
RTI DDS Toolkit
Getting Started Guide

Version 4.0.0

© 2017 - 2024 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
September 2024.

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase,
“Your Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time
Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise agreed to in writing by RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party
license terms and conditions, including open source license terms and conditions. Copies of applicable
third-party licenses and notices are located at community.rti.com/documentation. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089

https://www.rti.com/terms
https://community.rti.com/documentation

Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Installation

1.1 Introduction 1
1.2 Installing 2

1.2.1 Installing RTI DDS Toolkit Support Files on a Target 4
1.3 Verifying Installation 5

1.3.1 LabVIEW Functions Palette 6
1.3.2 LabVIEW Controls Palette 8

1.4 Upgrading 8
1.4.1 Additional Steps when Upgrading from a Version before 3.1.2 9
1.4.2 Additional Steps when Upgrading from a Version Before 2.0.0.104 9

1.5 Uninstalling 11
1.5.1 Uninstalling RTI DDS Toolkit Support Files from LabVIEW RT Targets 12

1.6 LabVIEW Examples 12
1.7 Product Support 14

Chapter 2 Communication Models

2.1 Publish/Subscribe – A Simple Analogy 17
2.2 The DDS Paradigm 18
2.3 Quality of Service (QoS) 18
2.4 DDS—Example Application 19

Chapter 3 A Simple Read/Write Example

3.1 Publishing a String in DDS 22
3.2 Subscribing to a String in DDS 23
3.3 What is Happening? 25
3.4 Usage Notes 26

3.4.1 Communicating Unbounded Entities 26
3.4.2 Preventing 'Type Code Incorrect' Error when Working with Arrays 27

iv

v

3.4.3 Troubleshooting with Ping and Spy 27
Chapter 4 Tutorial

4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric) 30
4.1.1 Developing a VI to Publish Simple Data (Numeric) 30

4.1.1.1 Create a Writer Object to Publish a Numeric (DBL) 30
4.1.1.2 Publish a Numeric (DBL) 31
4.1.1.3 Release the Writer Object 32

4.1.2 Creating a VI to Subscribe to Simple Data (Numeric) 33
4.1.2.1 Create a Reader Object to Subscribe to a Numeric (DBL) 33
4.1.2.2 Subscribe to a Numeric (DBL) 35
4.1.2.3 Release the Reader Object 36

4.1.3 Testing 37
4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters) 38

4.2.1 Creating VIs for Publishing and Subscribing to a Cluster 40
4.2.1.1 Modify the Writer Example VI 41
4.2.1.2 Modify the Reader Example VI 42
4.2.1.3 Creating VIs Programmatically 43

4.2.2 Testing 43
4.3 Lesson 3—Blocking Reads 45
4.4 Lesson 4—Filtering Data 47

4.4.1 Filtering Data Using Query Conditions 47
4.4.2 Filtering Data Using ContentFilteredTopics 49

4.5 Lesson 5—Reading Only New Samples 52
4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo) 55

4.6.1 Working with Shapes Demo 55
4.6.2 Publishing a Shape (Square) 55
4.6.3 Subscribing to Shapes 58

4.7 Lesson 7—Used Nested and Multiple Keys 61
4.7.1 Adding Multiple Top-Level Fields as Keys 61
4.7.2 Adding Internal Cluster Fields as Keys (Nested Keys) 62

4.8 Lesson 8—Reading All Samples (Reliable Communication) 64
4.8.1 Writing and Reading Reliably Using the Default Configuration 64

4.8.1.1 Writing Reliably 64
4.8.1.2 Reading Reliably 65

4.8.2 Writing and Reading using Strict Reliability 68
4.8.2.1 Writing in Strictly Reliable Mode 68

4.8.2.2 Reading in Strictly Reliable Mode 69
4.9 Lesson 9—Debugging Your RTI Connext DDS Application 73

4.9.1 Debugging an Application Using the Administration Panel 73
4.9.1.1 Logging Messages Manually 74
4.9.1.2 Output Provided by RTI Monitor using Distributed Logger 75

4.9.2 Adapting a VI to Use RTI Monitoring Library 76
4.9.2.1 Output Provided by RTI Monitor 77

4.10 Lesson 10—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example) 79
4.11 Lesson 11—Using Security with RTI DDS Toolkit (Windows only) 83

4.11.1 Example Description 83
4.11.2 Description of VIs 85
4.11.3 Main Scenarios 86
4.11.4 Running the LabVIEW Example 86

4.12 Lesson 12—Reading Multiple Samples at a Time 88
4.13 Reviewing Completed Solutions 92

Chapter 5 Loading Quality of Service Profiles 94
Chapter 6 Advanced Concepts and Settings

6.1 Default Configuration: DDS Entities Created by ‘Simple Create’ SubVIs 97
6.2 Types with a Specific String Size 98
6.3 Working with Custom Types 99

6.3.1 Using the RTI DDS ComplexType Generator 99
6.3.2 Using the VI called 'DDS Generate Custom Type VIs' 102

6.4 Configuring Advanced Writer Settings 103
6.5 Configuring Advanced Reader Settings 104
6.6 Working with Instance State Kind 105

6.6.1 Write, Dispose or Unregister 106
6.6.2 Reading Instance State Kind 106

6.7 Debugging an RTI Connext DDS LabVIEW Application 108
6.7.1 Using Administration Panel (for Windows Systems only) 110

6.7.1.1 Configuration Section 112
6.7.1.2 DDS State Info 114
6.7.1.3 Debugging Table 115

6.7.2 Debugging SubVIs on Real-Time Targets and Windows Systems 116
6.7.2.1 Get Configuration Parameters 116
6.7.2.2 Set Configuration Parameters 116
6.7.2.3 Get DL Configuration Parameters 117

vi

vii

6.7.2.4 Configure Distributed Logger 117
6.7.2.5 DDS State Info 118
6.7.2.6 Reading Logged Messages 118

6.7.3 Logging Messages from LabVIEW 119
6.8 Enabling Security (Windows only) 120

6.8.1 Managing Custom Security Profiles with the Security Panel (Windows only) 121
6.8.1.1 Creating Custom Security Profiles 124
6.8.1.2 Deleting Custom Security Profiles 124
6.8.1.3 Load Custom Security Profile Values 124

6.8.2 Managing Custom Security Profiles with SubVIs 125
6.8.2.1 Creating Custom Security Profiles 125
6.8.2.2 Deleting Custom Security Profiles 125
6.8.2.3 Getting Custom Security Profiles List 126
6.8.2.4 Get Security Profiles Values 126

6.8.3 Creating DomainParticipants using a Custom Security Profile 126
6.9 Advanced Filtering of Data—ContentFilteredTopics 127

6.9.1 Configuring ContentFilteredTopics 128
6.10 Setting Up Arrays 129

6.10.1 Setting Up Arrays of Clusters 129
6.10.2 Setting up Arrays of Strings 130
6.10.3 Setting up Sequences 131

Appendix A VI Descriptions

A.1 Controls Palette Types 132
A.2 Functions Palette 134

A.2.1 Writer 135
A.2.2 Reader 137
A.2.3 Tools 139

A.2.3.1 DDS Debugging 140
A.2.4 DDS Security 143

Appendix B Creation and Release of DDS Entities 145
Appendix C Supported Data Types and Corresponding IDL

C.1 Corresponding IDL for Complex Data Types 151
C.1.1 Clusters 151
C.1.2 Enums 152

Appendix D File Folders Installed within LabVIEW

D.1 File Folders on Windows Systems 153

D.2 File Folders on NI Linux Targets 154
Appendix E Troubleshooting

E.1 Enabling Debugging Mode 155
E.2 Error Codes and Possible Solutions 155
E.3 Running without an Active Network Interface 165
E.4 Error Installing RTI DDS Toolkit RT Support 166
E.5 Error Using Custom Security Profiles 166
E.6 Errors Generating ComplexType VIs 168

E.6.1 Error 1154 168
E.6.2 Error -8997 168
E.6.3 Unitialized Array Warning 169

E.7 RT Device Hangs when Modifying QoS Profiles 170

viii

Chapter 1 Installation
1.1 Introduction

Developing heterogeneous distributed systems is a complex challenge. Individual subsystems
are often developed by independent teams, third parties, and legacy systems. These complexities
can be substantially reduced by leveraging the combined power of RTI Connext® and National
Instruments® LabVIEW™.

By using LabVIEW and Connext together, you can develop advanced and unique system archi-
tectures to simplify system integration, data communication, network bandwidth management,
and redundancy.

This document will help you install and get started with RTI DDS Toolkit. The instructions
assume you are already familiar with the basics of using LabVIEW.

1

1.2 Installing

2

1.2 Installing

Notes:

l If you are upgrading RTI DDS Toolkit, skip to 1.4 Upgrading on page 8.
l You need administrator privileges to install the toolkit and to make it available to install in RT
targets.

To Install RTI DDS Toolkit:

1. Verify you have a supported version of LabVIEW already installed (see the Release Notes for
supported versions).

2. Login with administrator privileges.

3. Install the JKI LabVIEW VI Package Manager (VIPM) if you have not done so already (avail-
able here: http://jki.net/vipm/download). It is typically installed in C:\Program Files1\JKI\VI
Package Manager.

4. Make sure LabVIEW is not running.

5. Launch the VIPM in elevated mode.

6. Look for ‘RTI DDS’ in the search menu and double-click on RTI DDS Toolkit.

Note: In LabVIEW 2017+, you will find a shortcut from the block diagram: select Data Com-
munication, RTI DDS Toolkit, Install, as seen below:

1On 64-bit systems, the folder is "Program Files (x86)"

http://jki.net/vipm/download

1.2 Installing

7. Install RTI DDS Toolkit:
a. Select the LabVIEW version for which you want to install RTI DDS Toolkit.

If you have more than one version of LabVIEW installed, you will be able to select a ver-
sion from a drop-down list.

b. Select Install.

8. The VIPM will start the installation process and display a window similar to the one below. You
need to accept the license to proceed.

3

1.2.1 Installing RTI DDS Toolkit Support Files on a Target

4

Note:When running the VIPM for the first time, the VIPM will test the connection to LabVIEW
and display the default port for LabVIEW. Select Test and allow the test to complete.During this
step, the VIPM launches the LabVIEW version selected for the RTI DDS Toolkit installation. The
LabVIEW application will appear in the Windows Task Bar at the bottom of your screen. You
may need to open the LabVIEW application from the Task Bar and select Launch LabVIEW
before the VIPM test times out.

9. If offered, select Finish when the installation is complete.

1.2.1 Installing RTI DDS Toolkit Support Files on a Target

Note: Your target will be rebooted as part of the installation process.

To install Real-Time target support for RTI DDS Toolkit:

RTI DDS Toolkit support files allow you to deploy VIs using RTI DDS Toolkit into your target. The fol-
lowing instructions assume you have JKI VIPM and LabVIEW installed. The following instructions
assume you have installed successfully the RTI DDS Toolkit which is explained in 1.2 Installing on
page 2.

1. Copy <x86 National Instruments folder>\RT Images\RTI DDS Toolkit\x.x.x\/rti-dds-lab-
viewtoolkit_x.x.x_x64.ipk to the /home/admin folder on the RT system using FTP or SCP.

2. SSH into the target, then run opkg install rti-dds-toolkit-x.x.x.x_x64.ipk.

3. Reboot the RT target.

1.3 Verifying Installation

1.3 Verifying Installation

1. Launch LabVIEW.

2. Select File, New VI.

3. From the Block Diagram’s View menu, open the Functions
Palette. From this palette, select the down arrows at the bot-
tom. Select Data Communication and verify that you see
RTI DDS Toolkit.

For details, see 1.3.1 LabVIEW Functions Palette on the
next page.

4. From the Front Panel’s View menu, open the Controls
Palette. From this palette, select the down arrows at the bot-
tom. Select RTI DDS Toolkit and verify that you see RTI
DDS Toolkit’s controls.

For details, see 1.3.2 LabVIEW Controls Palette on page 8.

See also: Appendix D File Folders Installed within
LabVIEW on page 153.

5

1.3.1 LabVIEW Functions Palette

6

1.3.1 LabVIEW Functions Palette

RTI DDS Toolkit adds the following to the Data Communication section of the Block Diagram’s Func-
tions Palette:

l RTI DDS Toolkit
l Writer

l Simple Create Writer
l Advanced Create Writer
l Write
l Release Writer
l Set Writer QoS

l Reader
l Simple Create Reader
l Advanced Create
Reader

l Read
l Release Reader
l Set Reader QoS

1.3.1 LabVIEW Functions Palette

l Tools
l DDS Generate Custom Type VIs
l DDS Release Unused Entities
l DDS Time to LV Time
l DDS Debugging

l Get Configuration Parameters
l Set Configuration Parameters
l Get DL Configuration Parameters
l Configure Distributed Logger
l Get DDS State
l Log New Message
l Read One Logged Message

l DDS Security
l Create Custom Security
Profile

l Delete Custom Security
Profile

l Get Custom Security Profile
l Get Security Profile Values

7

1.3.2 LabVIEW Controls Palette

8

1.3.2 LabVIEW Controls Palette

RTI DDS Toolkit adds the following to the Addons section of the Front Panel’s Controls Palette:

l RTI DDS Toolkit
l RTI DDS Advanced Reader
Configuration

l RTI DDS Advanced Writer
Configuration

l DDS Sample Info
l DDS State Info
l RTI DDS Security Settings
l RTI DDS ContentFilteredTopic Info
l RTI DDS Filter Level
l RTI DDS Write Sample Kind
l DDS Duration
l RTI DDS Read Mode

1.4 Upgrading

If you have already installed DDS Toolkit and are upgrading to a newer release:

1. Login with administrator privileges.

2. Ensure that LabVIEW is not running.

3. Launch the VIPM in elevated mode, then:
a. Look for the ‘RTI DDS Toolkit’ latest version in the search bar.

b. (or) Select File, Open Package File(s) and open the latest DDS Toolkit .vip file.

4. Upgrade DDS Toolkit:
a. Select the LabVIEW version for which you want to upgrade DDS Toolkit.

l If you have more than one version of LabVIEW installed, you will be able to select
the LabVIEW version from the LabVIEW version drop down list.

l The VIPM allows you to view all versions of DDS Toolkit available to your system
by selecting *Browse All Versions in the lower-left corner.

b. Select Upgrade.

1.4.1 Additional Steps when Upgrading from a Version before 3.1.2

5. The VIPM will start the installation process. Select Continue to proceed.

6. If prompted, select Finish when the installation is complete.

1.4.1 Additional Steps when Upgrading from a Version before 3.1.2

DDS Toolkit 3.2.0 is a single monolithic library called rtilvdds.dll. It contains a standard OpenSSL dis-
tribution and all the RTI Connext DDS dependencies (nddscore, nddsc, rtimonitoring, nddssecurity, and
rtidlc libraries). In previous versions, RTI dependencies were shipped as separate libraries (nddsc.dll,
nddscore.dll, nddssecurity.dll, rtidlc.dll, and rtimonitoring.dll). Because of this change:

l Nddssecurity now uses standard OpenSSL 1.1.1t instead of using the NI SSL included in
LabVIEW.

l Rtimonitoring and nddssecurity are now linked statically, so the way they are enabled has
changed. However, this change only affects QoS files; no need to change the code.

l When shipping standalone applications, there is no need to add dependencies. Since the rtilvdds
library is a first level dependency, LabVIEW should pick it automatically.

l Security is not supported in cRIO targets. Before updating to 3.1.2, disable security in the cRIO.
l ARM cRIOs are not supported.

Refer to 4.9.2 Adapting a VI to Use RTI Monitoring Library and 6.8 Enabling Security (Windows
only) in this document for more information about the new usage.

1.4.2 Additional Steps when Upgrading from a Version Before 2.0.0.104

If you are upgrading from a version older than 2.0.0.104, you must follow these steps to upgrade your
VIs to the newer version. Follow these instructions after upgrading the toolkit.

l The create Reader/Writer subVIs have been removed. Use the create simple/advanced Read-
er/Writer subVIs instead. These VIs are included in the RTI DDS Toolkit/Reader and RTI DDS
Toolkit/Writer subpalettes.

9

1.4.2 Additional Steps when Upgrading from a Version Before 2.0.0.104

10

l The Complex-Type Templates are no longer supported. Therefore, that subpalette has been
removed. Instead. Direct CLF calls are no longer supported; use the VIs generated using the
RTI DDS ComplexType Generator instead. See 6.3.1 Using the RTI DDS ComplexType Gen-
erator on page 99.

l The ForceNewDomainParticipant? flag from the Advanced Reader/Writer Configuration has
been deleted. If these clusters are not updated automatically, they need to be updated manually.
To do so, go to the Front Panel, right-click on the old cluster, select Replace, RTI DDS Toolkit
and choose the new cluster.

1.5 Uninstalling

.

1.5 Uninstalling

To uninstall RTI DDS Toolkit:

1. Login with administrator privileges.

2. Ensure that LabVIEW is not running.

3. Launch the VIPM in elevated mode, then:
a. Scroll down to locate RTI DDS Toolkit.

b. Double-click on RTI DDS Toolkit to open the Package Information screen.

4. Select the LabVIEW version you want to work with from the LabVIEW version drop-down list.

Note: The VIPM allows you to view all ver-
sions of RTI DDS Toolkit available to your
system by selecting *Browse All Versions
in the bottom left-hand corner.

5. Select Uninstall.

11

1.5.1 Uninstalling RTI DDS Toolkit Support Files from LabVIEW RT Targets

12

6. Select Continue.

7. If offered, select Finish when the VIPM finishes uninstalling RTI DDS Toolkit.

1.5.1 Uninstalling RTI DDS Toolkit Support Files from LabVIEW RT Targets

The toolkit should be uninstalled using the opkg tool on the target:

1. SSH into the RT target as admin (or another user with administrator privileges).
a. Enter ssh <target ip>@admin.

2. Uninstall the DDS Toolkit support files using opkg.
a. Enter opkg remove rti-dds-labview-toolkit.

1.6 LabVIEW Examples

RTI DDS Toolkit includes several examples which are used in later chapters. To access these examples:

1. Select the LabVIEW Help menu.

2. Select Find Examples…

3. In the Browse tab, select the radio button to browse according to Directory Structure:

4. Scroll down and open the RTI DDS Toolkit folder.

1.6 LabVIEW Examples

You will find the following examples:

l ArrayOfClusterDemo: Shows how to read and write a type with arrays of clusters.
l BlockingReadDemo: Shows how to perform a read operation in blocking read mode. See 4.3
Lesson 3—Blocking Reads on page 45.

l ClusterDemo: Shows how to handle complex types (such as clusters). It was created by fol-
lowing the lessons in Chapter 4 Tutorial on page 29:

l 4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data
(Clusters) on page 38

l 4.4 Lesson 4—Filtering Data on page 47
l 4.5 Lesson 5—Reading Only New Samples on page 52

l ContentFilteredTopicDemo: shows how to filter data using a ContentFilteredTopic. It has been
created by following 4.4.2 Filtering Data Using ContentFilteredTopics on page 49.

l cRIOProject: Shows how to use RTI DDS Toolkit on a cRIO 9068. See 4.10 Lesson 10—Using
RTI DDS Toolkit on NI Targets (cRIO-9068 Example) on page 79.

l LogMessagesDemo: Shows how to log debugging messages into the internal queue. It was cre-
ated by following 4.9.1.1 Logging Messages Manually on page 74.

13

1.7 Product Support

14

l MonitoringDemo: Uses a QoS profile that enables RTI Monitoring Library. It was created by fol-
lowing 4.9.2 Adapting a VI to Use RTI Monitoring Library on page 76.

l NumberDemo: Shows how to read and write a simple type (such as a numeric one). It was cre-
ated by following 4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
on page 30.

l ReadAllDemo: Shows how to read all available data by calling the Read function several times
and storing the data in an array without adding already existing samples. See 4.8 Lesson 8—Read-
ing All Samples (Reliable Communication) on page 64.

l ReadMultipleSamplesDemo: Shows how to read multiple samples in a single call. See 4.12
Lesson 12—Reading Multiple Samples at a Time on page 88.

l SecurityShapesDemo: This example will show how to use different security profiles and how
they behave depending on the permissions they have. See 4.11 Lesson 11—Using Security with
RTI DDS Toolkit (Windows only) on page 83.

l ShapesDemo: Shows how to publish and subscribe to an already existing DDS application: RTI
Shapes Demo. See 4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo) on page 55.

l StringsDemo: Shows how to write a string. See Chapter 3 A Simple Read/Write Example on
page 21.

Note: If you see an error after opening one of the examples (such as “This application has failed to
start because its side by side configuration is incorrect”), see 3.4.2 Preventing 'Type Code Incorrect'
Error when Working with Arrays on page 27.

1.7 Product Support

For technical support or questions about RTI DDS Toolkit, please visit the National Instrument User
Group "RTI DDS Toolkit for LabVIEW Support" (https://forums.ni.com/t5/RTI-DDS-Toolkit-for-
LabVIEW/gp-p/5344) or the RTI Community portal (http://community.rti.com).

If you have an RTI support subscription, please contact support@rti.com. If you do not have an RTI
support subscription, you can acquire one by contacting labview@rti.com.

https://forums.ni.com/t5/RTI-DDS-Toolkit-for-LabVIEW/gp-p/5344
https://forums.ni.com/t5/RTI-DDS-Toolkit-for-LabVIEW/gp-p/5344
http://community.rti.com/

Chapter 2 Communication Models
This section provides an overview of middleware communication paradigms, including publish-
subscribe, along with details of the OMG Data Distribution Service (DDS) standard.

Software applications are becoming increasingly distributed. A node in a distributed system
must access the right data, know where to send it, and deliver it to the right place at the right
time. Simplifying the access to this data would enable a whole new class of distributed applic-
ations. The challenge, especially in mission-critical and time-critical networks, is to quickly
access and disseminate information to many nodes.

Three major middleware communication paradigms have emerged to meet this need:

l Client/Server
l Message passing
l Publish/Subscribe

Client/Server is fundamentally a many-to-one design that works well for systems with cent-
ralized information, such as databases, transaction processing systems, and central file servers.
However, if multiple nodes generate information, client/server architectures require all the
information be sent to the server for later redistribution to the clients, resulting in inefficient cli-
ent-to-client communication.

The central server is a potential bottleneck and single-point of failure. It also adds inefficiencies
and unknown delay (and therefore indeterminism) to the system, because the receiving client
does not know when it has a message waiting, so it has to keep polling periodically.

Message Passing architectures work by implementing queues of messages. Processes can create
queues, send messages, and service messages that arrive. Message passing makes it easier to
exchange information between many nodes in the system. However, applications remain
coupled. Each message placed in a queue goes to a single consumer and the addition of new con-
sumers impacts the network.

15

Chapter 2 Communication Models

16

In practice, applications find data indirectly by targeting specific sources (e.g., by process ID, "chan-
nel", or queue name) on specific nodes. So this architecture does not address how applications know
the location of a process/channel, what happens if that process/channel does not exist, etc. The applic-
ation must determine where to get data, where to send it, and when to perform the transaction. A mes-
sage-passing architecture provides a model for the transfer of data, but no model for the data itself.

Publish/Subscribe decouples the producers and consumers of the information. Producer publishes data
they have and consumers subscribe to data based on their interests. The publish/subscribe middleware
infrastructure is responsible for delivering each message published to all interested consumers. Applic-
ations remain decoupled because the presence of new consumers does not perturb existing consumers.
Existing consumer’s requirements are met, regardless of how many other consumers subscribe to the
same data.

The fundamental communications model implies both discovery (i.e., what data should be sent) and
delivery (i.e., when and where to send the data). This design mirrors time-critical and mission-critical
information delivery systems in everyday life (e.g., television, radio, magazines and newspapers). The
publish/subscribe network architecture is excellent at distributing large quantities of time-critical inform-
ation quickly, even in the presence of unreliable delivery mechanisms.

The publish/subscribe architecture maps well to high-performance and real-time communication chal-
lenges. Finding the right data becomes straightforward; nodes just declare their interest once and the
middleware handles all the details of the network and delivery. Sending the data quickly is also inher-
ent; publishers send data when the data is available. Publish/subscribe is highly efficient because the
data flows directly from source (publisher) to destination (subscriber) without requiring intermediate
servers, brokers, or daemons. Multiple sources and destinations are easily defined within the model,
providing inherent redundancy and fault tolerance.

Data-Centric Publish/Subscribe (DCPS) middleware, such as the OMG Data Distribution Service
(DDS), defines a data model on top of the publish/subscribe infrastructure, allowing the data to be struc-
tured. The schema of the data being published is declared by the application and known to the mid-
dleware. Similar to the relational model in databases, each data type (a DDS Topic) has an associated
schema and a set of attributes that identify the ‘key’ for that Topic. Data published on that Topic is
understood by the middleware, allowing advanced capabilities such as content-based filtering, last
value (or history) caching, and applying fine-grained Quality of Service (QoS) separately for each data-
object written to the Topic.

In summary:

l Client/server middleware is best for centralized data designs and for systems where the dominant
communication patter is request-reply, such as file servers and transaction systems.

l Message passing, with its "send that there" semantics, maps well to systems with clear and
simple data-flow requirements, and requires the application to discover where data resides.

2.1 Publish/Subscribe – A Simple Analogy

l Publish/subscribe, by providing both discovery and messaging, decouples the producers and con-
sumers effectively. DCPS middleware provides publish/subscribe services to an application-
defined data-model, allowing fine-grained control of QoS, enabling the infrastructure to do
smart-caching of the information and provide content and time filtering at the source and des-
tination. The data-centric architecture provides the best decoupling between application com-
ponents and is best suited for time-critical and mission critical distributed applications.

2.1 Publish/Subscribe – A Simple Analogy

The publish/subscribe communications model is analogous to that of a traditional magazine or news-
paper business model. A Topic represents the kind of publication (data or information), for example
“Newspaper” or “Magazine”. If we use the Newspaper as the model, the Key is used to identify each
different news corporation (“New York Times”, “San Francisco Chronicle”, “La Strada”, “Le Monde”,
etc.). The type specifies the format of the information (how it is encoded). The user data is the contents
(text and graphics) of each sample (weekly or daily issues). The middleware is the distribution service
(US Postal Service or a paper delivery service) that delivers the publication from where it is created (a
printing house) to the individual subscribers (people's homes). This analogy is illustrated in Figure 2.1
An Example of Publish-Subscribe below.

Note that by subscribing to a publication, subscribers are requesting current and future samples of that
publication, so that as new samples are published, they are delivered without having to submit another
request for data. By specifying a content-filter on the value of the Key (the periodical name in this
case) a subscriber may indicate he only wants certain periodicals (e.g., yes to the “New York Times”
and “La Strada”, but no to others). Content filters could also select based on other attributes in the data
(e.g., select the ones written in a specific language, or coming from a specific region). Time-based fil-
ters can be used to request only a subset of the samples (e.g., only the Sunday edition).

Figure 2.1 An Example of Publish-Subscribe

In this example, Quality of Service (QoS) parameters can be linked to delivery requirements; only
deliver the Sunday edition, the paper must be delivered by 7:00am, the paper must be in the mailbox or
on the porch, or delivered by certified mail with the subscriber signing receipt of delivery.

17

2.2 The DDS Paradigm

18

QoS parameters specify how, where, and when the data is to be delivered, controlling not only trans-
port-level delivery properties, but also application-level concepts of fault tolerance, ordering, and reli-
ability.

2.2 The DDS Paradigm

The Object Management Group (OMG) Data Distribution Service (DDS) standard the comprehensive
specification available for publish/subscribe data-centric designs. The DDS publish/subscribe model
connects anonymous information producers (publishers) with information consumers (subscribers). The
overall distributed application is composed of processes called "Participants," each running in a sep-
arate address space, and often on different computer or system nodes. A Participant may sim-
ultaneously publish and subscribe to typed data-streams identified by a string name, these streams are
called Topics in DDS. The model allows publishers and subscribers to present type-safe interfaces to
the application.

DDS defines a communications relationship between publishers and subscribers. The communications
are decoupled in space (nodes can be anywhere—same node, a local node, or a geographically remote
node), time (delivery may be immediate or controlled), and flow (delivery may be reliable with a con-
trolled bandwidth). To increase scalability, Topics may contain multiple independent data channels iden-
tified by "Keys." This allows system nodes to subscribe too many, possibly thousands, of similar data
streams with a single subscription. When the data arrives, the middleware can cache and sort data using
the Key and deliver it for efficient processing.

Additionally, DDS is fundamentally designed to work over unreliable transports, such as UDP, wire-
less, or disadvantaged networks without the requirement for central servers or special nodes. Direct,
peer-to-peer communications, and support for reliable multicasting, enable a highly efficient data dis-
tribution model.

2.3 Quality of Service (QoS)

Fine-grained control over QoS is a powerful feature of DDS. Each publisher/subscriber pair can estab-
lish independent QoS agreements. Thus, DDS designs can support extremely sophisticated and flexible
data-flow requirements.

QoS parameters control most aspects of the DDS paradigm and the underlying communication mech-
anisms. Many QoS parameters are implemented as “contracts” between publishers and subscribers; pub-
lishers offer and subscribers request levels of service. The middleware is responsible for determining if
the offerer can satisfy the subscriber’s request, thereby establishing communication, or indicating an
incompatibility error. Ensuring that publish/subscribe pairs meet the level-of-service contracts guar-
antees predictable operation. Information about some common QoS parameters is presented below.

l Deadline: Periodic publishers can indicate the speed at which they can publish by offering guar-
anteed update deadlines. By setting a deadline, a compliant publisher promises to send a new

2.4 DDS—Example Application

update on each key at a minimum rate. Subscribers may then request data at that or any slower
rate.

l Reliability: Publishers may offer levels of reliability, parameterized by the number of past issues
they can store for the purpose of retrying transmissions. Subscribers may then request differing
levels of reliable delivery, ranging from fast-but-unreliable "best effort" to highly reliable in-
order delivery. This provides per-data stream reliability control.

l Strength: The middleware can automatically arbitrate between multiple publishers of the same
data with a parameter called "strength." For each keyed data-object the subscriber receives data
only from the strongest active publisher of that key. This provides automatic failover; if a strong
publisher fails, all subscribers immediately receive updates from the backup (weaker) publishers.

l Durability: Publishers can declare "durability," a parameter that determines how long previously
published data is saved. Late-joining subscribers to durable publications can then be updated with
a snapshot containing the most current set of values for each Key.

Other QoS parameters control when the middleware detects nodes that have failed, suggest latency
budgets, set delivery order, attach user data, prioritize messages, set resource utilization limits, partition
the system into namespaces, and more. The DDS QoS facilities offer extensive flexibility and com-
munications control.

RTI DDS Toolkit includes a set of predefined QoS profiles. These profiles are embedded in RTI DDS
Toolkit and cannot be modified. You can inherent from them. For your convenience, you can find an
XML file that shows you these profiles in C:/Program Files1/National Instruments/LabVIEW
20xx/vi.lib/_RTI DDS Toolkit_internal_deps/RTI_LABVIEW_CONFIG.-
documentationONLY.xml (where 20xx depends on your LabVIEW version). As the filename sug-
gests, this file is for documentation purposes only. This file is not loaded by RTI DDS Toolkit, so
updating it will not affect the embedded QoS profiles.

On RTI’s Community Forum (http://community.rti.com), you can find more information about QoS
properties and XML configuration, as well as the XSD schema.

2.4 DDS—Example Application

An air traffic control system provides sufficient details and requirements for as example application. An
air traffic control system may monitor and direct all flights over an entire continent. The data dis-
tributed in such a system is in the form of aircraft tracks, which provides positional information (e.g.,
course, speed, etc.) about an airplane. Components of an air traffic control system would include radar
systems, airplanes and air traffic control centers that provide current flight status information through
real-time displays.

1On 64-bit systems, the folder is “Program Files (x86)”

19

http://community.rti.com/

2.4 DDS—Example Application

20

Managing the correct distribution of data in such a system can be complex. Each radar system can track
many different airplanes, and each airplane may be tracked by more than one radar system. Real-time
access to this information is needed for displays at air-traffic control centers so that air traffic con-
trollers can make informed decisions. Air traffic controllers in the north-east may only want aircraft
track information in their area, so only a subset of data needs to be provide to them. Based on current
local conditions (e.g., air traffic, weather, etc.) air traffic controllers may issue flight plan updates to the
pilot in order to route around inclement weather and other airplanes. Though a specific plane does not
need flight plans from all other air planes, it would be useful to have information about planes in the
immediate vicinity.

Defining the air traffic control system in terms of publishers, subscribers and QoS parameters reveals
that DDS is a natural fit to address this data distribution problem. Each radar system can be thought of
as a publisher that publishes the "tracks" Topic which describes an airplane's positional information.
Each airplane that the radar system is tracking can be thought of as an "instance" of the track Topic
identified by a unique Key attribute (e.g., the Airline name and flight number). The real-time controller
displays subscribe to the tracks Topic and publish "flight plan" Topic updates back to the specific air-
plane. QoS parameters can be used to manage and control deterministic behaviors and fault tolerance
capabilities of the system.

Chapter 3 A Simple Read/Write Example
The best way to learn about RTI DDS Toolkit is to begin building example applications. The fol-
lowing example VIs provide a quick introduction to the capabilities:

l RTI Connext DDS Read String.vi
l RTI Connext DDS Write String.vi

After reading this chapter, we recommend completing the lessons in Chapter 4 Tutorial on
page 29 for a more in-depth look at the capabilities of RTI DDS Toolkit.

Note: The instructions for this example assume you are already familiar with LabVIEW.

Before continuing, please make sure you have the following software installed:

l LabVIEW (32-bit) for Windows (see the Release Notes for supported versions)
l RTI DDS Toolkit

If you are using a computer that does not have an active network interface, see E.3 Running
without an Active Network Interface on page 165.

We will start with the StringsDemo example VIs. To access the examples:

1. Launch LabVIEW.

2. From the LabVIEW Help menu, select Find
Examples….

3. Select the Browse according to: Directory Struc-
ture radio button.

4. Scroll down and open the RTI DDS Toolkit

21

3.1 Publishing a String in DDS

22

folder.

5. Open the StringsDemo folder.

Notes:

l If you see an error after opening one of the examples (such as “This application has failed to start
because its side by side configuration is incorrect”), see 3.4.3 Troubleshooting with Ping and
Spy on page 27.

l If the example VI seems blocked (the stop button toggles, data does not transfer, etc.), you may
have a linking issue in the VI. This issue is very likely for LabVIEW 2010 users. 3.4 Usage
Notes on page 26 explains how to resolve this.

3.1 Publishing a String in DDS

1. Open the RTI Connext DDS Write String.vi by double-clicking on it in the NI Example Finder
(select Help, Find Examples...).

2. Click the Run button in the LabVIEW toolbar.

3. From the LabVIEW Front Panel, enter some text (such as Hello DDS) in the Text field and click
the Enter Text button in the LabVIEW toolbar.

3.2 Subscribing to a String in DDS

You are now writing (publishing) the string using DDS. Next we will read it from the RTI Con-
next DDS Read String.vi.

3.2 Subscribing to a String in DDS

1. Open the RTI Connext DDS Read String.vi by double-clicking on it in the NI Example Finder
(select Help, Find Examples...).

2. Click on the Run button in the LabVIEW toolbar.

23

3.2 Subscribing to a String in DDS

24

3. Verify that it is reading the same string that is being published from the RTI Connext DDS
Write String.vi.

3.3 What is Happening?

While both VIs are running, verify that if you change the text in the Text control of the RTI Con-
next DDS Write String.vi, you will read the new text in the RTI Connext DDS Read String.vi.
Remember to use the LabVIEW Enter Text button in the toolbar (rather than pressing Enter

or Return on your keyboard).

Note: Under the DDS publish/subscribe paradigm, knowing the location of the distributed applic-
ations is handled by the middleware. In this example, we are running both the RTI Connext
DDS Write String.vi and the RTI Connext DDS Read String.vi on the same computer, using
the Shared Memory transport for inter-application communication. However, if you were to run
these examples on different computers (with a functional LAN connection), DDS would auto-
matically handle the communication across the network.

3.3 What is Happening?

To better understand how this demonstration is implemented, let’s review the code for these two VIs:

l Publisher side

The RTI Connext DDS Write String.vi uses three RTI DDS Toolkit subVIs:
l Simple Create Writer: Creates a Writer object for text (strings) and initializes it accord-
ing to the VI configuration parameters.

l Write: Receives as input the reference from the Writer object (Create Writer) and the text
to be published (the Text control). It will continue publishing the text within a LabVIEW
loop until an error occurs or the Stop Writing control is pressed.

l Release Writer:When the Stop Writing control is pressed, the Release Writer subVI will
execute and release the Writer object.
For details on these subVIs, see A.2.1 Writer on page 135.

If you open the Block Diagram (in the RTI Connext DDS Write String Example window, selectWin-
dow, Show Block Diagram), it will look like this:

25

3.4 Usage Notes

26

l Subscriber side

The RTI Connext DDS Read String.vi uses three RTI DDS Toolkit subVIs:
l Simple Create Reader: Creates a Reader object for text (strings) and initializes it accord-
ing to the VI configuration parameters.

l Read: Receives as input the reference from the Reader object (Create Reader). Outputs the
Text indicator. It continues subscribing to the text within a LabVIEW loop until an error
occurs or the Stop Reading control is pressed.

l Release Reader:When Stop Reading control is pressed, the Release Reader subVI will
execute and release the Reader object.
For details on these subVIs, see A.2.2 Reader on page 137.

If you open the Block Diagram (in the RTI Connext DDS Read String Example window, selectWin-
dow, Show Block Diagram), it will look like this:

3.4 Usage Notes

3.4.1 Communicating Unbounded Entities

By default, strings in RTI DDS Toolkit are bounded so their maximum length is 1024 characters.
However, if you set the Advanced Reader/Writer Configuration flag forceUnboundedString to true,

3.4.2 Preventing 'Type Code Incorrect' Error when Working with Arrays

they are created with a length equivalent to the maximum integer (2,147,483,647) (see 4.7 Lesson 7—
Used Nested and Multiple Keys on page 61). Despite that, DDS only sends the actual data the string
contains, automatically reducing the sample size.

However, if you create a DataWriter of an unbounded type, it will not communicate with a DataReader
of a bounded type out of the box. RTI DDS Toolkit sets the following property in all its DomainPar-
ticipants:
<participant_qos>

<property>
<value>

<element>
<name>

dds.type_consistency.ignore_sequence_bounds
</name>
<value>1</value>

</element>
</value>

</property>
</participant_qos>

This property allows bounded DataReaders to communicate with unbounded DataWriters. Set this prop-
erty in your external DDS applications that need to communicate with RTI DDS Toolkit applications.

To Achieve Backward Compatibility:

If you need to create a bounded string, do not set to true the flag forceUnboundedString in the
Advanced Reader/Writer Configuration controls. Setting this flag will force all strings to be unbounded.

3.4.2 Preventing 'Type Code Incorrect' Error when Working with Arrays

If you are forcing the usage of arrays, you may get an error when reading/writing them. To prevent this
error, use sequences instead. Sequences, as well as LabVIEW arrays, can be resized and will not cause
this error. Sequences are the default mapping of LabVIEW arrays.

If you must use arrays:

When using an array as the input or output for one of the RTI DDS Toolkit subVIs, you will need to ini-
tialize the array to its maximum size. Arrays within clusters must also be initialized to their maximum
size. The resize functionality available in LabVIEW is not compatible with RTI DDS Toolkit.

To increase the size of an array, drag down on the bottom of the last element until you’ve reached the
largest number of elements you need. Then assign a default value to each new element. It is usually suf-
ficient to add one element at the end of the array.

3.4.3 Troubleshooting with Ping and Spy

If data is not flowing between the writer and reader, we suggest running the Connext DDS Ping and
Spy utilities; they can show you what data is flowing through the network. These utilities are provided

27

3.4.3 Troubleshooting with Ping and Spy

28

with the Connext DDS core1.

If you do not have Connext DDS installed, you can download RTI Connext DDS Professional from
www.rti.com/downloads. Once you’ve installed RTI Connext DDS Professional, you can access DDS
Ping and DDS Spy from RTI Launcher2 (in the Utilities tab).

For help using Ping and Spy, see the Connext DDS API Reference HTML documentation. For 5.1.0
and lower versions, open <Connext DDS core installation directory>/ndds.<version>/ReadMe.html.
However if you are using 5.2.0 or a higher version, look for the file <Connext DDS core installation
directory>\ReadMe.html. The documentation is also available here: http://-
community.rti.com/documentation. Choose an API (C, C++, .NET, or Java), then selectModules, Pro-
gramming Tools.

You can also use RTI Distributed Logger to help debug your applications. Distributed Logger enables
applications to publish their log messages to Connext DDS. The log message data can be visualized
with RTI Monitor, a separate GUI application that can run on the same host as your application or on a
different host. Since the data is provided in a Topic, you can also use DDS Spy or even write your own
visualization tool.

RTI Monitor is included in RTI Connext DDS Professional. You can download a free trial from
http://www.rti.com/downloads/index.html. For information about RTI Monitor, see https://www.rti.-
com/products/dds/tools#MONITOR.

1In the <Connext DDS installation directory>/ndds.<version>/scripts (5.1.0 or lower) or <Connext DDS installation dir-
ectory>/bin (5.2.0 or higher), look for rtiddsping and rtiddsspy.

2RTI Launcher is a GUI-based tool provided with RTI Connext DDS Professional.

https://www.rti.com/downloads
http://community.rti.com/documentation
http://community.rti.com/documentation
http://www.rti.com/downloads/index.html
https://www.rti.com/products/dds/tools#MONITOR
https://www.rti.com/products/dds/tools#MONITOR

Chapter 4 Tutorial
This tutorial will help you become familiar with several key capabilities of RTI DDS Toolkit.
The tutorial assumes you have the following software installed:

l National Instruments LabVIEW 2020 (32-bit) or later for Windows systems
l RTI DDS Toolkit for National Instruments LabVIEW 2020 (32-bit) or higher for Win-
dows systems

The tutorial includes these lessons:

l 4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric) on the
next page

l 4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data
(Clusters) on page 38

l 4.3 Lesson 3—Blocking Reads on page 45
l 4.4 Lesson 4—Filtering Data on page 47
l 4.5 Lesson 5—Reading Only New Samples on page 52
l 4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo) on page 55
l 4.7 Lesson 7—Used Nested and Multiple Keys on page 61
l 4.8 Lesson 8—Reading All Samples (Reliable Communication) on page 64
l 4.9 Lesson 9—Debugging Your RTI Connext DDS Application on page 73
l 4.10 Lesson 10—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example) on
page 79

l 4.11 Lesson 11—Using Security with RTI DDS Toolkit (Windows only) on page 83
l 4.12 Lesson 12—Reading Multiple Samples at a Time on page 88

29

4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)

30

We encourage you to follow along and perform the steps in each lesson yourself—there is no better
teacher than hands-on experience. However, completed solutions are provided; see 4.13 Reviewing
Completed Solutions on page 92.

Notes:

l These lessons assume you are familiar with LabVIEW.
l For debugging information, see E.1 Enabling Debugging Mode on page 155

4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data
(Numeric)

In this first lesson, you will become familiar with the RTI DDS Toolkit functions and capabilities by cre-
ating two LabVIEW VIs that can publish and subscribe to data. You can run these VIs on the same
computer or separate computers connected to the same local area network. RTI DDS Toolkit will auto-
matically discover the location of each application and handle communication in either scenario
without any changes to the VIs.

4.1.1 Developing a VI to Publish Simple Data (Numeric)

Let’s start by developing a VI to publish a simple data type: the value of a double-precision numeric
control, a LabVIEW Numeric (DBL).

4.1.1.1 Create a Writer Object to Publish a Numeric (DBL)

1. Launch LabVIEW and create a new VI. Select File, New VI. Save the new VI with the name
Tutorial_Write_Double.vi.

2. Open the Block Diagram’s Functions Palette (right-click on
an open area) and select Data Communication, RTI DDS
Toolkit, Writer; drag and drop the Simple Create Writer
subVI into the Block Diagram.

3. The Simple Create Writer subVI has the following input para-
meters:

l Domain Id
l Topic Name
l Data Type
l error in (no error)

4.1.1.2 Publish a Numeric (DBL)

For details on these parameters, see A.2.1 Writer on page 135.

We will use this subVI to create a Writer object that can publish a data type of Numeric (DBL).
We will use domain ID 0 and our Topic Name will be Hello LV Double. To begin:

a. Right-click on the Create Writer subVI and select Select Type, Numeric (DBL)

b. Right-click on each input node (except error in (no error)) and select Create, Constant.
This will create a default constant for that input parameter. Set each input parameter as fol-
lows (right-click on each and select Edit...):

l Domain Id = 0
l Topic Name = Hello LV Double
l Data Type = 0

c. For error in, right-click and select Create, Control.

The resulting Block Diagram should look similar to this:

4.1.1.2 Publish a Numeric (DBL)

The next step is to add the functionality to publish values to the DDS network. We will use the Write
subVI.

1. Open the Functions Palette and select Data Communication, RTI DDS Toolkit, Writer, Write;
drag and drop the Write subVI into the Block Diagram.

The Write subVI has the following input parameters:
l DDS Object Ref in
l Data
l error in
For details on these parameters, see A.2.1 Writer on page 135.

2. Wire the DDS Object Ref output of the Create Writer subVI (from 4.1.1.1 Create a Writer
Object to Publish a Numeric (DBL) on the previous page) to the DDS Object Ref in input of the
Write subVI.

3. We will publish the value of a Horizontal Pointer Slide control (numeric
control). Drop a Horizontal Pointer Slide control onto the Front Panel
from the Controls Palette. In the Block Diagram, wire the Pointer Slide
to the Write subVI’s Data input node. Rename the slide control to Data.

31

4.1.1.3 Release the Writer Object

32

4. To continuously publish the Pointer Slide value, add a While Loop around the Write subVI in the
Block Diagram. From the Functions Palette:

a. Select Programming, Structures, While Loop.

b. Use the left mouse button to drag and include both the Write subVI and the Horizontal
Pointer Slide control in the While Loop.

c. You may also add a Wait Until Next ms Multiple subVI (under Programming, Timing
from the Functions Palette) inside the While Loop if you want to specify a rate at which
Write will publish the value.

5. Add a Stop Button boolean to the Front Panel and wire it to the While Loop stop function in the
Block Diagram. The resulting Block Diagram should look similar to this:

4.1.1.3 Release the Writer Object

The final step in our Tutorial_Write_Double.vi is to release the DDS entities and reclaim the system
resources when the While Loop is terminated. To do this, we use the Release Writer subVI in the Block
Diagram.

1. From the Functions Palette, select Data Communication, RTI DDS Toolkit, Writer, Release
Writer; drag and drop the Release Writer subVI into the Block Diagram.

2. Configure its input parameters:
l DDS Object Ref
l error in

For details on these parameters, see A.2.1 Writer on page 135.

4.1.2 Creating a VI to Subscribe to Simple Data (Numeric)

Wire the Write subVI’s output to the Release Writer’s inputs. The resulting Block Diagram
should look similar to this:

3. Save the file Tutorial_Write_Double.vi.

4. We recommend including error handling in your VIs. Take the above figure as an example: we
use error handler’s status to control the loop exit condition.

4.1.2 Creating a VI to Subscribe to Simple Data (Numeric)

In 4.1.1 Developing a VI to Publish Simple Data (Numeric) on page 30, you learned how to develop a
LabVIEW VI to use DDS to publish a simple data type, the value of a numeric (DBL). In the second
part of the lesson, you will see how to develop an equivalent VI to read the published data.

4.1.2.1 Create a Reader Object to Subscribe to a Numeric (DBL)

1. Launch LabVIEW and create a new VI. (In LabVIEW 2016, select File, New VI.) Save the new
VI with the name Tutorial_Read_Double.vi.

2. Open the Functions Palette (right-click on an open area in the Block Diagram), then select Data
Communication, RTI DDS Toolkit, Reader. Drag and drop the Simple Create Reader subVI

into the Block Diagram.

33

4.1.2.1 Create a Reader Object to Subscribe to a Numeric (DBL)

34

3. The Simple Create Reader subVI has the following input parameters:
l Domain Id
l Topic Name
l Data Type
l error in (no error)

For details on these parameters, see A.2.2 Reader on page 137.

We will use this subVI to create a Reader object that can subscribe to a data type of Numeric
(DBL). We will use domain ID 0 and our Topic Name will be Hello LV Double. To begin:

a. Right-click on the Create Reader subVI and select Select Type, Numeric (DBL).

b. Right-click on each input node (except error in (no error)) and select Create, Constant.
This will create a default constant for that input parameter. Set each input parameter as fol-
lows (by right-click on each and select Edit...):

l domain id = 0
l topic name = Hello LV Double
l data type = 0

c. Right-click on error in and select Create, Control.

4.1.2.2 Subscribe to a Numeric (DBL)

The resulting Block Diagram should look similar to this:

4.1.2.2 Subscribe to a Numeric (DBL)

The next step is to add the functionality to subscribe to the values from the
DDS network. We will use the Read subVI.

1. To insert the Read subVI into your Block Diagram, open the Functions Palette and:
a. Select Data Communication, RTI DDS Toolkit, Reader, Read; drag and drop the Read

subVI into the Block Diagram.

b. Right-click on the Read subVI and select Select Type, Numeric (DBL).

Read takes the following input parameters:
l DDS Object Ref in
l Query Condition
l Only New Samples
l error in (no error)
l Read Mode (Optional. Default is Polling Mode.)
l Blocking Timeout (Optional. Default is 0 seconds and 0 nanoseconds.)

For details on these parameters, see A.2.2 Reader on page 137.

2. Wire the Create Reader subVI’s DDS Object Ref output node to the Read subVI’s DDS Object
Ref in input node.

3. In this example, we will subscribe to the Numeric (DBL) published by
the Tutorial_Write_Double.vi. To display the data, drop a Vertical Fill
Slide control onto the Front Panel from the Controls Palette. In the Block
Diagram, right-click on the Vertical Fill Slide control and select Change
to Indicator, then wire the Read subVI’s data output node to the Ver-
tical Fill Slide.

4. We want to continuously subscribe to the Numeric (DBL). To do so, add a While Loop around
Read in the Block Diagram. From the Functions Palette:

a. Select Programming, Structures, While Loop.

b. Use the left mouse button to drag and include both the Read subVI and the Vertical Fill
Slide control in the While Loop.

35

4.1.2.3 Release the Reader Object

36

c. You may also add a Wait Until Next ms Multiple function (in the Functions Palette, under
Programming, Timing) inside the While Loop if you want to specify a rate at which Read
will subscribe to the data.

5. (Optional) Select a read operation mode and blocking timeout. For details on these parameters,
see A.2.2 Reader on page 137.

6. Add a Stop Button boolean to the Front Panel and wire the boolean to the While Loop stop func-
tion in the Block Diagram. The resulting Block Diagram should look similar to this:

4.1.2.3 Release the Reader Object

The final step in our Tutorial_Read_Double.vi is to release the DDS entities and reclaim the system
resources when the While Loop execution is terminated. To do this, we use the Release Reader subVI
in the Block Diagram.

1. From the Functions Palette, select Data Communication, RTI DDS Toolkit, Reader, Release
Reader; drag and drop the Release Reader subVI into the Block Diagram.

2. Configure its input parameters:
l DDS Object Ref
l error in

For details on these parameters, see A.2.2 Reader on page 137.

Wire the Read subVI’s outputs to corresponding inputs in the Release Reader subVI.

The resulting Block Diagram for Tutorial_Read_Double.vi should look similar to this:

4.1.3 Testing

3. Save the file Tutorial_Read_Double.vi.

4. We recommend including error handling to your VIs. Please see 4.2 Lesson 2—Using Com-
plexType Generator to Publish and Subscribe to Complex Data (Clusters) on the next page and
4.4 Lesson 4—Filtering Data on page 47 for further details.

4.1.3 Testing

Now that both VIs are ready, we can verify that they work as expected.

1. Open both VIs, Tutorial_Write_Double.vi and Tutorial_Read_Double.vi, and click the Run
arrow button in the toolbar in each.

2. Verify that you are reading exactly the same Numeric (DBL) value in Tutorial_Read_Double.vi
that is being published from Tutorial_Write_Double.vi.

While both VIs are running, you can change the value of the Horizontal Fill Slide control in
Tutorial_Write_Double.vi and see how the Vertical Fill Slide indicator displays the new values
in Tutorial_Read_Double.vi.

These VIs might execute in the same computer or on separate computers connected to the same
local area network. Either way, RTI DDS Toolkit will allow the VIs communicate without any
changes to the application VIs. This capability is known as ‘location transparency.’

37

4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters)

38

4.2 Lesson 2—Using ComplexType Generator to Publish and
Subscribe to Complex Data (Clusters)

In this lesson, you will become familiar with the RTI DDS Toolkit functions and capabilities to publish
and subscribe to complex types such as clusters or enumerators.

Note: Only 32-bit enumerators are supported. To change the representation, right-click on the enum
and select Representation—>32.

We are going to focus on the cluster use-case. Let’s begin by developing a VI that can publish the
cluster defined in the following figure:

Figure 4.1 Complex Type

4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters)

First, we will define a new type (a LabVIEW Type-Def) for this cluster:

1. Launch LabVIEW and create a new Custom Control: Select File, New…, Other Files, Custom
Control.

2. Choose Type Def. from the Control drop-down list in the toolbar:

3. Draw an empty cluster. From the Controls Palette:
a. SelectModern

b. Select Array, Matrix & Cluster

c. Select Cluster

d. Rename the cluster complexType (right-click and select Properties).

Note: See 3.4.2 Preventing 'Type Code Incorrect' Error when Working with Arrays on page 27.

39

4.2.1 Creating VIs for Publishing and Subscribing to a Cluster

40

4. Fill the complexType cluster as shown in Figure 4.1 Complex Type on page 38. This process is
simple: drag the following controls from the Palette:

a. String Control labeled as Text.

b. Numeric Control with Representation I32 labeled as I32_Num (once you have selected a
Numeric Control, right-click on it and select Representation and change it to I32).

c. Numeric Control with Representation I64 labeled as I64_Num.

d. Numeric Control with Representation U16 labeled as U16_Num.

e. Array of Numeric Controls with Representation SGL labeled as Sgl_Array.
Note: LabVIEW arrays are mapped as bounded DDS sequences (or arrays if the flag for-
ceArrayMapping is marked in the Advanced Reader/Writer Configuration control). The
sequence bound or length is calculated from the LabVIEW array size. Make sure you
declare your array to be the maximum size you will need. See 6.10 Setting Up Arrays on
page 129.

f. Cluster inside the first one labeled as innercluster. Fill innercluster as shown in Figure
4.1 Complex Type on page 38.

5. When the cluster definition is complete, save this new control type as Tutorial_Cluster.ctl.

4.2.1 Creating VIs for Publishing and Subscribing to a Cluster

In this section, we will demonstrate how to create a set of subVIs to publish and subscribe a cluster
using DDS. In order to do that, we will use the DDS ComplexType Generator (see 6.3.1 Using the RTI
DDS ComplexType Generator on page 99 for further information):

1. Open the RTI DDS ComplexType Generator from the Tools / RTI DDS Toolkit menu.

2. Choose the following information:
a. Type of Generation: Advanced.

b. Save the Type Definition: Yes (Note: this may trigger a conflict if your previous type defin-
ition has been loaded by LabVIEW).

c. Path to the Custom Type Definition: Path to the Type Definition you want to use for cre-
ating this set of subVIs).

Note: If your type contains any arrays, make sure the arrays have been declared with the
maximum size you will need. If the array size changes, you will need to regenerate your
VIs.

d. Output Directory: The folder where these files will be generated.

4.2.1.1 Modify the Writer Example VI

e. Generate Example VIs: TRUE. (Note: this will enable the Domain ID and the Topic Name
controls).

f. Domain ID: Leave this at 0.

g. Topic Name: HelloComplex.

3. Press Generate Code (this button will be enabled when the Path to the Custom Type Defin-
ition and the Output Directory controls have values).

4. Press the STOP button.

Several new VIs will be created in the output directory:

l Tutorial_Cluster Create Advanced Reader.vi
l Tutorial_Cluster Create Advanced Writer.vi
l Tutorial_Cluster Read.vi
l Tutorial_Cluster Reader Example.vi
l Tutorial_Cluster Write.vi
l Tutorial_Cluster Writer Example.vi
l Tutorial_Cluster Multiple_Samples.vi

4.2.1.1 Modify the Writer Example VI

Open Tutorial_Cluster Writer Example.vi and change the advanced setting using the Advanced
Writer Configuration control:

1. Disconnect the Advanced Writer Configuration from the Tutorial_Cluster Create Advanced
Writer VI.

2. Right-click on Advanced Writer Configuration and select Cluster, Class, & Variant Palette,
then Bundle by Name.

3. Create three fields in Bundle by Name and select values typeName, keyName and, optionally,
dataWriterQoSProfile.

4. Set typeName to ComplexType and keyName to Text. Optionally, set the QoS Profile to
LabVIEWLibrary::DefaultProfile.

41

4.2.1.2 Modify the Reader Example VI

42

Note: For details on Advanced Settings, see Chapter 6 Advanced Concepts and Settings on
page 96.The resulting Block Diagram should look similar to this:

5. Save the file Tutorial_Cluster Writer Example.vi.

4.2.1.2 Modify the Reader Example VI

Open the Tutorial_Cluster Reader Example.vi and
change the Advanced Reader Configuration control the
same way explained in 4.2.1.1 Modify the Writer
Example VI on the previous page.

Note: For details on Advanced Settings, see Chapter 6
Advanced Concepts and Settings on page 96.

1. Delete the ContentFilteredTopic Info control, since we are not going to use it in this lesson (See
4.4.2 Filtering Data Using ContentFilteredTopics on page 49).

2. Optionally:
l Wire a DDS Sample Info indicator to the Tutorial_Cluster Read subVI.
l Wire a false boolean constant to the Only New Samples input of the Tutorial_Cluster
Read subVI.

4.2.1.3 Creating VIs Programmatically

The resulting Block Diagram should look similar to this:

3. Save the file Tutorial_Cluster Reader Example.vi.

4.2.1.3 Creating VIs Programmatically

Custom ComplexType VIs can also be created programmatically using the VI named DDS Generate
Custom Type VIs under the Tools palette. The input parameters are the same ones used in Com-
plexType Generator (see 6.3.1 Using the RTI DDS ComplexType Generator on page 99). The output
parameter is the error cluster and a path array with paths to the generated files.

4.2.2 Testing

Now that both VIs are ready, you are ready to verify they work as expected.

1. Open Tutorial_Cluster Reader Example.vi and Tutorial_Cluster Writer Example.vi. Then
run each VI.

2. Verify that you can read exactly the same values for each member of the cluster in Tutorial_
Cluster Reader Example.vi, being published from Tutorial_Cluster Writer Example.vi.

43

4.2.2 Testing

44

With both VIs running, you can change the value of the published cluster in Tutorial_Cluster
Writer Example.vi and see the values update.

3. Create a constant in the Tutorial_Cluster Read subVI’s input pin named Only New Samples and
set it to false. Then modify the value for Text in the Writer.

You will see it flicker on the Reader side between the previous and current values. This is the
expected behavior because Text is our cluster’s key. This means that a new instance is created
for each Text value provided. Even after reading the sample, the received instance is still alive,
so it can be reached from the Reader. See 4.5 Lesson 5—Reading Only New Samples on page 52
to learn more about this.

4.3 Lesson 3—Blocking Reads

4.3 Lesson 3—Blocking Reads

In this lesson you will learn how to use the Read VI in blocking read operation mode (instead of
polling). When performing a blocking read, the process waits an amount of time (passed as a para-
meter) until a sample can be read. This saves CPU cycles because this way it is not necessary to con-
tinuously poll for samples.

This lesson assumes you have completed 4.2 Lesson 2—Using ComplexType Generator to Publish and
Subscribe to Complex Data (Clusters) on page 38.

1. Open the Tutorial_Cluster Reader Example from 4.2 Lesson 2—Using ComplexType Gen-
erator to Publish and Subscribe to Complex Data (Clusters) on page 38 and save it as a new VI
named Tutorial_BlockingRead_Cluster.vi.

2. Delete the Wait VI inside the loop. We’ll use the Read VI to wait.

3. Create an integer indicator and wire it to the loop iteration counter. This will help us see how fast
loop iterations are made.

4. Set the input “Read Mode” to LVDDS_READ_MODE_BLOCKING.

5. Set “Blocking Timeout” to how long you want to remain blocked until a sample is read (such as
1 second and 0 nanoseconds).

6. Wire an indicator to the output “Timeout” to know when the timeout has expired without reading
valid data.

7. Enable “Only New Samples” to remain blocked until new samples arrive.

8. Run the writer.

45

4.3 Lesson 3—Blocking Reads

46

9. Notice that samples are received, the Timeout indicator is off, and the loop iteration counter
increases rapidly (depending on the publication speed).

10. Stop the writer.

11. Notice that the Timeout indicator is on and the loop iteration counter increases once every
second.

12. Switch the “Read Mode” to LVDDS_READ_MODE_POLLING and notice that the loop counter
increases rapidly again.

4.4 Lesson 4—Filtering Data

4.4 Lesson 4—Filtering Data

In this lesson you will learn how a subscriber can filter data available on the DDS network. First we
will filter by using a Query Condition. Then, we will use a ContentFilteredTopic.

This lesson assumes you have successfully completed 4.2 Lesson 2—Using ComplexType Generator to
Publish and Subscribe to Complex Data (Clusters) on page 38.

4.4.1 Filtering Data Using Query Conditions

1. Open the Tutorial_Cluster Reader Example from 4.2 Lesson 2—Using ComplexType Gen-
erator to Publish and Subscribe to Complex Data (Clusters) on page 38 and save it as a new VI
named Tutorial_Filter_Cluster.vi. The Block Diagram should look similar to this:

With DDS, you can filter network data by subscribing to only the Topics of interest. Addi-
tionally, DDS provides the capability to filter data within a Topic by specifying a query condition
for the data to match. The syntax of this Query Condition is similar to standard SQL queries. We
will demonstrate how to filter data with various query conditions.

2. Replace the Read subVI’s query condition input constant with a text control that we can modify
while executing the VI. Right-click on the constant wired to the query condition input of the
Read subVI.

3. Select Change to Control.

47

4.4.1 Filtering Data Using Query Conditions

48

4. Verify that the new Query condition text control is available on the Front Panel, as seen in the
figure on the right.

5. Save to file Tutorial_Filter_Cluster.vi.

Now we can use filters to specify a Query condition at run
time and subscribe to only the Topic data we desire. Let’s
test how it works:

6. Run Tutorial_Write_Cluster.vi to begin publishing
the complex data type (cluster).

7. Run Tutorial_Filter_Read.vi. As you will see, all the
published data is read by the Tutorial_Read_Cluster-
.vi. This is because the Query condition text control
is blank and no query condition is being applied.

Note: DDS is content aware. That is, each Topic and its data
type(s) are known by the middleware. This provides robust
application support through capabilities such as content filtering, queries, and advanced tooling.

We will now filter data by content; for example, only read those samples where the cluster field is
equal to “valid text”:

8. With the VIs running, enter the following filter text in the Query condition text control:

“Text = ‘valid text’”

Note: See the screenshot below for the exact Query condition entry.
9. Change the Text data in Tutorial_Write_Cluster.vi to “valid text” and modify the value of

some of the other types. Verify that you are reading “valid text” and get updated values of the
other types in the reader VI.

4.4.2 Filtering Data Using ContentFilteredTopics

10. Verify that when you enter any other text in the Writer VI Text field, you do not see “valid text”
or the updated values of other types in the Reader VI.

11. Here are a few other example Query Conditions you can try:
l “I32_Num > 0”
l “innercluster.Boolean = TRUE”
l “innercluster.Boolean = TRUE and Text = ‘valid text’”
l “innercluster.Boolean = TRUE or Text = ‘valid text’”

4.4.2 Filtering Data Using ContentFilteredTopics

In this section we will learn how to use ContentFilteredTopics. This allows us to filter the data on the
publisher side. See 6.9 Advanced Filtering of Data—ContentFilteredTopics on page 127 for further
details.

This lesson assumes you have successfully completed the previous lesson in 4.4.1 Filtering Data Using
Query Conditions on page 47.

1. Open Tutorial_Read_Cluster.vi from 4.4.1 Filtering Data Using Query Conditions on page 47
and save it as a new VI named Tutorial_Content_Filter_Cluster.vi.

With DDS, you can filter network data by subscribing to only the Topics of interest. Addi-
tionally, DDS provides the capability to filter data within a Topic by using a Con-
tentFilteredTopic. A ContentFilteredTopic will not only makes possible to subscribe to topics but
also specify that you are only interested in a subset of the Topic’s data.

49

4.4.2 Filtering Data Using ContentFilteredTopics

50

2. Add a ContentFilteredTopic (if it doesn’t exist).

a. Create a new control in the front panel, right-click, select RTI DDS Toolkit, RTI DDS
ContentFilteredTopic Info. Or in the block diagram, right-click on the pin called Con-
tentFilteredTopic Info. Click on Create->Control. This will create a Con-
tentFilteredTopic with the default configuration.

b. Create your own filter by filling in the ContentFilteredTopic Name and Filter Expres-
sion and attaching those parameters to a Bundle by name function, or by filling out the
ContentFilteredTopic Info cluster on the front panel.

Note: For details on Advanced Settings, see 6.5 Configuring Advanced Reader Settings on
page 104.

c. Connect it to the Advanced Create Reader subVI.

3. Save to file Tutorial_Content_Filter_Cluster.vi. The resulting block should look similar to this:

The ContentFilteredTopic has been configured to read only the samples whose ‘Text = alas’. Let’s test
how it works:

4. Run Tutorial_Writer_Cluster.vi to begin publishing the complex data type (cluster).

5. Verify that you are receiving the samples whose Text value is ‘alas’.

4.4.2 Filtering Data Using ContentFilteredTopics

6. Change several parameters of the cluster that is sent in the Tutorial_writer_cluster.vi, also
modify Text to have the value ‘alas2’.

7. Check that no samples are received.

8. Change the Text parameter back to ‘alas’.

9. Verify that you are receiving correct samples again and they contain the correct values.

The following picture shows how a Reader Cluster (left) created with a ContentFilteredTopic only
receives samples that meet the filter condition from the Writer Cluster (right).

10. Here are a few other filter examples you can try:
l “I32_Num > 0”
l “innercluster.Boolean = TRUE”
l “innercluster.Boolean = TRUE and Text = ‘valid text’”
l “innercluster.Boolean = TRUE or Text = ‘valid text’”

51

4.5 Lesson 5—Reading Only New Samples

52

4.5 Lesson 5—Reading Only New Samples

In this lesson you will learn how a subscriber can read every received data or only those that have not
been read yet. This lesson assumes you have successfully completed 4.2 Lesson 2—Using Com-
plexType Generator to Publish and Subscribe to Complex Data (Clusters) on page 38.

1. Open Tutorial_Cluster Reader Example.vi from 4.2 Lesson 2—Using ComplexType Generator
to Publish and Subscribe to Complex Data (Clusters) on page 38 and save as a new VI with the
name Tutorial_Only_New_Read.vi. The Block Diagram should look similar to this:

With DDS, you can select whether you want to subscribe to all the available samples in the
Reader queue or just to the new ones. Using the Read subVI’s Only New Sample's input, we can
modify this behavior. When set to true, only those samples that have not been read before are
returned. When set to false, this indicates we want to re-read old samples, even if we read them
in the past. This lesson will demonstrate how this feature may affect your system.

2. Replace the Read subVI’s Only New Samples input constant with a boolean control that we can
modify while executing the VI. Right-click the constant wired to the Only New Samples input of
the Read subVI.

a. Select Change to Control.

b. Verify that the new Only New Samples boolean control is available on the Front Panel.

c. Save to file Tutorial_Only_New_Read.vi.

Now you can specify whether you want to subscribe to new samples or to any available one.
Let’s test how it works:

3. If the DDS Sample Info is not visible on the Front Panel, make it visible by right-clicking on it in
the Block Diagram and selecting Show indicator.

4. Set Only New Samples to false.

4.5 Lesson 5—Reading Only New Samples

5. Run Tutorial_Only New_Read.vi and Tutorial_Cluster Writer Example.vi. As you will see,
all the published data is read by Tutorial_Only_New_Read.vi.

6. Modify the Text field, which is a key, in the Writer. The values in the Reader will flicker from
the new value to the previous one. In fact, in the DDS Sample Info control, you will see that the
data that is no longer published has its DDS_SampleStateKind set to DDS_READ_SAMPLE_
STATE, while the new one value is set to DDS_NOT_READ_SAMPLE_STATE. Now we are
reading any alive sample published by the Writer, even if we had already read it.

53

4.5 Lesson 5—Reading Only New Samples

54

7. Change the Only New Samples control to True. Now we are only reading the latest published
value. Take into account that only one data sample is read each time we call the Read subVI (see
4.8 Lesson 8—Reading All Samples (Reliable Communication) on page 64).

Note: A different approach is to use Exclusive Readers and 'take' to guarantee that the data will
only be read once (see 6.1 Default Configuration: DDS Entities Created by ‘Simple Create’
SubVIs on page 97 and 4.8.2 Writing and Reading using Strict Reliability on page 68).

4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo)

4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo)

In this lesson, we will explain the value of Keys in our data-type definition and introduce the powerful
concept of DDS Topic instances.

We will use RTI Shapes Demo in this lesson. RTI Shapes Demo is a powerful example application to
demonstrate the many capabilities of DDS as well as an easy way to quickly communicate with an
external DDS application.

Shapes Demo can publish and subscribe to colored, moving shapes (squares, circles, and triangles). It
supports a wide range of QoS parameters.

To complete this lesson, you need to install Shapes Demo, which you can download from
https://www.rti.com/downloads. The Shapes Demo User’s Manual is included with the installation.

Note: Shapes Demo uses a default domain ID of 0, which is the same domain ID used by the example
VIs in this document. If you use a different domain ID for the VIs, you will also need to change the
domain ID for Shapes Demo (see the Shapes Demo User’s Manual for instructions).

4.6.1 Working with Shapes Demo

Shapes Demo allows you to publish and subscribe different shapes (the DDS Topic for this example). A
‘ShapeType’ data type is defined as a structure with four members:

l color (string) – it will also be used as the Key for the ShapeType
l x (Long, an I32 in LabVIEW)
l y (Long, an I32 in LabVIEW)
l shapesize (Long, an I32 in LabVIEW)

Shapes Demo can publish three different Topics of type ShapeType:

l Square
l Circle
l Triangle

4.6.2 Publishing a Shape (Square)

We will use LabVIEW to publish a square in domain 0. Additionally, we will generate two sine func-
tions for the ShapeType X and Y coordinates in order to move the square in a circular or elliptical pat-
tern.

55

https://www.rti.com/downloads

4.6.2 Publishing a Shape (Square)

56

1. Open RTI Connext DDS Shapes Writer.vi from the LabVIEW examples ShapesDemo dir-
ectory under RTI DDS Toolkit. (Instructions for finding the examples are in 1.6 LabVIEW
Examples on page 12.)

2. Open the Block Diagram and note that the VI is creating a Writer object to publish a ShapeType
data with Topic Square. The VI uses Simulate Signal functions to generate the X and Y coordin-
ates of each square before the square is published.

Note: This example uses a string with a max length of 128. To the maximum length, we have
included the max size as the text value in the String in the input of the creation subVI.

3. On the Front Panel, you can change these parameters of the
Simulate Signal function: shapesize, color, Amplitude y,
Amplitude x, Frequency, Offset x and Offset y.

4. Launch Shapes Demo and select the Square option under the
Subscribe heading. You will see the dialog below. Select
OK.

4.6.2 Publishing a Shape (Square)

5. Run RTI Connext DDS Shapes Writer.vi and verify that Shapes Demo displays a blue square
moving in circles.

6. Use the Front Panel to make changes to the X and Y amplitude and the frequency control. You
should see the effects in the Shapes Demo window. The X and Y amplitude control the square’s
trajectory, the frequency varies the square’s speed.

7. Change the shape size and color to vary all the parameters. While the size can be any value, we
suggest using values between 0 and 100. The color can be: PURPLE, BLUE, RED, GREEN,
YELLOW, CYAN, MAGENTA, or ORANGE.

57

4.6.3 Subscribing to Shapes

58

Note: When you change the square’s color, you will still see the blue square. This is because we
defined Square as the Topic and Color as the Topic Key (instance). Using Keys allows the defin-
ition of a single Topic with multiple instances. When you change the color, you are publishing a
new instance of the Square Topic of the type ShapeType.

4.6.3 Subscribing to Shapes

Instead of using Shapes Demo to subscribe to the published shapes, let’s create our own RTI Connext
DDS Shapes Reader in LabVIEW.

1. Open RTI Connext DDS Shapes Reader.vi from the LabVIEW examples ShapesDemo dir-
ectory under RTI DDS Toolkit.

2. On the Front Panel, you will see two parts:
l On the left, the VI shows a table, DDS Data, in which the read shapes will be shown. We
also see a switch (DDS Stopped). By clicking on that switch, the VI will start reading
samples from DDS and add them to the table. In addition, we can see the information of
the currently read sample using Sample Info. We can use the Query condition text box on
top to filter data, as explained in 4.4 Lesson 4—Filtering Data on page 47. Finally, we
have the Stop button that stops the whole VI.

l On the right, we have a text box in which we can select one of the shapes using its key,
that is, its color. To select the shape, just add the color as shown in the color column in
DDS Data. Once selected, the position of the shape will be shown in XY Graph in real
time, while its size will be shown in Shape size.

4.6.3 Subscribing to Shapes

3. Open the Block Diagram and review the three different processes:

a. Creating the Reader object and reading:
l A Reader object is created to subscribe to the type ShapeType and the Topic
Square, also providing a correct ShapesDemo cluster in the data type pin.

l Once created, the Reader object reads data from DDS using the Query Condition
introduced in the Front Panel.

l Those data, however, are only read if the DDS Stopped switch is changed to DDS
Running by clicking on it (i.e., if it is true).

l Sample Info is filled with the information of the currently read sample.

b. Storing data in the table:
l Each read datum is unbundled to extract the individual components. Each of these
components goes in a different column in the DDS Data table.

59

4.6.3 Subscribing to Shapes

60

Note: Due to a known issue in 'Set Cell Value' calls, plot properties cannot be mod-
ified at run time. See more details here: http://www.ni.com/product-doc-
umentation/52188/en/#407633_by_Date.

l Since each row corresponds to a unique instance, we select the table row using the
cluster’s key, i.e., the color.

l When you push the Stop button, the Reader object is released.

Note: This example uses a string with a max length of 128. To the maximum length, we have
included the max size as the text value in the String in the input of the creation subVI.

c. Showing selected instance in the XY Graph:

If a color is selected in the text box on the right of the Front Panel, any read sample of that
color will appear in the correct X and Y positions in XY Graph. Valid colors are:
PURPLE, BLUE, RED, GREEN, YELLOW, CYAN, MAGENTA, and ORANGE.

The size of that shape will be shown in shapesize.

http://www.ni.com/product-documentation/52188/en/#407633_by_Date
http://www.ni.com/product-documentation/52188/en/#407633_by_Date

4.7 Lesson 7—Used Nested and Multiple Keys

4.7 Lesson 7—Used Nested and Multiple Keys

The previous lesson highlighted the value of using keys in your type definitions. Now let’s see how to
provide multiple keys for a single data type. This lesson assumes you have successfully completed 4.2
Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters) on
page 38. You can also use the provided example, RTI Connext DDS Cluster Example Read-
er/Writer.vi.

4.7.1 Adding Multiple Top-Level Fields as Keys

1. Open Tutorial_Cluster Reader Example.vi from 4.2 Lesson 2—Using ComplexType Generator
to Publish and Subscribe to Complex Data (Clusters) on page 38 and save it as a new VI named
Tutorial_MultipleKey_Read_Cluster.vi.

As you can see in the figure to the right, our cluster is quite complex and
includes many fields.

In 4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo) on page 55, we
marked Text as a key. Depending on the application, we may want to
mark other fields as key. Suppose we want I32_Num to be a key too. That
will make Text and I32_Num keys.

2. To mark both Text and I32_Num as keys,
modify the Key Name string to include both fields,
separated by a semicolon (‘;’).

3. Click Run.

If you use one of the RTI tools such as RTI Admin Console to view the
published/subscribed type, you can see that the equivalent IDL for this use
case would be:
struct ultrainnerClusterType{
 sequence<short,2> I16_Array; //@ID 0
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct superinnerClusterType{
 double Dbl_Num; //@ID 0

 ultrainnerClusterType ultrainnerCluster; //@ID 1
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct innerclusterType{
 float Sgl_Num; //@ID 0
 boolean Boolean; //@ID 1
 superinnerClusterType superinnerCluster; //@ID 2

61

4.7.2 Adding Internal Cluster Fields as Keys (Nested Keys)

62

};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct ComplexType{
 string<1024> Text; //@key
 //@ID 0
 long I32_Num; //@key
 //@ID 1
 long long I64_Num; //@ID 2
 unsigned short U16_Num; //@ID 3
 sequence<float,4> Sgl_Array; //@ID 4
innerclusterType innercluster; //@ID 5

};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

Note: The key name specification is case sensitive.
4. Repeat this process using Tutorial_Cluster Writer Example.vi, so they can communicate with

each other.

4.7.2 Adding Internal Cluster Fields as Keys (Nested Keys)

For a field inside a cluster, use its fully qualified name. This name consists of the cluster name fol-
lowed by a period ('.') and then the field name. For instance, to refer to Sgl_Num, use the string inner-
cluster.Sgl_Num. For Dbl_Num, its fully qualified name is innercluster.superinnerCluster.Dbl_
Num.

1. Open Tutorial_Cluster Reader Example.vi from 4.2 Lesson 2—Using ComplexType Generator
to Publish and Subscribe to Complex Data (Clusters) on page 38 and save it as a new VI named
Tutorial_NestedKey_Read_Cluster.vi.

2. Replace the Key Name string with the following value:

3. Click Run.

If you use one of the RTI tools such as RTI Admin Console to view the published/subscribed
type, you can see that the equivalent IDL for this use case would be:
struct ultrainnerClusterType{

sequence<short,2> I16_Array; //@ID 0
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct superinnerClusterType{
double Dbl_Num; //@key
//@ID 0
ultrainnerClusterType ultrainnerCluster; //@ID 1

};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

4.7.2 Adding Internal Cluster Fields as Keys (Nested Keys)

struct innerclusterType{
float Sgl_Num; //@key
//@ID 0
boolean Boolean; //@ID 1
superinnerClusterType superinnerCluster; //@key
//@ID 2

};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

struct ComplexType{
string<1024> Text; //@key
//@ID 0
long I32_Num; //@key
//@ID 1
long long I64_Num; //@ID 2
unsigned short U16_Num; //@ID 3
sequence<float,4> Sgl_Array; //@ID 4
innerclusterType innercluster; //@key
//@ID 5

};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

Notice that innercluster and superinnercluster are both marked as keys. This is done automatically by
RTI DDS Toolkit and is needed for a correct key specification.

Remember that the key name specification is case sensitive.

63

4.8 Lesson 8—Reading All Samples (Reliable Communication)

64

4.8 Lesson 8—Reading All Samples (Reliable Communication)

This lesson explains how to use LabVIEW to read all the available samples in our Reader. This lesson
focuses on sending information reliably. There are two different approaches: using the default RTI DDS
Toolkit behavior (see 6.1 Default Configuration: DDS Entities Created by ‘Simple Create’ SubVIs on
page 97) or using exclusive Reader nodes.

The first approach is explained in 4.8.1 Writing and Reading Reliably Using the Default Configuration
below. The latter approach is explained in 4.8.2 Writing and Reading using Strict Reliability on
page 68.

4.8.1 Writing and Reading Reliably Using the Default Configuration

In our QoS file, there is an already prepared profile to enable this kind of communication: Reli-
ableProfile.

4.8.1.1 Writing Reliably

1. Open a blank VI and open the Block Diagram.

Add an Advanced Create Writer subVI and fill in the para-
meters to create a Writer object of doubles, as shown in the
figure. Pay attention to the new QoS Profile.

For details on the Advanced Create Writer subVI, see
Chapter 6 Advanced Concepts and Settings on page 96.

2. Create a While Loop and put a Write
subVI inside it. We are going to send the
loop counter through DDS, so attach that
counter to the Writer’s data field. You
can also visualize that value by attaching
an indicator to the counter. Make sure
that the working type of data is DBL, if it is not, the error 5002 can be triggered. In order to
modify the data type, right-click on the VI / Select Type / Numeric (DBL). Besides, if you want
to delete the coercion point (the red one), you can also add a casting from INT32 to DBL with
the functionMathematics / Numeric /Conversion / To Double Precision Float.

3. Add a Release Writer subVI and complete the VI as shown in the following figure. Pay special
attention to the Wait function.

4.8.1.2 Reading Reliably

4. Save it as Tutorial_Write_Reliable.vi.

4.8.1.2 Reading Reliably

1. Open a blank VI and create an indicator of an array of doubles. Show the vertical scroll bar of
the array in the array properties, i.e., right-click in the array, select Properties and check the
Show Vertical Scroll Bar option.

2. Add an Advanced Create Reader subVI and fill in the parameters to create a Reader of doubles,
as shown in the following figure. Pay close attention to the new QoS Profile.

For details on the Advanced Create Reader subVI, see Chapter 6 Advanced Concepts and Set-
tings on page 96.

3. Optionally, add an Invoke note to call the method Reinitialize All to Default. This function
resets all the controls and indicators in the VI to the default value. To include it, follow this
steps:

a. Find Invoke Node under Programming, Application Control.

b. Right-click on the invoke node and go to Select Class, VI Server, VI, VI.

c. Click on the method label and navigate to Default Values, Reinitialize All to Default.

65

4.8.1.2 Reading Reliably

66

4. Now we need to read data and discard those values that are not valid. For that:
a. Add a Read subVI inside a While Loop.

b. Connect the Read subVI to the Create Reader subVI.

c. Set Only New Samples to true.

d. Attach an unbundle function to the DDS Sample Info cluster and
select valid_data. This field will be true if the data is a valid one.

e. If the type of the output data wire is not DBL, you need to
modify it manually. To do so, right-click on Read VI, then select
Type, Numeric (DBL).

For details on the Read subVI, see A.2.2 Reader on page 137.

5. If the data is valid, insert it in the array. Otherwise, ignore the data:

a. Create a Case Structure from Programming, Structures and connect the output of valid_
data to the question mark.

b. Create an array indicator and connect it to the output of the Case Structure.

c. Connect the Read subVI outputs as inputs of the Case Structure, except Sample_info
cluster.

d. Create an empty array outside theWhile loop and connect it as input to the Case Struc-
ture.

e. In the True case, add an Insert into Array subVI. Connect the empty array and read value
inputs as shown above. Connect the output array to the output of the Case Structure and
to Array.

f. In the False case, just wire the array input to the output array and to Array.

g. Make sure that ref num out and error wires are also forwarded by connecting them as
shown in the image above.

4.8.1.2 Reading Reliably

6. Attach the exit of the Case Structure to theWhile Loop. Then replace it with a shift register by
right-clicking on it and selecting Replace with Shift Register. Place the input shift register on
the left side of the loop and connect it as an input in the Case Structure as shown below.

7. Add a Release Reader subVI and an Error Dialog. The final Block Diagram should look like the
following figure. Pay attention to the reading ratio, it needs to be faster than the writer one or you
may need to create a new QoS Configuration File that uses a higher Reader History Depth. See
Chapter 5 Loading Quality of Service Profiles on page 94 for more information.

For details on the Release Reader subVI, see A.2.2 Reader on page 137.
8. Save it as Tutorial_Read_Reliable.vi.

67

4.8.2 Writing and Reading using Strict Reliability

68

9. Run the Reader andWriter. You will see how all the data transferred by theWriter arrives at
the Reader.

4.8.2 Writing and Reading using Strict Reliability

4.8.1 Writing and Reading Reliably Using the Default Configuration on page 64 assumes you are
using the default configuration of RTI DDS Toolkit. As explained in Chapter 6 Advanced Concepts and
Settings on page 96, this configuration uses shared DataReaders, so a more strict reliability (KEEP_
ALL History QoS kind and History QoS depth > 1), is not allowed.

If you need strict reliability on your system, you can do it using exclusive readers and the builtin QoS
profile: BuiltinQosLibExp::Generic.StrictReliable. This profile is defined internally in RTI Connext
(for details on Built-in profiles, see the RTI Community Forum: http://-
community.rti.com/examples/built-qos-profiles).

4.8.2.1 Writing in Strictly Reliable Mode

1. Open a blank VI and open the Block Diagram.

2. Add a Create Advanced Writer subVI and fill in the parameters to create a Writer object of
doubles. Make sure you set the QoS profiles as shown in the following figure:

http://community.rti.com/examples/built-qos-profiles
http://community.rti.com/examples/built-qos-profiles

4.8.2.2 Reading in Strictly Reliable Mode

For details on the Create Advanced Writer subVI, see Chapter 6 Advanced Concepts and Settings
on page 96.

3. Create a While Loop and put it inside a Write subVI. We are going to send the loop
counter through DDS, so attach that counter to the Writer’s data field. You can
also visualize that value by attaching an indicator to the counter.

4. Add a Release Writer subVI and complete the VI as shown in the following figure.
Pay special attention to the Wait function.

5. Save it as Tutorial_Write_StrictReliable.vi.

4.8.2.2 Reading in Strictly Reliable Mode

1. Open a blank VI and create an indicator of an array of doubles. Show the vertical scroll bar of
the array in the array properties, i.e., right-click in the array, select Properties and check the
Show Vertical Scroll Bar option.

69

4.8.2.2 Reading in Strictly Reliable Mode

70

2. Add an Advanced Create Reader subVI and fill in the parameters to create a Reader of doubles,
as shown in the following figure. Make sure you set the QoS profiles and the forceExclus-
iveReader? as shown in the following figure.

For details on the Create Advanced Writer subVI, see Chapter 6 Advanced Concepts and Settings
on page 96.

3. Optionally, add an Invoke note to call the method Reinitialize All to Default. This function
resets all the controls and indicators in the VI to the default value. To include it, follow this
steps:

a. Find Reinitialize All to Default under Programming, Application Control.

b. Right click in the invoke node and go to Select Class, VI Server, VI, VI.

c. Click in the method label and navigate to Default Values, Reinitialize All to Default.

d. Connect it as shown in the previous figure.

4. Add a Read subVI inside a While Loop. Connect the Read
subVI to the Create Reader subVI. Set Only New Samples to
True. Then attach an unbundle function to the DDS Sample
Info cluster to check whether the data is valid or not.

For details on the Read subVI, see A.2.2 Reader on page 137.
5. If the data is valid, insert it in the array. Otherwise, ignore the data:

4.8.2.2 Reading in Strictly Reliable Mode

6. Attach the exit of the If Case to the Loop Case. Then replace it with a shift register by right-click-
ing on it and selecting Replace with Shift Register. Place the input shift register on the left side
of the loop and connect it as an input in the If Case as shown below.

7. Add a Release Reader subVI and an Error Dialog. The final Block Diagram should look like the
following figure. Pay attention to the reading ratio: if it is slower than the writer one, you might
get an ‘out of resources’ error because the History kind is set to KEEP_ALL.

71

4.8.2.2 Reading in Strictly Reliable Mode

72

For details on the Release Reader subVI, see A.2.2 Reader on page 137.
8. Save it as Tutorial_Read_StrictReliable.vi.

9. Run the Reader and Writer. You will see how all the data transferred by the Writer arrives at the
Reader.

4.9 Lesson 9—Debugging Your RTI Connext DDS Application

4.9 Lesson 9—Debugging Your RTI Connext DDS Application

In this lesson, you will become familiar with the RTI DDS Toolkit QoS profiles and debugging cap-
abilities. RTI DDS Toolkit provides several predefined QoS profiles. You can see the contents of these
profiles in the file:

C:/Program Files1/National Instruments/LabVIEW 20xx/vi.lib/_RTI DDS Toolkit_internal_
deps/RTI_LABVIEW_CONFIG.documentationONLY.xml
(where 20xx depends on your LabVIEW version).

In this lesson, we will use two different debugging tools:

l The administration panel to show internal messages about the current execution.

4.9.1 Debugging an Application Using the Administration Panel below
l The monitoring profile, which enables RTI Monitoring Library.

4.9.2 Adapting a VI to Use RTI Monitoring Library on page 76

4.9.1 Debugging an Application Using the Administration Panel

Let’s begin by opening the Reader and Writer VIs creation in 4.1 Lesson 1—Using DDS to Publish and
Subscribe to Simple Data (Numeric) on page 30. We are going to get debugging messages from them:

1. Open the Administration Panel. Then in the Tools menu, select RTI DDS Toolkit, RTI DDS
Administration Panel. For more details, see 6.7.1 Using Administration Panel (for Windows
Systems only) on page 110.

Note: The Administration Panel may not work on RT Targets. If you want to read messages from
a RT Target, you can deploy the VI described in 6.7.2.6 Reading Logged Messages on page 118.

2. Run the VI.

3. Set the Filter Level to be DEBUG LEVEL. This will cause all messages with log level of Debug
or higher to appear in the Debugging table.

4. Press Update to commit the change in the filter level.

5. Now we need to generate some messages. Open the Reader and
Writer VIs from 4.1 Lesson 1—Using DDS to Publish and Sub-
scribe to Simple Data (Numeric) on page 30 and click Run.

6. Go back to the Administration Panel. You will see the generated debugging messages in the

1On 64-bit systems, the folder is “Program Files (x86)”

73

4.9.1.1 Logging Messages Manually

74

Debugging table:

4.9.1.1 Logging Messages Manually

Now that we can debug our application, let’s create our own debugging application. We are going to
modify the Writer VI from 4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data
(Numeric) on page 30 to generate our own logging messages.

1. Save the VI with a different name, such as DebuggingWriter.vi by selecting Save as… in the
File menu.

2. Add the Log New Message subVI from the Tools’ Debugging subpalette in the Toolkit palette.

3. Create a Log Level control by right-clicking on the Log Level input in the Log New Message VI.
Then choose Create, Control.

4. Add the Format into String function for building a debugging string. Our debugging string will
be Published the value x, where x is a double number. To do that:

a. Connect a string constant with the text Published the value at the initial value pin.

b. Connect a string constant with the text%lf to the format string pin.

c. Wire the Published Value control to the input 1 pin.

4.9.1.2 Output Provided by RTI Monitor using Distributed Logger

d. Connect the resulting string to the Message
input of the Log New Message subVI, as seen
here on the right:

5. Run the Writer VI.

6. Click on the Log Level control and select DEBUG
LEVEL.

7. Run the RTI DDS Administration Panel: from the
Tools menu, select RTI DDS Toolkit, RTI DDS
Administration Panel.

8. Set the Administration Panel’s Filter Level to
DEBUG LEVEL as explained in 4.9.1 Debugging
an Application Using the Administration Panel on page 73.

9. Run this new VI and you will see these messages on the administration panel debugging table.
The output will be similar to this:

4.9.1.2 Output Provided by RTI Monitor using Distributed Logger

If Distributed Logger is enabled, these messages have been sent through the network and they can be
received and shown in RTI Monitor as well.

RTI Monitor is included in RTI Connext DDS Professional. You can download a free trial from
http://www.rti.com/downloads/index.html. For information about RTI Monitor, see https://www.rti.-
com/products/dds/tools#MONITOR.

To send these messages using Distributed Logger and receive them with RTI Monitor:

1. Enable Distributed Logger (see 6.7.1.1 Configuration Section on page 112 for details).

2. Open RTI Monitor and join to the domain in which Distributed Logger has been enabled.

3. Select the current process from the list on the left.

75

http://www.rti.com/downloads/index.html
https://www.rti.com/products/dds/tools#MONITOR
https://www.rti.com/products/dds/tools#MONITOR

4.9.2 Adapting a VI to Use RTI Monitoring Library

76

4. Create a New Distributed Logger Panel (push this button:).

5. Use the State and Controls tab to set the Filter Level to Trace. This allows you to receive all
these messages:

4.9.2 Adapting a VI to Use RTI Monitoring Library

Let's begin by opening the Reader VI created in 4.2 Lesson 2—Using ComplexType Generator to Pub-
lish and Subscribe to Complex Data (Clusters) on page 38: Tutorial_Read_Cluster.vi. Or you can use
the solution to that lesson mentioned in 4.13 Reviewing Completed Solutions on page 92.

1. Save the VI with a different name, such asMonitoringReader.vi, by selecting Save as… in the
File menu.

4.9.2.1 Output Provided by RTI Monitor

2. In the Block Diagram, change the qos pro-
file input of the Create Reader subVI to
LabVIEWLibrary::MonitoringProfile.

3. Save the VI again.

Monitoring can also be enabled by QoS. For more
information, refer to Method 2-B: Change the Par-
ticipant QoS by Specifying the Monitoring
Library Create Function Pointer in an Envir-
onment Variable in the Connext Core Libraries
User's Manual.

4.9.2.1 Output Provided by RTI Monitor

Now that we have the Monitoring profile loaded in our VI, we can run RTI Monitor to debug our applic-
ation.

RTI Monitor is included in RTI Connext DDS Professional. You can download a free trial from
http://www.rti.com/downloads/index.html. For information about RTI Monitor, see https://www.rti.-
com/products/dds/tools#MONITOR.

1. Start RTI Monitor; when prompted, join domain 0.

2. Run the original Tutorial_Read_Cluster.vi. This example does not enable the monitoring lib-
raries, so Monitor will not show useful information. The following snapshot shows the output
from Monitor when the monitoring libraries are not enabled.

77

https://community.rti.com/static/documentation/connext-dds/6.1.2/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Method_2_Change_the_Participant_QoS_to_S.htm%2350.1.2.2_Method_2-B__Change_the_Participant_QoS_by_Specifying_the_Monitoring_...%3FTocPath%3DPart%25209%253A%2520RTI%2520Monitoring%2520Library|50.%2520Using%2520Monitoring%2520Library%2520in%2520Your%2520Application|50.1%2520Enabling%2520Monitoring|50.1.2%2520Method%25202%25E2%2580%2594Change%2520the%2520Participant%2520QoS%2520to%2520Specify%2520the%2520Monitoring%2520Library%2520Create%2520Function%2520Pointer%2520and%2520Explicitly%2520Load%2520the%2520Monitoring%2520Library|_____2
https://community.rti.com/static/documentation/connext-dds/6.1.2/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Method_2_Change_the_Participant_QoS_to_S.htm%2350.1.2.2_Method_2-B__Change_the_Participant_QoS_by_Specifying_the_Monitoring_...%3FTocPath%3DPart%25209%253A%2520RTI%2520Monitoring%2520Library|50.%2520Using%2520Monitoring%2520Library%2520in%2520Your%2520Application|50.1%2520Enabling%2520Monitoring|50.1.2%2520Method%25202%25E2%2580%2594Change%2520the%2520Participant%2520QoS%2520to%2520Specify%2520the%2520Monitoring%2520Library%2520Create%2520Function%2520Pointer%2520and%2520Explicitly%2520Load%2520the%2520Monitoring%2520Library|_____2
https://community.rti.com/static/documentation/connext-dds/6.1.2/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Method_2_Change_the_Participant_QoS_to_S.htm%2350.1.2.2_Method_2-B__Change_the_Participant_QoS_by_Specifying_the_Monitoring_...%3FTocPath%3DPart%25209%253A%2520RTI%2520Monitoring%2520Library|50.%2520Using%2520Monitoring%2520Library%2520in%2520Your%2520Application|50.1%2520Enabling%2520Monitoring|50.1.2%2520Method%25202%25E2%2580%2594Change%2520the%2520Participant%2520QoS%2520to%2520Specify%2520the%2520Monitoring%2520Library%2520Create%2520Function%2520Pointer%2520and%2520Explicitly%2520Load%2520the%2520Monitoring%2520Library|_____2
https://community.rti.com/static/documentation/connext-dds/6.1.2/doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Method_2_Change_the_Participant_QoS_to_S.htm%2350.1.2.2_Method_2-B__Change_the_Participant_QoS_by_Specifying_the_Monitoring_...%3FTocPath%3DPart%25209%253A%2520RTI%2520Monitoring%2520Library|50.%2520Using%2520Monitoring%2520Library%2520in%2520Your%2520Application|50.1%2520Enabling%2520Monitoring|50.1.2%2520Method%25202%25E2%2580%2594Change%2520the%2520Participant%2520QoS%2520to%2520Specify%2520the%2520Monitoring%2520Library%2520Create%2520Function%2520Pointer%2520and%2520Explicitly%2520Load%2520the%2520Monitoring%2520Library|_____2
http://www.rti.com/downloads/index.html
https://www.rti.com/products/dds/tools#MONITOR
https://www.rti.com/products/dds/tools#MONITOR

4.9.2.1 Output Provided by RTI Monitor

78

3. Stop Tutorial_Read_Cluster.vi and make sure that all the entities are released. To do so, close
all VIs containing RTI DDS Toolkit subVIs. You can also run the Release Unused Entities subVI
ten seconds after stopping all the VIs running in the same domain as Tutorial_Reader_Cluster-
.vi.

4. RunMonitoringReader.vi and go back to Monitor. Now you can see more information such as
the topic name, the number of subscribers and publishers, the QoS profile, etc.

4.10 Lesson 10—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)

4.10 Lesson 10—Using RTI DDS Toolkit on NI Targets (cRIO-9068
Example)

1. Make sure the cRIO is up and running. You can use NI MAX to do so.

2. Follow the installation instructions in 1.2.1 Installing RTI DDS Toolkit Support Files on a Tar-
get on page 4.

3. Create an empty project in LabVIEW by choosing File, New Project or File, Create Project,
depending on your LabVIEW version.

79

4.10 Lesson 10—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)

80

4. Right-click the top-level project item in the Project Explorer window, seen in blue in the above
image. Select New, Targets and Devices from the shortcut menu to display the Add Targets and
Devices dialog box.

5. Select Existing target or device and Specify a target or device by IP address. Set the correct
IP address. Select your device from the list. You can find a list of supported platforms in the 'Sup-
ported Platforms' section of the Release Notes. Click OK.

Note: To use the “Discover an existing target(s) or device(s)” option, your host machine must be
in the same subnet as your target.

6. Right-click on your new target and select New, VI. You can also add an existing one by selecting
Add, File….

4.10 Lesson 10—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)

7. Create your application using RTI DDS Toolkit as mentioned in the previous lessons. Save it and
the project.

8. Once you are finished, run your VI as usual by clicking on the white arrow.

9. LabVIEW will show the Deployment Progress window and will send the VI to your target. This
process may take a while, depending on your VI's complexity.

81

4.10 Lesson 10—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)

82

Note: If you get an error related to not being able to find rtilvdds.dll, reinstall the RTI DDS
Toolkit cRIO support files.

10. Once deployed, you will see a window like this:

11. Click Close and work with your VI as you normally would.

4.11 Lesson 11—Using Security with RTI DDS Toolkit (Windows only)

4.11 Lesson 11—Using Security with RTI DDS Toolkit (Windows only)

This example is based on the RTI Shapes Demo example in 4.6 Lesson 6—Using Keyed Types (RTI
Shapes Demo) on page 55.

This lesson uses the examples RTI Connext DDS Secure Shapes Reader.vi and RTI Connext DDS
Secure Shapes Writer.vi, which are included here: <LabVIEW installation folder>\examples\RTI
DDS Toolkit\SecurityShapesDemo. This folder also contains a cert directory, which contains all the
necessary files for using DDS Security.

Security features are only supported in Windows platforms. Trying to use security in an NI Linux target
will result in error 5113.

4.11.1 Example Description

This example shows how RTI DDS Toolkit works with RTI DDS Security Plugins. Several scenarios
using ShapeType will be shown in this example. Shapes Demo version 6.0.0 or later can be used to
graphically show this communication. You can ask for a Shapes Demo trial.

We will use these topics:

l Square
l Circle
l Triangle

And these security profiles:

l AllowAll
l SecureDenySubSquares

These profiles can be created using the instructions in 6.8.1 Managing Custom Security Profiles with
the Security Panel (Windows only) on page 121 as well as the provided subVIs described in 6.8.2
Managing Custom Security Profiles with SubVIs on page 125.

In this example, we will create the security profiles before the creation of the entities that will use
them. We will use the created security profile name as the domainParticipantQoSProfile parameter
for the Reader/Writer we are creating.

83

4.11.1 Example Description

84

We will use the above security profiles to set up a secure environment that uses DDS Security Plugins.
You can use this example as a base to create many other security configurations. To do that, you will
need to generate your own security certificates, which is explained the RTI DDS Security Plugins Get-
ting Started Guide, available here: https://community.rti.com/documentation.

The permissions of these profiles will decide how they can behave. The permission file signed_RTI_
SHAPES_DEMO_PERMISSIONS.p7s is included in the cert folder. We will use the permissions to
create the following security profiles:

l AllowAll: This configuration enables secure communication between all the domain IDs and top-
ics. Used by the Writer in the Shapes Security Example. The characteristics of this com-
munication are specified in the Governance. The permissions rule is:
 <default>ALLOW</default>

Note: The security files used by this profile are defined in the file Basic Security Configuration
From Path.vi.

l SecureDenySubSquares: This configuration won't allow you to create DataReaders for the topic
'Square'. The private key ecdsa01Peer03Key.pem used in the example is encrypted. The pass-
word is set in Create SecureDenySubSquares.vi. For details on setting passwords for encrypted

https://community.rti.com/documentation

4.11.2 Description of VIs

private keys, see 6.8.2 Managing Custom Security Profiles with SubVIs on page 125. The per-
missions rules are:
<deny_rule>

<domain_id>0</domain_id>
 <subscribe>

<topic>Square*</topic>
 </subscribe>
</deny_rule>
<default>ALLOW</default>

Note: The security files used by this profile are defined in the file Create
SecureDenySubSquares Profile.vi.

4.11.2 Description of VIs

The Secure Shapes Demo example is divided into six VIs:

l Get full path from file name.vi: Auxiliary VI which returns a full path that points to the file
whose name is File Name and is in a subfolder called cert in the previous folder level than the
current VI.

l Basic Security Configuration From Path.vi: Creates a basic security configuration which uses
the AllowAll configuration. This subVI will take the security certificates from a subfolder called
cert in the previous folder level than the VI.

l Create Security Profile If It Does Not Exist.vi: Creates a Security configuration if the provided
name does not exist.

l Create SecureDenySubSquares Profile.vi: Adds the files ecdsa01Peer03 cert and key to the
provided base Security Profile. This configuration will use the permissions of
SecureDenySubSquares, which denies subscriptions to the topic Square.

l RTI Connext DDS Secure Shapes Reader.vi: Main Reader application. This VI will create the
DDS entities to subscribe to Shapes. It will be created with the security configuration
SecureDenySubSquares.

l RTI Connext DDS Secure Shapes Writer.vi: Main Writer application. This VI will create the
DDS entities to publish Shapes. It will be created with the security configuration
SecureDenyPubCircles.

85

4.11.3 Main Scenarios

86

4.11.3 Main Scenarios

There are three main scenarios (one per topic). All of them occur when we use the specific default
Security Profiles for this example. These default Security Profiles are:

l Writer: AllowAll
l Reader: SecureDenySubSquares

1. Topic Square: If the Writer and Reader are created with the default Security Profiles mentioned
above, the Reader won't be able to subscribe to the Square topic. Therefore, no communication
will occur.

2. Topics Triangle & Circle: If the Writer and Reader are created with the default Security Profile
in the Topic Triangle or Circle, the communication will be fine because no restrictions apply to
this topic.

For more information about creating your own governance rules, refer to Hands-On 2: Defining Your
System’s Security Requirements in the RTI Security Plugins Getting Started Guide. The shipped p7s
files provided in the SecurityShapesDemo\cert folder are signed and will not work if you try to
modify them.

4.11.4 Running the LabVIEW Example

l Topic Square.
1. Run the Writer using the topic Square and using AllowAll, which is the default profile.

2. The Writer will start to publish a square. You can see it subscribing to the Square topic in
Shapes Demo using the AllowAll configuration.

3. Run the Reader with the topic Square using the Security Profile SecureDenySubSquares.

4. You will receive error 5082 because the Security permissions do not allow you to create a
DataReader in the topic Square.

https://community.rti.com/static/documentation/connext-dds/6.1.2/doc/manuals/connext_dds_secure/getting_started_guide/cpp11/hands_on_2.html#hands-on-2-defining-your-system-s-security-requirements
https://community.rti.com/static/documentation/connext-dds/6.1.2/doc/manuals/connext_dds_secure/getting_started_guide/cpp11/hands_on_2.html#hands-on-2-defining-your-system-s-security-requirements

4.11.4 Running the LabVIEW Example

l Topics Circle & Triangle.
1. Run the Reader using the topics Circle or Triangle with the Security Profile AllowAll or

SecureDenySubSquares. By default, the Reader will be created with
SecureDenySubSquares.

2. Run the Writer in the topic Circle or Triangle (whichever one you chose before) with the
Secure Custom Profile AllowAll, which is the default profile.

Since there are no restrictions on the Triangle or Circle topics, communication will work fine.

87

4.12 Lesson 12—Reading Multiple Samples at a Time

88

4.12 Lesson 12—Reading Multiple Samples at a Time

This lesson shows how to read multiple samples in a single call.

In addition to <Type Name> Read.vi and <Type Name> Write.vi, the ComplexType Generator also
generates a VI called <Type Name> Read Multiple Samples.vi. This VI is very similar to <Type
Name> Read.vi. The difference is that <Type Name> Multiple Samples.vi reads multiple samples in
a single call and returns them in a LabVIEW Array.

Open the ReadMultipleSamplesDemo. This example has two main files:

l RTI Connext DDS Read Multiple Samples Demo Reader.vi
l RTI Connext DDS Read Multiple Samples Demo Writer.vi

4.12 Lesson 12—Reading Multiple Samples at a Time

RTI Connext DDS Read Multiple Samples Demo Reader.vi:

RTI Connext DDS Read Multiple Samples Demo Reader.vi has three relevant items:

l Read Samples shows the different instances received.
l DDS Sample Info shows the received Sample Info for each sample. The output is an array of
DDS Sample Infos with the same size as the number of samples returned by the call.

l Max Samples is the maximum number of samples to be read. To read all available samples set
Max Samples to -1.

The type used in the example is keyed. The key field is called Key. By default, the History QoS kind is
KEEP_LAST and the depth is 1. This means Readers and Writers will only store in memory one
sample of each instance, therefore only one sample can be read at a time. If several instances are sent,
the DDS Reader will keep one sample of each instance in its queue.

89

4.12 Lesson 12—Reading Multiple Samples at a Time

90

Follow these steps:

1. Run the RTI Connext DDS Read Multiple Samples Demo Reader.vi.

2. Run the RTI Connext DDS Read Multiple Samples Demo Writer.vi and follow the instruc-
tions in the VI (which are also described below).

3. Check that the samples written by RTI Connext DDS Read Multiple Samples Demo Writer.vi
appear in the Reader.

4. ChangeMax Samples to read more or fewer samples. Set it to -1 to read all available samples.

RTI Connext DDS Read Multiple Samples Demo Writer.vi writes arrays of samples every two
seconds. The Sample array control is the array of samples to be sent. The type used is keyed. The key
field is ID.

RTI Connext DDS Read Multiple Samples Demo Writer.vi:

4.12 Lesson 12—Reading Multiple Samples at a Time

Follow these steps for the Writer:

1. Run the VI.

2. Set Key and Value to different values. For example, try Key=0, Value=10, then Key=1, Value-
e=25.

3. See the instances in RTI Connext DDS Read Multiple Samples Demo Reader.vi. You should
see two instances: one with Key=0 and Value=10, and another one with Key=1 and Value=25.

4. Try changing the value of Value while Key=1 and Key=0.

5. See how instances Key=1 and Key=0 are updated in RTI Connext DDS Read Multiple
Samples Demo Reader.vi.

91

4.13 Reviewing Completed Solutions

92

4.13 Reviewing Completed Solutions

You can find completed solutions to many of the lessons in this chapter here:

l 4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric) on page 30

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\NumberDemo
l 4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data
(Clusters) on page 38

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ClusterDemo
l 4.3 Lesson 3—Blocking Reads on page 45

\LabVIEW 20xx\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\BlockingReadDemo
l 4.4 Lesson 4—Filtering Data on page 47

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ClusterDemo
l 4.5 Lesson 5—Reading Only New Samples on page 52

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ClusterDemo
l 4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo) on page 55

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ShapesDemo
l 4.8 Lesson 8—Reading All Samples (Reliable Communication) on page 64

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\ReadAllDemo
l 4.9 Lesson 9—Debugging Your RTI Connext DDS Application on page 73

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\LogMessagesDemo

\LabVIEW 20xx\examples\RTI DDS Toolkit\Examples\MonitoringDemo
l 4.10 Lesson 10—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example) on page 79

\LabVIEW 20xx\examples\RTI DDS Toolkit\cRIO-9068Project
(Note: This project is compatible with LabVIEW 2013 and higher)

l 4.11 Lesson 11—Using Security with RTI DDS Toolkit (Windows only) on page 83

\LabVIEW 20xx\examples\RTI DDS Toolkit\SecurityShapesDemo
l 4.12 Lesson 12—Reading Multiple Samples at a Time on page 88

\LabVIEW 20xx\examples\RTI DDS Toolkit\ReadAndWriteArrayDemo

4.13 Reviewing Completed Solutions

There is also a GitHub repository with several LabVIEW examples. This repository includes examples
that demonstrate single features, as well as real-world examples. The link to the GitHub repository is:
https://github.com/rticommunity/rticonnextdds-labview-examples.

93

https://github.com/rticommunity/rticonnextdds-labview-examples

Chapter 5 Loading Quality of Service
Profiles

This chapter describes how to load personalized QoS profiles in RTI DDS Toolkit.

QoS profiles provide a way to configure your DDS application and define most aspects of the
DDS paradigm and the underlying communication mechanisms.

l RTI DDS Toolkit includes a set of predefined QoS profiles. These profiles solve general
use-cases such as a Reliable Communication or including RTI Monitoring Library. These
profiles are embedded in RTI DDS Toolkit and cannot be modified.

For your convenience, you can find an XML file that shows you these profiles in C:/Pro-
gram Files1/National Instruments/LabVIEW 20xx/vi.lib/RTI DDS Toolkit/RTI_
LABVIEW_CONFIG.documentationONLY.xml (where 20xx depends on your
LabVIEW version). As the filename suggests, this file is for documentation purposes
only. This file is not loaded by RTI DDS Toolkit, so updating it will not affect the embed-
ded QoS profiles.

l RTI Connext DDS also includes several predefined QoS profiles. You can use these dir-
ectly from LabVIEW as starting points when creating your own QoS profiles. To access
these builtin profiles, use their library name and profile name (for instance, Built-
inQosLib::Generic.Monitoring.Common). For more information, consult the RTI Connext
DDS Core Libraries User’s Manual (see the chapter on Configuring QoS with XML).

For information on the format and contents of a QoS profile, consult the RTI Connext DDS
Core Libraries User’s Manual (see the chapter on Configuring QoS with XML).

The provided profiles are illustrative and might not fulfill all the desired functionalities. To
adjust them to your needs, you can create your own XML configuration file (for instance,

1On 64-bit systems, the folder is “Program Files (x86)”

94

Chapter 5 Loading Quality of Service Profiles

95

USER_QOS_PROFILES.xml). You can define several libraries and profiles in each unique XML file,
then refer to their names in subVI calls. For instance, LabVIEWLibrary::DefaultProfile references
the DefaultProfile, which you can see in RTI_LABVIEW_CONFIG.documentationONLY.xml.

Once you have defined your desired QoS settings and stored them in a file (or files), RTI DDS Toolkit
will load the settings automatically if you point it to the correct file; there are two ways to do this. We
strongly recommend the first approach, which provides a more versatile solution.

l Environment variable NDDS_QOS_PROFILES (recommended):

You can define the environment variable NDDS_QOS_PROFILES and have it point to the XML
file that you want to load. You can specify multiple locations for a single XML document via
URL groups. The syntax of a URL group is: [URL1 | URL2 | URL2 | ... | URLn].

For example:
[file://C:/DDS_config/USER_QOS_PROFILES.xml |
file://C:/DDS_config/ alternative_default_dds.xml]

l Working directory (not recommended):

You can save a file called USER_QOS_PROFILES.xml in the working directory of LabVIEW.

The working directory in LabVIEW depends on the application kind. If you are running a VI
from LabVIEW, the working directory is the one where the LabVIEW.exe file is, such as C:/Pro-
gram Files1/National Instruments/LabVIEW 2012/. However, if your application is an inde-
pendent one, it will use the Run-Time Engine to execute and the working directory will be
C:/Program Files2/National Instruments/Shared/LabVIEW Run-Time/2012/.

1On 64-bit systems, the folder is “Program Files (x86)”

2On 64-bit systems, the folder is “Program Files (x86)”

Chapter 6 Advanced Concepts and
Settings

This chapter explains some advanced concepts and describes how to configure advanced para-
meters in RTI DDS Toolkit.

When configuring an RTI Connext application, there are many parameters that allow you to cus-
tomize your application. Some of them can be configured by executing using QoS profiles (see
Chapter 5 Loading Quality of Service Profiles on page 94). Others need to be configured at com-
pile time, such as the topic name and domain ID.

When using RTI DDS Toolkit, you can decide to hide some of that customization to simplify
your application, or adapt your settings to match your needs. The first approach uses the Simple
Create subVIs.1 These subVIs only need the mandatory parameters needed for the creation of
DataReaders and DataWriters: domain id, topic name and data type.

The second approach uses a more versatile create subVI: Advanced Create Reader/Writer. In
the following sections we will explain the different parameters that can be provided to cus-
tomize your application.

1When creating complex-type Readers and Writers, you will need to use the Simple Create Reader/Writer subVIs
generated by the ComplexType Generator. See 6.3.1 Using the RTI DDS ComplexType Generator on page 99 for
details.

96

6.1 Default Configuration: DDS Entities Created by ‘Simple Create’ SubVIs

97

6.1 Default Configuration: DDS Entities Created by ‘Simple Create’
SubVIs

RTI DDS Toolkit has been designed to reduce the number of DDS Entities created and, therefore, min-
imize the memory and CPU overloads. For example:

l Only one DomainParticipant is created per domain.
l The implicit Publisher and Subscriber are reused, avoiding the creation of new ones.
l Only one DataReader/DataWriter is created per Topic.

When you call the Simple Create subVIs or templates, we internally search for an existing DomainPar-
ticipant in the domain, an existing Topic with the correct topic name, and an existing DataReader or
DataWriter of the correct data type.

As an example, consider this scenario.

First we create a Writer VI. Internally, we are creating a DomainParticipant (1), a Topic, and a
DataWriter (2). Then, if we create a Reader VI in the same LabVIEW instance, the DomainParticipant
and the Topic are reused (3) and only a DataReader is created (4). When a second or third DataReader
VIs are created, the DomainParticipant (5), the Topic AND the DataReader are reused (6). This way,
all Reader VIs share the same queue. DDS entities will be removed from memory when the time to
delete inactive DDS entities expires (refer to Timeout to delete inactive DDS entities in the Con-
figuration Section), or when the last VI that uses DDS Toolkit subVIs in execution stops.

For most applications, this configuration is sufficient. However, there are several considerations when
using shared Entities that may force you to create additional ones:

6.2 Types with a Specific String Size

l If you set the flag ONLY_NEW_SAMPLES to 'true' when reading, only one of the Reader
nodes will get the data. This is due to all the Readers sharing the same DataReader.

l Shared DataReaders use 'read' instead of 'take' when getting new data. This prevents shared
DataReaders from using the Strict Reliable QoS profile.

l If your application have several Writer nodes for the same Topic, the DataWriter resources need
to be adapted to handle the data produced by all the Writer nodes.

l If you need to create DomainParticipants, DataReaders or DataWriters with different QoS prop-
erties, you will need to use the Advanced Create subVIs and force the creation of those Entities.

l If you need to set different transport properties, you will need to create different DomainPar-
ticipants.

Take into account that having a larger number of DDS Entities requires more resources and will affect
performance. So we strongly recommend that you avoid using additional entities whenever possible.

6.2 Types with a Specific String Size

Strings in DDS need to know the maximum size at compile time. This maximum size may even be
unbounded. However, in LabVIEW, strings dynamically allocate more memory as long as it is needed.

Therefore, when creating a type in DDS which contains a string, we have to somehow provide the max-
imum length. In LabVIEW, we cannot set the maximum of a string without having any value in it.

To fix this, we can provide the maximum length of the array by typing a number as the value of the
string when we create the DataReader/DataWriter. So a string whose text is “75” will be creates as a
DDS String of 75 characters. This is the representation of the equivalent IDL:
struct MyStruct {

string myString<75>;
};

If the string contains an invalid value (negative number, empty value, non-number, etc.), a string with
the default maximum length of 1024 will be created.

This can also be used with a string that is part of a cluster. The only consideration is that the string
inside the cluster should contain the value of the maximum size when the DataReader/DataWriter is cre-
ated.

98

6.3 Working with Custom Types

99

The figure to the right shows the creation of a DataReader with the type,
ShapeType. This type will be create with a cluster that contains a string of
128 characters and three 32-bit integers. You can also see the equivalent IDL

struct ShapeType {
string<128> color; //@key
long x;
long y;
long shapesize;

};

6.3 Working with Custom Types

This section describes two ways to generate custom type VIs:

l 6.3.1 Using the RTI DDS ComplexType Generator below
l 6.3.2 Using the VI called 'DDS Generate Custom Type VIs' on page 102

6.3.1 Using the RTI DDS ComplexType Generator

RTI DDS ComplexType Generator is a Wizard that allows you to create the basic LabVIEW code
needed to run a DDS-based application for Complex Type Definitions. Using the RTI DDS Com-
plexType Generator is optional if you are using any of the simple types (no clusters).

You can open the ComplexType Generator from the Tools menu (select RTI DDS Toolkit, RTI DDS
ComplexType Generator).

6.3.1 Using the RTI DDS ComplexType Generator

100

6.3.1 Using the RTI DDS ComplexType Generator

101

Let’s take a look at the ComplexType Generator Wizard:

The ComplexType Wizard asks for several data to generate these LabVIEW subVIs:

l Type of Generation: This button allows you to generate the Simple or Advanced creation sub-
VIs (See 6.4 Configuring Advanced Writer Settings on page 103 and 6.5 Configuring Advanced
Reader Settings on page 104 to learn more about the advanced creation subVIs).

l Save the Type Definition: Flag to copy the chosen Type Definition to the Output Directory.
l Path to the Custom Type Definition: Path to the LabVIEW Type Definition (*.ctl) used for gen-
erating the LabVIEW code.

l Output Directory: Directory where the generated files are going to be saved.
l Generation of Example VIs: Button to enable/disable the generation of a simple DDS-based
example using the provided custom Type Definition.

If a simple example is going to be generated, you can choose the Domain ID and the Topic Name
that this example will use.

The Generate Code button will be enabled only when the required data is provided (Path to the Cus-
tom Type Definition and Output Directory).

6.3.2 Using the VI called 'DDS Generate Custom Type VIs'

The following subVIs will be generated:

l ComplexType Create Simple/Advanced Reader
l ComplexType Create Simple/Advanced Writer
l ComplexType Read
l ComplexType Write
l ComplexType Read Array
l ComplexType Read Multiple Samples

If Generation of Example VIs is enabled, the following subVIs will also be generated:

l ComplexType Reader Example
l ComplexType Writer Example
l ComplexType Array Reader Example
l ComplexType Array Writers Example
l Complex Type Read Multiple Samples Example

The ComplexType Generator will check for unsupported types and report an error if it finds any of
these issues:

l Enums with a representation that is not U32
l Rings with a representation that is not I32
l Unlabeled members
l Duplicate member names in the same cluster

6.3.2 Using the VI called 'DDS Generate Custom Type VIs'

There is also a VI called DDS Generate Custom Type VIs can be used the same way as the Com-
plexType Generator to create custom types VIs. The parameters are the same as those required by the
ComplexType Generator.

102

6.4 Configuring Advanced Writer Settings

103

6.4 Configuring Advanced Writer Settings

In the Writer subpalette, you can find an Advanced Create Writer.1 This subVI is similar to the Simple
Create Writer, but it has an additional parameter: the Advanced Writer Configuration cluster. You can
find this cluster in the Control palette: RTI DDS Toolkit, RTI DDS Advanced Writer
Configuration.

As you can see in this figure, the cluster allows you to configure the following parameters:

l typeName: Name used to register the type in the wire. If this para-
meter is not provided, a default one is assigned (see default values in
Appendix C Supported Data Types and Corresponding IDL on
page 147).

l keyName: List of fields of a data type that will be marked as key (see
4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo) on page 55
and 4.7 Lesson 7—Used Nested and Multiple Keys on page 61).

l domainParticipantQoSProfile: Custom Security Profile or fully qual-
ified name (Library::Profile) that will be used as a QoS profile when
creating the DomainParticipant. If there is an existing DomainPar-
ticipant in the same domain ID using a different domainPar-
ticipantQoSProfile, a new DDS DomainParticipant will be created
using the provided QoS profile. Creating many different DDS
DomainParticipants may affect the performance.2

l dataWriterQoSProfile: Custom Security Profile or fully qualified name (Library::Profile) that
will be used as a QoS profile when creating the DataWriter.

l forceArrayMapping?: By default, one-dimensional LabVIEW arrays are mapped as DDS
sequences. If you need your data to use DDS arrays, set this flag to true. This will affect all

1For complex types, use the ComplexTypes Generator in the Tools/RTI DDS Toolkit menu. See 6.3.1 Using the RTI DDS
ComplexType Generator on page 99.

2Read this article on the creation of multiple DomainParticipants: https://community.rti.com/best-practices/create-few-domain-
participants-possible

https://community.rti.com/best-practices/create-few-domainparticipants-possible
https://community.rti.com/best-practices/create-few-domainparticipants-possible

6.5 Configuring Advanced Reader Settings

LabVIEW arrays in the data. (Note: Multi-dimensional arrays are mapped as DDS arrays, see
6.10 Setting Up Arrays on page 129.)

l forceUnboundedString?: By default, strings are created with a length of 1024 characters. If this
flag is set to true, all strings are created as unbounded (their maximum length corresponds to the
maximum 32-bit integer). This configuration optimizes the sample size, sending only the actual
data while removing the 1024-character limitation in previous versions of RTI DDS Toolkit. This
will affect all strings in the data.

6.5 Configuring Advanced Reader Settings

In the Reader subpalette, you can find an Advanced Create Reader subVI.1 This subVI is similar to the
Simple Create Reader, but it has some additional parameters: the Advanced Reader Configuration
cluster and the ContentFilteredTopic Info cluster. You can find these clusters in the Control palette:
RTI DDS Toolkit, RTI DDS Advanced Reader Configuration and RTI DDS ContentFilteredTopic
Info.

As you can see in the figure, the Advanced Reader Configuration cluster allows you to configure the
following parameters:

l typeName: The name used to register the type in the wire. If this para-
meter is not provided, a default one is assigned (see default values in
Appendix C Supported Data Types and Corresponding IDL on
page 147).

l keyName: List of fields in a data type that will be marked as key (see
4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo) on page 55 and
4.7 Lesson 7—Used Nested and Multiple Keys on page 61).

l domainParticipantQoSProfile: Custom Security Profile or fully qual-
ified name (Library::Profile) that will be used as the QoS profile when
creating the DomainParticipant. If there is an existing DomainParticipant
with the same domain ID using a different domainPar-
ticipantQoSProfiles, a new DDS DomainParticipant will be created using

1For complex types, use the ComplexTypes Generator in the Tools/RTI DDS Toolkit menu. See 6.3.1 Using the RTI DDS
ComplexType Generator on page 99 for details.

104

6.6 Working with Instance State Kind

105

the provided QoS profile. Creating many different DDS DomainParticipants may affect per-
formance.

l dataReaderQoSProfile: Custom Security Profile or fully qualified name (Library::Profile) that
will be used as the QoS profile when creating the DataReader.

l forceArrayMapping?: By default, LabVIEW arrays are mapped as DDS sequences. If you need
your data to use DDS arrays, set this flag to true. This will affect all LabVIEW arrays in the data.

l forceExclusiveReader?: By default, Reader nodes of the same topic (and with the same QoS pro-
file) share a DataReader. To avoid this behavior, set this flag to true and a new DataReader will
be created. If you need all your Reader nodes to have their own DataReader, make sure all of
them are created setting this flag to true.

l forceRead?: By default, exclusive Readers call to the function take when getting the data. This
allows you to use the Strict Reliable QoS profile. If you want to use read instead, set this flag to
true.

l forceUnboundedString?: By default, strings are created with a length of 1,024 characters. If this
flag is set to true, all strings are created as unbounded (their maximum length corresponds to the
maximum 32-bit integer). This configuration optimizes the sample size, receiving only the actual
data while removing the 1,024-character limitation in previous versions of RTI DDS Toolkit. This
will affect all strings in the data.

If you need to use Strict Reliability QoS profile, make sure your Reader node is exclusive and for-
ceRead is set to false (the default value).

6.6 Working with Instance State Kind

The “DDS Sample Info” structure contains the value of the DDS_InstanceStateKind (aka Instance
State). The Instance State is a per-instance concept. An instance is a unique element of a specific
DataType within a Topic, described by unique values of key fields.

The values that the Instance State can have are:

l ALIVE: The following are all true: (a) DDS samples have been received for the instance, (b)
there are live DataWriters writing the instance, and (c) the instance has not been explicitly dis-
posed (or more DDS samples have been received after it was disposed).

l NOT_ALIVE_DISPOSED: The instance was explicitly disposed by a DataWriter by means of
the dispose() operation.

l NOT_ALIVE_NO_WRITERS: The instance has been declared as not-alive by the DataReader
because it has determined that there are no live DataWriter entities writing that instance.

6.6.1 Write, Dispose or Unregister

6.6.1 Write, Dispose or Unregister

As previously mentioned, you can have three different instance state values. Some of them require a
specific action by the user (e.g., call the dispose() function).

A LabVIEW writer will be able to perform different actions. These actions can be chosen by selecting
the corresponding value in the ‘Write Sample Kind’ enum input of the Write subVI. The possible
options are:

l WRITE (Default value): we will write a DDS sample whose data is the information that it has in
the input.

l DISPOSE: the dispose() function will be called based on the input data. Only the key will be
used to dispose a specific instance. This will produce a ‘dummy’ sample whose valid_data is
false and the Instance State is NOT_ALIVE_DISPOSED. Also this will change the current
Instance State of the samples in the reader queue for the specified instance.

l UNREGISTER: this action will unregister an instance. This means that the DataWriter is no
longer going to write data for that instance. So, if no other DataWriter is writing data of that
instance, the instance state of that instance is NOT_ALIVE_NO_WRITERS. This will produce a
‘dummy’ sample whose valid_data is false and the Instance State is NOT_ALIVE_NO_
WRITERS. Also this will change the current Instance State of the samples in the reader queue for
the specified instance.

Differences between unregister and dispose:

l When an instance is unregistered, it means this particular DataWriter has no more inform-
ation/data on this instance.

l When an instance is disposed, it means the instance is "dead"—there will no more inform-
ation/data from any DataWriter on this instance.

For more information about dispose and unregister, see the RTI Connext DDS Core Libraries User’s
Manual.

6.6.2 Reading Instance State Kind

Writing instance state samples (or modifying the instance state of a specific instance) doesn’t make
sense if you cannot get that information.

106

6.6.2 Reading Instance State Kind

107

The exclusive readers that are not forced to use read() will be able to get samples whose instance state
is different than ALIVE. You can only use take() to read NOT_ALIVE instance state samples (either
NOT_ALIVE_NO_WRITERS or NOT_ALIVE_DISPOSED). (Otherwise memory leaks could appear,
since NOT_ALIVE samples are never taken.)

Once the reader receives a ‘dummy’ sample whose instance state is NOT_ALIVE, it will return the
value of the key of that instance.

Note: Since LabVIEW cannot unset some parameters like numbers, it will print the default value, 0 for
numbers, empty string for strings. The user is responsible for making sure to only use the key para-
meters for that specific DataType.

The following pictures shows those ‘dummy’ samples:

Using the VIs created in 4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to
Complex Data (Clusters) on page 38, we can show this behavior. The Writer sends a valid_data whose
key ‘Text’ is ‘alas’ (using WRITE in the Write subVI). Then we dispose the instance whose key ‘Text’
value is ‘alas’ (using DISPOSE in the Write subVI). The Reader will look like this:

6.7 Debugging an RTI Connext DDS LabVIEW Application

In the Reader part, we need to force the use of ExclusiveReader to read the NOT_ALIVE instance state
samples.

The DDS Sample Info shows the DDS_NOT_ALIVE_DISPOSE_INSTANCE_STATE as the DDS_
InstanceStateKind and valid_data is false, because this is the ‘dummy’ sample which indicates the new
instance state of the entity.

Finally, we can see how the complexType has returned the key of the disposed instance. In this case,
the key is ‘Text’ and the value is ‘alas’. Other values of the cluster are set to the default value. The
user is responsible for only reading the key values in case it is necessary.

6.7 Debugging an RTI Connext DDS LabVIEW Application

In the Tools’ DDS Debugging subpalette you can find several subVIs to debug your application. All
applications that use RTI DDS Toolkit will create log messages that can be read from the queue in
which they are stored. These messages are composed of three parameters:

1. Timestamp, which is the date and time when the message was logged. It is automatically taken
from the system clock.

2. Log Level, which is an indicator of the severity of the message. The available levels, from
highest severity to lowest are:

108

6.7 Debugging an RTI Connext DDS LabVIEW Application

109

l Fatal
l Severe
l Error
l Warning
l Notice
l Info
l Debug
l Trace
l Silent: This level means that the message will never be stored on the queue.

RTI DDS Toolkit and RTI Connext use different filter levels. The following table shows the equi-
valences:

Table 6.1 Equivalent Filter Levels

RTI DDS Toolkit
Filter Level

RTI Connext DDS Core
Filter Level

FATAL

ERROR

SEVERE

ERROR

WARNING WARNING

NOTICE

INFO

DEBUG

TRACE

STATUS LOCAL

3. Message, which is a string containing useful information.

As mentioned before, all messages are stored in a queue. In addition to the automatically generated mes-
sages, you can create and store your own messages (see 6.7.3 Logging Messages from LabVIEW on
page 119). The queue has two associated configuration parameters:

l Filter Level. Messages with a log level less severe than this Filter Level are not logged. Default
value: Warning level.

l Maximum number of elements. If a new message is added to the queue and it is full, the oldest
message is deleted. Default value: 512 elements.

6.7.1 Using Administration Panel (for Windows Systems only)

Let’s see how the filter level restriction works with an example: the filter level is Warning Level and
my application stores the following messages:

l Message 1 with Error level. It is logged.
l Message 2 with Warning level. It is logged.
l Message 3 with Debug level. It is not logged.

Which kinds of messages can be logged?

There are three different ways to log new messages into the queue:

l From the internal RTI Logger.
These messages are automatically generated by the internal DDS functionality.

l From RTI DDS Toolkit.
These messages are generated for the LabVIEW integration with DDS.

l Explicitly from your LabVIEW application.
These messages are generated manually using the subVI Log New Message.vi (see 6.7.3 Log-
ging Messages from LabVIEW on page 119).

However, once they are in the queue, all messages are treated equally.

6.7.1 Using Administration Panel (for Windows Systems only)

The RTI DDS Toolkit Administration Panel is a tool that allows you to administer your DDS applic-
ations running on LabVIEW. It also shows diverse DDS information and debugging messages.

The Administration Panel is only supported on Windows systems. This VI uses System Events, which
are not supported on Real-Time (RT) targets; therefore the VI is not supported on RT targets. For
details on how to debug RT targets, see 6.7.2 Debugging SubVIs on Real-Time Targets and Windows
Systems on page 116.

You can open the Administration Panel from the Tools menu (RTI DDS Toolkit, RTI DDS Admin-
istration Panel).

110

6.7.1 Using Administration Panel (for Windows Systems only)

111

Let’s take a look at the Administration Panel:

6.7.1.1 Configuration Section

l The Configuration section allows you to modify the internal behavior of the toolkit and the
Administration Panel itself. See 6.7.1.1 Configuration Section below.

l The DDS state cluster shows information about the internal DDS entities created using RTI DDS
Toolkit. See 6.7.1.2 DDS State Info on page 114.

l The Debugging table prints the messages stored in the internal logging queue. See 6.7.1.3 Debug-
ging Table on page 115.

6.7.1.1 Configuration Section

This part of the Administration Panel lets you modify different data:

l Administration panel refresh period: Refreshing time to update
the shown data. Default: 100 ms.

Note: The following values will not be updated until you press the
Update button.

l Logger Tab Menu:
l Local Logger Tab: All the information about the Local Log-
ger:

l Max number table rows: The maximum number of
table rows, as well as the maximum queue size.
Default: 512 elements. There are different actions
depending of the value of this parameter:

l If 0: The internal queue is deleted.
l If positive and larger than the previous one:
Increase the top queue limit.

l If positive and lower than the previous one: Delete the oldest elements until
the size reaches the new maximum size.

l Is debugging window enabled?: Allows you to enable/disable the “old” debugging
window shown by LabVIEW. Default: disabled.

If you enable the Debugging window, messages will be printed in both the debug-
ging table (an internal queue) and the debugging window.

Note: The order in which the messages are presented is not the same in these two
windows. In the Debugging window (right), the new messages are printed in order
(oldest on top), while in the Debugging table (left), the new messages are printed in
reverse order (newest on top), as you can see below:

112

6.7.1.1 Configuration Section

113

The Debugging window is a tool for printing text information from a LabVIEW
application. On Windows systems, the Debugging windows looks like the above fig-
ure. However, on NI™ Linux® systems, setting this boolean parameter to True
enables messages to be logged to the console out port.

l Enable DDS Core Notifications: Enables internal core notifications. These messages refer
to internal Connext core library logger messages. These messages have the following
format:

[Entity creating the message | ACTION_IDENTIFIER] Function_name:message

Notes:
l Fields in brackets like [Entity creating the message | ACTION_IDENTIFIER] are not
always present.

l The filter levels for the RTI Connext core and RTI DDS Toolkit are different, see
Table 6.1 Equivalent Filter Levels on page 109.

l Distributed Logger Tab: Distributed Logger will be created with the current values of
these parameters when you press Update. Then the parameters will be grayed out. To

6.7.1.2 DDS State Info

modify these values, first you need to disable Distributed Logger (and click Update).
l Distributed Logger DomainParticipantQoSProfile: The QoS Profile that will be
used by the Distributed Logger DomainParticipant. This should follow the next pat-
tern Library::Profile. The default QoS profile will be used if the DomainPar-
ticipantQoSProfile is empty.

Note: You cannot use a Custom Security Profile as the Distributed Logger
DomainParticipantQoSProfile. See 6.8.1.1 Creating Custom Security Profiles on
page 124.

l Distributed Logger DomainParticipant ID: The domain ID to be used when cre-
ating the next Distributed Logger DomainParticipant. The default is 0.

l Distributed Logger Queue Size: The number of messages Distributed Logger will
be able to store without dropping any of them. The default is 512 (the same default
asMax number table rows).

l Enable Distributed Logger: Allows you to enable/disable Distributed Logger.

Note: Disabling Distributed Logger will delete all the internal DDS entities that have been
created, so it could take a while.

l Timeout to delete inactive DDS entities: Delay (in seconds) that internal DDS entities are kept
as “active” after releasing them. After this period, the next release call will definitely delete them.
If you set it to 0, DDS entities will be deleted as soon as Release subVIs are called. Default: 10
seconds. In addition, all DDS entities are deleted when the execution of the last VI that uses DDS
Toolkit subVIs stops.

l Filter level: Determines the minimum log-level that messages must have in order to be added to
the internal queue. The default value is WARNING LEVEL.

6.7.1.2 DDS State Info

This cluster shows the entities created by RTI DDS Toolkit, as well as the internal DDS entities:

114

6.7.1.3 Debugging Table

115

l Last number of LabVIEW DDS Nodes: Number of nodes
(Readers and Writers) that were created in the last execution.

l Current number of LabVIEW DDS Nodes: Number of
nodes (Readers and Writers) that are currently running in the
system.

l Peak number of LabVIEW DDS Nodes: Maximum
number of nodes that has been created in the current
execution.

l Number of DomainParticipants: Number of DDS DomainParticipants currently active.
l Number of DataReaders: Number of active DDS DataReaders.
l Number of DataWriters: Number of active DDS DataWriters.
l Number of Topics: Number of active DDS Topics.

6.7.1.3 Debugging Table

This table prints the logged messages stored in the internal queue. There are several actions are avail-
able to manage this table:

l Clear Table: Deletes all the printed information.
l Save as... : Saves the current state of the debugging table.
l Clicking on a cell: Shows the message contained on the pressed cell in the “Full message” box.

6.7.2 Debugging SubVIs on Real-Time Targets and Windows Systems

6.7.2 Debugging SubVIs on Real-Time Targets and Windows Systems

As mentioned in 6.7.1 Using Administration Panel (for Windows Systems only) on page 110, the
Administration Panel is not supported on RT Targets. Instead, you can use the following subVIs to
debug and administer RTI Connext DDS applications deployed on RT targets. These subVIs are in the
DDS Debugging subpalette under the Tools category. For Windows applications, you can use the
Administration Panel, as well as the following subVIs.

6.7.2.1 Get Configuration Parameters

This subVI returns the current configuration parameters explained in 6.7.1.1 Configuration Section on
page 112:

l Timeout to delete inactive DDS entities
l Filter level
l Maximum size of the local queue
l Is debugging window enabled?

These parameters are global to all RTI DDS Toolkit VIs and remain the same as long as rtilvdds.dll is
loaded in memory.

6.7.2.2 Set Configuration Parameters

This subVI updates the configuration parameters explained above. Similarly, as these parameters are
global, this modification will affect to all VIs using RTI DDS Toolkit under the same LabVIEW
instance.

116

6.7.2.3 Get DL Configuration Parameters

117

6.7.2.3 Get DL Configuration Parameters

This subVI returns the current configuration of the Distributed Logger parameters described in 6.7.1.1
Configuration Section on page 112:

l Whether Distributed Logger is enabled
l Domain ID used to create Distributed Logger
l Distributed Logger Queue Size

This subVI will return the default parameters if Distributed Logger is not created.

6.7.2.4 Configure Distributed Logger

This subVI allows you to configure Distributed Logger. If you enable Distributed Logger, it will use
the current parameters to create an instance of Distributed Logger. If you disable it (that is, “Enable Dis-
tributed Logger” is False), the instance will be deleted (the other parameters are not used). Only one
Distributed Logger instance can be created per instance of the toolkit.

These parameters are used when creating an instance of Distributed Logger:

l Enable Distributed Logger: If True, enables Distributed Logger. If False, disables Distributed
Logger.

l Domain Id: The ID of domain in which an instance of Distributed Logger will be created.
l Distributed Logger Queue Size: How many messages can be stored in the Distributed Logger
Queue.

l Note: The Distributed Logger Queue Size shouldn’t be lower than the Local Logger Queue Size,
because this could make that several messages logged in the Local Logger won’t be sent through
Distributed Logger.

l DomainParticipant QoSProfile: The QoS Profile that will be used to create the DomainPar-
ticipant. The format of this profile will be “Library::Profile”.

6.7.2.5 DDS State Info

6.7.2.5 DDS State Info

This subVI visualizes the DDS entities created by LabVIEW is controlled by the error wire. The data
shown is the same as explained in 6.7.1.2 DDS State Info on page 114.

6.7.2.6 Reading Logged Messages

This subVI reads the oldest non-printed message from the internal queue and appends it to the begin-
ning of the “Debugging table out”.

There are pins connected to it:

l Inputs
l Debugging table in: Specifies the debugging table in which to append the new sample if it
exists.

l Clear table?: Clears the table. Default: disabled.
l Max number of rows: Sets a new maximum number of rows in the table. Default: 512
rows.

l error in (no error): error input

l Outputs
l Debugging table out: The “debugging table in” with a new message appended if it exis-
ted.

118

6.7.3 Logging Messages from LabVIEW

119

l Print table?: Indicates whether a new data was added to the table or the table has been
cleared, so the table needs to be printed.

l error out: Error standard output.

This subVI is designed to be used within a loop that will periodically read the messages one by one. To
get a table updated, the correct use of this subVI is seen the following figure. As you can see, the input
of this subVI is a shift register, which allows you to keep the previous printed messages.

Finally, the flag Print table? improves the performance by only updating the table control if a new
message was read (or if the table has been cleared).

You can find this subVI under https://github.com/rticommunity/rticonnextdds-labview-examples/tree/-
master/examples/read_logging_messages.

6.7.3 Logging Messages from LabVIEW

As we have seen, there are different ways to log a new message into the internal queue. In the Debug-
ging subpalette you can find Log New Message.vi, which allows you to log messages explicitly. This
subVI requires the following data:

l Message: A string with a meaningful message.
l Log Level: The log level with which the message will be registered.

4.9.1.1 Logging Messages Manually on page 74 explains with an example how to use this subVI to log
your own messages.

https://github.com/rticommunity/rticonnextdds-labview-examples/tree/master/examples/read_logging_messages
https://github.com/rticommunity/rticonnextdds-labview-examples/tree/master/examples/read_logging_messages

6.8 Enabling Security (Windows only)

6.8 Enabling Security (Windows only)

To enable security for your DDS application, you need to set several DomainParticipant properties to
point to the security files created using OpenSSL®. Then to enable security in RTI DDS Toolkit, you
need to create a DomainParticipant QoS profile that includes these properties.

Security features are only supported in Windows platforms. If security is enabled in an NI Linux RT tar-
get, it will fail with error 5113.

DomainParticipant QoS profiles can be loaded from an XML file, as explained in Chapter 5 Loading
Quality of Service Profiles on page 94.

Mandatory Properties:

Unlike previous versions of RTI DDS Toolkit, version 3.1.2 now includes OpenSSL version 1.1.1t. The
DDS Toolkit no longer uses NI SSL. The security library is now embedded into the DDS Toolkit lib-
rary.

At a minimum, your security profile must have the following properties to enable security:
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
</value>

</property>
</domain_participant_qos>

Set these mandatory properties to the corresponding files:

l Identity Certificate Authority (CA): authentication.ca_file
l Identity Certificate (Signed by Identity CA): authentication.certificate_file
l Private Key: authentication.private_key_file
l Permissions Certificate Authority (CA) access_control.permissions_authority_file
l Governance Document (Signed by Permissions CA): access_control.governance_file
l Permissions Document (Signed by Permissions CA): access_control.permissions_file

Optional Properties:

l Shared Secret Algorithm: authentication.shared_secret_algorithm
l Encryption Algorithm: cryptography.encryption_algorithm
l Certificate Revocation List: authentication.crl_file
l Private Key Decryption Password: password for the private key in case it is encrypted

120

6.8.1 Managing Custom Security Profiles with the Security Panel (Windows only)

121

For further information and latest notes about DDS Security Plugins, see the RTI Security Plugins Get-
ting Started Guide and RTI Security Plugins Release Notes available here: https://-
community.rti.com/documentation.

RTI DDS Toolkit allows you to create the above DomainParticipant QoS profiles, including the security
properties. These profiles are referred to as Custom Security Profiles. To create Custom Security Pro-
files, use the DDS Security Subpalette under the Tools palette:

l Tools palette
l DDS Security subpalette

l Create Custom Security Profile.vi
l Delete Custom Security Profile.vi
l Get Custom Security Profiles List.vi
l Get Security Profile Values.vi

In addition to these subVIs, there is a Security Panel which allows you to efficiently manage your cus-
tom security profiles (for Windows systems only).

Note: Custom security profiles are stored in memory, so they need to be created again every time RTI
DDS Toolkit is started (each time you close the toolkit, all the subVIs that use the toolkit are closed).
You may want to use Bundle by Name and create your own security configuration cluster from con-
stants that have been saved in your code.

6.8.1 Managing Custom Security Profiles with the Security Panel (Windows
only)

The Security Panel allows you to manage Custom Security Profiles. From this panel, you can:

l Create a Custom Security Profile
l Delete a Custom Security Profile
l See the current Custom Security Profiles
l Get Security Profile Values.vi

The Security Panel is only supported on Windows systems. This VI uses System Events, which are not
supported on Real-Time (RT) targets; therefore the VI is not supported on RT targets. For details on
how to create Custom Security Profiles on RT targets, see 6.8.2 Managing Custom Security Profiles
with SubVIs on page 125.

You can open the Security Panel from the Tools menu (RTI DDS Toolkit, RTI DDS Administration
Panel).

https://community.rti.com/documentation
https://community.rti.com/documentation

6.8.1 Managing Custom Security Profiles with the Security Panel (Windows only)

Let’s take a look at the Security Panel.

122

6.8.1 Managing Custom Security Profiles with the Security Panel (Windows only)

123

l Name of Base DomainParticipant QoS Profile: Name of the DomainParticipant QoS profile
that will be used as the base profile. The Security Panel will create a profile which includes the
QoS settings from the base profile plus any security properties set in the Security Panel. There-
fore if a QoS setting is in the profile and set in the Security Panel, the latter will be used. This
base profile can be a builtin profile, a profile from the loaded XML configuration (following the
pattern Library::Profile), or even a Custom Security Profile (must already be created).

l Basic Configuration: Allows you to find the mandatory files needed to load and enable security.
This sets the basic properties noted in 6.8 Enabling Security (Windows only) on page 120.

If the selected private key is encrypted, you can add a password for it in the profile. Enter the
password in the text input boxes ‘Private Key Decryption Password (Optional)’ and ‘Confirm
Private Key Decryption Password’. For security reasons, the text will be shown as a sequence of
asterisks in both boxes.

l Advanced Configuration: Sets the optional properties noted in 6.8 Enabling Security (Windows
only) on page 120.

l Current Profiles: Shows the current Custom Security Profiles. You can also use this tab to load
and delete a profile.

6.8.1.1 Creating Custom Security Profiles

l Name of DomainParticipant QoS Profile with Security Configuration: Assigns a name to the
new Custom Security Profile. This parameter is mandatory and cannot contain whitespaces. No
two profiles can share the same name. This name does not need to follow the pattern Library::Pro-
file.

Note: The Basic Configuration must be set in a Secure Custom Profile. However if you load a base pro-
file that contains any of the fields in 6.8 Enabling Security (Windows only) on page 120, you can avoid
filling in the parameters that have already been set. If any of the mandatory fields are not set when the
Security Custom Profile is created, error 5077 on page 162 will be thrown.

6.8.1.1 Creating Custom Security Profiles

To create a new Custom Security Profile:

1. (Optional) Select a ‘Name of Base DomainParticipant QoS Profile’ to inherit the QoS from. Or
leave it blank if you want to load the LabVIEWLibrary::DefaultProfile.

2. Fill in the Basic Configuration settings if these parameters haven’t been inherited.

3. (Optional) Fill in the parameters in the Advanced Configuration tab.

4. Set a ‘Name of DomainParticipant QoS Profile with Security Configuration’.

5. Press the Create New Security Profile button.

You will see a message indicating that the Custom Security Profile has been correctly created.

6.8.1.2 Deleting Custom Security Profiles

To delete a Custom Security Profile:

1. Go to the Current Profiles tab.

2. Select the profile you want to delete.

3. Press the Delete Selected Profile button.

6.8.1.3 Load Custom Security Profile Values

To load the values from a Custom Security Profile:

1. Go to the Current Profiles tab.

2. Select the profile you want to load.

124

6.8.2 Managing Custom Security Profiles with SubVIs

125

3. Press the Load Profiles Values button.

The values of this profile will be loaded in the Basic and Advanced Configuration tabs. If the
loaded profile uses a password for the private key, it will show in sequence of asterisks in the
“Private Key Decryption Password (Optional)”. That sequence is a fixed string with a fixed size
not related to the password. So the password size CANNOT be inferred from the shown string.

6.8.2 Managing Custom Security Profiles with SubVIs

As mentioned in 6.8.1 Managing Custom Security Profiles with the Security Panel (Windows only) on
page 121, the Security Panel is not supported on RT targets. Instead, you can use the following subVIs
to create your own Custom Security Profiles on these systems.

There is a DDS Security subpalette under the Tools category. For Windows applications, you can use
the Administration Panel, as well as the following subVIs.

6.8.2.1 Creating Custom Security Profiles

This subVI creates a new Custom Security Profile with the provided data:

l DomainParticipant Base Profile Name
l Security Settings cluster, including Basic Security Configuration and Advanced Security Con-
figuration

l New Custom Security Profile Name

This also returns the Custom Security Profile Name to be used by other subVIs.

These parameters are the same as those described in 6.8.1 Managing Custom Security Profiles with the
Security Panel (Windows only) on page 121.

6.8.2.2 Deleting Custom Security Profiles

This subVI deletes a Custom Security Profile based on the provided name:

l Custom Security Profile Name which will be deleted.

6.8.2.3 Getting Custom Security Profiles List

6.8.2.3 Getting Custom Security Profiles List

This subVI returns an array of strings with the current created Custom Security Profiles.

6.8.2.4 Get Security Profiles Values

This subVI returns the Security Settings of a specific profile identified by name. The returned Security
Settings will contain all the parameters which this Security Profile uses. This means that even if the
Security Profile has been created based on another profile that contained any security properties, the
returned Security Settings will contain all the parameters the provided Profile Name uses.

6.8.3 Creating DomainParticipants using a Custom Security Profile

Once the Custom Security Profile has been created (from the Security Panel or the Create Security Pro-
file subVI), you can use it to create a Secure DomainParticipant. To do this, when you are creating a
new DomainParticipant, you need to set value of the DomainParticipant QoS Profile to the name of the
Custom Security Profile you created in 6.4 Configuring Advanced Writer Settings on page 103.

126

6.9 Advanced Filtering of Data—ContentFilteredTopics

127

If the profile has been created using a Custom Security Profile (without a subVI):

If the profile has been created using a Custom Security Profile with a subVI:

6.9 Advanced Filtering of Data—ContentFilteredTopics

A ContentFilteredTopic is a Topic with filtering properties. It makes it possible to subscribe to Topics
and at the same time specify that you are only interested in a subset of the Topic’s data. It can also be

6.9.1 Configuring ContentFilteredTopics

used to limit the number of data samples a DataReader has to process (and store) and may also reduce
the amount of data sent over the network.

A ContentFilteredTopic creates a relationship between a Topic, also called the related Topic, and user-
specified filtering properties. The filtering properties consist of an expression used to evaluate a logical
expression on the Topic content. The filter expression is similar to the WHERE clause in a SQL expres-
sion.

Filtering may be performed on either side of the distributed application. (The DataWriter obtains the fil-
ter expression and parameters from the DataReader during discovery.)

When batching is enabled, content filtering is always done on the reader side.

A DataWriter will automatically filter DDS data samples for a DataReader if all of the following are
true; otherwise filtering is performed by the DataReader.

1. The DataWriter is filtering for no more than writer_resource_limits.max_remote_reader_fil-
ters DataReaders at the same time.

2. The DataReader is not subscribing to data using multicast.

3. There are no more than 4 matching DataReaders in the same locator.

4. The DataWriter has infinite liveliness.

5. The DataWriter is not using an Asynchronous Publisher.

6. If you are using a custom filter (not the default one), it must be registered in the DomainPar-
ticipant of the DataWriter and the DataReader.

7. The DataWriter is not configured to use batching.

See the RTI Connext Core Libraries User's Manual for more details, available here: https://-
community.rti.com/documentation.

6.9.1 Configuring ContentFilteredTopics

A pin in the Create Advanced Reader subVI allows you to create a ContentFilteredTopic using the spe-
cified Topic.

128

https://community.rti.com/documentation
https://community.rti.com/documentation

6.10 Setting Up Arrays

129

As you can see in this figure, the ContentFilteredTopic allows you to configure the following para-
meters:

l Filter Type: Filter used to created the ContentFilteredTopic. Cur-
rently, only DDS_SQLFILTER_NAME is available.

l ContentFilteredTopic Name: ID of the ContentFilteredTopic.
l Filter Expression: Expression that the ContentFilteredTopic will use
to filter data during the exchange between the DataReader and
DataWriter. Must be a valid expression for the filter class specified using Filter Type.

Notes:

l If the ContentFilteredTopic Name or Filter Expression are empty, the function will not create a
ContentFilteredTopic, instead it will use the specified Topic. This will be logged in a debug mes-
sage.

l Error 5088 will appear if an existing ContentFilteredTopic (attached to a DataReader) is being
used with different filter expressions. Two ContentFilteredTopics cannot share the same name if
they do not share the same expression. This means that a ContentFilteredTopic’s filter expression
cannot be modified without changing its name. This implies that no Data Readers are using that
ContentFilteredTopic.

6.10 Setting Up Arrays

The length of the arrays in the Data Type is the same as the length in the Type Definition (.ctl file).
Make sure you declare your array to be the maximum size you will need. To do so, set the array to the
desired size and set it as the default value: right-click in the array (not in the contained element) and
select Data Operations, Make Current Value Default. Do this before saving the Type Definition file
and using it with the ComplexType Generator.

Setting up arrays of clusters or strings follows the same rules as native types arrays. The array must be
set to the number of members desired and set as default values.

Every LabVIEW one-dimensional array in the Type Definition will be mapped as a DDS Sequence
unless the option forceArrayMapping is marked in the Advanced Reader/Writer Configuration con-
trol. Multi-dimensional arrays will always be mapped as DDS Arrays.

6.10.1 Setting Up Arrays of Clusters

Every array in the Type Definition must be initialized before using it with the ComplexType Generator.
That includes nested arrays. To avoid doing this manually, start by initializing the arrays of the lower-
level cluster and set its values as the default before dragging the cluster into the array holder control.

6.10.2 Setting up Arrays of Strings

Then when you initialize the array to its desired size, all members will have their arrays initialized. The
same applies to all arrays nested at all levels.

If you have nested arrays inside an array of clusters, those nested arrays must be initialized in each
member of the array of clusters. Every array in the entire Type Definition (.ctl file) must be initialized
to its desired size. To do so, simply initialize the array and make its current value the default before
dragging the cluster to the array holder control.

The image above shows how all arrays are initialized. There is a top-level cluster with an array of
clusters (TopLevelArray); it has three elements. TopLevelArray is an array of clusters, each cluster
has a nested array of clusters (NestedArray). As the image shows, all arrays are initialized.
TopLevelArray is initialized with size three. Each NestedArray inside TopLevelArray is also ini-
tialized with size three.

6.10.2 Setting up Arrays of Strings

Arrays of strings, like all arrays, must be set to the desired size and each element must be initialized
with a default value. To set the size of the string, the first element of the array must contain the size of
the string.

For example, to set an array of 50 strings of 200 characters length, initialize the string array with 50 ele-
ments. Then in element 0, write “200” and set this as the array's default value: right-click in the array
(not the contained string) and select Data Operations, Make Current Value Default. Then save the
Type Definition (.ctl file).

130

6.10.3 Setting up Sequences

131

6.10.3 Setting up Sequences

Sequences follow the same rules as arrays. All LabVIEW arrays must be initialized at the sequence's
maximum desired size.

By default, every one-dimensional LabVIEW array will be mapped as a DDS Sequence unless the
option forceArrayMapping in the Advanced Reader/Writer Configuration is set. Sequences can
only have one dimension. Multi-dimensional LabVIEW arrays will automatically be mapped as DDS
Arrays.

Appendix A VI Descriptions
A.1 Controls Palette Types

In the Front Panel’s Controls Palette, in the Addons section, under RTI DDS Toolkit, you will
find the following:

DDS Sample Info: This cluster is returned by the Read subVI and shows information about the
current sample. valid_data is 1 if the read data is valid, otherwise it is 0.

DDS_SampleStateKind U32 Enum

DDS_ViewStateKind U32 Enum

DDS_InstanceStateKind U32 Enum

sec I32

nanosec U32

valid_data Boolean

DDS State Info: This cluster contains general statistics from RTI DDS Toolkit. It includes the
current number of nodes (both Reader and Writer ones), DomainParticipants, DataReaders,
DataWriters, and Topics. It also provides historical information such as the last execution's
nodes.

Last number of LabVIEW DDS Nodes I32

Current number of LabVIEW DDS Nodes I32

Peak number of LabVIEW DDS Nodes I32

Number of DomainParticipants I32

Number of DataReaders I32

Number of DataWriters I32

Number of Topics I32

132

A.1 Controls Palette Types

133

RTI DDS Advanced Reader Configuration: This cluster contains the advanced parameters for the
Reader Creation. Use this control with the Create Advanced Reader subVI to provide optional para-
meters when creating a new Reader.

typeName String

keyName String

domainParticipantQoS String

dataReaderQosProfile String

forceArrayMapping? Boolean

forceExclusiveReader? Boolean

forceRead? (only ExclusiveReader) Boolean

forceUnboundedString? Boolean

RTI DDS Advanced Writer Configuration: This cluster contains the advanced parameters for the
Writer Creation. Use this control with the Create Advanced Writer subVI to provide optional para-
meters when creating a new Writer.

typeName String

keyName String

domainParticipantQoS String

dataWriterQosProfile String

forceArrayMapping? Boolean

forceUnboundedString? Boolean

RTI DDS Security Settings: This cluster contains the security parameters for enabling DDS Security.
This is divided in two internal clusters. The Basic Security Settings includes the mandatory properties
that we need to set to enable DDS Security. The Advanced Security Settings just includes some addi-
tional configuration parameters.

Basic Security Settings Cluster

Identify Certificate Authority (CA) File Path

Identify Certificate (Signed by Identity CA) File Path

Private Key File Path

Permissions Certificate Authority (CA) File Path

Governance Document (Signed by Permissions CA) File Path

Permissions Document (Signed by Permissions CA) File Path

A.2 Functions Palette

Private Key Decryption Password (Optional) String

Advanced Security Settings Cluster

Shared Secret Algorithm String

Encryption Algorithm String

Certificate Revocation List File Path

RTI DDS ContentFilteredTopic Info: This cluster contains the parameters that are necessary to create
a ContentFilteredTopic.

Filter Type Combo Box String

ContentFilteredTopic Name String

Filter Expression String

RTI DDS Filter Level: Ring that contains the different debugging levels.

RTI DDS Write Sample Kind: This Enum contains the action to perform when sending samples. The
values may be: WRITE, DISPOSE, UNREGISTER. See 6.6.1 Write, Dispose or Unregister on
page 106 for more information.

DDS Duration: This cluster contains the time period, in seconds and nanoseconds, used in the block-
ing read operation.

Sec I32

Nanosec U32

RTI DDS Read Mode: This enum is used to select the read mode in the Read subVI. Values are:

l LVDDS_READ_MODE_POLLING: (Default) Read is performed by polling. If there is no valid
data, then return immediately and set the valid_data field of the output “Sample Info” to false.

l LVDDS_READ_MODE_BLOCKING: Read keeps waiting until a valid sample can be read or
the DDS Duration “Blocking timeout” parameter passed to the Read subVI expires.

A.2 Functions Palette

In the Block Diagram’s Functions Palette, in the Data Communication section, under RTI DDS
Toolkit, you will find the following:

l A.2.1 Writer on the next page
l A.2.2 Reader on page 137

134

A.2.1 Writer

135

l A.2.3 Tools on page 139
l A.2.4 DDS Security on page 143

A.2.1 Writer

l Simple Create Writer: Creates a Writer node able to write data to the DDS network. Use the ref-
erence generated by this subVI as input to the Write subVI to send data using DDS. Use the
Release Writer subVI to release the allocated memory.

Input parameters

Domain Id ID of the domain the application intends to join

Topic Name Name of Topic for which the application will write data

Data Type Control of the data type to be published

error in (no error) LabVIEW Error cluster in (optional)

Output parameters

DDS Object Ref out Reference (pointer) to newWriter object

error out LabVIEW Error cluster out (optional)

l Advanced Create Writer: This subVI creates a Writer node able to write data to the DDS net-
work. Introduce advanced configurations by using the control RTI DDS Advanced Writer Con-
figuration.ctl. Use the reference generated by this subVI as input to the Write subVI to send data
using DDS. Use the Release Writer subVI to release the allocated memory.

Input parameters

Advanced Writer Configuration Controls of type RTI DDS Advanced Writer Configuration that contains the optional parameters

Domain Id ID of the domain the application intends to join

Topic Name Name of Topic for which the application will write data

Data Type Control of the data type to be published

error in (no error) LabVIEW Error cluster in (optional)

Output parameters

DDS Object Ref out Reference (pointer) to newWriter object

error out LabVIEW Error cluster out (optional)

A.2.1 Writer

l Write: Publishes data into a DDS network. It takes a Writer node (generated by Advanced/Simple
Create Writer) as an input parameter. The data type of the data to be written must be the same as
the data type attached to the Advanced/Simple Create Writer subVI.

Input parameters

DDS Object Ref in Reference (pointer) to Writer object to be used

Data Control with the data to be published by DDS. Must be of the same type as specified in the Data Type in-
put for the Advanced/Simple Create Writer.

Writer Sample Kind Enum for choosing between Write data, Dispose, or Unregister (based on the key).

error in LabVIEW Error cluster in (optional)

Output parameters

DDS Object Ref out Reference (pointer) to Writer object used

error out LabVIEW Error cluster out (optional)

l Release Writer: Releases the memory allocated for a Writer node and prepares the contained
entities to be deleted if nothing else is using them. To force the release of the contained entities,
use 'Release Unused Entities' when the defined timeout has been reached after releasing the
Writer node.

Input parameters

DDS Object Ref in Reference (pointer) to Writer object to be released

error in LabVIEW Error cluster in (optional)

Output parameters

error out LabVIEW Error cluster out (optional)

l Set Writer QoS: Applies a new QoS profile to an existing Writer node. If the current QoS can-
not be modified at run time, the Writer node remains unchanged.

Input parameters

DDS Object Ref in Reference (pointer) to Writer object whose QoS Profile will be changed

Qos Profile
QoS profile to be applied. The expected value is a string providing the QoS library and profile to be read
from the XML file (see Appendix D File Folders Installed within LabVIEW on page 153 for details on where
this file is located).

error in LabVIEW Error cluster in (optional)

136

A.2.2 Reader

137

Output parameters

DDS Object Ref out Reference (pointer) to Writer object used

error out LabVIEW Error cluster out (optional)

A.2.2 Reader

l Simple Create Reader: Creates a Reader node that is able to read data from the DDS network.
Use the reference generated by this subVI as input to the Read subVI to get data from DDS and
store it in the appropriate LabVIEW data. Use the Release Reader subVI to release the allocated
memory.

Input parameters

Domain Id ID of the domain the application intends to join

Topic Name Name of the topic for which the application will read data

Data Type Control of the same data type to be read

error in (no error) LabVIEW Error cluster in (optional)

Output parameters

DDS Object Ref out Reference (pointer) to new Reader object

error out LabVIEW Error cluster out (optional)

l Advanced Create Reader: This subVI creates a Reader node able to read data from the DDS net-
work. Introduce advanced configurations by using the control RTI DDS Advanced Reader Con-
figuration.ctl. Use the reference generated by this subVI as input to the Read subVI to get data
from DDS and store it in the appropriate LabVIEW data. Use the Release Reader subVI to
release the allocated memory.

Input parameters

Advanced Reader Configuration Control of type RTI DDS Advanced Reader Configuration that contains the optional parameters

Domain Id ID of the domain the application intends to join

Topic Name Name of the topic for which the application will read data

Data Type Control of the same data type to be read

error in (no error) LabVIEW Error cluster in (optional)

A.2.2 Reader

Output parameters

DDS Object Ref out Reference (pointer) to new Reader object

error out LabVIEW Error cluster out (optional)

l Read: Gets data from the DDS network. It takes a Reader node (generated by the
Advanced/Simple Create Reader subVI) as an input parameter. The data is stored in the appro-
priate LabVIEW data, which is provided as an output parameter.

Input parameters

DDS Object Ref in Reference (pointer) to Reader object to be used

Query Condition Query expression to use when filtering the read samples; empty means no filtering

Only New Samples Specifies whether to read only the new (unviewed) samples (true) or all the available ones (false)

Read Mode

Enum to set the read operation mode. Can be either:
l LVDDS_READ_MODE_POLLING: (Default) Read is performed by polling. If there is no valid

data, then return immediately and set the valid_data field of the output “Sample Info” to false.

l LVDDS_READ_MODE_BLOCKING: Read keeps waiting until a valid sample can be read or the
timeout set in “Blocking Timeout” expires.

Blocking Timeout Amount of time (seconds and nanoseconds) the Read VI will wait for a valid sample to be read.
Default value is 0 seconds and 0 nanoseconds.

error in (no error) LabVIEW Error cluster in (optional)

Output parameters

DDS Object Ref out Reference (pointer) to Reader object used

Data Indicator that will be filled with the data read from DDS. Must be of the same type as the one specified in
the Data Type input of the Advanced/Simple Create Reader subVI

Timeout Boolean that indicates if the timeout set in the Blocking Timeout has expired without reading any valid
sample. Only used when Read Mode is LVDDS_READ_MODE_BLOCKING.

DDS Sample Info DDS Sample Info cluster containing information about the sample read.

error out LabVIEW Error cluster out (optional)

l Release Reader: Releases memory allocated for a Reader node and prepares the contained entit-
ies to be deleted if nothing else is using them. To force the release of the contained entities, use
'Release Unused Entities' when the defined timeout has been reached after releasing the Reader
node.

138

A.2.3 Tools

139

Input parameters

DDS Object Ref in Reference (pointer) to Reader object to be released

error in LabVIEW Error cluster in (optional)

Output parameters

error out LabVIEW Error cluster out (optional)

l Set Reader QoS: Applies a new QoS profile to an existing Reader node. If the current QoS can-
not be modified at run time, the Reader node remains unchanged.

Input parameters

DDS Object Ref in Reference (pointer) to Reader object whose QoS Profile will be changed

Qos Profile
QoS profile to be applied. The expected value is a string providing the QoS library and profile to be read
from the XML file (see Appendix D File Folders Installed within LabVIEW on page 153 for details on where
this file is located).

error in LabVIEW Error cluster in (optional)

Output parameters

DDS Object Ref out Reference (pointer) to Reader object used

error out LabVIEW Error cluster out (optional)

A.2.3 Tools

l DDS Generate Custom Type VIs: Generates custom complex types VIs the same way the Com-
plex Type Generator does. For more information, see 6.3 Working with Custom Types on
page 99.

Input parameters

Path to the CustomType Definition Path to the ctl file we want to use.

Output Directory Where the files will be generated

Type of Generation

Either:
l Simple

l Advanced

Save the Type Definition If the type definition must be saved in the output directory

Generate Example VIs If example files will be created

A.2.3.1 DDS Debugging

Domain ID Domain ID used in the example files

Topic Name Topic name used in the examples

error in (no error) Error cluster

Output parameters

Generated Files Array of paths of the generated files

Error out Error cluster

l DDS Release Unused Entities: Releases all the entities generated by the Create Reader/Writer
subVIs that are not currently in use. An entity is considered ‘not in use’' if no nodes have linked
it within the defined timeout period. This is a useful way to resolve some of the errors produced
when creating new Reader/Writer nodes.

Input parameters

error in LabVIEW Error cluster in

Output parameters

Error Code RTI DDS Toolkit Error Code (optional)

error out LabVIEW Error cluster out (optional)

l DDS Time to LV Time: Converts a UNIX timestamp (in seconds) to a LabVIEW Time Stamp.

Input parameters

X DBL

Output parameters

Time Stamp Cluster

A.2.3.1 DDS Debugging

l Get configuration parameters: Returns the current values of the configuration parameters of the
RTI DDS Toolkit: timeout to release unused DDS entities, filter level, maximum size of the
internal queue, and a boolean which indicates whether the debugging window is enabled.

Input parameters

error in LabVIEW Error cluster in

140

A.2.3.1 DDS Debugging

141

Output parameters

Timeout to Delete Inactive DDS Entities (s) I32

Filter Level I32 Ring

Maximum Number of Table Rows U32

Is Debugging Window Enabled Boolean

error out LabVIEW Error cluster out

l Set configurations parameters: Updates the configuration parameters of the RTI DDS Toolkit:
timeout to release unused DDS entities, filter level, maximum size of the internal queue and a
boolean to enable/disable the debugging window.

Input parameters

Enable DDS Core Notifications Boolean - Default: False

Timeout to Delete Inactive DDS Entities I32 - Default: 10

Filter Level I32 Ring - Default: WARNING LEVEL

Maximum Number of Table Rows U32 - Default: 512

Is Debugging Window Enabled Boolean - Default: False

error in LabVIEW Error cluster in

Output parameters

error out LabVIEW Error cluster out

l Get DL configurations parameters: Returns the current configuration values of the Distributed
Logger: a boolean which indicates if Distributed Logger is enabled, the domain ID where the Dis-
tributed Logger Domain Participant has been created, and the Distributed Logger Queue Size.

Input parameters

error in LabVIEW Error cluster in

Output parameters

Is Distributed Logger enabled? Boolean

Domain ID U32

Distributed Logger Queue Size I32

A.2.3.1 DDS Debugging

error out LabVIEW Error cluster out

l Configure Distributed Logger: Enables and disables Distributed Logger. When this subVI is
enabling Distributed Logger, all the other parameters will be used to create it. These parameters
are: enable Distributed Logger, Domain Id, Distributed Logger Queue Size, DomainParticipant
QoS Profile.

Input parameters

Enable Distributed Logger Boolean - Default: False

Domain Id U32 - Default: 0

Distributed Logger Queue Size I32 - Default: 512

DomainParticipant Qos Profile String - Default: empty string

error in LabVIEW Error cluster in

Output parameters

error out LabVIEW Error cluster out

l Get DDS State: Returns general statistics from RTI DDS Toolkit. This includes the current num-
ber of nodes (both Reader and Writer ones), DomainParticipants, DataReaders, DataWriters, and
Topics. It also provides historical information such as the last execution's nodes.

Input parameters

error in LabVIEW Error cluster in

Output parameters

DDS State output DDS State Info Cluster

error out LabVIEW Error cluster out

l Read One Logged Message: Appends a logging message to the table provided as input. It also
allows you to limit the maximum number of table rows; and finally, it returns a flag indicating
when the table has been modified, so it could be printed just if it has been modified.

Input parameters

Debugging Table in 2D String table

Clear Table? Boolean

142

A.2.4 DDS Security

143

Maximum Number of Rows U32

error in LabVIEW Error cluster in

Output parameters

Debugging Table out String 2D table

Print Table? Boolean

error out LabVIEW Error cluster out

l Log New Message: Logs a new message into the internal queue.

Input parameters

Message String

Log level U32 Ring

error in LabVIEW Error cluster in

Output parameters

error out LabVIEW Error cluster out

A.2.4 DDS Security

l Create Custom Security Profile: Creates a new Custom Security Profile named New Custom
Security Profile Name based on the QoS defined in DomainParticipant Base Profile Name,
including the Security Settings configuration.

Input parameters

DomainParticipant Base Profile Name String (optional)

Security Settings Cluster with the Security Settings (includes Basic and Advanced Security Settings)

New Custom Security Profile Name String

error in LabVIEW Error cluster in

Output parameters

Custom Security Profile Name Output String

error out LabVIEW Error cluster out

A.2.4 DDS Security

l Delete Custom Security Profile: Deletes a previously created Custom Security Profile whose
name is ‘Custom Security Profile Name’.

Input parameters

Custom Security Profile Name String

error in LabVIEW Error cluster in

Output parameters

error out LabVIEW Error cluster out

l Get Custom Security Profiles List:

Input parameters

error in LabVIEW Error cluster in

Output parameters

Array of Custom Security Profiles Array of Strings

error out LabVIEW Error cluster out

l Get Security Profile Values: Loads all the security properties that the provided profile has been
created with.

Input parameters

Profile Name String

error in LabVIEW Error cluster in

Output parameters

Security Settings Cluster with the Security Settings (includes Basic and Advanced Security Settings)

error out LabVIEW Error cluster out

144

Appendix B Creation and Release of DDS
Entities

The table below explains when RTI DDS Toolkit creates and releases DDS entities.

When an entity is released, RTI DDS Toolkit deletes all ‘unused’ entities in the system. An
entity is considered ‘unused’ if no nodes have linked it within the defined timeout period since
the last subVI using it was released.

All entities (including the DomainParticipant) are created with the QoS values specified in the
QoS Profile input to the Create Writer/Reader functions.

Note: You can see when entities are created and released in the Debugging window. See E.1
Enabling Debugging Mode on page 155.

DDS Entity Is Created When… Is Released When…

DomainParticipant

The Create Writer/Reader functions are called from
LabVIEW and there is not already another valid
DomainParticipant.

If a DomainParticipant does not exist for that Domain Id
and DomainParticipantQos name, a new DomainPar-
ticipant is created.

An execution ends and no DDS Reader or Writer objects
have used the DomainParticipant within the defined timeout
period.

The DDS Release Unused Entities function is called from
LabVIEW and no DDS Reader or Writer objects are using
the DomainParticipant.

Topic ‘x’ The Create Writer/Reader functions are called from
LabVIEW and there is not already another valid Topic.

An execution ends and no DDS Reader or Writer objects are
using the Topic.

The DDS Release function is called from LabVIEW and no
DDS Reader or Writer objects are using the Topic.

ContentFilteredTopic
‘x’

The Create Advanced Reader VI is called from LabVIEW
with a valid ‘ContentFilteredTopic Info’ cluster (all the
fields have been set).

An execution ends and no DDS Reader objects are using the
ContentFilteredTopic.

The DDS Release function is called from LabVIEW and no
DDS Reader objects are using the ContentFilteredTopic.

Subscriber Never. RTI DDS Toolkit uses an implicit subscriber for
each DomainParticipant. Never.

Publisher Never. RTI DDS Toolkit uses an implicit publisher for
each DomainParticipant. Never.

145

Appendix B Creation and Release of DDS Entities

146

DDS Entity Is Created When… Is Released When…

DataReader for Topic
‘x’

The Create Reader function is called and there is not
already another valid DataReader.

If the forceExclusiveReader flag is true in the Advanced
Create Reader, a new DataReader is created.

An execution ends and no DDS Reader objects have used
the DataReader within the defined timeout period.

The DDS Release Unused Entities function is called from
LabVIEW and no DDS Reader objects are using the
DataReader.

DataWriter for Topic ‘x’ The DDS Create Writer function is called from LabVIEW
and there is not already another valid DataWriter.

An execution ends and no DDSWriter objects have used the
DataWriter within the defined timeout period.

The DDS Release Unused Entities function is called from
LabVIEW and no DDSWriter objects are using the
DataWriter.

Appendix C Supported Data Types and
Corresponding IDL

RTI DDS Toolkit supports these simple and complex data types:

l NUMERIC

INT8a UINT8a

INT16 UINT16

INT32 UINT32

INT64 UINT64

FLOAT/SINGLE

DOUBLE

l BOOLEAN
l TEXT (STRING)
l ENUM

l UINT 32
l INT 32

aINT8 and UINT8 are both mapped as octets. We recommend using UINT8, since octets are not signed.

147

Appendix C Supported Data Types and Corresponding IDL

148

l ARRAYS (OR MULTIDIMENSIONALa ARRAYS) OF TYPE
l NUMERIC (INT8, INT16, INT32, INT64, UINT8, UINT16, UINT32, UINT64, FLOAT,
DOUBLE, CLUSTER, STRING)

l BOOLEAN
l ENUM
l CLUSTERS
l STRINGS

l CLUSTER WITH ANY COMBINATION OF:
l NUMERIC
l BOOLEAN
l TEXT (STRING)
l ENUM
l ARRAY
l CLUSTER

For other DDS applications to communicate with VIs that use RTI DDS Toolkit, you need to use com-
patible data types in both applications.

l Simple types have fixed IDLs that are listed in Table C.1 Simple Data Types and Corresponding
IDL.

l Clusters use a direct mapping of their configuration into a C struct, see C.1 Corresponding IDL
for Complex Data Types on page 151.

aIf you’re using multi-dimensional arrays, you must enable the ForceArrayMapping flag. (See 6.4 Configuring Advanced
Writer Settings on page 103 and 6.5 Configuring Advanced Reader Settings on page 104 for more information.) By default,
RTI DDS Toolkit will try to map the array as a sequence, and that can’t be done for multi-dimensional arrays.

Appendix C Supported Data Types and Corresponding IDL

Data Type Sample Entry in IDL Default TypeNamea

INT8
struct Int8Struct{

octet value;
};

DDS_Tiny

INT16

struct Int16Struct{
short value;

};
DDS_Short

INT32
struct Int32Struct{

long value;
};

DDS_Long

INT64
struct Int64Struct{

long long value;
};

DDS_LongLong

UINT8 struct UnsignedInt8Struct{

octet value;

};

DDS::Octets

UINT16
struct UnsignedInt16Struct{

unsigned short value;
};

DDS_UnsignedShort

UINT32
struct UnsignedInt32Struct{

unsigned long value;
};

DDS_UnsignedLong

UINT64
struct UnsignedInt64Struct{

unsigned long long value;
};

DDS_UnsignedLongLong

Table C.1 Simple Data Types and Corresponding IDL

aIf you do not provide a TypeName, a “Default TypeName” is assigned depending on the type. This may cause conflicts if
several cluster types are defined in the same DomainParticipant.

149

Appendix C Supported Data Types and Corresponding IDL

150

Data Type Sample Entry in IDL Default TypeNamea

FLOAT
struct FloatStruct{

float value;
};

DDS_Float

DOUBLE
struct DoubleStruct{

double value;
};

DDS_Double

BOOLEAN
struct BooleanStruct{

boolean value;
};

DDS_Boolean

STRING

Default:
struct DDS_String{

string<1024> value;
};

Forcing use of unbounded string:
struct DDS_String{

string value;
};

DDS::String

ARRAY of the above types

(This example uses INT16 and nDim elements.)

Default:
struct ArrayStruct {

sequence<short, nDim> value;
}

Forcing use of array:
struct ArrayStruct
{

short value[nDim];
}

DDS_Default_TypeName

Table C.1 Simple Data Types and Corresponding IDL

aIf you do not provide a TypeName, a “Default TypeName” is assigned depending on the type. This may cause conflicts if
several cluster types are defined in the same DomainParticipant.

C.1 Corresponding IDL for Complex Data Types

C.1 Corresponding IDL for Complex Data Types

C.1.1 Clusters

The IDL representation for a cluster depends on its structure and the type name provided in the Create
subVI. If the type name is not provided, we assign DDS_DefaultTypeName as the type name. This may
cause conflicts if several cluster-types are defined in the same DomainParticipant.

For example, using the cluster in the figure on the left, assume the type
name isMyTypeName. The corresponding IDL would be as follows:
struct MyTypeName{

string<1024>1 Text; //@key
long I32_Num; //@key
long long I64_Num;
unsigned short U16_Num;
sequence<float,4> Sgl_Array;
innerclusterType innercluster;

};
struct superinnerClusterType{

double Dbl_Num;
ultrainnerClusterType ultrainnerCluster;

};
struct ultrainnerClusterType{

sequence<short,2> I16_Array;
};
struct innerclusterType{

float Sgl_Num;
boolean Boolean;
superinnerClusterType superinnerCluster;

};

Note that inner clusters add “Type” to their name to avoid repeating the
same name in both type and member. Also note that all the names of
the components are joined by underscores instead of using spaces. This
prevents compiling errors in other languages such as C, C++, Java or
.Net. Please consider interoperability with these languages and avoid
invalid names in the cluster components.

1If forceUnboundedString? is set to true, IDL correspondence will be string Text;. And you will need to run the rtiddsgen
with the option –unboundedSupport.

151

C.1.2 Enums

152

C.1.2 Enums

The IDL representation for an enum depends on the elements it is composed of. Note that only 32-bit
enums are supported. Enums are represented in LabVIEW controls as Rings or Enums. Those Rings or
Enums must have "allow undefined values in runtime" disabled, and a representation of U32 for
Enums or I32 for Rings.

For example, consider the enum seen below:

It would have the following IDL representation for a Type Name,MyType:
struct EnumStruct{

MyTypeEnum MyType;
}
enum MyTypeEnum {

example_value_0 = 0,
example_value_1 = 1,
example_value_N = 2

};

Note: DDS Toolkit will add the suffix "Enum" to the enum name in the Data Type. So if your type is
MyEnum as seen above, the resulting name in the Data Type will beMyEnumEnum.

When updating from a version before 3.1.0: See the Compatibility section of the Release Notes for
details on how to replace an enum with a Ring.

../release_notes/RTI_DDS_Toolkit_ReleaseNotes.pdf

Appendix D File Folders Installed within
LabVIEW

D.1 File Folders on Windows Systems

RTI DDS Toolkit adds the following files to LabVIEW’s folders.

In the paths shown below, LabVIEW 20xx is:

l C:\Program Files1\National Instruments\LabVIEW 20xx

Where xx represents the LabVIEW version number (LabVIEW 2016, etc.)

l DLLs
l \LabVIEW 20xx\vi.lib_RTI DDS Toolkit_internal_deps

l Control Types and VIs
l \LabVIEW 20xx\vi.lib\RTI DDS Toolkit\Types
l \LabVIEW 20xx\vi.lib\RTI DDS Toolkit\VIs

l QoS Profile (for documentation purposes only)
l \LabVIEW 20xx\vi.lib_RTI DDS Toolkit_internal_deps\
RTI_LABVIEW_CONFIG.documentationONLY.xml

l Examples
l \LabVIEW 20xx\examples\RTI DDS Toolkit\ArrayOfClustersDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\BlockingReadDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\ClusterDemo

1On 64-bit systems, the folder is “Program Files (x86)”

153

D.2 File Folders on NI Linux Targets

154

l \LabVIEW 20xx\examples\RTI DDS Toolkit\ContentFilteredTopicDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\cRIO-9068Project
l \LabVIEW 20xx\examples\RTI DDS Toolkit\LogMessagesDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\MonitoringDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\NumberDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\ReadAllDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\ReadMultipleSamplesDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\SecurityShapesDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\ShapesDemo
l \LabVIEW 20xx\examples\RTI DDS Toolkit\StringsDemo

D.2 File Folders on NI Linux Targets

l Libraries
l /usr/local/rti/lib

l QoS profile
l /home/lvuser/rti/RTI_LABVIEW_CONFIG.documentationONLY.xml

Appendix E Troubleshooting
E.1 Enabling Debugging Mode

To debug your VI, you can use the administration panel or the debugging subpalette, which
provides information about several different types. For more information, see 6.7 Debugging an
RTI Connext DDS LabVIEW Application on page 108.

E.2 Error Codes and Possible Solutions

Table E.1 Error Codes below shows error codes and possible solutions.

Error
Code Error Message Possible Reason(s) Additional

Information

5001 Something failed in a previous stage
(wired error input)

RTI DDS Toolkit found an error status in the input error
cluster. It might be due to an error in the previous stage.

5003 Unable to delete the contained entities
of a participant

It is likely that another application is still using an entity of
that Participant. Close all the instances before trying to de-
lete the contained entities.

You can also delete the un-
used contained entities by us-
ing the DDS Release Unused
Entities subVI (in RTI DDS
Toolkit, Tools)5004 Unable to delete a participant It is likely that another application is still using that Par-

ticipant. Close all the instances before trying to delete it.

5005 Unable to finalize the Do-
mainParticipantFactory.

It is likely that another application is still using the Do-
mainParticipantFactory. Close all the instances before try-
ing to delete it.

5006 Bad QoS settings

QoS setting format is incorrect or does not match with any of
the ones existing in the XML file or Custom Security Pro-
files. Check that the corresponding QoS profile exists as a
Custom Security Profile or that it is a normal QoS Profile
with a correct format (Library::Profile). If loading the profile
from an XML file, check that the XML file exists and contains
the QoS profile with a correct configuration.

Table E.1 Error Codes

155

E.2 Error Codes and Possible Solutions

156

Error
Code Error Message Possible Reason(s) Additional

Information

5007 Unable to assert (find or create) a Par-
ticipant.

Possible error in the QoS configuration. You can also use
the default configuration by attaching an empty string as in-
put to the Create Reader/Writer subVI. This may be caused
by not having an active network interface in the system.

If the monitoring library is being used, it needs to be in the
PATH.

Review the QoS profile for the
Participant. Modify the QoS
profile to work without an act-
ive network interface as ex-
plained in E.3 Running without
an Active Network Interface
on page 165.

5008
Unable to register the type because
there exists another entity with same
configuration

This might be caused by an unused entity that has not been
released.

Close the current VI and release unused entities using the
DDS Release Unused Entities subVI (in RTI DDS Toolkit,
Tools). Then re-open the current VI.

5009 Unable to get the Participant QoS for a
given profile.

Possible error in the QoS configuration. Check that the cor-
responding QoS profile exists as a Custom Security Profile
or that it is a normal QoS Profile with a correct format
(Library::Profile). If loading the profile from an XML file,
check that the XML file exists and contains the QoS profile
with a correct configuration.

You can also use the default configuration by setting the
QoS fields in the Advanced Writer/Reader Configuration
cluster (in the Advanced Create Reader/Writer subVI) to
empty strings.

Review the QoS profile for the
Participant. Make sure you are
selecting the correct settings:
either a Custom Security Pro-
file or a fully qualified name
(Library::Profile).

5010
Unable to update the number of ap-
plications accessing to the Participant
(client count property).

This might cause a memory leak when releasing the par-
ticipant.

5011 Unable to set the QoS Properties to the
participant.

Check that the QoS configuration provided is correct. You
can also use the default configuration by attaching an empty
string as input to the Create Reader/Writer subVI.

Review the QoS profile for the
Participant.

5012 Unable to get the description of the
topic.

Check that the Reader/Writer was correctly created (no pre-
vious errors).

5014 Unable to assert (find or create) a
Topic.

Possible error in the QoS configuration. Check that the cor-
responding QoS profile exists as a Custom Security Profile
or that it is a normal QoS Profile with a correct format
(Library::Profile). If loading the profile from an XML file,
check that the XML file exists and contains the QoS profile
with a correct configuration.

You can also use the default configuration by setting the
QoS fields in the Advanced Writer/Reader Configuration
cluster (in the Advanced Create Reader/Writer subVI) to
empty strings.

Review the QoS profile for the
Topic.

Make sure you are selecting
the correct settings: either a
Custom Security Profile or a
fully qualified name
(Library::Profile).

Table E.1 Error Codes

E.2 Error Codes and Possible Solutions

Error
Code Error Message Possible Reason(s) Additional

Information

5015 Unable to get the implicit publisher.
Implicit publisher is needed to create the Writer. Check that
the participant configuration is correct and that there are no
previous errors.

Review the QoS profile for the
Publisher.

Make sure you are selecting
the correct settings: either a
Custom Security Profile or a
fully qualified name
(Library::Profile).

You can also use the default
configuration by setting the
QoS fields in the Advanced
Writer/Reader Configuration
cluster (in the Advanced
Create Reader/Writer subVI)
to empty strings.

5016 Unable to get all the DataWriters in the
given participant.

It might be due to a memory restriction (not enough memory
available to recover the existing DataWriters).

Using the DDS Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this problem.

5017 Unable to create the DataWriter. Check that the QoS configuration provided for the
DataWriter is correct.

Review the QoS profile for the
DataWriter.

Make sure you are selecting
the correct settings: either a
Custom Security Profile or a
fully qualified name
(Library::Profile).

You can also use the default
configuration by setting the
QoS fields in the Advanced
Writer/Reader Configuration
cluster (in the Advanced
Create Reader/Writer subVI)
to empty strings.

5018 Unable to get the QoS Properties from
a DataWriter.

Check that Create Writer was successful and that the ref-
erence passed to the Write function is the one provided as
output from the Create function. It might also be a problem
in the QoS setting provided (use default ones as a safest op-
tion).

5019 Unable to set the QoS Properties for a
DataWriter.

Check that Create Writer was successful and that the ref-
erence passed to the Write/Set_QoS_Setting function is the
correct one. It might also be a problem in the QoS setting
provided (use default ones as a safest option).

5020 Unable to update the number of ap-
plications using a DataWriter.

This might cause a memory leak when releasing the
DataWriter.

5021 Unable to narrow the Dynamic
DataWriter.

This is an unexpected error. Contact labview@rti.com or
visit our Community Portal at http://community.rti.com to
view current solutions and forum entries.

5022 Unable to get the implicit subscriber.
Implicit subscriber is needed to create the Reader. Check
that the participant configuration is correct and that there
are no previous errors.

Review the QoS profile for the
Subscriber.

Make sure you are selecting
the correct settings: either a
Custom Security Profile or a
fully qualified name
(Library::Profile).

You can also use the default
configuration by setting the
QoS fields in the Advanced
Writer/Reader Configuration
cluster (in the Advanced
Create Reader/Writer subVI)
to empty strings.

Table E.1 Error Codes

157

http://community.rti.com/

E.2 Error Codes and Possible Solutions

158

Error
Code Error Message Possible Reason(s) Additional

Information

5023 Unable to get all the DataWriters in the
given participant.

It might be due to a memory restriction (not enough memory
available to recover the existing DataWriters).

Using the DDS Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this.

5024 Unable to create the DataReader. Check that the QoS configuration provided for the
DataReader is correct.

Review the QoS profile for the
DataReader.

Make sure you are selecting
the correct settings: either a
Custom Security Profile or a
fully qualified name
(Library::Profile).

You can also use the default
configuration by setting the
QoS fields in the Advanced
Writer/Reader Configuration
cluster (in the Advanced
Create Reader/Writer subVI)
to empty strings.

5025 Unable to get the QoS Properties from
a DataReader.

Check that Create Reader was successful and that the ref-
erence passed to the Read function is the correct one. It
might also be a problem in the QoS setting provided (use de-
fault ones as a safest option).

5026 Unable to set the QoS Properties for
the DataReader.

5027 Unable to update the number of ap-
plications using a DataReader.

This might cause a memory leak when releasing the
DataReader.

5028 Unable to narrow the Dynamic
DataWriter.

This is an unexpected error. Contact labview@rti.com or
visit our Community Portal at http://community.rti.com to
view current solutions and forum entries.

5029 Unable to delete a Topic.
It is likely that another instance of LabVIEW is still using that
Topic. Close all LabVIEW instances before trying to delete
it.

You can also delete the un-
used contained entities by us-
ing the DDS Release Unused
Entities subVI (in RTI DDS
Toolkit, Tools).

5030 Unable to delete a DataReader (or its
contained entities).

It is likely that another instance of LabVIEW is still using that
DataReader or its entities. Close all LabVIEW instances be-
fore trying to delete it.

5031 Unable to delete a DataWriter (or its
contained entities).

It is likely that another instance of LabVIEW is still using that
DataWriter or its entities. Close all LabVIEW instances be-
fore trying to delete it.

5032 Unable to initialize the DDS Dynamic
Data.

There was a problem when allocating memory. Using the
DDS Release Unused Entities subVI (in RTI DDS Toolkit,
Tools) might fix this.

5033 Unable to initialize the Reader Node.
There was a problem when allocating memory. Using the
DDS Release Unused Entities subVI (in RTI DDS Toolkit,
Tools) might fix this.

5034 Unable to initialize the DDS Manager. Check that the DLL was correctly loaded (a message can be
found in the Debug Window).

5035 Invalid reference to a Reader or Writer
Node.

Please use the appropriate Create subVI to generate a cor-
rect reference and connect it to the Read/Write subVI.

Pay special attention to the
data type.

5036 Unable to read data from DataReader. Check that the Query Condition is correctly set.

* will return everything.

A regular expression will also
work (for instance: Text-
=’hello’).

Table E.1 Error Codes

http://community.rti.com/

E.2 Error Codes and Possible Solutions

Error
Code Error Message Possible Reason(s) Additional

Information

5037 Unable to initialize the Writer Node.
There was a problem when allocating memory.

Using the DDS Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this.

5038 Unable to write data.

DataWriter timed out or ran out of resources. Using the DDS
Release Unused Entities subVI (in RTI DDS Toolkit, Tools)
might fix this.

Check that you attached a valid indicator/storage to the
write output.

5039 Unable to initialize the semaphore for
the DLL.

There was a problem when allocating memory.

Using the DDS Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this.

5040 Unable to create the Query Condition to
filter Read subVI.

Check that the Query Condition is correctly set. To read
everything, set it to * or leave it empty.

A regular expression will also
work (for instance: Text-
=’hello’).

5042 Unable to unregister the Type Code.
Other applications might be using it. Using the DDS
Release Unused Entities subVI (in RTI DDS Toolkit, Tools)
might fix this.

5044 Unable to get all the available Topics.

It might be due to a memory restriction (not enough memory
available to recover the existing Topics).

Using the DDS Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this.

5045 Warning: Unable to delete one or sev-
eral DDS Entities.

Other instances of LabVIEW are currently using one or sev-
eral of the DDS Entities.

This is not an error, just a
warning. Closing all running
VIs should release all the re-
maining DDS Entities.

5046 Unable to get the Topic's QoS.

Check that the Topic's QoS provided was correct and that
the Topic was initialized using the Create Reader or Create
Writer subVI.

Review the QoS profile for the
Topic.

Make sure you are selecting
the correct settings: either a
Custom Security Profile or a
fully qualified name
(Library::Profile).

You can also use the default
configuration by setting the
QoS fields in the Advanced
Writer/Reader Configuration
cluster (in the Advanced
Create Reader/Writer subVI)
to empty strings.

5047 Unable to set the Topic's QoS.

5048 Unable to access library handler. Possible error in the QoS properties provided. The RTI DDS
Toolkit Dynamic Library was not correctly loaded.

5049 Unable to take the semaphore Another thread may already be using the DLL.

Table E.1 Error Codes

159

E.2 Error Codes and Possible Solutions

160

Error
Code Error Message Possible Reason(s) Additional

Information

5050 Unable to recover participant's default
QoS

Internal error due to default configuration issues. Contact
labview@rti.com or visit our Community Portal at
http://community.rti.com to view current solutions and forum
entries.

5051
Unable to load QoS profiles from the
embedded configuration or external
XML files

Error in QoS properties. Verify all profiles loaded by the
NDDS_QOS_PROFILES environment variable.

Make sure you are selecting
the correct settings: either a
Custom Security Profile or a
fully qualified name
(Library::Profile).

You can also use the default
configuration by setting the
QoS fields in the Advanced
Writer/Reader Configuration
cluster (in the Advanced
Create Reader/Writer subVI)
to empty strings.

5052 Incorrect type name. Usual format is Library::Type. Avoid using spaces.

5053 One of the required parameters of the
subVI is missing

Required parameters for Create subVIs: domain_id, topic_
name, type_name, data_type; for Read/Write subVIs: ref_
in and data; for Release: ref_in.

These pins are also required
for the clusters even if you use
Call Library Function (CLF)
calls instead of a subVI.

5054 Unable to access to the Type Code
Factory.

Another application has finalized the TypeCode Factory and
there was an error while reinitializing it. Retry.

5056 Unable to create the Type Code. The attached cluster is incompatible with the supported one
and cannot be created.

See Appendix C Supported
Data Types and Cor-
responding IDL on page 147
for details on the supported
types.

5057 Unable to set the Dynamic Data. Check that the correct data type is connected to the subVI
(pay special attention to Create Reader/Writer ones).

5058 Unable to get the Dynamic Data. Check that the correct data type is connected to the subVI
(pay special attention to Read/Write ones).

5059 Invalid profile provided to the Set QoS
subVI.

There may be an incompatible QoS Policy. Check that the
provided profile exists. Once created, some QoS settings
cannot be modified. Try using that QoS Policy in the Create
subVI.

Review the QoS profile for the
Reader/Writer.

Some QoS setting cannot be
applied once the
Reader/Writer is created
unless you completely delete
it. Close and reopen the VI or
use the DDS Release Unused
Entities subVI (in RTI DDS
Toolkit, Tools).

5060 Unable to give the semaphore.
This might block another
thread from using the RTI
DDS Toolkit API.

Table E.1 Error Codes

http://community.rti.com/

E.2 Error Codes and Possible Solutions

Error
Code Error Message Possible Reason(s) Additional

Information

5061 Unable to lock/unlock the Participant to
create the Reader.

Another application was already deleting the Participant.

Removing unused entities or closing the VIs might fix this
problem.

You can also delete the
unused contained entities by
using the DDS Release
Unused Entities subVI (in RTI
DDS Toolkit Tools).

5062 Reached the maximum number of par-
ticipants allowed in the system.

Using the DDS Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this.

5063 Unable to create the system clock.
This is an unexpected error. Contact labview@rti.com or
visit our Community Portal at http://community.rti.com to
view current solutions and forum entries.

5064 Unable to create the Type Support
needed to register a type.

There was a problem when allocating memory.

Using the DDS Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this.

5065 Unable to assign that type name to the
Topic because it is currently in use.

The type name provided is already registered and used by
some entities.

Using the DDS Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this.

5067
Unable to create the key with the
provided string. Might be a memory
allocation problem.

KeyName should be a string containing the key names sep-
arated by semicolons (';'). The fields inside a cluster can be
provided in the form 'cluster.field'.

See 4.7 Lesson 7—Used Nes-
ted and Multiple Keys on
page 61 for further details.

5068
Unable to create DataReader using
read() with KEEP_ALL history kind.
Use case not supported.

Use the shipped profile 'LabVIEWLibrary::ReliableProfile' to
use Reliable Communication with Shared Readers. If you
need Strict Reliability or History kind KEEP_ALL, use
Exclusive Readers and do not force them to use read().

The current implementation of
a non-exclusive Reader uses
'read' instead of 'take', so
strictly reliable communication
is not compatible with non-
exclusive Readers.

5069
Incompatible configuration: History
depth > 1 needs 'only_new_samples'
flag in the Read subVI to be 'true'.

Using a depth bigger than 1 for the history property and not
setting the 'only_new_samples' could cause that samples
stayed unread. Change the QoS configuration or set the flag
to 'true'.

Review the QoS profile for the
DataReader.

5070 Unable to extract information from the
Advanced Writer Configuration control.

Make sure you are using the cluster 'RTI DDS Advanced
Writer Configuration.ctl' contained in LVDDS_Library.

5071
Unable to extract information from the
Advanced Reader Configuration con-
trol.

Make sure you are using the cluster 'RTI DDS Advanced
Reader Configuration.ctl' contained in LVDDS_Library.

5072 The Local Logger is not correctly ini-
tialized.

Make sure the size of the Local Logger is not a negative
number.

5073 Unable to create a new message into
the Local Logger.

Make sure there is enough memory to log a new message.
You could need to use a lower queue size.

5074 Unable to create Distributed Logger.

Check that the Distributed Logger Queue Size is a positive
number and the QoS setting format is correct (Library::Pro-
file), the XML file exists, and it contains a correct con-
figuration.

Table E.1 Error Codes

161

http://community.rti.com/

E.2 Error Codes and Possible Solutions

162

Error
Code Error Message Possible Reason(s) Additional

Information

5075 Unable to delete Distributed Logger. Make sure Distributed Logger has not been previously
deleted.

5076 Unable to create the custom QoS list.
Might be a memory allocation problem.

The Custom QoS Security Profiles list has not been able to
be allocated. Free memory and try again.

5077
Unable to create the custom QoS
Profile. The name might be in use or the
input parameters are not correctly set

The Custom QoS Profile cannot be created. Make sure the
provided name is not already in use, does not contain
whitespaces and the input parameters are correctly set.
Check that those parameters are valid paths and do not in-
clude the prefixes "file:" or "data:".

The new Custom Security Pro-
file provided name cannot be
used 2 times. also, make sure
that all the Basic Security Con-
figuration parameters have
been correctly set.

5078
Unable to delete the custom QoS
Profile. The custom profile might not
exist.

The Custom QoS Profile cannot be deleted. Make sure the
provided name is created and doesn't contain whitespaces.

The Custom Security Profile
you want to delete contains
whitespaces or it hasn't been
created yet.

5079 Unable to allocate memory for showing
the created custom QoS profiles.

Unable to allocate memory for showing the created custom
QoS profiles.

5080 Unable to assert (find or create) a
Secure Participant.

Unable to assert a Secure Participant. Make sure the
provided domainID is allowed by the Security Permissions,
OpenSSL is in your PATH and the nddssecurity library is in
the toolkit installation path.

5081 Unable to assert (find or create) a
Secure Topic.

Check that the QoS profile exists and the TopicName is
allowed by the Security Permissions.

5082 Unable to assert (find or create) a
Secure DataReader.

Unable to assert a Secure DataReader. Check that the QoS
configuration provided for the DataReader is correct and
make sure that the provided DataReader is allowed in that
Topic and domainID by the Security Permissions.

5083 Unable to assert (find or create) a
Secure DataWriter.

Unable to assert a Secure DataWriter. Check that the QoS
configuration provided for the DataWriter is correct and
make sure that the provided DataWriter is allowed in that
Topic and domainID by the Security Permissions.

5084 Unable to load the custom QoS Profile.
The custom profile might not exist.

The Custom QoS Profile cannot be loaded. Make sure the
provided name exists and does not contain whitespaces.

The Custom Security Profile
Name already exists or con-
tains whitespaces.

5085 Unable to assert (find or create) a Con-
tentFilteredTopic

Unable to assert a ContentFilteredTopic. Check that there is
not a different ContentFilteredTopic or any Topic with the
same name. Also check that the Filter is supported.

A ContentFilteredTopic can-
not be created with the same
name that a Topic is using. It
can neither share the name
with other Con-
tentFilteredTopics with dif-
ferent expression.

Currently only the filter type
“DDS_SQLFILTER_NAME” is
supported.

5086 Unable to delete ContentFilteredTopic. Unable to delete a ContentFilteredTopic. Check that no
DataReaders are using it.

The ContentFilteredTopic may
not exist or any DataReader is
still using it.

Table E.1 Error Codes

E.2 Error Codes and Possible Solutions

Error
Code Error Message Possible Reason(s) Additional

Information

5087 Unable to get all the available Con-
tentFilteredTopics

It might be due to a memory restriction (not enough memory
available to recover the existing ContentFilteredTopics).
Using the Release Unused Entities subVI (in RTI DDS
Toolkit, Tools) might fix this.

Try to run the Release Unused
Entities subVI manually. This
subVI is under Data Com-
munication, RTI DDS Toolkit,
Tools.

5088
Unable to modify the Con-
tentFilteredTopic because it is currently
in use.

The ContentFilteredTopic cannot be deleted because a
DataReader is still using it. The Filter Expression of a Con-
tentFilteredTopic cannot be modified while a DataReader is
using it.

A ContentFilteredTopic
already exists with that name
and a different Filter Expres-
sion. It cannot be modified.

5089 Expecting a Reader, got a Writer.
The DDS Object Ref that is being used is not a Reader.
Make sure that this DDS Object Ref as been created by a
Create Advanced/Simple Reader.

5090 Expecting a Writer, got a Reader.
The DDS Object Ref that is being used is not a Writer. Make
sure that this DDS Object Ref has been created by a Create
Advanced/Simple Writer.

5091 Unable to dispose an Instance. Error disposing an Instance. Check that the key of the
provided data is correctly set.

5092 Unable to unregister an Instance. Error unregistering an Instance. Check that the key of the
provided data is correctly set.

5093 Error creating type info list. This might
be caused by running out of memory. Not enough memory for allocating a Type Info List.

5094

Unable to delete Type Code. This might
be caused by a corrupted Type Code
due to malformed data. Check Type
Definition for inconsistencies.

Corrupted Type Code. This might happen when the Type
Code was not created properly.

5095

Error asserting Type Info. This might
happen when a Type Info doesn't exist
or another one with the same name
already exists but represents a different
Type Definition.

The type info doesn’t exist or there is another type with the
same name but different type or configuration like using ar-
rays instead or sequences.

Try changing the type name of
the conflicting type.

5096

Error when creating Type Info. Check
the Administration Panel to see more
details about where the error
happened.

An error occurred while processing a member of the Type
Definition. Check the administration panel to see what the
conflicting member is.

5097

Error when reading from LabVIEW
data. If using "forceArrayMapping?" op-
tion in the Advanced Reader/Writer
Configuration, check that arrays have
the same size as the Type Definition. If
using sequences or strings, check that
the length is smaller than the maximum.

An error occurred while reading the cluster members. This
might happen if the size of the arrays, sequences or strings
passed to the write VI has an invalid size (for example, a se-
quence with more elements than the maximum set, or an ar-
ray with a different number of elements than the one in the
Type Definition when the VIs were generated).

5098

Error when writing to LabVIEW data.
This may happen when running out of
memory or when an invalid address is
found. Check the Administration Panel
for more detailed information.

An error occurred while trying to write into the output cluster.
This might happen because an invalid memory address has
been found.

Table E.1 Error Codes

163

E.2 Error Codes and Possible Solutions

164

Error
Code Error Message Possible Reason(s) Additional

Information

5099
Unable to delete element from the Type
Info list. Check the Administration
Panel for more details.

An error occurred while trying to delete an existing Type
Info. The Administration Panel may provide more in-
formation.

5101 Unable to add TypeInfo node to
TypeInfo list.

5102 Error when adding LabVIEW Cluster to
Dynamic Data.

Error when trying to add a cluster to a Dynamic Data struct
for sending through a DataWriter.

5103 Error when adding LabVIEW Array to
Dynamic Data array.

Error when trying to add a LabVIEW array to a Dynamic
Data struct for sending through a DataWriter.

5104 Error when adding LabVIEW Array to
Dynamic Data sequence.

Error when trying to add a LabVIEW array to a Dynamic
Data sequence for sending through a DataWriter

5105 Error when adding LabVIEW String to
Dynamic Data.

Error when trying to add a LabVIEW string to a Dynamic
Data struct for sending through a DataWriter

5106 Error when adding LabVIEW Numeric
to Dynamic Data.

Error when trying to add a LabVIEW numeric element to a
Dynamic Data struct for sending through a DataWriter.

5107 Error when adding Dynamic Data struct
to LabVIEW Cluster.

Error when converting a Dynamic Data struct into a
LabVIEW cluster.

5108 Error when adding Dynamic Data array
to LabVIEW Array.

Error when converting a Dynamic Data array into a
LabVIEW array.

5109 Error when adding Dynamic Data se-
quence to LabVIEW Array.

Error when converting a Dynamic Data sequence into a
LabVIEW array.

5110 Error when adding Dynamic Data string
to LabVIEW String.

Error when converting a Dynamic Data string into a
LabVIEW string.

5111 Error when adding Dynamic numeric to
LabVIEW Numeric.

Error when converting a Dynamic Data numeric type into a
LabVIEW numeric type.

5112
Error when adding data to DDS se-
quence. The number of elements ex-
ceeds the maximum allowed.

Check the size of the array before passing it to the Write VI.

5113

Security is not available in
RT targets. Disable security when
using RTI DDS LabVIEW in an
RT target.

Check the QoS. Security is enabled when running the
Toolkit in NI Linus RT targets, but it is not supported. Do
not use security in NI Linux targets.

Table E.1 Error Codes

E.3 Running without an Active Network Interface

E.3 Running without an Active Network Interface

To use RTI DDS Toolkit on a computer that does not have an active network interface, you have two
choices:

l Change the QoS profile to use only the Shared Memory transport. As described in the RTI Con-
next DDS Core Libraries User’s Manual (see the chapter on Configuring QoS with XML), you
need to set up this QoS properties in all your profiles:

<participant_qos>
<transport_builtin>

<mask>SHMEM</mask>
</transport_builtin>
<discovery>

<initial_peers>
<element>builtin.shmem://</element>

</initial_peers>
</discovery>

</participant_qos>

l Another option is to install the Microsoft KM-TEST Loopback Adapter, which simulates the
existence of a network interface. You can install it from the Windows Device manager.

For example, to install the Microsoft KM-TEST Loopback Adapter on a Windows 10 sys-
tem:
1. Right-click the Windows Start button and select Device manager.

2. From the Action menu, select Add legacy hardware. (If you only see Help under the
Action menu, select something in the tree first, then look again.)

3. The Add Hardware Wizard will open. Click Next.

4. Choose Install the hardware that I manually select from a list (Advanced) and click
Next.

5. Scroll down to select Network adapters and click Next.

6. SelectMicrosoft as the manufacturer, selectMicrosoft KM-TEST Loopback Adapter as
the model, then click Next.

7. Click Next, then Finish.

165

E.4 Error Installing RTI DDS Toolkit RT Support

166

E.4 Error Installing RTI DDS Toolkit RT Support

If RTI DDS Toolkit throws errors -8999 or -8998 during installation or uninstallation, the install-
ation/uninstallation has not completed successfully. This can be caused by incorrect permissions. Please
rerun either LabVIEW or the VI Package Manager with Administrator privileges.

E.5 Error Using Custom Security Profiles

If you are having problems when trying to create a Reader or Writer while using a Custom Security Pro-
file, make sure that:

l The domainID for the Reader or Writer you want to create is allowed by the permissions file you
are loading.

l The topic you want to use is allowed by the permissions file you are loading.

E.5 Error Using Custom Security Profiles

l Security is not supported on NI Linux RT targets. Error 5113 will be triggered if trying to enable
security on an NI Linux RT target.

167

E.6 Errors Generating ComplexType VIs

168

E.6 Errors Generating ComplexType VIs

E.6.1 Error 1154

If you see error 1154 (shown below) when generating ComplexType VIs, check that the Custom Type
Definition (*.ctl) is saved in the same LabVIEW version that the RTI DDS ComplexType Generator is
running.

E.6.2 Error -8997

If you see error -8997 (shown below) when generating Complex Type VIs, the Complex Type Gen-
erator has found unsupported types inside the Type Definition (*.ctl). See Appendix C Supported Data
Types and Corresponding IDL on page 147 for further information:

E.6.3 Unitialized Array Warning

E.6.3 Unitialized Array Warning

The following warning message means that the provided Type Definition contains uninitialized arrays.
To fix this issue, open the Type Definition (*.ctl) and modify the value of the array element as
described in the warning message box (shown below). See 3.4.2 Preventing 'Type Code Incorrect'
Error when Working with Arrays on page 27 for more information.

This warning doesn’t prevent you from generating VIs for the Type Definition. If you click OK without
initializing the array first as instructed, the VIs are created anyway, but you may experience errors
while executing the VIs in an application.

169

E.7 RT Device Hangs when Modifying QoS Profiles

170

E.7 RT Device Hangs when Modifying QoS Profiles

If your RT device hangs when modifying the QoS profiles, this may be caused by an incorrect QoS
XML file. Some of the possible issues are:

l Malformed XML file
l Incorrect QoS values
l Duplicated QoS profile/library names

	Chapter 1 Installation
	1.1 Introduction
	1.2 Installing
	1.2.1 Installing RTI DDS Toolkit Support Files on a Target

	1.3 Verifying Installation
	1.3.1 LabVIEW Functions Palette
	1.3.2 LabVIEW Controls Palette

	1.4 Upgrading
	1.4.1 Additional Steps when Upgrading from a Version before 3.1.2
	1.4.2 Additional Steps when Upgrading from a Version Before 2.0.0.104

	1.5 Uninstalling
	1.5.1 Uninstalling RTI DDS Toolkit Support Files from LabVIEW RT Targets

	1.6 LabVIEW Examples
	1.7 Product Support

	Chapter 2 Communication Models
	2.1 Publish/Subscribe – A Simple Analogy
	2.2 The DDS Paradigm
	2.3 Quality of Service (QoS)
	2.4 DDS—Example Application

	Chapter 3 A Simple Read/Write Example
	3.1 Publishing a String in DDS
	3.2 Subscribing to a String in DDS
	3.3 What is Happening?
	3.4 Usage Notes
	3.4.1 Communicating Unbounded Entities
	3.4.2 Preventing 'Type Code Incorrect' Error when Working with Arrays
	3.4.3 Troubleshooting with Ping and Spy

	Chapter 4 Tutorial
	4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
	4.1.1 Developing a VI to Publish Simple Data (Numeric)
	4.1.1.1 Create a Writer Object to Publish a Numeric (DBL)
	4.1.1.2 Publish a Numeric (DBL)
	4.1.1.3 Release the Writer Object

	4.1.2 Creating a VI to Subscribe to Simple Data (Numeric)
	4.1.2.1 Create a Reader Object to Subscribe to a Numeric (DBL)
	4.1.2.2 Subscribe to a Numeric (DBL)
	4.1.2.3 Release the Reader Object

	4.1.3 Testing

	4.2 Lesson 2—Using ComplexType Generator to Publish and Subscribe to Complex Data (Clusters)
	4.2.1 Creating VIs for Publishing and Subscribing to a Cluster
	4.2.1.1 Modify the Writer Example VI
	4.2.1.2 Modify the Reader Example VI
	4.2.1.3 Creating VIs Programmatically

	4.2.2 Testing

	4.3 Lesson 3—Blocking Reads
	4.4 Lesson 4—Filtering Data
	4.4.1 Filtering Data Using Query Conditions
	4.4.2 Filtering Data Using ContentFilteredTopics

	4.5 Lesson 5—Reading Only New Samples
	4.6 Lesson 6—Using Keyed Types (RTI Shapes Demo)
	4.6.1 Working with Shapes Demo
	4.6.2 Publishing a Shape (Square)
	4.6.3 Subscribing to Shapes

	4.7 Lesson 7—Used Nested and Multiple Keys
	4.7.1 Adding Multiple Top-Level Fields as Keys
	4.7.2 Adding Internal Cluster Fields as Keys (Nested Keys)

	4.8 Lesson 8—Reading All Samples (Reliable Communication)
	4.8.1 Writing and Reading Reliably Using the Default Configuration
	4.8.1.1 Writing Reliably
	4.8.1.2 Reading Reliably

	4.8.2 Writing and Reading using Strict Reliability
	4.8.2.1 Writing in Strictly Reliable Mode
	4.8.2.2 Reading in Strictly Reliable Mode

	4.9 Lesson 9—Debugging Your RTI Connext DDS Application
	4.9.1 Debugging an Application Using the Administration Panel
	4.9.1.1 Logging Messages Manually
	4.9.1.2 Output Provided by RTI Monitor using Distributed Logger

	4.9.2 Adapting a VI to Use RTI Monitoring Library
	4.9.2.1 Output Provided by RTI Monitor

	4.10 Lesson 10—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)
	4.11 Lesson 11—Using Security with RTI DDS Toolkit (Windows only)
	4.11.1 Example Description
	4.11.2 Description of VIs
	4.11.3 Main Scenarios
	4.11.4 Running the LabVIEW Example

	4.12 Lesson 12—Reading Multiple Samples at a Time
	4.13 Reviewing Completed Solutions

	Chapter 5 Loading Quality of Service Profiles
	Chapter 6 Advanced Concepts and Settings
	6.1 Default Configuration: DDS Entities Created by ‘Simple Create’ SubVIs
	6.2 Types with a Specific String Size
	6.3 Working with Custom Types
	6.3.1 Using the RTI DDS ComplexType Generator
	6.3.2 Using the VI called 'DDS Generate Custom Type VIs'

	6.4 Configuring Advanced Writer Settings
	6.5 Configuring Advanced Reader Settings
	6.6 Working with Instance State Kind
	6.6.1 Write, Dispose or Unregister
	6.6.2 Reading Instance State Kind

	6.7 Debugging an RTI Connext DDS LabVIEW Application
	6.7.1 Using Administration Panel (for Windows Systems only)
	6.7.1.1 Configuration Section
	6.7.1.2 DDS State Info
	6.7.1.3 Debugging Table

	6.7.2 Debugging SubVIs on Real-Time Targets and Windows Systems
	6.7.2.1 Get Configuration Parameters
	6.7.2.2 Set Configuration Parameters
	6.7.2.3 Get DL Configuration Parameters
	6.7.2.4 Configure Distributed Logger
	6.7.2.5 DDS State Info
	6.7.2.6 Reading Logged Messages

	6.7.3 Logging Messages from LabVIEW

	6.8 Enabling Security (Windows only)
	6.8.1 Managing Custom Security Profiles with the Security Panel (Windows only)
	6.8.1.1 Creating Custom Security Profiles
	6.8.1.2 Deleting Custom Security Profiles
	6.8.1.3 Load Custom Security Profile Values

	6.8.2 Managing Custom Security Profiles with SubVIs
	6.8.2.1 Creating Custom Security Profiles
	6.8.2.2 Deleting Custom Security Profiles
	6.8.2.3 Getting Custom Security Profiles List
	6.8.2.4 Get Security Profiles Values

	6.8.3 Creating DomainParticipants using a Custom Security Profile

	6.9 Advanced Filtering of Data—ContentFilteredTopics
	6.9.1 Configuring ContentFilteredTopics

	6.10 Setting Up Arrays
	6.10.1 Setting Up Arrays of Clusters
	6.10.2 Setting up Arrays of Strings
	6.10.3 Setting up Sequences

	Appendix A VI Descriptions
	A.1 Controls Palette Types
	A.2 Functions Palette
	A.2.1 Writer
	A.2.2 Reader
	A.2.3 Tools
	A.2.3.1 DDS Debugging

	A.2.4 DDS Security

	Appendix B Creation and Release of DDS Entities
	Appendix C Supported Data Types and Corresponding IDL
	C.1 Corresponding IDL for Complex Data Types
	C.1.1 Clusters
	C.1.2 Enums

	Appendix D File Folders Installed within LabVIEW
	D.1 File Folders on Windows Systems
	D.2 File Folders on NI Linux Targets

	Appendix E Troubleshooting
	E.1 Enabling Debugging Mode
	E.2 Error Codes and Possible Solutions
	E.3 Running without an Active Network Interface
	E.4 Error Installing RTI DDS Toolkit RT Support
	E.5 Error Using Custom Security Profiles
	E.6 Errors Generating ComplexType VIs
	E.6.1 Error 1154
	E.6.2 Error -8997
	E.6.3 Unitialized Array Warning

	E.7 RT Device Hangs when Modifying QoS Profiles

