Enabling data-centric distribution technology for partitioned embedded systems

Modern complex embedded systems are evolving into mixed-criticality systems in order to satisfy a wide set of non-functional requirements such as security, cost, weight, timing or power consumption. Partitioning is an enabling technology for this purpose, as it provides an environment with strong temporal and spatial isolation which allows the integration of applications with different requirements into a common hardware platform. At the same time, embedded systems are increasingly networked (e.g., cyber-physical systems) and they even might require global connectivity in open environments so enhanced communication mechanisms are needed to develop distributed partitioned systems. To this end, this work proposes an architecture to enable the use of data-centric real-time distribution middleware in partitioned embedded systems based on a hypervisor. This architecture relies on distribution middleware and a set of virtual devices to provide mixed-criticality partitions with a homogeneous and interoperable communication subsystem. The results obtained show that this approach provides low overhead and a reasonable trade-off between temporal isolation and performance.

Publication Year: 
2016