1.1.3. Memory Performance

This document describes memory usage for RTI Connext 7.3.0. The goal is to provide an idea of how much memory is used by the libraries and the DDS entities. This document does not provide exact formulas and numbers for every possible configuration of the software.

1.1.3.1. Platforms and Libraries

Our measurements have been gathered for Linux, x64 Ubuntu 18.04, using RTI Connext Professional release target libraries for x64Linux4gcc7.3.0.

1.1.3.2. Program Memory

These numbers reflect the memory required to load the dynamic libraries when executing code that includes RTI Connext Professional.

For Linux and macOS, we measured the text size by calling the size command for each library. For Windows, we measured this size as the mapped size shown by the Process Explorer.

Library

Size (bytes)

liblua.so

184093

libnddscore.so

8291937

libnddscpp2.so

1322357

libnddscpp.so

1635077

libnddsc.so

6746946

libnddsctesthelpers.so

5736956

libnddsjava.so

894340

libnddsmetp.so

110030

libnddsrwt.so

1296

libnddsspy.so

304720

libnddstransporttcp.so

281261

librticonnextmsgcpp2.so

197659

librticonnextmsgcpp.so

123726

librticonnextmsgc.so

48099

librtiddsconnectorlua.so

213809

librtiddsconnector.so

393003

librtidlcpp2.so

162277

librtidlcpp.so

14436

librtidlc.so

496585

librtilbedisc.so

64215

librtilbpdisc.so

238497

librtilbrtps.so

30906

librtimonitoring2.so

5881708

librtimonitoring.so

6938578

librtisqlite.so

958970

librtitest.so

41897

librtixml2.so

1672966

librtizrtps.so

169890

openssl-3.0/libnddslightweightsecurity.so

462541

openssl-3.0/libnddssecurity.so

950612

openssl-3.0/libnddstls.so

36859

wolfssl-5.5/libnddslightweightsecurity.so

448000

wolfssl-5.5/libnddssecurity.so

913618

Note

The libraries tested are the release versions. These can be found in the <$NDDSHOME>/lib/<$ARCHITECTURE> folder.

1.1.3.3. RTI Threads

This section provides the default and minimum stack size for all the different threads created by the middleware. This includes the following threads:

  • Database thread

  • Event thread

  • Receive threads

  • Asynchronous publishing thread

  • Batching thread

The actual number of threads created by the middleware will depend on the configuration of several QoS policies, such as the ASYNCHRONOUS_PUBLISHER or BATCH QoS Policies.

By default, the stack size value assigned to each thread depends on the platform and OS. This value can be modified by updating the thread stack size QoS value, but a minimum value is required.

Thread

Default Stack Size

Minimum Stack Size

User thread

OS default

43.0 kB

Database thread

OS default

7.8 kB

Event thread

OS default

18.0 kB

Receiver thread

OS default

15.0 kB

Asynchronous publishing thread

OS default

7.8 kB

Batch thread

OS default

7.8 kB

Note

The Minimum Stack Size value refers to the minimum stack size needed for a given thread. This value assumes no user-specific stack space is needed; therefore, if the user adds any data on the thread’s stack, that size must be taken into account.

Note

On Linux, the OS default can be obtained by invoking the ulimit command.

(+) Click to know more about the different thread types in Connext
  • DataBase Thread (also referred to as the Database cleanup thread) is created to garbage-collect records related to deleted entities from the in-memory database used by the middleware. There is one database thread per DomainParticipant.

  • Event Thread handles all timed events, including checking for timeouts and deadlines as well as sending periodic heartbeats and repair traffic. There is one event thread per DomainParticipant.

  • Receive Threads are used to receive and process the data from the installed transports. There is one receive thread per (transport, receive port) pair. When using the builtin UDPv4 and SHMEM transports (with the default configuration), Connext creates five receive threads:

    For discovery:
    • Two for unicast (one for UDPv4, one for SHMEM)

    • One for multicast (for UDPv4)

    For user data:
    • Two for unicast (one for UDPv4, one for SHMEM)

  • Asynchronous Publishing Thread handles the data transmission when asynchronous publishing is enabled in a DataWriter. There is one asynchronous publishing thread per Publisher. This thread is created only if there is one DataWriter enabling asynchronous publishing in the Publisher.

  • Batch Thread handles the asynchronous flushing of a batch when batching is enabled in a DataWriter and the flush_period is set to a value different than DDS_DURATION_INFINITE. There is one batch thread per Publisher. This thread is created only if there is one DataWriter enabling batching and setting a finite flush_period in the Publisher.


1.1.3.4. RTI Transports

This section provides the memory allocated by the OS for the builtin transports UDPv4, UDPv6, and SHMEM, using the default QoS settings.

When using UDPv4 with the default configuration, Connext uses the following for each new DomainParticipant created:

  • One receive socket to receive Unicast-Discovery data

  • One receive socket to receive Multicast-Discovery data

  • One receive socket to receive Unicast-UserData data

  • One socket to send Unicast data

  • N sockets to send Multicast-Discovery data where N is the number of multicast interfaces in the host

The port assigned for the receive socket depends on the domain ID and participant ID. The same number of sockets are opened when using UDPv6.

Size of the buffers

The receive and send socket buffer size can be configured by modifying the transport QoS settings. By default, these values are as follows:

Buffer Size

UDPv4

UDPv6

Receive socket

131072 bytes

131072 bytes

Send socket

131072 bytes

131072 bytes

1.1.3.5. Heap Usage of Connext Entities

RTI has designed and implemented a benchmark application that measures the memory that is directly allocated by the middleware using malloc(). Additionally, the Connext libraries also request the OS to allocate other memory, including:

All the memory allocated by the OS can be tuned using QoS parameters or DDS transport properties.

The following tables report the average heap allocation for the different DDS entities that can be used in a Connext application.

The amount of memory required for an entity depends on the value of different QoS policies. For this benchmark, RTI has used a QoS profile that minimizes the memory usage. The profile is provided in a separate XML file and is described in Minimum QoS Settings.

Entity

Size (Bytes)

Participant

2022004

Type

1451

Topic

2285

Subscriber

9595

Publisher

3803

DataReader

74549

DataWriter

44755

Instances

607

Sample

1409

Remote DR

8229

Remote DW

16146

The memory reported for samples and instances does not include the user data, only the meta-data.

Note

To efficiently manage the creation and deletion of DDS entities and samples, Connext implements its own memory manager. The memory manager allocates and manages multiple buffers to avoid continuous memory allocation. Therefore, the memory growth does not necessarily follow linearly with the creation of DDS entities and samples. The pre-allocation scheme of the memory manager is configurable.

1.1.3.6. Minimum QoS Settings

To obtain the results mentioned above, we used the MinimalMemoryFootPrint profile, included in the builtin profiles. This profile minimizes the use of memory, and can be seen below:

<domain_participant_qos>

    <transport_builtin>
      <mask>UDPv4</mask>
    </transport_builtin>

    <discovery_config>
      <publication_reader_resource_limits>
        <initial_samples>1</initial_samples>
        <max_samples>LENGTH_UNLIMITED</max_samples>
        <max_samples_per_read>1</max_samples_per_read>
        <dynamically_allocate_fragmented_samples>true</dynamically_allocate_fragmented_samples>
        <initial_infos>1</initial_infos>
        <initial_outstanding_reads>1</initial_outstanding_reads>
        <initial_fragmented_samples>1</initial_fragmented_samples>
      </publication_reader_resource_limits>
      <subscription_reader_resource_limits>
        <initial_samples>1</initial_samples>
        <max_samples>LENGTH_UNLIMITED</max_samples>
        <max_samples_per_read>1</max_samples_per_read>
        <dynamically_allocate_fragmented_samples>true</dynamically_allocate_fragmented_samples>
        <initial_infos>1</initial_infos>
        <initial_outstanding_reads>1</initial_outstanding_reads>
        <initial_fragmented_samples>1</initial_fragmented_samples>
      </subscription_reader_resource_limits>
      <participant_reader_resource_limits>
        <initial_samples>1</initial_samples>
        <max_samples>LENGTH_UNLIMITED</max_samples>
        <max_samples_per_read>1</max_samples_per_read>
        <dynamically_allocate_fragmented_samples>true</dynamically_allocate_fragmented_samples>
        <initial_infos>1</initial_infos>
        <initial_outstanding_reads>1</initial_outstanding_reads>
        <initial_fragmented_samples>1</initial_fragmented_samples>
      </participant_reader_resource_limits>
    </discovery_config>

    <resource_limits>
      <transport_info_list_max_length>0</transport_info_list_max_length>
      <local_writer_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </local_writer_allocation>
      <local_reader_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </local_reader_allocation>
      <local_publisher_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </local_publisher_allocation>
      <local_subscriber_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </local_subscriber_allocation>
      <local_topic_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </local_topic_allocation>
      <remote_writer_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </remote_writer_allocation>
      <remote_reader_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </remote_reader_allocation>
      <remote_participant_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </remote_participant_allocation>
      <matching_writer_reader_pair_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </matching_writer_reader_pair_allocation>
      <matching_reader_writer_pair_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </matching_reader_writer_pair_allocation>
      <ignored_entity_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </ignored_entity_allocation>
      <content_filter_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </content_filter_allocation>
      <content_filtered_topic_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </content_filtered_topic_allocation>
      <read_condition_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </read_condition_allocation>
      <query_condition_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </query_condition_allocation>
      <outstanding_asynchronous_sample_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>1</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </outstanding_asynchronous_sample_allocation>
      <flow_controller_allocation>
        <incremental_count>1</incremental_count>
        <initial_count>4</initial_count>
        <max_count>LENGTH_UNLIMITED</max_count>
      </flow_controller_allocation>

      <local_writer_hash_buckets>1</local_writer_hash_buckets>
      <local_reader_hash_buckets>1</local_reader_hash_buckets>
      <local_publisher_hash_buckets>1</local_publisher_hash_buckets>
      <local_subscriber_hash_buckets>1</local_subscriber_hash_buckets>
      <local_topic_hash_buckets>1</local_topic_hash_buckets>
      <remote_writer_hash_buckets>1</remote_writer_hash_buckets>
      <remote_reader_hash_buckets>1</remote_reader_hash_buckets>
      <remote_participant_hash_buckets>1</remote_participant_hash_buckets>
      <matching_reader_writer_pair_hash_buckets>1</matching_reader_writer_pair_hash_buckets>
      <matching_writer_reader_pair_hash_buckets>1</matching_writer_reader_pair_hash_buckets>
      <ignored_entity_hash_buckets>1</ignored_entity_hash_buckets>
      <content_filter_hash_buckets>1</content_filter_hash_buckets>
      <content_filtered_topic_hash_buckets>1</content_filtered_topic_hash_buckets>
      <flow_controller_hash_buckets>1</flow_controller_hash_buckets>

      <max_gather_destinations>16</max_gather_destinations>

      <participant_user_data_max_length>8</participant_user_data_max_length>
      <topic_data_max_length>0</topic_data_max_length>
      <publisher_group_data_max_length>0</publisher_group_data_max_length>
      <subscriber_group_data_max_length>0</subscriber_group_data_max_length>

      <writer_user_data_max_length>16</writer_user_data_max_length>
      <reader_user_data_max_length>16</reader_user_data_max_length>

      <max_partitions>0</max_partitions>
      <max_partition_cumulative_characters>0</max_partition_cumulative_characters>

      <type_code_max_serialized_length>0</type_code_max_serialized_length>
      <type_object_max_deserialized_length>0</type_object_max_deserialized_length>
      <type_object_max_serialized_length>0</type_object_max_serialized_length>
      <deserialized_type_object_dynamic_allocation_threshold>0</deserialized_type_object_dynamic_allocation_threshold>
      <serialized_type_object_dynamic_allocation_threshold>0</serialized_type_object_dynamic_allocation_threshold>

      <contentfilter_property_max_length>1</contentfilter_property_max_length>
      <participant_property_list_max_length>0</participant_property_list_max_length>
      <participant_property_string_max_length>0</participant_property_string_max_length>
      <writer_property_list_max_length>0</writer_property_list_max_length>
      <writer_property_string_max_length>0</writer_property_string_max_length>
      <max_endpoint_groups>0</max_endpoint_groups>
      <max_endpoint_group_cumulative_characters>0</max_endpoint_group_cumulative_characters>

      <channel_seq_max_length>0</channel_seq_max_length>
      <channel_filter_expression_max_length>0</channel_filter_expression_max_length>
      <writer_data_tag_list_max_length>0</writer_data_tag_list_max_length>
      <writer_data_tag_string_max_length>0</writer_data_tag_string_max_length>
      <reader_data_tag_list_max_length>0</reader_data_tag_list_max_length>
      <reader_data_tag_string_max_length>0</reader_data_tag_string_max_length>
    </resource_limits>

    <database>
      <initial_weak_references>256</initial_weak_references>
      <max_weak_references>1000000</max_weak_references>
      <shutdown_cleanup_period>
        <sec>0</sec>
        <nanosec>100000000</nanosec>
      </shutdown_cleanup_period>
    </database>

    <property inherit="false">
      <value>
      </value>
    </property>

  </domain_participant_qos>

  <datawriter_qos>

    <reliability>
      <kind>RELIABLE_RELIABILITY_QOS</kind>
    </reliability>

    <history>
      <kind>KEEP_ALL_HISTORY_QOS</kind>
    </history>

    <resource_limits>
      <initial_instances>1</initial_instances>
      <initial_samples>1</initial_samples>
      <instance_hash_buckets>1</instance_hash_buckets>
    </resource_limits>

  </datawriter_qos>

  <datareader_qos>

    <reliability>
      <kind>RELIABLE_RELIABILITY_QOS</kind>
    </reliability>

    <history>
      <kind>KEEP_ALL_HISTORY_QOS</kind>
    </history>

    <resource_limits>
      <initial_instances>1</initial_instances>
      <initial_samples>1</initial_samples>
    </resource_limits>

    <reader_resource_limits>
      <max_samples_per_read>1</max_samples_per_read>
      <initial_infos>1</initial_infos>
      <initial_outstanding_reads>1</initial_outstanding_reads>
      <initial_remote_writers>1</initial_remote_writers>
      <initial_remote_writers_per_instance>1</initial_remote_writers_per_instance>
      <initial_fragmented_samples>1</initial_fragmented_samples>
      <dynamically_allocate_fragmented_samples>1</dynamically_allocate_fragmented_samples>
      <initial_remote_virtual_writers>1</initial_remote_virtual_writers>
      <initial_remote_virtual_writers_per_instance>1</initial_remote_virtual_writers_per_instance>
      <max_query_condition_filters>0</max_query_condition_filters>
    </reader_resource_limits>

  </datareader_qos>

  <topic_qos>
    <resource_limits>
      <initial_samples>1</initial_samples>
      <initial_instances>1</initial_instances>
      <instance_hash_buckets>1</instance_hash_buckets>
    </resource_limits>
  </topic_qos>
</qos_profile>