project is compatible with LabVIEW 2013 and higher)

❏ Lesson 10—Using Security with RTI DDS Toolkit (Section 4.10)

\LabVIEW 20xx\examples\RTI DDS Toolkit\SecurityShapesDemo

There is also a GitHub repository with several LabVIEW examples. This repository includes
examples that demonstrate single features, as well as real-world examples. The link to the
GitHub repository is: https://github.com/rticommunity/rticonnextdds-labview-examples.
4-48

https://github.com/rticommunity/rticonnextdds-labview-examples

Chapter 5 Loading Quality of Service Profiles

This chapter describes how to load personalized QoS profiles in RTI DDS Toolkit.

QoS profiles provide a way to configure your DDS application and define most aspects of the
DDS paradigm and the underlying communication mechanisms.

❏ RTI DDS Toolkit includes a set of predefined QoS profiles. These profiles solve general
use-cases such as a Reliable Communication or including RTI Monitoring Library. These
profiles are embedded in RTI DDS Toolkit and cannot be modified. You can inherent from
them.

For your convenience, you can find an XML file that shows you these profiles in C:/Pro-
gram Files1/National Instruments/LabVIEW 20xx/vi.lib/RTI DDS Toolkit/
RTI_LABVIEW_CONFIG.documentationONLY.xml (where 20xx depends on your Lab-
VIEW version). As the filename suggests, this file is for documentation purposes only.
This file is not loaded by RTI DDS Toolkit, so updating it will not affect the embedded
QoS profiles.

❏ RTI Connext DDS also includes several predefined QoS profiles. You can use these
directly from LabVIEW as starting points when creating your own QoS profiles. To
access these builtin profiles, use their library name and profile name (for instance, Built-
inQosLib::Generic.Monitoring.Common). For more information, consult the RTI Connext
DDS Core Libraries User’s Manual (see the chapter on Configuring QoS with XML).

For information on the format and contents of a QoS profile, consult the RTI Connext DDS Core
Libraries User’s Manual (see the chapter on Configuring QoS with XML).

The provided profiles are illustrative and might not fulfill all the desired functionalities. To
adjust them to your needs, you can create your own XML configuration file (for instance,
USER_QOS_PROFILES.xml). You can define several libraries and profiles in each unique XML
file, then refer to their names in subVI calls. For instance, LabVIEWLibrary::DefaultProfile ref-
erences the DefaultProfile, which you can see in RTI_LABVIEW_CONFIG.documentation-
ONLY.xml.

Once you have defined your desired QoS settings and stored them in a file (or files), RTI DDS
Toolkit will load the settings automatically if you point it to the correct file; there are two ways to
do this. We strongly recommend the first approach, which provides a more versatile solution.

1. On 64-bit systems, the folder is “Program Files (x86)”
5-1

❏ Environment variable NDDS_QOS_PROFILES (recommended):

You can define the environment variable NDDS_QOS_PROFILES and have it point to the
XML file that you want to load. You can specify multiple locations for a single XML doc-
ument via URL groups. The syntax of a URL group is: [URL1 | URL2 | URL2 | ... |
URLn].

For example:

[file://C:/DDS_config/USER_QOS_PROFILES.xml |
 file://C:/DDS_config/ alternative_default_dds.xml]

❏ Working directory (not recommended):

You can save a file called USER_QOS_PROFILES.xml in the working directory of Lab-
VIEW.

The working directory in LabVIEW depends on the application kind. If you are running
a VI from LabVIEW, the working directory is the one where the LabVIEW.exe file is, such
as C:/Program Files (x86)/National Instruments/LabVIEW 2012/. However, if your
application is an independent one, it will use the Run-Time Engine to execute and the
working directory will be C:/Program Files (x86)/National Instruments/Shared/Lab-
VIEW Run-Time/2012/.
5-2

Chapter 6 Advanced Concepts and Settings

This chapter explains some advanced concepts and describes how to configure advanced
parameters in RTI DDS Toolkit.

When configuring an RTI Connext DDS application, there are many parameters that allow you to
customize your application. Some of them can be configured by executing using QoS profiles
(see Chapter 5: Loading Quality of Service Profiles). Others need to be configured at compile
time, such as the topic name and domain ID.

When using RTI DDS Toolkit, you can decide to hide some of that customization to simplify your
application, or adapt your settings to match your needs. The first approach uses the Simple Cre-
ate subVIs.1 These subVIs only need the mandatory parameters needed for the creation of
DataReaders and DataWriters: domain id, topic name and data type.

The second approach uses a more versatile create subVI: Advanced Create Reader/Writer. In the
following sections we will explain the different parameters that can be provided to customize
your application.

6.1 Default Configuration: DDS Entities Created by ‘Simple Create’
SubVIs
RTI DDS Toolkit has been designed to reduce the number of DDS Entities created and, therefore,
minimize the memory and CPU overloads. For example:

❏ Only one DomainParticipant is created per domain.

❏ The implicit Publisher and Subscriber are reused, avoiding the creation of new ones.

❏ Only one DataReader/DataWriter is created per Topic.

When you call the Simple Create subVIs or templates, we internally search for an existing
DomainParticipant in the domain, an existing Topic with the correct topic name, and an existing
DataReader or DataWriter of the correct data type.

1. When creating complex-type Readers and Writers, you will need to use the Simple Create Reader/Writer subVIs gen-
erated by the ComplexType Generator. See Section 6.2 for details.
6-1

Default Configuration: DDS Entities Created by ‘Simple Create’ SubVIs
As an example, consider this scenario.

First we create a Writer VI. Internally, we are creating a DomainParticipant (1), a Topic, and a
DataWriter (2). Then, if we create a Reader VI in the same LabVIEW instance, the DomainPartici-
pant and the Topic are reused (3) and only a DataReader is created (4). When a second or third
DataReader VIs are created, the DomainParticipant (5), the Topic AND the DataReader are
reused (6). This way, all Reader VIs share the same queue.

For most applications, this configuration is sufficient. However, there are several considerations
when using shared Entities that may force you to create additional ones:

❏ If you set the flag ONLY_NEW_SAMPLES to 'true' when reading, only one of the Reader
nodes will get the data. This is due to all the Readers sharing the same DataReader.

❏ Shared DataReaders use 'read' instead of 'take' when getting new data. This prevents
shared DataReaders from using the Strict Reliable QoS profile.

❏ If your application have several Writer nodes for the same Topic, the DataWriter
resources need to be adapted to handle the data produced by all the Writer nodes.

❏ If you need to create DomainParticipants, DataReaders or DataWriters with different
QoS properties, you will need to use the Advanced Create subVIs and force the creation of
those Entities.

❏ If you need to set different transport properties, you will need to create different
DomainParticipants.

Take into account that having a larger number of DDS Entities requires more resources and will
affect performance. So we strongly recommend that you avoid using additional entities when-
ever possible.
6-2

RTI DDS ComplexType Generator
6.2 RTI DDS ComplexType Generator
RTI DDS ComplexType Generator is a Wizard that allows you to create the basic LabVIEW code
needed to run a DDS-based application for Complex Type Definitions. Using the RTI DDS Com-
plexType Generator is optional if you are using any of the simple types (no clusters).

You can open the ComplexType Generator from the Tools menu (select RTI DDS Toolkit, RTI
DDS ComplexType Generator).
6-3

RTI DDS ComplexType Generator
Let’s take a look at the ComplexType Generator Wizard:

The ComplexType Wizard asks for several data to generate these LabVIEW subVIs:

❏ Type of Generation: This button allows you to generate the Simple or Advanced cre-
ation subVIs (See Configuring Advanced Writer Settings (Section 6.3) and Configuring
Advanced Reader Settings (Section 6.4) to learn more about the advanced creation sub-
VIs).

❏ Save the Type Definition: Flag to copy the chosen Type Definition to the Output Direc-
tory.

❏ Path to the Custom Type Definition: Path to the LabVIEW Type Definition (*.ctl) used
for generating the LabVIEW code.

❏ Output Directory: Directory where the generated files are going to be saved.

❏ Generation of Example VIs: Button to enable/disable the generation of a simple DDS-
based example using the provided custom Type Definition.

If a simple example is going to be generated, you can choose the Domain ID and the
Topic Name that this example will use.

The Generate Code button will be enabled only when the required data is provided (Path to the
Custom Type Definition and Output Directory).

The following subVIs will be generated:

❏ ComplexType Create Simple/Advanced Reader

❏ ComplexType Create Simple/Advanced Writer

❏ ComplexType Read

❏ ComplexType Write
6-4

Configuring Advanced Writer Settings
If Generation of Example VIs is enabled, the following subVIs will also be generated:

❏ ComplexType Reader Example

❏ ComplexType Writer Example

6.3 Configuring Advanced Writer Settings
In the Writer subpalette you can find an Advanced Create Writer.2 This subVI is similar to the Sim-
ple Create Writer, but it has an additional parameter: the Advanced Writer Configuration cluster.
You can find this cluster in the Control palette: RTI DDS Toolkit, RTI DDS Advanced Writer
Configuration.

As you can see in this figure, the cluster allows you to configure
the following parameters:

❏ typeName: Name used to register the type in the wire. If
this parameter is not provided, a default one is assigned
(see default values in Appendix C).

❏ keyName: List of fields of a data type that will be marked
as key (see Lessons 5 and 6 of the Chapter 4, Tutorial).

❏ domainParticipantQoSProfile: Fully qualified name
(Library::Profile) that will be used as a QoS profile when
creating the DomainParticipant. If there is an existing
DomainParticipant in the same domain ID using a differ-
ent domainParticipantQoSProfile, a new DDS DomainPar-
ticipant will be created using the provided QoS profile.
Creating many different DDS DomainParticipants may
affect the performance.3

❏ dataWriterQoSProfile: Fully qualified name (Library::Pro-
file) that will be used as a QoS profile when creating the
DataWriter.

❏ forceUnboundedString?: By default, strings are created with a length of 1024 characters.
If this flag is set to true, all strings are created as unbounded (their maximum length cor-
responds to the maximum 32-bit integer). This configuration optimizes the sample size,
sending only the actual data while removing the 1024-character limitation in previous
versions of RTI DDS Toolkit. This will affect all strings in the data.

2. For complex types, use the ComplexTypes Generator in the Tools/RTI DDS Toolkit menu. See Section 6.2.
3. Read this article on the creation of multiple DomainParticipants: https://community.rti.com/best-practices/cre-

ate-few-domainparticipants-possible
6-5

https://community.rti.com/best-practices/create-few-domainparticipants-possible
https://community.rti.com/best-practices/create-few-domainparticipants-possible

Configuring Advanced Reader Settings
6.4 Configuring Advanced Reader Settings
In the Reader subpalette, you can find an Advanced Create Reader subVI.4 This subVI is similar to
the Simple Create Reader, but it has some additional parameters: the Advanced Reader Configura-
tion cluster and the ContentFilteredTopic Info cluster. You can find these clusters in the Control
palette: RTI DDS Toolkit, RTI DDS Advanced Reader Configuration and RTI DDS Content-
FilteredTopic Info.

As you can see in the figure, the Advanced Reader Configuration cluster allows you to config-
ure the following parameters:

❏ typeName: The name used to register the type in the wire. If this parameter is not pro-
vided, a default one is assigned (see default values in Appendix C).

❏ keyName: List of fields in a data type that will be marked as key (see Lesson 5—Using
Keyed Types (RTI Shapes Demo) (Section 4.5) and Lesson 6—Used Nested and Multiple
Keys (Section 4.6)).

❏ domainParticipantQoSProfile: The fully qualified name (Library::Profile) that will be
used as the QoS profile when creating the DomainParticipant. If there is an existing
DomainParticipant with the same domain ID using a different domainPartici-
pantQoSProfiles, a new DDS DomainParticipant will be created using the provided QoS
profile. Creating many different DDS DomainParticipants may affect performance.

4. For complex types, use the ComplexTypes Generator in the Tools/RTI DDS Toolkit menu. See Section 6.2 for
details.
6-6

Debugging an RTI Connext DDS LabVIEW Application
❏ dataReaderQoSProfile: The fully qualified name (Library::Profile) that will be used as
the QoS profile when creating the DataReader.

❏ forceArrayMapping?: By default, LabVIEW arrays are mapped as DDS sequences. If you
need your data to use DDS arrays, set this flag to true. This will affect all LabVIEW arrays
in the data.

❏ forceExclusiveReader?: By default, Reader nodes of the same topic (and with the same
QoS profile) share a DataReader. To avoid this behavior, set this flag to true and a new
DataReader will be created. If you need all your Reader nodes to have their own
DataReader, make sure all of them are created setting this flag to true.

❏ forceRead?: By default, exclusive Readers call to the function take when getting the data.
This allows you to use the Strict Reliable QoS profile. If you want to use read instead, set
this flag to true.

❏ forceUnboundedString?: By default, strings are created with a length of 1,024 characters.
If this flag is set to true, all strings are created as unbounded (their maximum length cor-
responds to the maximum 32-bit integer). This configuration optimizes the sample size,
receiving only the actual data while removing the 1,024-character limitation in previous
versions of RTI DDS Toolkit. This will affect all strings in the data.

If you need to use Strict Reliability QoS profile, make sure your Reader node is exclusive and for-
ceRead is set to false (the default value).

6.5 Debugging an RTI Connext DDS LabVIEW Application
In the Tools’ DDS Debugging subpalette you can find several subVIs to debug your application.
All applications that use RTI DDS Toolkit will create log messages that can be read from the
queue in which they are stored. These messages are composed of three parameters:

1. Timestamp, which is the date and time when the message was logged. It is automatically
taken from the system clock.

2. Log Level, which is an indicator of the severity of the message. The available levels, from
highest severity to lowest are:

• Fatal

• Severe

• Error

• Warning

• Notice

• Info

• Debug

• Trace

• Silent: This level means that the message will never be stored on the queue.

3. Message, which is a string containing useful information.
6-7

Debugging an RTI Connext DDS LabVIEW Application
As mentioned before, all messages are stored in a queue. In addition to the automatically gener-
ated messages, you can create and store your own messages (see Logging Messages from Lab-
VIEW (Section 6.5.3)). The queue has associated two configuration parameters:

❏ Filter Level. Messages with a log level less severe than this Filter Level are not logged.
Default value: Warning level.

❏ Maximum number of elements. If a new message is added to the queue and it is full, the
oldest message is deleted. Default value: 512 elements.

Let’s see how the filter level restriction works with an example: the filter level is Warning Level
and my application stores the following messages:

❏ Message 1 with Error level. It is logged.

❏ Message 2 with Warning level. It is logged.

❏ Message 3 with Debug level. It is not logged.

Which kinds of messages can be logged?

There are three different ways to log new messages into the queue:

❏ From the internal RTI Logger.
These messages are automatically generated by the internal DDS functionality.

❏ From RTI DDS Toolkit.
These messages are generated for the LabVIEW integration with DDS.

❏ Explicitly from your LabVIEW application.
These messages are generated manually using the subVI Log New Message.vi (Logging
Messages from LabVIEW (Section 6.5.3)).

However, once they are in the queue, all messages are treated equally.

6.5.1 Using Administration Panel (for Windows Systems only)

The RTI DDS Toolkit Administration Panel is a tool that allows you to administer your DDS
applications running on LabVIEW. It also shows diverse DDS information and debugging mes-
sages.

The Administration Panel is only supported on Windows systems. This VI uses System Events,
which are not supported on Real-Time (RT) targets; therefore the VI is not supported on RT tar-
gets. For details on how to debug RT targets, see Debugging SubVIs on Real-Time Targets and
Windows Systems (Section 6.5.2).
6-8

Debugging an RTI Connext DDS LabVIEW Application
You can open the Administration Panel from the Tools menu (RTI DDS Toolkit, RTI DDS
Administration Panel).

Let’s take a look at the Administration Panel:
6-9

Debugging an RTI Connext DDS LabVIEW Application
❏ The Configuration section allows you to modify the internal behavior of the toolkit and
the Administration Panel itself. See Configuration Section (Section 6.5.1.1).

❏ The DDS state cluster shows information about the internal DDS entities created using
RTI DDS Toolkit. See DDS State Info (Section 6.5.1.2)

❏ The Debugging table prints the messages stored in the internal logging queue. See
Debugging Table (Section 6.5.1.3)

6.5.1.1 Configuration Section

This part of the Administration Panel lets you modify differ-
ent data:

❏ Administration panel refresh period: Refreshing time
to update the shown data. Default: 100 ms.

Note: The following values will not be updated until
you press the Update button.

❏ Logger Tab Menu:

• Local Logger Tab: All the information about the
Local Logger:

• Max number table rows: The maximum
number of table rows, as well as the maximum
queue size. Default: 512 elements. There are
different actions depending of the value of this
parameter:

• If 0: The internal queue is deleted.

• If positive and larger than the previous one:
Increase the top queue limit.

• If positive and lower than the previous one:
Delete the oldest elements until the size reaches the new maximum size.

• Is debugging window enabled?: Allows you to enable/disable the “old” debug-
ging window shown by LabVIEW. Default: disabled.

If you enable the Debugging window, messages will be printed in both the debug-
ging table (an internal queue) and the debugging window.

Note: The order in which the messages are presented is not the same in these two
windows. In the Debugging window (right), the new messages are printed in
order (oldest on top), while in the Debugging table (left), the new messages are
printed in reverse order (newest on top), as you can see below:
6-10

Debugging an RTI Connext DDS LabVIEW Application
The Debugging window is a tool for printing text information from a LabVIEW
application. On Windows systems, the Debugging windows looks like the above
figure. However, on NI™ Linux® systems, setting this boolean parameter to True
enables messages to be logged to the console out port.

• Distributed Logger Tab: Distributed Logger will be created with the current values of
these parameters when you press Update. Then the parameters will be grayed out. To
modify these values, first you need to disable Distributed Logger (and click Update).

• Distributed Logger DomainParticipantQoSProfile: The QoS Profile that will be
used by the Distributed Logger DomainParticipant. This should follow the next
pattern Library::Profile. The default QoS profile will be used if the DomainPartici-
pantQoSProfile is empty.

• Distributed Logger DomainParticipant ID: The domain ID to be used when creat-
ing the next Distributed Logger DomainParticipant. The default is 0.

• Distributed Logger Queue Size: The number of messages Distributed Logger will
be able to store without dropping any of them. The default is 512 (the same default
as Max number table rows).

• Enable Distributed Logger: Allows you to enable/disable Distributed Logger.

Note: Disabling Distributed Logger will delete all the internal DDS entities that have
been created, so it could take a while.

❏ Timeout to delete inactive DDS entities: Delay (in seconds) that internal DDS entities
are kept as “active” after releasing them. After this period, the next release call will defi-
nitely delete them. If you set it to 0, DDS entities will be deleted as soon as Release subVIs
are called. Default: 10 seconds.

❏ Filter level: Determines the minimum log-level that messages must have in order to be
added to the internal queue. The default value is WARNING LEVEL.
6-11

Debugging an RTI Connext DDS LabVIEW Application
6.5.1.2 DDS State Info

This cluster shows the entities created by RTI DDS Tool-
kit, as well as the internal DDS entities:

❏ Last number of LabVIEW DDS Nodes: Number
of nodes (Readers and Writers) that were created
in the last execution.

❏ Current number of LabVIEW DDS Nodes:
Number of nodes (Readers and Writers) that are
currently running in the system.

❏ Peak number of LabVIEW DDS Nodes:
Maximum number of nodes that has been created
in the current execution.

❏ Number of DomainParticipants: Number of DDS DomainParticipants currently active.

❏ Number of DataReaders: Number of active DDS DataReaders.

❏ Number of DataWriters: Number of active DDS DataWriters.

❏ Number of Topics: Number of active DDS Topics.

6.5.1.3 Debugging Table

This table prints the logged messages stored in the internal queue. There are several actions are
available to manage this table:

❏ Clear Table: Deletes all the printed information.

❏ Save as... : Saves the current state of the debugging table.

❏ Clicking on a cell: Shows the message contained on the pressed cell in the “Full mes-
sage” box.

6.5.2 Debugging SubVIs on Real-Time Targets and Windows Systems

As mentioned in Section 6.5.1, the Administration Panel is not supported on RT Targets. Instead,
you can use the following subVIs to debug and administer RTI Connext DDS applications
deployed on RT targets. These subVIs are in the DDS Debugging subpalette under the Tools cat-
egory. For Windows applications, you can use the Administration Panel, as well as the following
subVIs.
6-12

Debugging an RTI Connext DDS LabVIEW Application
6.5.2.1 Get Configuration Parameters

This subVI returns the current configuration parameters explained in Configuration Section
(Section 6.5.1.1):

❏ Timeout to delete inactive DDS entities

❏ Filter level

❏ Maximum size of the local queue

❏ Is debugging window enabled?

These parameters are global to all RTI DDS Toolkit VIs and remain the same as long as rtil-
vdds.dll is loaded in memory.

6.5.2.2 Set Configuration Parameters

This subVI updates the configuration parameters explained above. Similarly, as these parame-
ters are global, this modification will affect to all VIs using RTI DDS Toolkit under the same Lab-
VIEW instance.

6.5.2.3 Get DL Configuration Parameters

This subVI returns the current configuration of the Distributed Logger parameters described in
Configuration Section (Section 6.5.1.1):

❏ Whether Distributed Logger is enabled

❏ Domain ID used to create Distributed Logger

❏ Distributed Logger Queue Size

This subVI will return the default parameters if Distributed Logger is not created.
6-13

Debugging an RTI Connext DDS LabVIEW Application
6.5.2.4 Configure Distributed Logger

This subVI allows you to configure Distributed Logger. If you enable Distributed Logger, it will
use the current parameters to create an instance of Distributed Logger. If you disable it (that is,
“Enable Distributed Logger” is False), the instance will be deleted (the other parameters are not
used). Only one Distributed Logger instance can be created per instance of the toolkit.

These parameters are used when creating an instance of Distributed Logger:

❏ Enable Distributed Logger: If True, enables Distributed Logger. If False, disables Distrib-
uted Logger.

❏ Domain Id: The ID of domain in which an instance of Distributed Logger will be created.

❏ Distributed Logger Queue Size: How many messages can be stored in the Distributed
Logger Queue.

Note: The Distributed Logger Queue Size shouldn’t be lower than the Local Logger
Queue Size, because this could make that several messages logged in the Local Logger
won’t be sent through Distributed Logger.

❏ DomainParticipant QoSProfile: The QoS Profile that will be used to create the Domain-
Participant. The format of this profile will be “Library::Profile”.

6.5.2.5 DDS State Info

This subVI visualizes the DDS entities created by LabVIEW is controlled by the error wire. The
data shown is the same as explained in DDS State Info (Section 6.5.1.2).

6.5.2.6 Reading Logged Messages

This subVI reads the oldest non-printed message from the internal queue and appends it to the
beginning of the “Debugging table out”.

There are pins connected to it:

❏ Inputs
6-14

Debugging an RTI Connext DDS LabVIEW Application
• Debugging table in: Specifies the debugging table in which to append the new sam-
ple if it exists.

• Clear table?: Clears the table. Default: disabled.

• Max number of rows: Sets a new maximum number of rows in the table. Default: 512
rows.

• error in (no error): error input

❏ Outputs

• Debugging table out: The “debugging table in” with a new message appended if it
existed.

• Print table?: Indicates whether a new data was added to the table or the table has
been cleared, so the table needs to be printed.

• error out: Error standard output.

This subVI is designed to be used within a loop that will periodically read the messages one by
one. To get a table updated, the correct use of this subVI is seen the following figure. As you can
see, the input of this subVI is a shift register, which allows you to keep the previous printed mes-
sages.

Finally, the flag Print table? improves the performance by only updating the table control if a
new message was read (or if the table has been cleared).

You can find this subVI under https://github.com/rticommunity/rticonnextdds-labview-
examples/tree/master/examples/read_logging_messages.

6.5.3 Logging Messages from LabVIEW

As we have seen, there are different ways to log a new message into the internal queue. In the
Debugging subpalette you can find Log New Message.vi, which allows you to log messages
explicitly. This subVI requires the following data:

❏ Message: A string with a meaningful message.
6-15

https://github.com/rticommunity/rticonnextdds-labview-examples/tree/master/examples/read_logging_messages
https://github.com/rticommunity/rticonnextdds-labview-examples/tree/master/examples/read_logging_messages

Enabling Security
❏ Log Level: The log level with which the message will be registered.

Logging Messages Manually (Section 4.8.1.1) explains with an example how to use this subVI to
log your own messages.

6.6 Enabling Security
To enable security for your DDS application, you need to set several DomainParticipant proper-
ties to point to the security files created using OpenSSL®. Then to enable security in RTI DDS
Toolkit, you need to create a DomainParticipant QoS profile that includes these properties.

DomainParticipant QoS profiles can be loaded from an XML file, as explained in Chapter 5:
Loading Quality of Service Profiles.

Mandatory Properties:

At a minimum, your security profile must set these mandatory properties to the corresponding
files:

❏ Identity Certificate Authority (CA): authentication.ca_file

❏ Identity Certificate (Signed by Identity CA): authentication.certificate_file

❏ Private Key: authentication.private_key_file

❏ Permissions Certificate Authority (CA) access_control.permissions_authority_file

❏ Governance Document (Signed by Permissions CA): access_control.governance_file

❏ Permissions Document (Signed by Permissions CA): access_control.permissions_file

Optional Properties:

❏ Shared Secret Algorithm: authentication.shared_secret_algorithm

❏ Encryption Algorithm: cryptography.encryption_algorithm

❏ Certificate Revocation List: authentication.crl_file

For the full list of available security properties, see the RTI DDS Security Plugins Getting Started
Guide, available here: https://community.rti.com/documentation.

RTI DDS Toolkit allows you to create the above DomainParticipant QoS profiles, including the
security properties. These profiles are referred to as Custom Security Profiles. To create Custom
Security Profiles, use the DDS Security Subpalette under the Tools palette:

❏ Tools palette

• DDS Security subpalette

• Create Custom Security Profile.vi

• Delete Custom Security Profile.vi

• Get Custom Security Profiles List.vi
6-16

https://community.rti.com/documentation

Enabling Security
• Get Security Profile Values.vi

In addition to these subVIs, there is a Security Panel which allows you to efficiently manage
your custom security profiles (for Windows systems only).

Note: Custom security profiles are stored in memory, so they need to be created again every
time RTI DDS Toolkit is started (each time you close the toolkit, all the subVIs that use the toolkit
are closed). You may want to use Bundle by Name and create your own security configuration
cluster from constants that have been saved in your code.

6.6.1 Managing Custom Security Profiles with the Security Panel (Windows Systems)

The Security Panel allows you to manage Custom Security Profiles. From this panel, you can:

❏ Create a Custom Security Profile

❏ Delete a Custom Security Profile

❏ See the current Custom Security Profiles

❏ Get Security Profile Values.vi

The Security Panel is only supported on Windows systems. This VI uses System Events, which
are not supported on Real-Time (RT) targets; therefore the VI is not supported on RT targets. For
details on how to create Custom Security Profiles on RT targets, see Managing Custom Security
Profiles with SubVIs (Section 6.6.2).
6-17

Enabling Security
You can open the Security Panel from the Tools menu (RTI DDS Toolkit, RTI DDS Administra-
tion Panel).
6-18

Enabling Security
Let’s take a look at the Security Panel.

❏ Name of Base DomainParticipant QoS Profile: Name of the DomainParticipant QoS
profile that will be used as the base profile. The Security Panel will create a profile which
includes the QoS settings from the base profile plus any security properties set in the
Security Panel. Therefore if a QoS setting is in the profile and set in the Security Panel, the
latter will be used. This base profile can be a builtin profile, a profile from the loaded
XML configuration (following the pattern Library::Profile), or even a Custom Security
Profile (must already be created).

❏ Basic Configuration: Allows you to find the mandatory files needed to load and enable
security. This sets the mandatory properties noted in Enabling Security (Section 6.6).

❏ Advanced Configuration: Sets the optional properties noted in Enabling Security (Sec-
tion 6.6).
6-19

Enabling Security
❏ Current Profiles: Shows the current Custom Security Profiles. You can also use this tab to
load and delete a profile.

❏ Name of DomainParticipant QoS Profile with Security Configuration: Assigns a name
to the new Custom Security Profile. This parameter is mandatory and cannot contain
whitespaces. No two profiles can share the same name. This name does not need to fol-
low the pattern Library::Profile.

Note: The Basic Configuration must be set in a Secure Custom Profile. However if you load a
base profile that contains any of the fields in Enabling Security (Section 6.6), you can avoid fill-
ing in the parameters that have already been set. If any of the mandatory fields are not set when
the Security Custom Profile is created, error 5077 will be thrown.

6.6.1.1 Creating Custom Security Profiles

To create a new Custom Security Profile:

1. (Optional) Select a ‘Name of Base DomainParticipant QoS Profile’ to inherit the QoS from.
Or leave it blank if you want to load the LabVIEWLibrary::DefaultProfile.

2. Fill in the Basic Configuration settings if these parameters haven’t been inherited.

3. (Optional) Fill in the parameters in the Advanced Configuration tab.

4. Set a ‘Name of DomainParticipant QoS Profile with Security Configuration’.

5. Press the Create New Security Profile button.

You will see a message indicating that the Custom Security Profile has been correctly created.

6.6.1.2 Deleting Custom Security Profiles

To delete a Custom Security Profile:

1. Go to the Current Profiles tab.

2. Select the profile you want to delete.

3. Press the Delete Selected Profile button.

6.6.1.3 Load Custom Security Profile Values

To load the values from a Custom Security Profile:
6-20

Enabling Security
1. Go to the Current Profiles tab.

2. Select the profile you want to load.

3. Press the Load Profiles Values button.

The values of this profile will be loaded in the Basic and Advanced Configuration tabs.

6.6.2 Managing Custom Security Profiles with SubVIs

As mentioned in Managing Custom Security Profiles with the Security Panel (Windows Sys-
tems) (Section 6.6.1), the Security Panel is not supported on RT targets. Instead, you can use the
following subVIs to create your own Custom Security Profiles on these systems.

There is a DDS Security subpalette under the Tools category. For Windows applications, you can
use the Administration Panel, as well as the following subVIs.

6.6.2.1 Creating Custom Security Profiles

This subVI creates a new Custom Security Profile with the provided data:

❏ DomainParticipant Base Profile Name

❏ Security Settings cluster, including Basic Security Configuration and Advanced Security
Configuration

❏ New Custom Security Profile Name

This also returns the Custom Security Profile Name to be used by other subVIs.

These parameters are the same as those described in Managing Custom Security Profiles with
the Security Panel (Windows Systems) (Section 6.6.1).

6.6.2.2 Deleting Custom Security Profiles

This subVI deletes a Custom Security Profile based on the provided name:

❏ Custom Security Profile Name which will be deleted.

6.6.2.3 Getting Custom Security Profiles List

This subVI returns an array of strings with the current created Custom Security Profiles.
6-21

Enabling Security
6.6.2.4 Get Security Profiles Values

This subVI returns the Security Settings of a specific profile identified by name. The returned
Security Settings will contain all the parameters which this Security Profile uses. This means that
even if the Security Profile has been created based on another profile that contained any security
properties, the returned Security Settings will contain all the parameters the provided Profile
Name uses.

6.6.3 Creating DomainParticipants using a Custom Security Profile

Once the Custom Security Profile has been created (from the Security Panel or the Create Security
Profile subVI), you can use it to create a Secure DomainParticipant. To do this, when you are cre-
ating a new DomainParticipant, you need to set value of the DomainParticipant QoS Profile to
the name of the Custom Security Profile you created in Configuring Advanced Writer Settings
(Section 6.3).

If the profile has been created using a Custom Security Profile (without a subVI):
6-22

Advanced Filtering of Data—ContentFilteredTopics
If the profile has been created using a Custom Security Profile with a subVI:

6.7 Advanced Filtering of Data—ContentFilteredTopics
A ContentFilteredTopic is a Topic with filtering properties. It makes it possible to subscribe to Top-
ics and at the same time specify that you are only interested in a subset of the Topic’s data. It can
also be used to limit the number of data samples a DataReader has to process (and store) and
may also reduce the amount of data sent over the network.

A ContentFilteredTopic creates a relationship between a Topic, also called the related Topic, and
user-specified filtering properties. The filtering properties consist of an expression used to eval-
uate a logical expression on the Topic content. The filter expression is similar to the WHERE
clause in a SQL expression.

Filtering may be performed on either side of the distributed application. (The DataWriter
obtains the filter expression and parameters from the DataReader during discovery.)

When batching is enabled, content filtering is always done on the reader side.

A DataWriter will automatically filter DDS data samples for a DataReader if all of the following
are true; otherwise filtering is performed by the DataReader.

1. The DataWriter is filtering for no more than
writer_resource_limits.max_remote_reader_filters DataReaders at the same time.

2. The DataReader is not subscribing to data using multicast.

3. There are no more than 4 matching DataReaders in the same locator.

4. The DataWriter has infinite liveliness.

5. The DataWriter is not using an Asynchronous Publisher.

6. If you are using a custom filter (not the default one), it must be registered in the Domain-
Participant of the DataWriter and the DataReader.
6-23

Advanced Filtering of Data—ContentFilteredTopics
7. The DataWriter is not configured to use batching.

See the RTI Connext DDS Core Libraries User’s Manual for more details, available here: https://
community.rti.com/documentation.

6.7.1 Configuring ContentFilteredTopics

A pin in the Create Advanced Reader subVI allows you to create a ContentFilteredTopic using the
specified Topic.

As you can see in this figure, the ContentFilteredTopic allows
you to configure the following parameters:

❏ Filter Type: Filter used to created the ContentFiltered-
Topic. Currently, only DDS_SQLFILTER_NAME is avail-
able.

❏ ContentFilteredTopic Name: ID of the ContentFiltered-
Topic.

❏ Filter Expression: Expression that the ContentFilteredTopic will use to filter data during
the exchange between the DataReader and DataWriter. Must be a valid expression for the
filter class specified using Filter Type.

Notes:

❏ If the ContentFilteredTopic Name or Filter Expression are empty, the function will not
create a ContentFilteredTopic, instead it will use the specified Topic. This will be logged
in a debug message.

❏ Error 5088 will appear if an existing ContentFilteredTopic (attached to a DataReader) is
being used with different filter expressions. Two ContentFilteredTopics cannot share the
same name if they do not share the same expression. This means that a ContentFiltered-
Topic’s filter expression cannot be modified without changing its name. This implies that
no Data Readers are using that ContentFilteredTopic.
6-24

https://community.rti.com/documentation
https://community.rti.com/documentation

Appendix A VI Descriptions

A.1 Controls Palette Types
In the Front Panel’s Controls Palette, in the Addons section, under RTI DDS Toolkit, you will
find the following:

DDS Sample Info: This cluster is returned by the Read subVI and shows information about the
current sample. valid_data is 1 if the read data is valid, otherwise it is 0.

DDS State Info: This cluster contains general statistics from RTI DDS Toolkit. It includes the cur-
rent number of nodes (both Reader and Writer ones), DomainParticipants, DataReaders, DataW-
riters, and Topics. It also provides historical information such as the last execution's nodes.

RTI DDS Advanced Reader Configuration: This cluster contains the advanced parameters for
the Reader Creation. Use this control with the Create Advanced Reader subVI to provide optional
parameters when creating a new Reader.

DDS_SampleStateKind U32 Enum

DDS_ViewStateKind U32 Enum

DDS_InstanceStateKind U32 Enum

sec I32

nanosec U32

valid_data Boolean

Last number of LabVIEW DDS Nodes I32

Current number of LabVIEW DDS Nodes I32

Peak number of LabVIEW DDS Nodes I32

Number of DomainParticipants I32

Number of DataReaders I32

Number of DataWriters I32

Number of Topics I32

typeName String

keyName String

domainParticipantQoS String

dataReaderQosProfile String
A-1

Controls Palette Types
RTI DDS Advanced Writer Configuration: This cluster contains the advanced parameters for
the Writer Creation. Use this control with the Create Advanced Writer subVI to provide optional
parameters when creating a new Writer.

RTI DDS Security Settings: This cluster contains the security parameters for enabling DDS
Security. This is divided in two internal clusters. The Basic Security Settings includes the manda-
tory properties that we need to set to enable DDS Security. The Advanced Security Settings just
includes some additional configuration parameters.

RTI DDS ContentFilteredTopic Info: This cluster contains the parameters that are necessary to
create a ContentFilteredTopic.

RTI DDS Filter Level: Ring that contains the different debugging levels.

forceArrayMapping? Boolean

forceExclusiveReader? Boolean

forceRead? (only ExclusiveReader) Boolean

forceUnboundedString? Boolean

typeName String

keyName String

domainParticipantQoS String

dataWriterQosProfile String

forceArrayMapping? Boolean

forceUnboundedString? Boolean

Basic Security Settings Cluster

Identify Certificate Authority (CA) File Path

Identify Certificate (Signed by Identity CA) File Path

Private Key File Path

Permissions Certificate Authority (CA) File Path

Governance Document (Signed by Permissions CA) File Path

Permissions Document (Signed by Permissions CA) File Path

Advanced Security Settings Cluster

 Shared Secret Algorithm String

Encryption Algorithm String

Certificate Revocation List File Path

Filter Type Combo Box String

ContentFilteredTopic Name String

Filter Expression String
A-2

Functions Palette
A.2 Functions Palette
In the Block Diagram’s Functions Palette, in the Data Communication section, under RTI DDS
Toolkit, you will find the following:

❏ Writer (Section A.2.1)

❏ Reader (Section A.2.2)

A.2.1 Writer

Simple Create Writer: Creates a Writer node able to write data to the DDS network. Use the ref-
erence generated by this subVI as input to the Write subVI to send data using DDS. Use the
Release Writer subVI to release the allocated memory.

❏ Input parameters

❏ Output parameters

Advanced Create Writer: This subVI creates a Writer node able to write data to the DDS net-
work. Introduce advanced configurations by using the control RTI DDS Advanced Writer Con-
figuration.ctl. Use the reference generated by this subVI as input to the Write subVI to send data
using DDS. Use the Release Writer subVI to release the allocated memory.

❏ Input parameters

❏ Output parameters

Write: Publishes data into a DDS network. It takes a Writer node (generated by Advanced/Simple
Create Writer) as an input parameter. The data type of the data to be written must be the same as
the data type attached to the Advanced/Simple Create Writer subVI.

Domain Id ID of the domain the application intends to join

Topic Name Name of Topic for which the application will write data

Data Type Control of the data type to be published

error in (no error) LabVIEW Error cluster in (optional)

DDS Object Ref out Reference (pointer) to new Writer object

error out LabVIEW Error cluster out (optional)

Advanced Writer Configuration Controls of type RTI DDS Advanced Writer Configu-
ration that contains the optional parameters

Domain Id ID of the domain the application intends to join

Topic Name Name of Topic for which the application will write
data

Data Type Control of the data type to be published

error in (no error) LabVIEW Error cluster in (optional)

DDS Object Ref out Reference (pointer) to new Writer object

error out LabVIEW Error cluster out (optional)
A-3

Functions Palette

e

g
e
❏ Input parameters

❏ Output parameters

Release Writer: Releases the memory allocated for a Writer node and prepares the contained
entities to be deleted if nothing else is using them. To force the release of the contained entities,
use 'Release Unused Entities' when the defined timeout has been reached after releasing the
Writer node.

❏ Input parameters

❏ Output parameters

Set Writer QoS: Applies a new QoS profile to an existing Writer node. If the current QoS cannot
be modified at run time, the Writer node remains unchanged.

❏ Input parameters

❏ Output parameters

A.2.2 Reader

Simple Create Reader: Creates a Reader node that is able to read data from the DDS network.
Use the reference generated by this subVI as input to the Read subVI to get data from DDS and
store it in the appropriate LabVIEW data. Use the Release Reader subVI to release the allocated
memory.

DDS Object Ref in Reference (pointer) to Writer object to be used

Data Control with the data to be published by DDS. Must be of the
same type as specified in the Data Type input for the Advanced/
Simple Create Writer.

error in LabVIEW Error cluster in (optional)

DDS Object Ref out Reference (pointer) to Writer object used

error out LabVIEW Error cluster out (optional)

DDS Object Ref in Reference (pointer) to Writer object to be released

error in LabVIEW Error cluster in (optional)

error out LabVIEW Error cluster out (optional)

DDS Object Ref in Reference (pointer) to Writer object whose QoS Profile will b
changed

Qos Profile QoS profile to be applied. The expected value is a string providin
the QoS library and profile to be read from the XML file (se
Appendix D for details on where this file is located).

error in LabVIEW Error cluster in (optional)

DDS Object Ref out Reference (pointer) to Writer object used

error out LabVIEW Error cluster out (optional)
A-4

Functions Palette
❏ Input parameters

❏ Output parameters

Advanced Create Reader: This subVI creates a Reader node able to read data from the DDS net-
work. Introduce advanced configurations by using the control RTI DDS Advanced Reader
Configuration.ctl. Use the reference generated by this subVI as input to the Read subVI to get
data from DDS and store it in the appropriate LabVIEW data. Use the Release Reader subVI to
release the allocated memory.

❏ Input parameters

❏ Output parameters

Read: Gets data from the DDS network. It takes a Reader node (generated by the Advanced/Sim-
ple Create Reader subVI) as an input parameter. The data is stored in the appropriate LabVIEW
data, which is provided as an output parameter.

❏ Input parameters

❏ Output parameters

Domain Id ID of the domain the application intends to join

Topic Name Name of the topic for which the application will read data

Data Type Control of the same data type to be read

error in (no error) LabVIEW Error cluster in (optional)

DDS Object Ref out Reference (pointer) to new Reader object

error out LabVIEW Error cluster out (optional)

Advanced Reader Configuration Control of type RTI DDS Advanced Reader Configu-
ration that contains the optional parameters

Domain Id ID of the domain the application intends to join

Topic Name Name of the topic for which the application will read
data

Data Type Control of the same data type to be read

error in (no error) LabVIEW Error cluster in (optional)

DDS Object Ref out Reference (pointer) to new Reader object

error out LabVIEW Error cluster out (optional)

DDS Object Ref in Reference (pointer) to Reader object to be used

Query Condition Query expression to use when filtering the read samples;
empty means no filtering

Only New Samples Specifies whether to read only the new (unviewed) samples
(true) or all the available ones (false)

error in (no error) LabVIEW Error cluster in (optional)

DDS Object Ref out Reference (pointer) to Reader object used

Data Indicator that will be filled with the data read from DDS.
Must be of the same type as the one specified in the Data Type
input of the Advanced/Simple Create Reader subVI
A-5

Functions Palette
Release Reader: Releases memory allocated for a Reader node and prepares the contained enti-
ties to be deleted if nothing else is using them. To force the release of the contained entities, use
'Release Unused Entities' when the defined timeout has been reached after releasing the Reader
node.

❏ Input parameters

❏ Output parameters

Set Reader QoS: Applies a new QoS profile to an existing Reader node. If the current QoS can-
not be modified at run time, the Reader node remains unchanged.

❏ Input parameters

❏ Output parameters

A.2.3 Tools

DDS Release Unused Entities: Releases all the entities generated by the Create Reader/Writer
subVIs that are not currently in use. An entity is considered ‘not in use’' if no nodes have linked
it within the defined timeout period. This is a useful way to resolve some of the errors produced
when creating new Reader/Writer nodes.

❏ Input parameters

❏ Output parameters

DDS Time to LV Time: Converts a UNIX timestamp (in seconds) to a LabVIEW Time Stamp.

❏ Input parameters

DDS Sample Info DDS Sample Info cluster containing information about the
sample read.

error out LabVIEW Error cluster out (optional)

DDS Object Ref in Reference (pointer) to Reader object to be released

error in LabVIEW Error cluster in (optional)

error out LabVIEW Error cluster out (optional)

DDS Object Ref in Reference (pointer) to Reader object whose QoS Profile will be
changed

Qos Profile QoS profile to be applied. The expected value is a string pro-
viding the QoS library and profile to be read from the XML
file (see Appendix D for details on where this file is located).

error in LabVIEW Error cluster in (optional)

DDS Object Ref out Reference (pointer) to Reader object used

error out LabVIEW Error cluster out (optional)

error in LabVIEW Error cluster in

Error Code RTI DDS Toolkit Error Code (optional)
error out LabVIEW Error cluster out (optional)

X DBL
A-6

Functions Palette
❏ Output parameters

A.2.3.1 DDS Debugging SubPalette

Get configuration parameters: Returns the current values of the configuration parameters of
the RTI DDS Toolkit: timeout to release unused DDS entities, filter level, maximum size of the
internal queue, and a boolean which indicates whether the debugging window is enabled.

❏ Input parameters:

❏ Output parameters:

Set configurations parameters: Updates the configuration parameters of the RTI DDS Toolkit:
timeout to release unused DDS entities, filter level, maximum size of the internal queue and a
boolean to enable/disable the debugging window.

❏ Input parameters:

❏ Output parameters:

Get DL configurations parameters: Returns the current configuration values of the Distributed
Logger: a boolean which indicates if Distributed Logger is enabled, the domain ID where the
Distributed Logger Domain Participant has been created, and the Distributed Logger Queue
Size.

❏ Input parameters:

❏ Output parameters:

Time Stamp Cluster

error in LabVIEW Error cluster in

Timeout to Delete Inactive DDS Entities (s) I32
Filter Level I32 Ring
Maximum Number of Table Rows U32
Is Debugging Window Enabled Boolean
error out LabVIEW Error cluster out

Timeout to Delete Inactive DDS Entities I32 - Default: 10
Filter Level I32 Ring - Default: WARNING LEVEL
Maximum Number of Table Rows U32 - Default: 512
Is Debugging Window Enabled Boolean - Default: False
error in LabVIEW Error cluster in

error out LabVIEW Error cluster out

error in LabVIEW Error cluster in

Is Distributed Logger enabled? Boolean
Domain ID U32
Distributed Logger Queue Size I32
error out LabVIEW Error cluster out
A-7

Functions Palette
Configure Distributed Logger: Enables and disables Distributed Logger. When this subVI is
enabling Distributed Logger, all the other parameters will be used to create it. These parameters
are: enable Distributed Logger, Domain Id, Distributed Logger Queue Size, DomainParticipant
QoS Profile.

❏ Input parameters:

❏ Output parameters:

Get DDS State: Returns general statistics from RTI DDS Toolkit. This includes the current num-
ber of nodes (both Reader and Writer ones), DomainParticipants, DataReaders, DataWriters, and
Topics. It also provides historical information such as the last execution's nodes.

❏ Input parameters:

❏ Output parameters:

Read One Logged Message: Appends a logging message to the table provided as input. It also
allows you to limit the maximum number of table rows; and finally, it returns a flag indicating
when the table has been modified, so it could be printed just if it has been modified.

❏ Input parameters:

❏ Output parameters:

Log New Message: Logs a new message into the internal queue.

❏ Input parameters:

❏ Output parameters:

Enable Distributed Logger Boolean - Default: False
Domain Id U32 - Default: 0
Distributed Logger Queue Size I32 - Default: 512
DomainParticipant Qos Profile String - Default: empty string
error in LabVIEW Error cluster in

error out LabVIEW Error cluster out

error in LabVIEW Error cluster in

DDS State output DDS State Info Cluster
error out LabVIEW Error cluster out

Debugging Table in 2D String table
Clear Table? Boolean
Maximum Number of Rows U32
error in LabVIEW Error cluster in

Debugging Table out String 2D table
Print Table? Boolean
error out LabVIEW Error cluster out

Message String
Log level U32 Ring
error in LabVIEW Error cluster in

error out LabVIEW Error cluster out
A-8

Functions Palette
A.2.4 DDS Security Subpalette

Create Custom Security Profile: Creates a new Custom Security Profile named New Custom
Security Profile Name based on the QoS defined in DomainParticipant Base Profile Name,
including the Security Settings configuration.

❏ Input parameters:

❏ Output parameters:

Delete Custom Security Profile: Deletes a previously created Custom Security Profile whose
name is ‘Custom Security Profile Name’.

❏ Input parameters:

❏ Output parameters:

Get Custom Security Profiles List

❏ Input parameters:

❏ Output parameters:

Get Security Profile Values: Loads all the security properties that the provided profile has been
created with.

❏ Input parameters

❏ Output parameters

DomainParticipant Base Profile Name String (optional)
Security Settings Cluster with the Security Settings

(includes Basic and Advanced Security Settings)
New Custom Security Profile Name String
error in LabVIEW Error cluster in

Custom Security Profile Name Output String
error out LabVIEW Error cluster out

Custom Security Profile Name String
error in LabVIEW Error cluster in

error out LabVIEW Error cluster out

error in LabVIEW Error cluster in

Array of Custom Security Profiles Array of Strings
error out LabVIEW Error cluster out

Profile Name String
error in LabVIEW Error cluster in

Security Settings Cluster with the Security Settings (includes
Basic and Advanced Security Settings)

error out LabVIEW Error cluster out
A-9

Appendix B Creation and Release of DDS Entities

The table below explains when RTI DDS Toolkit creates and releases DDS entities.

When an entity is released, RTI DDS Toolkit deletes all ‘unused’ entities in the system. An entity
is considered ‘unused’ if no nodes have linked it within the defined timeout period since the last
subVI using it was released.

All entities (including the DomainParticipant) are created with the QoS values specified in the
QoS Profile input to the Create Writer/Reader functions.

Note: You can see when entities are created and released in the Debugging window. See
Enabling Debugging Mode (Section E.1).

DDS Entity Is Created When… Is Released When…

DomainParticipant

The Create Writer/Reader functions
are called from LabVIEW and
there is not already another valid
DomainParticipant.
If a DomainParticipant does not
exist for that Domain Id and
DomainParticipantQos name, a
new DomainParticipant is created.

An execution ends and no DDS Reader
or Writer objects have used the Domain-
Participant within the defined timeout
period.
The DDS Release Unused Entities func-
tion is called from LabVIEW and no
DDS Reader or Writer objects are using
the DomainParticipant.

Topic ‘x’

The Create Writer/Reader functions
are called from LabVIEW and
there is not already another valid
Topic.

An execution ends and no DDS Reader
or Writer objects are using the Topic.
The DDS Release function is called from
LabVIEW and no DDS Reader or Writer
objects are using the Topic.

ContentFilteredTopic ‘x’

The Create Advanced Reader VI is
called from LabVIEW with a valid
‘ContentFilteredTopic Info’ cluster
(all the fields have been set).

An execution ends and no DDS Reader
objects are using the ContentFiltered-
Topic.
The DDS Release function is called from
LabVIEW and no DDS Reader objects
are using the ContentFilteredTopic.

Subscriber
Never. RTI DDS Toolkit uses an
implicit subscriber for each
DomainParticipant.

Never.

Publisher
Never. RTI DDS Toolkit uses an
implicit publisher for each Domain-
Participant.

Never.
B-1

DataReader for Topic ‘x’

The Create Reader function is called
and there is not already another
valid DataReader.
If the forceExclusiveReader flag is
true in the Advanced Create
Reader, a new DataReader is cre-
ated.

• An execution ends and no DDS
Reader objects have used the
DataReader within the defined time-
out period.

• The DDS Release Unused Entities
function is called from LabVIEW
and no DDS Reader objects are
using the DataReader.

DataWriter for Topic ‘x’

The DDS Create Writer function is
called from LabVIEW and there is
not already another valid DataW-
riter.

• An execution ends and no DDS
Writer objects have used the
DataWriter within the defined
timeout period.

• The DDS Release Unused Entities
function is called from LabVIEW
and no DDS Writer objects are
using the DataWriter.

DDS Entity Is Created When… Is Released When…
B-2

Appendix C Supported Data Types and Corresponding
IDL

RTI DDS Toolkit supports these simple and complex data types:

❏ NUMERIC

❏ BOOLEAN

❏ TEXT (STRING)

❏ ENUM

• UINT 32

❏ ARRAYS OF TYPE

• NUMERIC (INT8, INT16, INT32, INT64, UINT8, UINT16, UINT32, UINT64, FLOAT,
DOUBLE)

• BOOLEAN

• ENUM

❏ CLUSTER WITH ANY COMBINATION OF:

• NUMERIC

• BOOLEAN

• TEXT (STRING)

• ENUM

• ARRAY

• CLUSTER

For other DDS applications to communicate with VIs that use RTI DDS Toolkit, you need to use
compatible data types in both applications.

• INT8a

a. INT8 and UINT8 are both mapped as octets. We recommend using UINT8, since octets are not signed.

• UINT8a

• INT16 • UINT16

• INT32 • UINT32

• INT64 • UINT64

• FLOAT/SINGLE

• DOUBLE
C-1

❏ Simple types have fixed IDLs that are listed in Table C.1.

❏ Clusters use a direct mapping of their configuration into a C struct, see Corresponding
IDL for Complex Data Types (Section C.1).

Table C.1 Simple Data Types and Corresponding IDL

Data Type Sample Entry in IDL Default TypeNamea

INT8
struct Int8Struct{
octet value;
};

DDS::Octets

INT16
struct Int16Struct{

short value;
};

DDS_Short

INT32
struct Int32Struct{

long value;
};

DDS_Long

INT64
struct Int64Struct{

long long value;
};

DDS_LongLong

UINT8
struct UnsignedInt8Struct{

octet value;
};

DDS::Octets

UINT16
struct UnsignedInt16Struct{

unsigned short value;
};

DDS_UnsignedShort

UINT32
struct UnsignedInt32Struct{

unsigned long value;
};

DDS_UnsignedLong

UINT64
struct UnsignedInt64Struct{

unsigned long long value;
};

DDS_UnsignedLongLong

FLOAT
struct FloatStruct{

float value;
};

DDS_Float

DOUBLE
struct DoubleStruct{

double value;
};

DDS_Double

BOOLEAN
struct BooleanStruct{

boolean value;
};

DDS_Boolean
C-2

STRING

Default:
struct DDS_String{

string<1024> value;
};

Forcing use of unbounded string:
struct DDS_String{

string value;
};

DDS::String

ARRAY of the above types
(This example uses INT16 and
nDim elements.)

Default:
struct ArrayStruct {

sequence<short, nDim>
value;
}

Forcing use of array:
struct ArrayStruct
{

short value[nDim];
}

DDS_Default_TypeName

a. If you do not provide a TypeName, a “Default TypeName” is assigned depending on the type. This may cause con-
flicts if several cluster types are defined in the same DomainParticipant.

Table C.1 Simple Data Types and Corresponding IDL

Data Type Sample Entry in IDL Default TypeNamea
C-3

Corresponding IDL for Complex Data Types
C.1 Corresponding IDL for Complex Data Types

C.1.1 Clusters

The IDL representation for a cluster depends on its structure and the type name provided in the
Create subVI. If the type name is not provided, we assign DDS_DefaultTypeName as the type
name. This may cause conflicts if several cluster-types are defined in the same DomainPartici-
pant.

For example, using the cluster in the figure on the left,
assume the type name is MyTypeName. The correspond-
ing IDL would be as follows:

struct MyTypeName{
 string<1024>1 Text; //@key
 long I32_Num; //@key
 long long I64_Num;
 unsigned short U16_Num;
 sequence<float,4> Sgl_Array;
 innerclusterType innercluster;
};
struct superinnerClusterType{
 double Dbl_Num;
 ultrainnerClusterType ultrainnerCluster;
};

struct ultrainnerClusterType{
 sequence<short,2> I16_Array;
};

struct innerclusterType{
 float Sgl_Num;
 boolean Boolean;
 superinnerClusterType superinnerCluster;
};

Note that inner clusters add “Type” to their name to avoid
repeating the same name in both type and member. Also
note that all the names of the components are joined by
underscores instead of using spaces. This prevents compil-
ing errors in other languages such as C, C++, Java or .Net.
Please consider interoperability with these languages and
avoid invalid names in the cluster components.

1. If forceUnboundedString? is set to true, IDL correspondence will be string Text;. And you will need to run the
rtiddsgen with the option –unboundedSupport.
C-4

Corresponding IDL for Complex Data Types
C.1.2 Enums

The IDL representation for an enum depends on the elements it is composed of. Remember that
only 32-bit enums are supported. Also, if no type name is provided, we use DDS_Enum as type
name. This may cause conflicts if different enum-types are defined in the same DomainPartici-
pant.

For example, the enum in the figure
on the right would have the following
IDL representation for a Type Name
"MyType":

struct EnumStruct{
 MyTypeEnum MyType;
}
enum MyTypeEnum {
 example_value_0 = 0,
 example_value_1 = 1,
 example_value_N = 2
};

When the enum is inside a cluster, the representation is slightly
different, so several enums can be contained in the same cluster.
For the cluster on the right (containing two instances of the enum
used in the previous example), the corresponding IDL would be:

struct MyType{
 MyEnum_1Enum MyEnum_1;
 MyEnum_2Enum MyEnum_2;
};

enum MyEnum_2Enum {
 example_value_0 = 0,
 example_value_1 = 1,
 example_value_N = 2
};

enum MyEnum_1Enum {
 example_value_0 = 0,
 example_value_1 = 1,
 example_value_N = 2
};
C-5

Appendix D File Folders Installed within LabVIEW

D.1 File Folders on Windows Systems
RTI DDS Toolkit adds the following files to LabVIEW’s folders.

In the paths shown below, LabVIEW 20xx is:

❏ C:\Program Files1\National Instruments\LabVIEW 20xx

Where xx represents the LabVIEW version number (LabVIEW 2015, etc.)

❏ DLLs

• \LabVIEW 20xx\vi.lib_RTI DDS Toolkit_internal_deps

❏ Control Types and VIs

• \LabVIEW 20xx\vi.lib\RTI DDS Toolkit\Types

• \LabVIEW 20xx\vi.lib\RTI DDS Toolkit\VIs

❏ QoS Profile (for documentation purposes only)

• \LabVIEW 20xx\vi.lib_RTI DDS
Toolkit_internal_deps\RTI_LABVIEW_CONFIG.documentationONLY.xml

❏ Examples

• \LabVIEW 20xx\examples\RTI DDS Toolkit\ClusterDemo

• \LabVIEW 20xx\examples\RTI DDS Toolkit\ContentFilteredTopicDemo

• \LabVIEW 20xx\examples\RTI DDS Toolkit\cRIO-9068Project

• \LabVIEW 20xx\examples\RTI DDS Toolkit\LogMessagesDemo

• \LabVIEW 20xx\examples\RTI DDS Toolkit\MonitoringDemo

• \LabVIEW 20xx\examples\RTI DDS Toolkit\NumberDemo

• \LabVIEW 20xx\examples\RTI DDS Toolkit\ReadAllDemo

• \LabVIEW 20xx\examples\RTI DDS Toolkit\SecurityShapesDemo

• \LabVIEW 20xx\examples\RTI DDS Toolkit\ShapesDemo

• \LabVIEW 20xx\examples\RTI DDS Toolkit\StringsDemo

1. On 64-bit systems, the folder is “Program Files (x86)”
D-1

File Folders on NI Linux Targets
D.2 File Folders on NI Linux Targets

❏ Libraries

• /usr/local/rti/lib

❏ QoS profile

• /home/lvuser/rti/RTI_LABVIEW_CONFIG.documentationONLY.xml
D-2

Appendix E Troubleshooting

E.1 Enabling Debugging Mode
To debug your VI, you can use the administration panel or the debugging subpalette, which pro-
vides information about several different types. For more information, see Debugging an RTI
Connext DDS LabVIEW Application (Section 6.5).

E.2 Error Codes and Possible Solutions
Table E.1 shows error codes and possible solutions.

Table E.1 Error Codes

Error
Code Error Message Possible Reason(s) Additional Information

5001
Something failed in a previ-
ous stage (wired error input)

RTI DDS Toolkit found an error status in the
input error cluster. It might be due to an
error in the previous stage.

5002
Error handling the provided
LabVIEW Data

Check that the type of all transferred/
received data is the same and is similar to
the one connected to the data type in the
Create Reader/Writer subVIs.

LabVIEW data connected to the
data type pin in the Create Reader
or Create Writer does not corre-
spond with the type sent/
received or is missing.

5003
Unable to delete the con-
tained entities of a participant

It is likely that another application is still
using an entity of that Participant. Close all
the instances before trying to delete the con-
tained entities.

You can also delete the unused
contained entities by using the
DDS Release Unused Entities subVI
(in RTI DDS Toolkit, Tools)

5004 Unable to delete a participant
It is likely that another application is still
using that Participant. Close all the
instances before trying to delete it.

5005
Unable to finalize the
DomainParticipantFactory.

It is likely that another application is still
using the DomainParticipantFactory. Close
all the instances before trying to delete it.

5006
Bad QoS settings
(Library::Profile)

QoS setting format is incorrect or does not
match with any of the ones existing in the
XML file. Check that format is correct
(Library::Profile), the XML file exists, and it
contains a correct configuration.
E-1

Error Codes and Possible Solutions
5007
Unable to assert (find or cre-
ate) a Participant.

Possible error in the QoS configuration. You
can also use the default configuration by
attaching an empty string as input to the
Create Reader/Writer subVI. This may be
caused by not having an active network
interface in the system.
If the monitoring library is being used, it
needs to be in the PATH.

Review the QoS profile for the
Participant. Modify the QoS pro-
file to work without an active net-
work interface as explained in
Running without an Active Net-
work Interface (Section E.3).

5008

Unable to register the type
because there exists another
entity with same configura-
tion

This might be caused by an unused entity
that has not been released.
Close the current VI and release unused
entities using the DDS Release Unused Enti-
ties subVI (in RTI DDS Toolkit, Tools). Then
re-open the current VI.

5009
Unable to get the Participant
QoS for a given profile.

Possible error in the QoS configuration.
Check that format is correct (Library::Pro-
file), the XML file exists and it contains that
profile. You can also use the default config-
uration by attaching an empty string as
input to the Create Reader/Writer subVI.

Review the QoS profile for the
Participant.

5010

Unable to update the number
of applications accessing to
the Participant (client count
property).

This might cause a memory leak when
releasing the participant.

5011
Unable to set the QoS Proper-
ties to the participant.

Check that the QoS configuration provided
is correct. You can also use the default con-
figuration by attaching an empty string as
input to the Create Reader/Writer subVI.

Review the QoS profile for the
Participant.

5012
Unable to get the description
of the topic.

Check that the Reader/Writer was correctly
created (no previous errors).

5013

Type connected to the Read/
Write function is incompati-
ble with the current imple-
mentation or different than
the one in the Create subVI

Check that the correct type is connected to
the Create subVI. A correct Type Definition
is (Library::Type). String length and array
size need to be compatible between the Cre-
ate and the Read/Write subVIs.

If you recently modified the type,
releasing the unused entities or
reopening the VI might solve the
problem. Remember that Lab-
VIEW arrays of more than one
dimension cannot be mapped as
sequences.

5014
Unable to assert (find or cre-
ate) a Topic.

Check that the QoS profile exists in the
XML file and that configuration provided is
correct.
You can also use the default configuration
by attaching an empty string as input to the
Create Reader/Writer subVI.

Review the QoS profile for the
Topic.
Make sure you are selecting the
correct settings (Library::Profile).

5015
Unable to get the implicit
publisher.

Implicit publisher is needed to create the
Writer. Check that the participant configu-
ration is correct and that there are no previ-
ous errors.

Review the QoS profile for the
Publisher.
Make sure you are selecting the
correct settings (Library::Profile).
You can also use the default QoS
setting by attaching an empty
string to the qos profile pin of the
Create Writer subVI.

Table E.1 Error Codes

Error
Code Error Message Possible Reason(s) Additional Information
E-2

Error Codes and Possible Solutions
5016
Unable to get all the DataW-
riters in the given participant.

It might be due to a memory restriction (not
enough memory available to recover the
existing DataWriters).
Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this problem.

5017
Unable to create the DataW-
riter.

Check that the QoS configuration provided
for the DataWriter is correct.

Review the QoS profile for the
DataWriter.
Make sure you are selecting the
correct settings (Library::Profile).
You can also use the default QoS
setting by attaching an empty
string to the qos profile pin of the
Create Writer subVI.

5018
Unable to get the QoS Proper-
ties from a DataWriter.

Check that Create Writer was successful and
that the reference passed to the Write func-
tion is the one provided as output from the
Create function. It might also be a problem
in the QoS setting provided (use default
ones as a safest option).

5019
Unable to set the QoS Proper-
ties for a DataWriter.

Check that Create Writer was successful and
that the reference passed to the Write/
Set_QoS_Setting function is the correct one.
It might also be a problem in the QoS set-
ting provided (use default ones as a safest
option).

5020
Unable to update the number
of applications using a
DataWriter.

This might cause a memory leak when
releasing the DataWriter.

5021
Unable to narrow the
Dynamic DataWriter.

This is an unexpected error. Contact lab-
view@rti.com or visit our Community Por-
tal at http://community.rti.com to view
current solutions and forum entries.

5022
Unable to get the implicit
subscriber.

Implicit subscriber is needed to create the
Reader. Check that the participant configu-
ration is correct and that there are no previ-
ous errors.

Review the QoS profile for the
Subscriber.
Make sure you are selecting the
correct settings (Library::Profile).
You can also use the default QoS
setting by attaching an empty
string to the qos profile pin of the
Create Reader subVI.

5023
Unable to get all the DataW-
riters in the given participant.

It might be due to a memory restriction (not
enough memory available to recover the
existing DataWriters).
Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this.

5024
Unable to create the
DataReader.

Check that the QoS configuration provided
for the DataReader is correct. Review the QoS profile for the

DataReader).
Make sure you are selecting the
correct settings (Library::Profile).
You can also use the default QoS
setting by attaching an empty
string to the qos profile pin of the
Create Reader or Create Writer
subVI.

5025
Unable to get the QoS Proper-
ties from a DataReader. Check that Create Reader was successful and

that the reference passed to the Read func-
tion is the correct one. It might also be a
problem in the QoS setting provided (use
default ones as a safest option).5026

Unable to set the QoS Proper-
ties for the DataReader.

Table E.1 Error Codes

Error
Code Error Message Possible Reason(s) Additional Information
E-3

http://community.rti.com

Error Codes and Possible Solutions
5027
Unable to update the number
of applications using a
DataReader.

This might cause a memory leak when
releasing the DataReader.

5028
Unable to narrow the
Dynamic DataWriter.

This is an unexpected error. Contact lab-
view@rti.com or visit our Community Por-
tal at http://community.rti.com to view
current solutions and forum entries.

5029 Unable to delete a Topic.
It is likely that another instance of Lab-
VIEW is still using that Topic. Close all Lab-
VIEW instances before trying to delete it.

You can also delete the unused
contained entities by using the
DDS Release Unused Entities subVI
(in RTI DDS Toolkit, Tools).

5030
Unable to delete a
DataReader (or its contained
entities).

It is likely that another instance of Lab-
VIEW is still using that DataReader or its
entities. Close all LabVIEW instances before
trying to delete it.

5031
Unable to delete a DataWriter
(or its contained entities).

It is likely that another instance of Lab-
VIEW is still using that DataWriter or its
entities. Close all LabVIEW instances before
trying to delete it.

5032
Unable to initialize the DDS
Dynamic Data.

There was a problem when allocating mem-
ory. Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this.

5033
Unable to initialize the
Reader Node.

There was a problem when allocating mem-
ory. Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this.

5034
Unable to initialize the DDS
Manager.

Check that the DLL was correctly loaded (a
message can be found in the Debug Win-
dow).

5035
Invalid reference to a Reader
or Writer Node.

Please use the appropriate Create subVI to
generate a correct reference and connect it
to the Read/Write subVI.

Pay special attention to the data
type.

5036
Unable to read data from
DataReader.

Check that the Query Condition is correctly
set.

* will return everything.
A regular expression will also
work (for instance: Text=’hello’).

5037
Unable to initialize the Writer
Node.

There was a problem when allocating mem-
ory.
Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this.

5038 Unable to write data.

DataWriter timed out or ran out of
resources. Using the DDS Release Unused
Entities subVI (in RTI DDS Toolkit, Tools)
might fix this.
Check that you attached a valid indicator/
storage to the write output.

5039
Unable to initialize the sema-
phore for the DLL.

There was a problem when allocating mem-
ory.
Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this.

Table E.1 Error Codes

Error
Code Error Message Possible Reason(s) Additional Information
E-4

http://community.rti.com

Error Codes and Possible Solutions
5040
Unable to create the Query
Condition to filter Read
subVI.

Check that the Query Condition is correctly
set. To read everything, set it to * or leave it
empty.

A regular expression will also
work (for instance: Text=’hello’).

5041
The type connected to the
Create subVI is not sup-
ported in the current version.

The Getting Started Guide provides more
information about the supported types.

See Appendix C: Supported Data
Types and Corresponding IDL.

5042
Unable to unregister the Type
Code.

Other applications might be using it. Using
the DDS Release Unused Entities subVI (in
RTI DDS Toolkit, Tools) might fix this.

5043
The LabVIEW Data Type con-
nected has changed.

The LabVIEW Type changed but wasn't cor-
rectly initialized (using Create subVI). You
might need to close the VI and re-open it to
removed unused entities.

This error happens if you created
and run the Reader/Writer and
then you modified the type con-
nected to the create subVI.
Close and re-open the VI or use
the DDS Release Unused Entities
subVI (in RTI DDS Toolkit,
Tools).

5044
Unable to get all the available
Topics.

It might be due to a memory restriction (not
enough memory available to recover the
existing Topics).
Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this.

5045
Warning: Unable to delete
one or several DDS Entities.

Other instances of LabVIEW are currently
using one or several of the DDS Entities.

This is not an error, just a warn-
ing. Closing all running VIs
should release all the remaining
DDS Entities.

5046 Unable to get the Topic's QoS.

Check that the Topic's QoS provided was
correct and that the Topic was initialized
using the Create Reader or Create Writer
subVI.

Review the QoS profile for the
Topic.
Make sure you are selecting the
correct settings (Library::Profile).
You can also use the default QoS
setting by attaching an empty
string to the qos profile pin of the
Create Reader or Create Writer
subVI.

5047 Unable to set the Topic's QoS.

5048
Unable to access library han-
dler.

Possible error in the QoS properties pro-
vided. The RTI DDS Toolkit Dynamic
Library was not correctly loaded.

5049 Unable to take the semaphore
Another thread may already be using the
DLL.

5050
Unable to recover partici-
pant's default QoS

Internal error due to default configuration
issues. Contact labview@rti.com or visit
our Community Portal at http://commu-
nity.rti.com to view current solutions and
forum entries.

Table E.1 Error Codes

Error
Code Error Message Possible Reason(s) Additional Information
E-5

http://community.rti.com
http://community.rti.com

Error Codes and Possible Solutions
5051
Unable to load QoS profiles
from the embedded configu-
ration or external XML files

Error in QoS properties. Verify all profiles
loaded by the NDDS_QOS_PROFILES
environment variable.

Make sure you are selecting the
correct settings (Library::Profile).
You can also use the default QoS
setting by attaching an empty
string to the qos profile pin of the
Create Reader or Create Writer
subVI.

5052 Incorrect type name.
Usual format is Library::Type. Avoid using
spaces.

5053
One of the required parame-
ters of the subVI is missing

Required parameters for Create subVIs:
domain_id, topic_name, type_name,
data_type; for Read/Write subVIs: ref_in
and data; for Release: ref_in.

These pins are also required for
the clusters even if you use Call
Library Function (CLF) calls
instead of a subVI.

5054
Unable to access to the Type
Code Factory.

Another application has finalized the Type-
Code Factory and there was an error while
reinitializing it. Retry.

5055
Unable to add a new member
to the Type Code.

The cluster used is incompatible. Make sure
all field labels exist and are compatible with
text-based languages: no spaces. Make sure
all used types are supported.

See Appendix C: Supported Data
Types and Corresponding IDL for
details on the supported types.

5056
Unable to create the Type
Code.

The attached cluster is incompatible with
the supported one and cannot be created.

5057
Unable to set the Dynamic
Data.

Check that the correct data type is con-
nected to the subVI (pay special attention to
Create Reader/Writer ones).

5058
Unable to get the Dynamic
Data.

Check that the correct data type is con-
nected to the subVI (pay special attention to
Read/Write ones).

5050
Invalid profile provided to
the Set QoS subVI.

There may be an incompatible QoS Policy.
Check that the provided profile exists. Once
created, some QoS settings cannot be modi-
fied. Try using that QoS Policy in the Create
subVI.

Review the QoS profile for the
Reader/Writer.
Some QoS setting cannot be
applied once the Reader/Writer is
created unless you completely
delete it. Close and reopen the VI
or use the DDS Release Unused
Entities subVI (in RTI DDS Tool-
kit, Tools).

5060
Unable to give the sema-
phore.

This might block another thread
from using the RTI DDS Toolkit
API.

5061
Unable to lock/unlock the
Participant to create the
Reader.

Another application was already deleting
the Participant.
Removing unused entities or closing the VIs
might fix this problem.

You can also delete the unused
contained entities by using the
DDS Release Unused Entities subVI
(in RTI DDS Toolkit Tools).

5062
Reached the maximum num-
ber of participants allowed in
the system.

Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this.

5063
Unable to create the system
clock.

This is an unexpected error. Contact lab-
view@rti.com or visit our Community Por-
tal at http://community.rti.com to view
current solutions and forum entries.

Table E.1 Error Codes

Error
Code Error Message Possible Reason(s) Additional Information
E-6

http://community.rti.com

Error Codes and Possible Solutions
5064
Unable to create the Type
Support needed to register a
type.

There was a problem when allocating mem-
ory.
Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this.

5065
Unable to assign that type
name to the Topic because it
is currently in use.

The type name provided is already regis-
tered and used by some entities.
Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit, Tools) might
fix this.

5066
The attached enum is not a
32-bit one. Only 32-bit enu-
merators are supported.

The current implementation only supports
32-bit enumerators. Change the enumerator
representation or use an 8-bit or 16-bit inte-
ger.

To change the representation,
right-click in the indicator/con-
trol and select Representation—
>U32.

5067

Unable to create the key with
the provided string. Might be
a memory allocation prob-
lem.

KeyName should be a string containing the
key names separated by semicolons (';').
The fields inside a cluster can be provided
in the form 'cluster.field'.

See Section 4.6 for further details.

5068
Unable to create DataReader
with KEEP_ALL history
kind. Use case not supported.

Use the shipped profile 'LabVIEWLi-
brary::ReliableProfile' to use Reliable Com-
munication with Shared Readers. If you
need Strict Reliability, use Exclusive Read-
ers.

The current implementation of a
non-exclusive Reader uses 'read'
instead of 'take', so strictly reliable
communication is not compatible
with non-exclusive Readers.

5069

Incompatible configuration:
History depth > 1 needs
'only_new_samples' flag in
the Read subVI to be 'true'.

Using a depth bigger than 1 for the history
property and not setting the
'only_new_samples' could cause that sam-
ples stayed unread. Change the QoS config-
uration or set the flag to 'true'.

Review the QoS profile for the
DataReader.

5070
Unable to extract information
from the Advanced Writer
Configuration control.

Make sure you are using the cluster 'RTI
DDS Advanced Writer Configuration.ctl'
contained in LVDDS_Library.

5071
Unable to extract information
from the Advanced Reader
Configuration control.

Make sure you are using the cluster 'RTI
DDS Advanced Reader Configuration.ctl'
contained in LVDDS_Library.

5072
The Local Logger is not cor-
rectly initialized.

Make sure the size of the Local Logger is
not a negative number.

5073
Unable to create a new mes-
sage into the Local Logger.

Make sure there is enough memory to log a
new message. You could need to use a
lower queue size.

5074
Unable to create Distributed
Logger.

Check that the Distributed Logger Queue
Size is a positive number and the QoS set-
ting format is correct (Library::Profile), the
XML file exists, and it contains a correct
configuration.

5075
Unable to delete Distributed
Logger.

Make sure Distributed Logger has not been
previously deleted.

5076
Unable to create the custom
QoS list. Might be a memory
allocation problem.

The Custom QoS Security Profiles list has
not been able to be allocated. Free memory
and try again.

Table E.1 Error Codes

Error
Code Error Message Possible Reason(s) Additional Information
E-7

Error Codes and Possible Solutions
5077

Unable to create the custom
QoS Profile. The name might
be in use or the input param-
eters are not correctly set

The Custom QoS Profile cannot be created.
Make sure the provided name is not already
in use, doesn't contain whitespaces and the
input parameters are correctly set.

The new Custom Security Profile
provided name cannot be used 2
times. also, make sure that all the
Basic Security Configuration
parameters have been correctly
set.

5078
Unable to delete the custom
QoS Profile. The custom pro-
file might not exist.

The Custom QoS Profile cannot be deleted.
Make sure the provided name is created
and doesn't contain whitespaces.

The Custom Security Profile you
want to delete contains
whitespaces or it hasn't been cre-
ated yet.

5079
Unable to allocate memory
for showing the created cus-
tom QoS profiles.

Unable to allocate memory for showing the
created custom QoS profiles.

5080
Unable to assert (find or cre-
ate) a Secure Participant.

Unable to assert a Secure Participant. Make
sure the provided domainID is allowed by
the Security Permissions, OpenSSL is in
your PATH and the nddssecurity library is
in the toolkit installation path.

5081
Unable to assert (find or cre-
ate) a Secure Topic.

Check that the QoS profile exists and the
TopicName is allowed by the Security Per-
missions.

5082
Unable to assert (find or cre-
ate) a Secure DataReader.

Unable to assert a Secure DataReader.
Check that the QoS configuration provided
for the DataReader is correct and make sure
that the provided DataReader is allowed in
that Topic and domainID by the Security
Permissions.

5083
Unable to assert (find or cre-
ate) a Secure DataWriter.

Unable to assert a Secure DataWriter. Check
that the QoS configuration provided for the
DataWriter is correct and make sure that the
provided DataWriter is allowed in that
Topic and domainID by the Security Per-
missions.

5084
Unable to load the custom
QoS Profile. The custom pro-
file might not exist.

The Custom QoS Profile cannot be loaded.
Make sure the provided name exists and
does not contain whitespaces.

The Custom Security Profile
Name already exists or contains
whitespaces.

5085
Unable to assert (find or cre-
ate) a ContentFilteredTopic

Unable to assert a ContentFilteredTopic.
Check that there is not a different Content-
FilteredTopic or any Topic with the same
name. Also check that the Filter is sup-
ported.

A ContentFilteredTopic cannot be
created with the same name that a
Topic is using. It can neither share
the name with other ContentFil-
teredTopics with different expres-
sion.
Currently only the filter type
“DDS_SQLFILTER_NAME” is
supported.

5086
Unable to delete ContentFil-
teredTopic.

Unable to delete a ContentFilteredTopic.
Check that no DataReaders are using it.

The ContentFilteredTopic may not
exist or any DataReader is still
using it.

Table E.1 Error Codes

Error
Code Error Message Possible Reason(s) Additional Information
E-8

Running without an Active Network Interface
E.3 Running without an Active Network Interface
To use RTI DDS Toolkit on a computer that does not have an active network interface, you have
two choices:

❏ Change the QoS profile to use only the Shared Memory transport. As described in the RTI
Connext DDS Core Libraries User’s Manual (see the chapter on Configuring QoS with XML), you
need to set up this QoS properties in all your profiles:

<participant_qos>
<transport_builtin>

<mask>SHMEM</mask>
</transport_builtin>
<discovery>

<initial_peers>
<element>builtin.shmem://</element>

</initial_peers>
</discovery>

 </participant_qos>

❏ Another option is to install the Microsoft Loopback Adapter, which simulates the exis-
tence of a network interface. For an example on how to install the Loopback Adapter for
Windows XP, see http://support.microsoft.com/kb/839013.

5087
Unable to get all the available
ContentFilteredTopics

It might be due to a memory restriction (not
enough memory available to recover the
existing ContentFilteredTopics). Using the
Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this.

Try to run the Release Unused Enti-
ties subVI manually. This subVI is
under Data Communication, RTI
DDS Toolkit, Tools.

5088
Unable to modify the Con-
tentFilteredTopic because it is
currently in use.

The ContentFilteredTopic cannot be deleted
because a DataReader is still using it. The
Filter Expression of a ContentFilteredTopic
cannot be modified while a DataReader is
using it.

A ContentFilteredTopic already
exists with that name and a differ-
ent Filter Expression. It cannot be
modified.

5089
Expecting a Reader, got a
Writer.

The DDS Object Ref that is being used is not
a Reader. Make sure that this DDS Object
Ref as been created by a Create Advanced/
Simple Reader.

5090
Expecting a Writer, got a
Reader.

The DDS Object Ref that is being used is not
a Writer. Make sure that this DDS Object Ref
has been created by a Create Advanced/Sim-
ple Writer.

Table E.1 Error Codes

Error
Code Error Message Possible Reason(s) Additional Information
E-9

http://support.microsoft.com/kb/839013
http://support.microsoft.com/kb/839013
http://support.microsoft.com/kb/839013

Error Installing RTI DDS Toolkit RT Support
E.4 Error Installing RTI DDS Toolkit RT Support
If RTI DDS Toolkit throws errors -8999 or -8998 during installation or uninstallation, the installa-
tion/uninstallation has not completed successfully. This can be caused by incorrect permissions.
Please rerun either LabVIEW or the VI Package Manager with Administrator privileges.

E.5 Error Using Custom Security Profiles
If you are having problems when trying to create a Reader or Writer while using a Custom Secu-
rity Profile, make sure that:

❏ The domainID for the Reader or Writer you want to create is allowed by the permissions
file you are loading.

❏ The topic you want to use is allowed by the permissions file you are loading.

❏ If you are using an NI Linux RT target, paths to the files to be loaded should point to the
NI Linux directory structure and the files must be in the RT target.
E-10

Error Generating ComplexType VIs
E.6 Error Generating ComplexType VIs
If you get the error 1154 (as the following figure shows) when you are generating ComplexType
VIs, check that the Custom Type Definition (*.ctl) is saved in the same LabVIEW version that the
RTI DDS ComplexType Generator is running.
E-11

	CONTENTS
	Chapter 1 Installation
	1.1 Introduction
	1.2 Installing
	1.2.1 Installing RTI DDS Toolkit Support Files on a Target

	1.3 Verifying Installation
	1.3.1 LabVIEW Functions Palette
	1.3.2 LabVIEW Controls Palette

	1.4 Upgrading
	1.4.1 Additional Steps when Upgrading from a Release Older than 2.0.0.104

	1.5 Uninstalling
	1.5.1 Uninstalling RTI DDS Toolkit Support Files from LabVIEW RT Targets

	1.6 LabVIEW Examples
	1.7 Product Support

	Chapter 2 Communication Models
	2.1 Publish/Subscribe – A Simple Analogy
	2.2 The DDS Paradigm
	2.3 Quality of Service (QoS)
	2.4 DDS—Example Application

	Chapter 3 A Simple Read/Write Example
	3.1 Publishing a String in DDS
	3.2 Subscribing to a String in DDS
	3.3 What is Happening?
	3.4 Usage Notes
	3.4.1 Preventing ‘Application Failed to Start’ Error when Opening Example VIs
	3.4.2 Communicating Unbounded Entities
	3.4.3 Preventing 'Type Code Incorrect' Error when Working with Arrays
	3.4.4 Troubleshooting with Ping and Spy

	Chapter 4 Tutorial
	4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
	4.1.1 Developing a VI to Publish Simple Data (Numeric)
	4.1.2 Creating a VI to Subscribe to Simple Data (Numeric)
	4.1.3 Testing

	4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters)
	4.2.1 Creating VIs for Publishing and Subscribing to a Cluster
	4.2.2 Testing

	4.3 Lesson 3—Filtering Data
	4.3.1 Filtering Data Using Query Conditions
	4.3.2 Filtering Data Using ContentFilteredTopics

	4.4 Lesson 4—Reading Only New Samples
	4.5 Lesson 5—Using Keyed Types (RTI Shapes Demo)
	4.5.1 Working with Shapes Demo
	4.5.2 Publishing a Shape (Square)
	4.5.3 Subscribing to Shapes

	4.6 Lesson 6—Used Nested and Multiple Keys
	4.6.1 Adding Multiple Top-Level Fields as Keys
	4.6.2 Adding Internal Cluster Fields as Keys (Nested Keys)

	4.7 Lesson 7—Reading All Samples (Reliable Communication)
	4.7.1 Writing and Reading Reliably Using the Default Configuration
	4.7.2 Writing and Reading using Strict Reliability

	4.8 Lesson 8—Debugging Your RTI Connext DDS Application
	4.8.1 Debugging an Application Using the Administration Panel
	4.8.2 Adapting a VI to Use RTI Monitoring Library

	4.9 Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)
	4.10 Lesson 10—Using Security with RTI DDS Toolkit
	4.10.1 Example Description
	4.10.2 Description of VIs
	4.10.3 Main Scenarios
	4.10.4 Running the LabVIEW Example

	4.11 Reviewing Completed Solutions

	Chapter 5 Loading Quality of Service Profiles
	Chapter 6 Advanced Concepts and Settings
	6.1 Default Configuration: DDS Entities Created by ‘Simple Create’ SubVIs
	6.2 RTI DDS ComplexType Generator
	6.3 Configuring Advanced Writer Settings
	6.4 Configuring Advanced Reader Settings
	6.5 Debugging an RTI Connext DDS LabVIEW Application
	6.5.1 Using Administration Panel (for Windows Systems only)
	6.5.2 Debugging SubVIs on Real-Time Targets and Windows Systems
	6.5.3 Logging Messages from LabVIEW

	6.6 Enabling Security
	6.6.1 Managing Custom Security Profiles with the Security Panel (Windows Systems)
	6.6.2 Managing Custom Security Profiles with SubVIs
	6.6.3 Creating DomainParticipants using a Custom Security Profile

	6.7 Advanced Filtering of Data—ContentFilteredTopics
	6.7.1 Configuring ContentFilteredTopics

	Appendix A VI Descriptions
	A.1 Controls Palette Types
	A.2 Functions Palette
	A.2.1 Writer
	A.2.2 Reader
	A.2.3 Tools
	A.2.4 DDS Security Subpalette

	Appendix B Creation and Release of DDS Entities
	Appendix C Supported Data Types and Corresponding IDL
	C.1 Corresponding IDL for Complex Data Types
	C.1.1 Clusters
	C.1.2 Enums

	Appendix D File Folders Installed within LabVIEW
	D.1 File Folders on Windows Systems
	D.2 File Folders on NI Linux Targets

	Appendix E Troubleshooting
	E.1 Enabling Debugging Mode
	E.2 Error Codes and Possible Solutions
	E.3 Running without an Active Network Interface
	E.4 Error Installing RTI DDS Toolkit RT Support
	E.5 Error Using Custom Security Profiles
	E.6 Error Generating ComplexType VIs

